
A Static-Based Approach to Detect
SQL Semantic Bugs

Master’s Thesis

Claudiu Ion

A Static-Based Approach to Detect
SQL Semantic Bugs

THESIS

submitted in partial fulfillment of the
requirements for the degree of

MASTER OF SCIENCE

in

COMPUTER SCIENCE

by

Claudiu Ion
born in Bucharest, Romania

Software Engineering Research Group
Department of Software Technology

Faculty EEMCS, Delft University of Technology
Delft, the Netherlands
www.ewi.tudelft.nl

www.ewi.tudelft.nl

©2021 Claudiu Ion. All rights reserved.

A Static-Based Approach to Detect
SQL Semantic Bugs

Author: Claudiu Ion
Student id: 5105080
Email: c.ion@student.tudelft.nl

Abstract

While SQL engines are now capable of detecting a large number of syntac-
tic mistakes, most often semantic errors are not detected, which can lead to
serious performance issues or even security vulnerabilities being introduced in
the system. This thesis proposes a set of 25 validated heuristics together with
a new rule-based static analysis tool for detecting the most common types of
semantic bugs in SQL queries, based on evidence from previous research. We
conduct an empirical study on the prevalence of semantic bugs in SQL on two
datasets with queries collected from different open source industry projects as
well as on a large dataset of queries collected from StackOverflow posts. Manual
analysis of more than 500 queries shows that our tool is able to detect semantic
bugs in SQL queries with an accuracy of 97%. Furthermore, out of all 191,994
collected queries, we identified a total of 36,818 queries which contain at least
one semantic bug, meaning that 19.17% of queries contained some semantic
problem in their formulation. To the best of our knowledge, this is the largest
dataset of SQL queries extracted from StackOverflow and could later be used
for subsequent studies as well.

Thesis Committee:

Chair: Prof. Dr. A. van Deursen, Faculty EEMCS, TU Delft
University supervisor: Dr. M. Aniche, Faculty EEMCS, TU Delft
Committee Member: Dr. C. Lofi, Faculty EEMCS, TU Delft

c.ion@student.tudelft.nl

Preface

As I write these final words of my master thesis, my mind and heart are filled with
the memories and emotions I had when I first embarked on this great adventure to
a new country, when I came to study in The Netherlands. For three years, I got
to call Eindhoven my home. Over there, while doing my bachelor studies, I had
the great opportunity of meeting very talented and dedicated professors, as well as
other fellow student colleagues, whom I later got to call my friends. My journey
then continued when I moved to Delft, where I started my master studies. Here, I
again got the chance to meet some amazing people whom I would like to thank in
this preface.

To my supervisor, Maurício Aniche, I would like to express my sincere gratitude
for all the help and time he has dedicated to me. His support during the literature
review and throughout the thesis, over the past nine months, was unparalleled. He
has provided me with the best guidance I could have asked for. I am very grateful
for the enlightening explanations and support material that I have received from
him, for the impromptu meetings and our regular progress calls. I would also like to
thank the members of my thesis committee, Arie van Deursen and Christoph Lofi,
for their time and effort. Having both as professors during my studies at TU/Delft,
I would like to thank them for their hard work and dedication, especially during
these difficult times.

Additional thanks go to my dear friend, mister Tudor, for his entire support dur-
ing my master studies. I could always count on his constructive feedback, insightful
remarks and keen eye for detail.

I would also like to thank my colleagues at Optiver, where over the past two
years I have been working part-time. Ever since I started my master studies, they
have always shown great understanding and curiosity towards my university work,
and for this I would like to thank them all.

Finally, I would like to thank my family for their constant support. I am very
fortunate to have an elder brother whom I can always count on. I can not thank
him enough for listening to my monologues about the thesis and not only, during
our routine evening walks, and I know that I can always rely on him to hear me
out. I would also like to thank my parents for their unconditional love and support.

iii

Preface

Even though you have been far away, you were always there for me and I am forever
grateful for this.

Thank you all for being part of my journey in becoming a computer scientist!

Claudiu Ion
Delft, the Netherlands

June 22, 2021

iv

Contents

Preface iii

Contents v

List of Figures vii

1 Introduction 1

2 Background 3
2.1 Bugs in SQL queries . 3
2.2 SQL data collection from StackOverflow 8

3 Heuristics for SQL Semantic Bug Detection 13
3.1 Semantic bugs in SQL queries . 13
3.2 Detection strategies for SQL semantic bugs 14
3.3 Implementation . 34
3.4 Validation . 36

4 An Empirical Study on SQL Semantic Bugs in the Wild 39
4.1 Research methodology . 39
4.2 Data collection . 40
4.3 Results . 42
4.4 Threats to validity . 48

5 Conclusion 49
5.1 Recommendations . 50
5.2 Future work . 51

Bibliography 53

A Tool Validation 59

v

Contents

B Code Quality 93

C Tool Website 95

vi

List of Figures

3.1 Overall flow of the semantic bug detection tool 35

4.1 Prevalence of SQL semantic bugs for the StackOverflow dataset 44
4.2 Prevalence of SQL semantic bugs for the EvoSQL dataset 44
4.3 Co-occurrence matrix for SQL semantic bugs 46
4.4 Number of semantic bugs per query complexity 47
4.5 Distribution of query complexity . 47

B.1 Code quality analysis . 94

C.1 Interactive tool website . 95

vii

Chapter 1

Introduction

The Structured Query Language, also known as SQL, is a domain specific program-
ming language used for managing and interacting with relational database manage-
ment systems. It was also one of the first languages to utilize the relational model
presented by Codd [12] in his paper and later on became both an ANSI and ISO
standard, making it the most widely used database language, with more than 70%
of developers using SQL as shown by a recent study [38].

What makes it even more impressive, is the fact that SQL is not only used in
IT but also in various other industries, such as banking, accounting, aviation or
commerce. This makes this programming language one of the most widely spread
and at the same time it means that there are a lot of people, with different skill levels
and backgrounds, writing and using SQL queries. Depending on the understanding
level of SQL, some users might directly use queries from forums or other questions
and answers websites, such as StackOverflow, which has inherent risks if these queries
contain bugs. For this reason, it is important to therefore have tools which can assist
developers in detecting not only syntactic errors in SQL queries, but also semantic
ones, just as modern integrated development environments suggest code reformatting
for various other programming languages.

Currently, the tools which exist for SQL are mostly focused on detecting only
syntactic errors in queries that developers write. While this is still an important
aspect, queries should also be checked for semantic issues, since these types of prob-
lems can have a huge impact on the system’s performance, as we will later explain
in this study. Furthermore, most of the existing tools require the complete database
schema in order to analyse queries and detect potential semantic errors. Another
important point is that most of the current tools are not able to detect issues in
dynamically generated SQL queries either, which is very limited since applications
might create queries at runtime depending on various input as described by Gould
et al. [21].

In the background study that we carried out for this thesis we also identified the
lack of open source tools focused on detecting semantic bugs in SQL queries. The
lack of such tooling, in turn, makes it harder for developers to identify these issues.
As pointed out by Ahadi et al. [1] in their study on semantic bugs in student written

1

1. Introduction

queries, these types of issues are the ones requiring more knowledge and a deeper
understanding of the underlying SQL principles in order to solve. Furthermore, these
bugs are not addressed as long as the query contains syntax errors, however, most
of the time even after the query formulation is correct, developers tend to overlook
the final step of checking for potential semantic bugs. Therefore, having automated
tools for checking this would offer tremendous help in solving this problem.

The goal of this thesis is two-fold. First, we propose a set of 25 validated heuris-
tics for detecting the most common semantic bugs encountered in SQL queries,
based on evidence from previous research. We then implement a tool, using our
proposed heuristics, for detecting semantic bugs in SQL queries and measure the ac-
curacy of the tool by performing an extensive manual analysis on a large collection
of queries. Second, we explore the prevalence of these semantic bugs in two different
SQL datasets, one provided by Castelein et al. [11] containing queries from three
different open source projects tracked on GitHub and the other, which we specif-
ically built for this study, containing queries extracted from StackOverflow posts.
To the best of our knowledge, this is the largest and most complete dataset of SQL
queries collected from StackOverflow, containing not only queries but also various
other additional metadata information, which could be used for other interesting
research in the future as well.

Our rule based static analysis tool is able to detect semantic bugs in SQL queries
with a 97% accuracy. Furthermore, we observed that out of all the 191,994 collected
queries, 36,818 contain at least one semantic bug, which means that 19.17% of
queries contained some semantic problem in their formulation. Also quite interesting,
we show that more complex queries, in terms of number of joins, predicates and
functions used, tend to suffer from more semantic bugs, an interesting finding which
could be used in the future as a metric for early prediction as to whether a query
might contain semantic bugs or not.

Our thesis leads to the following four contributions:

• A set of validated heuristics to detect semantic bugs in SQL queries together
with a prototype implementation of a tool which implements the proposed
heuristics and detects semantic bugs in SQL queries.

• An empirical study on the prevalence of semantic bugs in two SQL datasets.

• A dataset of 172,000 queries extracted from StackOverflow together with ad-
ditional metadata information.

• A replication package containing the queries and other scripts used in our
evaluation process that can help with reproducing and improving our results.

2

Chapter 2

Background

SQL is a domain specific language used in handling structured data held in a rela-
tional database management system. In this chapter, we discuss technologies related
to the thesis and give background information to the problem at hand. This chapter
is divided in two main sections. In Section 2.1 bugs in SQL are explained and related
work on the topic of identifying semantic bugs in SQL is shown. In Section 2.2 the
importance of StackOverflow as a source for collecting relevant data is discussed and
previous research on this topic is presented.

2.1 Bugs in SQL queries

We organized the collected previous work related to bugs in SQL queries in four
different categories: semantic bugs in SQL, teaching systems for SQL, empirical
studies on SQL queries and testing SQL queries. In the following subsections we
present each category together with the most relevant work that we identified. We
give an overview of previous studies per research area in Table 2.1.

Research area References Qty

Semantic bugs in SQL [9] [10] [44] [8] [23] 5
Teaching systems for SQL [29] [30] [31] [7] [43] [42] 6
Empirical studies on SQL queries [1] [2] [34] [41] 4
Testing SQL queries [11] [36] [37] 3

Total 18
Table 2.1: Literature collection related to bugs in SQL queries

3

2. Background

2.1.1 Semantic bugs in SQL

The work of Brass and Goldberg [9] and Brass et al. [10] was the first to focus on
the class of SQL queries which are correct from a syntactic point of view but contain
semantic issues, regardless of the query task. The authors classify SQL errors in
two groups, one related to syntactic issues and the other to semantic ones. In the
first group, the database management system will detect the error since the query
can not be executed at all. These errors are usually easier to detect and fix since
the developer gets an immediate error or warning when trying to run the query. In
the second group, the queries are correct however they do not produce the intended
results. These types of errors are harder to detect and fix since the problem is not
immediately obvious.

In their work, the authors further classify semantic errors in two groups, one
for which the task must be known beforehand and another where the single SQL
query is enough to detect semantic issues. The focus is then placed on the second
group and this is also the case for this thesis. The main contribution of their work
represents a taxonomy of semantic errors which frequently appear in SQL queries
collected from homework and exam materials for one of the database courses at the
University of Halle.

Apart from this list, Brass and Goldberg [8] carried out another study for
analysing two other specific types of semantic issues that appear in SQL queries,
more specifically inconsistent conditions and queries which might generate runtime
errors. One potential threat to validity for their work is represented by the limited
size of the dataset on which the study was conducted, more specifically the errors
were extracted from six SQL questions that appeared on two exams with roughly
150 participants. It is worth pointing out that Goldberg [20] carried out a study
using the same taxonomy of semantic bugs on a larger dataset, however the queries
were still extracted from previous exams. In this thesis, apart from implementing
a tool for detecting these semantic errors, a study on a large dataset of queries
extracted from real-world applications from StackOverflow is also conducted which
brings further insight into how these issues appear.

An extensive taxonomy of SQL code smells is also presented by Karwin [23]. In
his book, the author presents the most frequently encountered SQL antipatterns and
pitfalls. The provided list of issues also takes into account the most common SQL
problems which the author encountered while answering various question posts on
online forums, mailing lists and newsgroups over a time period of more than 15 years.
The book places the antipatterns in one of the following categories: logical database
design, physical database design, query related and finally application development
issues. In the query related category, we find the most common types of semantic
issues encountered in SQL queries (also defined as code smells), more specifically a
list of six query antipatterns: fear of the unknown, related to the special nature of
NULL in SQL, ambiguous groups, which relates to the use of the GROUP BY clause, the
random selection antipattern, related to the issue when some random row is selected
from the database and finally the implicit columns issue which refers to use of the

4

2.1. Bugs in SQL queries

select all star operator (*) in SELECT statements instead of providing an explicit select
list. A large number of subsequent studies are based on the taxonomy provided in
this book in an effort to both analyse as well as better understand how and why
these issues appear in SQL queries.

2.1.2 Empirical studies in SQL education

Other similar studies presented by Mitrovic [29, 30, 31] and Bider and Rogers [7]
focus on building knowledge based teaching systems for SQL. The authors in these
studies present two very similar systems which are intended to be used as guided dis-
covery learning environments for SQL. The motivation behind building such systems
is that although SQL is a relatively simple and highly structured language, students
still have many difficulties when first learning it, therefore such intelligent teaching
systems aim to overcome these difficulties and serve as an additional practice en-
vironment for SQL learners. Furthermore, both of the presented systems focus on
detecting semantic errors in SQL queries since syntactic problems can already be
detected by the database engines.

Moreover, the two approaches presented in these papers also require having
knowledge about the task which has to be solved, in the form of a correct query
for a given SQL question. In contrast, the approach taken in this thesis assumes no
such knowledge which makes the tools and algorithms work for queries written at
large, not only in a teaching environment. The system built by Mitrovic [29] only
works on SELECT SQL statements while the one presented by Mitrovic [31] works for
SELECT and CREATE VIEW statements. The approach taken in this thesis is such that
the rule-based semantic error detection tool should work on all SQL statements. Fi-
nally, in both of the previously mentioned studies, the presented tools for detecting
semantic issues in SQL were tested on fairly small datasets which only contained
SQL statements originating from assignments or exams, nevertheless the research
did show the great potential these tools have in a teaching environment, helping
most students better understand the SQL syntax.

In Taipalus and Seppänen [43] and Taipalus and Perälä [42], further SQL teaching
practices in higher education are also presented as well as an overview of educational
SQL research topics and most frequent issues which appear in SQL queries written
by students. As with other previous research, the authors note that future studies
should be carried out on more diverse datasets, with queries from real world projects,
in an effort to understand whether their findings generalize on software at large as
well, an aspect which we try to address in this thesis.

2.1.3 Empirical studies on SQL queries

Another interesting study that focuses on conducting the first large-scale quantita-
tive analysis of syntactic errors that appear in SQL queries written by students is
presented by Ahadi et al. [1]. Apart from going over the most common mistakes that
students make, the study also describes how an automatic classifier can be used in

5

2. Background

predicting the performance of students when writing SQL statements. Although the
paper is not directly concerned with analysing semantic errors in SQL, the authors
point out that in most cases students abandon answering an SQL related question
due to a syntactic error. Their findings show that syntax errors in different clauses
of the SELECT statement, undefined referred column errors and grouping errors are
the most common types of mistakes that novices SQL users make when writing their
statements.

It is therefore interesting to point out that while semantic errors are the ones
requiring more knowledge and a deeper understanding of the underlying SQL prin-
ciples in order to solve, students will most certainly not come to grips with these
while the query formulation contains syntax errors, as the authors of the study also
conclude.

Furthermore, in a subsequent study Ahadi et al. [2] also conduct the first large-
scale analysis of semantic mistakes in SQL SELECT queries written by students. The
dataset used in this paper contained queries pertaining to seven different key SQL
concepts: GROUP BY without HAVING, self JOIN, GROUP BY, natural JOIN, simple subquery,
simple query with only one table and finally correlated subqueries. Again, the study
also made use of knowledge related to the question for which the SQL statement was
written, therefore a query was considered semantically incorrect when the result set
returned by it was different from the one returned by the accepted solution query.
The authors find out that the majority of semantic bugs are of type omission, showing
that students have trouble in selecting the correct type of query to use as well as
lack a systematic approach to formulating the query. Queries that require a JOIN,
a subquery or a GROUP BY are the most susceptible to these types of omission errors.
Furthermore, results also show that the majority of semantic mistakes occur in the
WHERE clause of the SELECT statement which, as the authors point out, might be the
result of memory overload when dealing with complex queries.

Another large-scale study on SQL code smells, which investigates the prevalence,
impact, evolution and co-occurrence of SQL code smells with traditional code smells
was conducted by Muse et al. [34]. In their work, they analysed 150 open source
software projects which made use of popular database access APIs such as JDBC,
JPA and Hibernate, in an attempt to investigate how often SQL code smells appear
in these systems.

While traditional code smell detection has been an important research topic for
several years now, recently there has been growing interest in analysing and detecting
such code smells in SQL code. The authors of this study make use of the SQLInspect
tool and focus on analysing four SQL code smells. These code smells were selected
from the extensive catalog published by Karwin [23], which is the first book to
present a comprehensive list of SQL antipatterns. More specifically, the authors
of the study looked at implicit columns code smells, where the select all operator
(*) is used instead of a smaller list which has implications on network bandwidth
wastage, improper handling of NULL values smells, where comparison operators are
used instead of the IS NULL or IS NOT NULL expressions, ambiguous grouping code
smells, where GROUP BY clause terms are misused and finally random selection smells

6

2.1. Bugs in SQL queries

when developers query a single random row wrestling in a full scan of the table.
The findings of the research indicate that SQL code smells indeed exists per-

sistently in data-intensive systems, however these are independent from other tra-
ditional code smells. The most prevalent code smell was the use of the select all
operator, the implicit columns usage smell. Also quite an interesting finding is that
SQL code smells have a weaker association with bugs than traditional code smells
as well as the fact that SQL smells are more likely to be introduced at the start of
the project, and are not addressed as quickly as other more traditional smells, which
might also be due to the fact that tools for detecting and informing developers about
these issues are not yet in place or not widely adopted enough.

In a recent study by Taipalus [41] the author presents a detailed analysis on
the types of SQL errors which are most likely to be encountered in SQL queries
formulated by novice users. Furthermore, the author also attempts to explain the
causes behind the most common errors. The study uses a taxonomy of different
syntactic and semantic SQL errors previously defined by Taipalus et al. [44] in their
work on errors and complications in the formulation of SQL queries as well as a
dataset of queries collected from four iterations of an SQL course. The reported
results show that the three most common errors were missing expressions, extraneous
or omitted grouping columns and missing join statements.

Moreover, the authors observed that the cause of the error is strongly related
to the query concept rather than the error type. The study finally recommends a
way to mitigate the three most commonly encountered errors in SQL queries by
teaching students techniques for recognizing natural language patterns and their
SQL equivalents, before proceeding to writing more complex queries.

2.1.4 Testing SQL queries

An interesting study on generating test data for SQL queries is presented by Castelein
et al. [11]. As with any other piece of code, testing is of utmost importance in order
to guarantee that software is working correctly, and this should also be the case
for applications involving SQL queries. In their work, the authors model the prob-
lem of generating test data for SQL queries as a search-based problem and present
three novel approaches, based on search algorithms, to solving this problem. More
specifically, the paper proposes using genetic algorithms, random search and biased
random search and analyses each approach on three open source projects and one
industrial software system.

The algorithms take as input some SQL query to be tested as well as the database
schema and use the three different techniques for populating the tables with test
data which should meet certain testing criteria. The results show that the genetic
algorithm approach is able to cover 98.6% of all queries in the dataset and also has
the advantage of being able to properly test queries with JOIN statements, multiple
subqueries as well as string manipulation functions. One of the main contributions
of the research was the implementation of the EvoSQL tool for generating test data

7

2. Background

for SQL queries as well as an empirical study on the effectiveness and performance
of the tool on a dataset of queries extracted from four different software projects.

Furthermore, the study shows that full coverage for one query can be reached in
almost all cases within 2 to 15 seconds, which makes the tool usable in a practical
setting as well. The dataset collected for this paper will be used for testing the
rule-based static analysis tool that we will present in this paper, in order to further
analyse the prevalence of semantic bugs in queries extracted from different software
projects.

In two other studies by Nagy and Cleve [36, 37] we find the first attempt at im-
plementing a tool for identifying code smells in SQL queries embedded in Java code.
The tool uses a combination of static analysis techniques, together with database
schemas as well as the data present in the database in order to detect potential
semantic issues in SQL queries extracted from source code.

Furthermore, depending on the context of the smell, the tool is also able to
determine its severity. What is interesting for this research, is that the tool is
provided both as a command line interface as well as an Eclipse plug-in, which should
help with providing better support for developers as well as speed up adoption of
the tool, something which most previous research in this area is lacking.

It is worth mentioning that in Nagy and Cleve [37] the authors provide an ex-
tensive evaluation of their tool on a number of open source Java projects of various
complexity and size, with results showing the potential that such tools have for in-
specting SQL queries. The SQL code smells implemented by the authors of these
studies again come from the book by Karwin [23] which provides a list of six common
SQL antipatterns.

Interestingly enough, the authors decided to not implement a detection rule for
the issue concerning the unnecessary index scan, when a wildcard character is used
at the beginning of a string for the LIKE expression, which results in a missing access
predicate, however our tool does detect this issue as well. The SQL code smell
detector presented by the authors takes as input some SQL statements extracted
from a source code file and optionally the schema of the database along with any
database contents that might be present. After this, both the abstract syntax tree
(AST) as well as the abstract semantic graph (ASG) are constructed, on which the
implemented rules for detecting the various smells are run. As future work, the
authors plan on extending the list of supported code smells for the detection tool as
well as adding more features to the Eclipse plug-in.

2.2 SQL data collection from StackOverflow

With more than 10 million visits per day1 and 14 million active users, StackOverflow
has become the main questions and answers website (Q&A), related to programming,
that exists on the internet. It was launched in 2008 and has quickly grown to
now contain 21 million questions, 31 million answers, with an answer rate of 70%

1https://stackexchange.com/sites?view=list

8

https://stackexchange.com/sites?view=list

2.2. SQL data collection from StackOverflow

and an average of 6500 questions new questions being asked on the platform every
day. This huge popularity means that StackOverflow is now a large knowledge
base for several programming languages and hence it represents a valuable resource
for researchers to tap into. There have been numerous papers on extracting various
types of information from StackOverflow, however only recently there has been some
growing interest in extracting SQL related information from this website.

In Nagy and Cleve [35] the authors present the first attempt at extracting SQL
related information from StackOverflow, more specifically queries. The methods
presented in the paper are the closest to our approach, however the authors make
use of data dumps of StackOverflow provided by Stack Exchange in XML format,
as opposed to our approach which makes use of real time data from the platform
by taking advantage of the Stack Exchange API. Furthermore, the algorithm for
extracting the SQL queries from the code block sections that we use for building
our dataset is also different than the one presented in the paper. Finally, the study
looks at whether the extracted queries are error prone by manually investigating
the queries and reporting on some general descriptive statistics such as the number
of joins per query or functions used. As the authors of the paper also conclude,
the queries should further be investigated with automated tools for properly detect-
ing issues, which is something that our study covers. Nevertheless, this does show
the huge potential of the StackOverflow platform in extracting a large number of
SQL queries for various research topics. Moreover, this should help in bridging the
current gap which exists in this research field, in the sense that most studies on
identifying semantic issues in SQL queries are conducted on datasets which come
from SQL courses, where queries are written by students on either homework as-
signments or exams. By using these new mining techniques for extracting queries
from StackOverflow this should now allow for building better datasets and obtaining
new insight as to what types of issues might appear in queries found in real world
applications.

Another study by Allamanis and Sutton [3], uses information extracted from
StackOverflow questions in an attempt to understand which programming concepts
are the most confusing and whether there are any similarities across different lan-
guages. For this study, a number of programming languages were considered, among
which Java, Python and SQL. By looking at the top words used, the authors were
able to extract the concepts of a question post and build two categories one related
to programming concepts and the other related to the type of information that users
were looking for. Each question was then placed in either of the two categories. Fur-
thermore, the questions were also clustered by using topic models, with one of the
main findings of the paper being that the distribution over question types is not
different among programming languages. This means that the types of questions
being asked do not vary across programming languages. Interestingly, a method
was also presented for how to identify what question types were mostly associated
with a certain programming language, such as SQL for example, as well as a distri-
bution of what are the most popular times of the week when users ask questions.
As the authors of the study also conclude, this type of insight could be useful for

9

2. Background

future IDEs or smart documentation systems for providing guidance to developers
depending on the context.

In Zhang et al. [47] a study on C/C++ code weaknesses found in StackOverflow
posts is presented. The aim of the paper is to analyse common weakness enumeration
errors (CWE) [27, 28] in code snippets found on StackOverflow. This is especially
important since such code might for example contain security vulnerabilities and
sharing it carelessly might introduce these problems in other systems. The authors
find out that 36% of the CWE issue types are detected, particularly the improper
restriction of operation within the bound of a memory buffer. More alarming, the
study shows that the proportion of code which contains issues on StackOverflow has
doubled from 2008 to 2018. For building the dataset, the authors first extract code
snippets from StackOverflow answers tagged with the C/C++ tag. Furthermore,
snippet codes with less than 5 lines of code are removed in order to reduce bias for
frequent code. Finally, the paper uses the Gueslang2 open source tool for detecting
which of the extracted code snippets actually contain C/C++ code. This tool is
shown to detect with a 90% accuracy the programming language from a list of 20
pre-defined languages including C/C++. The authors also analysed the revision
history of answer posts in order to detect whether issues are also corrected when
detected by other users, which is not always the case or in some situations this
happens with a big delay. This study therefore brings into discussion the issue of
sharing bug-induced code on StackOverflow, which inexperienced developers might
directly use in their applications without realizing the implications of potentially
introducing errors or semantic issues into their systems. Prior studies by Wu et al.
[45] and Fischer et al. [19] show that code snippets on StackOverflow are indeed
widely shared and used by developers and look into the implications that arise from
this. Moreover, Baltes et al. [4] build an open dataset containing code extracted from
StackOverflow in order to provide a means for understanding how these snippets are
maintained and evolve over time.

