
 
 

Delft University of Technology

Submodularity in Action
From Machine Learning to Signal Processing Applications
Tohidi, Ehsan; Amiri, Rouhollah; Coutino, Mario; Gesbert, David; Leus, Geert; Karbasi, Amin

DOI
10.1109/MSP.2020.3003836
Publication date
2020
Document Version
Final published version
Published in
IEEE Signal Processing Magazine

Citation (APA)
Tohidi, E., Amiri, R., Coutino, M., Gesbert, D., Leus, G., & Karbasi, A. (2020). Submodularity in Action: From
Machine Learning to Signal Processing Applications. IEEE Signal Processing Magazine, 37(5), 120-133.
Article 9186137. https://doi.org/10.1109/MSP.2020.3003836

Important note
To cite this publication, please use the final published version (if applicable).
Please check the document version above.

Copyright
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent
of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Takedown policy
Please contact us and provide details if you believe this document breaches copyrights.
We will remove access to the work immediately and investigate your claim.

This work is downloaded from Delft University of Technology.
For technical reasons the number of authors shown on this cover page is limited to a maximum of 10.

https://doi.org/10.1109/MSP.2020.3003836
https://doi.org/10.1109/MSP.2020.3003836


Green Open Access added to TU Delft Institutional Repository 

'You share, we take care!' - Taverne project  
 

https://www.openaccess.nl/en/you-share-we-take-care 

Otherwise as indicated in the copyright section: the publisher 
is the copyright holder of this work and the author uses the 
Dutch legislation to make this work public. 

 
 



120

NONCONVEX OPTIMIZATION FOR SIGNAL 
PROCESSING AND MACHINE LEARNING
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Ehsan Tohidi, Rouhollah Amiri, Mario Coutino,  
David Gesbert, Geert Leus, and Amin Karbasi

Submodularity is a discrete domain functional property that 
can be interpreted as mimicking the role of well-known con-
vexity/concavity properties in the continuous domain. Sub-

modular functions exhibit strong structure that lead to efficient 
optimization algorithms with provable near-optimality guaran-
tees. These characteristics, namely, efficiency and provable per-
formance bounds, are of particular interest for signal processing 
(SP) and machine learning (ML) practitioners, as a variety of 
discrete optimization problems are encountered in a wide range 
of applications. Conventionally, two general approaches exist to 
solve discrete problems: 1) relaxation into the continuous do-
main to obtain an approximate solution or 2) the development 
of a tailored algorithm that applies directly in the discrete do-
main. In both approaches, worst-case performance guarantees 
are often hard to establish. Furthermore, they are often complex 
and thus not practical for large-scale problems. In this article, 
we show how certain scenarios lend themselves to exploiting 
submodularity for constructing scalable solutions with provable 
worst-case performance guarantees. We introduce a variety of 
submodular-friendly applications and elucidate the relation of 
submodularity to convexity and concavity, which enables effi-
cient optimization. With a mixture of theory and practice, we 
present different flavors of submodularity accompanying illus-
trative real-world case studies from modern SP and ML. In all 
of the cases, optimization algorithms are presented along with 
hints on how optimality guarantees can be established.

Introduction

Discrete optimization
Discrete optimization is a notoriously challenging problem 
that occurs in countless engineering applications and partic-
ularly in SP and ML. Discrete optimization usually involves 
finding a solution in some finite or countably infinite set of 
potential solutions that maximizes/minimizes an objective 
function. A counterintuitive phenomenon is that discrete prob-
lems are sometimes more difficult than their continuous coun-
terparts. This phenomenon was perfectly illustrated by Welsh 
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[1]: “mathematical generalization often lays bare the important 
bits of information about the problem at hand.”

In general, discrete optimization problems are tackled in 
two common ways: 1) building a continuous relaxation or  
2) working out a tailored algorithm. The first relaxes the origi-
nal problem to a continuous one so as to 
apply tools from continuous optimization. 
The continuous solution is then made dis-
crete by a rounding technique to obtain an 
approximate feasible solution for the origi-
nal problem. The second approach develops 
a customized algorithm for use directly in 
the discrete domain. Beyond the fact that we 
often need creative endeavors to design these 
algorithms, both approaches have the following shortcomings: 
1) for most problems, it is hard to have a gap bound between the 
approximate and optimal solutions (OPTs), i.e., approximation 
guarantees; and 2) although the proposed algorithms are usually 
solvable in polynomial time, they are not necessarily scalable.

Submodularity: A useful property for optimization
In this article, we depict a family of optimization scenarios and 
seek solutions that circumvent the aforementioned fundamen-
tal limitations. Although it is challenging to find optimality 
bounds and provide low-complexity methods that will address 
all of the discrete optimization scenarios, in this article, we 
highlight a particular structure that is relevant to a surprisingly 
large class of problems. Submodularity is a functional property 
that has recently gained significant attention. The submodu-
larity property enables striking algorithm-friendly features 
and is observed in a good number of application scenarios. In 
fact, due to their specific connections with convexity, the exact 
minimization of submodular functions can be done efficiently 
while greedy algorithms can obtain near-optimality guaran-
tees in submodular-maximization problems thanks to their re-
lationship with concavity. These benefits have drawn attention 
in many different contexts [2]–[4]. Sample applications include 
sensor selection [5], detection [6], resource allocation [7], ac-
tive learning [8], interpretability of neural networks (NNs) [9], 
and adversarial attacks [10].

This article takes an illustrative approach to explain the 
concept of submodularity and its promise in modern SP and 
ML applications. The relationship of submodularity with 
the celebrated properties of convexity/concavity is intro-
duced to motivate the algorithmic landscape for optimizing 
submodular functions. Starting with basic structures, we 
give a presentation of different aspects of submodular func-
tions and cover current extensions of submodularity. Also, 
to clarify the importance of submodularity in the context of 
SP and ML, various applications are showcased as examples 
and their connections to different aspects of submodularity 
are highlighted.

Submodularity essentials
In this section, we explain the mathematical formulation of 
submodularity through the following illustrative example.

