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Abstract

Atmospheric re-entry remains an active field of study as it is defined by extremes and a requirement for safe
return from space missions. During re-entry, a vehicle experiences high deceleration and heating loads as
it tries to shed its velocity before reaching the Earth. Mission design still plays an important role in these
problems, as the vehicle has to safely find its path to the Earth while satisfying its operational constraints.
Presently, focus has shifted towards numerical methods for mission design, which are known to be accurate
and flexible. However, these methods are computationally intensive and less suitable for on-board optimiza-
tion of the trajectory. The focus of this thesis lies on testing second order analytical methods for their ap-
plication in re-entry mission design. The equations have been proven to provide accurate results, although
have not found wide application in literature. The objectives of the optimization are the maximization of
flight range and minimization of the integrated heat load over the course of the trajectory, while remaining
within the operational constraints for heat flux and g-load. The research goal of this thesis is formulated as:
To what extent can optimal two-dimensional re-entry trajectories be developed using a second-order analyt-
ical method with the objectives of maximizing the flight range and minimizing the heat load, while adhering
to operational constraints?

To answer this question both a numerical and analytical simulator are developed and compared. The
main goal for both simulators is the flexibility and ability to test various guidance profiles that are given by the
optimization algorithms. In addition, two new guidance algorithms that have not been previously applied to
re-entry are tested, namely a newly developed variable chromosome length algorithm, SCEA, and the Multi-
Objective Hypervolume Ant Colony Optimizer.

Results have shown that the second order solutions have significant drawbacks in their implementation
for mission design. The method for gliding flight prescribes the entry state of the vehicle, thus allowing very
little flexibility. Additionally, the entry velocity that is prescribed becomes so high for the winged HORUS-2B
reference vehicle that numerical simulations results in skipping flight, whereas the analytical method still
finds monotonically decreasing altitudes. For tests with a sample return capsule, accurate trajectories are
found, given the limitations in the entry state.

The skipping method provides a different problem, where returned values might have imaginary com-
ponents. Still, the obtained trajectories provide good results and would be applicable to re-entry mission
design.

Optimization results show that the limitation in the entry state for the analytical methods for gliding flight
provide a range of solutions that converges towards a single optimal point. Without an adaptation of the
method, these results are thus not directly applicable for re-entry mission design.

The results for numerical simulations against a reference trajectory of HORUS-2b were still performed
to test the performance of the SCEA and MHACO algorithms. SCEA proved to provide competitive results
against the MOEA/D algorithm, although for a slightly worse convergence rate and a larger computational
requirement in terms of function evaluations.

MHACO required an adaptation of the objectives and constraints of the method to ensure that the hy-
pervolumes would not be dominated by one of the objectives or constraints. After this adaptation, MHACO
proved to be more efficient for an equal population size compared to MOEA/D, although the Pareto fronts
that were found were slightly less optimal.
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1
Introduction

Since its early days, humankind has wondered how life on Earth originated. This curiosity has compelled
humankind to explore and expand its boundaries throughout its history, according to Olson et al. (2012).
This led to the discovery of new continents and the development of many of the modes of transportation
we think common today. The most recent of these developments is the exploration of space with the goal of
helping us understand how our planet, the Solar System and the universe work.

Currently, most space missions are executed by satellites and robots, which return the data so that it can
be studied back on Earth. However, recent initiatives have returned the focus to human exploration of the
‘nearby’ region of space. A prime example of this is NASA’s Artemis program, which aims to return to the
Moon and build a sustainable base (Smith et al., 2020).

An inherent design problem for human space exploration arises as the astronauts will have to return to
Earth at some point. This atmospheric entry process carries extreme requirements for the vehicle carrying the
astronauts. As the vehicle typically re-enters the Earth’s atmosphere at velocities of over 7 km/s it experiences
immense deceleration loads and aerodynamic heating. Of course, the main goal of re-entry missions is to
safely return the vehicle and its crew to the surface of the Earth, which can only be guaranteed by controlling
the vehicle throughout its flight.

This leads to three main elements in the design of the vehicle and its software: the guidance, navigation
and control. The guidance algorithm prescribes the planned path of the vehicle. The navigation system
determines the exact state of the vehicle over the course of its trajectory. Lastly, the control system steers the
vehicle in an effort to make it match the planned path from the guidance.

This thesis will focus on the guidance algorithm for re-entry. Over the years, a lot of research has been per-
formed in this field. Initially, analytical equations such as the ones developed by Chapman (1960) were used
to guide the vehicles, due to their low computational effort. Up until the Space Shuttle , this was the preferred
method (Graves and Harpold, 1979). In more recent years, the focus has shifted towards numerical methods
for guidance, such as the method proposed by Lu et al. (2017) for the Orion crew capsule. Although these
numerical trajectories are more accurate compared to analytical results, they also impose a more stringent
requirement on the computational power that is required.

The numerical methods also perform well for heuristic optimization of the re-entry mission as was proven
by among others Papp (2014). From the methods that were selected by Papp (2014), the MOEA/D algorithm
was shown to provide the best results. However, new algorithms have been introduced since, such as the
Multi-Objective Hypervolume-based Ant Colony Optimizer, which was shown to perform well for several
problems by Acciarini (2020). Another interesting development is the use of a variable length chromosome
as applied to interplanetary trajectory planning by Nyew et al. (2012). As optimization of re-entry missions
often requires the selection of the number of guidance node, it might be possible to circumvent this design
step by letting the variable chromosome length algorithm determine the number of guidance node on its
own.

Both the analytical and numerical methods for trajectory design can be used to generate a reference tra-
jectory for re-entry vehicles. These trajectories have to adhere to a number of constraints that are defined
based on either the vehicle capabilities or the payload or crew. Still, within these constraints many trajec-
tories remain with different properties. Typically, a trade-off has to be made between the flight range of the

1



2 1. Introduction

vehicle and the heat load that is built up over the course of the trajectory. As one would expect, these two ob-
jectives are conflicting, i.e., when one improves, the other deteriorates. Numerical mission design has been
studied widely in combination with global optimization methods to find Pareto optimal trajectories, within
the given constraints, to find the possible trade-offs. However, analytical methods have barely been studied
in this context, although they have the benefit of requiring much less computer power. One of the most ac-
curate analytical methods is found in Vinh et al. (1993). The focus of this thesis lies on testing this analytical
method for trajectory optimization and the following research goal can be formulated:

To what extent can optimal two-dimensional re-entry trajectories be developed using an analytical second-
order method with the objectives of maximizing the flight range and minimizing the heat load, while adhering
to operational constraints?

To answer this question, a number of sub-questions can be formulated that support the research goal and
further elaborate on it.

1. To what extent can the second order analytical solutions be used to generate an optimal guidance profile
for re-entry?

2. How do results of the second-order methods for skipping and gliding flight compare for use in an opti-
mization problem?

3. What differences are present in the Pareto optimal set of numerical and second order solutions?

4. How does Ant Colony Optimization compare to the previously used MOEA/D algorithm for re-entry tra-
jectory optimization?

5. How does a variable chromosome length algorithm compare to the traditional fixed chromosome length
optimization algorithms?

6. How does the increased complexity of a variable chromosome length weigh against the circumvention of
node selection?

The combination of these sub-questions will provide an answer to the main question of this thesis. First of
all, the analytical method should be studied to get an idea of the applicability of this method for re-entry flight.
Secondly, two new optimization methods were identified that provide interesting results in literature. These
are the MHACO algorithm as found in Acciarini et al. (2020) and a variable chromosome length algorithm
based on the MOEA/D algorithm, which is developed in this thesis and based on Dasgupta and McGregor
(1992b). This last algorithm is of particular interest as it might allow circumvention of the node selection that
is typically included in the design of the optimization problem.

To answer these questions, a re-entry simulator was developed with the goal of optimization of numerical
and analytical trajectories. Two reference vehicles are selected for this simulator. Firstly, HORUS-2B was
selected from Mooij (1995). HORUS is a winged vehicle similar in geometry to the Space Shuttle capable of
both skipping and gliding flight. The availability of detailed information on its aerodynamics was the main
reason for selecting this vehicle. The aerodynamic data can be found in Mooij (1995). A verified trajectory is
available from Mooij (1998) and was used for the verification of the re-entry simulator.

Secondly, a capsule was selected based on the Apollo Command Module. The capsule was obtained from
Engelsma (2019) and selected for its performance alongside the second-order analytical trajectories.

The vehicles perform an unpowered re-entry into the atmosphere and thus their trajectories are only
influenced by the external forces as a consequence of their instantaneous environment. For re-entry, the
dominating forces are the aerodynamic and gravitational forces. The developed simulator uses the United
States Standard Atmosphere 1976 model and a gravitational model that includes only the J2 term in addition
to the central gravity field. Lastly, the shape of the Earth is considered to be a rotating sphere.

The trajectories in the simulator are influenced by the vehicle’s attitude that is defined by two aerody-
namic angles, the angle of attack and the bank angle. The third attitude angle, the angle of sideslip, is as-
sumed to be zero and its effects neglected. The angle of attack influences the lift and drag coefficients of the
vehicle and the bank angle influences the direction of the lift coefficient. The guidance defines these angles
throughout the trajectory with respect to the normalized specific energy of the vehicle. This normalized en-
ergy takes a value of 1 at entry conditions and 0 when the vehicle reaches a standstill on the surface of the
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Earth. The main benefit of using the normalized specific energy is that its limits are found at the ends of the
trajectory, but also that its value is monotonically decreasing. It is also much less sensitive to disturbances
and more flexible than time.

The analytical methods on the other hand take a simplified approach to the re-entry problem. They sim-
ply use the relation between the maximum available lift force and the instantaneous lift force to formulate a
trajectory. The analytical simulator is capable of setting a value for the angle of attack at the start of a trajec-
tory segment, to still allow for an angle of attack profile along the bank angle profile which can be deduced
from the ratio between the maximum lift compared to the instantaneous vertical lift.

The optimization problem then tries to find a guidance profile for the simulators that optimize the trajec-
tory for its flight range and heat load, while adhering to the operational constraints. The goal is to compare
the guidance profiles that are obtained through the analytical simulator to the Pareto front that is obtained
from the numerical simulator.

This document provides a background in the theory that is required for the optimization of the trajec-
tories, specifies the software design and discusses the results that were obtained. First, a background on
re-entry is given in Chapter 2, followed by a description of the flight dynamics models that were used in the
simulator in Chapter 3. The selected optimization methods are discussed in Chapter 4. The numerical meth-
ods that were used are described in Chapter 5 and the software that was used can be found in Chapter 6. A
study of the analytical methods is found in Chapter 8. The optimization of the trajectories is discussed in
Chapter 9. Finally, the conclusions and recommendations can be found in Chapter 10.
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2
Mission Heritage

This chapter will discuss previous missions in the field of re-entry flight. It serves to provide a background on
re-entry missions and its constraints, as well as providing the necessary background of the reference vehicles
that are used.

2.1. The Re-Entry Problem
A definition of the re-entry problem assists in understanding the problem that is posed in this research. Atmo-
spheric entry missions seek to transfer an object from the space environment, with typically high velocities,
to the planet’s surface taking into account high aerodynamic loads and heating over its trajectory. This poses
the main problem for re-entry flight. The conditions are harsh, while safety is paramount for the (often hu-
man) cargo. This thesis will seek to improve on the safety based on the trajectory design for these missions
and thus the re-entry problem will be described in this context.

2.1.1. Trajectory types
Typically, three types of re-entry trajectories can be distinguished. First, ballistic entry will be considered,
then gliding entry and finally skipping entry. The trajectories are visualized in Figure 2.1.

Ballistic Entry
The simplest form of entry flight is ballistic entry. In this case, the vehicle enters the atmosphere at a steep
angle and maintains this angle for the largest part of the flight. This results in a typically short flight with a
lift force negligible compared to the drag force. In reality, capsules fly semi-ballistic trajectories as they still
produce a small lift force to control the trajectory. Due to the steep entry angle, the vehicle maintains a large
part of its velocity when entering the denser layers of the atmosphere and thus experiences high heating and
g-loads.

Gliding Entry
In contrast to the ballistic entry, gliding entry maintains a small entry angle. To maintain this small angle, the
vehicle is required to have a high lift-over-drag ratio, making winged entry vehicles well suited for this kind
of mission. This results in lower velocities when entering the denser layers of the atmosphere and thus lower
heating and g-loads. Additionally, the flight range is much larger and can be more accurately controlled.

Skipping Entry
The last type of entry flight is skipping entry. For this type of entry flight, the altitude does not monotonically
decrease over time, resulting in ‘skips’. If these skips do not cause the vehicle to leave the atmosphere, the
trajectory can be more accurately called ‘lofting’. This type of trajectory is possible for both high and low
values for the lift-to-drag, given that the velocity is high enough. The main benefit of this trajectory type is the
large increase in flight range and the possibility to shed some of its velocity during the skips, again resulting
in lower velocities when the vehicle enters the dense layers of the atmosphere. By performing these skipping
maneuvers and thus shedding velocity in the upper regions of the atmosphere, the thermo-mechanical loads
on the vehicle are also reduced with the additional benefit of increasing the flight range.

7
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Figure 2.1: Schematic representation of the four types of trajectories available to re-entry vehicles (Papp, 2014).

2.1.2. Constraints
A mission’s requirements are largely defined by its constraints. These constraints are formulated based on
the limitations of both vehicle and crew, as well as its intended landing point. These constraints are the aero-
dynamic load, aerodynamic heating, control of the landing point and the capture withing the atmosphere
(Graves and Harpold, 1970). It should be noted that the constraint for landing point control will not be fur-
ther discussed here, as the objective of the optimization problem is a trade-off between flight range and heat
load and thus targeting is not applicable.

Load Constraints
Upon entering the atmosphere, the main influence on the motion of the vehicle shifts from gravitational
forces to aerodynamic forces. The load on the vehicle is a consequence of the lift, drag and side force, the latter
of which is much smaller than the other two. The resultant of the lift and drag force results in an acceleration
that is proportional to the mass of the vehicle. The g -load that is experienced by the vehicle then only needs
to be normalized against the sea-level gravitational acceleration:

ng = 1

mg0

√
L2 +D2 (2.1)

Heating Constraints
The heating constraints on the vehicle are present in two manners: the total heat load and the maximum heat-
ing rate. Heating occurs due to the friction between the vehicle and the atmosphere and the phenomenon is
used to shed the high levels of kinetic energy that the vehicle possesses at the start of the trajectory. This fric-
tion results in the heating of the vehicle and in its deceleration. The total heat load equals the integral of the
heating rate over the trajectory and for optimization problems it is typically a problem objective. The heating
rate on the other hand is the instantaneous rate at which heat is transferred to the vehicle and has a limit
value based on the vehicle design. Determining the heating rate is complicated as it depends on the hyper-
sonic properties of the vehicle. Chapman (1960) provides a useful approximation to determine the heating
rate qc :

qc = c∗
1

Rn
N

(
ρ

ρ0

)1−n (
V

Vc

)m

(2.2)

where RN is the nose radius of the vehicle, ρ the local atmospheric density with subscript zero denoting the
value at sea-level, V is the velocity and Vc the circular velocity, defined as 7905.4m/s. The constants are
defined as follows: c∗ = 1.1097 · 108, n = 0.5, m = 3.15. The exact determination of these constants goes
beyond the scope of this document and it should suffice to say that these constants describe the airflow
characteristics. Note that the above relation only holds under the assumption of a cold wall.

Atmospheric Capture Constraints
The atmospheric capture constraint is typically used for gliding flight, where it implies that no exit from the
atmosphere may be present. As this research includes methods for skipping flight, the capture constraint
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does not hold for all elements of the flight. It should be included for the leg which was determined to be
the final entry of the vehicle into the atmosphere. It can be applied simply by applying a penalty to the
problem constraints when the vehicle leaves the atmosphere, which is defined to occur above 100 km in the
implemented atmosphere models.

2.2. Reference Mission
The selected reference mission was simulated for HORUS-2B using a high fidelity simulator and selected for
its good comparability to previous research. The mission was previously used as a reference for Papp (2014)
and developed by Mooij (1998). The guidance nodes are defined as:

ΓHORUS, nom =



t1 α1 σ1

t2 α2 σ2

t3 α3 σ3

t4 α4 σ4

t5 α5 σ5

t6 α6 σ6

t7 α7 σ7


=



0s 40◦ 0◦
264s 40◦ 0◦
290s 40◦ 79.6◦
554s 40◦ 59.8◦
686s 40◦ 59.8◦
924s 40◦ 59.8◦

1319s 11.5◦ 54◦


(2.3)

and the mission parameters are given in Table 2.1.

Table 2.1: Reference mission parameters for HORUS-2B

Value Unit
Mass 26029.0 [kg]
Reference area 110.0 [m2]
Nose radius 0.8 [m]
Entry interface
Altitude 122.0 [km]
Longitude -106.7 [deg]
Latitude -22.3 [deg]
Entry velocity 7435.5 [m/s]
Flight path angle -1.43 [deg]
Heading Angle 70.75 [deg]
Constraints
Maximum heat flux 500 [kW/m2]
Maximum g-load 3.0 [-]
Maximum g-load rate 0.5 [s−1]
Maximum alpha rate 5.0 [deg/s]
Maximum sigma rate 15.0 [deg/s]

2.3. Reference Vehicle
The following section presents the reference vehicles that are used in this thesis. First HORUS-2B will be
described, followed by an SRM capsule.

2.3.1. Horus-2B
The first reference vehicle is HORUS-2B. This vehicle was selected for its performance, the availability of its
data and its comparability to other winged re-entry vehicles. A full overview of the vehicle characteristics
and a database of its aerodynamic characteristics can be found in Mooij (1995). Especially the availability
of reference mission data obtained from Mooij (1998) is useful for the verification of the simulator. This
reference mission was discussed in Section 2.2.

Geometry
The geometry of HORUS can be observed in Fig. 2.2(a). The winged shape of HORUS allows it to control the
trajectory through angle of attack and bank angle modulation. Additionally, skipping flight is possible for
re-entry even from LEO.
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(a) HORUS-2B geometry. (b) HORUS control surfaces

Figure 2.2: Lay-out of the HORUS-2B reference vehicle (Mooij, 1995).

HORUS has engines available to provide thrust when used as a second stage for the Sänger vehicle, al-
though for re-entry only the control through the aerodynamic attitude is used.

A description of various parameters is found in Table 2.2.

Control Surfaces
The control surfaces that are incorporated in HORUS-2B are two rudders, two elevons and one body flap. Its
locations along the vehicle are shown in Figure 2.2(b). As for the current research only the pitching moment
will be taken into account, the effects of the rudders and ailerons can be neglected as they affect the roll and
yaw, respectively. This leaves the body flap that is used for trimmed flight in pitch. For low Mach numbers,
trimmed flight is no longer possible and one would have to include the rudders and ailerons in the simulation.
As this region of flight lies outside of the scope of this thesis, the effects can be safely neglected.

Aerodynamics
The aerodynamic database of HORUS-2B as described in Mooij (1995) gives tabulated values describing the
aerodynamic coefficients as a function of the angle of attack and Mach number. Increments of these coef-
ficients are added based on the control surface deflections, which are tabulated with respect to the angle of
attack, the Mach number and the deflection angle of the respective control surface.

Some important assumptions and simplifications were made to obtain the tabulated data. These are
listed as follows:

• No aeroelastic effects are included.

• The influence of the Reynolds number on the skin-friction drag is included in the drag coefficient rather

Table 2.2: Vehicle dimensions of HORUS-2B

Parameter Value
Length 25 m
Height 4.5 m
Wingspan 13.0 m
Reference wing area 110 m2

Nose Radius 0.8 m
Empty weight 18394 kg
Gross weight 56196 kg
Main propulsion (HM60) 1055 kN
Orbital Manoeuvre 2*4kN
RCS 14*400 kN



2.3. Reference Vehicle 11

then being explicitly given. This is done through averaged skin friction drag along a standard trajectory
to an altitude of 20 km.

• The interference effects of the flaps are not included.

The altitude dependent drag increment is not included as simulations of the vehicle trajectory are termi-
nated around an altitude of 25 km.

The following relations can now be used for the aerodynamic force coefficients of HORUS:

CD =CD0 +∆CDb

CS = 0
CL =CL0 +∆CLb

(2.4)

and the aerodynamic moment coefficients are found from:

Cl = 0

Cm =Cm0 +∆Cmb

Cn = 0

(2.5)

Trim for the HORUS vehicle is achieved by balancing the pitch moment of the clean configuration with a
deflection angle of the body flap. The pitch moment of the vehicle is found from:

Cm =Cm0 +∆Cmb (2.6)

To maintain trimmed flight it must hold that Cm = 0 and thus:

∆Cmb =−Cm0 (2.7)

An inverse interpolation is thus required to find the body flap deflection angle that satisfies the trim condi-
tion.

2.3.2. SRM Capsule
As a second reference vehicle, a sample return mission (SRM) capsule was selected. The benefit of this second
vehicle is that it also allows the study of a smaller and, more importantly, lighter vehicle, while still maintain-
ing a high lift-to-drag ratio.

The selected SRM capsule was taken from Engelsma (2019), as this carries the benefit of comparability
of the results for the second order analytical methods. The vehicle is a scaled down version of the Apollo
Command Module based on a comparison with the Stardust mission as reported in Boyd et al. (2010) and the
Hayabusa mission as described by Davies and Arcadi (2006). This results in a vehicle that is scaled down to
19% of the Apollo Command Module. The SRM vehicle then has a diameter of 0.75 m and from this an aero-
dynamic reference area of 0.441 m2 is derived. The ratio between the diameter and nose radius is preserved
to find a nose radius of 0.9 m. Lastly, the mass is derived by using a linear relation between the volume and
mass of the vehicle, leading to a mass of 38.77 kg. The parameters of this vehicle are summarized in Table 2.3.
The geometry of the capsule Apollo capsule that was used as a baseline for the SRM vehicle is presented in
Figure 2.3.