Dietrich et al. [14] present an interesting study on detecting the programming
language used in StackOverflow code snippets. The authors look at two different
methods for classifying the language used. The first one uses metadata provided
by users such as tags and other filters. The second approach uses the GitHub
linguist tool3, which according to the developers is an industry-strength library for
automatically classifying code and identifying the underlying programming language
used. The authors of the study remark that both approaches proved to be scalable
enough to be employed on diverse code repositories of various sizes. The results of
the paper however show that the two approaches produce results which are often not
consistent, which indicates that these tools should be used with caution. This further
indicates that a hybrid approach, which combines the strengths of both methods,
user provided metadata as well as automatic detection tools, should be investigated
in future research.

2https://github.com/yoeo/guesslang
3https://github.com/github/linguist

10

https://github.com/yoeo/guesslang
https://github.com/github/linguist

2.2. SQL data collection from StackOverflow

In Ponzanelli et al. [40] the authors construct a full island grammar which is ca-
pable of modelling Java tagged StackOverflow posts. The intention of the research
was to build a heterogeneous abstract syntax tree (H-AST) for each post type in
StackOverflow, that is questions, answers and comments, which is then used to con-
struct a structured dataset for the posts information, to be used in future research.
This solves one of the main problems with StackOverflow data mining, more specif-
ically the heterogeneous nature of data which can be found in posts. Using the
provided dataset, the contents of a post can be navigated by differentiating between
code, which in this case is Java, and natural language fragments. Moreover, the
authors also provided other meta information for each post in the dataset such as
term frequency vectors and mentioned terms. In a previous study Ponzanelli et al.
[39] present an interesting Eclipse plugin which leverages information from Stack-
Overflow posts and provides assistance to developers using the active context in the
IDE. More specifically, the plugin formulates queries to StackOverflow using the
information available in the active context of the IDE and then presents a ranked
list of results to the developer who can then directly insert the retrieved code from
the posts.

Previous research has also used StackOverflow data to gain insights into trends
and most common topics of interest in the development community. Barua et al.
[5] and Linares-Vásquez et al. [26] use LDA modeling techniques to discover the
most frequent topics present in post discussions. The studies also analyse these
topics as well as their evolution over time and show the increasing popularity of
web development and mobile applications related discussions. Similarly Beyer and
Pinzger [6] use manual techniques to categorize Android related posts on StackOver-
flow and find dependencies between question types and certain problems, providing
a better understanding of the most frequent issues appearing in mobile app develop-
ment. This again shows the great potential of using the huge knowledge base that
StackOverflow has become in extracting interesting information for various studies.
Although we do not provide this analysis in our paper, it would be very interesting
to use our collected dataset and perform LDA analysis on it in order to identify the
main topics of interest for SQL related questions present in StackOverflow posts.
Furthermore, it could also be very insightful to perform manual analysis on some of
the posts for which our tool reports semantic issues found in the extracted queries,
in order to understand whether developers notice the presence of these types of SQL
issues as well as if the errors are addressed over time. Finally, Khatoon et al. [24]
provide a complete overview and evaluation of current source code mining tools and
techniques, mostly focused on sources such as code tracking websites or other APIs,
however relevant nonetheless in presenting different methods for source code extrac-
tion. Other studies on mining source code from various APIs are also presented by
Lamba et al. [25], Xie and Pei [46] and Kagdi et al. [22].

11

Chapter 3

Heuristics for SQL Semantic
Bug Detection

In this chapter we present in Section 3.1 a detailed description of semantic bugs found
in SQL queries as well as detection strategies for these in Section 3.2. Furthermore,
details about the implementation of the rule-based static analysis tool for detecting
these bugs are given in Section 3.3. The process used for validating the tool is
presented in Section 3.4 followed by the research methodology in Section 4.1 and
finally the results which are shown in Section 4.3.

3.1 Semantic bugs in SQL queries

A semantic bug in an SQL query, as defined by Brass and Goldberg [9], refers to a
legal query which does not (always) produce the intended result. To be more precise,
it means that the query uses correct SQL syntax, however the results it produces are
incorrect for the given task, which means the query has some semantic bug. These
are the types of errors that the tool presented in this paper tries to detect. This
task is however non-trivial especially when there is no information about the task
for which the query was written or how the queried data is structured.

Semantic bugs are especially common to appear in queries written by students
who are yet to master the SQL language, however these can also be present in real
world applications, which makes them more dangerous. Since these issues do not
usually generate any warnings from the database engines, it is therefore harder for
inexperienced developers to catch them, especially due to the fact that in some cases
the queries might actually seem to produce the correct results. For this very reason,
it can be argued that semantic bugs in SQL are more dangerous than syntactic
errors, which can very easily be detected as well as corrected. This is why tools for
detecting these types of issues should be directly integrated in either development
environments or even better, plugins that can check the correctness of queries during
runtime.

Furthermore, semantic bugs can often impact the overall performance of the

13

3. Heuristics for SQL Semantic Bug Detection

query leading to increased computation time or inefficient resource usage. This is
again quite important in applications where speed is critical and executing queries
which contain semantic bugs might lead to bottlenecks as discussed by Muse et al.
[34] in their paper. Although previous studies did not show significant correlation
between SQL code smells and other traditional code smells, it was shown by Muse
et al. [34] that once an SQL semantic bug is introduced in some system, it tends
to have a longer lifespan than other more traditional semantic code smells, which
makes the task of detecting these types of errors quickly even more important.

3.2 Detection strategies for SQL semantic bugs

In this section we propose several heuristics used for detecting semantic bugs in
SQL queries. Each of these are later implemented as rules in the static analysis
tool we developed for this project. The errors, which are detected by our proposed
heuristics, were initially presented and classified in the work of Brass and Goldberg
[9] which represents a complete list of semantic bugs encountered in SQL. A small
subset of semantic bugs was also collected from the SQL Enlight tool. This is a
closed source static analysis tool developed by Yubitsoft Eood which aims to detect
a number of issues in SQL queries as well. Other tools for SQL analysis and code
smell detection are TOAD and SQL Prompt, both of which are also closed source
and require a set of input queries as well as database schemas in order to detect
any issues. Furthermore, none of the previously mentioned tools are able to analyse
queries embedded in source code.

The rule-based static analysis tool developed for this project uses a hard imple-
mentation, meaning that the worst is always assumed, since there is no additional in-
formation related to tasks or database schemas. This means that for certain queries,
the tool might generate false positive warnings, as will later be discussed in Section
3.4, however this was preferred since it offers a good tradeoff for the setting when
little information about the queries is known.

In the following subsections we provide a description of each bug, examples of
SQL queries that contain the semantic bug and present the implementation of each
detection strategy together with any assumptions made by the heuristics which are
used in our tool. A summary of all the semantic bugs that our tool detects is also
presented in Table 3.1.

Semantic bug Description Ref.

Inconsistent tuple variable Tuples matched on key attributes access
different values for some other attribute

[9]

Constant output column The value of an output column is constant
and can be derived from the query

[9]

Duplicate output column The same attribute is present inside the
SELECT clause multiple times

[9]

Unnecessary JOIN clause Tuple can be replaced with another already
existing one (removing unnecessary join)

[9]

14

3.2. Detection strategies for SQL semantic bugs

Identical tuple variables Tuples matched on key attributes are iden-
tical

[9]

Comparison with NULL Using normal comparison operators with
NULL instead of IS NULL expression

[9] [34]

Unnecessary general comparison Using greater than or equals or less than
or equals operators instead of the equals to
operator

[9]

LIKE used without wildcards Like can be replaced with equals to opera-
tor

[9] [16]

Unnecessary SELECT list in EXISTS There is no need to add a complicated
SELECT list inside EXISTS subqueries

[9]

Unnecessary index scan Using a wildcard character at the begin-
ning of a string results in missing the access
predicate

[17]

Unnecessary DISTINCT in aggregations For certain aggregation function DISTINCT
keyword has no effect on the result

[9] [18]

Unnecessary COUNT argument In certain cases the COUNT argument is not
necessary and can be replaced with some-
thing simple

[9]

Unnecessary GROUP BY attribute Attribute under GROUP BY which does not
appear under SELECT or HAVING outside ag-
gregations is unnecessary

[9] [34]

Unnecessary GROUP BY clause If no aggregation functions are used, GROUP
BY can be replaced with SELECT DISTINCT

[9] [34]

Unnecessary UNION condition Two UNION clauses with the same SELECT
and FROM conditions and mutually exclusive
WHERE conditions can be merged

[9]

Unnecessary ORDER BY terms A constant term is not necessary to be in-
cluded in the ORDER BY clause

[9]

Unnecessary GROUP BY terms A constant term is not necessary to be in-
cluded in the GROUP BY clause

[9]

Inefficient HAVING clause Condition inside the HAVING clause that can
be moved inside the WHERE clause making
the query more efficient

[9]

Missing JOIN conditions Missing references for the joined tables [9]
Uncorrelated EXISTS subqueries Subqueries contain no reference to tables or

tuples defined in the higher level portions
of the query

[9]

Mismatch in subquery SELECT For IN subqueries, the SELECT list from the
inner query should match the attributes
used in the outer query

[9]

Strange subquery conditions A condition inside an SQL subquery which
accesses only tuple variables from the outer
query is strange

[9]

Strange HAVING clause A query using a HAVING clause without a
GROUP BY clause is strange

[9]

Strange wildcards without LIKE Using wildcard characters without LIKE is
strange

[9]

Division by zero Potential divisions by zero due to order of
operation execution

[9]

Table 3.1: Summary of semantic bugs detected by our tool

15

3. Heuristics for SQL Semantic Bug Detection

3.2.1 Inconsistent tuple variable

Motivation: This bug is present whenever the key attributes of two different tuple
variables over the same relation are matched while at the same time for some other
attribute the two tuple variables are matched to different values. Since our tool
does not require information about the database schema, we can not determine the
key attributes, therefore the condition for this semantic bug is relaxed by dropping
this constraint. More specifically, whenever two different tuple variables over the
same relation have a set of attributes on which they are matched as well as at least
one attribute for which there are different requirements, then this means the query
is inconsistent, since the conditions can not be satisfied at the same time, hence
the result set will be empty. The following example should be detected as having a
semantic bug1.

SELECT * FROM audit a1
WHERE NOT EXISTS (
SELECT * FROM audit a2
WHERE a2.status='approve' AND a1.status='decline' AND a2.id=a1.id);

In this example, the two tuple variables a1 and a2 over the same relation audit
are being matched inside the EXISTS subquery on the id attribute, however, the
query is inconsistent since a1.status = 'decline' and a2.status = 'approve' can not
have two different values at the same time, hence the result set for this subquery
will always be empty. Without knowing the intent of the developer, we can not
propose a refactored version of the query, however an equivalent query would be:

SELECT * FROM audit a1;

Detection strategy: Detecting this semantic bug is done by building, for each tuple
variable used, a set of attributes which are equated with other tuple variables over
the same relation. Furthermore, a second set is built which stores the attributes
that are equated with other constant values. After the query is parsed, for all tuple
variables over the same relation, we check the set of matching attributes as well as
the set of attributes which are equated to different values. If there is a full match
between the attributes in the first set, then we check to see whether there are any
common attributes from the second set which might be equated to different values.
If this is the case, then the query has inconsistent conditions and a warning for this
semantic bug is generated by our tool.

3.2.2 Constant output column

Motivation: This semantic bug appears whenever the value of an output column
is constant and can be derived from the query without any additional information

1https://stackoverflow.com/questions/34064071/how-to-select-data-based-on-speci
al-condition

16

https://stackoverflow.com/questions/34064071/how-to-select-data-based-on-special-condition
https://stackoverflow.com/questions/34064071/how-to-select-data-based-on-special-condition

3.2. Detection strategies for SQL semantic bugs

regarding the state of the database. More specifically, whenever an attribute under
the WHERE clause is equated to some constant value, if it is also present in the SELECT
list, then it will always have the same value. This attribute can therefore be
removed from the SELECT clause. The following example should be detected as having
a semantic bug2.

SELECT * FROM person WHERE name = 'robert';

In this example, there is a constant column which is present in the output of the
query, more specifically the name attribute is equated to some constant value, thus
it can be removed from the SELECT clause. We can not directly provide a potential
fix for this query without having more information about the structure of the person
schema, however the query can easily be corrected by specifying only the individual
columns that are needed.

Detection strategy: This bug is detected by looking for attributes under the WHERE
clause which are equated to some constant value. If this attribute is also present
under the SELECT clause or the select all operator (*) is used, then it means that it
will always have a constant value, hence it can be removed from the output, and a
warning indicating this will be generated by our tool.

3.2.3 Duplicate output column

Motivation: This bug appears when the SELECT list of a query or subquery contains
the same attribute multiple times. In this case, it means that duplicate output
columns will be present in the result set, therefore these columns can be removed
from the SELECT clause, making the query easier to understand. The following exam-
ple should be detected as having a semantic bug3.

SELECT e.empid, e.fname, c.description AS hair, c.description AS race
FROM employee2 e INNER JOIN code c;

In this example, there is a duplicate output column, since the c.description
attribute is specified two times under the SELECT clause of the query. A potential
fix for the example query is given below.

SELECT e.empid, e.fname, c.description AS hair_or_race
FROM employee2 e INNER JOIN code c;

Detection strategy: For detecting this semantic bug, the SELECT clause as well as the
FROM clause of each query is parsed. We then keep track of tuple variables declared
in the FROM clause and referenced under SELECT, in order to detect different tuple

2https://stackoverflow.com/questions/16449377/combine-two-queries-to-check-for-d
uplicates-in-mysql

3https://stackoverflow.com/questions/10845201/tsql-join-query

17

https://stackoverflow.com/questions/16449377/combine-two-queries-to-check-for-duplicates-in-mysql
https://stackoverflow.com/questions/16449377/combine-two-queries-to-check-for-duplicates-in-mysql
https://stackoverflow.com/questions/10845201/tsql-join-query

3. Heuristics for SQL Semantic Bug Detection

variables referring to the same attribute. All attributes present in the SELECT clause
are then verified in order to determine whether there are duplicates in this list.
Furthermore, if the select all operator (*) is present, then there is also no need for
selecting other attributes.

3.2.4 Unnecessary JOIN clause

Motivation: This bug appears in queries containing a tuple variable A, for which
only the key attributes are accessed, and this key is then equated with the foreign
key of another tuple variable B. In this case, the tuple variable A is not needed,
as this results in an unnecessary JOIN being used. This semantic bug can therefore
have an impact on the performance of the query and should be corrected. For our
tool, the requirement on key attributes is dropped, since only the query is presented
as input, and there is no way of detecting which attributes represent the keys for
a tuple variable. Therefore, we check if for some tuple variable A, the attributes
which are being accessed for it are then further equated with the same attributes
of another tuple variable B, in which case A might not be needed, resulting in the
unnecessary JOIN. The following example should be detected as having a semantic
bug4.

SELECT t.* FROM terms t
JOIN term_relationships tr ON tr.term_id = t.term_id
JOIN posts p ON p.post_id = tr.post_id WHERE p.post_id = 1;

In this example, there is an unnecessary JOIN for posts on post_id since the con-
dition inside the WHERE clause, p.post_id = 1, can be replaced by tr.post_id = 1 and
moved up inside the second JOIN clause. This not only helps with making the query
easier to understand, but also improves the performance of the query since there is
one less JOIN that needs to be executed. A potential fix for the example query is
given below.

SELECT t.* FROM terms t
JOIN term_relationships tr ON tr.term_id = t.term_id
WHERE tr.post_id = 1;

Detection strategy: Detecting this semantic bug is done by keeping track, for each
tuple variable, of the comparisons in which they are involved throughout the query.
After the query is parsed, for each tuple variable A, we check all the comparison
expressions in which it was used. If all accessed attributes are also equated with a
different tuple variable B, under the assumption that these attributes are a foreign
key of this tuple variable B, then a warning for an unnecessary JOIN is raised.

4https://stackoverflow.com/questions/25953303/multiple-select-result-in-mysql-d
epend-on-other-select

18

https://stackoverflow.com/questions/25953303/multiple-select-result-in-mysql-depend-on-other-select
https://stackoverflow.com/questions/25953303/multiple-select-result-in-mysql-depend-on-other-select

3.2. Detection strategies for SQL semantic bugs

3.2.5 Identical tuple variables

Motivation: If a query contains two different tuple variables over the same relation
for which the key attributes are equated, then these two variables must always point
to the same tuple. Since our tool does not take as input any information regarding
the key attributes of the schema for which the query was written, the detection rule
checks for tuple variables over the same relation for which at least one attribute is
equated, with the assumption that this attribute represents the key. In some cases,
this might not hold and the generated warning should then be considered as a false
positive. The following example should be detected as having a semantic bug.

SELECT * FROM employees X, employees Y WHERE X.employee_id=Y.employee_id;

In this example, the two tuple variables X and Y over the same relation employees
are matched on employee_id, thus under the assumption that this is a unique key, the
two tuple variables are identical, meaning they will always refer to the same rows.
In this case, we can not directly provide a potential fix for this query without having
more information about the structure of the employees schema and the underlying
task for which the query was written.

Detection strategy: The implementation for detecting this semantic bug first stores
all tuple variables used in the query as well as the tables to which the variables
refer. Whenever the equals to operator is detected, we check to see whether the
tuple variables used in the comparison are pointing to the same underlying table
and the same attribute is used on both sides of the comparison. If this is the case,
under the assumption that the compared attribute represents a unique key on the
table, then the two tuple variables must always point to the same tuple, thus they
are identical and a warning is generated indicating the presence of this semantic bug.

3.2.6 Comparison with NULL

Motivation: In some database management systems it is syntactically valid to use
A = NULL, however this expression always has a constant truth value of either null or
unknown. To avoid such situations, the IS NULL or IS NOT NULL should always be used
instead. The following example should be detected as having a semantic bug5.

SELECT r.id, r.authtoken.instagram , r.username FROM root r
WHERE r.abc <> null;

In this example, r.abc is being compared to null. For some database engines,
this might not be considered a syntactic error, however the condition will return
either null or unknown. To avoid these types of situations, when null is involved, we

5https://stackoverflow.com/questions/52203347/check-if-field-exists-in-cosmosd
b-json-with-sql-nodejs

19

https://stackoverflow.com/questions/52203347/check-if-field-exists-in-cosmosdb-json-with-sql-nodejs
https://stackoverflow.com/questions/52203347/check-if-field-exists-in-cosmosdb-json-with-sql-nodejs

3. Heuristics for SQL Semantic Bug Detection

should always use the IS NULL or IS NOT NULL expressions instead of the comparison
operators. A potential fix for the example query is given below.

SELECT r.id, r.authtoken.instagram , r.username FROM root r
WHERE r.abc IS NOT null;

Detection strategy: For detecting this semantic bug, whenever the equals to or not
equals to operators are used inside a query, we check to see whether one of the terms
is the NULL keyword. If this is the case, then the comparison operator should be
replaced with the expression IS NULL or IS NOT NULL respectively.

3.2.7 Unnecessary general comparison

Motivation: This semantic bug concerns the greater than or equals as well as the
less than or equals operators. When the greater than or equals operator is used
inside the WHERE clause and the rightmost term of the comparison operator contains
a subquery where the SELECT list only uses the MAX function with the same attribute as
the leftmost comparison term, then the greater than or equals can be replaced with
the equals operator. Similarly, the same holds for the less than or equals operator
and the MIN function. The following example should be detected as having a semantic
bug6.

SELECT name FROM world
WHERE gdp >= (SELECT max(gdp) FROM world WHERE continent = 'europe');

In this example, the greater than or equals operator from within the WHERE clause
can be replaced by the equals operator, because of the SELECT max(gdp) expression
from the subquery, which will make the query easier to understand. A potential fix
for the example query is given below.

SELECT name FROM world
WHERE gdp = (SELECT max(gdp) FROM world WHERE continent = 'europe');

Detection strategy: This semantic bug is detected by checking the greater than or
equals or less than or equals operators inside the WHERE clauses of queries. Whenever
such operators are detected, the clause following the operator is checked in order to
determine whether a SELECT MAX or SELECT MIN is used, where the MAX and MIN functions
use the same attribute as the leftmost term of the comparison operator. In these
cases, the comparison can be replaced by the equality operator making the query
easier to understand.

6https://stackoverflow.com/questions/43248530/max-or-all-in-sql

20

https://stackoverflow.com/questions/43248530/max-or-all-in-sql

3.2. Detection strategies for SQL semantic bugs

3.2.8 LIKE used without wildcards

Motivation: If a query uses a LIKE expression which does not contain any wildcard
characters, then the LIKE can and should be replaced by the equals to operator.
When using the equality operator, the entire strings are compared as opposed to
comparing one character at a time when the LIKE expression is used without any
wildcards. The following example should be detected as having a semantic bug7.

SELECT description FROM tproduct WHERE description LIKE 'diamond';

In this example, the LIKE expression is used, however it does not contain any
wildcard characters. In this case, the LIKE expression can be replaced by the equality
operator. A potential fix for the example query is given below.

SELECT description FROM tproduct WHERE description = 'diamond';

Detection strategy: For detecting this bug, the LIKE expressions from within the
parsed query are checked in order to see whether any wildcard characters are being
used. If this is not the case, a warning is raised indicating the presence of this
semantic bug.

3.2.9 Unnecessary SELECT list in EXISTS clause

Motivation: When using an EXISTS subquery, the SELECT list from the subquery is
not important since EXISTS only checks for row existence, independent of the selected
columns. When the query is executed, as soon as the EXISTS subquery returns one
row, its execution is stopped and TRUE is returned to the parent query. Therefore, in
EXISTS subqueries, the SELECT list is not important and something simple such as the
select all operator (*) should be used. However, this does not hold for IN subqueries,
where the SELECT list from within the subquery is indeed important. The following
example should be detected as having a semantic bug8.

SELECT id, name FROM tbl_bkp t1
WHERE NOT EXISTS (
SELECT id, name FROM tbl_namecode WHERE id=t1.id AND name = t1.name);

In this example, inside the EXISTS subquery, the SELECT list contains multiple
attributes. This is redundant as the only TRUE or FALSE will be returned to the parent
query, therefore the SELECT list can be replaced with something simpler such as the
select all operator. A potential fix for the example query is given below.

7https://stackoverflow.com/questions/6502134/query-for-exact-match-of-a-string-i
n-sql

8https://stackoverflow.com/questions/27633978/compare-combination-of-two-colum
n-with-combination-of-other-two-in-sql

21

https://stackoverflow.com/questions/6502134/query-for-exact-match-of-a-string-in-sql
https://stackoverflow.com/questions/6502134/query-for-exact-match-of-a-string-in-sql
https://stackoverflow.com/questions/27633978/compare-combination-of-two-column-with-combination-of-other-two-in-sql
https://stackoverflow.com/questions/27633978/compare-combination-of-two-column-with-combination-of-other-two-in-sql

3. Heuristics for SQL Semantic Bug Detection

SELECT id, name FROM tbl_bkp t1
WHERE NOT EXISTS (
SELECT * FROM tbl_namecode WHERE id=t1.id AND name = t1.name);

Detection strategy: Detecting this semantic bug is done by parsing the query and
searching for EXISTS subqueries. When these are detected, the SELECT list is checked
and if it does not use a simple operator such as the select all operator or a single
attribute, then a warning for this bug is raised.

3.2.10 Unnecessary index scan

Motivation: This semantic bug concerns the use of wildcard characters used at the
beginning of a word while searching with the LIKE operator. In SQL, the usage of
the LIKE operator is often the cause of unexpected performance issues because of
inefficient indexing. The position of the wildcard characters inside the word that
is being matched can cause significant drops in performance. When using a LIKE
filter, only the characters which appear before the first wildcard can be used as
indices to speed up the pattern matching. The remaining characters are just filter
predicates which do not help with reducing the scanned index range. Therefore, LIKE
expressions can contain an access predicate, the part before the first wildcard, and
the filter predicate, the remaining characters. The scanned index range becomes
smaller if the access predicate is more selective, resulting in better performance for
the queries since the index lookup is faster. Thus, if a LIKE expression starts with
a wildcard character, then no access predicate is present which defeats the purpose
of an index, resulting in a scan of the entire database table. The following example
should be detected as having a semantic bug9.

SELECT * FROM street WHERE street_name LIKE '%park%ave%10%';

In this example, the search term for the LIKE expression starts with a wildcard
character (matching zero or more characters), therefore there is no access predicate,
thus the query will perform a full table index scan. In order to optimize the query it
would be better to either provide an access predicate or, in case this is not possible,
use a search function which will result in a full text index scan. In this case, the query
can be fixed by using the MATCH and AGAINST syntax. The MATCH operator takes as input
a comma separated list which names the columns to be searched, while the AGAINST
clause takes as input the string to search for together with an optional modifier that
includes the type of search. This can either be a natural language search, a boolean
search or a query expansion search. A potential fix for the example query is given
below.