Motivating example: Sensing coverage problem
We illustrate the concept of submodularity through the so-
called sensing coverage problem. Assume that there exists a 
set of candidate locations of sensors—called the ground set—
with effective areas that determine the area around each sensor 

from where fruitful field measurements can 
be obtained (see Figure 1). Because these 
sensors are costly, we should optimize the 
deployment locations to maximize their 
effectiveness. Therefore, the optimization 
problem turns into a coverage problem 
where the objective function is to maxi-
mize the covered area of the sensing field 
subject to a limited number of selected sen-

sors. Here, we investigate one important property of this ob-
jective function.

Figure 1 depicts two sample subsets of the ground set 
(i.e., the blue circles) where the sensors in the smaller sub-
set are all included in the larger one. We have added the 
same sensor (i.e., the red circle) to both subsets. As shown 
in Figure 1, the new covered area due to the newly added 
sensor is smaller for the larger subset. We often call this 
phenomenon diminishing returns (DRs) or decreasing gain. 
For this specific example, this property implies that the new 
covered area added due to the addition of a new sensor may 
decrease when the size of the original subset increases. As 
will be seen next, this example carries the essential intuition 
behind submodularity.

Submodular set functions
A set function :f 2 RN "  defined over a ground set N  is sub-
modular if, for every A B N3 3  and \ ,e N B!  it holds that

 ( | )  ( | ),f e f eA B$  (1)

where ( | ) ( { }) ( )f e f e fS SS ,= -  is defined as the discrete 
derivative (or marginal gain) of the set function f at S  with 
respect to e. Although there are several equivalent definitions 

(a) (b)

FIGURE 1. An illustration of submodularity for the sensing coverage prob-
lem. The figure depicts an example of adding the same sensor (i.e., the red 
circle) to (a) a large subset and (b) a smaller subset, where the selected 
subsets of sensors are shown by the blue circles. The amount of added 
coverage is larger in (b).

The submodularity 
property enables striking 
algorithm-friendly features 
and is observed in a good 
number of application 
scenarios.
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of submodularity, we stick to the definition in (1) as it natu-
rally displays the DRs’ property of submodular set functions. 
Moreover, function f is supermodular if −f is submodular, and a 
function is modular if it is both submodular and supermodular.

Aside from submodularity, another common property of 
some set functions is monotonicity. A set function :f 2 RN "  
is monotone if for every , ( )   ( ) .f fA B N A B3 3 #  This 
property is exhibited by many commonly encountered set 
functions in practice. For instance, in the 
previous example, the coverage is monotone 
in the number of sensors.

Note that although there is a substantial 
body of literature that addresses submodu-
lar functions with nonmonotone behavior 
[11], in this article, we mainly consider nor-
malized monotone submodular functions 
for ease of exposition. Here, a normalized 
set function implies ( ) .f 0Q =  In the following sections, we 
present crucial properties linked with submodularity as well as 
extensions that find applications in both SP and ML.

DRs and concavity: Maximization
In this section, we focus on the link between submodular-
ity and concavity, which can be leveraged for designing algo-
rithms for the maximization of submodular functions.

The definition (1) exhibits the notion of diminishing mar-
ginal gains, which naturally leads to considering submodular-
ity as a discrete analog of concavity. As depicted in Figure 2(a), 
the derivative of a concave function does not increase by 
increasing the input variable. Although less explicit, a similar 
characteristic appears in submodular functions. In Figure 2(b), 
a hypercube is shown where each vertex corresponds to a sub-
set of the ground set, and a line connects two vertices if one 
subset contains the other. Here, the arrows represent the direc-
tion from the smaller to the larger subset. Similar to the con-
cavity in the continuous domain, moving along an arrow, the 
discrete derivative does not increase.

Greedy maximization of submodular functions
Consider now the problem of submodular function maximiza-
tion, which can be written in its most general form as

 ( )   ,max f subject to some constraints onS S
S N3

 (2)

where f( · ) is a submodular function, and the common valid 
constraints are cardinality, knapsack, multipartition, and 
matroid (more details of which are given later). Equation (2) 
appears in many applications; for example, consider the previ-
ous sensing coverage problem (compare Figure 1). In that set-
ting, our goal is to deploy up to K sensors, i.e., ,KS #  such 

that the coverage area, i.e., ( ),f S  is maxi-
mized. Finding the OPT of such a problem 
is NP-hard [12]. Therefore, it is reasonable 
to look for efficient algorithms that achieve 
a near-OPT.

Greedy algorithm
A simple approach for solving the problem 
of normalized monotone submodular func-

tion maximization under a cardinality constraint is the greedy 
algorithm, which starts with an empty subset ,S  and in each 
iteration, adds element e, which maximizes the marginal gain 

( | ),f e S  i.e.,

 { ( | )} .argmax f eS S S
\e N S

! ,
!

 (3)

This simple algorithm is guaranteed to achieve the OPT 
with a factor of /e1 1-  [12]. It is also known that one cannot 
achieve a better approximation guarantee under natural com-
putational-theoretic assumptions. Even though obtaining this 
performance guarantee with such a simple algorithm is sur-
prising, there is a good explanation. The definition (1) is based 
on DRs. Simply put, when we add elements to a set, the ele-
ments that are added in the beginning are more important than 
the elements that are included later. Now, a greedy algorithm 
only optimizes over the next element and does not consider 
later elements. As such, it gives the largest weight to the next 
element. This observation intuitively explains that the basis of 
a greedy algorithm is matched with the concept of submodu-
larity, and this is the main reason for achieving a noticeable 
performance by employing such an algorithm with a low com-
putational complexity.

Submodularity and concavity
One way to establish a connection between submodularity and 
concavity is through the use of a so-called multilinear exten-
sion [13]. For set function : ,f 2 RN "  its multilinear extension 

: [ , ]F 0 1 RM
N "  with NN =  is defined by

 ( ) { ( )} ( ) ( ),F f f x x1x E X S
\

M i
i

j
jS N S N S

= = -
3 ! !

% %/  (4)

with X  being a random set where elements appear indepen-
dently with probabilities .xi  It is proved that if f( · ) is submodu-
lar, then FM( · ) is concave along positive directions. Name-
ly, if  ,x yG  then ( )  ( ),F Fx yM Md dH  where the inequality 
should be considered element-wise [13], and d  stands for the 
gradient operation.