Table 2.3: Physical parameters of the SRM capsule reference vehicle.

Vehicle Diameter [m] Reference area [m2] Nose radius [m] Mass [kg]
SRM 0.75 0.441 0.90 38.77
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Figure 2.3: Geometery of the Apollo capsule as used for the baseline of the SRM capsule (Robinson et al., 2009).
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Flight Dynamics

The goal of this research is to study a skipping re-entry into Earth’s atmosphere. To conduct this study, the
motion and dynamics of the vehicle during the re-entry need to be understood. This chapter will discuss the
background required to understand the dynamics that are applied in the simulations used for this research.

As this research will only focus on the study of trajectories, it suffices to determine the translational mo-
tion of the center-of-gravity of the vehicle. Thus, the change in attitude during the flight can be ignored,
resulting in a three degree of freedom simulation.

To evaluate the motion in this system, the forces acting on the body need to be known. Both the magni-
tude and direction of the forces need to be known to accurately describe the motion of the vehicle.

This chapter will first describe the required reference frames in Section 3.1, followed by the transforma-
tions to describe these frames relative to each other in Section 3.2. The state variables that are required to
describe the vehicle state are described in Section 3.3. The equations of motion in their general form are de-
scribed in Section 3.4 and their analytical form is discussed in Section 3.5. Lastly, the environment models
that are used in this research are described in Section 3.6.

3.1. Reference Frames
The reference frames form the basis of the description of a vehicle’s motion. The reference frames that are
required to study the motion of HORUS are described below.

3.1.1. Inertial Planetocentric Reference Frame (Index I)
The inertial planetocentric reference frame is typically used to create a framework for other reference frames.
It is also a useful method to describe the absolute motion of a vehicle in space. The origin of the frame lies
at the center of mass of the central body. The effect of the central body moving through space is marginal for
entry flight. The XI YI -plane coincides with the equatorial plane of the body and the ZI -axis points towards
the north. The reference meridian determines the direction of the XI -axis and is determined as the zero-
longitude meridian at zero time. The Y-axis completes the right-handed system. For Earth, the XI -axis points
to a fixed point in space at a predetermined time. In this research, the J2000 definition will be used, where the
XI -axis points towards the Vernal Equinox, a point in the Aries star sign on 12:00 on January 1, 2000 (Mooij,
2016).

3.1.2. Rotating Planetocentric Reference Frame Index R
The rotating planetocentric reference frame is similar to the inertial frame, except it follows the rotation of the
Earth. At t = 0 the rotating planetocentric and inertial planetocentric reference frames coincide. Afterwards,
the rotating frame follows the Earth rotation with the same angular rate. Again, the ZR -axis points north, the
XR -axis intersects the equator at zero longitude and the YR -axis completes the right handed system.

3.1.3. Body Fixed Reference Frame (Index B)
The body fixed reference frame can be used to describe the forces acting on the body. It also helps to describe
other reference frames that are related to the vehicle. The origin of this frame lies at the center of mass of the

13
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vehicle. The XB ZB -plane coincides with the plane of symmetry of the vehicle. The ZB -axis points down and
the XB -axis points forward. The YB -axis completes the right-handed system.

3.1.4. Vertical Reference Frame (Index V)
The vertical reference frame also originates in the center of mass of the vehicle. The ZV -axis point towards
the center of mass of the central body. The XV -axis lies in the meridian plane, is perpendicular to the Z-axis
and points north. The Y-axis completes the right-handed system. The XV YV -plane is also called the local
horizontal plane. Strictly speaking, this only holds for perfect spheres and for more accurate Earth models a
small error would be introduced.

3.1.5. Trajectory Reference Frame (Index T)
The trajectory of the vehicle can be described using the trajectory reference frame. The XT -axis coincides
with the velocity relative to the atmosphere, the ZT -axis lies in the vertical plane and the YT -axis completes
the right-handed system.

3.1.6. Aerodynamic Reference Frame (Index A)
The aerodynamic reference frame is used to describe the attitude of the vehicle and calculate the aerody-
namic forces. The XA-axis lies along the velocity vector relative to the atmosphere, the ZA-axis is collinear
with the aerodynamic lift force and opposite in direction and the YA-axis completes the right-handed sys-
tem.

3.2. Frame Transformations
Together, the reference frames described above are sufficient to describe the state and motion of the vehicle.
The required information on the state and trajectory is not available in a single reference frame. To transfer
the information between the frames, transformations are required. The following section will describe these
transformations.

3.2.1. Euler Angles
The relative orientation of one reference frame to another can be described by three angles. By describing
these angles, one can apply these rotations one-by-one and move from any reference frame to any other.
These angles are also called Euler angles. The rotations take place along axes of a Cartesian reference frame
and can thus be described by unit rotation matrices. The rotation matrices for rotations around the X, Y-, and
Z-axes are defined as:

RX (a1) =
 1 0 0

0 cosα1 sinα1

0 −sinα1 cosα1



RY (a2) =
 cos a2 0 −sinα2

0 1 0
sinα2 0 cosα2



RZ (α3) =
 cosα3 sinα3 0

−sinα3 cosα3 0
0 0 1



(3.1)

3.3. State Variables
Several different sets of state variables are available for this research. The variable sets that are used will be
shortly discussed in the following section.

3.3.1. Cartesian Coordinates
The Cartesian coordinate system is one of the simplest, consisting of x-, y- and z-coordinates to describe a
three dimensional position. Additionally, to describe the change in position the variables Vx , Vy and VZ are
used. This thus results in the following state vector:
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x = {x, y, z, ẋ, ẏ , ż}T (3.2)

To determine the change in the state, the derivatives of these variables are required:

ẋ = {ẋ, ẏ , ż, ẍ, ÿ , z̈}T (3.3)

Although this method is quite simple, it often fails to provide a strong insight into the actual state of the
trajectory as it remains abstract.

3.3.2. Spherical Coordinates
A common state variable set for re-entry equations of motion is that of the spherical components. Here, it
forms the basis for the analytical equations that will be used. In this set, the position and velocity are defined
as two vectors. The position vector has a magnitude r , which is the distance between the centers of mass of
the vehicle and the central body. The direction is defined by the latitude, δ, and the longitude, τ. The latitude
angle is defined with respect to the equatorial plane, positive in northern direction. The longitude is defined
with respect to a reference meridian and positive in eastward direction.

The velocity vector is defined by its magnitude, V , the flight-path angle, γ, and the heading angle, χ. The
state derivative vector is now simply the derivative of the state variables. The state and state derivative can
thus be defined as:

x = {r,τ,δ,V ,γ,χ} (3.4)

ẋ = {ṙ , τ̇, δ̇,V̇ , γ̇, χ̇} (3.5)

Finally, it is important to know the transformation between the spherical components and the cartesian
components, which can be found as follows:

r =
√

x2 + y2 + z2 (3.6)

τ= atan2(y, x) (3.7)

δ= atan2(z,
√

x2 + y2) (3.8)

V =
√

ẋ2 + ẏ2 + ż2 (3.9)

γ= atan2(ż,
√

ẋ2 + ẏ2) (3.10)

χ= atan2(ẏ , ẋ) (3.11)

3.4. General Formulation of the Equations of Motion
This section describes the equations of motion that are used in the numerical integration of the trajectory of
the entry vehicle.

3.4.1. Equations of Motion in Cartesian Coordinates
The equations of motion in the numerical simulator will be propagated using Cartesian coordinates. The
equations of motion in this system are simple and are governed by the following equation:

F = ma (3.12)

where F is the vector sum of the forces and a the resulting acceleration vector.
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3.4.2. Equations of Motion in Spherical Coordinates
Although the equations of motion will be used in their Cartesian form for the numerical integration, they
also need to be studied in their spherical form, as this forms the basis of the subsequent analytical equations.
The definition as given in Mooij (2016) will be used for a rotating Earth including Coriolis, centripetal and
centrifugal terms:

ṙ = ḣ =V sinγ

τ̇= V sinχcosγ

r cosδ

δ̇= V cosχcosγ

r

V̇ =− D

m
− g sinγ+ω2

cbr cosδ(sinγcosδ−cosγsinδcosχ)

V γ̇= L cosσ

m
− g cosγ+2ωcbV cosδsinχ+ V 2

r
cosγ+

+ω2
cbR cosδ(cosδcosγ+ sinγsinδcosχ)

V cosγχ̇= L sinσ

m
+2ωcbV (sinδcosγ−cosδsinγcosχ)+ V 2

r
cos2γ tanδsinχ+

+ω2
cbr cosδsinδsinχ

(3.13)

Typically these equations are simplified one step further, which makes them less computationally inten-
sive. This is done by neglecting the terms related to the rotation of the Earth. It should be noted that this
affects the accuracy of the equations, especially for re-entry trajectories with a long flight time, such as skip-
ping missions. However, as a baseline for analytical approximations, this is a necessary step. The simplified
equations are:

ṙ = ḣ =V sinγ

τ̇= V sinχcosγ

r cosδ

δ̇= V cosχcosγ

r

V̇ =− D

m
− g sinγ

V γ̇= L cosσ

m
− g cosγ+ V 2

R
cosγ

V χ̇= V 2

r
cos2γ tanδsinχ

(3.14)

This set of equations provides a clear benefit over the Cartesian representation of the equations of mo-
tion, as they are much more intuitive. The equations yield direct changes in their respective state variables,
whereas a conversion would be required when the Cartesian state is propagated.

3.5. Analytical Second-Order Method
A more efficient method for solving the equations of motion can be found by implementing an analytical
formulation. Here, the methods will be separated for the atmospheric and ballistic phases.

3.5.1. Atmospheric Skip Phase
The analytical method for skipping flight has been selected as developed by Vinh et al. (1993) for its accu-
rate results compared to numerical models, while still providing the benefits of low computational speed that
come with analytical methods. The goal is to obtain insights into the trajectory, without the need of compu-
tationally intensive numerical models. The selected analytical model shows good results for the (peak) heat
load and terminal conditions of the skipping trajectory. The method starts with a first-order derivation, after
which terms are added to more accurately describe the trajectory through the second order method.
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Second-Order Approximation
The first order approximations was shown to be inaccurate by (Engelsma, 2019). Vinh et al. (1993) continues
by formulating a more accurate second order theory based on these first order equations.

First, a new independent variable is introduced in the form of the range angle, which is a measure for the
ground distance traveled by the vehicle. The range angle θ can be expressed as:

dθ

d t
= V cosγ

r
(3.15)

After dividing the spherical equations of motion for r , V and γ by this equation, the independent variable
is now the range angle instead of time.

The radial position and velocity are now non-dimensionalized. First, the radial position is written as the
penetration depth h by subtracting the entry radius and subsequently dividing by the entry radius:

h = r − rE

rE
(3.16)

where r is again the instantaneous distance to the center of the Earth and rE is the distance at the point of
entry. This leads to a value of h = 0 at entry interface and decreases until the lowest point in the trajectory is
reached, after which it increases back to zero until the end of the atmosphere is reached.

The velocity is non-dimensionalized by taking its squared value and dividing it by the square of the circu-
lar velocity at the entry interface. Thus:

u = V 2

V 2
c,E

= V 2

gE rE
(3.17)

were Vc,E is the circular velocity at the point of entry and gE is the gravitational acceleration at this point.
The equations of motion are further simplified by introducing three constants. One should take note

here that these constants do indeed simplify the equations themselves, but also increase the complexity of
understanding the equations themselves. First, the constant E∗ is introduced to express the maximum lift-
to-drag ratio:

E∗ = 1

2
√

KCD0

(3.18)

where K and CD0 are related by the parabolic drag polar:

CD =CD0 +KC 2
L (3.19)

The second constant, B , is used to describe the entry conditions and vehicle characteristics and is defined
as

B = ρE SrE

2m

√
CD0

K
(3.20)

where r hoE is the density at the point of entry, S the aerodynamic reference area and m the vehicle mass.
Thirdly, the constant for lift-control is introduced, which allows for lift modulation in the entry problem.

This variable, λ is defined as:

λ= CL√
CD0 /K

(3.21)

which relates the lift-to-drag ratio to its maximum value. This leads to a value of λ of 1 for maximum L/D and
0 for ballistic entry. Indirectly, the profile of λ over the course of the flight also describes the angle of attack
and bank angle control of a vehicle. It should be noted that this does not hold entirely, as the side force that
is induced by the bank angle is not modeled by this method and thus only planar flight is considered.

Now, the independent variable θ is also non-dimensionalized by using the entry radius rE and scale height
Hs :

τ=
√

rE

Hs
θ (3.22)
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where both τ and θ hold a value of zero at the beginning of the trajectory. Another variable, y is introduced
to describe the altitude as a function of atmospheric density:

y = e−
rE h
Hs = ρ

ρE
(3.23)

It is clear that y = 1 at the entry interface and increases to ymax at the lowest point in the skip trajectory. Note
that this relation inherently assumes that the density is not zero at the entry interface. For the second order
approach, the velocity is non-dimensionalized as:

v = 1

η
ln

V 2
E

V 2 (3.24)

where v = 0 holds at the entry interface and v becomes negative as the velocity decreases during the flight. In
the equation, VE is the velocity at the entry interface and V again the instantaneous velocity and the constant
η is found to be:

η= B

E∗
√

rE
Hs

= ρE SCD0

m

√
Hs rE (3.25)

Lastly, the flight path angle is non-dimensionalized as φ:

φ=−
√

rE

Hs
sinγ (3.26)

Two more constants are introduced by Vinh et al. (1993) to further simplify the equations:

k = 2E∗√
rE
Hs

B
(3.27)

α= gE rE

V 2
E

(3.28)

The full derivation of the new non-dimensional equations will not be repeated here and the interested
reader is referred to Vinh et al. (1993). The final result leads to three exact, non-dimensional equations of mo-
tion that match the results of the regular equations of motion. One should note that this system of equations
is less intuitive than the regular system due to the introduction of the new variables and constants discussed
above. The non-dimensionalized equations for altitude, velocity and flight path angle are, respectively:

d y

dτ
= 1+h

cosγ
yφ (3.29)

d v

dτ
= 1+h

cosγ

(
1+λ2) y − kaφevη

(1+h)cosγ
(3.30)

dφ

dτ
=−(1+h)Bλy + cosγ

1+h
αeηv −cosγ (3.31)

The above equations are only a rewritten form of the original equations of motion. The result of these
equations still yields the exact solution. Two simplifications are now introduced to be able to obtain analytical
equations. First, the flight path angle is assumed to be small and thus cos(γ) ≈ 1. Secondly, it is known that
the radius of the Earth is much larger than the change of the altitude during the skipping flight and thus
r − rE ≈ 0 and h ≈ 0 and 1+h ≈ 1. The new parameter k1 is now introduced as:

k1 = Bλ (3.32)

These simplifications and the constant k1 leads to a simplification of the above exact equations:

d y

dτ
= yφ (3.33)

d v

dτ
= (1+λ2)y −kαφeηv (3.34)
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dφ

dτ
=−k1 y − (1−αeηv ) (3.35)

To eventually find the second order solutions, first-order solutions are first developed. To do so, the variation
of the speed in the term expηv is ignored. This can be done by setting the velocity in this term equal to the
entry velocity at all times, leading to expηv = 1 at all points in the trajectory. This process is the same as taking
the first order term of a Taylor series expansion with respect to the range angle. The resulting equations are:

d y

dτ
= yφ (3.36)

d v

dτ
= (1+λ2)y −kαφ (3.37)

dφ

dτ
=−k1 y − (1−α) (3.38)

The third equation can now be divided by the first and by using the product rule an explicit equation is
obtained. Integrating this equation between y(0) = 1 andφ(0) = c, which is an arbitrary point in the trajectory,
an expression for φ2 can be obtained against a newly introduced variable x:

φ2 = c2 −2k1(ex −1)−2(1−α)x (3.39)

with

x = log y = rE h

Hs
= rE − r

rE
(3.40)

The newly obtained variable x is yet another measure of the altitude in non-dimensional form. The value
of x is zero at the entry interface and increases to its maximum value xmax at the deepest point in the trajec-
tory. After reaching this point x decreases back to zero until it reaches the entry altitude again. The constant
c =φE .

Replacement of y in Equation (3.38) by the new variable x and by using Equation (3.39) leads to:

dτ= d x

φ
= d x

±
√

c2 −2k1 (ex −1)−2(1−a)x
(3.41)

from which it is possible to obtain an equation that relates x to τ. To do so, an approximation of φ2 as a
second order polynomial is required. This simply is:

φ2
a = a1x2 +a2x +a3 (3.42)

where the subscript a denotes the approximation of φ. The expression for x can now be obtained:

x =−a2

a1
−

√
a2

2 −4a1a3

2a2
sin

(p−a1τ−β
)

(3.43)

where β is introduced to simplify the equation and is defined as:

β= a2√
a2

2 −4a1a3

(3.44)

Vinh et al. (1993) initially state that the coefficients a1, a2 and a3 are to be determined through an approx-
imation scheme. However, eventually an exact solution for these three coefficients is also given:

a1 = 3

x1

(
2(1−α)− c2 +4k1

x1
+ 4k1 (ex1 −1)

x2
1

)
(3.45)

a1 =−6(1−α)+ 2
(
c2 +6k1

)
x1

− 12k1 (ex1 −1)

x2
1

(3.46)

a3 = c2 (3.47)
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where x1 is the value of x at the point of deepest penetration into the atmosphere. The value of x1 can be
determined by solving Equation (3.39) for φ = 0. Although Vinh et al. (1993) does not propose a specific
method to find x1, Engelsma (2019) proposes a numerical root-finding scheme to find the value of x1.

Lastly, a first-order approximation of the velocity is required to fully describe the two-dimensional state
of the vehicle. This equation is obtained after inverting Equation (3.38), which gives an expression for y . This
inverted equation is then substituted in Equation (3.37). This is followed by substituting Equation (3.41) in
this intermediate equation and finally integrating the result to an arbitrary point in the trajectory. The first-
order equation for the velocity is now obtained as:

v =
(
1+λ2

)
k1

(c −φ)−kαx − (1−α)
(
1+λ2

)
k)1

τ (3.48)

An important note that goes with this equation is that φ is required instead of φ2 and until now only a
relation for φ2 was obtained. The solution for φ can thus have both positive and negative values based on
Equation (3.39). Given the method in which φ is normalized, it is the negative sine of the flight-path angle,
the sign of φ can be determined to be positive for the descending leg of the re-entry flight and positive for the
ascending leg. It should be noted that this sign has to be externally added to a propagation of the equations
to ensure that the sign changes for both legs of the skip.

The accuracy of the equations can now be improved by taking into account the term expηv . Initially,
this is not possible in an analytical manner, but Vinh et al. (1993) propose to use the first two terms of the
Taylor series expansion. The term expηv is then found as expηv ≈ 1+ηv , which allows the formulation of the
second-order non-dimensionalized equations of motion:

d y
dτ = yφ

d v
dτ = (

1+λ2
)

y −kαφ−ηkαφv
dφ
dτ =−k1 y − (1−α)+ηαv

(3.49)

A relation between x and φ can now be obtained, after replacing y by x, and integrated to an arbitrary
point in the trajectory. The second-order analytical solution for φ now is:

φ2 = c2 −2k1
(
ex −1

)−2(1−α)x +2ηαI (x) (3.50)

where the constant I (x) is defined as:

I =
(
1+λ2

)
k1

cx − 1

2
kαx2 − (1−α)

(
1+λ2

)
k1

τx −
(
1+λ2

)
k1

I1(x)+ (1−α)
(
1+λ2

)
k1

I2(x) (3.51)

here, the additional constants I1 and I2 are introduced, which results in:

I1 = 1

2
φa x − a2

4a1

(
c −φa

)+ (
4a1a3 −a2

2

)
8a1

τ (3.52)

I2 =− 1

a1

(
c −φa

)− a2

2a1
τ (3.53)

The coefficients a1, a2 and a3 return in this relation and are the same as previously defined for the first-
order solutions. The second-order solution for the velocity can now be obtained in its non-dimensionalized
form following the same procedure that was used for the first order relations. After integration to an arbitrary
point in the trajectory, the relation for the non-dimensional velocity v is obtained as a function of the range
angle:

v =
(
1+λ2

)
k1

(c −φ)−kαx − (1−α)
(
1+λ2

)
k1

τ−ηkαI (x)+ ηα
(
1+λ2

)
k1

J (x) (3.54)

where the term I (x) again returns. The new variable J (x) is also introduced and defined as:

J (x) =
(
1+λ2

)
k1

cτ−
(
1+λ2

)
k1

x − (1−α)
(
1+λ2

)
2k1

τ2 −kαI2(x) (3.55)

where I2(x) is also defined as before.
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As the non-dimensional equation for the altitude does not have any terms that include eηv , the same rela-
tion as before can be used. Given the second-order relation for φ2, it is possible to find a more accurate value
of the maximum atmospheric penetration x1. Again, this should be done by using a root-finding scheme and
solving for φ2(x) = 0.

An important note is made by Vinh et al. (1993) for vehicles with low L/D for this new approximation.
The first order approximation of x1 will be smaller than the second-order approximation. The root-finding
algorithm will thus test values of x that are in excess of x1. The proposed solution by Vinh et al. (1993) is to
maintain a constant value of x in the following term: 2ηαI (x). This constant value of x is the same as the
deepest penetration point for the first-order approximation of x1.

To be able to perform constrained optimization, the aerodynamic load and heat load have to be modeled
as well. Engelsma (2019) has developed equations that express these parameters as a function of τ such that
they can be propagated along the equations of motion. They are given as:

D

gE
(τ,δ) =

(
1+λ2

)
Bex(τ)−ηv(τ,δ)

2αE∗ (3.56)

L

gE
(τ,δ) = λBex(τ)−ηv(η,δ)

α
(3.57)

qc (τ,δ,C , a,b, M) =C Ra
nρ

b
E V M

E ebx(τ)− Mηv(τ,δ)
2 (3.58)

The resulting analytical equations are thus dependent of the entry state, the non-dimensional range angle
τ and the sign, defined as δ. As mentioned before, the sign is used to indicate whether the flight is in the
downward of upward leg.