SELECT * FROM street WHERE MATCH(street_name)
AGAINST('park ave 10' WITH QUERY EXPANSION);

9https://stackoverflow.com/questions/11754192/like-operator-to-retrieve-the-res
ults

22

https://stackoverflow.com/questions/11754192/like-operator-to-retrieve-the-results
https://stackoverflow.com/questions/11754192/like-operator-to-retrieve-the-results

3.2. Detection strategies for SQL semantic bugs

Detection strategy: The implementation for detecting this semantic bug parses the
query in search for LIKE expressions. Whenever such an expression is found, the
search term is checked in order to determine whether or not it starts with a wild-
card character. If this is the case, a warning is generated indicating that an access
predicate is missing, thus a full index scan will be performed.

3.2.11 Unnecessary DISTINCT in aggregations

Motivation: For the MIN and MAX aggregation functions the DISTINCT keyword is never
necessary since this has no effect on the underlying query results. Furthermore, in
most cases the presence of duplicates is likely significant in computing the results of
the SUM and AVG aggregation functions, thus duplicates should not be excluded unless
there are strong reasons for this. Therefore, the presence of the DISTINCT keyword
inside these aggregation functions is strange and should raise a warning. For the
other aggregation functions, it can not be determined whether DISTINCT is necessary
or not inside the clause without having additional information about the query task,
thus the other aggregation functions are excluded from this check. The following
example should be detected as having a semantic bug10.

SELECT SUM(DISTINCT money) AS sum_money , m.created_at FROM receipt r
JOIN material m GROUP BY m.created_at;

In this example, the DISTINCT keyword is used inside the SUM function. Unless there
are strong reasons for this, the presence of DISTINCT here is considered strange since
duplicates are most likely significant in this case, however without having additional
information about the task for which the query was written, our tool will raise a
warning for a potential semantic bug. Without having more information about the
underlying task for which the query was written, we can not provide a potential fix
for this query.

Detection strategy: The detection strategy checks whether any of the MIN, MAX, SUM or
AVG aggregation functions are present in the query. For each of them, it then detects
whether the DISTINCT keyword was used inside the function clause and if so a warning
is raised.

3.2.12 Unnecessary COUNT argument

Motivation: The COUNT aggregation function can be used with or without an argu-
ment, in which case the star symbol is used (*) most commonly. Whenever there is
no DISTINCT being used in the COUNT function and the argument can not be null, these
two versions of the COUNT function are equivalent and the one without any argument
is preferred since it makes the query easier to understand and read. In our imple-
mentation for this detection strategy, we can not check the condition related to the

10https://stackoverflow.com/questions/53067977/combine-two-tables-unique-column

23

https://stackoverflow.com/questions/53067977/combine-two-tables-unique-column

3. Heuristics for SQL Semantic Bug Detection

arguments of the COUNT function not being null, since this would require additional
information about the database schemas, therefore we make the assumption that
the arguments used inside the COUNT functions are not null. The following example
should be detected as having a semantic bug11.

SELECT m.time, COUNT(r.seconds) FROM dbo.minutes m GROUP BY m.time;

In this example, there is no DISTINCT being used in the COUNT function and only
one argument is used. Therefore, the clause inside the COUNT can be simplified and
the start operator can be used instead. A potential fix for the example query is
given below.

SELECT m.time, COUNT(*) FROM dbo.minutes m GROUP BY m.time;

Detection strategy: For detecting this semantic bug, we parse the query and check
if any COUNT functions are being used. For each of these, we then check whether
DISTINCT is used inside the COUNT clause. If this is not the case, and the clause only
contains an argument, then we raise a warning indicating that the COUNT clause can
be simplified by using the start operator instead.

3.2.13 Unnecessary GROUP BY attribute

Motivation: Whenever an attribute which appears under the GROUP BY clause is func-
tionally determined by other attributes and if it does not appear under the SELECT
or HAVING clauses outside of aggregation functions, then it can be removed from the
GROUP BY altogether. For our tool, this condition is relaxed since we are looking only
at the query without knowing the database schema, thus it can not be determined
whether an attribute is functionally determined by other attributes or not. There-
fore, we only check for an attribute which appears inside the GROUP BY clause without
being used in either the SELECT or HAVING clauses outside of any aggregation func-
tions, in which case a warning for this semantic bug will be triggered. The following
example should be detected as having a semantic bug12.

SELECT count(*) AS countbyid FROM items
WHERE fkid = 2003799 GROUP BY fkid
HAVING countbyid >1 ORDER BY countbyid;

In this example, the fkid attribute is present under the GROUP BY clause without
being used in either the SELECT or the HAVING clauses outside aggregation functions,
therefore it can be removed from the GROUP BY. This will further simplify the query
since the fkid is the only attribute present under GROUP BY. Furthermore, this query
contains another semantic bug since fkid can only have one value as it is equated
to some constant in the WHERE clause, thus the grouping will have no effect on the
result. A potential fix for the example query is given below.

11https://stackoverflow.com/questions/761700/how-can-i-check-for-average-concurr
ent-events-in-a-sql-table-based-on-the-date

12https://stackoverflow.com/questions/4818207/sql-aggragates-and-aliass

24

https://stackoverflow.com/questions/761700/how-can-i-check-for-average-concurrent-events-in-a-sql-table-based-on-the-date
https://stackoverflow.com/questions/761700/how-can-i-check-for-average-concurrent-events-in-a-sql-table-based-on-the-date
https://stackoverflow.com/questions/4818207/sql-aggragates-and-aliass

3.2. Detection strategies for SQL semantic bugs

SELECT count(*) AS countbyid FROM items
WHERE fkid = 2003799
HAVING countbyid >1 ORDER BY countbyid;

Detection strategy: The detection strategy for this bug parses the query and keeps
track of the attributes appearing under the SELECT and HAVING clauses outside of
aggregation functions. Furthermore, the attributes appearing under the GROUP BY
clause are also stored. When the parsing of the query is finished, we check for
attributes found under the GROUP BY clause that are not present in either of the
two lists with attributes detected inside SELECT or HAVING clauses. For each of these
attributes a warning is raised indicating this semantic bug being detected in the
query.

3.2.14 Unnecessary GROUP BY clause

Motivation: If a query has exactly the same attributes under the SELECT clause listed
inside the GROUP BY clause as well and if no aggregation functions are used in either
of the two clauses, then the GROUP BY clause can be replaced by SELECT DISTINCT. In
most cases, the SQL optimizer will produce the same or similar execution plans for
the two queries, so in these cases there is not always a gain in terms of performance,
however by rewriting the query this becomes shorter and clearer. In most of these
cases, using the GROUP BY clause essentially removes duplicates from the result set,
therefore the DISTINCT operator is better suited to be used, as opposed to situations
where aggregation functions are used in which case a GROUP BY is indeed required.
The following example should be detected as having a semantic bug13.

SELECT p.name FROM pc p LEFT JOIN sc s ON p.color=s.color
WHERE s.color IS NOT NULL GROUP BY p.name;

In this example, all the SELECT attributes are listed under the GROUP BY clause and
also no aggregation functions are used, therefore the GROUP BY clause can be dropped
and replaced by SELECT DISTINCT, making the query shorter and clearer. A potential
fix for the example query is given below.

SELECT DISTINCT p.name FROM pc p LEFT JOIN sc s ON p.color=s.color
WHERE s.color IS NOT NULL;

Detection strategy: The implementation for this strategy first checks whether any
aggregation functions are used in either the SELECT or the GROUP BY clauses. If this
is the case, then there is no need to continue with further checking the query for
this semantic bug. Otherwise, we continue by detecting all the terms used in the
SELECT clause as well as those used under the GROUP BY clause. If there is a perfect
match between these two sets of terms, then it means that the GROUP BY clause can
be replaced by a SELECT DISTINCT and a warning for this semantic bug is triggered.

13https://stackoverflow.com/questions/33840072/how-can-you-have-a-column-equal-a
ll-items-in-a-list

25

https://stackoverflow.com/questions/33840072/how-can-you-have-a-column-equal-all-items-in-a-list
https://stackoverflow.com/questions/33840072/how-can-you-have-a-column-equal-all-items-in-a-list

3. Heuristics for SQL Semantic Bug Detection

3.2.15 Unnecessary UNION condition

Motivation: A query for which the two UNION subqueries use the same SELECT ex-
pressions, the same FROM lists as well as mutually exclusive WHERE conditions, can be
simplified by joining the two WHERE clauses and connecting them using an OR, replacing
the UNION altogether. The same holds for queries using a UNION ALL clause, in which
case the query can again be simplified and the two different WHERE clauses joined using
an OR. For our tool, the condition for mutually exclusive WHERE conditions can not be
fully checked without having additional database schema information, therefore this
was relaxed to only having different WHERE clause expressions. The following example
should be detected as having a semantic bug14.

SELECT id, name, age FROM student WHERE age < 15 UNION
SELECT id, name, age FROM student WHERE name LIKE '%a%' ORDER BY name;

In this example, the query contains one UNION clause and we can observe that
the SELECT expressions of the two subqueries are the same as well as the FROM lists,
more specifically the same table student is used in both subqueries. Furthermore,
the two WHERE clauses are mutually exclusive, therefore, the query can be simplified
by replacing the UNION with an OR and joining the two WHERE clauses. This query also
suffers from another semantic bug, more specifically the unnecessary index scan,
since the LIKE expression is starting with a wildcard character. A potential fix for
the example query is given below.

SELECT id, name, age FROM student WHERE age < 15 OR
MATCH(name) AGAINST ('a' WITH QUERY EXPANSION)
ORDER BY name;

Detection strategy: The implementation for this strategy first detects whether the
query involves any UNION or UNION ALL clauses. If this is the case, then we continue
with storing the SELECT expressions, as well as the FROM lists and the expressions under
the WHERE clauses. After the whole query is parsed, we pairwise check the collected
lists involving the three different clauses. Whenever two SELECT list expressions as
well as FROM lists from two different subqueries are the same, the WHERE clauses are
checked and if different then a warning is triggered, informing the user that the UNION
can be replaced by an OR condition.

3.2.16 Unnecessary ORDER BY terms

Motivation: This bug concerns an ORDER BY term which can only have one possible
value, in which case it is not necessary for this term to be included under the ORDER BY
clause. More specifically, whenever a term inside the WHERE clause is equated to some
constant value, it does not make sense for this term to also be present inside the
ORDER BY clause as this will not have any effect on the result of the query. Moreover,

14https://stackoverflow.com/questions/4715820/how-to-order-by-with-union-in-sql

26

https://stackoverflow.com/questions/4715820/how-to-order-by-with-union-in-sql

3.2. Detection strategies for SQL semantic bugs

the same holds in the case where an ORDER BY term is functionally determined by
previous terms which are used in the clause. However, since these cases can not
be detected without having additional information about the database schema, our
tool will not check for these situations. Furthermore, whenever a CASE expression is
present inside the ORDER BY clause, then the involved terms are needed regardless of
whether they have only one possible value or are otherwise functionally determined
by previous terms used inside the clause. The following example should be detected
as having a semantic bug15.

SELECT q.postid, a.postid, c.commentid FROM posts q
WHERE q.postid = 1234 ORDER BY q.postid, a.postid, c.commentid;

In this example, the q.postid term from the ORDER BY clause is not necessary since
it has a constant value, as can be observed from the q.postid = 1234 condition inside
the WHERE clause. A potential fix for the example query is given below.

SELECT q.postid, a.postid, c.commentid FROM posts q
WHERE q.postid = 1234 ORDER BY a.postid, c.commentid;

Detection strategy: For detecting this semantic bug, the query is parsed and the
constant columns, those which are equated to a single constant value inside the
WHERE clause, are being stored. For these terms, we then check if they are not present
inside the ORDER BY clause and also not included inside of any CASE expression inside
the ORDER BY clause. In these cases, the terms are not necessary in the ORDER BY clause
and a warning should be raised by our tool.

3.2.17 Unnecessary GROUP BY terms

Motivation: This bug concerns a GROUP BY term which can only have one possible
value, in which case it is not necessary for this term to be included under the GROUP
BY clause. More specifically, whenever a term inside the WHERE clause is equated to
some constant value, it does not make sense for this term to also be present inside
the GROUP BY clause as this will not have any effect on the result of the query. The
following example should be detected as having a semantic bug16.

SELECT division, count(id) AS ct FROM test
WHERE role >=101 AND division=1 GROUP BY division;

In this example, the division term from the GROUP BY clause is not necessary since
it has a constant value, as can be observed from the division=1 condition inside the
WHERE clause. A potential fix for the example query is given below.

15https://stackoverflow.com/questions/1918398/how-do-you-query-for-comments-stack
overflow-style

16https://stackoverflow.com/questions/1917516/sql-count-with-group-by-not-returni
ng-0-zero-records

27

https://stackoverflow.com/questions/1918398/how-do-you-query-for-comments-stackoverflow-style
https://stackoverflow.com/questions/1918398/how-do-you-query-for-comments-stackoverflow-style
https://stackoverflow.com/questions/1917516/sql-count-with-group-by-not-returning-0-zero-records
https://stackoverflow.com/questions/1917516/sql-count-with-group-by-not-returning-0-zero-records

3. Heuristics for SQL Semantic Bug Detection

SELECT division, count(id) AS ct FROM test
WHERE role >=101 AND division=1;

Detection strategy: The strategy for detecting this semantic bug involves parsing the
query and storing the constant columns, those which are equated to a single constant
value inside the WHERE clause, as well as not being used in any other expressions. For
these terms, we then check if they are present inside the GROUP BY clause as well, in
which case a warning should be raised by our tool.

3.2.18 Inefficient HAVING clause

Motivation: If a condition inside the HAVING clause of an SQL query uses only GROUP BY
attributes and no aggregation functions are used in either the HAVING or the GROUP BY
clauses, then the condition can be moved under the WHERE clause. Since the WHERE
clause is executed before the HAVING clause, it is much cheaper to check the condition
already under the WHERE clause as this will result in faster running times allowing the
SQL optimizer to better run the query. It should not be considered a semantic bug
if the condition inside the having clause uses any of the SQL aggregation functions,
since these are not allowed to be present in the WHERE clause of the query. The
following example should be detected as having a semantic bug17.

SELECT first_name FROM students GROUP BY class HAVING class IN('a');

In this example, the IN condition inside the HAVING clause can be moved under the
WHERE clause as it does not make use of any aggregation functions. This will result in
a faster query as the condition will be executed when the WHERE clause is evaluated
thus the GROUP BY will run on a smaller result set. A potential fix for the example
query is given below.

SELECT first_name FROM students WHERE class = 'a';

Detection strategy: For detecting this semantic bug, the GROUP BY and HAVING clauses
are first checked to determine whether any aggregation functions are being used. If
this is not the case, the HAVING clause is then further analysed in search of conditions
that only use the attributes under the GROUP BY clause. These conditions can therefore
be moved under the WHERE clause making the query more efficient.

3.2.19 Missing JOIN conditions

Motivation: This bug appears in queries involving joined tables for which the joined
table sources do not have any column referenced neither in the JOIN condition nor
in the WHERE clause. When no JOIN predicate is present, the query will include the

17https://stackoverflow.com/questions/40992352/sql-group-by-and-having-not-worki
ng

28

https://stackoverflow.com/questions/40992352/sql-group-by-and-having-not-working
https://stackoverflow.com/questions/40992352/sql-group-by-and-having-not-working

3.2. Detection strategies for SQL semantic bugs

cartesian product of all rows, also known as the cross product, most certainly result-
ing in performance overhead for the queries and potentially wrong results as well.
Therefore, it is important that joined tables are referenced in the JOIN ON or the
WHERE clauses in order to avoid these types of issues. There is however one exception,
more specifically when a CROSS JOIN is used. In these cases, there is no need for the
involved table sources to have any columns referenced since for these queries the
intention is clearly to obtain the cross product of all rows, thus a warning should
not be generated. The following example should be detected as having a semantic
bug18.

SELECT station, slot, subslot, compid, compname FROM devicetrace AS dt
INNER JOIN complist as cl;

In this example, there are two joined tables, devicetrace and complist which do
not have any columns reference in either the JOIN or the WHERE conditions. This means
that the query result will include the cross product of all rows. Whether this was
the intention of the query’s author or not, missing join conditions are a potential
cause for performance overhead and should be signaled as semantic bugs. Without
having more information about the underlying task for which the query was written,
we can not provide a potential fix for this query.

Detection strategy: Detecting this semantic bug is done by parsing the query and
keeping track of all the used table sources. If less than two tables are used or a CROSS
JOIN is involved, there is no need to further continue with checking for missing join
conditions, so no warnings will be raised. If at least two table sources are used, then
the ON and WHERE clauses of the involved (sub)query are checked in order to detect
whether these table sources have any referenced columns. For any table which is not
referenced, a warning will be generated for missing a join condition.

3.2.20 Uncorrelated EXISTS subqueries

Motivation: Uncorrelated subqueries are those that do not contain any reference to
tables or tuple variables defined in the higher level portions of the query. If an EXISTS
or NOT EXISTS subquery does not contain any reference to tuple variables from outer
queries, this means that the subquery is uncorrelated, making it either globally true
or globally false. This is unusual behaviour since both EXISTS and NOT EXISTS clauses
should be used with correlated subqueries. When used in correlated subqueries,
the expression is evaluated once for every row in the parent query and either true
or false is returned as a result. Thus, when EXISTS subqueries are correctly used,
in correlated subqueries, the SQL optimizer can take advantage of evaluating the
subquery without materializing intermediate results as well as caching results in
order to reuse previously computed values of the predicate for the same values of

18https://stackoverflow.com/questions/16632901/how-to-do-where-clause-before-inn
er-join

29

https://stackoverflow.com/questions/16632901/how-to-do-where-clause-before-inner-join
https://stackoverflow.com/questions/16632901/how-to-do-where-clause-before-inner-join

3. Heuristics for SQL Semantic Bug Detection

the outer query tuple reference. Therefore, whenever an EXISTS subquery makes no
reference to any tuple variable from the outer query, this is a semantic error and
a warning should be raised. The following example should be detected as having a
semantic bug19.

SELECT * FROM final_combined_result wfcr
WHERE NOT EXISTS (SELECT contact_id , account_id FROM temp_wfcr);

In this example, the NOT EXISTS subquery is uncorrelated since there are no ref-
erences to outer tuple variables inside the subquery. This means that the subquery
will be either globally true or globally false, returning the same result set each time
it is executed for the rows in the parent query. Furthermore, this example also con-
tains another semantic bug, more specifically the SELECT list inside EXISTS subqueries
is not important, thus this can be simplified to just use the select all operator (*).
Again, without having more information about the underlying task for which the
query was written, we can not provide a potential fix for this query.

Detection strategy: For detecting this type of semantic bug, the query is parsed
in search for EXISTS subqueries. A list of previously encountered tables and tuple
variables is stored and whenever a condition inside an EXISTS subquery is encountered
we check to see whether any reference to outer tables or tuple variables is made. If
at least one such reference is detected, then the EXISTS subquery is considered to be
correlated and no warnings are generated for it. Whenever an EXISTS subquery is
not correlated, then the tool will trigger a warning for this semantic bug.

3.2.21 Mismatch in subquery SELECT

Motivation: When using the IN operator together with a subquery expression, the
SELECT list from the inner query should match the attributes used in the outer query.
This semantic error is especially dangerous since database engines will not detect any
syntax error if there is a mismatch between the subquery SELECT list and the attributes
used in the parent query. It is also true that there might be cases for which such
mismatches might not actually represent an issue with the query, however we believe
that SQL developers should still be informed about these mismatches, in order to be
able to further analyse whether the query contains any problem or not. Therefore,
when the SELECT clause from a subquery contains different attributes that the ones
used in the outside query a warning should be raised. The following example should
be detected as having a semantic bug20.

SELECT t1.articleno , t1.artdescription , t2.dateyear FROM t1
JOIN t2 WHERE NOT t1.articleno IN (SELECT t2.dateyear FROM t2);

19https://stackoverflow.com/questions/25978882/select-combination-of-columns-fro
m-table-a-not-in-table-b

20https://stackoverflow.com/questions/4177671/inverted-sql-query

30

https://stackoverflow.com/questions/25978882/select-combination-of-columns-from-table-a-not-in-table-b
https://stackoverflow.com/questions/25978882/select-combination-of-columns-from-table-a-not-in-table-b
https://stackoverflow.com/questions/4177671/inverted-sql-query

3.2. Detection strategies for SQL semantic bugs

In this example, there is a mismatch between t1.articleno in the parent query
and t2.dateyear in the SELECT clause of the inner query. While this might not always
represent an underlying problem with the query, our tool will raise a warning in
these situations. Again, without having information about the task for which the
query was written or information about the database schema, it is not possible to
detect for sure these types of issues, nor is it possible to provide a fix for these
queries, however we can assume that whenever there is a mismatch between these
attributes special attention is required, therefore developers should be informed.

Detection strategy: The implementation for this rule only looks at the IN expressions
from queries and compares the list of attributes used in the outside parent query
with the one used by the SELECT clause in the inner subquery. Whenever there is
a mismatch between the column names used in these two clauses, the tool keeps
track of this and after the whole query is parsed, a warning is displayed for all the
detected mismatches. In order to avoid a large number of potentially false positive
warnings, the implementation checks for substring matches as well in which case a
warning will not be generated.

3.2.22 Strange subquery conditions

Motivation: A condition inside an SQL subquery which accesses only tuple variables
from the outer query is strange as it can be moved up, as part of a condition in the
parent query. In some cases, this could even mean that unnecessary joins are present
and therefore the overall performance of the query is impacted, since inner queries
are executed before the outer ones and their returned results are then used inside
their parent queries. Furthermore, if a subquery condition only uses tuple variables
from outer queries, moving these conditions up helps with making the overall query
more understandable and at the same time makes it easier to detect other potential
issues. The following example should be detected as having a semantic bug21.

SELECT * FROM t1 WHERE t1.id IN (SELECT t2.id FROM t2 WHERE t1.a = 'aa');

In this example, the condition t1.a = 'aa' can be extracted from the inner query
and moved up, inside the WHERE clause of the outer query. This will not only help
with improving the readability of the query, but will also improve the performance
of the inner query as well. A potential fix for the example query is given below.

SELECT * FROM t1 WHERE t1.a = 'aa' AND t1.id IN (SELECT t2.id FROM t2);

Detection strategy: For implementing this rule in our tool, a map of tuple variables
encountered for inner and outer queries is built. Whenever a condition such as
equalities, comparisons or BETWEEN expressions are encountered, the tuple variables

21https://stackoverflow.com/questions/39871799/sql-with-ambiguous-column

31

https://stackoverflow.com/questions/39871799/sql-with-ambiguous-column

3. Heuristics for SQL Semantic Bug Detection

used in these conditions are checked against the map of tuples. If the condition only
contains tuple variables that are not defined inside the current subquery, then the
condition is marked as strange and the tool raises a warning. Since tuple variables
are defined in the FROM clause, this allows for building both the map of tuple variables
as well as checking subquery conditions while parsing the query at the same time,
hence only one iteration over the complete query is required for this rule.

3.2.23 Strange HAVING clause

Motivation: A query using the HAVING clause without a GROUP BY clause is considered
strange, since it can have only one result or none at all. The HAVING clause is similar to
the WHERE clause, however it only applies to groups as a whole rather than individual
rows. In standard SQL, the FROM clause is executed first, then the WHERE clause
followed by the GROUP BY and finally the HAVING and SELECT clauses. This means that
if the GROUP BY clause is not present, all the rows which are not excluded by the WHERE
clause will be returned as a single group to the HAVING clause. In this case, since no
grouping is performed between the WHERE and HAVING clauses, the latter will act like a
WHERE clause except it operates on the result set as a group and aggregation functions
are allowed as well. Furthermore, when joins are present, the HAVING clause without
a GROUP BY should generate a syntax error in most database engines. Therefore, since
HAVING is filtering groups, if no GROUP BY clause is present, then all rows represent
one group, in which case if the predicate inside the HAVING clause evaluates to true,
the query will return one row, otherwise nothing will be returned. Thus, in these
situations, a query using a HAVING clause without a GROUP BY clause being present is
strange and should be considered as having a semantic bug. The following example
should be detected as having a semantic bug22.

SELECT height FROM sashelp.class HAVING height = max(height);

In some database engines, this SQL query might even be considered as having a
syntax error as well since there is a reference to height in the HAVING clause without it
being contained in an aggregate function or the GROUP BY clause. In this case, our tool
will detect a semantic error since the HAVING clause is being used without GROUP BY
being present. A potential fix for the example query is given below.

SELECT height FROM sashelp.class GROUP BY height
HAVING height = max(height);

Detection strategy: The implementation for this rule will parse the query in search
for GROUP BY and HAVING clauses. Two boolean flags are used for tracking the presence
of either two clauses in the query. When done with parsing either the whole query
or a subquery, the two flags are checked. If the HAVING clause is present without a
GROUP BY clause also being used, then the tool marks this as a semantic bug.

22https://stackoverflow.com/questions/28032638/finding-the-id-associated-to-the-m
aximum-in-sas

32

https://stackoverflow.com/questions/28032638/finding-the-id-associated-to-the-maximum-in-sas
https://stackoverflow.com/questions/28032638/finding-the-id-associated-to-the-maximum-in-sas

3.2. Detection strategies for SQL semantic bugs

3.2.24 Strange wildcards without LIKE

Motivation: In SQL a number of special symbols are reserved to be used as wildcards.
More precisely, these symbols carry special meaning and are used to substitute one
or multiple characters in a string. Wildcards are used in combination with the LIKE
operator, which is allowed in the WHERE clause of the query, in order to search for the
specified pattern in the column entries. Since these special characters are written
inside a string, using one of these symbols in a comparison expression without the
LIKE operator will not generate a syntactic error as the database engine has no way
of knowing whether the author of the query intended to use the wildcard operator
or its underlying character inside the string. Thus, whenever a wildcard is used
without the LIKE operator, a warning should be triggered. The following example
should be detected as having a semantic bug23.