(a) (b)

FIGURE 2. An illustration of decreasing derivatives in both concave and 
submodular functions. (a) and (b) depict a concave function in the 
continuous domain and a submodular function in the discrete domain, 
respectively.

When we add elements to 
a set, the elements that 
are added in the beginning 
are more important than 
the elements that are 
included later.
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Using the restricted concavity of the multilinear extension, 
that is, the continuous version of the greedy algorithm [compare 
(3)], the so-called continuous greedy can solve certain types of 
constrained-maximization problems near optimally [14].

Constrained submodular maximization
In many applications, the elements of the ground set may have 
nonuniform costs, e.g., some sensors might be more expensive 
to deploy than others, and the problem may be constrained on 
a budget that the total cost cannot exceed or, a certain structure 
has to be enforced in the solution set. For example, consider 
a set of heterogeneous sensors (such as acoustic, optical, and 
radar), which provide a given sensing coverage and have dif-
ferent operative/deployment costs. We aim to deploy a number 
of these sensors to maximize the total coverage while meeting 
a budgetary requirement. Such a problem is called a knapsack 
problem and appears often in SP and ML applications. This 
problem can be formulated as

 ( ) ,max f c Bs.t.S e
eS N S

#
3

!

/  (5)

where ce  is the cost of element e N!  and B is a given budget, 
determining the maximum sum-cost of elements in .S

Cost-weighted greedy algorithm
The optimization problem (5) is well solved with a modified 
version of the greedy algorithm that takes cost into account. 
This algorithm greedily generates a solution, substituting the 
update selection rule (3) by

 
|

,argmax
c

f e
S S

S

e eJ
! ,

!

^ h) 3  (6)

where { | \ , } .e e c B c J N S e S! #= -  Next to this set, an-
other greedy set is constructed using the rule (3). It is shown 
that constructing both sets and selecting the best one pro-
vides a ( / )e1 1 2- -approximation guarantee [15]. A later 
study showed that a more involved version of this procedure 
achieves a ( / )e1 1- -approximation guarantee [16]. Further, 
if the partial enumeration of all the feasible sets of cardinality 
one or two is performed, a version of the cost-weighted greedy 
algorithm leads to a ( / )e1 1- -approximation guarantee [17].

Although knapsack-type constraints are pervasive, they 
only model the weights (or cost) associated with the elements 
of the ground set. Fortunately, there exist other structures that 
are able to capture more complex and practical constraints 
while allowing for the near-optimal maximization of submod-
ular functions. In the following sections, we introduce these 
structures along with their corresponding greedy algorithms.

Matroids: Useful combinatorial structures
A matroid is a useful combinatorial structure that generalizes 
the concept of linear independence in linear algebra to set the-
ory. Matroids and submodular functions are closely related. 
Specifically, each matroid corresponds to a submodular 
rank function.

A matroid is defined as a pair ( , )N I  in which N  is a finite 
set and 2I N3  comprises any subset of ,N  which satisfies the 
following properties:

 ■ A B N3 3  and B I!  imply .A I!
 ■ ,A B I!  and B A2  imply that \e B A7 !  such that 

{ } .eA I, !

Based on this definition, the sets in I  are called independent.

Examples of matroids
In the following, we list some examples of commonly encoun-
tered matroids in SP and ML applications.

 ■ Graphic matroid: Consider a graph ( , )G V E=  with a 
vertex set V  and an edge set ,E  and let ( )I G  be the set of 
all edge subsets that do not contain a cycle of ;G  that is, 
the elements of the independent sets are the forests of the 
graph. Then, ( , ( ))E I G  forms a matroid.

 ■ Uniform matroid: Another common example of a matroid 
is given by a cardinality constraint, i.e., .KS #  The 
related matroid is constructed by considering as indepen-
dent sets all the subsets of N  with at most k elements, i.e., 

: .kNS SI 1 #= " ,  This matroid is referred to as the 
uniform matroid of rank k, .Uk

N

 ■ Partition matroid: Given a collection of I disjoint 
se t s  C Ni i

I
11 =" ,  and integers { }bi i

I
1=  such that 

, { , , } .b i I0 1Ci i 6 f# # !  Then, the independent sets 
of a partition matroid are given by :I S N3= "  

, .b i i I1S Ci i+ 6# # # ,

Matroid-aware greedy algorithm
Given the matroid , ,N I^ h  the constrained submodular-max-
imization problem ( )max f S

S I!
 can be near-optimally solved by 

constructing a solution using the rule

 { ( | )},argmax f eS S S
: { }e eS IS

! ,
," !

 (7)

until there is no more candidate element that can be added to 
form a feasible solution. It is shown that the matroid-aware greedy 
method can achieve a one-half near-optimality guarantee [12].

The ( / )e1 1- -approximation guarantee can be achieved 
if the continuous greedy algorithm in [14] is used instead. 
This method constructs a solution by appropriately rounding 
the solution of a continuous relaxation using the multilinear 
extension of the original problem. In the following sections, 
we present an application that makes use of matroids to model 
commonly encountered constraints.

Resource selection for parameter estimation  
in multiple-input, multiple-output radars
The application of multiple-input, multiple-output (MIMO) 
radar systems becomes pervasive because of their enormous 
advantages over conventional radars. Such large-scale MIMO 
systems are, however, very expensive to implement in practice 
due to the high increase in hardware cost regarding the deploy-
ment of multiple sensors, their power consumption for multi-
pulse transmissions, and their processing complexity. To reduce 
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the aforementioned costs while at the same time guaranteeing 
a given estimation accuracy level, it is important to select only 
a limited set of transmitters, pulses, and receivers (as shown in 
the MIMO radar configuration of Figure 3) that are the most in-
formative for the parameter estimation task.  Such a problem is 
known as resource selection in the literature. In [5], the problem 
of resource selection in an MIMO radar is formulated as maxi-
mizing a submodular function subject to a partition matroid 
( , )P R I,  whose independent sets are defined as

 : , ,K KSI S S P RP R+ +# #= " ,  (8)

where P  and R  are the ground sets of all the transmitted pulses 
and receivers, respectively. Variables KP and KR stand for cardi-
nality of the selected sets of pulses and receivers, respectively.