Finally, the equations need to be dimensionalized to obtain results that can be more easily understood.
The values for the aerodynamic load and heat flux are already in their dimensional form and thus only the
altitude, velocity and flight-path angle need to be converted to their spherical coordinates:

r (τ) =−Hs x(τ)+ rE (3.59)

V (τ,δ) =
√

V 2
E

eηv(τ,δ)
(3.60)

γ(τ,δ) = arcsin

φ(τ,δ)

−
√

rE
Hs

 (3.61)

3.5.2. Atmospheric Glide Phase
The method for the gliding phase is also based on the derivation as presented in Vinh et al. (1993).

First, the system Equation (3.33), Equation (3.34) and Equation (3.35) are used in combination with k1 =
Bλ and the arc length is eliminated by the dividing the second and third equation by the first.

d v
d y= (1+λ2)

φ − kαeηv
y (3.62)

dφ

d y
=−k1

φ
+ (αeηv −1)

yφ
(3.63)

Then, the relation αu = e−ηv is used to rewrite the equation for speed as

η
(
1+λ2

)
u

φ
=− 1

y ′ +
ηk

y
(3.64)

In this equation, the prime denotes the derivative with respect to u. Using the same principle, the equa-
tion for the flight path angle can be rewritten by noticing that dφ/ =φ′/y ′:

y
[
k1 −η

(
1+λ2)uφ′]= 1−u

u
−ηkφφ′ (3.65)
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These last two equations form a non-linear system of equations for y and φ with respect to the indepen-
dent variable u. Vinh et al. (1993) applies the iterative technique to solve these equations.

This begins with setting the derivative of the flight path angle to zero, φ′ ≈ 0. This leads to the following
relation for the non-dimensional altitude as a function of the non-dimensional speed, within the assumption
of equilibrium glide:

y0 = (1−u)

k1u
(3.66)

which forms the first order solution for y . the derivative of this function is:

y ′
0 =

−1

k1u2 (3.67)

Next, these two equations can be substituted into Equation (3.64) instead of y and y ′, resulting in the first
order solution for the flight path angle.

φ0 = 2(1−u)

E
√
βrE

[
2
βrE

+u(1−u)
] (3.68)

E is the lift-to-drag ratio that is used for the glide, thus forming the control parameter that can be used
when applying this method.

Similarly, φ0 and φ′
0 and substituted in Equation (3.65) to obtain the second-order solution for y :

y1 = y0
1+ AB

1+B
(3.69)

where

w = 2

βrE u(1−u)
(3.70)

A = w

1+w
(3.71)

B = 2w(1− (1−w)u]

E 2(1+w)2 (3.72)

Now, the second-order solution for the flight path angle can be obtained by substituting y1 and y ′
1 into

Equation (3.64), which leads to:

φ1 =φ0
(1+ AB)

(1+B)

(1+w)

D
(3.73)

with

D = w + 1

1+ B(1−2u)(3A+AB−2)+ 2A(A−1)
E2 (1−u)(3u−1−wu)

(1+B)(1+AB)(1+w)

(3.74)

Lastly, the range angle remains to be determined. To do so, the equation for speed is considered:

du

dτ
=−η(

1+λ2) yu +ηkφ (3.75)

When substituting the first order solutions for y and φ, this gives

du

dτ
=− 2u(1−u)2

E
√
βrE [ηk +u(1−u)]

(3.76)

The relation for τ and subsequently the range angle are found by quadrature:

θ = 1

2
E

[
log (1−u)

(1−ue ) + 2
βrE

log ue
(1−ue )

(1−u)
u

+ 2
βrE

(
1

1−uE
− 1

1−u

) ]
(3.77)

Finally, Vinh et al. (1993) presents two equations that give the appropriate entry velocity and flight path
angle for a given altitude.
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uE = 1

1+k1
(3.78)

and

sinγE = 2k1(1+k1)

E [2(1+k1)2 + rE
Hs

k1]
(3.79)

The altitude is implemented in the variable k1 in Section 8.1.1. The initial state for planar flight in equi-
librium glide is thus obtained as input for a numerical simulation to verify the results.

3.5.3. Ballistic Phase
The previously described method is only capable of describing the atmospheric phase of the entry and thus
a separate analytical method needs to be defined to describe the ballistic phase. The method as presented in
Bate et al. (1971) for two-dimensional flight has been adopted for this research. This method was developed
to model the motion of a missile from its burn-out point until the re-entry point and can be similarly applied
for this research.

The method introduces a variable S0, which is defined as follows:

S0 = V0

Vc,0
(3.80)

where V0 is the velocity at the atmospheric exit point and Vc,0 is the local circular velocity at this point. The
relation between the distance from the center of the Earth and the radius of the Earth can be defined as:

r

Re
= S2

0cos2γ0

1+
√

1−S2
0cos2γ0(2−S2

0)cosθ
(3.81)

The velocity can now be found by applying the law of energy:

V =
√(

− µ

2a
+ µ

r

)
·2 (3.82)

3.6. Forces and Environment
For the analysis of re-entry flight, two forces need to be considered to be acting on the body, the gravitational
and aerodynamic forces. Other perturbing forces can be neglected, as they are several orders of magnitude
smaller, especially during the aerodynamic phase of the flight. The aerodynamic and gravitational forces are
considered external forces, as they are a direct result of the environment in which the vehicle is modeled. It
is thus required to define the environment models that are used for the simulations, which will be done in
the following section. First, an atmosphere model is required to be able to model the aerodynamic forces and
heating that are acting on the vehicle. A central body shape will have to be determined to obtain the altitude
of the vehicle, which in turn also influences the atmosphere. To obtain the gravitational forces, a gravity
model needs to be defined. These models need to be separately defined for the numerical simulations and
the analytical simulations, which were discussed in Section 3.4 and Section 3.5, respectively.

3.6.1. Aerodynamics
The aerodynamics of a re-entry flight depend on the atmospheric density ρ and the airspeed V as well as the
vehicle attitude, described by α, β and σ. Two important variables can be derived as well, the Mach number
M and the dynamic pressure q :

M = V

a
(3.83)

q̄ = 1

2
ρV 2 (3.84)

where a is the local speed of sound.
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Aerodynamic Forces
In the aerodynamic reference frame, the aerodynamic forces can be defined as:

FA,A =
 −D

−S
−L

=
 −CD qSr e f

−CS qSr e f

−CL qSr e f

 (3.85)

where D is the drag, S the side force and L is lift. The force vector has been defined in the aerodynamic
reference frame (A) and need to be converted to the inertial frame. The coefficients CD , CL and CS are specific
to a vehicle and are available in Mooij (1995) for HORUS. These coefficients depend on the Mach number (M),
angle of attack (α) and angle of side-slip (β).

3.6.2. Atmosphere Model
This research will employ two different kinds of atmosphere models. The exponential atmosphere model is
used in the analytical solutions for the entry trajectory and the US76 model will be used for the numerical
simulator.

Exponential Atmosphere
The exponential atmosphere model is the simplest model available. It is selected for the need of a simple
analytical representation for the atmosphere to represent the equations of motion analytically.

The first important simplification that is made in the model is the assumption that the atmosphere is an
ideal gas. An ideal gas inherently assumes that the gas consists of randomly-moving, non-interacting point
particles. This leads to the ideal gas law:

p = ρRT = ρR∗

M
T (3.86)

From this equation, the relation between the atmospheric pressure, the atmospheric density and the
temperature can be obtained. Relating the density to altitude can be done by assuming the atmosphere is in
hydrostatic equilibrium. The hydrostatic equation for the atmosphere is:

d p =−ρg dh (3.87)

Integration of Equation (3.87) requires knowledge of ρ and g in relation to the altitude h. This can be avoided
by introducing the geopotential altitude z, which is related to h by:

g0d z = g dh (3.88)

where g0 is the gravitational acceleration at the Earth’s surface. Using Newton’s law of gravitation and after
integration, the following solution is found, under the assumption of constant temperature and g = g0:

ρ

ρ0
= e−

h
Hs (3.89)

US 1976 Standard Atmosphere
Static atmosphere models use the assumptions for exponential atmospheres to provide a number of basic re-
lations that describe the vertical temperature, density and pressure distribution in an averaged atmosphere.
One of the most commonly used models is the US 1976 Standard Atmosphere (National Oceanic and Atmo-
spheric Administration, 1976).

One of the main assumptions is that the air is dry and homogeneously mixed at altitudes below 86 km.
When also assuming the air is a perfect gas, the equation of state can be used to relate the pressure, p, and
temperature, T :

p = ρRg T

Mm
(3.90)

Above 86 km, this last assumption gradually breaks down and the individual gas species become a larger
influence. Until the altitude exceeds 86 km, the atmospheric pressure is obtained using the following linear
relationship:
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TM = TM ,b +LM ,b · (H −Hb) (3.91)

The variables that allow the use of this relation are shown in Table 3.1.

Table 3.1: Reference levels and gradients determined for the U.S. 1976 Standard Atmosphere (National Oceanic and Atmospheric
Administration, 1976).

Subscript b
Geopotential height
Hb (km)

Molecular scale
temperature gradient
Lm,b (K/km)

Form of function

0 0 -6.5 Linear
1 11 0.0 Constant
2 20 1.0 Linear
3 32 2.8 Linear
4 47 0.0 Constant
5 51 -2.8 Linear
6 71 -2.0 Linear
7 84.8520 Linear

Heights above 86 km are defined using four functions using different input arguments. These four layers
succeed each other in the following order:

1. 86 to 91 km: Isothermal Layer

2. 91 to 110 km: T(Z) follows an elliptical shape.

3. 110 to 120 km: Constant positive gradient.

4. 120 to 1000 km: T increases exponentially towards an asymptote.

The second section is defined by the following equation:

T = Tc + A ·
(
1−

(
Z −Zs

a

)2)1/2

(3.92)

where Tc = 263.1905K , A =−76.3232 and a =−19.9429.
The third region follows the profile for its temperature change against altitude as:

dT

d Z
= −A

a

(
Z −Zs

a

)[
1−

(
Z −Zs

a

)2]−1/2

(3.93)

The last section can be described as:

T = T∞− (T∞−T10) ·exp(−λξ) (3.94)

with

λ= LK ,a/(T∞−T10) = 0.01875, and
ξ= ξ(Z ) = (Z −Z10) · (r0 +Z10)/(r0 +Z )

(3.95)

The temperature profile for the exponential and US76 models can be found in Figure 3.1. The difference be-
tween both models is clearly observed for the altitude, where the exponential atmosphere assumes a constant
temperature, while the US76 atmosphere follows the actual distribution more closely. It starts at sea-level
temperature and follows the decreases, phases of constant temperature and increases as found in the actual
atmosphere.
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Figure 3.1: Temperature profile against altitude for the exponential and US76 atmosphere models.

3.6.3. Aerodynamic Heating
The re-entry flight is subject to constraints for the aerodynamic heating in two manners: the total heat load
that is built up over the flight and the maximum local heating rate (Eggers et al., 1957). The aerodynamic heat-
ing originates from the conversion of the high kinetic and potential energy to heat, through friction with the
atmosphere. This in turn also causes the deceleration of the vehicle when it travels through the atmosphere.
The heating rate depends on the aerodynamic properties of the vehicle and requires intensive computation.
An approximation is developed by Chapman (1960):

qe = c∗
1

Rn
N

(
ρ

ρ0

)1−n (
V

Vc

)m

(3.96)

Here, RN is the nose radius of the vehicle, ρ the density, V the velocity and Vc the circular entry velocity. The
constants are defined as : c∗ = 1.1097 ·108, n = 0.5 and m = 3.15. These constants approximate the airflow
around the vehicle.

The total heat load can simply be found by taking the integral of the heat rate over the trajectory.

3.6.4. Central Body Shape
Different types of body shape models are available, depending on the required accuracy. For re-entry flight,
the effects of the body shape are limited as the simulation stops before the vehicle comes close to the surface
of the body. The main effect of the body shape is related to the atmosphere, which is defined with respect to
the reference surface of the body.

A trade-off between accuracy and computational complexity for the models already excludes all models
except the spherical and oblate spheroid shape models for this research. Previous studies into HORUS entry
trajectories as presented in Mooij (1998) and Papp (2014) have used the spherical model. For consistency, this
model has also been selected for this research. Although the simulator has the capacity to model an oblate
spheroid Earth, the spherical shape approximation was applied in this research to simplify the comparison
of the results with the previous works.

3.6.5. Gravitational Model
The gravitational force is the external force that draws the re-entry vehicle towards the Earth. According to
Newton’s Law of Gravitation the force between two point masses can be described as

FG = GMm

r 2 r (3.97)

where FG is the force vector, G is the universal gravity constant, M and m the masses of the central and
orbiting body, respectively, r the norm of the distance vector and r the distance vector. The product GM is de-
fined as the gravitational parameter µ, which in practice can be more accurately measured. The gravitational
potential can now also be described as
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U =−µ
r

(3.98)

Eq. (3.98) is known as the central field model, which is the simplest form to approximate a body’s gravita-
tional potential.

Spherical Harmonics Model
The central gravity model as previously described is not sufficiently accurate when describing the motion of
a vehicle re-entering the Earth’s atmosphere as the Earth is not a perfect sphere, both in shape and in gravity.
the main disturbance for Earth is a ‘ring’ of mass around the equator. The effect of this disturbance is also
called the J2-effect. When considering the gravity to be defined as:

gR =
 gδ

gτ
gr

 (3.99)

the three components can be found from:

gr = µ

r 2

[
1− 3

2 J2

(
RE
r

)2 (
3sin2δ−1

)]
gδ =−3 µ

r 2 J2

(
RE
r

)2
sinδcosδ

(3.100)

while the third, longitudinal component is negligible if the Earth is assumed to be symmetrical around
its rotational axis. In these equations, r is the distance between the centers of mass of both bodies, µ is the
standard gravitational parameter, δ is the latitude and RE is the radius of the Earth. Finally, J2 is the coefficient
of oblateness of the Earth, given as (Wertz, 2001):

J2 = 0.00108263 (3.101)

3.7. Guidance
In addition to the previously described models, a desired state has to be given to the system in the form of
guidance. The guidance will be defined by a set of nodes based on an independent variable with respective
values for the decision variables. Intermediate values can be found during the flight by interpolation between
the two nearest neighboring nodes. This method is called node control and lends itself well to optimization
problems (Mooij and Hänninen (2009); Dijkstra et al. (2013); Papp (2014)). The geometry of this method can
be seen in Figure 3.2 (Papp, 2014). A node is defined as:

Ni =
{

vt,αC ,i,σC ,i
}

with i = 1, . . . ,n (3.102)

where n is the number of nodes, vi is the value of the independent variable at the node and αC and σC

are the commanded angle of attack and bank angle, respectively. The guidance matrix Γ contains the full set
of these commands for the entire trajectory.

Γ=


N1

N2
...

Nn−1

Nn

=


v1 αC ,1 σC ,1

v2 αC ,2 σC ,2
...

...
...

vn−1 αC ,n−1 σC ,n−1

vn αC ,n σC ,n

 (3.103)

It should be noted that node control has a number of downsides which need to be taken into account.
A clear disadvantage is the difficulty that comes with selecting the number of nodes. Ideally, the number of
nodes would be large to improve the flexibility of the system. This would also increase the computational
load and thus an optimum needs to be found. A variable-length optimization method is introduced in this
research to circumvent this design step and optimize the number of nodes. This method will be discussed in
Section 4.1.5.
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Figure 3.2: Guidance profile as defined by nodes(Papp, 2014).

Independent variable
The guidance logic requires an independent variable to link the commands to a point in the re-entry tra-
jectory. A common independent variable is the total specific energy of the vehicle, which is monotonically
decreasing during unpowered re-entry flight, since only energy is lost due to friction, while no new energy
(i.e. by thrust) is added:

E = g h + 1

2
V 2 (3.104)

Note that this relation holds for a flat Earth approximation of the specific energy. Especially for skipping
flight, this relation does not hold and the energy should be more accurately described as:

E = V 2

2
− µ

r
(3.105)

where the first term describes the kinetic energy and the second term the potential energy of the vehicle. The
variables V and r are the velocity and distance from the center of the Earth, respectively and µ is the standard
gravitational parameter of the Earth.

The specific energy has the benefit that it does not depend on the exact trajectory when determining the
end value, unlike the time. Additionally, for skipping trajectories it has the benefit of being constant during
the skip-out phase, meaning that no change in guidance commands is made during this phase. The only case
where problems would still occur is when powered flight is considered and the specific energy changes due
to the thrust and decrease in mass. This could potentially be solved by re-calculating the trajectory after the
powered phase. Commonly the values for E are normalized with respect to the energy at the entry interface,
which is its highest value. This allows for mapping of the nodes in the normalized interval Ê ∈ [0,1] with

Ê = E

E entry
(3.106)

Node Positioning
A number of methods regarding node positioning have been analysed in Dijkstra et al. (2013) for atmospheric
entry analysis. His conclusion was that non-uniform independent node control (NUIN) was the most suitable
method. It was compared against PID-control, UIN and NUDN control. The latter two of these methods were
considered unsuitable for entry control as they were found to not be robust. The PID method proved to
converge faster when the search space is well-defined. Additionally, it is drawn towards local optima. The
NUIN control was found to be the most flexible and to converge towards the global optimum. It is relatively
slow, but can be considered preferable due to its better ability to reach the global optimum.

NUIN uses two nodes at the ends of the interval which are fixed and randomly generates the other nodes
locations. This method costs relatively little computational power when combined with optimisation. The
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addition of Papp (2014) to fix the values of the final nodes is also useful to improve the efficiency of the mission
planner. The reasons described by her are:

• The number of dimensions is greatly decreased as two less values need to be optimised for each vari-
able.

• The attitude of the vehicle can be assumed to be neutral at Ê = 0 with αc =σc = 0.

Zero-Order Hold
Realistically, a guidance algorithm will not sample the current commanded angle at every available time due
to computation constraints. This means that in between time steps the value of the commanded angle is fixed
and a discrete pattern is generated for the guidance. This is introduced in the simulator through zero-order
hold, which is visualized in Figure 3.3. Instead of following a continuous pattern, the guidance commands are
discretized and only sampled at given time steps. When comparing a smaller step size, such as Figure 3.3(a)
to a large time step, such as Figure 3.3(b), it becomes clear that for larger sample times the deviation is more
significant when applying the zero order hold. It is thus important to find the most appropriate time step that
limits the deviations with respect to a continuous input, while also keeping in mind the required computation
time that is required to take more samples.

In order to limit the computation time that is required for the simulations a time step of 2.0 s is selected.
It should be noted that this value is large and thus not the most accurate. A more typical value would be a
sampling of 10 Hz or 0.1 s, but this was found to put too stringent constraints on the computation time.

Ts
t

Deviation

(a) Small time step

Ts

t

Deviation

(b) Large time step

Figure 3.3: Effect of the zero-order hold time step on the accuracy of the input.
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4
Optimization Methods

The following chapter provides background on the selected optimization methods. It will provide a descrip-
tion of the functioning of the methods and the purpose they hold in this research. The MOEA/D algorithm
will be described in Section 4.1.2, followed by the ACO algorithm in Section 4.1.4 and a variable chromosome
length algorithm in Section 4.1.5. The chapter is concluded with a description of the optimization problem
in Section 4.2.

4.1. Methodology
The optimization methodology can be split into multiple parts. First, the principles of multi-objective opti-
mizations are discussed. Then, the algorithms that are used to find the optimal solutions will be discussed.

4.1.1. Multi-Objective Optimization
Multi-Objective optimization carries the inherent problem that a trade-off between two objectives has to
be made. For such problems, a shape exists where no improvement can be made for an objective without
deteriorating another objective (Coello Coello, 1999). This principle is based on domination of solutions. For
two solutions u and v with respective objective function values f(u) and f(v), u dominates v if and only if
fi (u) ≤ fi ((v)) for every i ∈ 1, . . . ,m, while also satisfying fi (u) < fi ((v)) for at least one i ∈ 1, . . . ,m and also no
worse values for the other objectives.

Eventually, a set of non-dominated solutions will emerge from the problem, which is called the Pareto set.
The shape that is created by this solution set is called the Pareto front. An illustration of the Pareto front is
found in Figure 4.1.

The Pareto front can be used by a human decision maker to choose a final solution to the problem.

4.1.2. MOEA/D
The Multi-Objective Evolutionary Algorithm with Decomposition (MOEA/D) was originally developed by
Zhang and Li (2007). The method is based on the decomposition of a multi-objective problem into several
scalar, single-objective optimization subproblems, which are simultaneously optimized. This method uses
the fact that a Pareto optimal solution of a multi-objective problem can be defined as a single-objective prob-
lem where the objective is found by aggregating all objectives of the MOP. The subproblems are optimized by
using information of only the nearest neighbors.

Evolutionary Algorithms
An evolutionary algorithm bases its optimization approach on genetics. It uses the concept of chromosomes
and genes, where the decision vector of the optimization problem is the chromosome and the individual
variables in the vector are the genes. First, a parent population is set up randomly. Then, for each gener-
ation, parents are randomly selected to generate an offspring individual based on crossover between two
parent chromosomes. During this crossover, each gen for the offspring is selected based on the parent chro-
mosomes. Afterwards, mutation of the offspring chromosome is performed, based on the mutation rate of
the algorithm. Finally, the offspring is compared against the parent chromosome and the best individual is
carried over to the next generation.
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f1

f2

Sub-optimal
solution

Pareto optimal
solution

Figure 4.1: Schematic representation of a Pareto front for a two-dimensional problem.

Decomposition
Although other alternatives are available in literature, the method of aggregating the objectives is based on
the Tchebycheff method, which is the main available method in PaGMO for the MOEA/D algorithm. For
further elaboration on PaGMO the reader is referred to Chapter 6.