SELECT * FROM employees WHERE name = 'chris%';

In this example, the database engine will treat the wildcard character % as a
normal literal. This is most certainly not what the developer actually had in mind
when writing this query since the returned result will probably be the empty set as
there are no real names ending in %. A potential fix for the example query is given
below.

SELECT * FROM employees WHERE name LIKE 'chris%';

Detection strategy: The implementation for this rule parses the query in search for
comparison expressions involving columns and string values containing one or more
wildcard characters. Whenever these types of expressions are found, a warning for
wildcards used without the LIKE operator is triggered. The underscore (_) wildcard
character is not considered for this check since it is quite common for these types
of characters to appear in column values, therefore in these situations it can no be
determined if a missing LIKE operator is indeed a semantic bugs.

3.2.25 Division by zero

Motivation: One common problem involving data type operators is dividing by zero.
In SQL, since there is no guarantee on the evaluation sequence of statements within
the WHERE clause, it is therefore difficult for developers to avoid such situations. The
following example is considered unsafe and should be detected as a semantic bug24.

SELECT itm_num FROM itemconfig
WHERE (pal_qty / case_qty) > 500 AND case_qty > 0;

23https://stackoverflow.com/questions/543580/equals-vs-like
24https://stackoverflow.com/questions/11692384/division-in-a-sql-statement

33

https://stackoverflow.com/questions/543580/equals-vs-like
https://stackoverflow.com/questions/11692384/division-in-a-sql-statement

3. Heuristics for SQL Semantic Bug Detection

In this example, although the condition case_qty > 0 is present in the WHERE clause,
since the order of operations is not enforced, this query is still unsafe. A warning
should therefore be triggered when there is a division present in the query, except
situations in which the division is under the SELECT clause and the divisor column is
checked for not being equal to zero under the WHERE clause, since in these cases the
WHERE clause will be evaluated prior to the SELECT by any database engine.

Detection strategy: The implementation for this rule parses the query and stores all
the encountered division terms. Apart from this, a boolean flag is also created which
indicates whether the division term was under the SELECT clause or not. Furthermore,
all columns which are checked for not being equal to zero under the WHERE clause are
also stored. Finally, the divisions which are under the SELECT clause but for which
the divisor column is checked in the WHERE clause are removed from the initial set and
the remaining division terms are returned as a result for this rule which generates a
warning for potential divisions by zero.

3.3 Implementation

For detecting the previously described semantic bugs in SQL queries, we imple-
mented a static analysis tool, where each detection strategy represents one rule for
catching a different semantic bug. The tool was developed in Java and JSQLParser
was used for parsing the SQL queries. JSQLParser is an open source library which
translates SQL into a traversable tree of Java classes, for which the visitor design
pattern can then be used to inspect the whole query. The library was chosen for this
project because of its vast support for different syntaxes such as Oracle, SqlServer,
MySQL and PostgreSQL as well as its open source nature. The overall flow starts
with some input query being presented to the tool. Then, JSQLParser is used to
parse the query. Each detection rule, implemented as a JSQLParserVisitor, then
runs on the input query and whenever a rule is broken, the query is marked as being
problematic and a warning signaling the detected semantic bug is raised by the tool
and displayed to the user. An overview of the overall flow of the tool is presented in
Figure 3.1.

The detection strategies for each of the semantic bugs described in the previous
sections are implemented as individual rules which make use of the visitor design
pattern to parse SQL queries in search for different semantic bugs. Each rule focuses
on detecting a single bug type. Furthermore, the tool is easily open for extension
allowing for the implementation of numerous other rules for detecting other types
of issues. Since for most rules there are a number of similarities such as parsing
the queries in search for table sources or tuple variable names, there is a common
interface shared by all the rules. One key aspect that we wanted to have for our tool
was the ease of adding other rules in the future. In our current framework, this can
easily be done by creating a new Java class and implementing the main interface
which, among others, already takes care of parsing SQL queries. Developers then

34

3.3. Implementation

 Rule #1: Inconsistent tuple variable

SELECT * FROM master_projects WHERE research_group = 'SERG'

 Rule #2: Constant output column

 Rule #25: Division by zero

JSQLParser

R
ul

e
En

gi
ne

Input Query (from command line)

[query #0] constant output column: research_group = 'SERG'
Output

Input Query
(from database)

Input Query
(from file)

Figure 3.1: Overall flow of the semantic bug detection tool

only have to override the methods for which custom functionality for the detection
strategy is needed. This, for example, results in being able to write complicated
heuristics for the rules without having to rewrite the parsing logic which saves both
time as well as potential mistakes. Another important aspect is that rules can better
be tested by only focusing on the new functionality which is specifically tailored for
the detection strategy since the parsing logic is already tested by our framework.

The tool has three different modes of operation. In the first one, a query is
entered via the command line and all the rules will be checked for finding semantic
bugs in the input. This can be used whenever a fast check needs to be run for a single
query in order to validate if this is semantically correct or not. The second mode of
operation allows for an input file to be specified as input. The tool will then read
all the queries from the file, which should be separated by a semicolon character
(;) and will display all the errors it detected for each of the SQL queries present
in the file. This setting is perhaps more useful for conducting analysis on a larger

35

3. Heuristics for SQL Semantic Bug Detection

input dataset. Finally, in the third mode of operation, the tool makes use of the
Spring framework25 in order to connect to a MySQL database for retrieving input
queries and running the rules on these. This mode was used during this research for
analysing the large dataset of SQL queries collected from StackOverflow posts. The
tool then also saves the results in this database which can later be used for further
analysis.

Each rule is heavily covered by unit tests which try to account for general as well
as more special edge cases. In total, there are more than 150 unit tests for the 25
rules implemented for our detection tool. Other tests include an automated script
which uses a collection of more than 500 manually verified queries that runs against
the tool and compares the outcome to the expected result. Some other 50 queries
were manually checked in order to verify they do not contain any semantic errors
after which they were presented as input to the tool in order to verify no warnings
are raised, and later were added to the automated tests as well. The overall code
quality for the tool was tracked on Better Code Hub, achieving an overall score of
9 out of 10 for quality, with the only area where maximum points were not scored
being the separation of concerns in modules due to the shared interface used by all
our rules. The source code for the tool together with all other scripts used for testing
and analysing the results for this project can be found in GitHub at the following
link: https://github.com/SERG-Delft/sql-bug-finder.

Furthermore, we also make our tool available in the form of an interactive website,
where developers can directly check their queries for semantic bugs, as shown in
Appendix C.

This website can be found at the following link: https://sqlbugfinder.com.

3.4 Validation

Apart from the various unit tests implemented for checking each rule, the tool was
validated using a manual process of investigating more than 500 SQL queries and
verifying whether the output of the tool was correct or not. For each of the 25 seman-
tic bug detection rules implemented in our tool, a random set of 20 queries collected
from StackOverflow posts, for which the tool reported semantic bugs, was first se-
lected in order to be manually analysed. The tool was configured such that each
rule was run in isolation, meaning that every rule was analysed in detail, separately
from the others, in order to confirm the correctness of both the implementation as
well as the underlying heuristics used. Whenever a semantic bug was erroneously
reported by the tool for a specific query, the code was analysed and fixed.

Furthermore, the unit tests were also improved to ensure the issues would not
appear at a later stage when further modifications might be made to the rule. If
multiple issues were found for a specific rule, after the initial set of 20 queries was
verified, the process was repeated by selecting a new random set of 20 queries from
the dataset. When no more errors were detected in the random sample, or none of

25https://spring.io/

36

https://github.com/SERG-Delft/sql-bug-finder
https://sqlbugfinder.com
https://spring.io/

3.4. Validation

the reported errors could be addressed, due to the fact that the query could not be
parsed properly by the JSQLParser library or otherwise, the rule was considered to
be sufficiently checked. A dataset of roughly 500 queries was created, where for each
rule the final set of 20 randomly selected queries together with the semantic bugs
reported by the tool are registered. Furthermore, a script was implemented which
uses this dataset together with the expected output to perform automated tests on
the tool, in order to improve the testing of the rules. The final implementation of
our tool, correctly detected 487 queries with semantic bugs as well as 50 queries
without any bugs, out of the test dataset of 550 queries, bringing the accuracy of
the tool to 97%. The results of this manual analysis for our tool are provided in
Appendix A and in Table 3.2.

Predicted
NO

Predicted
YES

Actual
NO T N = 50 FP = 13

Actual
YES FN = 0 T P = 487

Table 3.2: Tool performance confusion matrix

37

Chapter 4

An Empirical Study on SQL
Semantic Bugs in the Wild

4.1 Research methodology

In this section we will present the research questions that this paper tries to answer.
Furthermore, we also provide some more details regarding the datasets used in this
research.

RQ1: What is the prevalence of semantic bugs in SQL queries?

With this research question, the aim is to investigate which are the most prevalent
semantic bugs that appear in SQL queries. In order to analyse this, one of the most
important aspects is being able to collect queries used in real world systems. For this,
two datasets are used, one containing queries extracted from StackOverflow posts,
and another dataset provided by Castelein et al. [11] in their study on search-based
test data generation for SQL queries. Both of these contain queries used in various
open source projects and should provide a clear answer as to how often semantic
bugs appear in SQL queries. To answer the question, we will run the rule-based
static analysis tool designed for this project on all the collected queries and report
on the total number of issues detected for each semantic bug. Furthermore, we also
determine the median prevalence for each semantic bug as the ratio between the
total number of queries having the semantic bug and the total number of collected
queries in the dataset.

RQ2: What are the co-occurrences of semantic bugs in SQL queries?

The aim of this research question is to understand whether certain semantic bugs
might tend to appear in pairs. It is valuable to know whether this is the case since if
certain errors are detected in a query, then further attention can be paid to bugs that
might co-occur. For answering this question, we use the results obtained for RQ1
from running the tool on all the collected queries, and then build a co-occurrence

39

4. An Empirical Study on SQL Semantic Bugs in the Wild

matrix for the semantic bugs. Furthermore, we also use the techniques described
by Eck and Waltman [15] in order to compute the Jaccard index for normalizing
co-occurrence data and present this in the form of a heat map. The Jaccard index is
defined as the ratio between the number of times two bugs co-occur and the number
of times for which at least one bug is observed to be present.

RQ3: What is the correlation between the complexity of a query and the number
of semantic bugs it has?

Another interesting insight is knowing whether the complexity of a query has
any correlation with the number of semantic bugs it has. By having this knowledge,
whenever a query is detected as being too complex, this can already signal that
potential semantic bugs might be present in the formulation of the query. In order
to answer this question, we define and compute the complexity of a query as the
total number of predicates, joins, subqueries, functions and columns it contains.

For analysing the correlation between the complexity of the query and the num-
ber of semantic bugs it has we will provide a box plot, which is the preferred visu-
alization technique when dealing with both numerical and categorical data such as
the one in our case, as described by Munzner [33] in their book on data visualization
techniques. Furthermore we also provide the distribution for the query complexity
scores. The data used in these visualizations will include our entire collection of
SQL queries, from both the StackOverflow and the EvoSQL datasets.

Finally, we perform the one-way analysis of variance (ANOVA) test as described
by Cuevas et al. [13] in order to determine whether or not there is a statistically sig-
nificant difference between the means of our groups, which are given by the number
of semantic bugs per query.

4.2 Data collection

In this section we describe the approach used for building a large dataset of SQL
queries collected from StackOverflow posts. StackOverflow is the main website where
developers can ask questions and discuss various computer programming related
issues which makes it one of the largest knowledge bases in this field. Apart from
the 170,000 queries collected from StackOverflow, we also used for our study the
dataset provided by Castelein et al. [11] in their paper, which contains an additional
19,159 SQL queries extracted from various open source projects on GitHub.

The technique we used for extracting SQL queries from StackOverflow posts
focused on retrieving the code block sections from each post and parsing these for
finding valid SQL statements. For this, using an API for accessing the available
StackOverflow data was preferred over other techniques such as web crawling since
using an API is less intrusive for the StackOverflow platform. Google’s BigQuery
public datasets now also include StackOverflow data, however these are not always
up to date and further analysis showed these datasets are also not complete. In the

40

4.2. Data collection

end, for this paper, it was decided to use the Stack Exchange API1 which provides
an interface for retrieving posts data from StackOverflow. Our query extraction tool
only looks at SQL tagged questions, since these are the most likely to contain the
queries we are interested in. Furthermore, before starting to process the posts, we
filtered them on the number of votes they had, and sorted them in descending order,
such that the more relevant and higher quality posts were processed first. In total,
there are roughly 11,000 pages with SQL tagged questions on StackOverflow. For our
study, we processed and extracted the queries from the top ranked 2000 pages. Our
tool is capable of processing all pages, however we considered that enough queries
were extracted to build a good dataset on which we could test our rule-based static
analysis tool. Further studies could use the tool we developed in order to obtain an
even larger dataset of queries should this be needed.

The Stack Exchange API offers functionality for creating a custom filter which
is then included in the request providing fine control over the returned data. For
our project, all metadata associated with a post was collected since the goal was
building a complete dataset which might later be used for other research as well.
Furthermore, it is important to point out that a distinction should be made between
a question post and an answer post. A question post can have multiple answers
associated with it and should also have at most one accepted answer. All posts,
questions and answers, are created by one user, and have a score associated with
them which indicates the number of upvotes a question or an answer has received.
The intuition behind the score value for questions is that the higher the number,
the more developers found that particular question useful, whereas for answers the
higher the score the better the answer.

The collected data was organized in a MySQL database with four important
schemas: owners, questions, answers and queries. In the owners table, the data
about the user who created the post is stored together with any other metadata
associated with the user. In the questions table, the data for the questions posts
is stored and similarly in the answers table the data for all other posts is stored.
Finally, in the queries table all extracted queries are saved together with an identifier
which links the query to the post from which it was extracted. Since StackOverflow
has no way of enforcing SQL syntax to be written in code block sections, this means
that users are free to input any type of text inside the code blocks. Because of this, a
special algorithm has to be used for extracting only the SQL statements from these
sections.

Our approach for query extraction can be seen as an island parsing technique,
similar to the solution proposed in Moonen [32], where typically some recognizable
structures are being parsed with detailed rules describing the constructs of interest,
in our case the SQL keywords (the islands), and the remaining parts (the water),
which in our case represent the overall query statement, are captured with other
more generic rules. The algorithm used for extracting the queries from the code
block section starts by first looking at every line and detecting whether it starts

1https://api.stackexchange.com/

41

https://api.stackexchange.com/

4. An Empirical Study on SQL Semantic Bugs in the Wild

with a valid SQL keyword. If not, a number of additional checks are carried out in
order to determine whether the line is part of an enumeration which was split on
multiple rows. If this is still not the case, then the line is eliminated from the code
block. After all lines from a code block section are parsed, all of them are collected
into a single query. In case users input multiple SQL queries the algorithm also
detects this by looking for the special semicolon character which indicates the end of
an SQL statement. Another approach was also considered for the query extraction
algorithm, which constructed the abstract syntax tree (AST) for each of the code
blocks, however since these blocks might also contain non-SQL syntax as well, it was
observed that more queries were extracted with the previous approach. Furthermore,
another potential method could have been using a tool such as GitHub linguist2 for
automatically detecting the type of code present in the snippets and continue with
further processing if SQL would have been detected. However, we did not explore
this approach, but it might be something interesting to investigate in future studies
on mining data from StackOverflow. Finally, all extracted queries are saved in the
MySQL database and can later be processed by other tools such as SQL parsers like
JSQLParser for determining whether the syntax of the query is indeed valid. We
provide some descriptive statistics for the collected dataset in Table 4.1. The tool
which extracts the queries is also made available on the GitHub page for our project
at the following link: https://github.com/SERG-Delft/sql-bug-finder/tree/m
ain/queries_stack_exchange

Statistic Measurement

Total queries 394,477
Valid syntax 172,232
Invalid syntax 22,2245
Average response time for SQL questions 14m 54s
Queries with semantic bugs 28,386
Queries with 1 semantic bug 24,229
Queries with 2 semantic bugs 3572
Queries with 3 semantic bugs 551
Queries with 4 semantic bugs 32
Queries with >5 semantic bugs 2

Table 4.1: General statistics for the StackOverflow dataset

4.3 Results

In the following sections we discuss the results for each of the research questions and
present our findings.

2https://github.com/github/linguist

42

https://github.com/SERG-Delft/sql-bug-finder/tree/main/queries_stack_exchange
https://github.com/SERG-Delft/sql-bug-finder/tree/main/queries_stack_exchange
https://github.com/github/linguist

4.3. Results

4.3.1 RQ1: What is the prevalence of semantic bugs in SQL
queries?

We ran the rule-based static analysis tool containing 25 rules for detecting various
SQL semantic bugs, as explained in Section 3.2, on all collected queries. We observe
that out of all 191,994 queries, a total of 36,818 queries which contain at least
one semantic bug were identified, meaning that 19.17% of queries contained some
semantic problem in their formulation. Again, this shows the need for providing
semantic bug detection tools for developers in order to improve the overall quality
of SQL queries used in real world applications.

In Figure 4.1 we show the prevalence of the detected semantic bugs in our Stack-
Overflow dataset. Out of all these bugs, the most frequent one is the missing join
predicates semantic bug (E019), with a median prevalence of 5.98%. The second
most frequent semantic bug is the constant output column (E002), which has a me-
dian prevalence of 3.62% closely followed by the unnecessary count argument bug
(E012) with a median prevalence of 3.35%. We did not detect any semantic bugs
related to the use of identical tuple variables (E005) in our collected dataset. For
most of the other rules, the median prevalence was below 0.5%, which means that
out of 200 queries, one will be affected by a semantic bug. We further analysed the
rule for detecting missing join predicates by selecting 20 random queries for which
this error was reported and manually checking the results of our tool. In all cases,
we concluded that there were no false positive warnings and all errors were detected
correctly. The same manual analysis was also conducted for all the other rules and
we included the results in Appendix A.

Other previous studies such as those conducted by Brass and Goldberg [9] and
Goldberg [20] also concluded that the missing join predicates semantic bug is indeed
frequent in SQL queries. One noticeable difference between previous studies and our
work comes from the datasets used. Most of the past work is based on queries col-
lected from SQL courses, which means that queries are written by students on exams
and other homework material. In our dataset, we used queries from various open
source projects, hence the slightly lower median prevalence. Interestingly enough,
Goldberg [20] reports a 3.6% prevalence for the constant output column semantic
bug, again on a dataset of queries written by students on various exams, which is
very close to the median prevalence we found in our study for the StackOverflow
dataset, of 3.62%.

In Figure 4.2 we show the prevalence of the detected semantic bugs in the
EvoSQL3 dataset. This dataset only contains SQL SELECT queries found in three
open source projects tracked on GitHub. Upon further manual inspection, it was
observed that most of the queries suffered from the implicit columns SQL semantic
code smell as described in the works of both Muse et al. [34] and Karwin [23]. In
our implementation, this SQL semantic error corresponds to the constant output
column bug (E002), and as it can be observed from the results of our tool, this bug
is indeed the most frequent one in the EvoSQL dataset with a median prevalence of

3https://www.zenodo.org/record/1166023

43

https://www.zenodo.org/record/1166023

4. An Empirical Study on SQL Semantic Bugs in the Wild

43.23%. For all other semantic bugs, our tool detected a median prevalence of less
than 0.4% for this dataset.

RQ1 summary: Out of all the collected queries, 19.17% contained at least one
semantic bug. The most common bugs are the missing join predicates (E019)
followed by the constant output column (E002) and unnecessary count argument
(E012) bugs.

E001 E002 E003 E004 E006 E007 E008 E009 E010 E011 E012 E013 E014 E015 E016 E017 E018 E019 E020 E021 E022 E023 E024 E025
0

2000

4000

6000

8000

10000

Figure 4.1: Prevalence of SQL semantic bugs for the StackOverflow dataset

E002 E003 E006 E010 E012 E019 E020 E021 E024 E025
0

1000

2000

3000

4000

5000

6000

7000

8000

Figure 4.2: Prevalence of SQL semantic bugs for the EvoSQL dataset

4.3.2 RQ2: What are the co-occurrences of semantic bugs in
SQL queries?

In Figure 4.3 we show the co-occurrence matrix for our entire dataset, where each
entry in the matrix represents the Jaccard similarity coefficient as described by Eck
and Waltman [15] (empty cells have value zero). From this, we observe that most of
the similarity values are rather low, however there is a 20% similarity between bugs

44

4.3. Results

E012 and E013, as well as a 15% similarity between bugs E012 and E019, followed by a
15% similarity for bugs E002 and E019. The Jaccard index is a measure of similarity
between two sets of data, ranging from 0% to 100%, which means the higher the
percentage, the more similar the two sets are to one another. In our case, for two
bugs say A and B, if these have a 30% similarity measure, this means that if bug A
is detected in one query, then there is a 30% probability that bug B is also present
in this query.

This type of insight can be useful in designing future detection tools as well as
prediction systems that could be integrated within IDEs in order to alert developers
regarding certain bugs that their queries might contain given bugs which have already
been detected. Further manual inspection for the queries where both the unnecessary
count argument bug (E012) as well as the unnecessary group by attribute error (E013)
both occur reveals that indeed these two types of semantic bugs are more likely to
co-occur since usually the GROUP BY clause is used with the intention of aggregating
some data in the SELECT clause.

Another interesting finding is that the missing join predicate bug (E019) is the
most likely one to co-occur with other types of bugs. More concretely, there is a
15% similarity between queries containing bug E019 and either bug E002 or E012 and
a 10% similarity between queries containing bug E019 and either bug E013 or E015.
This also matches with the findings from RQ1 which showed that bug E019 is the
most prevalent one in our entire dataset, and as a result it co-occurs with 4 other
different error types.

RQ2 summary: The co-occurrence of semantic bugs in SQL queries for our
entire dataset is rather low, indicating that queries rarely contain more than
one semantic bug. The highest similarity between two bugs is 20%, for the
unnecessary count argument (E012) and unnecessary group by attribute (E013).

4.3.3 RQ3: What is the correlation between the complexity of a
query and the number of semantic bugs it has?

For analysing the correlation between the complexity of the query and the number
of semantic bugs it has we provide a box plot in Figure 4.4. In Figure 4.5 we also
show the distribution of the query complexity scores. The data presented in these
figures includes our entire collection of SQL queries, from both the StackOverflow
and the EvoSQL datasets.

To further determine whether there is an correlation between the complexity of
a query and the number of semantic bugs it has, we perform a one-way analysis
of variance (ANOVA) test. For our one-way ANOVA test (α = 0.05) we define the
following null and alternative hypotheses:

• H0 (null hypothesis): all the groups have the same mean, µ1 = µ2 = · · ·= µ5

• H1 (alternative hypothesis): at least one of the means is different

45

4. An Empirical Study on SQL Semantic Bugs in the Wild

E001 E002 E003 E004 E005 E006 E007 E008 E009 E010 E011 E012 E013 E014 E015 E016 E017 E018 E019 E020 E021 E022 E023 E024 E025

E001
E002
E003
E004
E005
E006
E007
E008
E009
E010
E011
E012
E013
E014
E015
E016
E017
E018
E019
E020
E021
E022
E023
E024
E025

1.00 0.01
1.00 0.02 0.01 0.06 0.04 0.02 0.02 0.06 0.03 0.11 0.01 0.15 0.01 0.01 0.03 0.01
0.02 1.00 0.02 0.01 0.01 0.01 0.01 0.01

1.00 0.01 0.01 0.01 0.01 0.01
1.00

1.00 0.01 0.01 0.02
1.00

0.01 0.02 0.01 1.00 0.03 0.01 0.01 0.01 0.01 0.01
1.00 0.05 0.02

0.06 0.01 0.03 1.00 0.02 0.01 0.02 0.02 0.05 0.03 0.01 0.01
1.00 0.01

0.04 0.01 0.02 1.00 0.20 0.02 0.01 0.02 0.01 0.15 0.01 0.04
0.02 0.01 0.01 0.01 0.20 1.00 0.03 0.05 0.02 0.11 0.01
0.02 0.01 0.02 0.02 0.03 1.00 0.01 0.04 0.06 0.06
0.06 0.02 0.01 1.00 0.09 0.01
0.03 0.01 0.01 1.00 0.02 0.01
0.11 0.01 0.01 0.02 0.05 0.04 0.02 1.00 0.02
0.01 0.01 0.01 0.02 0.06 1.00 0.01 0.01
0.15 0.01 0.01 0.05 0.15 0.11 0.06 0.09 0.02 0.01 1.00 0.01 0.01 0.01 0.01 0.01

0.01 0.05 0.01 1.00 0.01 0.01
0.01 0.01 0.01 0.01 0.01 0.03 0.01 0.01 0.01 0.01 0.01 1.00 0.01 0.01 0.01

0.02 0.02 0.01 1.00
0.01 0.01 0.01 0.04 0.01 0.01 0.01 1.00
0.03 0.01 0.01 0.01 0.01 0.01 1.00 0.01
0.01 0.01 0.01 0.01 1.00

Co-occurrence matrix

0.0

0.2

0.4

0.6

0.8

1.0

Figure 4.3: Co-occurrence matrix for SQL semantic bugs

We get that the corresponding p-value is 1.14e-168, thus since this values is less
our chosen α = 0.05, we reject the null hypothesis, and can therefore say that there
is significant difference between the considered groups.

Computing the mean complexity score per category, we get that queries with a
single semantic bug have a mean complexity of 7, queries with two bugs have a mean
complexity of 10, queries with 3 bugs have mean complexity of 12, queries with 4
bugs have a mean complexity of 13 and finally queries with 5 bugs have a mean
complexity of 26.