To illustrate this application, we consider a simulation 
scenario with four receivers, four transmitters, and four 
pulses per transmitter. To evaluate the performance of the 
greedy selection algorithm in comparison with the con-
vex method and the optimum mean square error (MSE) 
obtained through an exhaustive search, the estimation MSE 
is plotted in Figure 4 as a function of the number of selected 
transmitted pulses. The results are presented for two cases 
where one and three receivers should be selected. As shown 
in Figure 4, the estimation accuracy of the greedy algorithm is 
very close to the optimal value. Furthermore, its performance 
is the same or better than its convex counterpart while having a 
much lower complexity.

The key to the problem is the objective function, which 
should be related to the estimation accuracy. Because MSE is 
neither convex nor submodular and makes the optimization 
task difficult, in [5], a surrogate objective function is incorpo-
rated that measures the orthogonality between the vectors of a 
frame. This measurement is an appropriate submodular proxy 
for the MSE in nonlinear estimation problems.

Multiway partitions
In addition to matroids, multiway partitions are amenable 
structures for submodular optimization. Multiway partitioning 
arises in a diverse range of combinatorial optimization prob-
lems in areas including communications and SP. This problem 
is defined as partitioning a given set S  into k disjoint subsets 

, , , ,S SS S S Sk
k i j i i1 1,+f Q= ==  such that ( )f Si ii

k
1R =  is 

maximized, where the fis are arbitrary submodular functions.

Multiway greedy partition algorithm
To solve the multiway-partitioning problem, a greedy 
algorithm can be used that allocates each element e to 
the best subset at that point, i.e., { },eS Sj j! ,) )  where 

{ } .argmaxj f eSj jj ,=) ^ h  If all of the involved functions in 
the multiway-partitioning problem are nonnegative, monotone, 
and submodular, then the greedy algorithm provides a one-
half-approximation guarantee [12]. In the following, we illus-
trate this problem via a resource-allocation application.

Water filling-based resource allocation
Consider an orthogonal frequency-division multiple access 
(OFDMA) communication system with a set of n orthogonal 
subcarriers, denoted by .C  The considered problem is to al-
locate a disjoint subset of C  to each user so as to maximize the 
sum-rate criterion [7]. Denoting the set of allocated subcarriers 
to user i by ,A Ci 3  the resource-allocation problem can be 
formulated as the following partitioning problem [7]:

 

( ),

, ,

max R

s.t.

A

A A AC

, , ,
i

i

m

i

i
i

m

i j

1

1

A AA m1 2

+ Q= =

f
=

=

'

/
 

(9)
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FIGURE 3. The configuration of a MIMO radar system.
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FIGURE 4. The MSE as a function of the selected transmitted pulses for two 
different cases with one and three selected receivers [5]. 
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where

 ( ) ,max logR
N
P

1A
 ,

,
i i

P P

P
j i j

i j

0
A,

,

i jj i

i j

iAi

= +
#

$
!!

c m/
/

 (10)

with Pi  being the sum-power constraint for user i, P ,i j  the 
power allotted by user i to subcarrier j, and N ,i j  the corre-
sponding channel noise level. The rate (10) has a similar form 
as that of the water-filling function [7] and thus, the power 
for each user can be allocated locally via a water-filling algo-
rithm. Furthermore, it is proved that the water-filling function 
is submodular [7] (because a sum of submodular functions 
is a submodular function [4], the objective function in (9) is 
submodular) and thus, a greedy algorithm can be employed 
to efficiently solve the subcarrier allocation problem with a 
theoretical guarantee [12].

For the presented application, an illustrative example is pro-
vided in Figure 5 to demonstrate how a greedy resource-alloca-
tion algorithm works. As presented in Figure 5(a)–(f), starting 
from the first subcarrier and going through them one by one, at 
each step, the subcarrier is allocated to the user with the maxi-
mum marginal gain, and power is reallocated afterward for the 
new set of subcarriers based on the water-filling algorithm.

Approximate (weak) submodularity
When a cost function f is not submodular, greedy algorithms 
can still be useful; yet, they do not necessarily provide any 
theoretical guarantees. Fortunately, for cases where f is close 
to submodular, it can be shown that greedy algorithms degrade 
gracefully [18].

To measure how far function f is from being submodular, 
the concept of weak submodularity is introduced in [18]. This 
notion of approximate submodularity is linked with other 
notions like e-submodularity (see, e.g., [19]) and to properties 
such as restricted strong convexity [20]. Mathematically, weak 
submodularity is defined through the submodularity ratio, ,c  
as follows: a monotone nonnegative set function :f 2 RN " +  
is called c-weakly submodular for an integer r if

 :
( | )

({ } | )
,min

f
f j
S L

L\

, : | | , | \ |
r

r

j S L

L S N L S L
#c c

R
=

!

3 #
 (11)

where 0/0 is defined as 1. This definition generalizes sub-
modularity by relaxing the DRs’ property. It can be easily 
shown that function f is submodular if and only if 1r $c  
for all r. Whenever c  is bounded away from 0, the greedy 
algorithm guarantees a solution with a ( )e1- c- -approxima-
tion guarantee under a cardinality constraint of size r, which 
is the best achievable performance, as discussed in [21]. To 
explore other variants and guarantees for the greedy maxi-
mization of approximately submodular functions, we refer the 
reader to [18].

Subset selection for regression
To show how the approximate submodularity framework can 
be useful in practice, we consider the problem of subset se-

lection for regression [18], [20]. That is, given a set of n re-
gressors, select a subset of k regressors that best predicts the 
variables of interest. The applications of this problem range 
from feature selection to sparse learning in both SP and ML. 
The advantage of using the natural combinatorial formula-
tion of the problem—based on weak submodularity—over 
traditional convex relaxations [22] is that it provides direct 
control over the sparsity level k and avoids the tuning of regu-
larization parameters.