The Tchebycheff method defines a weight vector λ = [λ1, ....,λm], where m is the number of objectives
and the components of the vector add up to 1. Mathematically this is defined as (Zuiani and Vasile, 2013):

min
x∈Ω

{
g

(
f(x) |λ,z∗

)}= min
x∈Ω

(
maxi=1,...,m

{
λi | fi (x)− z∗

i

})
(4.1)

where the reference objective vector z∗ is:

z∗
i = min

{
f1(x) | x ∈Ω}

with i = 1, . . . ,m (4.2)

Each Pareto optimal point x∗ has a related weight vector λ for which the point is the optimal solution of
Equation (4.1). By finding the different solutions that are optimal in this sense, a Pareto front can be con-
structed.

4.1.3. Constraint Handling
The MOEA/D algorithm as implemented in PaGMO does not include a method to handle constraints. How-
ever, for this research a method has been added to the algorithm that allows one to handle constraints as
described by Lampinen (2002). This method applies a logic based on comparing the objective values and
feasibility of candidates. An individual is compared to the corresponding member in the parent population
and selected if:

1. Both individuals are feasible and the new individual has a lower objective function value.

2. The new individual is feasible and the parent individual is infeasible.

3. Both individuals are infeasible and the new individual has a lower or equal constraint violation value.

The method is reported to perform especially well on fast convergence to the feasible solution space.
Also, by comparing infeasible solutions based on their violation values instead of their function values, no
selective pressure towards low function values is exerted and the algorithm is less likely to be forced towards
local optima due to the constraint handling.
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4.1.4. MHACO
The Multi-Objective Hypervolume Ant Colony Optimizer (MHACO) is a novel optimization algorithm pre-
sented in Acciarini et al. (2020). It uses that logic of ant colony optimization combined with hypervolumes
to allow for multi-objective optimization. Tests against the MOEA/D and NSGA-II algorithm have shown
that MHACO is competitive with these optimization algorithms and capable of finding better Pareto fronts in
terms of hypervolume values for the presented solar sailing mission in Acciarini (2020).

Ant Colony Optimization
Ant Colony Optimization was first introduced by Colorni et al. (1991) and based on a fundamentally different
approach compared to genetic or evolutionary algorithms. It belongs to a class of nature-based optimization
algorithms and as the name implies is a mathematical representation of a natural phenomenon. For ACO this
is the method in which real ant colonies forage food. Ants explore paths starting at their nest to find food and
leave pheromones behind so other ants can follow their path. As the amount of pheromone is proportional
to the quantity and quality of the food that was found by the ant, other ants can find the most optimal path
to follow.

The mathematical model consists of a graph G = (V ,E) where V represents two nodes and E represents
two paths. The nest of the ants is represented by vs and the food source is vd . The first path, e1, with length l1

and the second path, e2 with length l2 are assumed to be l2 > l1. A pheromone value τi can now be given to
each path, where the magnitude of the pheromone value corresponds to the performance of each path. The
probability that an ant follows one of the paths from the nest is now given as:

pi = τi∑i=2
i=1τi

i = 1,2 (4.3)

Since the path e1 was found to be shorter it now holds that p1 > p2 and the ants are more likely to follow the
first path. Having chosen one of the paths, the ants change the pheromone value that is associated with the
path with an amount:

∆τi = Q

li
(4.4)

A single flaw remains in this definition, which is that the amount of pheromone would be maintained on a
path, even if a shorter path is found. Statistically, the ants would thus still follow a previously found short path,
even if a better path has already been found. This problem is avoided by adding an evaporation parameter,
which causes a path to lose its pheromone value over time. The evaporation is included mathematically as:

τi ⇒ (1−ρ) ·τi i = 1,2 (4.5)

where ρ ∈ (o,1] is the evaporation parameter used to control the evaporation.
For the exact implementation of the algorithm, the reader is referred to Acciarini et al. (2020). One last

important step is to identify the input parameters of the algorithm, which can be used for tuning of the algo-
rithm. These are defined as follows:

1. ker: The dimension of the solution archive where pheromones from previous generations are stored.
It should be noted that this parameter can never be larger than the population size that is used in the
problem.

2. q: The convergence speed parameter. The standard value of this parameter is 1.0. For this research, no
changes will be made to this parameter.

3. threshold: The threshold parameter. This determines the number of generations after which the value
of q is set to 0.01 and thus the solutions will start converging towards the best found value.

4. NGenMark: The parameter controls the convergence speed of the standard deviation values in the
solution archive.

5. evalstop: This integer variable counts the runs for which no improvement is made for the hypervolume
value, stops the algorithm when the integer criterion is met and returns the current population.

6. focus: The parameter is used to make the search greedier towards the optimum. A greedier search
would make the algorithm more likely to get stuck in a local optimum.
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Figure 4.2: Representation of a hypervolume for a two dimensional optimization problem.

Hypervolumes
The hypervolume metric is an alternative performance metric to measure the performance of individuals in
MO optimization problems. Being first introduced in Zitzler et al. (2003), it has become widely applied in MO
optimization as it evaluates convergence and diversity in a single variable with the additional benefit that it
is strictly Pareto compliant. This expresses itself as a more Pareto optimal individual will by definition have a
lower hypervolume value.

The hypervolume can now be mathematically represented as:

IH
(
B ,yr e f

)=Λ( ⋃
y∈B

{
y′ | y < y′ < yr e f

})
, B ⊂Rm (4.6)

where Λ is the Lebesgue measure, which is commonly used to measure subsets of Euclidean space in n di-
mensions. Furthermore, m is the objective space dimension. y,y′ ∈ B belong to a subset of the overall ob-
jective function vectors and yref ∈ Rm is the reference point vector that should be dominated by all Pareto
optimal solutions. A graphical representation of the hypervolume for a two dimensional problem is given in
Figure 4.2.

Acciarini et al. (2020) have proposed a number of algorithms to compute the hypervolume resulting from
the optimization problem. Exact algorithms are available for low dimensions, but for higher dimension prob-
lems only numerical algorithms are found to be suitable. Given that the MHACO algorithm is not capable of
handling constraints and treats these as additional objectives, the objective space has a dimension of 5. The
hypervolume calculation algorithm that is included in MHACO for these problem dimensions is the Walking
Fish Group algorithm as presented in While et al. (2011).

Constraint handling
The MHACO algorithm implemented in PaGMO also does not include a method to handle constraints. In-
stead, Acciarini et al. (2020) reports that constraints can be included as objectives instead, thus creating an
unconstrained optimization problem.

Due to the method that is used for MHACO, the constraint handling as proposed by Lampinen (2002) and
used for the MOEA/D algorithm cannot be simply applied to the MHACO algorithm and the choice was made
to treat the problem as unconstrained for MHACO instead. It should be noted that the use of hypervolumes
increases the need for proper normalization of the problem objectives, which will be further elaborated in
Chapter 9.

4.1.5. Variable Chromosome Length
In addition to the more traditional optimization methods, a method was developed that employs a variable
chromosome length and structure. The concept for this method was first presented by Dasgupta and McGre-
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gor (1992b) and involves the dimensions of the chromosome as an optimization parameter. The method was
proven to successfully find the global optimum in engineering problems by Dasgupta and McGregor (1992a).

Although the concept of variable chromosomes can be applied to any genetic algorithm, the algorithm
that was developed for this research build on the MOEA/D algorithm that was previously discussed as a
baseline, the method developed here will thus be called the Structured Chromosome Evolutionary Algorithm
(SCEA). The existing algorithm is extended with a function capable of evolving variable size individuals. To
comply with the PaGMO environment it is necessary to maintain the same length for each chromosome. To
prevent excessive changes to the PaGMO environment, the unused elements of the chromosome will be left
in place, but otherwise disregarded by the software. As a result, no improved performance will be observed
in memory usage compared to other algorithms in PaGMO.

To understand the SCEA, the difference between the regular and structured chromosome needs to be
defined. Figure 4.3 presents the lay-out of the traditional chromosome compared to the structured chromo-
some. The traditional chromosome simply exists of an array of decision variables. In case of multiple decision
variables, such as the angle-of-attack and bank angle in re-entry trajectories, these are concatenated to en-
sure a single, longer vector.

The structured chromosome uses a different, more flexible approach as seen in Figure 4.3(b). Instead of
predefining the length of the array in advance, it takes the length of the vector as a decision variable. This also
allows for a varying number of decision variables for different parts of the optimization problem. In re-entry
the benefit becomes evident when considering a flight consisting of multiple legs. By use of the structured
chromosome, the legs that require little guidance will only take a very limited number of nodes, whereas the
legs that strongly influence the optimization result will use more nodes. Usually, this process of node design
requires manual labor, which might be unnecessary by the application of a structured chromosome.

Gen 1 Gen ... Gen n

(a) Traditional

Gen 1 Gen mGen ...

Gen 1.nGen 1....Gen 1.1 Gen m.pGen m.1 Gen m....

(b) Structured

Figure 4.3: Lay-out of a traditional chromosome compared to a structured chromosome.

The main adaptation for structured chromosome algorithms is related to the evolutionary operator, the
crossover and the mutation. Where traditional optimization simply goes through the vector describing the
chromosome step by step, the structured algorithms requires a more specific order in which the operations
take place and requires adaptation of the chromosome based on these operations.

The logic that is applied is presented in Algorithm 1. The logic is applicable to both crossover and muta-
tion operations. First, the integer genes for the new chromosome are created by evolutionary operations. It is
important to note that the algorithm should always start these operations at the highest level to ensure that
all levels are passed during evolution. A check is performed whether these are linked to dependent genes,
which are then either appended to or deleted from the chromosome to ensure that the chromosome length is
correct again. The algorithm then moves to the real variables in the chromosome and performs evolutionary
operations on these as long as the parent chromosome real variables, nreal are not exceeded.

The conceptual structure of the chromosome applied to skipping re-entry flight can be found in Fig. 4.4.
The highest level of the chromosome determines the number of legs of the skipping flight. For each leg,
the number of nodes is then determined. Lastly, the different parameters that are optimized at each node
are described. In this three-level structure, both the number of legs and the number of nodes per leg are
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Algorithm 1 Logic describing the crossover operations for the structured chromosome algorithm.

1: input: chromosomeToMutate, LB, UB, nint, nreal

2: for i ∈ nint do
3: Perform evolutionary operator on integer element
4: if newChromosome(i ) > chromosomeToMutate(i ) then
5: if newChromosome(i ) has dependent genes then
6: Append random gens equal to difference.
7: else if newChromosome(i ) < chromosomeToMutate(i ) then
8: Delete gens equal to difference.
9: end if

10: end if
11: end for
12: for j ∈ nreal do
13: Perform traditional evolutionary operations.
14: end for
15: return newChromosome

taken into account as an optimization parameter and might thus change for each individual. Although this
process could also achieved by muting certain elements of the chromosome as a consequence of the selected
number of legs, the approach taken by the SCGA minimizes computational effort by completing leaving out
the unused parameters.

4.2. Optimization Problem
The following section defines the optimization problem of a re-entry trajectory. The values of the decision
variables, which are the input to find an optimal result are determined by the algorithms. Then, the problem
objectives are the variables that are to be optimized. Finally, the constraints are imposed on the solution

# legs

Leg 1 Leg 2 Leg #m

Node 1 Node 2 Node #n

Parameter 1 Parameter 2 Parameter #p

Figure 4.4: Conceptual structure of the structured chromosome GA for re-entry flight.
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space to ensure that the solutions do not violate the limits of vehicle or crew.

4.2.1. Decision Variables
Re-entry trajectories are influenced through the guidance commands. These guidance commands can be
defined by specifying the value of the guidance parameters at certain nodes. The values in between those
nodes are determined by interpolation as described in Chapter 5 at each moment in which the guidance
system is called.

The nodes and their values can then be combined into the guidance matrix Γ, which defines the node
locations in terms of energy Ê and the attitude commands at these locations (ᾱ(Ê) and σ̄(Ê) ). This can be
represented mathematically as:

Γ=


Ns

N1
...

Nn−1

N f

=



Ês αs σs

Ê0 α0 σ0

Ê1 α1 σ1
...

...
...

Ên−1 αn−1 σn−1

Ê f α f σ f


(4.7)

where n is the number of nodes.
It should be noted that the first and last nodes of the matrix are not included in the optimization, as these

represent the initial state and desired final state. The number of nodes that lies in between is typically a part
of the design of the optimization problem. However, the use of the variable length chromosome algorithms
takes the number of nodes as a decision variable.

Note that for the SRM vehicle, no data of the CL with respect toα is available, and thus only the bank angle
can be used as an input, which influences the vertical L/D ratio.

Generally, a larger number of guidance nodes leads to more optimal trajectories, as the trajectory can be
more accurately controlled. A larger number of nodes does however increase the number of iterations that is
required by the optimization algorithm as the dimension of the optimization problem increases. The scaling
of the dimension of the solution spaceΩn is found as:

dimΩn = 3(n −2) (4.8)

Here, the benefit of the variable length chromosomes of the SCEA algorithm becomes apparent. In ad-
dition to the previously mentioned decision variables, extra variables are added to represent the number of
legs of the trajectory and the number of nodes for each of these legs. An additional task is thus passed to the
optimization problem, where it automatically determines the number of nodes that is used by the algorithm
and thus might find a solution in the Pareto front with less nodes faster, improving the convergence rate for
the optimization problem.

In this thesis, the number of nodes for a fixed-length guidance algorithm is set equal to 8 at all times to
ensure that relatively high quality optimal solutions are found. This selection was made as a larger number
of nodes provides more optimal solutions, whereas the maximum number of 8 nodes, in combination with
the fixed first and final nodes, is equal to the maximum guidance vector size investigated by Papp (2014). The
variable length guidance is investigated for a range of guidance nodes, which lies between 4 and 8 nodes,
thus being capable of finding the same quality solutions as the fixed-length problem, but allowing for faster
convergence if a lower number of nodes suffices to find (a region of) the Pareto front.

Finally, the upper and lower bounds of the decision variables should be noted. The guidance and bank
angle values are limited by the vehicle and are 0°− 45° and 0°− 90°, respectively. The energy values are set
to a range between 0.1 and 0.95, to ensure that the algorithm will not find solutions that are too close to the
extremities of the re-entry trajectory. Finally, the number of nodes lies between 4 and 8 and the number of
legs is fixed to a value of 1 for the gliding flight.

4.2.2. Problem Objectives
Re-entry problems have two primary objectives. The flight range should be maximized and the total heat
load minimized. The complexity of re-entry trajectory design becomes clear when one realizes that these
objectives are conflicting.
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Minimum Heat Load
When a trajectory is only optimized for the heat load, it will generally follow a smooth gliding trajectory.
The heat load is then obtained by simply integrating the heat flux over the time-of-flight. The heat load is
then minimized by performing a trajectory that is as short as possible, without violating the operational con-
straints. Such trajectories follow the heat flux constraint closely throughout and would violate the constraint
when shorter, while increasing the total heat load when flying a longer trajectory.

Maximum Flight Range
Contrary to minimum heat load trajectories, a trajectory that is optimized for its flight range will try to in-
crease the duration of entry for as long as possible. The heat flux profile will thus not lie close to its constraint
value throughout the entire trajectory, while also a lofting flight is more likely. The lofts in this trajectory allow
the vehicle to trade its energy while still in the upper regions of the atmosphere, where the air is less dense and
thus less heat load will be built up. However, for this trajectory type, the fluctuations in the trajectory often
cause the g-load and g-load rate constraints to be more stringent. Eventually, more heat load will experienced
by the vehicle due to the longer flight time, thus causing a conflict with the previous objective.

4.2.3. Constraints
The constraints of the re-entry trajectory have been previously described. However, their implementation is
implemented in different parts of the simulation. First of all, the constraints for the angle of attack and bank
angle are included in the decision vector bounds. Their rate constraints directly implemented in the guidance
algorithm and the change of these angles will thus never exceed their limit values.

Three constraints now remain that are implemented in the optimization problem. These are the heat
flux, g-load and g-load rate. The optimization algorithms will handle them based on the previously described
constraint handling methods. The exact implementation is given below:

1. Maximum heat flux The maximum heat flux qc,max can vary throughout the trajectory, although it
should always remain below its limit value of 500 kW/m2 to find a feasible trajectory. A constraint
violation is thus implemented to let the optimization algorithms know that the trajectory is unfeasible.
Mathematically, this is implemented as follows:

pq =
{

0, if qmax ≤ qc,max
qmax

qc,max
, if qmax > qc,max

(4.9)

2. Maximum g-load The maximum allowable g-load, gc,max is determined by either the structural in-
tegrity of the vehicle or the limits of its passengers. Its implementation is the same as the heat load
constraint and given as:

pg =
{

0, if gmax ≤ gc,max
gmax

gc,max
, if gmax > gc,max

(4.10)

3. G-load rate The maximum allowable g-load rate ġc,max is also limited by the structural integrity of the
vehicle and the limits of the passengers. It is implemented as:

p ġ =
{

0, if ġmax ≤ ġc,max
ġmax

ġc,max
, if ġmax > ġc,max

(4.11)

Finally, also constraint for the rate of change of the attitude angles are implemented. These are not imple-
mented as constraints for the optimization problem, but rather implemented directly in the guidance. They
are:

1. Maximum α̇: The maximum allowable rate of change of the angle of attack is set to 5.0°/s, as is deter-
mined for the HORUS-2B entry vehicle. This is implemented directly into the guidance by limiting the
change of the angle of attack to its maximum value when the interpolation would cause it to exceed
this value.

2. Maximum σ̇: The maximum allowable rate of change of the bank angle is set to 15.0°/s, again as deter-
mined for the HORUS-2B entry vehicle. Its implementation is similar to the angle of attack.
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5
Numerical Methods

This chapter describes the various numerical methods that are applied in this research. It presents an overview
of the functionality of the method and its purpose within the research. The methods that are discussed in this
chapter are the root-finding in Section 5.1, interpolation in Section 5.2 and integration in Section 5.3.

5.1. Root-Finding Method
The second order analytical method for skipping flight as described in Section 3.5 requires a root finding
method to determine the first iteration of x0, the lowest point in the trajectory. As the equation that needs
to be solved is simple, a bisection root finding method will suffice without any significant loss of accuracy or
computation time.

5.1.1. Bisection Root-Finding
The bisection root finding method is the simplest available. As only one-dimensional root finding is required
for this research, multi-dimensional methods are not discussed here, although the bisection method can also
be applied to those problems.

The bisection method can be applied for any problem where the zero-axis must be crossed. Although
functions with multiple zeroes cannot be accurately described using this method, it suffices for the problems
in this research. The function requires two values around the zero, thus one positive value and one negative
value and converges towards the zero by iteration. The method evaluates the function value at the center
between two nodes. If the value at the center is positive, the node that corresponded to the previous positive
value is replaced and vice versa. In mathematical terms, this can be illustrated as follows:

x0 < x1

f (x0) < 0

f (x1) > 0

x2 = x1 −x0

2

x3 =
{

x2−x0
2 If: f (x2) > 0

x1−x2
2 If: f (x2) < 0

The steps as described above are repeated, resulting in a continuously smaller interval, until the interval
becomes smaller than a predefined thresh hold. The absolute error in the estimate of the root, ε, can be
determined to be:

ε= x1 −x0

2n (5.1)

where x0 and x1 are the initial nodes and n is the number of iterations.
The main benefit of the bisection method is its simplicity in implementation. It requires only the func-

tion and an if-statement that replaces the bounds as appropriate. Secondly, the method does not require
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knowledge on the derivative of the function, as this derivative is not known and would be very complex in
this research.

5.2. Interpolation Method
In this research, two important data sets are only available in tabulated form; the aerodynamic data of HORUS
and the guidance commands. Still, values between those nodes are often required, which can be found by an
interpolation method.

5.2.1. Linear Interpolation
One of the simplest forms of interpolation is linear interpolation. This method determines the value between
two nodes by a linear relation between the two nearest nodes. For a one-dimensional problem, the linear
interpolation estimate of the function is found from:

φ(x) = f (xi )+ ( f (xi−1)− f (xi ))
x −xi

xi+1 −xi
(5.2)

5.2.2. Cubic Spline Interpolation
The linear interpolation method can be extended to ensure smooth behaviour of the first and second deriva-
tives by cubic spline interpolation. Equation (5.2) then becomes:

y = Ay j +B y j+1 +C ÿ j +D ÿ j+1 (5.3)

and the new terms C an D are given by:

C = 1

6

(
A3 − A

)(
x j+1 −x j

)2

D = 1

6

(
B 3 −B

)(
x j+1 −x j

)2
(5.4)

The second derivatives of the function are obtained from:

x j −x j−1

6
ÿ j−1 +

x j+1 −x j−1

3
ÿ j +

x j+1 −x j

6
ÿ j+1 =

y j+i − y j

x j+1 −x j
+ y j − y j−1

x j −x j−1
(5.5)

Equation (5.5) gives N −2 equations for N unknown values of ÿi . To solve Equation (5.3) the boundary
conditions of ÿ0 and ÿN−1 are required. When these are set to zero, the so-called natural cubic spline is found.
From these assumptions a tridiagonal matrix can be derived:


2(h0 +h1) h1

h1 2(h1 +h2)
. . .

. . .
. . . hn−3

hn−3 2(hn−3 +hn−2)

 ·


ÿ1

ÿ2
...