RQ3 summary: Performing an ANOVA test shows there is significant dif-
ference between the queries’ complexities. There is also strong evidence which
suggests that complex queries are more prone to suffer from SQL semantic bugs.

46

4.3. Results

1 2 3 4 5
bugs

0

25

50

75

100

125

150

175

co
m

pl
ex

ity

Figure 4.4: Number of semantic bugs per query complexity

0 25 50 75 100 125 150 175
complexity

0

1000

2000

3000

4000

5000

Co
un

t

Figure 4.5: Distribution of query complexity

47

4. An Empirical Study on SQL Semantic Bugs in the Wild

4.4 Threats to validity

In this section, we discuss the threats to the validity of this study and the actions
we took to mitigate them.

Internal validity. The implementation of the heuristics for our rule-based static
analysis tool can be subject to internal validity threats. To help with overcoming
this, each of the 25 rules is covered by an extensive suite of unit tests, for both general
as well as special edge case scenarios. Furthermore, we carried out a manual analysis
of more than 500 queries, selecting for each of the 25 rules a random subset of 20
queries which were manually checked to ensure the results returned by the heuristics
are correct. Finally, we also tried to align, as much as possible, the implementation
of our heuristics, with the various implementation details found in previous research.

External validity. Although the collected dataset contains a diverse set of SQL
queries, we observed that there are considerably more SELECT queries than other
types, such as INSERT, UPDATE or DELETE queries, hence these latter types might be
underrepresented in this study. This is especially noticeable in the EvoSQL dataset
which only contains SELECT queries. However, by extracting queries from StackOver-
flow posts, we hope to have overcome some of these issues, build a diverse enough
collection of queries and at the same time have our results generalize on SQL queries
in any software system.

48

Chapter 5

Conclusion

SQL is the most widely used database language, with more than 70% of developers
actively using it, as noted in a previous study [38], however there is lacking support
for detecting semantic issues, also known as code smells, in SQL queries. This is
especially worrying seeing the high popularity of this language and its wide adoption
in numerous industries, therefore the impact of potential problems with such queries
can not be overstated.

Our goal with this thesis is two-fold. First, we propose a set of 25 validated
heuristics for detecting the most common types of semantic bugs which appear in
SQL queries, based on evidence from previous research. Second, we conduct an
empirical study on the prevalence of semantic bugs in SQL using two datasets with
queries extracted from three open-source projects as well as more than 172,000
queries collected from StackOverflow posts, building the largest collection of SQL
queries to our knowledge. The correctness of the heuristics was manually verified
from a random sample of more than 500 queries.

We also provide a prototype implementation for a rule based static analysis tool,
containing our 25 heuristics, for detecting semantic bugs. Our tool is able to detect
semantic bugs in SQL queries with a 97% accuracy. Furthermore, we observed
that out of all the 191,994 collected queries, 36,818 contain at least one semantic
bug, which means that 19.17% of queries contained some semantic problem in their
formulation.

Analysing the prevalence of semantic bugs in SQL queries, we find that the most
common bugs are missing join predicates (E019) followed by the constant output
column (E002) and unnecessary count argument (E012) bugs. We also found out that
co-occurrence of semantic issues in SQL queries for our entire dataset is rather low,
indicating that queries rarely contain more than one semantic bug. The highest
similarity between two issues is 20%, for the unnecessary count argument (E012) and
unnecessary group by attribute (E013).

Also quite interesting, we show that more complex queries, in terms of number
of joins, predicates and functions used, tend to suffer from more semantic bugs, an
interesting finding which could be used in the future as a metric for early prediction
as to whether a query might contain semantic bugs or not.

49

5. Conclusion

5.1 Recommendations

In this section, we give some recommendations for developers, tool makers and re-
searchers based on the findings made in our research.

Recommendations for developers. With so many applications relying on SQL
for querying purposes, now more than ever it is crucial for developers to understand
the implications of their queries suffering from various semantic issues. As we show
in our empirical study, there are already quite a number of queries being shared
online which already suffer from these types of problems, as it can be seen from
Figure 4.1. Developers should therefore try to familiarize themselves not only with
these semantic issues and how they appear when working with SQL, but they should
also pay more attention to detecting these issues as well as addressing them as soon
as they are discovered, just as bad code smells are addressed as well.

Recommendations for tool makers. The main focus here should be placed on
designing tools for mass adoption. Choosing this as the main driving factor when
building new tools should help with making sure that developers actually see value
in the tool. More specifically, our findings show that it is currently hard for devel-
opers to check their SQL queries for semantic issues due to one underlying problem,
which is the lack of adequate tools and support. Current implementations of tools
that integrate with IDEs are lacking a lot when it comes to support for detecting
semantic issues for queries, furthermore, there are also no tools, to our knowledge,
which are integrated with popular development frameworks, such as SpringBoot1,
for checking these types of issues during application runtime. Especially interesting
for future tools could be to integrate issue detection based on similarity measures,
as we show in Figure 4.3 as well as early warnings based on metrics such as query
complexity as we present in Figure 4.4.

Recommendations for researchers. Based on the findings made when carrying
out this study, we can say that current research places more focus on trying to
develop techniques and methods for identifying syntactic issues in SQL queries.
However, as we show in this paper and as well as other studies have pointed out,
more emphasis should be placed on detecting semantic issues in queries as well. With
implications ranging from performance issues to security vulnerabilities, having these
types of semantic errors in any system is definitely detrimental. Therefore, it is quite
crucial that in the near future, more research involving semantic issue detection for
SQL will be carried out.

1https://spring.io/

50

https://spring.io/

5.2. Future work

5.2 Future work

In this section we discuss the possible improvements that could be made to our
detection tool as well as the query extraction algorithm and provide some ideas for
future research which could make use of our large-scale SQL query dataset.

• Integrate the rule-based static analysis tool for detecting semantic
issues in SQL queries into an IntelliJ/Eclipse plugin. By providing
support for our tool as an IDE plugin, developers can take advantage of it more
easily. Other benefits could be real time detection of issues, when queries are
written in the IDE as well as during runtime, when the application is executed,
as an integration with the SpringBoot framework.

• Improve the query extraction algorithm. For retrieving queries from
StackOverflow it would be interesting to investigate whether better results
(more queries extracted) could be achieved by using a tool such as GitHub’s
linguist2 or Guesslang3 for determining the programming language from within
a code snippet.

• Use our dataset to investigate whether developers notice SQL se-
mantic issues in StackOverflow posts. It would be interesting to analyse
in future studies whether developers notice various types of semantic issues
when either asking or replying to questions on StackOverflow. Another poten-
tial avenue for research could be to investigate the evolution of posts which
might suffer from semantic issues in time and see if the problems are addressed.

• Improve the rule-based static analysis tool by expanding the number
of semantic issues which can be detected. Although the tool is able to
already detect the most common types of semantic issues which might occur
in SQL queries, it would be very interesting to keep expanding this list by
including other issues as well, such as the ones present in the closed source
tool SQLEnlight. There is a comprehensive list4 with some of the semantic
rules which this tool supports, so in the future one could port these into our
detection tool as well.

2https://github.com/github/linguist
3https://github.com/yoeo/guesslang
4https://sqlenlight.com/support/help/analysis-rules/

51

https://github.com/github/linguist
https://github.com/yoeo/guesslang
https://sqlenlight.com/support/help/analysis-rules/

Bibliography

[1] Alireza Ahadi, Vahid Behbood, Arto Vihavainen, Julia Prior, and Raymond
Lister. Students’ syntactic mistakes in writing seven different types of sql queries
and its application to predicting students’ success. In Proceedings of the 47th
ACM Technical Symposium on Computing Science Education, pages 401–406,
2016.

[2] Alireza Ahadi, Julia Prior, Vahid Behbood, and Raymond Lister. Students’ se-
mantic mistakes in writing seven different types of sql queries. In Proceedings of
the 2016 ACM Conference on Innovation and Technology in Computer Science
Education, pages 272–277, 2016.

[3] Miltiadis Allamanis and Charles Sutton. Why, when, and what: analyzing stack
overflow questions by topic, type, and code. In 2013 10th Working Conference
on Mining Software Repositories (MSR), pages 53–56. IEEE, 2013.

[4] Sebastian Baltes, Christoph Treude, and Stephan Diehl. Sotorrent: Study-
ing the origin, evolution, and usage of stack overflow code snippets. In 2019
IEEE/ACM 16th International Conference on Mining Software Repositories
(MSR), pages 191–194. IEEE, 2019.

[5] Anton Barua, Stephen W Thomas, and Ahmed E Hassan. What are developers
talking about? an analysis of topics and trends in stack overflow. Empirical
Software Engineering, 19(3):619–654, 2014.

[6] Stefanie Beyer and Martin Pinzger. A manual categorization of android app
development issues on stack overflow. In 2014 IEEE International Conference
on Software Maintenance and Evolution, pages 531–535. IEEE, 2014.

[7] Ilia Bider and David Rogers. Yasqlt–yet another sql tutor. In International
Conference on Conceptual Modeling, pages 197–206. Springer, 2016.

[8] Stefan Brass and Christian Goldberg. Detecting logical errors in sql queries. In
Grundlagen von Datenbanken, pages 28–32. Citeseer, 2004.

53

Bibliography

[9] Stefan Brass and Christian Goldberg. Semantic errors in sql queries: A quite
complete list. Journal of Systems and Software, 79(5):630–644, 2006.

[10] Stefan Brass, Christian Goldberg, and Alexander Hinneburg. Detecting seman-
tic errors in sql queries. Technical report, Technical Report, University of Halle,
2003.

[11] Jeroen Castelein, Maurício Aniche, Mozhan Soltani, Annibale Panichella, and
Arie van Deursen. Search-based test data generation for sql queries. In Pro-
ceedings of the 40th international conference on software engineering, pages
1220–1230, 2018.

[12] E. F. Codd. A relational model of data for large shared data banks. Commun.
ACM, 13(6):377–387, June 1970. ISSN 0001-0782. doi: 10.1145/362384.362685.
URL https://doi-org.tudelft.idm.oclc.org/10.1145/362384.362685.

[13] Antonio Cuevas, Manuel Febrero, and Ricardo Fraiman. An anova test for
functional data. Computational statistics & data analysis, 47(1):111–122, 2004.

[14] Jens Dietrich, Markus Luczak-Roesch, and Elroy Dalefield. Man vs machine–
a study into language identification of stack overflow code snippets. In 2019
IEEE/ACM 16th International Conference on Mining Software Repositories
(MSR), pages 205–209. IEEE, 2019.

[15] Nees Jan van Eck and Ludo Waltman. How to normalize cooccurrence data?
an analysis of some well-known similarity measures. Journal of the American
society for information science and technology, 60(8):1635–1651, 2009.

[16] SQL Enlight. E0178: Like operator is used without wildcards. SQL Enlight, Re-
trieved April, 2021. URL https://sqlenlight.com/support/help/SA0178/.

[17] SQL Enlight. E0007: Pattern starting with “%” in like predicate. SQL En-
light, Retrieved April, 2021. URL https://sqlenlight.com/support/help/
SA0007/.

[18] SQL Enlight. E0102: Do not use distinct keyword in aggregate functions. SQL
Enlight, Retrieved April, 2021. URL https://sqlenlight.com/support/hel
p/SA0102/.

[19] Felix Fischer, Konstantin Böttinger, Huang Xiao, Christian Stransky, Yasemin
Acar, Michael Backes, and Sascha Fahl. Stack overflow considered harmful? the
impact of copy&paste on android application security. In 2017 IEEE Symposium
on Security and Privacy (SP), pages 121–136. IEEE, 2017.

[20] Christian Goldberg. Do you know sql? about semantic errors in database
queries. In 7th Workshop on Teaching, Learning and Assessment in Databases,
Birmingham, UK, HEA. Citeseer, 2009.

54

https://doi-org.tudelft.idm.oclc.org/10.1145/362384.362685
https://sqlenlight.com/support/help/SA0178/
https://sqlenlight.com/support/help/SA0007/
https://sqlenlight.com/support/help/SA0007/
https://sqlenlight.com/support/help/SA0102/
https://sqlenlight.com/support/help/SA0102/

Bibliography

[21] Carl Gould, Zhendong Su, and Premkumar Devanbu. Jdbc checker: A static
analysis tool for sql/jdbc applications. In Proceedings. 26th International Con-
ference on Software Engineering, pages 697–698. IEEE, 2004.

[22] Huzefa Kagdi, Michael L Collard, and Jonathan I Maletic. An approach to
mining call-usage patternswith syntactic context. In Proceedings of the twenty-
second IEEE/ACM international conference on Automated software engineer-
ing, pages 457–460, 2007.

[23] Bill Karwin. SQL antipatterns: avoiding the pitfalls of database programming.
Pragmatic Bookshelf, 2010.

[24] Shaheen Khatoon, Guohui Li, and Azhar Mahmood. Comparison and eval-
uation of source code mining tools and techniques: A qualitative approach.
Intelligent Data Analysis, 17(3):459–484, 2013.

[25] Yash Lamba, Manisha Khattar, and Ashish Sureka. Pravaaha: Mining android
applications for discovering api call usage patterns and trends. In Proceedings
of the 8th India Software Engineering Conference, pages 10–19, 2015.

[26] Mario Linares-Vásquez, Bogdan Dit, and Denys Poshyvanyk. An exploratory
analysis of mobile development issues using stack overflow. In 2013 10th Work-
ing Conference on Mining Software Repositories (MSR), pages 93–96. IEEE,
2013.

[27] MITRE. Weaknesses in software written in C. MITRE, Retrieved April, 2021.
URL https://cwe.mitre.org/data/definitions/658.html.

[28] MITRE. CWE Top 25 most dangerous software errors. MITRE, Retrieved
April, 2021. URL https://cwe.mitre.org/top25/archive/2019/2019_cwe_
top25.html.

[29] Antonija Mitrovic. A knowledge-based teaching system for sql. In Proceedings
of ED-MEDIA, volume 98, pages 1027–1032, 1998.

[30] Antonija Mitrovic. Learning sql with a computerized tutor. In Proceedings of
the twenty-ninth SIGCSE technical symposium on Computer science education,
pages 307–311, 1998.

[31] Antonija Mitrovic. An intelligent sql tutor on the web. International Journal
of Artificial Intelligence in Education, 13(2-4):173–197, 2003.

[32] Leon Moonen. Generating robust parsers using island grammars. In Proceedings
Eighth Working Conference on Reverse Engineering, pages 13–22. IEEE, 2001.

[33] Tamara Munzner. Visualization analysis and design. CRC press, 2014.

55

https://cwe.mitre.org/data/definitions/658.html
https://cwe.mitre.org/top25/archive/2019/2019_cwe_top25.html
https://cwe.mitre.org/top25/archive/2019/2019_cwe_top25.html

Bibliography

[34] Biruk Asmare Muse, Mohammad Masudur Rahman, Csaba Nagy, Anthony
Cleve, Foutse Khomh, and Giuliano Antoniol. On the prevalence, impact, and
evolution of sql code smells in data-intensive systems. In Proceedings of the
17th International Conference on Mining Software Repositories, pages 327–338,
2020.

[35] Csaba Nagy and Anthony Cleve. Mining stack overflow for discovering error
patterns in sql queries. In 2015 IEEE International Conference on Software
Maintenance and Evolution (ICSME), pages 516–520. IEEE, 2015.

[36] Csaba Nagy and Anthony Cleve. A static code smell detector for sql queries
embedded in java code. In 2017 IEEE 17th International Working Conference
on Source Code Analysis and Manipulation (SCAM), pages 147–152. IEEE,
2017.

[37] Csaba Nagy and Anthony Cleve. Sqlinspect: A static analyzer to inspect
database usage in java applications. In Proceedings of the 40th International
Conference on Software Engineering: Companion Proceeedings, pages 93–96,
2018.

[38] Stack Overflow. Stack overflow annual developer survey 2020. Retrieved Febru-
ary, page 2021, 2021.

[39] Luca Ponzanelli, Alberto Bacchelli, and Michele Lanza. Seahawk: Stack over-
flow in the ide. In 2013 35th International Conference on Software Engineering
(ICSE), pages 1295–1298. IEEE, 2013.

[40] Luca Ponzanelli, Andrea Mocci, and Michele Lanza. Stormed: Stack overflow
ready made data. In 2015 IEEE/ACM 12th Working Conference on Mining
Software Repositories, pages 474–477. IEEE, 2015.

[41] Toni Taipalus. Explaining causes behind sql query formulation errors. In 2020
IEEE Frontiers in Education Conference (FIE), pages 1–9. IEEE, 2020.

[42] Toni Taipalus and Piia Perälä. What to expect and what to focus on in sql query
teaching. In Proceedings of the 50th ACM Technical Symposium on Computer
Science Education, pages 198–203, 2019.

[43] Toni Taipalus and Ville Seppänen. Sql education: A systematic mapping
study and future research agenda. ACM Transactions on Computing Education
(TOCE), 20(3):1–33, 2020.

[44] Toni Taipalus, Mikko Siponen, and Tero Vartiainen. Errors and complications
in sql query formulation. ACM Transactions on Computing Education (TOCE),
18(3):1–29, 2018.

56

Bibliography

[45] Yuhao Wu, Shaowei Wang, Cor-Paul Bezemer, and Katsuro Inoue. How do
developers utilize source code from stack overflow? Empirical Software Engi-
neering, 24(2):637–673, 2019.

[46] Tao Xie and Jian Pei. Mapo: Mining api usages from open source repositories. In
Proceedings of the 2006 international workshop on Mining software repositories,
pages 54–57, 2006.

[47] Haoxiang Zhang, Shaowei Wang, Heng Li, Tse-Hsun Peter Chen, and Ahmed E
Hassan. A study of C/C++ code weaknesses on stack overflow. IEEE Trans-
actions on Software Engineering, 2021.

57

Appendix A

Tool Validation

For validating the correctness of the heuristics we implemented for our tool, a manual
analysis of more than 500 queries was done. Each query was manually checked and
the results returned by our tool were verified to detect, for each rule, how many
of the reported warnings were valid. As presented in Section 3.4, a random set of
20 queries was selected for each rule. All queries can be found in our replication
package on GitHub as well. We present the analysis below.

No. RuleID Query Correct

1 E001 select a1.owner,a1.table_name from all_tab_columns a1
, all_tab_columns a2 where a1.owner=a2.owner and a1.
table_name=a2.table_name and a1.column_name='location
' and a2.column_name='asset_id' order by a1.owner,a1.
table_name;

YES

2 E001 select t1.userid from userrole t1 join userrole t2 on t1
.userid = t2.userid and t2.roleid = 2 join userrole t3
on t2.userid = t3.userid and t3.roleid = 3 and t1.roleid
= 1;

YES

3 E001 select deptno from dept where exists(select * from emp
x where x.deptno = 20 and exists(select * from emp y
where y.job = x.job and y.deptno = dept.deptno)) and
deptno <> 20;

YES

4 E001 select count(distinct patients.id) from public.
patients, public.subscriptions, public.users, public.
calendar_days where patients.user_id = users.id and
patients.id = calendar_days.patient_id and subscriptions
.user_id = patients.user_id and (date_trunc('day',
patients.last_sync) > current_date - inter...

YES

5 E001 select * from tmp t0 where exists (select * from tmp
t1 join tmp t2 on t2.clientid = t1.clientid and t2.
serverid = t1.serverid and t2.logtime > t1.logtime where
t1. status = 'aborted' and t2. status = 'failed' and t1
.clientid = t0.clientid and t1.serverid = t0.serverid
and t1.logtime = t0.logtime o...

YES

59

A. Tool Validation

6 E001 select distinct t.name from hospital_a t, hospital_a v
where t.op_date=v.date_of_birth and t.surname=v.surname
and t.op_id = 'p619920' and v.op_id = 'i552015';

NO

7 E001 select im1.imageid as id, im1.attributevalue as color,
im2.attributevalue as quality from imageattribute im1,
imageattribute im2 where im1.imageid = im2.imageid and
im1.attributetype = "color" and im2.attributetype = "

quality" and im2.attributevalue = "good";

YES

8 E001 select t1.a3 from test t1, test t2 where t1.a1 = t2.a1
and t2.a2 = t1.a2 and t1.a1 = t2.a2;

YES

9 E001 select * from audit a1 where not exists(select * from
audit a2 where a2.status='approve' and a1.status='

decline' and a2.id=a1.id);

YES

10 E001 select a.post_id, b.post_id, a.ul_value as "likes", b
.ul_value as "dislikes" from wp_like_dislike_counters
as a, wp_like_dislike_counters as b where a.post_id

= b.post_id and a.ul_key = 'u_like' and b.ul_key = '
u_dislike';

NO

11 E001 update users set online = 1 where exists(select null
from users t where t.email = in_email and t.password =
in_password and t.id = id) and id = 'result_id';

YES

12 E001 select p1.domain_id, p2.domain_id, count(p1.domain_id
) as d1, count(p2.domain_id) as d2 from pdb as p1,
interacting_pdbs as i1, pdb as p2, interacting_pdbs
as i2 where p1.id = i1.pdb_first_id and p2.id = i2.
pdb_second_id and i1.id = i2.id group by p1.domain_id,
p2.domain_id having d1 > 100 and d2 > ...

YES

13 E001 select a.object from mytable a, mytable b where a.object
= b.object and a.key = 'a' and a.value = 'a' and b.key

= 'b' and b.value = 'b';

YES

14 E001 select * from cats outside where not exists(select *
from cats cat where exists(select dog.foo,dog.bar from
dogs dog where cat.foo = dog.foo and cat.bar = dog.bar)
and outside.foo = cat.foo and outside.bar=cat.bar);

YES

15 E001 select username.name, useremail.email, userphone.phone
from users as username inner join users as useremail

on username.user = useremail.user and username.field =
'name' and useremail.field = 'email' inner join users
as userphone on username.user = userphone.user and

userphone.field = 'phone';

NO

16 E001 select count(*) from (select u1.userid from vote u1,
vote u2 where u1.itemid = u2.itemid and u1.userid =

user1 and u2.userid = user2);

YES

17 E001 update mark set mark= case when mark.val<= 5 then
val*1.1 else val end where mark.id_classes = classes.
id_classes and classes.id_subject = subject.id_subject
and subject.id_subject = 5;

YES

18 E001 select a1.owner,a1.table_name from all_tab_columns a1
, all_tab_columns a2 where a1.owner=a2.owner and a1.
table_name=a2.table_name and a1.column_name='location
' and a2.column_name='asset_id' order by a1.owner,a1.
table_name;

YES

60

19 E001 select p1.gameid from participants as p1, participants
as p2 where p1.name = 'team1' and p2.name='team2' and p1
.gameid = p2.gameid;

NO

20 E001 select n1.id, n1.name,n2.name, a3.age from name n1, name
n2, age a3 where n1.id=n2.id and n1.id=a3.id and n1.
type=0 and n2.type=1;

YES

Table A.1: Manual analysis of tool performance for rule E001

No. RuleID Query Correct

21 E002 select * from mytable1 ca left outer join mytable2
dcn on dcn.dstrct_code = ca.dstrct_code where ca.
dstrct_code = '0001' and ca.req_232_type = 'p' and ca
.requisition_no = '264982 000' and ca.alloc_count = '01'
order by ca.alloc_count asc;

YES

22 E002 select * from ranked where ranking = 1; YES
23 E002 select * from orc_users as t1 inner join orc_files as t2

on t1.id = t2.userid where t1.email='sdfsdf';
YES

24 E002 select * from person where name = 'robert'; YES
25 E002 select * from myuser as u join friend_pivotal as p on u.

id = p.user_rec_id or u.id = p.user_inv_id where status
= 'accepted';

YES

26 E002 select * from (select * from table order by value desc,
date_column) where rownum = 1;

YES

27 E002 select * from a_table where a_column = '&avariable
' union select * from a_table where b_column = '&&
avariable';

YES

28 E002 select incurredcharges.procedure_no, incurredcharges.
patient_no, charges.procedure from incurredcharges inner
join charges where incurredcharges.patient_no=12;

YES

29 E002 select u.uid ,u.uname,p.uid , p.profname,e.uid,e.eduname
from user u inner join profession p on u.uid=p.pid
inner join education e on u.uid = e.uid where u.uid=p.
uid and u.uid=e.uid and i.uid=1;

YES

30 E002 select arbogast.node.nid as anid, mcguffin.node.nid
as mnid, arbogast.node.title as atitle, mcguffin.node.
title as mtitle from arbogast.node, mcguffin.node where
arbogast.node.nid = 1 and mcguffin.node.nid = arbogast.
node.nid;

YES

31 E002 select imagename, sum(ratingvalue) as "lol" from ratings
group by imagename having imagename = 'myimagename';

YES

32 E002 select max(id) as id, type, max(other_id) as other_id,
max(def_id) as def_id, ref_def_id from t where type = '
ref' group by type, ref_def_id;

YES

33 E002 select distinct name from sys.objects where type in ('u
','v') and name= 'myname';

YES

34 E002 select customerid, orderdate, count(1) cnt from sales
.salesorderheader where customerid = 11300 group by
customerid, orderdate order by cnt desc;

YES

61

A. Tool Validation

35 E002 select booking.bookno, booking.courno, course.coursename
from booking, course, coursename where booking.bookno =
6200 and booking.courno = course.courno and coursename.

coursenameno = course.coursenameno;

YES

36 E002 select table1.personcode, table1.name, table2.location,
max(table2.servicedate) from table1 inner join table2

on table1.id = table2.table1id where table1.personcode
= 'xyz' group by table1.personcode,table1.name, table2.
location;

YES

37 E002 select t1.userid, t2.date, min(t1.time) as in_time, max(
t1.time) as out_time from test t1 join (select distinct
date from test where userid = 609) t2 where t1.date = t2
.date and userid = 609 group by t1.userid, t2.date;

YES

38 E002 select * from mm_tfs where product_description like '%
football%' and schoolid = '8' and category_id ='21';

YES

39 E002 select * from customer where c_role = 'dev' order by
c_id limit 2;

YES

40 E002 select attrsmall, attrlarge, max(rating_id) as ratingmax
from (select case when c.attr1_id < c.attr2_id then c

.attr1_id else c.attr2_id end as attrsmall, case when c

.attr1_id < c.attr2_id then c.attr2_id else c.attr1_id
end as attrlarge, c.rating_id from compatibility c) as
c1 group by atrrsmall, a...