Consider a set of observation variables [ , , ] ,x xx n1
Tf=  

and a predictor variable z. Further, let [ ] ( , )x xCovC ,i j i j=  and 
[ ] ( , )x zCovb i i=  be the covariances among the observations 
and between the predictor and observation, respectively. Then, 
the square multiple correlation with respect to a subset of vari-
ables S  is given by

 : ,R b C b,z
2 1

S S SS =
< -  (12)

where the subscript indicates either that only the entries or 
row and column indices in S  are retained. Hence, given both 
C and b and k, the subset selection problem is posed as the 
maximization of :  .R kS,z

2
S #  This setting is similar to that 

of [6], where the approximate submodularity of the signal-
to-noise ratio [the same functional form as (12)] is leveraged 
during sensor selection for the detection of signals under 
Gaussian noise. 

Using approximate submodularity, it can be shown that 
celebrated greedy algorithms, such as forward regression 
(FR) and orthogonal matching pursuit (OMP), obtain near-
optimality guarantees for this family of problems. For these 
two algorithms, their submodularity ratios are given by 

5 3 6 4 7

(b)

(e)

(c)

(f)

(a)

(d)

FIGURE 5. An example of an uplink OFDMA subcarrier and power-allocation 
problem with two users and five subcarriers. We consider 8 W for the 
sum-power constraint of each user and both users are assumed to experi-
ence the same noise variance in each subcarrier. (a) The noise variance 
of different subcarriers. Starting from the first channel and allocating the 
channels one by one, (b)–(f) present the procedure of subcarrier allocation 
to users, where the red/blue bars represent the allocated power by the 
first/second user to each subcarrier, respectively.
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( , )k4 2CFRc m=  and ( , ) ,k2C 2
OMPc m=  respectively. Here, 

( , ): ( ),minkC C: minkS S Sm m= =  where ( )Aminm  is the mini-
mum eigenvalue of the matrix A.

To illustrate this application, a comparison of these two 
algorithms is conducted against the OPT and the oblivious 
greedy and Lasso algorithms. The theoretical results (compare 
the submodularity ratios) predict that FR should outperform 
OMP in most of the cases. In Figure 6, the R ,z

2
S  values for the 

selected subsets by different methods for sizes { , , }k 2 8f!  
are displayed for two different data sets.

(Weakly) adaptive submodularity
Several problems in SP and ML require making decisions in a 
sequence, such as terrain exploration or movie recommenda-
tions based on a user’s feedback. The difficulty of such prob-
lems lies not only in the size of the search space but also in the 
partial knowledge of the process, i.e., decisions are made un-
der the uncertainty of the future. As tackling these problems 
without considering any further structure is either challenging 
or intractable, the concept of submodularity has been extended 
to this setting to find tractable methods with strong theoretical 
guarantees [8].

To model adaptability, we can make use of a (directed) 
graph ( , )G V E=  whose vertices relate to the elements of the 
ground set, i.e., there is a bijection between the vertices of G 
and the elements of set ;N  and its weighted (directed) edges 
capture the probabilities of selecting one of the elements after 
the other (if this information is available). Adaptability arises 
when nodes (or edges) are allowed to have states. That is, their 
properties, e.g., the cost, signals on the nodes (edges), and so on 
can, change as a selection procedure (the creation of a subset of 
elements) progresses [23].

For instance, let us consider recommending websites to a user. 
Here, set N  represents websites, and graph G (and its weights) 
can be constructed based on the traffic (cross references) 
between these websites. Further, each website is assumed to 
have, at any given time, one of the states : {unvisited,Q =  

.}visited  Finally, a function :h 2 RQV V 7# +  is select-
ed to measure user satisfaction, e.g., the affinity for visited 
websites with dynamic user preferences. Here, adaptability is 
required because at each new recommendation, the states of the 
websites change.

To extend submodularity notions to an adaptive setting, the 
conditional marginal gain of a set ,A N3  with respect to the 
function h, is defined as

 ( ) [ ( ( ) , ) ( ( ), ],)h hdom domEA A,} } z } z }D = -  (13)

where } denotes a partial realization, i.e., a mapping disclos-
ing the states of a subset of nodes (edges), and the expectation 
is taken over all of the full realizations ,z  that is, a complete 
disclosure of node (edges) states such that ( ) ( ) .dom dom3} z  
Here, ( )dom }  denotes the list of items whose state is known. 
Using this definition, set function h is weakly adaptive and set 
submodular with parameter c  if, for all sets ,A V3  we have

 
( | )

( | )
,

e

A
e A 6# 3c

}

}

} }
D

D
!

l
l

/
 (14)

where ,3} }l  if and only if ( ) ( )dom dom3} }l  and they 
are equal in the domain of }.

This notion is a natural extension of the submodularity ratio 
[compare (11)] to the adaptive setting. Notice that instead 
of conditioning only on sets, conditioning on realizations is 
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FIGURE 6. The regression results for two different data sets. (a) The Boston Housing data set R ,z
2
S  and (b) the World Bank data set R ,z

2
S  [18]. OBL: oblivi-

ous greedy algorithm; L1: Lasso algorithm. 
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needed to account for the element states. Note that an edge 
function can be defined in a similar way to h.

Under this setting, it has been shown that an adaptive ver-
sion of the greedy algorithm [23], that is, the adaptive sequence 
greedy (ASG) method, returns set ASGv  such that

 ( ) ( ),f
d

f
2avg ASG

in
avg$v

c

c
v

+
)  (15)

where ( ): [ ( ( ), )],f hE Eavg v v z=  din  is the largest in-degree of 
input graph G, and v)  is the set obtaining the highest expected 
value [compare .favg $^ h@

Wikipedia link search
To illustrate an application of adaptive sequence submodular-
ity, we present the problem of an adaptive-
article sequence recommendation. Here, 
a user is surfing Wikipedia toward some 
target article. And given her history of 
previously visited links, we aim to guide 
her to the target article. Because the order 
in which she visits the articles is critical, 
a set of articles does not suffice as an an-
swer, and an ordered sequence is needed.