ÿn−2

= 6


y2−y1

h1
− y1−y0

h0
...

yn−1−yn−2
hn−2

− yn−2−yn−3
hn−3

 (5.6)

5.2.3. Hermite Spline Interpolation
The Hermite spline interpolation adds another layer compared to the cubic splines that were previously de-
scribed. It uses third-degree polynomials to describe both the value and first derivatives at the given given
points. For a unit interval of (0,1) with starting point p0 and endpoint p1, with their respective tangents m0

and m1, the polynomial is found as:

p(t ) = h00(t )p0 +h10(t )m0 +h01(t )p1 +h11(t )m1 (5.7)

where the functions h(t ) are defined as:

h00(t ) = 2t 3 −3t 2 +1
h10(t ) = t 3 −2t 2 +1
h01(t ) =−2t 3 +3t 2

h11(t ) = t 3 − t 2

(5.8)
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and t ∈ (0,1). When interpolating over an arbitrary interval, this interval is converted to the interval by chang-
ing the independent variable:

t = x −x j

x j+1 −x j
(5.9)

with the new polynomial defined as:

p(x) = h00(t )p j +h10(t )
(
x j+1 −x j

)
m j +h01(t )p j+1 +h11(t )

(
x j+1 −x j

)
m j+1 (5.10)

Lastly, the tangents need to be chosen. For this research the method of cardinal splines was selected,
which selects the tangents from:

m j = (1− c)
p j+1 −p j−1

t j+1 − t j−1
(5.11)

where 0 ≤ c ≤ 1.

5.3. Integrator
An integrator is required to be able to numerically solve the differential equations that describe the motion
of the entry vehicle. In specific, integrators are used to solve these differential equations based on their ini-
tial values. The need for these numerical methods arises from the oftentimes high complexity of boundary
equations, while some might not have an analytical solution at all.

For this research, two different sets of equations need to be integrated. One method is required to nu-
merically solve the differential equations to obtain an accurate trajectory. The other method is needed to
integrate the analytical methods.

5.3.1. Runge-Kutta Integrator
The Runge-Kutta type of integrators provides a fairly simple method to accurately determine the state of the
vehicle. In this research, the variable step size Runge-Kutta will be applied. The step size is varied based on
multiple approximations of the state by comparing a lower order Runge-Kutta method to a method that is
one order higher. Below, the method will be discussed in detail.

A simple fourth-order fixed step-size method (RK4) requires a predefined step-size and will thus require
closer tuning of this step-size. This stems from the fact that integration methods have a limited order and
are thus by definition only capable of approximating the solution. If the selected time step is too large, this
will introduce an error in the result with each step that is made, especially when the order of the problem is
higher than the order of the selected integrator.

This is often solved by using a method of order p along with a p +1-order method to estimate the inte-
gration error that is made. The methods then vary the step size based on the accuracy that is found by the
comparison of the p and p +1 order methods. Mathematically, the two methods can be defined as:

f0 = f
(
x0, y0

)
fk = f

(
x0 +αk h, y0 +h

k−1∑
λ=0

βkλ fλ

)
(5.12)

and:

y = y0 +h
k−1∑

0
ck fk +O

(
hp)

ŷ = y0 +h
k−1∑

0
ĉk fk +O

(
hp+1) (5.13)

Where α, β, c and ĉ are coefficients specific for the integration method and:

f : function to calculate the derivative
x : independent variable
y : state variable
k : number of stages −1

(5.14)
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Given the variable size time step and the Runge-Kutta method, still several integrators are available, de-
pending on the order of the integrator. A trade has to be made between the accuracy of the higher order meth-
ods compared to the increase in computation time. Previous work on re-entry GNC by Papp (2014), Rijnsdorp
(2017) and Lucassen (2019) has shown that the lowest available variable step size method, the RKF4(5) inte-
grator, already provides sufficiently accurate results compared to high fidelity simulations. Given that this
method also has the lowest computation time it will thus also be appropriate for this research.

For the selected RKF4(5) method, the next step for x can be formulated for the fifth order as:

xn+1 = xn + c1k1 + c2k2 + c3k3 + c4k4 + c5k5 + c6k6 +O
(
∆t 6) (5.15)

and for the fourth order as:

x∗
n+i = xn + c∗1 k1 + c∗2 k2 + c∗3 k3 + c∗4 k4 + c∗5 k5 +O

(
∆t 5) (5.16)

where the following intermediate values per step are used for the determination of the accuracy:

k1 = h f (tn , xn)
k2 = h f (tn +a2h, xn +b21k1)
k3 = h f (tn +a3h, xn +b31k1 +b32k2)
k4 = h f (tn +a4h, xn +b41k1 +b42k2 +b43k3)
k5 = h f (tn +a5h, xn +b51k1 +b52k2 +b53k3 +b54k4)
k6 = h f (tn +a6h, xn +b61k1 +b62k2 +b63k3 +b64k4 +b65k5)

(5.17)

where a, b, c and c∗ are defined differently in literature, but were defined originally by Fehlberg as seen in
Table 5.1.

The truncation error is:

ε≡ xn+1 −x∗
n+1 =

6∑
i=1

(
ci − c∗i

)
ki (5.18)

If a time step is found to produce an error ε, the preferred new time step is found from:

∆t∗ =∆t

∣∣∣∣ε∗ε
∣∣∣∣ 1

4

(5.19)

Table 5.1: RKF45 constants as defined by Fehlberg.

i ai bi j ci c∗i
1 16

135
25

216

2 1
4

1
4 0 0

3 3
8

9
32

9
40

6656
12825

1408
2565

4 12
13

1932
2197 - 7200

2197
7296
2197

28561
56430

2197
4104

5 1 439
216 -8 3680

513 - 845
4104 - 9

50 - 1
5

6 1
2 - 8

27 2 - 3544
2565

1859
4104 - 11

40
2

55 0

j = 1 2 3 4 5

5.4. Pseudo-Random Number Generation
Computers are incapable of selecting a truly random number. Algorithms that approximate random num-
ber generation are called Pseudo-Random Number Generators, which generate sequences of numbers which
resemble actual random generation. The two elements that are required to determine the random number
generation are the seed, which is used to ensure that sequences are fixed between different calls to the num-
ber generator, and the generator itself. In this research, the Mersenne Twister will be used according to its
implementation in the C++ Boost library, mt19937 (Watanabe, 2010).
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Software

In the following chapter, the software that will be used to perform the research is described. It can be divided
into two sections: the required external software packages are described in Section 6.1 and the architecture
of the software that was developed is described in Section 6.2.

6.1. External Software
The software that is used for this research is largely available in pre-existing software packages. The two
packages that are described below offer a complete environment in which the separate parts of the software
need only be linked together.

6.1.1. TU Delft Astrodynamics Toolbox
The TU Delft Astrodynamics Toolbox, Tudat for short, provides a collection of C++ libraries that can be used
to create astrodynamic simulations. It involves a range of numerical methods and interfaces that are com-
monly used in the field, as well as more specialized tools that have been developed by students and staff
of the Astrodynamics & Space Missions group of the faculty of Aerospace Engineering. For extensive docu-
mentation on the toolbox, the reader is referred to the official website of Tudat, which features tutorials and
documentation1.

Importantly, all features that are included in Tudat come with their own unit tests that can easily be used
to verify the available features and models. After installation of the Tudat libraries, these units tests can be
run to verify their correct installation and function.

With the exception of the optimization algorithms, all numerical methods as described in Chapter 5 are
readily available in Tudat. Due to the available unit tests in Tudat, these methods can all be assumed to be
verified after succesful installation. The optimization algorithms will be discussed along with their respective
libraries in the following section.

Similarly, all environment models that are included in this research are available in the base version of
Tudat and are verified after installation. This also holds for the aerodynamic coefficient interface that is avail-
able in Tudat, which reads the aerodynamic data from files and interpolates between the available nodes.

6.1.2. Parallel Global Multi-Objective Optimizer
The Parallel Global Multi-Objective Optimizer, or PaGMO, is a C++ library for parallel optimization. Similar to
Tudat, it is constantly being extended based on the work performed in the field of optimization. The library
offers a framework in which optimization can be carried out, as well as a selection of algorithms for both
single and multi-objective optimization problems. All elements of the PaGMO library can be verified by built-
in unit tests.

The PaGMO algorithms are focused on global optimization. However, algorithms from the NLOPT and
IPOPT local optimization libraries are included in the installation of PaGMO. The PaGMO installation that can
be obtained as a part of Tudat also features a number of example applications for space mission optimization
problems.

1TU Delft Astrodynamics Toolbox. Available at: http://tudat.tudelft.nl/
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Similar to Tudat, the PaGMO installation can be verified by running the built-in unit tests after the instal-
lation. If no errors are obtained, the algorithms, problems and other elements available in PaGMO are also
proven to be successfully verified.

In this research the MOEA/D and MHACO algorithms from PaGMO were used. Additionally, the interface
and lower level links were used for the development and implementation of the SCEA algorithm. A high-level
interface from PaGMO was used to set up the optimization problem and allows for simple specification of the
population size, the number of generations, the search space boundaries and the constraint values. Lastly, it
should be noted that for all utilized PaGMO features, unit tests were run and successfully completed.

6.2. Software Architecture
As described before, the software that was developed for this research is largely created from links between
existing Tudat and PaGMO elements. To identify the required areas of development, a software architecture
was made as seen in Figure 6.1.

Three main modules can be identified in the software architecture. First, the environment includes all
environment models that were described in Chapter 3 and provides their information to the propagation
algorithm. Secondly, the guidance module takes a vector of nodes as input and is called at each point of
integration to interpolate the current guidance values. Lastly, the state propagation module combines the
input of the environment and guidance and calculates the state of the vehicle.

6.2.1. Environment Module
The environment module of the simulator is responsible for obtaining the required parameters of the envi-
ronment for the instantaneous vehicle state. A schematic overview can be found in Figure 6.2. The inputs to
the system are the vehicle state and time. The value of ri is used to determine the gravity, the local air density
and the local temperature. These are then used to calculate the Mach number, before everything is sent to
the output. The velocity is used to determine the local dynamic pressure of the vehicle.

6.2.2. External Forces
The external forces determine the motion of the vehicle through the atmosphere. The module of the simu-
lator that calculates these forces is presented in Figure 6.3. The input is again the vehicle state, but also the
vehicle mass, reference area and its aerodynamic coefficients. It is now important to note that within the ex-
ternal forces module a large number of reference frame conversions takes place. Eventually, all forces have to
be converted to the inertial frame FI. However, the aerodynamics are defined in the aerodynamic reference
frame FA and the gravity in the vertical reference frame FV. The conversions are performed through the Euler
angles that were described in Chapter 3. Note that the simulator is capable of including thrust and thus the
thrust reference frame FT and the commanded thrust Tc are also included.

6.2.3. Propagation Module
Finally, the propagation module is used to generate a trajectory based on the commanded guidance and
the environment. The module takes the current state as inputs. It then finds the commanded attitude and
trim conditions from the guidance algorithm, from which the aerodynamic coefficients can be determined.
These are given to the previously described external forces module, which generates the instantaneous aero-
dynamic and gravity forces. The acceleration of the vehicle can be then determined by dividing the resultant
of these accelerations by the vehicle mass. The state derivative is then determined through and passed on as
the output of the propagation module. This forms the input of the integrator.
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Figure 6.1: Top level overview of the simulator.
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Figure 6.2: Layout of the environment module of the simulator.
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7
Verification and Validation

The following chapter discusses the verification of the software that was developed for this research. First,
the numerical methods and models will be shortly discussed in Section 7.1 and Section 7.2, respectively.
The structured chromosome evolutionary algorithm will be discussed in Section 7.3. Lastly, the simulator
verification will be presented in Section 7.4.

7.1. Numerical Methods
The numerical methods that are used in this research are mainly available in the Tudat and PaGMO bundles.
For these methods, built-in unit tests are available.

Root finding
The bisection root finding method that has been applied in this research can be tested simply by letting it
find the root of the function y = 1−x. The method successfully finds the root at x = 1.

Interpolation
The interpolation methods that are used are all successfully tested against the unit tests that are available in
Tudat.

Integration
The Runge-Kutta 4(5) integration method is available in Tudat. The unit tests compare results of five numeri-
cal integrations against tabulated reference data presented in Burden and Faires (2001). The unit test was run
successfully and thus the method is determined to function correctly.

MOEA/D
The MOEA/D algorithm is included in PaGMO, along with its unit tests. These unit tests are successfully run
and completed, thus verifying the proper functioning of the MOEA/D algorithm.

MHACO
The MHACO algorithm is tested similarly to the MOEA/D algorithm. Unit tests on the specific member func-
tions are executed and the algorithm is verified by testing it on well-known optimization problems. All tests
were passed successfully, thus verifying correct implementation of the MHACO algorithm.

7.2. Physical Models
Next, the different models that are implemented in the off-the-shelf software need to be verified. These meth-
ods also have built-in unit tests.

Atmosphere Models
Both the exponential and US76 atmosphere models are verified by comparing the pressure, atmospheric
density and temperature against tabulated verification data.
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Earth Shape Model
The shape model is verified by determining the altitude from a Cartesian position and by verifying that the
correct equatorial radius is returned by the function.

Gravity Model
The spherical harmonics gravity model is verified by comparing the gravitational parameter to a reference
value and by obtaining the gradient of the gravitational potential at a test position.

Aeroheating Model
The heat transfer model is tested against the more accurate Fay Riddell Heat Flux model, both of which are
implemented in Tudat. The Fay Riddell model is in turn verified against a pre-computed value that is known
to be correct. Another test is implemented that verifies that the heat flux is zero for a value of zero for either
the air density or airspeed. All tests were passed without complications.

7.3. Structured Chromosome Evolutionary Algorithm
As the structured chromosome method was developed separately for this research, no standard verification
methods are available in Tudat or PaGMO. Below, the selected verification method will be described, followed
by the results that were obtained when verifying the algorithm.

7.3.1. Test Problem Description
The selected set of problems was selected from Li and Deb (2017) for its simplicity and suitability for variable
chromosome length algorithms. The focus of these problems lies on multi-objective optimization for algo-
rithms with a chromosome length up to N . A visual representation of the problems that will be described can
be found in Figure 7.1. To obtain a well-defined Pareto front shape, a shape function is selected as follows:(

α1(x)
α2(x)

)
=

)
x

1−x

)
(7.1)

which describes a line segment between (0,1) and (1,0). A distance function is added which offsets the solu-
tion of an individual from the line segment. This function is defined as:

gi (x, y,L(x)) =
L(x)∑
j=1

[
y j − sin

(
L(x)

2N
×π

)]2

(7.2)

where

L(x) = 1+H(x) (7.3)

It should be noted that H(x) =∈ {0, . . . , N −1}. H(x) is defined such that a test problem with variable length
(m −1+L(x)):

H(x) =
⌊
θ(x)

θmax
× (N −1)

⌋
(7.4)

Two angles are required in this equation, θ(x) and θmax . Li and Deb (2017) report that small values of θ
are easier in convergence compared to larger values. Based on the definition of θ, three test problems are
formulated:

• For formulation 1, let α(x) = (α1(x),α2(x)), v = (0,1) and θmax = π
2 , then

θ1(x) = arccos

( 〈α(x), v >
‖α(x)‖ ·‖v‖

)
= arccos

(
1√

α1(x)2 +α2(x)2

) (7.5)

The visual representation of the test problem is found in Figure 7.2(a). The optimal solutions near a value of
f2 = 1 are easier to find for the algorithm compared to the solutions near f1 = 1. This can be explained by the
definition of the variable L(x), representing the number of distance functions, as more distance functions are
present in the solution near f1 = 1.
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• For formulation 2, let α(x) = (α1(x),α2(x)), v = (1,1) and θmax = π
4 , then

θ2(x) = arccos

( 〈α(x), v >
‖α(x)‖ ·‖v‖

)

= arccos

 1√
α1(x)2 +α2(x)2

p
2
) (7.6)

The second test problem is visualized in Figure 7.2(b). Due to the changed definition of θmax , the solu-
tions with the most distance functions are now found in the middle of the Pareto front, where v = (1,1), thus
making these solutions harder to find for the algorithm.

• For formulation 3, let α(x) = (α1(x),α2(x)) and θmax = π
8 and

va =
(p

2−p2
4 ,

p
2+p2

4

)
vb =

(p
2+p2

4 ,
p

2−p2
4

) (7.7)

with
θ(x) = min{θ1(x),θ2(x)} (7.8)

and

θ3,i (x) = arccos

( 〈α(x), vi 〉
‖α(x)‖ ·‖vi‖

)
, i = 1,2 (7.9)

The visualization of test problem 3 is found in Figure 7.2(c). The angles θ1 and θ2 are taken with respect
to the vectors v1 and v2. The easy solutions are found around these vectors, while the harder solutions are
found at the parts of the Pareto front that lie the furthest away from these angles, thus the middle of the Pareto
front and the two extremities. Again, in this region the value of L reaches its maximum.

In addition to these problems, also two triple objective problems have been defined in (Li and Deb, 2017).
For these problems, the shape function is: α1(x)

α2(x)
α3(x)

=
 x1 (1−x2)

x1x2

1−x1

 (7.10)

which describes a unit simplex in [0,1]3. The distance functions are maintained as in Equation (7.2). The
following two triple objective problems are defined based on two examples of L(x) and again kept similar to
the two objective problems by using a method based on angles.

• For problem formulation 4 let α(x) = (α1(x),α2(x),α3(x)) and θmax = arcsin
p

3
3 after which the angles

are computed as:

θ1(x) = arcsin

(
a1(x)√

α2
1+a2

2+α2
3

)
θ2(x) = arcsin

(
α2(x)√

α2
1+α2

2+α2
3

)
θ3(x) = arcsin

(
α3(x)√

α2
1+a2

2+α2
2

) (7.11)

The minimal angle α(x) is given by:

θ(x) = min{θ1(x),θ2(x),θ3(x)} (7.12)

The visualization of the test problem is given in Figure 7.2(d). It can be be proven that H(x) has a minimal
value of zero, when θ(x) reaches zero. For this case, α(x) is located on the boundary of the simplex Pareto
front. When θ(x) reaches its maximum value, H(x) reaches its maximum value of N −1 and α(x) is located at
the center of the pareto front. Thus, the solutions at the center of the Pareto front are harder to find compared
to the solutions that lie on the boundary.
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• For problem formulation 5, let v1 = ( 2
3 , 1

6 , 1
6 ), v2 = ( 1

6 , 2
3 , 1

6 ), v3 = ( 1
6 , 1

6 , 2
3 ) and θmax =

p
6

3 with the angles
θ defined as:

θ1 = arccos
( 〈α,v1〉
‖α‖‖v1‖

)
θ2 = arccos

( <α,v2〉
‖α‖‖v2‖

)
θ3 = arccos

( 〈α,v3〉
‖α‖‖v3‖

) (7.13)

The angle angle θ(x) is again found using Equation (7.12).
The visualization of this last test problem can be found in Figure 7.1(e).
The original set of problems does not include constraints. To be able to fully verify the method, constraints

have to be added to the problem. The angle θ was selected to be constrained to limit the solution space of the
problems. For all problems a simple definition of the constraint is applied to the values of α1(x) by stating
the following constraint:

α1(x) ≤ 0.5 (7.14)

7.3.2. Verification Results
The SCEA algorithm was tested against the first four test problems. The results are presented in Figure 7.2. As
can be observed, the SCEA algorithm is able to find the solutions along the Pareto front for all problems. For
the two objective problems, this is achieved in 10 generations. The triple objective test problem converges
slightly slower, although the solution lie on the Pareto front after 20 generations. Strong convergence is thus
shown for this set of test problems.

Given that the algorithm is able to find the solutions along the Pareto front for all cases, it is proven that
the algorithm functions correctly. To determine its exact performance, more effort has to be invested into its
performance for other problems, specifically into the convergence.

7.4. Simulator Verification
With all modules successfully verified, the combined system still needs to be verified to ensure that the im-
plementation and combination of the individual modules are successful. As no actual flight data is available
for HORUS, output data from a high-accuracy re-entry simulator developed by E. Mooij in FORTRAN was
used as reference. As the guidance algorithm in the FORTRAN simulator was different from the one applied
in this research, the attitude angles were commanded with respect to time instead of the normalized energy.

The following specifications were used to generate the verification data:

• Atmosphere model: US76

• Earth model: Spherical, rotating Earth

• Gravity Field: Central gravity with J2 term.

• Initial State: h = 122 km,τ=−106.7°,δ=−22.3°,VG ,0 = 7.4355 km/s,γ0 =−1.43°,χ= 70.75°

• Initial Attitude: αA,0 = 40°,βA,0 = 0°,σA,0 = 0°

The entry simulator that was developed for this research uses the same specification with a few excep-
tions:

• Rotational motion from the vehicle is not simulated, which has no effect on the results as the attitude
of the vehicle is directly prescribed from the guidance and assumed to be directly applied as no control
system is present.

• The elevator deflection δe is not taken into account. The effect of this discrepancy is minimal as the
elevators are only used near the end of the trajectory where trimmed flight is not possible.

• The altitude-dependent drag increment was not included in the computation of the aerodynamic co-
efficients. This effect can be neglected as it would only become relevant at altitude below 20 km.
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(a) Test problem 1 (b) Test problem 2

(c) Test problem 3 (d) Test problem 4

(e) Test problem 5

Figure 7.1: Definition of the five test problems as presented by Li and Deb (2017).

The results from the verification are presented in Figure 7.3.

Observation of figures Figure 7.3(a) and Figure 7.3(b) shows that the altitude and velocity match nearly
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Figure 7.2: Optimization results for the test problems using the SCEA algorithm.

exactly between the simulation and verification data. The attitude angles also show a close match between
both data sets as observed in Figure 7.3(c) and Figure 7.3(d), indicating that the guidance correctly prescribes
the commanded attitude angles. It should be noted that the angle of sideslip is not shown here, since it
does not deviate from zero for both sets of data. The trajectory in terms of latitude and longitude is shown
in Figure 7.3(e) and Figure 7.3(f), respectively. Again, only minute deviations are observed. These can be
accredited due to the small difference in the bank angle profile, caused by the difference in time steps between
the verification data and the simulation data. Finally, it can be assumed that the simulator functions correctly
as there are no significant discrepancies compared to the verification data.
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(a) Altitude profile
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(b) Velocity profile
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(c) Angle of attack profile
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(d) Bank angle profile
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(e) Latitude profile
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(f) Longitude profile

Figure 7.3: Results of the HORUS simulator verification.
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8
Analytical Results

In the following chapter the analytical methods that were presented in Section 3.5 are investigated for their
applicability to the optimization problem. Especially, the search space to which they can be applied is of
interest, as this helps in setting the bounds of the optimization search space. Additionally, attention will be
given to the errors in the results. Results for the skipping flight are presented in Section 8.2 and results for
gliding flight are discussed in Section 8.1.