YES

Table A.2: Manual analysis of tool performance for rule E002

No. RuleID Query Correct

41 E003 insert into personpet(fk_person, fk_pet) select id, id
from person;

YES

42 E003 select identity(int) as tempid, *, sectionid as
fix2ids from files_sections;

YES

43 E003 select *, cond2 as cond2, cond3 as cond3 from table
having cond1 and (cond2 or cond3);

YES

44 E003 select country, count(*) as cnt1, count(*) as cnt2 from
orders group by country having cnt1=2 and cnt2>2;

YES

45 E003 select c77,c77,c125,c126,c127,c74 from mytable; YES
46 E003 select itemnumber as '@id', itemnumber as 'itemnumber',

price as 'price/@value', datefrom as 'price/datefrom',
dateto as 'price/dateto' from #tempxml;

YES

47 E003 select videos.id, videos.id as video_id, videos.
video_title as video_title, group_concat(distinct t.
tag_name separator '|') as tag_names from videos join
video_tags as vt join tags as t where videos.id <= (

select max_doc_id from sph_counter where counter_id = 1
) group by videos.id;

YES

48 E003 select distinct t.date_effective, t.
acct_account_transaction_id, p.method, t.amount, c.
business_name, t.amount from contact c join contact_role
cr on cr.contact_fk = c.contact_id join acct_account a

on a.contact_fk = c.contact_id join acct_account_tran...

YES

62

49 E003 insert into test_table(column_1, column_2) select val,
val from x;

YES

50 E003 select e.empid,e.fname,e.lname,c.description as hair,c.
description as race from employee2 e inner join code c;

YES

51 E003 select uuid, uuid from data; YES
52 E003 select value, value from public.customers where

nodevalue.key3 = 'key3' and nodevalue.key4 = 'key4';
YES

53 E003 select owner, count(distinct object_name || 'this is a
really long string in my expression, don''t you think?
actually, it''s really, really, really, really, really,
really, really, really, really, really, really, really,
really, really, really, really, really, really, really,
really, really, reall...

YES

54 E003 select projects.project_id, projects.title, projects.
start_time, projects.description, projects.user_id,
projects.winner_user_id, users.username as owner, users
.username as winner from projects,users where projects.
user_id=users.user_id and projects.winner_user_id=users.
user_id;

YES

55 E003 select productgroupid as product23_1_, articleid as
articleid1_, articleid as articleid18_0_, inventory_name
as inventory3_18_0_, inventory_unitofmeasure as
inventory4_18_0_, businesskey as business5_18_0_, name
as name18_0_, servespeople as servespe7_18_0_, instock
as instock18_0_, description as d...

YES

56 E003 select *, t1.image_id as image from event.dbo.
dia_tracker t1 where exists (select 1 from event.dbo.
dia_tracker t2 where t2.patient_id = 'dsma' group by
case when t2.active = '1' then t2.image_id end having
max(t2.image_id) = t1.image_id);

YES

57 E003 select *, 'full' from abc; YES
58 E003 select 1 except select 1; NO
59 E003 select *, regexp_replace(port, '[0-9/.]', '', 'g')

port_name, string_to_array(regexp_replace(port, '[a-za-
z-]', '', 'g'), '/')::float[] port_number from device
order by name, regexp_replace(port, '[0-9/.]', '', 'g'),
string_to_array(regexp_replace(port, '[a-za-z-]', '', '
g'), '/')::float[];

YES

60 E003 select *, match(pages) against('doodle') as score from
books where match(pages) against('doodle') order by
score desc;

YES

Table A.3: Manual analysis of tool performance for rule E003

No. RuleID Query Correct

61 E004 select emp.salary from employee emp inner join sap s on
emp.id = s.id where s.id = 111;

YES

62 E004 select * from child c,parent p where c.id=p.parentid and
c.parentid !=0;

YES

63 E004 select t1.col_1 from table t1 join table t2 on t1.col_2=
t2.col_1 where t1.col_1=t2.col_2 and t1.col_1='one';

YES

63

A. Tool Validation

64 E004 select m.actor from movies m where m.movie = 'pulp
fiction' and not exists (select 1 from movies m1 join
movies m2 on m1.movie = m2.movie and m1.actor <> m2.

actor and m2.movie <> 'pulp fiction' and m2.actor in (
select actor from movies where movie = 'pulp fiction')
where m.actor = m1.actor);

YES

65 E004 select c.name, if(find_in_set('type_a', group_concat
(substring_index(f1.filename,'_',2))), 'yes', 'no')
as type_a, if(find_in_set('type_b', group_concat(

substring_index(f1.filename,'_',2))), 'yes', 'no')
as type_b, if(find_in_set('type_c', group_concat(

substring_index(f1.filename,'_',2))), 'yes', 'n...

YES

66 E004 select u.firstname, u.lastname, u.rep, u.email, u.
password, u.gender, u.level, u.birthday, u.achievements,
u.height, u.unit, u.cityid, u.countryid, r.regdate, ci.

name as city, co.name as country from users u, registry
r, cities ci, countries co where u.id = 1 and r.uid = u.
id and u.cityid = ci.id an...

YES

67 E004 select images.*, users.username from images left join
users on images.user_id = users.id left join user_follow
on images.user_id = user_follow.follow_id where images.

user_id = 3 or user_follow.user_id = 3 order by images.
date desc;

YES

68 E004 select * from tblpe t1 where t1.date = (select max(date
) from tblpe t2 where t1.id = t2.id) and t1.id = 39;

YES

69 E004 select pd.id,pd.price_date,pd.name_id,pd.class_id,pd.
currency_id,pd.price, pd.price - (select price from
price_data as x where x.price_date < pd.price_date and x
.name_id = pd.name_id and x.class_id = pd.class_id and x
.currency_id = pd.currency_id having max(x.price_date))
as `change` from ...

YES

70 E004 select activitytext, actiontext from activity join
activityaction on activity.activityid = activityaction
.activityid join action on activityaction.actionid =
action.actionid where activity.activityid = 1;

YES

71 E004 select studentid, firstname, lastname, gender from
student join major on student.majorid = major.majorid
where major.majorid = 2;

YES

72 E004 select col.column_name, col.constraint_name from
information_schema.constraint_column_usage col where
col.constraint_name = tab.constraint_name and col.

table_name = tab.table_name and constraint_type = '
primary key' and col.constraint_name like '%adhoc%';

YES

73 E004 update purchase as p inner join artwork as a on p.
purchaseid = a.purchaseid set p.total = sum(a.price)
where a.purchaseid = 'd4758';

YES

74 E004 select client.*, cat1id.client_catid_1 as cat1, cat2id.
client_catid_2 as cat2 from tb_clients as client left
join tb_clients_categories cat1id on client.client_id =
cat1id.client_id left join tb_clients_categories cat2id
on client.client_id = cat2id.client_id where client.

client_id = 65447;

YES

64

75 E004 select c.c_id, s.s_fname, count(r.c_id) from results r,
candidates c, student s,positioning p, organization o
where r.c_id = c.c_id and c.sid = s.sid and c.pos_id = p
.pos_id and o.org_id = c.org_id and o.org_id = 1 group
by c.c_id;

YES

76 E004 select pt.projecttaskid, isnull(sum(case when pte.
assigneduserid = @userid then 1 end),0) as assignedtome,
isnull(sum(case when pte.assigneduserid <> @userid then
1 end),0) as assignedtoothers from projecttask pt inner
join project p on p.projectid = pt.projectid left join
projecttaskentity pte on p...

YES

77 E004 select ip_settings.ip from server inner join
network_interfaces on network_interfaces.id = server
.fk_network_interfaces inner join ip_settings on
ip_settings.id = network_interfaces.fk_ip_settings
where server.id=6;

YES

78 E004 update table_to tt, table_from tf set tt.name = "chandi"
where tt.id = tf.id and tf.id = 1;

YES

79 E004 select t.* from terms t join term_relationships tr on
tr.term_id = t.term_id join posts p on p.post_id = tr.
post_id where p.post_id = 1;

YES

80 E004 select t1.service from table1 t1, table2 t2 where t1.
cnty = t2.cnty and t1.zip = t2.zip and t2.zip = '1234';

YES

Table A.4: Manual analysis of tool performance for rule E004

No. RuleID Query Correct

81 E006 select * from (values (1), (2)) as tbl(col) where not (
col = null or col = 1);

YES

82 E006 select r.id, r.authtoken.instagram,r.username from root
r where r.abc <> null;

YES

83 E006 select loans.*, if(ul.name = null, ub.name, ul.name) as
name, if(ul.id = null, ub.id,ul.id) as uid from loans
left join users ul on users.id = loans.lender_id left
join users ub on users.id = loans.borrower_id where ul.
id = 2 or ub.id = 2;

YES

84 E006 select count(*) from table1 where request_time <
timestamp'2012-05-19 14:00:00' and (end_time > timestamp
'2012-05-19 14:00:00' or end_time=null);

YES

85 E006 select * from my_table where some_field = null; YES
86 E006 select * from customer c where so.orderid = null; YES
87 E006 select name from bbc where gdp > all (select gdp from

bbc where region = 'africa' and gdp<>null);
YES

88 E006 select * from hotel where address != null; YES
89 E006 select * from t1 where a=b or (a=null and b=null); YES
90 E006 select concat(area, yearlevel, code) as subjectcode,

count(student) from studenttakessubject where result <
50 and result <> null group by code having count(student
) > 1;

YES

65

A. Tool Validation

91 E006 select checklists.id from checklists left join (select
checklist_id from checklist_items where completed
= 'f' union distinct select checklist_id from

checklist_items group by checklist_id having count
(*) = 0) partial_checklists where partial_checklists.
checklist_id = null;

YES

92 E006 select lefttable.id, righttable.id as nullid from
lefttable left join righttable on righttable.id =
lefttable.id where nullid = null;

YES

93 E006 select e.id from employments e where not exists (select
1 from emails em where em.employment_id=e.id and em.

deactivated_on = null);

YES

94 E006 select secid, min(date) as startdate, max(date) as
enddate, price from bigtable group by secid, enddate
having min(date) != max(date) and date != null;

YES

95 E006 select * from student left join course where student.
std_id = null or student.std_name = null or student.
std_start_date = null or student.std_end_date = null or
student.std_gender = null or student.course_id = null;

YES

96 E006 select top (10) ctry, sales from table1 union all select
'other', sum(sales) from table1 where table2.ctry =

null group by table1.ctry;

YES

97 E006 update salesorders o set transref = (select t.transref
from transfers t where o.orderno = t.orderno and (o.

ordext = t.ordext or (t.ordext=null and o.ordext=null))
and t.transref <> null) where ordext = null;

YES

98 E006 select h.clientnumber, iif(h.checkoutdate=null,"yes
","") as currentvisitor from visitstable as h inner
join (select clientnumber, max(lastvisitdate) as

lastvisitstart from visitstable group by clientnumber)
as t;

YES

99 E006 select * from t left join m on t.sub_id = m.id where t.
sub_id != null;

YES

100 E006 select m.provider_id, m.provider_name, p.
purchase_order_code, null as purchase_order_sample_code,
p.provider_id as provider_order from mst_provider as m
left join trx_purchase_order as p where p.provider_id

!= null union select m.provider_id, m.provider_name, p.
purchase_order_code, null as purchase_...

YES

Table A.5: Manual analysis of tool performance for rule E006

No. RuleID Query Correct

101 E007 select sum(amt) where session=x and order >= (select
max(order) where atype='set' and session=x);

YES

102 E007 select t.*, row_number() over(partition by "name" order
by "date") as rank from tablea t where "date" >= (select
max("date") from tablea where "type" = 'b');

YES

103 E007 select * from `table_name` where id >= (select floor(
max(id) * rand()) from `table_name`) order by id limit
30;

YES

66

104 E007 select id from table_name where id >= (select max(id)
from table_name where id <= 12);

YES

105 E007 select thedate from datetable where thedate >= (select
max(thedate) from datetable where thedate < getdate());

YES

106 E007 select distinct maker, price from product inner join
printer where color = 'y' and price <= (select min(price
) from printer where color = 'y');

YES

107 E007 select * from numbers where nr >= (select max(nr) from
numbers where nr < 6.20) and nr <= (select min(nr) from
numbers where nr > 6.20);

YES

108 E007 select name, message from flux_chat_messages where id >=
(max(id) -5) order by id asc;

YES

109 E007 select submissionid, input, value from yourtable where
submissionid >= (select max(submissionid) from yourtable
) - 1 order by submissionid;

YES

110 E007 select * from yourtable where id >= 4 and id <= (select
min(id) from yourtable where b = 'f' and id >= 4);

YES

111 E007 select * from my_table where datetime_column >= date_sub
((select max(datetime_column) from my_table), 7);

YES

112 E007 select distinct d.phonenum,d.sourcetable,n.fullname
,c.fk_applicationid as ref,t.subject,t.createddate
from dial d join database.dbo.dm_phonenumbers p on p.
phonenum1 = d.phonenum collate latin1_general_ci_as
join database.dbo.dm_phonenumbers on p.phonenum2 = d.
phonenum collate latin1_general_ci_as jo...

YES

113 E007 select * from yourtable where id >= 4 and id <= coalesce
((select min(id) from yourtable where b = 'f' and id >=
4), (select max(id) from yourtable));

YES

114 E007 select * from users where id >= (select floor((max(id) -
min(id) - 1) * rand()) + min(id) from users) limit 1;

YES

115 E007 select foo from bar where id >= (abs(random()) % (select
max(id) from bar)) limit 1;

YES

116 E007 select ename, job, sal from emp where sal >=(select max
(sal) from emp where sal < (select max(sal) from emp
where sal < (select max(sal) from emp))) order by sal;

YES

117 E007 select foo from bar where _rowid_ >= (abs(random()) % (
select max(_rowid_) from bar)) limit 1;

YES

118 E007 select * from customers where cno = (select cno from (
select count(*) as ordcount, cno from orders group by
cno having ordcount >= (select max(ordcount) from (
select count(*) as ordcount, cno from orders group by
cno))));

YES

119 E007 select * from table where id >= (select max(id) from
table) - 10 order by id desc;

YES

120 E007 select name from world where gdp >= (select max(gdp)
from world where continent = 'europe');

YES

Table A.6: Manual analysis of tool performance for rule E007

No. RuleID Query Correct

67

A. Tool Validation

121 E008 update run inner join snp_hgvs set run.comment=concat('
rs',snp_hgvs.snp_id) where run.compute not like 'tron';

YES

122 E008 insert into cesc_pf_stmt_ext_wrk(pf_emp_code ,
pf_dept_code , pf_sec_code , pf_prol_no , pf_fm_seq ,
pf_seq_no , pf_sep_tag , pf_source) select pfl_emp_code
, pfl_dept_code , pfl_sec , pfl_prol_no , pf_fm_seq ,

pf_seq_no , pfl_sep_tag , pf_...

YES

123 E008 select id into id_historical from historical where
volume_id = id_volume and (action like 'expedicao' or
action like 'conference');

YES

124 E008 select * from first_test_name where firstname like 'bob
';

YES

125 E008 select * from table where fiels1 not like 'x' and field2
not like 'y';

YES

126 E008 select name from memberdb where name like 'lim %' or
name like '% lim' or name like '% lim %' or name like '
lim';

YES

127 E008 select forum.user.userid, forum.user.usergroupid, forum
.user.password, forum.user.salt, forum.user.pmunread,
forum.subscriptionlog.expirydate from forum.user inner
join forum.subscriptionlog where forum.user.username

like 'someuser';

YES

128 E008 select column_name from information_schema.columns where
table_name='lime_survey_98673' and column_name like

'98673';

YES

129 E008 select * from emp where ename like 'king'; YES
130 E008 select *, count(`event_target`) `totalsum` from `testdb

` where `account_id` = ? and (`event_target` like '
searchquery' or `event_title` like 'searchquery' or `
event_name` like 'searchquery') group by `username`, `
event_title`, `event_target` order by `totalsum` desc;

YES

131 E008 select * from your_name where category_id not like '90'; YES
132 E008 insert into table1(user_uuid, login_id) select

users_uuid, '1234' from table2 where first_name like
'ortal';

YES

133 E008 select * from products where p.name not like 'brand1%'
and p.name not like 'specific product';

YES

134 E008 select busname, email, render_pic, area,logo, url,
email, map, description, tag, catch_phrase, region from
results where style like 'varstyle' and region like '

varregion' and bedrooms like 'varbedrooms' and bathrooms
like 'varbathrooms' and price between varminprice and

varmaxprice order by id de...

YES

135 E008 select c.id from `tags` `t` left join comictags as ct
left join comics as c where ((t.tag like 'tag1') or (t.
tag like 'tag2')) group by c.id;

YES

136 E008 select description from tproduct where description like
'diamond';

YES

137 E008 select distinct motor from general g where g.year
between 1998 and 2004 and g.motor like '4 cil 1.8 lts';

YES

138 E008 select * from administrators where username like '
thierry';

YES

68

139 E008 select * from all_updatable_columns where column_name
like 'reqd col name';

YES

140 E008 select 'inactive' "status",nvl(region,'total') region,
count(region) regcount from temppivottest where status
like 'inactive' group by rollup (region);

YES

Table A.7: Manual analysis of tool performance for rule E008

No. RuleID Query Correct

141 E009 select paramone, paramtwo from tablename where
search_param = 'x' union all select null, null from
dual where not exists (select paramone, paramtwo from
tablename where search_param = 'x');

YES

142 E009 insert into a (vala1, vala2, vala3, vala4) select valb1
, valb2, valb3, valb4 from b where not exists(select
vala1, vala2, vala3, vala4 from a where a.vala1 = b.
valb1 and a.vala2 = b.valb2 and a.vala3 = b.valb3 and a.
vala4 = b.valb4);

YES

143 E009 select match_ref, count(match_ref) from raw_mwbe where
exists(select match_ref, wbe from raw_mwbe where wbe
like "p" or wbe like "n") group by match_ref, wbe having
count(match_ref)>1;

YES

144 E009 select id, type, number from roads where number = '12'
union select id, type, number from roads where number
like '12%' and not exists (select id, type, number from
roads where number = '12');

YES

145 E009 select l.email as email, l.date as date, l.ip as user_ip
, l.logid as id from table as t where exists(select
email,max(date)date from table group by email) and (ip
is not null) group by t.email;

YES

146 E009 select * from address a where not exists (select
country,state union select 'us' as country, 'la' as
state union select 'ind' as country, 'del' as state
where e.country != a.country and e.state != a.state);

YES

147 E009 select * from cats outside where not exists(select *
from cats cat where exists(select dog.foo,dog.bar from
dogs dog where cat.foo = dog.foo and cat.bar = dog.bar)
and outside.foo = cat.foo and outside.bar=cat.bar);

YES

148 E009 select a.id,a.name,split.item,a.flag from source_excel
a where not exists (select a.id,split.item from
source_excel a join source_dw b);

YES

149 E009 delete from mycard t1 where t1.idmoney = 5 and t1.idcard
= 80 and exists (select idcard, year, money from
mycard t2 where t2.idcard = t1.idcard and t2.year = t1.
year and t2.money = t1.money group by t2.idcard, t2.year
, t2.money having count(t2.idcard) > 1) and t1.id not
in (select min(id) from my...

YES

69

A. Tool Validation

150 E009 select users.userid, year(membership.memyear) as memyear
, users.mailto, users.streetaddress, users.address2,
users.city, statelookup.state, users.zip from users
inner join membership inner join statelookup where year
(membership.memyear) = '2013' and not exists (select x.
userid, year(membership.memye...

YES

151 E009 select sgtins_tmp_table.epc, sgtins.store from
sgtins_tmp_table, sgtins where exists (select
organization_id, sgtin from sgtins where client_id =
4 and sgtins.sgtin = sgtins_tmp_table.sgtin) and sgtins.
client_id = 4 and sgtins_tmp_table.sgtin = sgtins.sgtin;

YES

152 E009 select r12.id, r23.id, r13.id from relations r12 join
relations r23 join relations r13 where not exists (

select relation1_id, relation2_id, relation3_id from
triangles where relation1_id = r12.id and relation2_id =
r23.id and relation3_id = r13.id);

YES

153 E009 select item, size from t1 where t1.date = '2013-02-11'
and not exists (select item, size from t1 where t1.date
= '2013-02-13');

YES

154 E009 update pm set pm.amt = newvalue where exists (select t.
acct, t.amt from pm t where pm.acct = t.acct group by t.
acct, t.amt having count(t.acct)>1);

YES

155 E009 insert into tablename (col1,col2) select @par1, @par2
where not exists (select col1,col2 from tablename where
col1=@par1 and col2=@par2);

YES

156 E009 select id,name from tbl_bkp t1 where not exists (select
id,name from tbl_namecode where id=t1.id and name=t1.

name);

YES

157 E009 select i.agent , i.agency , i.customer , i.company from
table_1 as i where not exists (select p.agent , p.

agency , p.customer , p.company from table_2 as p where
i.agent = p.agent and i.agency = p.agency and i.customer
= p.customer and i.company = p.company);

YES

158 E009 select t1.id, avg(t1.score) avg1 from foo t1 group by t1
.id having not exists (select t2.id, avg(t2.score) avg2
from foo t2 group by t2.id having avg(t2.score) > avg(

t1.score));

YES

159 E009 select valb1, valb2, valb3, valb4 from b where not
exists(select vala1, vala2, vala3, vala4 from a where a
.vala1 = b.valb1 and a.vala2 = b.valb2 and a.vala3 = b.
valb3 and a.vala4 = b.valb4);

YES

160 E009 select a.number, a.c1, a.c2, a.c3 from table a where
exists (select count(1), b.number from table b where b.
number = a.number group by b.number having count(1) = 1)
;

YES

Table A.8: Manual analysis of tool performance for rule E009

No. RuleID Query Correct

161 E010 select * from user where name like '%mike%' or color = '
blue';

YES

70

162 E010 select sc.id, sc.number, sc.name from tempdb..syscolumns
sc inner join tempdb..sysobjects so on sc.id = so.id
where so.name like '%mytable%';

YES

163 E010 update person set addr = left(addr, len(addr) - 2) + '
street' where addr like '% st';

YES

164 E010 select * from emp where name like '%a%e%'; YES
165 E010 select columnname from tablename where columnname not

like '%stack%';
YES

166 E010 select * from street where street_name like '%park%ave
%10%';

YES

167 E010 select * from `words` where `word` like '%person%'; YES
168 E010 select * from fiberbox where field like '1740 %' or

field like '%1938 ' or field like '%1940 % test';
YES

169 E010 select * from parameters where name like '%n%'; YES
170 E010 select * from tablename where column like '%company%'; YES
171 E010 select name from table where age like '%5%'; YES
172 E010 select a.s_oid, a.s_id, a.area_acre, a.power_peak, a.

nearby_city, a.solar_total from global_site a cross join
na_utility_line b where (a.power_peak between 1.0 and
100.0) and a.area_acre >= 500 and a.solar_avg >= 5.0
and a.pc_num <= 1000 and (a.fips_level1 = '06' and a.
fips_country = 'us' and a.f...

YES

173 E010 select * from table_name where name like '%word1%' and
name like '%word2%';

YES

174 E010 select m.* from dbo.mytable m where acolumn like '%val'
order by (case when acolumn like '[a-z]%' then 0 else 1
end), acolumn;

YES

175 E010 select distinct city from station where city like '%a'
or city like '%e' or city like '%i' or city like '%o' or
city like '%u';

YES

176 E010 select * from yourtable where field like '%a%' or field
like '%b%' or field like '%c%';

YES

177 E010 select * from table1 where table1.id like '%1234'; YES
178 E010 update table set col = substring(col,1,charindex('like',

col,0)-1) where column like '%like%';
YES

179 E010 select movie.id, movie.title, alsokownas.aka from movie
left join alsoknowas on movie.id = alsoknowas.movieid
where title like '%searchterm%';

YES

180 E010 select a.noteid, a.firstname, a.lastname, a.status, a.
category, a.name, a.followupdate from (select n.noteid
, t.firstname, t.lastname, s.name as status, tc.name
as category, d.name, n.followupdate as followupdate,
row_number() over (partition by t.firstname, t.lastname
order by n.noteid desc) rnk f...