Under this setting, the sequence value is encoded through the 
weights of a directed graph ( , )G V E=  where each element of 
the ground set is represented by a vertex in .V  The probability of 
moving from the ith to the jth link is captured by the weight wij  
of the corresponding directed edge. As a result, a sequence of ele-
ments : { , , , , },i i1 1f fv v v v= +  i.e., an ordered set of elements, 
induces a set of edges ( ) {( , ) | ( , ) , } .i jE Ei j i j ! #v v v v v=:  
In addition, each node is assumed to have two states: “1” if the 
user visits a page and “0” if the user does not want to visit it. 
This last feature, plus the fact that the decision must be made 
based on the current page that the user is visiting, is what makes 
adaptability necessary. For this problem, the probabilistic cover-
age utility function [23], i.e.,

 ( ( )) ( )h w1 1E
( , ) ( )

ij
i jj EV

v = - -
!! v

,; E%/  (16)

is used to guide the selection problem.
A comparison of the ASG method with deep learning-based 

alternatives is presented in Figure 7. The results report the rel-
evance of the final output page to the true target page, i.e., a 
higher relevance is related to a lower score. Notice that the ASG 
method outperforms the deep learning alternatives, as under 
this setting, we suffer from data scarcity. Also, the ASG method 
comes with provable guarantees on its performance and does 
not require hyperparameter tuning nor retraining. These are 
in contrast with deep learning approaches, which do not have 
theoretical guarantees; however, they do require parameter tun-
ing and, when the ground set is changed, need to be retrained.

Distributed submodular maximization
As explained thus far, although submodularity enables us to 
employ conceptually low-complexity algorithms with theoreti-

cal approximation bounds, classical approaches of submodu-
lar optimization require access to the full data set, which is 
impractical in large-scale problems. MapReduce is a fruitful 
programming model used for reliable and efficient parallel 
processing that has demonstrated a promising approach for 
designing parallel, submodular optimization algorithms, par-
ticularly for forming a small representative subset from a large 
data set [24], [25]. 

In a distributed setting, we assume m machines are given 
to carry out the submodular optimization problem with two 
considerations: 1) the optimality of the returned solution 
and 2) the communication complexity, i.e., the number of 
synchronizations among machines. One can imagine that, 
without any constraint on the number of synchronizations, 
we can technically perform a centralized scenario. Conse-

quently, the following three questions arise 
when tackling distributed optimization: 1) 
how to distribute items among machines, 
2) what algorithms to run across different 
machines in a parallel fashion, and 3) how 
to merge/synchronize the results of differ-
ent machines [24].

A two-round parallel protocol that pro-
vides efficient responses to these three 

questions is proposed in [24]. Here, we briefly explain the 
algorithm and its results for a monotone submodular func-
tion with a cardinality constraint (for more general cases, 
see [24]). In the initialization phase, the data set is arbitrarily 
partitioned into m sets—one set for each machine. Next, in 
the first round, given K as the cardinality constraint, each 
machine executes a greedy algorithm over its own set to 
achieve a subset with K elements. Then, in the second round, 
the m subsets obtained from all of the machines are shared 
with a central node to form a superset with mK elements. 
Running a standard greedy algorithm over this superset 
leads to a new subset with K elements. Finally, among the 
m + 1 subsets with K elements, the one that maximizes the 
utility function is selected. It is shown that this algorithm 
provides a ( / ) ( , )min m K1 1 e-` j-approximation guar-
antee [26]. Figure 8 depicts an illustration of the two-round 
algorithm in [24]. Active set selection in Gaussian processes 
and large-scale exemplar-based clustering are two instances 
of applications where the size of the data sets often requires 
a distributed method for a given submodular-maximization 
problem [24].

Submodularity and convexity: Minimization
Up to this point, we have only discussed the maximization of 
submodular functions. In this section, we highlight an interest-
ing connection between submodular set functions and convex-
ity, which allows for the efficient minimization of submodular 
set functions.

A convex extension of submodular functions
Consider a set function :f 2 RN "  with .NN; ;=  Associ-
ate every element of the set 2N  to a vertex of the hypercube 

The ASG method comes 
with provable guarantees 
on its performance 
and does not require 
hyperparameter tuning  
nor retraining.
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.{ , }0 1 N  That is, each S N3  corresponds uniquely to a bi-
nary vector of length N where the nth entry is 1 if n S!  and 
0 otherwise.

A set function f can be extended from the discrete domain  
(vertices of the hypercube) to the continuous domain (the  
complete hypercube) through the Lovász extension. The  
Lovász extension : ,F R RL

N "  is  def ined as fol lows: 
given a vector [ , ]0 1x N!  and a scalar [ , ],0 1!i  define 

 ≥  ,e xNT e! i=i " ,  where xe  is the eth entry of x. Then, 
( )F xL  is obtained through the following equation [27]:

 ( ) { ( )} .F x E T
[ , ]

L
0 1

=
!i

if  (17)

Figure 9 illustrates an example of how the hypercube 
is formed, and it is divided into six parts correspond-
ing to the six possible orderings of the input vector for the 
Lovász extension.

The Lovász extension of a submodular function has two 
main properties [27]: first, it is convex; and second, its mini-
mizer resides at the vertices of the hypercube. Hence, convex 
optimization can be employed to efficiently find a feasible 
minimizer of the original discrete problem.

We note that, in both Lovász and multilinear extensions, 
the distribution defining the continuous function at x is inde-
pendent of the set function (·) .f  Also, these extensions are 
similar in the sense that both are obtained by taking the 
expectation of the function, however, with respect to different 
probability measures.

Unconstrained submodular minimization
Consider an unconstrained submodular minimization prob-
lem, i.e., ( ) .min f SS N3  If f is extended to ,FL  the continu-
ous function is convex and exact (i.e., we can recover an 
optimal set of the original problem from an OPT of the 
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extended problem). Therefore, solving ( )min F x[ , ] L0 1x N!  by a 
subgradient method, we can retrieve the OPT for the origi-
nal discrete problem.