8.1. Gliding Flight
This sections deals with the results that were obtained by the second order equations for gliding flight. First,
the applicability of the method will be tested and the verification performed. Secondly, the accuracy of the
method compared to the numerical simulator will be tested for a larger range of parameters, to determine
the search space that will be allowed during optimization.

8.1.1. Initial Conditions
The analytical second-order equations for gliding flight are stated to be highly accurate compared to numer-
ical trajectory simulations. The first step in this thesis was to verify this claim. To do so, first simulations were
run were the initial state for the analytical and numerical simulations were set equal. The following initial
conditions were used for this simulation:

h = 100 km

V = 6000 m/s

γ= 0.0°

The results of these simulations are shown in Figure 8.1. The results show a number of discrepancies
between the methods. First of all, the initial altitude of the analytical simulation is significantly lower than the
numerical and input altitudes. To ensure correct implementation, all equations were manually verified to be
correctly implemented and thus this change in initial altitude has to be accredited to the method. Secondly,
strong oscillations of the flight-path angle are observed in the numerical method, whereas the analytical
simulations follow a smooth decrease of the flight path angle.

Interestingly, the analytical method does approximate the average of the trajectory, although it should be
noted that no exact average is obtained and the analytical method lies below the exact average.

The objective of this research is to use the analytical expressions for constrained optimization of re-entry
flight. As stated before these trajectories are the heat flux, g-load and g-load rate. Due to the smooth trajec-
tory that is presented by the analytical trajectory, important information on the extremes of these constraints
is not known. Especially since the maximum values for these constraints are found in the peaks of the oscil-
lation, the analytical methods can, in this form, not be used for a constrained optimization problem.

Further investigation was put into the initial conditions of the trajectory by forcing the analytical methods
to meet the initial altitude that was given as an input. The results show that for such a simulation, it is possible
for the analytical to start at the initial altitude, although the initial velocity that is obtained from the relations is
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Figure 8.1: Results of the second-order method for gliding entry for a strongly oscillating trajectory.

much higher compared to the numerical and input velocities. Also, the initial range angle values are negative
and only become larger than zero when the analytically obtained velocity is equal to the initial conditions.

The early results thus show that the analytical equations of motion cannot be trivially applied to a re-
entry mission. Vinh et al. (1993) do provide two relations that yield an initial velocity and flight path angle.
For clarity they are repeated here:

uE = 1

1+k1

sinγE = 2k1(1+k1)

E [2(1+k1)2 + rE
Hs

k1]

The equations only depend on the values of E , or the current L/D , rE , the entry altitude, and k1, the
parameter describing the vehicle parameters and entry conditions. The entry conditions that are represented
in k1 are the initial altitude rE and the density at this altitude, ρE . The latter in turn also depends only on rE ,
since the exponential atmosphere model is used in the derivation of the analytical equations. With only a
selected altitude, it is thus possible to find the accompanying velocity and flight path angle for the analytical
method.

The results for a sample trajectory in this set of simulations is found in Figure 8.2. Now, a close match
between the analytical and numerical simulations is observed. The velocity profile with respect to the range
angle shows excellent matching in particular, as observed in Figure 8.2(b). However, the oscillations are still
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Figure 8.2: Results of trajectories with initial conditions set to the second order initial conditions.

present in both the numerical simulations with the simplified and extended environment. These oscillations
have little effect on the altitude profile as observed in Figure 8.2(a). Between the simplified environment and
the analytical results negligible differences are observed. The extended numerical model instead shows a
lofting trajectory and as a consequence the final range angle differs more strongly from the analytical results.
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The cause of this difference is clear, as the extended numerical model takes into account the rotation of the
Earth, which increases the airspeed of the vehicle by a factor equal to:

∆VE =ωE rE (8.1)

where ωE is the rotation rate of the Earth and rE is the range between the entry point of the vehicle and the
center of the Earth.

The flight-path angle profile still shows more significant differences as the oscillations are more pro-
nounced for this state variable. Still, the analytical method matches closely with the simplified environ-
ment model, especially near the end of the trajectory, where larger negative values of the flight-path angle
are found.

The profile of the heat flux and g-load constraints are shown in Figure 8.2(d) and Figure 8.2(e), respec-
tively. The the analytical heat flux profile again matches the simplified numerical results closely. Important
to note is the undershoot of the analytical method at the start of the trajectory, which would cause the analyt-
ical method to find slightly more trajectories that meet the heat flux constraint. The numerical model again
shows a larger discrepancy, caused by the early skip in the trajectory, afterwards, it also matches closely with
the analytical model.

Finally, the g-load profile still shows larger differences due to the oscillations in the trajectory. The oscil-
lations in both numerical trajectories cause even more pronounced oscillations in the g-load. The analytical
method still gives a smooth profile. This leads to the conclusion that the analytical model cannot accurately
measure the g-load rate constraint. The maximum obtained g-load still remains close to the numerical sim-
ulations, although again the oscillations are the cause for discrepancies. Still, the difference between the
analytical and numerical simulations for the maximum g-load is in the order of <5% and still acceptable for
optimization purposes.

Overall, the analytical simulations are thus capable of providing accurate results compared to numeri-
cal simulations, especially when compared to a simplified numerical environment model. A drawback that
should be noted, though, is that the analytical model prescribes the initial conditions that can be used for
the simulation based on the entry altitude. When applied to a realistic entry for mission planning, this would
result in a required ∆V maneuver to ensure that the vehicle meets the entry conditions. As a consequence,
the method might not be applicable to unpowered vehicles, which are not capable of altering their entry state
and thus required larger flexibility during trajectory design.

Still, the optimization results of the method might provide useful results and should be further studied.
First, the trajectory of both reference vehicles will be discussed below.

8.1.2. HORUS-2B
First, the trajectory of HORUS-2B was estimated using the second order analytical methods. The values of
the variables CD0 and K that are used in the analytical equations is however not given for HORUS-2B and first
has to be determined. The aerodynamic data from Mooij (1995) can be used along with the lift-drag polar:

CD =CD0 +KC 2
L

One should note that the application of the lift-drag polar limits the accuracy of the obtained values for
CD0 and K and the obtained relation does not exactly match the data points from the aerodynamic database.
Still, to describe HORUS-2B as accurately as possible in the analytical simulator, a regression model was used
to obtain the values of CD0 and K .

The data in Mooij (1995) is available with respect to the angle of attack and Mach number. The drag polar
will describe the relation between the lift and drag coefficients for a varying angle of attack, in line with the
definition given in Anderson Jr. (1999) and a given Mach number. Thus, several definitions will be available
for the polar for each given Mach number. The available data for the lift and drag coefficient for HORUS is
presented in Figure 8.3 for the available Mach numbers. From investigation of the data, a single polar would
not suffice to describe the relation between the two coefficients. However, defining the relation for each
Mach number allows for more accurate relations. The obtained results are presented in Table 8.1. For the
simulations, an interpolation scheme was set up to find the values of CD0 and K for Mach number values in
between the tabulated values.

The results are shown in Figure 8.4 and clearly show a large discrepancy between the analytical and nu-
merical methods. It is important to note that the initial state of both simulations was obtained using Sec-
tion 8.1.1, which previously showed good results in the verification. In this case, it becomes clear that the
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Figure 8.3: Lift and drag coefficient data of HORUS for varying Mach numbers.

analytical method does not perform well for this vehicle and set of initial state parameters. However, when
comparing different values for the initial state of HORUS-2B similar or worse differences between both sim-
ulations are observed as the initial velocity obtained from the second order method remains too large in
combination with the flight path angle of less than 1 degree.

An attempt was made to influence the initial state that resulted from the analytical method to prevent
skipping flight for the numerical simulation based on the value of k1 in Section 8.1.1. This equation clearly
shows that as the variable k1 increases, the value of the initial entry velocity should decrease. The vehicle
parameters that are included in k1 cannot be altered, as these are given for HORUS-2B, which leaves the
entry altitude, rE and the value of the vertical component of CL . The entry altitude did not prove to cause
improvements and the values of the vertical CL was set to its maximum for the trajectory shown in Figure 8.4.

The main issue that was identified for the analytical method is the very large initial range angle step size.
This is can be clearly observed in Figure 8.4(d), where a kink in the heat load profile is shown at a range
angle value of approximately 90°. The distance between 0° and this point is covered in a single integration
step, although analysis of the equation that describes the range angle in the analytical method has proven
that these values are correct. No alteration to the method was found that led to an improvement of this
phenomenon and it thus has to be concluded that due to the combination of limitations of the gliding flight
method and the vehicle properties of HORUS-2B, the method cannot be used for optimization of the HORUS
trajectory.

8.1.3. SRM
Figure 8.2 shows trajectories the trajectories of the SRM vehicle compared to a simplified numerical simulator
and the simulator with the complete environment as discussed in Chapter 3. The simplified simulator was
set to include the same environment as was used in the derivation of the analytical equations of motion and
thus has a spherical, non-rotating Earth, exponential atmosphere model and only the central gravity field.

For the SRM vehicle a much closer match between the trajectories is observed and the results of the ana-
lytical method lie within an acceptable error margin from the numerical results. The most significant differ-
ence between the analytical and complete numerical model can be explained easily when considering that

Table 8.1: Obtained values of CD0 and K for HORUS-2B.

Mach number CD0 K
1.20 0.03067 0.6481
1.50 0.04055 0.5907
2.00 0.04582 0.715
3.00 0.04302 0.8864
5.00 0.05561 0.948
10.00 0.05408 1.016
20.00 0.0488 1.147
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Figure 8.4: Trajectory of HORUS-2B from the analytical and numerical simulators.

the analytical method does not include the rotation of the Earth. This results in a slightly higher initial air-
speed, which results in a higher lift and explains the skip in the trajectory as seen in Figure 8.2(a). For now,
this does not significantly influence the result of the research when considering the absence of Earth’s ro-
tation when comparing the optimization results. However, to create a more robust mission design tool, it
should be taken into account that the Earth rotation has to be compensated for after generating an analytical
trajectory.

Figure 8.2(d) and Figure 8.2(e) show the heat flux and g-load over the trajectory, respectively. Both show
that the analytical method provides an approximation of the values of both variables over the trajectory, al-
though the discrepancies remain significant. These discrepancies can be accredited to the slight oscillations
that are found in the numerical trajectory, which the analytical model is incapable of representing. The results
from the analytical method still provide an acceptable approximation of the actual values. It is important to
note that especially trajectories that lie close to the constraint values would have to be run through a numer-
ical simulation to verify that they actually satisfy the constraints.

8.1.4. Simplified Environment
The results that were found when comparing the second order glide model to the numerical model for a
simplified simulation are presented in Figure 8.5. The results show that the matching between both models
is excellent with errors in the final range angle not exceeding 3.0%.

It should be noted that the area presented in the figure is limited by the applicability of the method. Higher
velocities cause the analytical model to break down. which can be explained as these velocities exceed the
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Figure 8.5: Final range angle error between the analytical model and the simplified numerical model.

local circular velocity and would thus result in parabolic trajectories. Since the analytical method does not
allow freedom in the flight path angle, it is not possible to shed this velocity by means of atmospheric fric-
tion. More importantly, the mathematical definition of the method does not allow for propagation of these
trajectories.

Values above the current altitude limit of 110 km cause significant deviations in the final range, but still
provide a trajectory. These errors prove similar to the ones that were experienced for HORUS and a skip is ob-
served in the numerical simulation, whereas the analytical trajectory still shows a monotonically decreasing
altitude profile.

8.1.5. Initial State
As mentioned before, the initial state of the analytical trajectory is entirely prescribed based on the initial
altitude, the vertical lift over drag and the vehicle parameters. To better understand how these influence the
trajectory, a grid search for the initial altitude and CL was performed for the initial velocity and initial flight
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Figure 8.6: Grid search results for the initial velocity and initial flight path angle.
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path angle. The results of this grid search are presented in Figure 8.6.
For both the velocity and the flight path angle, the effect of the altitude is shown to be small. For the lift

coefficient a more pronounced effect can be observed. Still, the flight path angle remains above -1° until a CL

value of 0.5 is reached. Given the maximum CL of the SRM capsule of 1.2786, the ratio between the vertical
and maximum lift coefficient thus is 0.39, which corresponds to a bank angle of 67°.

However, for the region where the flight-path angle starts decreasing a sharp decrease in the velocity is
also observed. When the flight-path angle decreases below -1° as discussed before, the initial velocity of
the trajectory has already decreased to 3000 km/s, which is unrealistic for entry missions, even if one would
consider a ∆V maneuver before entry takes place.

Additionally, it is not typical for re-entry vehicles to enter the atmosphere at a lower lift as this would
result in a steeper dive into the atmosphere and would thus cause the vehicle to reach the denser regions of
the atmosphere before sufficient energy has been shed. As a consequence, the vehicle will experience large
heat load and limit itself in the achievable flight range. The obtained results to make the flight path angle
more negative are thus considered to be unfeasible, as it would strongly decrease the flexibility of the vehicle.

Also, if one would divide the trajectory of the vehicle into segments to allow the optimization problem
to generate a L/D profile, the L/D would have to be limited to such low values for the entire trajectory, as
otherwise, the analytical method would simply jump to high velocities for the given altitude at the start of a
segment, thus negating the effect of the initially decreased flight-path angle.

8.1.6. Error Investigation
The most obvious errors in the method are observed when applying the HORUS-2B vehicle data to the ana-
lytical simulation. For these values, the initial velocity that is required for an equilibrium glide is very close to
the circular velocity at the given altitude. This leads to two significant issues with the analytical method:

1. The initial step in the range angle becomes unacceptably large.

2. The analytical method continues to decrease in altitude, whereas the numerical simulation finds a loft-
ing or even skipping trajectory.

The first error leads to unrealistic trajectories, as this first step regularly takes values of more than 180 degrees.
This problem is dependent on the mathematical definition of the range angle that is used for the gliding flight.
The terms in this relation use the term 1−u

1−uE
. It is clear that for very high values of uE this term becomes very

large as u decreases. For HORUS-2B this occurs for most initial altitudes. A smaller vehicle, such as the SRM
capsule requires a lower value of uE to satisfy the equilibrium glide assumption that the method employs and
does thus provide useful results. It can thus be concluded that the second order method for gliding flight can
only be employed for smaller and more importantly lighter vehicles as a varying value of L/D is required for
robust optimization.

The second method also presents an inherent fallacy of the second order method, which is not capable
of modeling upward behavior of a vehicle for a decreasing value of u. Again, this could be countered by
selecting smaller values of L/D , but this would severely limit the design space of the optimization problem for
HORUS. Again, the SRM capsule does not suffer these problems and can be robustly used for the optimization
problem.

8.2. Skipping Flight
Next, the methods for a skipping trajectory will be tested. First, the trajectories are compared to numerical
results, serving both to test its accuracy and as verification. This process is repeated for the ballistic phase,
after which tests are performed for a combined trajectory with both skipping and ballistic phases.

8.2.1. Atmospheric Skip Phase
The analytical second-order method has been compared to the same mission in the numerical simulator.
The application for the HORUS vehicle proved that again, the high mass of the vehicle caused difficulties
for the analytical method. However, for the SRM vehicle results were obtained more consistently and also
showed results that at least somewhat matched numerical simulations. A sample missions is presented in
Figure 8.7. The figure shows the altitude-velocity profile of the two simulations. The two methods show
minimal deviations for most of the trajectory. Deviations start to occur near the atmospheric exit point. This
can be accredited to the fact that the analytical method does not accurately describe the motion outside of the
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atmosphere, which ends at 100 km. To prevent such a discrepancy in the full simulation, it should be noted
that above 100 km, the second order method for skipping flight will be stopped and stitched to a method
describing ballistic flight.

Figure 8.7(b) shows the relation between the altitude and flight path angle for both simulations. Again,
a close match is observed for a large part of the trajectory. In the upward leg, a deviation is observed. This
deviation remains small through the rest of the trajectory and within limits for an approximate method.
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Figure 8.7: Results of the second order analytical simulation compared to the numerical simulator.

Limitations of the Method
During the implementation and testing of the second-order method for skipping flight, a number of limita-
tions was identified. The most significant limitation was the occurrence of complex numbers in the results,
which happens in two main cases:

• Values of x below the estimated deepest point in the trajectory.

• A negative value for CD0 .

• Initial velocities above 11000 m/s.

The first case was already reported by Vinh et al. (1993) and could be solved by iterating on the estimated
deepest value of the trajectory. The second case was not reported and also only occurs in rare conditions, as
CD0 is typically positive. The third result was found consistently and also not previously listed. However, it is
important to know that this phenomenon thus limits the design space of a potential optimization problem.

Although the software is capable of handling complex numbers, this does result in a loss of data when
real numbers are required for the output of the state. For the second case, this also results in an output of
NaN for values in the deepest point in the trajectory. As a consequence, no data is available for these cases
for the state, the aerodynamic forces and the aerodynamic heating. This poses a problem for the problem, as
at the lowest point of the trajectory, the forces and heating are typically highest and thus important data for
the constraint handling is lost.

Although a case could be made to reject the second order method due to this inconsistency, the number
of trajectories where the complex numbers occur are small and typically are found closer to the edges of the
capabilities of the method. Due to the large improvement in the computation time resulting from the second
order method, it is still worthwhile to study it further.

8.2.2. Ballistic Phase
The ballistic phase of the skipping flight was first separately verified. The analytical methods were compared
against the numerical simulations for a flight that is purely ballistic with an initial flight path angle of +90°. As
can be observed in Figure 8.8 the match between both methods is excellent. Given that the match between
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analytical and numerical methods is so close, the implementation of the analytical methods can be assumed
to function correctly.
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Figure 8.8: Verification results of the ballistic phase of skipping flight.

8.3. Selection for the Optimization Problem
The methods for gliding and skipping flight have been analyzed in the past sections. A trade-off now has to
be made for the method that will be applied in the optimization problem.

First, the methods for gliding flight have shown to be inflexible, as the initial state of the trajectory is pre-
scribed by the method. The accuracy of the method for the obtained trajectories is high compared to espe-
cially the simplified numerical results for the SRM mission. Although the method was incapable of providing
accurate trajectories for HORUS-2b, it can still be applied to an optimization problem of the SRM mission. It
should however be noted that the oscillations in the trajectory cannot be modeled by the analytical second-
order method, which would still cause slight inaccuracies in the constraints.

The results for skipping flight where also showing good accuracy compared to numerical results. The
main drawback of this method was that some values turned to complex numbers for a region of the solution
space, causing the loss of valuable information. Especially since these regions mainly occur in the lower part
of the trajectory, information on the peak values of the constraints is lost in this way, which means that for
optimization purposes, the peak vales will always be lower than their actual values. Thus, trajectories would
be accepted even if they do not meet the constraints.

Both methods thus show drawbacks that would make them less suitable for the optimization problem.
However, given that gliding flight is accurate and does provide values for all variables over the entire tra-
jectory makes it a strong case for optimization. Additionally, most current entry missions still make use of a
gliding entry mechanic instead of skipping and thus analyzing the gliding flight provides results that are more
applicable to the applied re-entry guidance.
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Optimization Results - Gliding Flight

The following chapter presents the results that were obtained in the optimization of the previously presented
numerical and analytical problems. First the results of the of the optimization of the SRM capsule trajectory
are discussed. Then, the results of the HORUS-2b trajectory are presented. The optimization problems for
both are based on the results that were obtained in the previous chapter. Were applicable, the optimization
results are performed using the different algorithms that were presented in Chapter 4 and studied for their
performance.

9.1. Optimization Settings
To ensure both the repeatability and the good performance of the optimization algorithms, several settings
have to be determined. First of all the random seed ensures that the results for different runs are the same
when repeated. For all simulations in the following sections a random seed of 123 has been used, unless
stated otherwise. The MOEA/D and SCEA algorithms take the same input parameters. These are:

• weight_generation: The method that is selected to determine the weights of the fitness elements. Set
to its standard ’grid’ method.

• decomposition: The method by which the fitness elements are decomposed. Set to its standard method,
’tchebycheff’.

• neighbours: The number of neighbours that are taken into account when determining the weight of a
fitness element. Set to 20.

• CR: The crossover parameter, which determines the likelihood that crossover occurs when generating
a new individual. Set to 1.0, and thus 100% of individuals will be generated by crossover.

• F: The parameter for the differential evoluation operator. Set to its standard value of 0.5.

• eta_m: the distribution index used for the polynomial mutation. Set to the standard value of 20.0.

• realb: The chance that the neighborhood is considered at each generation, instead of the whole popu-
lation. Set to 0.9.

• limit: The maximum allowable number of copies that can be introduced into the population after evo-
lution set to 1 to preserve the diversity.

• preserve_diversity: A boolean variable that determines whether the realb and limit variables are con-
sidered, set to true.

A final variable remains, which determines the mutation chance. This value is set to 1.0
pop_size . This ensures

that statistically a single individual will mutate for each generation.
MHACO uses a different set of input parameters. Their settings are discussed later in this chapter.
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(a) Numerical Monte Carlo results
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Figure 9.1: Results of the Monte Carlo simulations of the numerical and analytical problems.

9.2. SRM
The SRM vehicle was previously found to be useful for the analytical trajectory generation and will thus be
further considered here for both numerical and analytical optimization. A Monte Carlo analysis of the deci-
sion vector, and thus the guidance nodes, is first performed on the different optimization problems that are
available. These problems are the numerical problems with both a fixed and variable length guidance vector,
the fixed-length analytical problem, the fixed length analytical problem with inclusion of the initial altitude
and a variable length analytical problem, again with inclusion of the initial altitude. All Monte Carlo sets were
generated using 4000 individuals.