YES

Table A.9: Manual analysis of tool performance for rule E010

No. RuleID Query Correct

71

A. Tool Validation

181 E011 select `utm source`, `users` , count(*) from (select
distinct `utm source`, `company id`, sum(distinct `

active users`) as users from customers group by `utm
source`, `company id`) customers_2 group by `utm source
`, `users`;

YES

182 E011 select sum(distinct money) as sum_money, m.created_at
from receipt r join material m group by m.created_at;

YES

183 E011 select itemid from stock group by itemid having sum(
distinct warehouseid) = (select sum(warehouseid) from
warehouse);

YES

184 E011 select department, sum(distinct price) from products
join ratings on product_id=products.id where rating=5
group by department;

YES

185 E011 select sum(distinct case when a.gender like 'm%' then 1
else null end) as males;

YES

186 E011 select sum(distinct value) as total from table; YES
187 E011 select col1, sum(distinct col2) as s from tbl1 where

col1='abbc' group by col1 order by s asc;
YES

188 E011 select col1, sum(distinct col2) as s from tbl1 where
col1='abbc' group by col1 order by s asc;

YES

189 E011 select product_type, segment_type, sum(distinct
promotion_value)promotion_value from sample_data
group by product_type, cube(segment_type) order by
product_type;

YES

190 E011 select p.color, array_agg(distinct pg.group_id) as
groups, sum(distinct installs) as installs from

performance p join performance_groups pg group by color;

YES

191 E011 select avg(distinct event_count), min(event_count), max
(event_count) from numstest a join (select patient_id
, count(*) as event_count from numstest group by
patient_id) b;

YES

192 E011 select sum(distinct money_spent.value), sum(distinct
money_earned.value) from user join money_spent on

money_spent.userid = user.userid join money_earned on
money_earned.userid = user.userid;

YES

193 E011 select sum(distinct cast(ar_all_bills.a_unpaid_balance
as decimal(5,2))) as "total unpaid balance" from

ar_all_bills where a_ar_customer_cid = 100059 group
by a_ar_customer_cid;

YES

194 E011 select blocks.user_id, sum(distinct payout_history.
amount) as amount from blocks left join payout_history
where confirms > 520 group by blocks.user_id;

YES

195 E011 select `utm source`, `users` from (select distinct `utm
source`, `company id`, sum(distinct `active users`) as

users from customers group by `utm source`, `company id
`) customers_2;

YES

196 E011 select work.workid, work.description, machine.
machinedescription, name.name, work2.regmin, work.
minutes, (select sum(distinct minutes) from work w where
w.machineid = machine.machineid) total_minutes from

work work join machine machine left join work2 work2
left join name name;

YES

72

197 E011 select `utm source`, `users` from (select distinct `utm
source`, `company id`, sum(distinct `active users`) as
users from customers group by `utm source`, `company id
`) as customers_2 group by `utm source`;

YES

198 E011 select a.user_id , count(distinct b.client_id)
count_client_id, sum(distinct c.client_price)
sum_client_price, max(b.act_date) max_act_date from
tbl_user a inner join tbl_sactivity b inner join
tbl_client c group by a.user_id;

YES

199 E011 select `utm source`, sum(`users`) from (select distinct
`utm source`, `company id`, sum(distinct `active users
`) as users from customers group by `utm source`, `
company id`) customers_2 group by `utm source`;

YES

200 E011 select id_a, id_b, nu_b, date_trunc('month', dt_date) ::
date as dt_month, sum(distinct (1 << (date_part('day',
dt_date)::int) -1)) as nu_bit_days from test group by
id_a, id_b, nu_b, date_trunc('month', dt_date) :: date ;

YES

Table A.10: Manual analysis of tool performance for rule E011

No. RuleID Query Correct

201 E012 select analytics.source as referrer, count(analytics.id)
as frequency, sum(if(transactions.status = 'completed',
1, 0)) as sales from analytics left join transactions
on analytics.id = transactions.analytics where analytics
.user_id = 52094 group by analytics.source order by
frequency desc limit 10;

YES

202 E012 select count(order_header_id) from order_lines where sum
(accounting_total) <= 500;

YES

203 E012 select a.source as referrer, count(a.id) as frequency
, sum(t.sales) as sales from (select id, source from
analytics where user_id = 52094) a left join (select
analytics, case when status = 'completed' then 1 else 0
end as sales from transactions) t on a.id = t.analytics
group by a.source order by fr...

YES

204 E012 select source, count(id) as frequency from analytics
where user_id = 52094 group by source order by frequency
desc limit 10;

YES

205 E012 select count(order_id) from orders; YES
206 E012 select e.id, e.name, count(d.social_security) as

number_of_departments from employee e inner join
department d where d.social_security=e.social_security
group by social_security;

YES

207 E012 select count(id) from profile where registration_date
between now() - interval 7 day and now();

YES

208 E012 select * from table_name where primarykey in (select
primarykey from table_name group by primarykey having
count(primarykey) > 1) order by primarykey;

YES

209 E012 select customerid, count(customerid) from maintenance
where actiontype = 2 group by customerid having count(
customerid) >= 1;

YES

73

A. Tool Validation

210 E012 select t1.id, t1.name, t1.country, count(bid) as
bookings, sum(case when t2.vehicle = 'plane' then 1
else 0 end) as plane, sum(case when t2.vehicle = 'train'
then 1 else 0 end) as train, sum(case when t2.vehicle

= 'bus' then 1 else 0 end) as bus from table1 t1 inner
join table2 t2 on t1.id = t2.orig...

YES

211 E012 select id from table group by id having count(id) > 2; YES
212 E012 select id, names, count(names), total from tbl_products

, (select count(distinct names) as total from
tbl_products) as total where type = '1' group by names;

YES

213 E012 select name, count(email) from users group by email
having count(email) > 1;

YES

214 E012 select a.post_name,a.post_title,a.id,b.meta_value as
_sku from wp_posts a inner join (select meta_value,max
(post_id) as post_id from wp_postmeta where meta_key='
_sku' group by meta_value having count(meta_value) > 1
) b on a.id=b.post_id where post_type = 'product' and
post_status = 'publish';

YES

215 E012 select id, count(id) from table1 group by id having
count(id)>1;

YES

216 E012 select customer, count(liked) as total_likes from table
where liked = 'true' group by customer;

YES

217 E012 select m.start_time, count(r.seconds) from dbo.minutes m
group by m.start_time;

YES

218 E012 select a.id from result a cross join result b where b.
count = (select max(count) from result);

YES

219 E012 select orders.entrydate as "date", count(orders.orderno)
as "orders", sum(case when orders.reason is null then 1
else 0 end) as "replacements" from orders where orders.

reason is null and orders.entrydate = '09-may-2014' and
orders.customerno = 'a001' group by orders.entrydate;

YES

220 E012 select count(f.id_foo) from my_remote_server_public.
my_remote_server_public_foo f where f.date < _my_date;

YES

Table A.11: Manual analysis of tool performance for rule E012

No. RuleID Query Correct

221 E013 select count(*) as countbyid from items where fkid =
2003799 group by fkid having countbyid>1 order by

countbyid;

YES

222 E013 select v.concode,c.conname, min(v.rate), v.vendor from
venprices v, country c where c.conid = v.concode group
by c.conid;

YES

223 E013 select u from user u where size(u.comments) = (select
max(count(c.id)) from user u2 inner join u2.comments c
group by u2.id);

YES

224 E013 select t.person_id from table t group by t.personid
having count(t.personid) > 3;

YES

74

225 E013 select import_values.id, import_values.part_id,
import_values.qty, import_values.note, parts.
partterminologyname, group_concat(basevehicle.yearid,
' ', make.makename, ' ', model.modelname, ' ', submodel
.submodelname separator ', '), group_concat(distinct(
enginedesignation.enginedesignationname) sepa...

YES

226 E013 select count(*) from tbl t group by t.ip_address order
by count(*) desc limit 10;

YES

227 E013 select name, max(b), max(c), min(b), min(c) from
tablename group by name, b, c;

YES

228 E013 select customer_name, count(purchases.customer_id) as
number_of_purchaes from customer left join purchases on
customer.customer_id = purchases.customer_id group by
customer.customer_id;

YES

229 E013 select c.name, count(*) as mycount from coupon c left
join coupon_users u on c.id = u.coupon_id group by c.id
order by mycount desc;

YES

230 E013 select game.mdate, game.team1, sum(case when goal.teamid
=game.team1 then 1 else 0 end) score1, game.team2, sum
(case when goal.teamid=game.team2 then 1 else 0 end)
score2 from game inner join goal group by game.mdate,
goal.matchid, game.team1, game.team2;

YES

231 E013 select itemprices.id, min(itemprices.lowprice) as
minprice, itemprices.locationid from itemprices left
join t where t.id is null group by locationid;

YES

232 E013 select employees.empid, sum(workhours.hoursworked) as
totalhours from employees inner join workhours where
wh_month = 4 group by lastname, firstname, employees.
empid;

YES

233 E013 select sum(points) as total_points from sometable where
total_points > 25 group by username;

YES

234 E013 select count(1) from file_item p join type t on t.id =
p.family_type_id group by p.family_type_id order by t.
name;

YES

235 E013 select group_name, group_id, sum(case when pass_fail
= 'pass' then 1 else 0 end) as pass, sum(case when
pass_fail = 'fail' then 1 else 0 end) as fail from log a
join group b group by b.group_name, a.group_id;

YES

236 E013 select knowledge.*, sorting.* from knowledge, sorting
where knowledge.id = sorting.kid group by kid having
count(id) < 2;

YES

237 E013 select t.historyid from synk_isheet_1_int t where t.
historyid = 6 and t.group1id = 27 and t.group2id = 4
group by t.historyid,t.requestentityid;

YES

238 E013 select classes.classname, students.userid from
classassociation join students join classes where
classassociation.classid = 1 group by classname;

YES

239 E013 select avg(m.a) from maintable m inner join #temptable
t on m between t.startdate and t.enddate group by t.
startdate;

YES

75

A. Tool Validation

240 E013 select p.p_pid, p.p_name, p.p_url from products p inner
join activity a on p.p_pid = a.a_pid where a.a_uid= ".

$uid_int." group by p_pid, p_name, p_url order by max(a.
a_time) desc limit 6;

YES

Table A.12: Manual analysis of tool performance for rule E013

No. RuleID Query Correct

241 E014 select customerkey from factinvoices i where i.
dossierkey =2 and i.reportingdate between '2016-01-01'
and '2017-12-31' group by customerkey;

YES

242 E014 select ins1 as insurance from insauth2 where ins1 is not
null group by ins1 union select ins2 as insurance from
insauth2 where ins2 is not null group by ins2 union

select ins3 as insurance from insauth2 where ins3 is not
null union select ins4 as insurance from insauth2 where
ins4 is not null union ...

YES

243 E014 select cast(somecol as decimal(10,3)) from sometable
group by cast(somecol as decimal(10,3));

YES

244 E014 select distinct productid from x_product_ship group by
productid having shipid <> 3;

YES

245 E014 select country from yourtable group by country; YES
246 E014 select reservations.idcustomer from reservations (

nolock) where excludedreservations.idcustomer is null
and reservations.idcustomer is not null group by

reservations.idcustomer;

YES

247 E014 select zip from table1 where created between '2014-08-04
00:00:00' and '2014-08-08 23:59:59' group by zip order

by count desc;

YES

248 E014 select trackid from tracks where timestamp between tmin
and tmax group by trackid;

YES

249 E014 select t.purchase_date, t.qty, approx_percentile(t1.qty,
0.9) tp90 from mytable t inner join mytable t1 group by
t.purchase_date, t.qty;

YES

250 E014 select parent_id, listagg(child_id, ',') within group (
order by child_id) as "children" from parentchildtable
where parent_id = 0 group by parent_id;

YES

251 E014 select product_name from purchase_history group by
product_name;

YES

252 E014 select animal from pets group by animal having animal
not in (select animal from pets where name not in ('

homer','bart','marge','lisa','maggie') group by animal)
;

YES

253 E014 select pers_key, pers_name from visit_info a join
valid_dates b where a.visit_date between b.start_date
and b.end_date group by pers_key, pers_name;

YES

254 E014 select id, group_concat(name order by name asc separator
', ') from my_table group by id;

YES

255 E014 select country from countries group by country having
sum(building) is null;

YES

76

256 E014 select t1.groupguid, t2.memberguid from temp t1, temp
t2 where t2.isgroup = 0 group by t1.groupguid, t2.
memberguid;

YES

257 E014 select p.name from pc p left join sc s on p.color=s.
color where s.color is not null group by p.name;

YES

258 E014 select maker_id, status_id from cars where status_id
!= 0 group by maker_id, status_id union all select
maker_id, max(status_id) max_status_id from cars group
by maker_id having max_status_id = 0;

YES

259 E014 select tb.id from tablea ta inner join tableb tb group
by tb.id;

YES

260 E014 select student_id, name, group_concat(subject separator
' ') from table1 join table2 on table1.student_id =
table2.student_no group by student_id, name;

YES

Table A.13: Manual analysis of tool performance for rule E014

No. RuleID Query Correct

261 E015 select count(*) from t1 where value='0' union select
count(*) from t1 where value='1';

YES

262 E015 select * from mytable where a=x union all select * from
mytable where b=y and a!=x;

YES

263 E015 select cc.contactpersonid, cc.clientcontactid, ad.city,
ad.addressid from savedlist sl inner join clientcontacts
cc on cc.contactpersonid = sl.objectid inner join
clients c on c.clientid = cc.clientid inner join address
ad on c.clientid = ad.objectid where sl.savedlistid =
2117 and (ad.city is not n...

YES

264 E015 select id,name,age from student where age < 15 union
select id,name,age from student where name like '%a%'
order by name;

YES

265 E015 select * from citizen c where c.name = 'smith' union
select * from citizen c where p.area = 'moon';

YES

266 E015 select * from a_table where a_column = :a_var union
select * from a_table where b_column = :a_var;

YES

267 E015 select id, name from color where parentid=4 union select
id, name from color where parentid=(select id from
color where parentid=4);

YES

268 E015 select * from table where id1 = :var1 and id2 = :var2
union all select * from table where id1 = :var2 and id2
= :var1;

YES

269 E015 select resourceid from mytable where startdate
between '2009-01-01' and '2009-01-20' and datediff(
day, case when enddate < '2009-01-20' then enddate
else '2009-01-20' end, startdate) >= 5 union select
resourceid from mytable where enddate between
'2009-01-01' and '2009-01-20' and datediff(day, endda...

YES

77

A. Tool Validation

270 E015 select fiscal_period, fiscal_year, amount from maxtable
where fiscal_period = 5 union all select fiscal_period,
fiscal_year, amount from maxtable where fiscal_period =
(select max(fiscal_period) from maxtable) and not exists
(select * from maxtable where fiscal_period = 5);

YES

271 E015 select * from xx where f_colour = "green" union all
select * from xx where id not in (select distinct id
from xx where f_colour = "green");

YES

272 E015 select customers.firstname, customers.surname, customers
.dob, customers.customeraddress from customers where
customers.customeraddress like '%'+ 'main' + '%' union
select customers.firstname, customers.surname, customers
.dob, customers.customeraddress from customers where
customers.customeraddress...

YES

273 E015 select * from stock where stockid in (33) union select
* from stock where stockid in (12) union select * from
stock where stockid in (53) union select * from stock
where stockid in (4) union select * from stock where

stockid in (99) union select * from stock where stockid
in (88);

YES

274 E015 select id from foo where a = 1 and b = 2 union all
select id from foo where a = 3 and b = 4 union all
select id from foo where a = 5 and b = 6;

YES

275 E015 select a.id, b.model, c.color from cars a join models
b join colors c join brands d where b.id=1 union all

select a.id, b.model, c.color from cars a join models b
join colors c join brands d where b.id=3;

YES

276 E015 select id, name, group_id from mytable where id in (
select min(id) from mytable group by group_id) union all
select id, name, group_id from mytable where id in (

select min(id) from mytable where id not in (select min
(id) from mytable group by group_id) group by group_id)
order by group_id;

YES

277 E015 select meetingid, billid from mytable where billid is
not null group by billid union all select meetingid,

billid from mytable where billid is null;

YES

278 E015 select id, event, seen, time_stamp from notifications n
where id_user = :id and seen is null union all (select
id, event, seen, time_stamp from notifications n where
id_user = :id and seen is not null limit 15);

YES

279 E015 select name from foo where name like 'm%' order by name
desc union all select name from foo where name not like
'm%' order by name asc;

YES

280 E015 select friend_user_id from friends where user_id = 1
union select friend_user_id from friends where user_id
in (select friend_user_id from friends where user_id =
1);

YES

Table A.14: Manual analysis of tool performance for rule E015

No. RuleID Query Correct

78

281 E016 select parent.object_id,parent.event_time,parent.state,
min(child.event_time) as ch_event_time, case when parent
.state<>'done' and min(child.event_time) is null then (
select localtimestamp)-parent.event_time else min(child
.event_time)-parent.event_time end as step_time from
objectstate parent where p...

YES

282 E016 select title, pubid as 'publisher id', pubdate as '
publish date' from books where pubid = 4 or pubdate >
'01-jan-01' order by pubid asc;

YES

283 E016 select * from tv_watchers where mins_watching_tv <= 60
or id=10 order by mins_watching_tv desc, id asc limit 6;

YES

284 E016 select t.name as tablename, p.rows as rowcounts, convert
(decimal,sum(a.total_pages)) * 8 / 1024 / 1024 as
totalspacegb, sum(a.used_pages) * 8 / 1024 / 1024 as
usedspacegb , (sum(a.total_pages) - sum(a.used_pages))
* 8 / 1024 / 1024 as unusedspacegb from sys.tables t
inner join sys.indexes i on t.obj...

YES

285 E016 select a.column1, a.column2, b.column1, c.column1, cc.
column1, cc.column2, cc.column3, d.column1 from table_a
a inner join table_b b inner join table_c c left join
table_d d inner join table_c cc where a.column1 = 1000
and b.column3 = 1 and c.column3 = 0 order by a.column1
asc;

YES

286 E016 select q.postid, a.postid, c.commentid from posts q
where q.postid = 1234 order by q.postid, a.postid, c.
commentid;

YES

287 E016 select salary from table_name where name='inputfromphp'
and (surname='inputfromphp' or country='inputfromphp')
order by case surname when 'inputfromphp' then 0 else 1
end, case country when 'inputfromphp' then 0 else 1 end
limit 1;

YES

288 E016 select name, score_string, place from scores s where
game_id =1 and game_size =15 and game_level =1 and id =
(select id from scores si where si.game_id =1 and si.
game_size =15 and si.game_level =1 and si.name = s.name
and si.place = s.place and si.date > "2010-10-01" order
by si.game_id, si.game_si...

YES

289 E016 select id,title,release_date from tbl_movies where
release_date > '2014-02-20' or release_date='' order by
release_date asc;

YES

290 E016 select m.discovery_time, m.ip, m.matched_id, m.uuid from
mydata m where m.ip = '12.34.56.78' order by m.ip, m.
discovery_time;

YES

291 E016 select max(speed) as speed, time from info where id = 1
and time > 1234 order by id;

YES

292 E016 select p1.store_number as st# from personnelfile as
p1 left join payrollfile as p2 where p2.pay_date >
'2010-05-14' and p2.uniform_allowance_amt_cppd in
(8.25,8.50,300) and p1.jobs_series in ('2380','1458')
and p1.ssn = '123456789' order by p1.ssn,p2.pay_date;

YES

293 E016 select column1, column2, column3, coalesce(column4, 'foo
') as column4 from tablename where column1 = 'bar' order
by column1, column2;

YES

79

A. Tool Validation

294 E016 select v.id, v.active, v.reg_no, p.install_date, p.
remove_date from vehicle v left join period p on (v.id =
p.car_id) where v.id = 1 order by v.id, p.install_date

asc;

YES

295 E016 select code, name from table1 where scope1='here' or
scope2='room' group by code, name order by min(scope1),
min(scope2), min(seq);

YES

296 E016 select br.bm_tracking_number, (select tolist(
appt.fact_date) from bm_fact appt where appt.
bm_review_sk = br.bm_review_sk and appt.fact_type_code
=183050) "appointments" from bm_review br where
row_delete_date_time is null order by min(select appt
.fact_date from bm_fact appt where appt.bm_review_sk =
...

YES

297 E016 select `rp_products`.`product_code`, `rp_log`.`
customer_id`, `rp_products`.`product_name` from
rp_products, rp_log where (`rp_log`.`customer_id` =
'111') order by `rp_products`.`product_code` asc, `
rp_log`.`customer_id` asc;

YES

298 E016 select * from label where tenantid = 'jim' and
tagfieldname = 'work' and tagid = 'work1' order by
value, tenantid, tagfieldname, tagid, key limit 2;

YES

299 E016 select pd.id,pd.price_date,pd.name_id,pd.class_id,pd.
currency_id,pd.price, pd.price - (select price from
price_data as x where x.price_date < pd.price_date and x
.name_id = pd.name_id and x.class_id = pd.class_id and x
.currency_id = pd.currency_id having max(x.price_date))
as `change` from price_data...

YES

300 E016 select mq, im, pf, kmct from vehicules where mq='renault
' order by mq;

YES

Table A.15: Manual analysis of tool performance for rule E016

No. RuleID Query Correct

301 E017 select count(*) as countbyid from items where fkid =
2003799 group by fkid having countbyid>1 order by

countbyid;

YES

302 E017 select t.project, t.employee_id, sum(timestampdiff(hour
, t.start_time, t.end_time)) as number_of_hours, max(e.
billable_rate) as unit_price, sum(timestampdiff(hour, t
.start_time, t.end_time)) from my_db.timesheet t join
my_db.employee e on e.id = t.employee_id where t.project
= 'ait' group by t.proje...

YES

303 E017 select `periode_class_members`.`id`, `classes`.`id
` as `class`, `periode_class_members`.`periode`, `
user`.`firstname` as `firstname`, `user`.`lastname
` as `lastname`, `periode_class_members`.`status`,
min(`periode_class_subjects`.`id`) as pcs from `

periode_class_subject_members` left join `periode_c...

YES

304 E017 select class, min(grade) as highestgrade, freq, ranking
from ranked where ranking = 1 group by class, freq,

ranking;

YES

80

305 E017 select car.personid as person, count(car.carid) as cars
, null as pets from car where car.personid = 1 group by
car.personid union all select pet.personid as person,
null as cars, count(pet.petid) as pets from pet where
pet.personid = 1 group by pet.personid;

YES

306 E017 select product.productname, component.componentname
from product_component join component join product
where product.productname = 'bread' group by product.
productname;

YES

307 E017 select name, year, sum(hours) from test_hours join
test_users where year = 2020 group by users_id, year;

YES

308 E017 select speed , lat as lat1 , lon as lon1 from table1
where speed <> 0 union all select speed , lat as lat1 ,
lon as lon1 from table1 where speed = 0 group by speed,
lat1,lon1 order by lat1;

YES

309 E017 select id, code, sum(sale) as sale from tablename where
code = 11 group by id, code;

YES

310 E017 select d.full_date, count(*) from actions a join
date_dimension d where d.full_date = '2010/01/01' group
by d.full_date;

YES

311 E017 select distinct from_member_id, to_member_id from `
single_chat` where from_member_id = 175 or to_member_id
= 175 group by from_member_id, to_member_id;

YES

312 E017 select customer_id, tax_code from orders where
customer_id = 'some customer id' group by customer_id
, tax_code;

YES

313 E017 select service_name, metric_name, array_agg(
value_textarray) from service_data where service_name =
'activitydataservice' group by service_name, metric_name
;

YES

314 E017 select s.transaction_id, group_concat(i.item_name) from
stock s inner join ref_item i where s.transaction_id =
123 group by s.transaction_id;

YES

315 E017 select label1, label2, sum(number) as mysum from mytable
where label1 = 'foo' group by label1, label2 having
mysum > 0;

YES

316 E017 select product.productname, component.componentname
from product_component join component join product
where product.productname = 'bread' group by product.
productname;

YES

317 E017 select p.proj_uid, p.proj_name,p.agency,p.district
,p.division,p.projstatus,civilbill80.billcount as
civilbill80, civilbill20.billcount as civilbill20 ,
civilbillpay.billcount as finalcivilbill,civilworkslip.
billcount as civilworkslip, electribill80.billcount as
electricbill80, electribill20.billcount...

YES

318 E017 select sum(quantity) as total from tablename where
productid =1 and shopid in (1,2) group by productid;

YES

81

A. Tool Validation

319 E017 select a.userid, a.code, a.country, listagg(b.email,
',') within group (order by b.email) as "emails" from
tab1.a, tab2.b where a.userid = b.userid and a.code = b.
code and a.userid = 'rishi' group by a.userid, a.code, a
.country;

YES

320 E017 select division, count(id) as ct from test where role
>=101 and division=1 group by division;

YES

Table A.16: Manual analysis of tool performance for rule E017

No. RuleID Query Correct

321 E018 select sc.studentid, c.classname, u.
usergrouporganizationname, c.academicyearid
, c.usergroupid, c.schoolid, sc.classid
, u.usergrouporganizationstatusid from
studentclasscrossreference sc inner join class c on
sc.classid = c.classid inner join school s on s.schoolid
= c.schoolid inner join dbo.usergr...

YES

322 E018 select table1_id, count(*) as count from table1_table2
group by table1_id having count > 2;

YES

323 E018 select active, is_featured, count(*) from tbl_sales
group by active, is_featured having (active=0 or active
=1) and (is_featured=0 or is_featured=1);

YES

324 E018 select sum(child_id) from children group by child_id
having child_id = 5;

YES

325 E018 select `businessid`, count(*) c from `biz_listing`
where updated_date between '2014/06/01' and last_day
('2014/07/01') group by `businessid`,`type` having c =
2;

YES

326 E018 select a, b, sum(d) as c from tbla inner join (tblb
inner join tblc on tblb.a = tblc.a) group by a, b having
f like '*808*';

YES

327 E018 select d.doctorid, d.doctorname, count(p.patientid) as
patients from doctor d inner join patient p group by d.
doctorid, d.doctorname having patients > 1;

YES

328 E018 select company, project from table group by company,
project having type = 'dummy';

YES

329 E018 select val, array_agg(fkey) fkeys from mytable group by
val having array_length(array_agg(fkey),1) > 1;

YES

330 E018 select first.subscriber_id, second.tag_id, count(*)
as c from content_hits first join content_tag second
on first.content_id=second.content_id group by second.
tag_id,first.subscriber_id having c = 0;

YES

331 E018 select lr.ansattnr, lr.rom, rb.behandling from
rom_behandling rb inner join lege_rom lr on lr.rom = rb.
rom group by lr.rom having rb.behandling = 'konsultasjon
';

YES

332 E018 select id parent_id, title, (select count(id) from
tbltree group by id having parent = parent_id)

child_count from tbltree;

YES

82

333 E018 select id, kmstand, count(*) as cnt from (select id
, kmstand, vacationame, vacationvalue from `db_1`.`
table_new` where (vacationame='vacation1' or vacationame
='vacation2' or vacationame='vacation3' or vacationame
='vacation4') group by id, kmstand, vacationame,
vacationvalue having count(*) = 1) t gr...