Alternatively, using the dual formulation of the con-
tinuous problem, we can obtain a minimum norm problem 
that can be solved by the Frank–Wolfe algorithm [28]. This 

algorithm, also known as the conditional gradient method, 
is an iterative first-order method that considers a linear 
approximation of the objective function and moves toward 
its minimizer. The Frank–Wolfe algorithm is a projection-
free method, and it is well known for keeping the sparsity of 
the proposed solution.  These aspects make this algorithm 

V

V1 V2 Vi Vm

Agc[k ] = greedy (V1, k )
1 Agc[k ] = greedy (V2, k )

2
Agc[k ] = greedy (Vm, k )m

Agc[k ] = greedy (B, k )B

Agc[k ] = greedy (Vi, k )i

B = Agc[k ] ∪ Agc[k ] ∪ ... ∪ Agc[k ]
1 2 m

Agc    [k ] = argmax {f (Agc[k ]), … , f (Agc[k ])}max 1 m

Max

FIGURE 8. An illustration of the distributed two-round algorithm. V is the ground set and , ,V Vm1 f  are the initial partitions distributed among different 
machines with m being the number of machines. Moreover, , ,A Agc gc

m1 f  are the greedy solutions obtained locally on machines in the first round where 
the one with the maximum utility is denoted as .Amax

gc  Then, in the second round, m subsets obtained in all the machines are shared with a central node to 
form a superset B with mK elements, i.e., .B A Am1

gc gc, ,g=  Furthermore, running a standard greedy algorithm over the superset B leads to .AB
gc  Finally, 

the maximum of Amax
gc  and AB

gc  is returned as the solution [24]. 
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FIGURE 9. From subsets to vertices in the hypercube for a sample ground set { , , }1 2 3N =  with .N 3=  Each subset has a corresponding 
vertex in the hypercube. (a) A depiction of how the hypercube is created. (b) The six possible orderings of the input vector for the Lovász 
extension [3].

Authorized licensed use limited to: TU Delft Library. Downloaded on August 27,2021 at 11:27:33 UTC from IEEE Xplore.  Restrictions apply. 



130 IEEE SIGNAL PROCESSING MAGAZINE   |   September 2020   |

attractive for sparse and large-scale constrained optimiza-
tion problems, for instance, for optimizing over atomic 
domains [29].

Hardness of constrained submodular minimization
Although there exist polynomial-time algorithms for mini-
mizing any unconstrained submodular function, constrained 
submodular minimization becomes challenging to approximate  
 under simple constraints. For instance, in [30], it is shown 
that for problems such as submodular load balancing [given 
a monotone submodular function f and a positive integer 
M, find a partition of N  into M sets, , , ,N NM1 f  so as to 
minimize ( )max f N

m
m @ and submodular sparsest cut [given 

a set of unordered pairs N, , ,x y x ym m m m !"" , ,  each with 
a demand of ,p 0m 2  find a subset S N3  minimizing 

p( ( / )],)f S mm mR : { , }m x y 1S+; ;=  the approximation guarantees 
cannot be better than ( / ),lnO N N  where N is the size of the 
ground set.

Therefore, even though polynomial-time algorithms are 
available for the minimization of submodular functions, we 
must be aware of the following issues: 1) the high computa-
tional complexity of algorithms required to minimize uncon-
strained problems, i.e., the polynomial orders are typically 
larger than three, making the exact minimization challeng-
ing for large-scale problems; and 2) dealing with constraints 
makes the problem extremely hard.

Optimization of general set functions
At this point, readers may wonder: Is it possible to develop a 
suitable greedy algorithm for any arbitrary set function? Un-
fortunately, the answer is no, in general. However, using the 
fact that any set function can be expressed as a difference of 
two submodular set functions [31], greedy algorithms inspired 
by optimization methods for the difference of two convex 
functions [32] can be developed.

The maximization of any set function :f 2 RN "  de -
fined over a ground set N  can be expressed as the dif-
ference of two submodular set functions :g 2 RN "  and 

: :h 2 RN "

 .max max g hS S S
S NS N
/ -

3 3
f ^ ^h h h6 @^  (18)

This formulation allows for drawing parallels with convex 
optimization techniques and to devise a greedy algorithm to 
approximate the solution. Specifically, when ( )h S  is modular, 
a recent result shows that we can get a ( / ) ( ) ( )g h1 1 e opt opt- -  
approximation guarantee [21].

Supermodular-submodular procedure
Similar to maximizing the difference of convex functions, we 
can consider an approach that approximates the solution of the 
original problem by a sequence of submodular-maximization 
problems. Recall that in the convex-concave procedure [32], 
the concave function is approximated at every step by its first-
order Taylor expansion.

Following this idea, the problem of maximizing the dif-
ference of submodular set functions is cast as the sequen-
tial maximization of submodular functions. This is done 
by substituting the second submodular set function in (18) 
with its modular upper bound in each iteration [33]. A 
number of tight, modular upper bounds JS

h  are suggested 
in [12], e.g.,

 { }eS( ) ( ) { } ({ } ) .( )h h e h eJ X S
e e

S
S X X S

= Q= - +
= =! !

h //  
 (19)

This method, called a supermodular-submodular (SupSub) 
procedure, starts with an empty set ,S0  and in each iteration, 
k tries to solve the following problem (specialized for a K-car-
dinality constraint):

 SJ( ) ( )argmax g SS
,

k
K

h
1

S SN
Sk= -

3 ; ;
+

=
 (20)

until a convergence condition is satisfied.
Note that to solve the maximization problem at each step 

of this algorithm, which is NP-hard in general, the greedy 
heuristic can be used to obtain a near-OPT. Despite the 
fact that near-optimality guarantees are not available for 
the SupSub procedure, similar to the convex-concave pro-
cedure, this method is guaranteed to converge to a local 
minima [33].

Feature selection for classification
We consider the binary classification problem as a nonsub-
modular example to which the SupSub procedure can be ap-
plied. Note that exploiting more features does not necessarily 
reduce the classification error; however, we should find a way 
to select the most informative features for a given data set as 
quickly as possible. Thus, a greedy feature-selection proce-
dure can be considered an attractive solution.

Consider the binary classification problem, modeled as a 
binary hypothesis test given by

 
: ~ ( , )
: ~ ( , )y
y

H N
H N , ,

, ,

1 1 1

0 0 0S S S

S S S

i

i

R
R

,)  (21)

where S N3  is the subset of selected features from the 
ground set { , , } .N1N f=  The mean vectors of the selected 
data under H0  and H1  are denoted by ,0 Si  and ,1 Si  and the 
second-order statistics by ,0 SR  and ,,1 SR  respectively.