For the three problems that take a fixed initial altitude, it is set to 100.0 km. This leads to an initial velocity
of 7658.34 km/s and a flight path angle of -0.056° when applying the relations given by Vinh et al. (1993).

The results for the numerical problems are shown in Figure 9.1(a) and for the analytical problems in Fig-
ure 9.1(b). The objective space of both the numerical and analytical results show similar ranges. It should be
noted that the inclusion of the initial state for the analytical problems causes the larger flight range values.
An important note can be made about the solution space for both the numerical and analytical problems.
Instead of showing a front of optimal solutions, the solution space shows a clear optimal point around the
range angle objective value of −1.15 for the fixed entry altitude and −1.6 for the optimizations including the
entry state. For the optimization, this causes issues as no Pareto front will be formed, but rather the solutions
will converge towards this single point as it will dominate all others in terms of optimality.

The cause of this result is the low flight-path angle that is inherent to the analytical method. For fair
comparison, the numerical trajectory has also been set to use this flight path angle and thus finds similar
trajectories. An attempt was made to change the flight-path angle that is given in the method, but was not
found.

In addition to the fixed entry state trajectory, the analytical problem was also tested for a variable initial
state, which was included in the decision vector. The bounds of the altitude in the decision vector were
set for [50.0,110.0] km. For this problem type, the solutions are found in a much wider range, starting at
a normalized range angle objective value of almost 0.0. Unfortunately, the solution space still finds a single
optimal point for the trajectory, thus again confirming the difficulties that arise from the low flight path angle,
which is a fundamental problem with the selected analytical second-order methods.

9.2.1. Optimization Results
The results of the optimization problem for the numerical and analytical problem with a fixed entry state
are presented in Figure 9.2. Both results were obtained using the MOEA/D algorithm after 12 generations
where convergence to the optimal point is already achieved, thus confirming the drawbacks of the method.
As expected, the results converge to a point, instead of a wider front. This leads to the conclusion that the
solutions that are obtained for the analytical problem from a typical entry altitude are not useful for use in
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re-entry trajectory optimization.

Numerical Flight from Analytical Guidance

Although the optimized analytical guidance was not directly applicable for the generation of a flight path, the
obtained guidance nodes were applied to the numerical simulator to find how these solutions relate to the
optimal solutions that were found directly from the numerical optimization.

The first results immediately showed that simulations using the simulator with an extended environment
generate trajectories where atmospheric capture does not occur. Again, these issues are mainly caused by
the added rotation of the Earth and its atmosphere, which effectively increases the airspeed of the vehicle.
In combination with the low flight path angle that is inherent to the second order method, no solution was
found for this issue.

The optimization was also performed for the numerical model with a simplified environment, which ac-
tually provided feasible trajectories.

9.3. HORUS-2B
Next, the optimization of the HORUS trajectory was performed. As mentioned in Chapter 8, analytical trajec-
tories cannot be optimized for HORUS as the analytical model is not capable of representing these. Still, the
performance of the SCEA and MACO trajectories compared to the MOEA/D algorithm can provide valuable
insights when applied to the Horus mission.

The design space of the HORUS re-entry problem for both the fixed length guidance and variable length
guidance is presented in Figure 9.3. The selected method was a Monte Carlo analysis of the problem using
4,000 individuals. As can be expected, the obtained solutions strongly overlap, although the results for the
variable node guidance are found in a smaller range compared to the fixed 8-node guidance.

The explanation for this phenomenon becomes clear when considering that the variable length problem
takes another decision vector variable in the form of the number of guidance nodes. A larger number of
guidance nodes typically leads to more optimal solutions. Given that the variable length problem has to
divide its solutions over a guidance vector of length 4 to 8 instead of just 8, it is thus to be expected that for a
Monte Carlo analysis of the same size the variable problem will have more trouble finding the excesses of the
search space.

Still, the variable length problem shows a similar shape to the fixed length problem for both the objectives
as seen in Figure 9.3(a) and the constraints as seen in Figure 9.3(b). Note that the g-load rate constraint takes
on large values compared to the heat flux constraint and g-load constraint. These values can be brought back
to the zero-order hold that was applied, which causes the angle of attack and bank angle profiles to become
discrete instead of continuous. Consequently, the g-load rate becomes large when the discrete change occurs
after the next sampling time is reached in the trajectory.
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Figure 9.2: Final generations of the numerical and fixed entry state problems from the MOEA/D algorithm.



74 9. Optimization Results - Gliding Flight

-1.2 -1 -0.8 -0.6 -0.4 -0.2 0

Normalized flight range [-]

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

N
or

m
al

iz
ed

 h
ea

t l
oa

d[
-]

Fixed length guidance
Variable length guidance

(a) Objectives

0
10

50

10N
or

m
al

iz
ed

 g
-lo

ad
 r

at
e 

co
ns

tr
ai

nt
 [-

]

Normalized g-load 
constraint [-]

5

Normalized heat flux constraint [-]

5

100

0 0

Fixed length guidance
Variable length guidance

(b) Constraints

Figure 9.3: Results of a Monte Carlo analysis with a size of 4,000.

9.3.1. SCEA Results
First, the results of the MOEA/D and SCEA algorithms were generated, due to their high comparability. They
are analyzed for their Pareto front and convergence.

Pareto Fronts
The results for four numbers of generations are presented in Figure 9.4. Note that the lines present the space
in between the non-dominated individuals in that specific generation.

The results show that the SCEA algorithm is capable of finding similar Pareto fronts compared to MOEA/D.
Figure 9.4(a) shows that after 12 generations, the Pareto optimal fronts that are found by SCEA outperform the
fronts found from MOEA/D. Later generations show that MOEA/D starts finding better fronts compared to
SCEA as the number of generations increases, although the region of the fronts for low heat load trajectories
are still showing better results from the SCEA algorithm.

Both population sizes for MOEA/D and the SCEA problem with a population size of 64 are found to obtain
values in a similar range of flight range and heat load values. When applying 32 individuals and using the
SCEA algorithm, a less diverse Pareto front is obtained, which is maintained throughout the generations. To
further investigate the cause of this phenomenon, the convergence rate of the algorithms is analyzed next.

Convergence Rate
Although the optimal values and shape of the Pareto front provide important information about the perfor-
mance of the algorithms, the convergence rate cannot be overlooked. For the convergence of the algorithms,
two elements are important. Firstly, the convergence towards a feasible solution space and secondly the con-
vergence towards the Pareto optimum.

The convergence rate towards a feasible solution space for the algorithms is presented in Figure 9.5. Two
main conclusions can be drawn from the figures. First of all, the population size does not significantly influ-
ence the convergence rate of the algorithms as only a small difference in the number of generations before as
feasible solution space is reached can be observed.

Secondly, the SCEA algorithm shows a much faster convergence towards a feasible solution space. Within
five generations, the SCEA algorithm has cleared all infeasible candidates from its population, while the
MOEA/D algorithm requires 19 generations in the best scenario. It now also becomes clear why the SCEA
algorithm performs well in terms of Pareto front in early generations, as solutions are no longer compared
for their constraint violation when both the parent and child are feasible. The SCEA algorithm thus starts
comparing based on the decomposition value for all individuals after five generations, compared to after 19
generations for MOEA/D.

A note should be made about the g-load rate constraint shown in Figure 9.5(d). For the SCEA evolution,
the values of the constraint start at zero as no individuals in the population violate the constraint. At first, this
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(a) Results after 12 generations

-1 -0.9 -0.8 -0.7 -0.6 -0.5

Normalized range angle [-]

0.3

0.35

0.4

0.45

0.5

0.55

0.6

0.65

0.7

0.75

N
or

m
al

iz
ed

 h
ea

t l
oa

d 
[-

]

SCEA, pop: 32
SCEA, pop: 64
MOEA/D, pop: 32
MOEA/D, pop:64

(b) Results after 24 generations
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(c) Results after 48 generations
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(d) Results after 72 generations

Figure 9.4: Results of the SCEA algorithm compared to MOEA/D after selected numbers of generations.

seems illogical, although the simulator that was used for both the fixed-length and variable length problem
was equal, and thus this phenomenon will have to be accredited to the influence of the current random seed.

Secondly, the convergence rate towards the optimal solutions is investigated. An overview of the average
and best values of the objectives is given in Figure 9.6. As was already observed from the obtained Pareto
fronts, the SCEA algorithm also shows in the convergence that it prefers solution with lower heat load and
lower flight range. Especially the best found solutions presented in Figure 9.6(b) and Figure 9.6(d) for the
flight range and heat load, respectively, indicate this clearly as the SCEA algorithm finds better heat load
trajectories and the MOEA/D algorithm finds the better flight range trajectories.

Also the course of the convergence should be discussed here. For MOEA/D a relatively smooth improve-
ment for the trajectories can be found, while SCEA has a strongly fluctuating development over the genera-
tions. A relation between this fluctuation and the average number of guidance nodes per generation as seen
in Figure 9.6(e) can be observed. As the SCEA algorithm also takes the number of guidance nodes as an op-
timization objective, the algorithm will trade solutions not only based on the flight range and heat load, but
also the number of nodes and thus accept worse values in the flight range/heat load Pareto front if they show
an improvement in the number of guidance nodes that is required to obtain it.

Now a cause for the distribution of the Pareto front of the SCEA algorithm can also be found. Figure 9.6(e)
shows that the algorithm tends to maintain an average number of nodes between 4.5 and 5.5 over its popu-
lation. If the improvements for the flight range are thus only found when a larger number of nodes is used, it
will still not be accepted by the SCEA algorithm.
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(b) Heat flux constraint
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(c) G-load constraint
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Figure 9.5: Convergence rate towards a feasible solution space.

Function Evaluations
To conclude the study on the convergence rate of the SCEA algorithm, the number of function evaluations is
shown in Figure 9.6(f). First, note that the large difference between the problems with a population size of 32
and the population size of 64 is caused by the fact that less individuals are tested for each generation. Still, a
clear difference can be observed between the SCEA and MOEA/D problems. For both population sizes, the
SCEA algorithm requires a larger number of function evaluations per generation. For the population size of
32, this is maintained over all generations and a slight increase is present. For the population of 64 individuals,
a different profile is found, where initially a larger number of function evaluations is required, However, the
algorithm becomes more efficient over the generations and at 128 generations has performed slightly less
function evaluations than MOEA/D.

A cause for the difference between the two algorithms can be found in the implementation of SCEA. As
SCEA changes the number of nodes for an individual, it now randomly generates the added nodes. These
are thus unlikely to be optimal as they use no historical knowledge of the population. MOEA/D on the other
hand uses fixed nodes and can always use information from the parents when generating offspring, thus
maintaining a higher chance of maintaining near optimal nodes in the offspring.

Although being more likely to find optimal offspring, this does not directly affect the number of func-
tion evaluations. However, when considering that the offspring in MOEA/D is also more likely to meet the
constraints, which are largely based on rates of variables, the explanation becomes clearer. For high rates
of change of a variable, a variable step size integrator is likely to decrease the step size as larger differences
between the intermediate integration steps are obtained.
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(a) Average normalized flight range
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(b) Best normalized flight range
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(c) Average normalized heat load
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(d) Best normalized heat load
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Figure 9.6: Convergence rate towards the Pareto optimal solutions.

This reasoning poses a potential improvement in the SCEA algorithm, where a method should be imple-
mented that uses historical data of the past generations to generate new offspring in the case of an increasing
number of nodes.
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Figure 9.7: Convergence rate of the SCEA algorithm for two sets of nodes.

Relation between Nodes and Objectives
An overview of the nodes that were obtained compared against the flight range and heat load values is shown
in Figure 9.7. The results show that the algorithm has a preference for the lower numbers of nodes, as can be
expected due to their implementation as an objective. Over the generations, the results are shown to slightly
converge towards the lower node values.

Interestingly, the results do not show that the extremities of the Pareto front can only be obtained by the
guidance vector with a larger number of nodes. The extremities with a small heat load and small flight range
are however shown to be found mostly using 6 or 7 nodes, whereas the trajectories with higher heat load and
flight range are found for 4 nodes in almost all cases. The results also show that diversity of the number of
nodes is preserved throughout the generations.

Effect of the Maximum Guidance Nodes
The maximum number of guidance nodes was expected to influence the optimization results for two reasons.
Firstly, because the original SCEA settings defined the maximum number of nodes as 8, which was the same
number as used for the fixed length guidance. Thus, the SCEA algorithm would see the solutions that used the
same number of nodes as the fixed length problem as the worst possible outcome in terms of nodes. Secondly,
due to the normalization that was used against the maximum allowable guidance nodes, only allowing a
difference of four would result in very large improvements in the objective for the nodes when the number of
nodes was even decreased by one.

Thus, the effect of the maximum number of guidance nodes was studied by performing the optimization
problem with a maximum number of guidance nodes that was set to 12. The results are presented in Fig-
ure 9.8 for both the optimization with a maximum of 8 nodes and 12 nodes. Again, the population size is
shown to be the main contributor to the convergence of the solutions.

The average values of the objectives show similar results, regardless of the number of nodes. The excep-
tion here is the average heat load, which attains significantly higher values for the 12 node problem compared
to the 8-node problem.

The best values for both objectives show a different profile. It is shown that the best obtained values for
both objectives are lower in the case of 12 nodes. For the 8 node problem with a population of 64, the results
reach a similar optimal value, but for a population of 32, the performance of 8 nodes is significantly worse,
almost 10% for the optimal heat load and approximately 20% for the flight range.

The average number of nodes in the population is shown in Figure 9.8(e). Clearly, the number of nodes
is higher when the total number of nodes that is allowed increases to 12. A larger discrepancy between the
population sizes is also observed, where the average number of nodes becomes 7 for a population size of 32
and slightly below 6 for a population size of 64.

Lastly, a note can be made about the convergence towards a feasible solution space. Regardless of the
maximum number of nodes, SCEA still manages to converge to a feasible solution space within 10 genera-
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Figure 9.8: Convergence rate of the SCEA algorithm for two sets of nodes.
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Figure 9.9: Function evaluations of the MOEA/D and SCEA algorithms for population sizes of 32 and 64 with a guidance sampling time
of 4.0 seconds.

Effect of the Zero-Order Hold
Given that the SCEA algorithm finds optimal trajectories using fewer guidance nodes, the initial expecta-
tion was that the number of function evaluations that was required to obtain convergence would be lower.
However, the results proved that the SCEA algorithm requires slightly more function evaluations. It was then
reasoned that the guidance sampling time that the implementation of the zero-order hold could influence
this phenomenon.

To verify this assumption, the guidance sampling time was increased to 4.0 seconds to ensure that the in-
tegration time step would be less dominated by the guidance sampling time and more by the dynamics of the
problem. The number of function evaluations for these settings are presented in Figure 9.9. The difference
between the two algorithms now becomes clearer. For both population sizes, the MOEA/D algorithm out-
performs the SCEA algorithm and thus the assumption that SCEA would perform better for a larger guidance
sampling time does not hold.

The explanation of the number of function evaluations thus has to be accredited to the method in which
the offspring is created, which is more efficient for the MOEA/D algorithm, due to the better use of historical
data and lower dependency on newly generated genes. This hypothesis was already suggested based on the
fact that MOEA/D finds a better Pareto front after it has converged to a feasible solution space and is again
supported by these results.

Random Seed Influence
Finally, to verify that the optimization algorithms can robustly find the optimal solutions, it is important to
test them for different random seeds. The comparison was made for the algorithms after 128 generations
and for a population size of 64, as these had previously shown the best results. The results of both MOEA/D
and SCEA for a random seed of 123, 456 and 789, respectively, are shown in Figure 9.10(a). The results show
that MOEA/D consistently finds very similar results, regardless of the random seed. The SCEA algorithm
shows larger differences between the three selected random seeds. As was found before, the results are still
competitive for the lowest heat load trajectories, where the algorithm finds similar results regardless of the
random seed. When the heat load and flight range increase, larger discrepancies are observed.

As was suggested before, the higher dependency on random generation of the SCEA algorithm when the
chromosome length changes is the likely cause of these differences.

The required number of function evaluations is presented in Figure 9.10(b). It can be observed that SCEA
requires slightly more function evaluation after 128 generations for the first two random seeds and signifi-
cantly more for the third option. MOEA/D also shows this increase for the random seed of 789 and the cause
of the increase is thus partially explained by the random seed. As the number of variables that is generated
for both algorithms is not the exact same since SCEA takes an integer value for the number of nodes as well.
The larger difference is thus mainly found as the random seed has an even larger effect on the function eval-
uations for SCEA.

Next, the differences for the convergence of the objectives for the algorithms for the different random
seeds is presented in Figure 9.11. Again, MOEA/D is shown to have a smoother change in the average ob-
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Figure 9.10: MOEA/D and SCEA results for different random seeds.
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Figure 9.11: Convergence rate of the SCEA and MOEA/D algorithms for the three selected random seeds.
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Figure 9.12: Convergence rate of the constraint for the SCEA and MOEA/D algorithms for the three selected random seeds.

jective values as shown in Figure 9.11(a) and Figure 9.11(c) for the flight range and heat load, respectively.
SCEA still shows the rougher nature of the convergence. For the flight range, the results for a random seed of
456 and 789 show a very similar progress over the generations, while for a random seed of 123 better average
flight range results are observed before 30 and after 70 generations. It is reasonable to assume that this effect
depends on the random seed, as the average value of the range can improve strongly if one of the randomly
generated offspring finds a strong improvement. These results also show their relation with the Pareto fronts
that were obtained in Figure 9.10(a), where the fronts for a seed of 456 and 789 show a clustering around the
middle of the front and are shown to perform especially worse compared to the seed of 123 in this region.

The best obtained values for the flight range and heat load are shown in Figure 9.11(b) and Figure 9.11(d),
respectively. The MOEA/D results show that for all seeds it finds better range angle results, although the
SCEA algorithm consistently finds better results for the heat load. Importantly, the best obtained heat load is
consistent for the three runs for SCEA. Comparison with Figure 9.10(a) shows that these do not correspond
to the same range angle. This inconsistency mainly occurs at the extremes of the trajectory, where a more
dominating solution will only be found if an improvement is found for the range angle.

The effect of the random seed on the constraint violation is presented in Figure 9.12. All three constraints
shows that SCEA outperforms MOEA/D in its convergence to the feasible solution space. However, it is also
shown that for the random seed of 456, SCEA converges to feasible solutions much slower and more in line
with the MOEA/D results. Still, it does not perform worse and it is thus safe to say that the convergence of
SCEA towards feasible solutions is better than the convergence of MOEA/D.
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9.3.2. MHACO Results
The MHACO algorithm has previously been proven to provide good results for multi-objective optimization
problems. For this thesis, it was tested for the problem of re-entry mission design. The results are found
below.

Problem Adaptation
When the first tests were run for the current re-entry problem, it was shown that the problem settings caused
the MHACO algorithm to find only a very limited number of feasible solutions, if any at all. The cause was
identified to lie in the values of the constraints, which typically took on values that are much higher than the
objectives and thus resulting in an unfair comparison in the hypervolume that was used to determine the
Pareto front.

The best results were obtained when ensuring that the solution space for both the objectives and con-
straints was similar. For this reason, the flight range normalization was altered. Originally, this was defined
as:

fr =−θ
π

(9.1)

Thus normalizing it against half the circumference of the Earth and setting it to a negative values to ensure
its maximization in PaGMO. The new flight range objective is set to:

fr,M H ACO = 2.0− θ

π
(9.2)

thus ensuring that the objective value is between 1 and 2 for almost all cases, with the exception of the small
number of solutions that find a flight range over half the circumference of the Earth.

The heat load objective was also adapted to find a more suitable range of solution. The new definition of
the heat load is found as:

fQ,M H ACO = 1.0+ θ

π
(9.3)

Again, this ensure that the theoretical optimum of the heat load objective is found at a value of 1.0. By
applying this modifications to the objectives, the range is almost equal to those that are found for the con-
straints, which are adapted as follows.

As MHACO treats the constraints as objectives, it was no longer valid to treat these as zero for feasible
solutions. Thus, also the feasible results were normalized against the constraint value. However, as large
constraint violations negatively impacted the convergence, all normalized violations over 2.0 were set equal
to 2.0. This does significantly limit the knowledge of the constraints when optimizing the problem. However,
the information about the constraints for slight violations is still available and it would thus still be possible
to identify solutions that are very close to the feasible solution space and might require further analysis to
find if a higher fidelity simulator provides more accurate results.

Lastly, it was found that without further alteration, MHACO would still accept almost only infeasible so-
lutions, as the improvement for the objectives was significant. To circumvent this, a penalty was added to
both objectives for each constraint that was violated. The value of this penalty is 0.5, thus leading to a max-
imum objective penalty of 1.5 when all constraints was violated. This method showed to cause the MHACO
algorithm to strongly prefer feasible solutions as will be described in the rest of this section.

Algorithm Parameters
Next, the performance of the MHACO algorithm depends strongly on the parameters that are given to it. To
find the proper tuning of the parameters, several cases were tested. The parameters that were tested are:

• Number of generations: 24, 48 and 72.

• Solution archive: 32 individuals, with a population size of 32 and 64.

• threshold: 5 generations before the final generation

• n_gen_mark: 3, 7 and 10.
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Table 9.1: Number of feasible individuals for the selected test cases with an archive size of 32.

gen = 24 gen = 48 gen = 72

n_gen_mark = 3
pop 32: 4
pop 64: 3

pop 32: 4
pop 64: 6

pop 32: 5
pop 64: 13

n_gen_mark = 7
pop 32: 3
pop 64: 7

pop 32: 2
pop 64: 6

pop 32: 4
pop 64: 9

n_gen_mark = 10
pop 32: 1
pop 64: 3

pop 32: 5
pop 64: 8

pop 32: 3
pop 64: 17

All other parameters were left to their standard definition in PaGMO.
First, the number of feasible individuals in the population is identified for the selected settings, as too

little diversity in feasible individuals would result in insufficiently filled Pareto fronts and thus an unrealistic
representation of the actual front. For the test cases that have been described before, the results are presented
in Table 9.1. The clearest relation with the number of feasible individuals is found for a large number of
generations. The larger population size also shows to provide more feasible solutions for all but the top left
test case. Given that the archive size remains fixed at 32 for all test cases, increasing the ratio between the
population size and the archive thus proves to improve the result.