YES

334 E018 select label1, label2, sum(number) as mysum from mytable
group by label1, label2 having mysum > 0 or label1 = '
foo';

YES

335 E018 select c.country from orders o left join customers c on
o.customer_id = c.customer_id join order_detail od where
o.order_id = od.order_id group by country, month having
rank <= 3;

YES

336 E018 select first_name, last_name, class from students group
by class having class = 'jss1';

YES

337 E018 select first_name from students group by class having
class in('a');

YES

338 E018 select s.buyer_id, p.product_name from sales s join
product p group by s.buyer_id having p.product_name = "
s8";

YES

339 E018 select name from schools group by city having city =
city;

YES

340 E018 select string_agg(title, ', ') as titles, genre, count
(*) from films group by genre, title having genre='SciFi
';

YES

Table A.17: Manual analysis of tool performance for rule E018

No. RuleID Query Correct

341 E019 select a.brand from brands a join cars b group by a.
brand;

YES

342 E019 select a.empid, a.name, b.name as dept_name from emp a
left join department b;

YES

343 E019 select o.orderid from orders as o join orderitems as oi
join products as p;

YES

344 E019 select e.id, e.name, count(d.social_security) as
number_of_departments from employee e inner join
department d group by e.id, e.name;

YES

345 E019 select a.x, a.y from table_a a left join table_b b where
b.x is null;

YES

346 E019 select e.id, e.name, count(d.social_security) as
number_of_departments from employee e inner join
department d group by e.id, e.name;

YES

347 E019 select table1.id, table1.start_date as table1_start_date
, table1.end_date as table1_end_date, table2.start_date
as table2_start_date, table2.end_date as table2_end_date
from table1 inner join table2 order by table1.id,
table1.start_date, table2.start_date;

YES

348 E019 select food, description from tbl_foods join tbl_dishes; YES

83

A. Tool Validation

349 E019 select ts.pagesize from syscat.tablespaces ts join
syscat.tables tb where tb.tabschema = 'sysibm' and tb.
tabname = 'dual';

YES

350 E019 select distnct station, slot, subslot, compid, compname
from devicetrace as dt inner join complist as cl;

YES

351 E019 select * from category c join (select distinct pt.
category_id from part pt) pqparts;

YES

352 E019 select * from a inner join b; YES
353 E019 select p.personname from people p left join addresses a

where a.addressid is null;
YES

354 E019 select d.end_date, extract(hour from end_time) as
end_hour, count(t.users) as total_users from (select
distinct cast(end_time as date) as end_date from table)
d cross join table t group by e.end_date, h.end_hour;

YES

355 E019 select omode.vehicle, omode.ordercode, omode.actiondate
-imode.actiondate from (select vehicle, ordercode,
actiondate from table where mode='o') omode, (select
vehicle, ordercode, actiondate from table where mode='i'
) imode where omode.vehicle = imode.vehicle and omode.

ordercode = imode.ordercode;

YES

356 E019 select a.id, a.account, a.mydate from awesometable as
a join (select account, max(mydate) as maxdate from

awesometable group by account having maxdate < date_sub(
now(), interval 12 month)) as b;

YES

357 E019 select t1.id as t1_id,t3.data as t3_data from table3 t3
inner join table2 t2 inner join table1 t1;

YES

358 E019 select distinct saletype.id, saletype.code, saletype.
name from customer left join saletype_customer where
(saletypeid = saletype.id or saletypeid is null) and
customer.id= 4;

YES

359 E019 select foo from footable foo join bartable bar where bar
.anotherid=:another;

YES

360 E019 select * from meetings m join (select attendee_id,
max(meeting_date) from meetings group by attendee_id)
attendee_max_date;

YES

Table A.18: Manual analysis of tool performance for rule E019

No. RuleID Query Correct

361 E020 select fname, lname from employee where not exists ((
select pnumber from project where dnum = 5));

YES

362 E020 select case when exists (select patientid from table2 t2
where t2.patientid =t1.patientid) then 'yes' else 'no'

end as patientexists from table1 t1;

YES

363 E020 select * from tblrecords where not exists (select
personid from tblpeople group by personid having count(
personid) > 1);

YES

364 E020 select * from event where exists (select 1 from dual
where mod(start_date - to_date(1, 'j') + level - 1, 7) =
6 or (mod(start_date - to_date(1, 'j') + level - 1, 7)

= 3 and to_char(start_date + level - 1, 'dd') = '13'));

YES

84

365 E020 select (select max(if(index=80, value, null)) from
unnest(customdimensions)) as is_app, (select hits.
eventinfo.eventaction) as ea from `table-big-query
.105229861.ga_sessions_201711*`, unnest(hits) hits
where totals.visits = 1 and _table_suffix between '21'
and '21' and exists(select 1 from unnest(hi...

YES

366 E020 select * from a a where not exists (select 1 from ab m
where m.a_id = a.id and exists (select 1 from b b where
m.b_id = b.id and b.type = 'c'));

YES

367 E020 insert into tableb select sum(a), sum(b), sum(c) from
tablea where not exists (select * from table b where a=a
and b=b) group by a, b;

YES

368 E020 select * from `riders` where exists(select * from `
ridersclasses` where ridersclasses.rid = riders.id and `
cid` = '6') order by `first_name` asc;

NO

369 E020 select * from test1 t1 where exists(select 1 from test2
t2 where (t1.id = t2.idc or t1.id = idp) and exists(
select 1 from test3 where t2.idc = id or t2.idp = id));

YES

370 E020 select * from students where exists (select studentid
from student_to_hostel where hostelid=2);

YES

371 E020 select e.email, case when exists(select * from userstbl
tu where e.email = tu.username) then 'exist' else 'not
exist' end as ex from (values('email1'),('email2'),('
email3'),('email4')) e(email);

NO

372 E020 select 1 from dual where exists (select 1 from
user_objects where object_name = upper('client_sys.
clear_info') and object_type = 'procedure') or exists
(select 1 from user_procedures where object_name =
substr(upper('client_sys.clear_info'), 1, instr(upper
('client_sys.clear_info'), '.') - 1) ...

YES

373 E020 select * from t1 where exists (select null from t2
where y = x);

YES

374 E020 select staff_no from doctor where not exists (select *
from patient where staff_no = consultant_no);

YES

375 E020 select * from final_combined_result wfcr where not
exists (select contact_id, account_id from temp_wfcr);

YES

376 E020 select id from usertable where exists (select 1 from (
values (user_addedon, user_deletedon, user_modified)) ud
(ud) where ud >= ri and ud < re);

YES

377 E020 select * from current_stock where not exists (select *
from stock_record);

YES

378 E020 select count(*) as row_count from catat where catat.id
= 1007642 and catat.is_parent = 1 and exists(select 1
from cg where cg.c_id = catat.id and exists(select 1
from ccsd where ccsd.g_id = cg.id));

YES

379 E020 select id from dbo.splitstringtotable('2,3,6,7') where
not exists (select 1 from tab where col = id);

YES

380 E020 select c.custname, p.pjtitle from customer as c join
project as p on p.custno = p.custno join tack as t on
t.pjno = p.pjno where t.empid = 'glc' and not exists (
select null from task where empid = 'glc' and empid = '
cac');

YES

85

A. Tool Validation

Table A.19: Manual analysis of tool performance for rule E020

No. RuleID Query Correct

381 E021 select * from formfields where formfields.id in(select
fields from form);

YES

382 E021 select ancestorid from myview where ancestorid in (
select id from #t);

YES

383 E021 select eid, employee_name from employee where eid not in
(select user1 from assign) and eid not in (select

user2 from assign);

YES

384 E021 select eid from entidades e where distrito in (select
id from distritos where distrito_t like '%lisboa%');

YES

385 E021 select ids from my_temp_table where ids not in (select
id from table_one);

YES

386 E021 select m.msg_id, m.uid_fk, m.message, m.alert, m.created
, m.uploads, m.owner, u.uid, u.first_name, u.last_name
from users u join messages m on m.uid_fk = u.uid where
u.uid = :uid or u.uid in (select f.friend_two from

friends f where f.friend_one = :uid) order by m.created
desc limit 10;

YES

387 E021 select categoryname from categories where id_category
not in (select supercategoryid from supercategories);

YES

388 E021 select * from data d inner join user u on 1=1 where
(u.id, d.id) not in (select user_id, data_id from

collection);

YES

389 E021 select * from temp where part_in in (select count(
part_id) as duplicates from temp where 1 group by
part_id) and duplicates > 1;

YES

390 E021 select table1.* from table1 where table1.id not in (
select table2.key_to_table1 from table2 where table2.id
= some_parm);

YES

391 E021 select * from table1 where info1 in (select info2 from
table1) and info2 in (select info1 from table1) and id
not in (select id from table1 where (info1 in (select
info2 from table1) and info2 not in (select info1 from
table1)) or (info2 in (select info1 from table1) and

info1 not in (select info2 f...

YES

392 E021 select id from user where id not in (select owner_id
from hd_ticket union all select submitter_id

from hd_ticket union all select owner_id from
hd_archive_ticket union all select submitter_id from
hd_archive_ticket);

YES

393 E021 select * from table1 a where a.col1 in (select b.col2
from table2 b) ;

YES

394 E021 select f.field1, f.field2, f.field3 from foo f where f.
field4 in (select b.bar from bar b where b.type = 4 and
b.other = 7);

YES

86

395 E021 select * from worklog w where 1=1 and w.class = '
activity' and w.recordkey in (select wonum from
woactivity where parent = 'm2176') union all select *
from worklog w where 1=1 and w.class = 'workorder' and
w.recordkey in (select wonum from workorder where parent
= 'm2176');

YES

396 E021 select no, action_dt, request_type, status_cd, min
(action_dt) over (partition by no, grp) as
request_start_dt from (select w.*, count(case when
status_cd in ('approved', 'denied') then 1 end) as
grp from w) order by action_dt;

YES

397 E021 delete from r2_table where r02_r01_id_fk in (select
column_value from table(r01_ids));

YES

398 E021 select id,name,xs1 as download, xs2 as upload from
sc_params where rfen = 'service_requested' and code =
'speed' or code in (select code from sc_params where
rfen = 'service_requested' and id = (select parent from
sc_params where rfen = 'service_requested' and code = '
speed'));

YES

399 E021 select table1.articleno,table1.artdescription,table2.
year from table1 join table2 where not table1.articleno
in (select table2.year from table2);

YES

400 E021 select * from conversation where (least(sender_id,
receiverid), greatest(sender_id, receiverid), date)
in (select least(sender_id, receiverid) x, greatest
(sende_id, receiverid) y, max(date) max_date from
conversation) and '$uid' in (sender_id, receiverid);

YES

Table A.20: Manual analysis of tool performance for rule E021

No. RuleID Query Correct

401 E022 select a.name from users a, friends b where a.id=b.
user_b and b.user_a = (select b.user_a from friends
where a.name='s1');

YES

402 E022 select * from tablea a where not exists(select * from
tableb b where a.pid = b.pid and a.startdate >= '20-jun
-10');

YES

403 E022 select cola,colb,colc,cold from mytable where exists
(select 1 from (select i.itemid from items as i where
iitemname like '%xxx%') as itm where itm.itemid=mytable.
cola or itm.itemid=mytable.colb);

YES

404 E022 select count(distinct i.third_party_id) as uniques from
db.ids i where i.third_party_type = 'cookie_1' and i.
first_party_id not in (select i.first_party_id where i.
third_party_id = 'cookie_2');

YES

405 E022 select * from t1 where t1.id in (select t2.id from t2
where t1.a = 'aa');

YES

87

A. Tool Validation

406 E022 select atc.owner, atc.table_name, atc.column_name from
all_tab_columns atc where not exists (select acc.owner
, acc.table_name, acc.column_name from all_cons_columns
acc join all_constraints ac on acc.owner = ac.owner

and ac.constraint_name = acc.constraint_name and ac.
constraint_type in ('p', 'r') ...

YES

407 E022 select * from table1 a where a.d > (select b.d from
table2 b where a.id = b.id and a.something = 1);

YES

408 E022 select * from (select e.id,e.name,sum(s.amount) as '
total_amount' from employee e inner join sale s on e.id=
s.emp_id group by s.emp_id,e.id,e.name) as t1 where(0)
=(select count(distinct(total_amount)) from(select e.id
,e.name,sum(s.amount) as 'total_amount' from employee e
inner join sale s on e.id...

YES

409 E022 select * from table1 a where a.d > coalesce((select b.d
from table2 b where a.id = b.id and a.something = 1),

'0');

YES

410 E022 select u.name from user u inner join (select uid from
user_profile where p.address = 'some constant') p on u.
uid = p.uid;

YES

411 E022 select t2.word, t1.frequency, t2.secondword, t2.
secondfrequency from (select * from (select word,
secondword, secondfrequency, row_number() over(partition
by word order by secondfrequency desc) as num from

table_2) t where t.num <= 3) t2 join table_1 as t1 on
t2.word = t1.word order by t2.secondfre...

YES

412 E022 select u.e_id, case when e_type_id = 1 then u.e_name
else ' - ' + u.e_name end e_name, e_type_id, su.n_id
from table1 u inner join table3 su on u.e_id = su.e_id
where exists (select n_id from table2 where n_id = case
when u.e_type_id = 1 then u.e_id else n_id end) order by
e_type_id, u.e_name,n_id;

YES

413 E022 select s.*, u.a, u.b, u.c, u.d, u.e, u.f, c.
location_country, st.location_state, ct.location_city
from (select user_id from tags where t.skillid =

52772) as t left join search s on t.user_id = s.user_id
left join users u on t.user_id = u.user_id left join

countries c on s.countryid = c.countryid lef...

YES

414 E022 select timeslots.timeslot, users.role, users.surname,
users.clinic from timeslots, users where timeslots.id
not in (select timeslot from appointments where appdate
= getdate() and (users.clinic = 'werrington') and (users
.role = 'doctor' or users.role = 'nurse')) and (users.
role = 'doctor' or users....

YES

415 E022 select * from customer_tbl where exists(select 2 as
customer_tbl where customer_tbl.country = 'mexico');

YES

416 E022 update e set e.employeenumber = (select top 1
employeenumber from #employees where e.id = e.id order
by newid()) from #employees e;

YES

88

417 E022 select distinct winner.person from (select case when
t2_1.last_post > t2_2.last_post then person1 else
person2 end as person from t1 inner join t2 t2_1 on t1.
person1 = t2_1.person inner join t2 t2_2 on t1.person2
= t2_2.person) winner left join (select case when t2_1.
last_post < t2_2.last_post then ...

YES

418 E022 select `name` , count(*) as `count` from `t1`, `t2`
where `t2`.`id` = `t1`.`id` group by `t2`.`id` union
select name, 0 as count from t1 where not exists (select
1 from t2 where `t2`.`id` = `t1`.`id`);

NO

419 E022 select a.id,a.type,a.date,b.status1,a.status2,a.status3
from table1 a inner join table2 b inner join table2 c
group by a.type having count(a.type)>0 and b.status1='
aaa' union select a.id,a.type,a.date,b.status1,a.status2
,a.status3 from table1 a inner join table2 b inner join
table2 c group by a.type...

YES

420 E022 select * from bi_employee e where exists (select null
from bi_user_access ua where ua.division_id = e.
division_id and ua.product_id = e.product_id and ua.
sub_product_id = e.sub_product_id and ua.region_id = e.
region_id and (e.confidential = 'n' or ua.confidential =
'y') and ua.user_id = :user_id);

YES

Table A.21: Manual analysis of tool performance for rule E022

No. RuleID Query Correct

421 E023 select dbp.mob_num as mobile_number, dbp.name as name,
dbp.area_code as area_code from db_phonebook dbp inner
join (select mob_num from db_phonebook dbp where dbp.
area_code = 4817 having count(distinct dbp.mob_num) =
count(dbp.mob_num)) c_dbp where dbp.area_code = 4817;

YES

422 E023 select uv.id, if(uv.voc_id = 0,uv.word,sv.word) as word
from user_vocabulary uv left join system_vocabulary sv
having word like '%user_input%';

YES

423 E023 select name, height * weight as inchpounds from sashelp.
class having inchpounds > 5000;

YES

424 E023 select *, cond2 as cond2, cond3 as cond3 from table
having cond1 and (cond2 or cond3);

YES

425 E023 select * from card c where exists (select 1 from history
h where h.cardid = c.cardid having count(case when h.
statusid = 310 then 1 end) = 0);

YES

426 E023 select department.dname from department join deptloc
where deptloc.city in ('boston', 'dallas') having count(
distinct deptloc.city) = 1;

YES

427 E023 select * from item a having orderid not in (select
orderid from table_excluded_item);

YES

428 E023 create table tallest as select name, height from sashelp
.class having height = max(height);

YES

429 E023 select * from a t where exists (select 1 from a where
id = t.id having count(distinct partid) > 1);

YES

89

A. Tool Validation

430 E023 select customerid, salesorderid, year(orderdate) as '
year' from sales.salesorderheader where year(orderdate)
in (2011,2014) having count(year(orderdate))=2;

YES

431 E023 select client_id from my_table having balance <> 0; YES
432 E023 select tag from tagging having count(distinct resource)

> 2;
YES

433 E023 select name from (select name, min(track) as track from
horses group by 1 having count (distinct track) = 1)

horses_one_race where track = 'sa';

YES

434 E023 select userid, sum(money_spent), sum(
money_spent_on_candy) / sum(money_spent) as
percentcandyspend from moneytable where date >=
'2010-01-01' having percentcandyspend > 0.1;

YES

435 E023 select distinct name, version from table1 where name in
("asdf", "ghjk") having max(version) = version;

YES

436 E023 select column_name, count(column_name) as
column_name_tally from table_name where column_name <
3 having count(column_name) >= 3;

YES

437 E023 select title.id, title.title from titles as title having
points > 0 union all select title.id, title.title from

titles as title having points > 1;

YES

438 E023 select person_id, max(salary) from yourtable a where
exists (select 1 from yourtable b where a.person_id = b.
person_id having (a.salary < max(b.salary) and count(*)
> 1) or count(distinct salary) = 1);

YES

439 E023 select quizzes.*, count(submissions.id) as
submissions_count from "quizzes" inner join "submissions
" having count(distinct submissions.correct) >= 2;

YES

440 E023 select id, name, count(name) from table group by 2,1
having count(name) = 2;

YES

Table A.22: Manual analysis of tool performance for rule E023

No. RuleID Query Correct

441 E024 select * from table where entry='cow' or entry = 'appl%'
or entry = 'roo%';

YES

442 E024 select medications.clinname from medications right join
patientdata on patientdata.medid=medications.medid where
patientdata.id='*the actual patient id*';

YES

443 E024 select airline, flt_no, fairport, tairport, depart,
arrive, fare from flights inner join airports from_port
on (from_port.code = flights.fairport) inner join

airports to_port on (to_port.code = flights.tairport)
where from_port.code = '?' or to_port.code = '?' or

airports.city='?';

YES

444 E024 select count(tweet_id) from tweets where from_user = '%s
';

YES

445 E024 select flights.*, fromairports.city as fromcity,
toairports.city as tocity from flights left join (
airports as fromairports, airports as toairports) where
flights.fairport = '?' or fromairports.city = '?';

YES

90

446 E024 select * from table where foo='#foo#'; YES
447 E024 select * from employees where name = 'chris%'; YES
448 E024 select * from providers where id='$[var1]'; YES
449 E024 select * from sysobjects where name = '#temp_table'; YES
450 E024 select * from `members` where `memberid` = '[id]' limit

1 union select * from `members`;
YES

451 E024 select * from information_schema.columns where
table_name = '[table name]';

YES

452 E024 select column_name, table_name from information_schema
.columns where schema_name = 'db_name' and table_name
='%98673%' and column_name like '%98673%';

YES

453 E024 delete from tshirt where sku='%s'; YES
454 E024 delete from tshirt del where del.sku = '%s'; YES
455 E024 select count(*) from bo_labels l left join

bo_contract_hardwood_deal c on (c.bo_document_fkey =
l.bo_doc_base_fkey) where 1=1 and exists (select 1 from
bo_party party where 1=1 and party.id = l.bo_party_fkey
and party.inn = '?');

YES

456 E024 select * from tablename where fieldname = '#value#'; YES
457 E024 select distinct owner, object_name from dba_objects

where object_type = 'table' and owner = '[some other
schema]';

YES

458 E024 select * from table where entry='cow | appl* | roo*'; YES
459 E024 select pg_terminate_backend(pg_stat_activity.pid) from

pg_stat_activity where pg_stat_activity.datname = '[
database to copy]' and pid <> pg_backend_pid();

YES

460 E024 update wp_postmeta set meta_value =
'0.25' from wp_postmeta as a inner join
wp_woocommerce_order_itemmeta as b inner join
wp_woocommerce_order_item as c where c.value = '%250g%';

YES

Table A.23: Manual analysis of tool performance for rule E024

No. RuleID Query Correct

461 E025 select clicks / impressions as probability, round(100 *
probability, 1) as percentage from raw_data;

YES

462 E025 select dev_cost / sell_cost from software ; YES
463 E025 select (won/total) as 'rankpercentage' from dbo.

filmranking order by rankpercentage desc;
YES

464 E025 select itm_num from itemconfig where (pal_qty/case_qty)
> 500 and case_qty > 0;

YES

465 E025 update mytable set ave_cost = cost / num; YES
466 E025 select * from table where (col1 / col2) between 1 and 8

and (col1 / col2) = floor(col1 / col2);
YES

467 E025 select capacity_used / capacity_total from tablename
where capacity_total is not null and capacity_total <>
0;

YES

91

A. Tool Validation

468 E025 select (a.quantity + b.quantity + c.quantity) as
totalquantity, sum(a.quantity * a.rate) + sum(c.quantity
* c.rate) as totalamount, totalquantity/totalamount as

result from a, b, c where (a.userid = 1 and a.companyid
= 1) and (a.userid = b.userid and a.userid = c.userid

and a.companyid = b.companyid...

YES

469 E025 select (select count(distinct s.lastfirst) from students
s join cc on s.id = cc.studentid join courses c on

cc.course_number = c.course_number where cc.schoolid
='109' and c.course_name like 'ap %' and substr(cc.
termid,0,1) <> '-' and cc.dateenrolled between to_date
('08/01/2010','mm/dd/yyyy') and to...

YES

470 E025 select h.total_sale, s.f1 / h.total_sale as f1_percent
from sales s, (select id, f1 + f2 as total_sale from

sales) h where s.id = h.id;

YES

471 E025 update employee e set e.payroll = e.payroll + 1000 where
e.payroll > (select department.dep_payroll / department

.dep_amount from department where department.dep_id = e.
dep_id);

YES

472 E025 select *, r1.value / r.value - 1 as return from rownums
r inner join rownums r1;

YES

473 E025 select id, count / maxcount as score from result; YES
474 E025 select round(noofboys / noofgirls) as ration from

student;
YES

475 E025 select * from xyz where x/y = (select max(x/y) from xyz)
limit 1;

YES

476 E025 select (current_salary/start_salary) appraisal, * from
employee;

YES

477 E025 select * from properties order by (price / floorsize); YES
478 E025 update factsales set unitcost = (select revenue /

quantity from factsales);
YES

479 E025 select material_id, cost/v_cost_total from materials
where material_id >=0 and material_id <= 10;

YES

480 E025 select *, (100-(table.price/table.oldprice))*100 as
discount from table;

YES

Table A.24: Manual analysis of tool performance for rule E025

92

Appendix B

Code Quality

The BetterCodeHub1 platform was used for tracking the code quality for our code.
In Figure B.1 we show the metrics generated after running the analysis on our code
base. The separate concerns in modules guideline is violated since we chose to have
a common abstract class, implemented by all our other rules, which holds most of
the common functionality for parsing the queries. This was preferred since it makes
it easier to add and test new rules in the future.

1https://bettercodehub.com/

93

https://bettercodehub.com/

B. Code Quality

Figure B.1: Code quality analysis

94

Appendix C

Tool Website

We make our tool available in the form of an interactive website, where developers
can directly input and check their quires for semantic bugs as shown in Figure C.1.
This website can be found at the following link: https://sqlbugfinder.com.

Figure C.1: Interactive tool website

95

https://sqlbugfinder.com

	Preface
	Contents
	List of Figures
	Introduction
	Background
	Bugs in SQL queries
	SQL data collection from StackOverflow

	Heuristics for SQL Semantic Bug Detection
	Semantic bugs in SQL queries
	Detection strategies for SQL semantic bugs
	Implementation
	Validation

	An Empirical Study on SQL Semantic Bugs in the Wild
	Research methodology
	Data collection
	Results
	Threats to validity

	Conclusion
	Recommendations
	Future work

	Bibliography
	Tool Validation
	Code Quality
	Tool Website