We consider the Kullback–Leibler (KL) divergence, 
( )K H H1 0< , as the performance measurement for the clas-

sification task, which is a distance measuring how far the 
two hypotheses H0  and H1  are. Unfortunately, the KL 
divergence is not submodular. To solve this problem, the KL 
divergence was decomposed in [6] as the difference of two 
submodular set functions, which means the SupSub proce-
dure can be employed.
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Now, let us assess the performance of the greedy method 
for feature selection. In this example, we consider two classes 
described by a Gaussian distribution with second-order sta-
tistics 0R  and 1R  and mean vectors 0i  and ,1i  respective-
ly. Here, the covariance matrices are assumed to be Toeplitz 
matrices (a common structure in SP problems). The total 
number of features is 50, and the trained classifier is the qua-
dratic discriminant classifier (QDC). In Figure 10, the clas-
sification soft error for different feature-selection methods is 
depicted versus the cardinality of the selected feature set. The 
feature-selection method in the MATLAB pattern recognition 
toolbox (PRTools) Toolbox is considered here as a baseline 
[6]. As shown in this figure, the method based on the Sup-
Sub procedure provides a desirable performance superior to 
the PRTools baseline result. Furthermore, the KL greedy, i.e., 
directly applying the greedy heuristic to the KL function, out-
performs the other methods in most cases. However, it can get 
stuck sometimes and has no near-optimality guarantees (for 
further discussions, see [6]).

Submodularity and continuous domain optimization
As discussed in previous sections, submodularity is a useful 
property of functions defined in a discrete domain, which 
admits a guaranteed approximate optimization with efficient 
algorithms. The reader may expect that an extension of sub-
modularity to the continuous domain provides similar benefits 
for continuous optimization problems.

In this regard, in [34], the notion of continuous submodu-
larity is defined on subsets of RN  so that function : ,f RX "  
where X Xi

N
1 iP= =  with each Xi  is an interval, is continuous 

submodular if and only if for all ( , ) ,x y XX#!

 ( ) ( ) ( ) ( )f f f fx y x y x y0 /$+ + , (22)

where 0  and /  stand for the coordinate-wise maximum and 
minimum operators, respectively. When (·)f  is twice-differen-
tiable, this function is submodular iff all nondiagonal elements 
of its Hessian are nonpositive [34].

The class of continuous submodular functions covers a sub-
set of both convex and concave functions. As an example, a 
function of the form ( )f x x,i j i j-  for a convex f ,i j  is both sub-
modular and convex; or, an indefinite quadratic function of the 
form ( )f c1 2x x Ax b xT T= + +^ h  with all nondiagonal ele-
ments of A nonpositive is a submodular, but nonconvex/non-
concave, function.

Analogous to the discrete domain, the DRs’ property is 
generalized to functions defined over X  (see [35]). It is clear 
that for set functions, the DR property is equivalent to sub-
modularity, however, for general continuous domain functions, 
submodularity does not necessarily imply the DR property. In 
other words, the DR property is stronger than submodularity 
in general. If a continuous submodular function is coordinate-
wise concave, it satisfies the DR property [35], which defines 
a subclass of submodular functions called DR-submodular. 
Being twice-differentiable, DR-submodularity is equivalent to 
the nonpositivity of all Hessian entries.

One can exploit the well-known gradient ascent algorithm to 
maximize a continuous submodular function, which achieves 
a one-half-approximation guarantee [36]. To gain a superior 
guarantee, in [35], a variant of the Frank–Wolfe algorithm for 
maximizing a monotone DR-submodular continuous function 
under down-closed convex constraints has been proposed, pro-
viding a ( / )e1 1- -approximation guarantee. Recently, in [37], 
a stochastic, continuous greedy algorithm has been developed, 
achieving a ( / )e1 1- -approximation guarantee, which deals 
with maximizing a similar optimization problem subject to 
a general convex body constraint. Maximizing nonmonotone 
continuous DR-submodular functions has also been studied in 
[35], [38], and [39]. Furthermore, the problem of submodular 
continuous function minimization has been considered in [34], 
which proved that efficient techniques from convex optimiza-
tion can be employed for this task.

Nonconvex/nonconcave quadratic function maximization
Nonconvex/nonconcave quadratic programming under general 
convex constraints occurs in various applications, including 
price optimization, scheduling, graph theory, and free bound-
ary problems. A special class of such problems is submodular 
quadratic programming, which can be tractably optimized. 
In this example, a monotone DR-submodular quadratic pro-
gram is generated under the positive polytope constraint 

{ },1x Ax b,0 xRP N ;! # # #=  where A has uniformly 
distributed entries in the interval [ , ], b0 1 1b =  and .N 100=  
In Figure 11, the value of the objective function obtained by 
the Frank–Wolfe variant [35] is compared as a function of b 
with that of the random and empirically tuned projected gradi-
ent method [36] used for three different step sizes. It is note-
worthy that the Frank–Wolfe variant provides provable per-
formance guarantees without any tuning requirement, while 
the performance of the projected gradient is sensitive to pa-
rameter tuning.
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FIGURE 10. A classification soft error when using a quadratic discriminant 
classifier for a Gaussian binary classification problem [6]. 
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Conclusions and research trends
In this article, we explained the concept of submodularity, 
provided the intuition for how it works, and illustrated some 
properties. The connection with the convexity in the continu-
ous domain was discussed and the minimization problem was 
briefly explained. Also, the concavity aspect of submodular-
ity was demonstrated along with low-computational com-
plexity algorithms to maximize submodular functions where 
the corresponding theorems that guarantee a near-OPT were 
presented. Moreover, several applications in SP and ML have 
been covered to transfer the flavor of submodularity to prac-
tice. However, it should be pointed out that there is vast litera-
ture on submodularity with a wide variety of applications that, 
for the sake of conciseness, were not covered in this article. 
Continuous submodularity is one of the ongoing research di-
rections that finds applications in robust resource allocation 
[40]. Online submodular optimization is another research 
trend that opens up opportunities for many applications, such 
as experimental design [41]. Finally, it is worth mentioning 
that submodular optimization is an active research area that is 
growing rapidly, not only through proposing new algorithms 
and theories but also by introducing new applications.
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