Finally, the n_gen_mark value of 10 provides the best results for both 48 and 72 generations, while the
worst performance is found for 24 generations. As most feasible solutions are only found for the larger num-
ber of generations, the value of 10 for n_gen_mark thus proves most useful for use in an extended simulation
for MHACO and will be used for the further investigation of the MHACO optimizer.

To ensure that sufficient feasible individuals were obtained and to allow for comparison with the MOEA/D
results, the maximum number of generations will be set to 128 for the optimization of the re-entry mission.
To summarize, the following settings are used for the following optimization:

• Random seed: 123

• n_gen_mark: 10

• q: 1.0

• threshold: 5 generations before the final generation.

• evalstop: 10000

• focus: 0.0
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Figure 9.13: Pareto front of MHACO compared to MOEA/D after 128 generations.
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Figure 9.14: Function evaluations of MHACO compared to MOEA/D over 128 generations.

Pareto Fronts
The obtained Pareto fronts for both MHACO and MOEA/D after 128 generations is presented in Figure 9.13.
An important note that has to be made about the solutions is that all obtained solutions for MHACO satisfy
the constraints of the optimization problem and are thus useful for mission design.

The results show that MHACO is capable of obtaining the same fronts that were found by MOEA/D, even
though no direct constraint handling method was implemented. A difference is observed for the different
solution archive sizes of MHACO, for an archive of 64, the results are less optimal than for an archive size of
32. As was observed in Table 9.1, the results are better when the population size is larger than the solution
archive.

Similar to what was observed for SCEA, the MHACO algorithm has trouble finding the solutions for large
range angle and heat load values.

Convergence
The number of function evaluations for MHACO and MOEA/D are presented in Figure 9.14. The obtained
results confirm the excellent behavior MHACO regarding the computational requirements. Initially, MHACO
requires slightly more function evaluations than MOEA/D, although after 80 generations MHACO becomes
more efficient. At the final generation, which is 128 for this case, the MHACO algorithm has been more effi-
cient. For the solution archive size of 32, which provided the best Pareto results MHACO has required only
95% of the function evaluations compared to MOEA/D with a population size of 64. With a solution archive
size of 64, MHACO becomes even more efficient and requires 87% of the function evaluations, although the
quality of the Pareto front has become worse.

Still, MHACO did not outperform a population of 32 for the MOEA/D algorithm in its Pareto results, which
still shows that MOEA/D is more efficient when trying to find optimal solutions.

Influence of the Population Size
The population and archive size of MHACO were found to influence the results as shown in Figure 9.15. The
results were obtained for population sizes of 32 and 64, both with the solution archive set to either the entire
population size or half the population size. A similar diversity in the Pareto front is obtained, although for the
smaller population and archive sizes, more individuals are found to lie in the Pareto front itself.

The best performance is clearly shown for a population size of 64 and an archive size of 32, while the other
results show very similar Pareto fronts. Given that the population size of 32 requires only half the function
evaluations, these settings thus outperform the results of a population size of 64 with an equal archive size.

Contrary to the results for a population of 64, it is shown that no clear difference is present when the
population size is set to 32 between the two archive settings. Also, when an archive size of 16 is selected all
values are found to lie in the Pareto front. For such settings, it is thus very likely that valuable information on
the problem is lost.

From these results, it can be concluded that from among the tested settings, the optimum is found when
applying a population of 64 and a solution archive with a size of 32.
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Effect of the Number of Generations
It was shown that MHACO provides competitive results with MOEA/D after 128 generations. However, MOEA/D
was previously already shown to also provide strong results for earlier generations. The results for different
generations for MHACO are presented in Figure 9.16. Note that infeasible solutions have been left out of the
figure.

The infeasible solutions are still abundant for the results of 48 generations, where for both archive sizes
around half of the solutions remain infeasible. Still, the convergence towards a feasible solution space thus
remains poor for MHACO in comparison to MOEA/D and SCEA.

Otherwise, the results show that the obtained Pareto front for MHACO are excellent between the gener-
ations. The best solutions are still find by having a larger population size compared to the solution archive,
regardless of the number of generations. Initially, little improvement is seen between the results of 48 and 72
generations, but it should be noted that all infeasible individuals have disappeared when 72 generations are
reached. After 128 generations a clear improvement is observed, while the solutions still remain within the
feasible solution space for all individuals.

Random Seed Influence
To test the robustness of MHACO for re-entry mission optimization, it is also run for three random seed
settings, the original seed of 123 and with a seed of 456 and 789. The results are presented in Figure 9.17(a).
It is shown that between the different random seed settings only small differences are found in the Pareto
front after 128 generations. The newly generated data even shows that MHACO can provide results that are
closer to the previously found results of MOEA/D, which becomes especially clear for the random seed of 456.
For high range angle trajectories, MOEA/D finds better solutions. The reason for this phenomenon is likely
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Figure 9.15: Results for different population and archive sizes of MHACO.
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Figure 9.17: MHACO results for different random seeds.

related to the random seed, as the difference between the maximum obtained flight range value between
MHACO and MOEA/D is only small.

Also note that the MHACO Pareto set for a random seed of 789 finds a more limited Pareto front, where
the most optimal flight range value is -0.94. As the other two random seeds settings still yield the higher range
angle trajectories, this can also be accredited to the random seed effect.

Secondly, the number of functions evaluations that is required for each random seed can be analyzed
from Figure 9.17(b). It is shown that for each of the selected random seeds MHACO requires fewer function
evaluations, thus saving computation time with respect to MOEA/D. The effect only becomes clear after 60
generations and a likely cause for this is that MHACO initially has more difficulties to find feasible solutions.

Given the results of the random effect, it becomes clear that MHACO can provide competitive Pareto
fronts when compared to MOEA/D.

9.3.3. Optimal Trajectories
Below, the optimal trajectories for the different algorithms are presented. Their altitude and velocity profiles
will be discussed as well as the resulting profiles of the angle of attack and the bank angle and the constraints.
The results are presented in Figure 9.18. Firstly, a clear difference in the flight time for the maximum range
and minimum heat load trajectories can be observed, as was expected.

When observing the altitude profiles in Figure 9.18(a) it becomes clear that all trajectories follow a skip-
ping or lofting flight. Typically this is unwanted behavior as more load cycles are introduced. Importantly,
these also differ significantly from the HORUS-2b reference trajectory, which follows a gliding profile. It
should be noted that no direct constraint or objective is implemented in the algorithm that limits the number
of peaks in the trajectory. For example, the work done by Papp (2014) did include a constraint on the number
of heat flux peaks and there gliding trajectories are consistently obtained. It should thus be noted that this is
still a significant drawback of the simulator that was developed for this work as especially a large number of
heating cycles can cause significant stresses in the vehicle.

Observation of the constraints in Figure 9.18(e) and Figure 9.18(f) does show that the constraints that were
applied to the current simulator are not exceeded for the trajectories. As expected, the heat flux constraint
is nearly reached for all trajectories as it proves to limit the trajectory profile especially in the early stages
when the velocity is high. Comparison with the bank angle profile in Figure 9.18(d) shows that the bank angle
remains small at the start of the trajectory and especially when the vehicle starts skipping at approximately
300 s. For a gliding trajectory it would be expected that the value of the bank angles rises more strongly at
the start of the trajectory to values over 60°, which is also the case for the HORUS reference trajectory. As this
does not occur for the currently obtained guidance profiles, this is a clear cause of the skipping flight as the
vertical lift remains too large to ensure gliding flight.

Going into the guidance profiles more specifically, again profiles are observed that are atypical for a glid-
ing entry. As was stated before, larger bank angle values are expected at the beginning of the trajectory, while
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they are observed at the end for the obtained simulation results. The angle of attack does show to be large
for most of the optimal heat load trajectories, which is in line with expectations and similar to the reference
trajectory that was used for verification. The strong decrease in angle of attack that is observed for the opti-
mal flight range is not common for re-entry trajectories. The reason for this dip might be the reaction of the
algorithm to the skip that occurs at the same and thus the algorithm incorrectly selects the angle of attack to
lower the vertical lift, instead of the bank angle.

Moving to the final part of the trajectory, it is shown that the MOEA/D and MHACO trajectories move to-
wards a value of zero for the angle of attack and bank angle, as is commanded by the guidance at the end of
the trajectory. SCEA shows a different behavior, even though the final conditions are prescribed in the same
manner. It should however be noted that the terminal conditions are applied for sea-level, standstill condi-
tions and thus the exact final conditions have not yet been reached. The results from the SCEA trajectories
thus show that this is not sufficiently accurate and should be altered for if the simulator is developed fur-
ther. One clear suggestion would be to impose the final conditions at a higher altitude and include a proper
terminal area interface.

The g-load behavior of MOEA/D and MHACO for the optimal flight range trajectories also still show un-
wanted behavior in the sharp increase of the g-load. Currently, the value still remains below the constraint
of 3.0, although it is not unlikely that the constraint would be violated if the trajectory were to be propagated
further. Again, the trajectory meets the imposed constraints and thus is accepted by the optimization algo-
rithms, but it would be unlikely that such a trajectory would be selected for a flight planner as the uncertainty
about the continuation of the g-load is large.

Finally, it should be noted that especially the trajectories that are obtained by MOEA/D and MHACO
show strong similarities, as was also already observed in their Pareto fronts. This does confirm that for the
currently implemented simulator, guidance and optimization constraints, the optimization are finding sim-
ilar solutions. The SCEA trajectories show larger discrepancies as they have a longer flight time and thus the
integrated heat load values will be larger.
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Figure 9.18: Maximum range and minimum heat load trajectories for the tested algorithms.
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10
Conclusions

The following chapter presents the conclusions and recommendations of this thesis in Section 10.1 and Sec-
tion 10.2, respectively.

10.1. Conclusion
The goal of this research was to test the performance of analytical trajectory methods for optimization of re-
entry trajectories. The research questions and sub-questions that were formulated to support this research
are repeated here:

To what extent can optimal two-dimensional re-entry trajectories be developed using a second-order ana-
lytical method with the objectives of maximizing the flight range and minimizing the heat load, while adhering
to operational constraints?

1. To what extent can the second order analytical solutions be used to generate an optimal guidance profile
for re-entry?

2. How do results of the second-order methods for skipping and gliding flight compare for use in an opti-
mization problem?

3. What differences are present in the Pareto optimal set of numerical and second order solutions?

4. How does Ant Colony Optimization compare to the previously used MOEA/D algorithm for re-entry tra-
jectory optimization?

5. How does a variable chromosome length algorithm compare to the traditional fixed chromosome length
optimization algorithms?

6. How does the increased complexity of a variable chromosome length weigh against the circumvention of
node selection?

To answer these questions, a re-entry simulator was developed and verified against data from literature.
The simulator is capable of using either the HORUS-2B reference vehicle or a sample return mission capsule.
The former has the benefit of being a winged vehicle, which allows for better controllability of the trajectory.

The environment in the simulator can be easily controlled, although for the most accurate simulations
the following settings were used. The Earth was presented as a rotating sphere. The selected atmosphere
model was the US1976 standard atmosphere model and the gravity terms were included up to J2.

Through verification of the elements and the entire system, the simulator was shown capable of accurately
representing the trajectory of HORUS-2B.

The developed guidance algorithm was based on angle of attack and bank angle commands that were lo-
cated in the trajectory based on the normalized specific energy of the vehicle. The algorithm was extended to
be able to handle a variable length input vector, based on a commanded number of guidance nodes. Through
these guidance commands, the vehicle attitude is determined throughout the trajectory based on an inter-
polation scheme. It should be noted that a sampling time for the guidance is commanded to create a more
realistic algorithm.
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In parallel to the numerical simulator, an analytical simulator was set up based on the second order ana-
lytical equations developed by Vinh et al. (1993). These simulators were set up separately for the gliding and
skipping flight.

Finally, these simulators were used in an optimization environment, which had the objectives of maxi-
mum the flight range and minimizing the heat load of the trajectory, while staying withing the operational
constraints of the vehicle. The optimization environment made use of the MOEA/D, SCEA and MHACO algo-
rithms to optimize the problem for the conflicting objectives.

The SCEA algorithm was developed specifically for this thesis based on previous literature. Instead of
working with a fixed decision vector, it took additional integer elements, which prescribed the number of
decision vector nodes that were actually used by the guidance. Except this more elaborate evolutionary op-
erator, the method was otherwise based on the MOEA/D algorithm for fair comparison.

The first subquestion has been discussed for both skipping and gliding flight and it is now possible to
conclude to what extent the second-order relations can be used to generate optimal guidance profiles. It
was shown that both methods are capable of providing accurate results compared to an analytical simulator,
although a number of significant drawbacks were identified.

For the gliding flight, this was the strong limitation in its flexibility. First, it was shown that no flexibility in
the initial state was available as this was only dependent on the input entry altitude. Due to the equilibrium
flight assumption present in the derivation of the method, the flight path angle remained below 1° for accept-
able entry conditions. When the flight path angle showed larger values, the initial velocity had decreased to a
point that was unrealistic for any re-entry mission. For the larger HORUS-2B vehicle, this caused a problem
where skipping flight resulted from numerical simulations, whereas the analytical method would only gen-
erate trajectory with a monotonically decreasing altitude. The SRM capsule did provide accurate results for a
range of values, although for values above 110 km, also here skipping flight was observed. Values below this
altitude provide accurate results with errors below 3% when compared to numerical simulations.

The skipping flight also showed accurate results compared to numerical simulations. However, also here
a drawback was found. When the trajectory would cross below the estimated deepest penetration depth, only
imaginary values were returned by the method, thus losing valuable information of the most severe part of
the skipping entry. This was mainly observed for low entry velocities, whereas also low values of CD0 caused
part of the trajectory to return imaginary values.

Now conclusions can be drawn with regard to the applicability of the second-order methods for use in the
optimization problem. Although the flexibility of the method for gliding flight was low, it did provide accurate
results and had a large benefit of not losing important information of the trajectory for all cases. The choice
to move on to the optimization was made based on this conclusion and supported by the fact that presently
the gliding flight is the main mode of entry.

The Pareto optimal solutions that were obtained for the analytical method and numerical method showed
a close match and their Pareto optimal sets find values that are close to one another. However, due to the
small flight path angle, the trajectory would show a strong bias towards optimizing the range by flying high
in the atmosphere for as long as possible. The obtained Pareto optimal values would thus converge to a
single point, instead of a front that is typically expected. The optimization algorithms would converge to this
point for both numerical and analytical simulations, but the conclusion had to be that due to the limitations
of the analytical method, the second order methods do not present a useful replacement for the numerical
simulations.

The applicability of the analytical second-order methods for re-entry mission optimization can now be
summarized as follows:

• Results for the gliding flight proved to be accurate when compared to numerical simulations.

• The methods for gliding flight carry the significant drawback that they impose the initial velocity and
flight path angle based on the input altitude to ensure an equilibrium glide trajectory.

• Due to the imposed initial conditions it was shown that the obtained solution sets include a single point
that is dominant over all other solutions.

• The methods for skipping flight were shown to be accurate with respect to numerical methods although
due to the formulation of the method, complex numbers were found in the solution, thus rendering
part of the trajectory useless.
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Next, it was investigated how the variable chromosome length algorithm, SCEA, performed ti the tradi-
tional fixed-length MOEA/D algorithm. Both algorithms showed good convergence towards a feasible so-
lution space and the Pareto optimum. It was found that SCEA outperformed the MOEA/D algorithm in its
convergence to a feasible solution space and due to the selected constraint handling method, it would also
find better Pareto fronts in the early generations. For later generations, MOEA/D was shown to outperform
the SCEA algorithm in finding the best optima. This can be accredited to the implementation of the SCEA
algorithm, where random values are generated when the number of nodes changes during crossover or mu-
tation in the algorithm. The limitation in the number of nodes also resulted in a bias towards low heat load
trajectories for a population size of 32, whereas a population of 64 would still provide a more diverse Pareto
front.

Additionally, the number of function evaluations was shown to be larger for the SCEA algorithm, again
caused by the less efficient evolutionary operators. Still, the number of function evaluations remained close
to MOEA/D. Tests were performed to find an improvement by decreasing the sample rate of the guidance and
increasing the search space of the number of nodes, but both proved to decrease the performance of SCEA.

However, when one notes that SCEA is capable of selecting its own nodes, which would typically be a
design problem, a case can still be made for the algorithm. The required number of function evaluations is
close to that of MOEA/D, although no need for designing the optimal number of nodes is required.

A final note on the performance of SCEA can be made with regard to the influence of the random effect.
After testing both MOEA/D and SCEA for three different random seeds, it was found that SCEA was more
susceptible to the random effect as larger discrepancies where found between the obtained Pareto fronts for
SCEA and also the number of functions evaluations differed more strongly. Overall, this behavior corresponds
with earlier conclusions where the random effect played a significant role when the number of nodes in the
guidance vector was altered. Again, when the algorithm is extended to also include historical data when
changing the guidance vector size for a new individual, it is likely that these discrepancies will decrease.

The conclusions for the performance of SCEA are as follows:

• SCEA was shown to be capable of finding Pareto sets similar to MOEA/D, although slightly worse and
for a slight increase in the number of function evaluations.

• The random effect was shown to be more important for SCEA due to its method of generating an indi-
vidual with a changed guidance vector length.

• It was shown that SCEA is capable of selecting its own required number of nodes, thus saving effort in
the design of the guidance vector length.

Finally, the performance of MHACO with respect to MOEA/D was investigated to answer the final sub-
question. First, it was shown that MHACO has stricter requirements with respect to the normalization of the
problem, as it handles constraints as problem objectives. The obtained results showed a similar performance
to MOEA/D and for an equal population size, MHACO was more efficient in terms of function evaluations.
The Pareto fronts that were found by both algorithms where also close to each other, although MHACO results
had difficulty finding values for a large range angle and heat load, similar to SCEA. Additionally, the influence
of the random effect was also studied for MHACO and it was shown that MHACO was actually able to find
a Pareto set that was close to MOEA/D for one of the selected random seeds. Also, for all seeds, MHACO
required fewer function evaluations to obtain the Pareto front after 128 generations. This was partially caused
by the shorter trajectories that were found by MHACO, but even for the more diverse Pareto fronts, which were
similar to MOEA/D the required number of evaluations was found to be smaller.

The performance of MHACO is thus summarized as follows:

• MHACO was shown to provide Pareto sets that were competitive with MOEA/D.

• Due to the hypervolume method that was used to find the optimal solutions, MHACO is more sensitive
to the normalization of the objectives and constraints and alterations had to be made.

• MHACO consistently required fewer function evaluations to find the optimal solutions.

Overall it can thus be concluded that MHACO and SCEA provide new algorithms that perform well for
re-entry trajectory optimization, although MOEA/D still outperforms both in their current state.



96 10. Conclusions

Based on the previous results, the main research question of this thesis can be answered and it is now
possible to conclude to what extent the analytical second-order methods can be used to develop optimal two-
dimensional re-entry trajectories with regards to flight range and heat load, while adhering to the operational
constraints. The selected methods do provide accurate results compared to the numerical models, but carry
significant drawbacks when tested for a wider range of entry conditions. Mainly this inflexibility of the gliding
method proved that it is not suited for re-entry mission design in its current form. As the goal of the thesis was
to select one of these methods, the skipping flight was not further investigated in the optimization problem,
as this had also previously been done in literature for a single skip. The results do prove promising, but a
method should be developed that robustly omits the imaginary values that were now obtained.

10.2. Recommendations
Finally, the recommendations for future work in this field are listed below. They are categorized based on the
analytical methods and the optimization methods.

Analytical Methods
• Flexibility of the gliding phase: Although no improvement to the analytical method was found in this

thesis, it is clear that the equilibrium glide assumption limits the second order analytical method in its
flexibility. Further research into these assumptions might yield better results and a more flexible entry
state.

• Application of skipping method: Applying the skipping method to an optimization problem might
provide more promising results than the gliding flight, when the current drawbacks are solved. Es-
pecially, the combination with the variable chromosome length, which was already developed for a
variable number of legs, might show good results. Especially when considering that the introduction of
legs prevents that the nodes have to be spread among the atmospheric phases in the skipping flight.

Optimization Methods
• Historical knowledge of SCEA: The developed SCEA algorithm could be extended and likely improved

by improving the method by which genes are generated when the number of guidance node changes.
For example, the data could be taken from individuals in the population that use these nodes or data
from past generations could be stored.

• Flexibility of SCEA: The current SCEA was set up to deal with a fixed number of variables per node
in the decision vector, which was 3 for this problem (Ê , α and σ). However, the algorithm should be
capable of dealing with a variable number of variables per node as well. This would become especially
interesting when considering the addition of thrust to the trajectory, which would only occur at a very
limited number of nodes. The current algorithm is capable of including such phases, although it would
be in an inefficient way where a binary variable would have to be added to indicate whether the thrust
is performed.

• Constraint handling for MHACO: MHACO proved to have difficulties in finding feasible solutions. A
proposed method for added constraint handling would be to separate the feasible and infeasible solu-
tions into separate archives and sort them in a manner similar to what was now applied for MOEA/D.
Thus, feasible solutions are passed to the solution archive first and only afterwards infeasible solutions
are added. However, the influence of the hypervolumes on the applicability of this method should still
be studied.

• Variable length MHACO: Currently, only tests on a variable chromosome length where applied for
SCEA, based on MOEA/D as the original literature on the topic was strongly based on genetic algo-
rithms. Given the drawbacks of not using historical data, MHACO might provide a valuable algorithm
for variable length individuals as it already stores a solution archive and thus has historical data readily
available. More effort would especially have to be put into the method in which the variable length ants
are generated by MHACO, as this is currently not easily supported.
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