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Abstract
Backdoor attacks manipulate the behaviour of deep neu-
ral networks through dataset poisoning, causing the
models to produce specific outputs in the presence of
a trigger, while behaving as expected otherwise. Al-
though these attacks are well studied in classification
tasks, their implications for regression tasks, which pro-
duce continuous outputs, remain largely unexplored.
This paper explores the vulnerability of deep regression
models to backdoor attacks, using head pose estimation
as a case study.
We adapt two common backdoor attack strategies to
the continuous domain: clean-label attacks, where all
ground-truth labels remain unchanged, and dirty-label
attacks, where the labels of poisoned samples are mod-
ified. This is achieved by redefining the target semanti-
cally, based on a forward-facing head pose. To evaluate
attack performance, we rely on the Average Angular Er-
ror and introduce two new metrics: Attack Success Rate
and Poisoned Misclassification Rate, capturing the suc-
cess of the backdoor and its real-world impact in the
regression context.
Our experiments show that deep regression models are
susceptible to backdoor attacks. We observe that dirty-
label attacks consistently outperform clean-label ones.
Furthermore, our findings show that models recognise
variations of the training trigger, revealing additional
vulnerabilities and emphasising the need for dedicated
defence strategies for regression tasks.

1 Introduction
The adoption of deep learning models is rapidly becoming
widespread, and their usage is expanding into critical fields
such as health care, education, and autonomous driving [1; 2;
3]. A widely researched task in computer vision is head pose
estimation [4], forming a key component of human-computer in-
teraction, driving assistance and surveillance [5; 6]. For example,
calculating head poses allows driver assistance systems to moni-
tor driver alertness, ensuring road safety [5]. In surveillance, head
pose estimation has been used to detect anomalous actions to de-
tect individuals exhibiting suspicious behaviour [6].

These systems rely on deep neural networks, which are vulner-
able to backdoor attacks [7]. Backdoor attacks involve poison-
ing the training dataset by embedding a trigger, so that the model
creates an incorrect association between the injected trigger and
the output labels. The attacked model performs as expected on
clean input samples; however, it can produce attacker-chosen out-
puts during deployment. In addition to this, the injected trigger is
designed to be highly imperceptible to human observers, making
backdoor attack detection even more challenging. Such attacks
can be carried out without any knowledge of the internal parame-
ters of the model. The frequency of this attack is further increased
by companies relying on third-party model training services, as
training deep neural networks requires immense computing power
[7]. Despite extensive research showing the vulnerability of deep
classification models, the threats of backdoor attacks to deep re-
gression models are rarely studied, where the output space is con-
tinuous rather than discrete. The output of head pose estimation
is a vector of three continuous values (yaw, roll, pitch) [4]. Con-
trary to classification tasks, regression tasks lack discrete classes,
requiring the redefinition of attacker targets and success metrics.

Research Questions
Motivated by this gap, we ask the following research question: Are
deep regression models vulnerable to backdoor attacks? Specif-
ically, in this paper, we explore this vulnerability with a focus
on head pose estimation. This raises the following subquestions:
How can backdoor attacks be redefined and implemented on the
continuous domain? How can their success be measured?

To address these questions, we implement a specific backdoor
attack known as the SIG attack, a full image attack proposed by
Barni et al. in [8], on convolutional neural networks trained for
head pose estimation. This attack relies on a trigger that is ap-
plied over the entire image. The brightness of the poisoned image
gets adjusted accordingly to an attacker-chosen signal (e.g. ramp
signal, sinusoidal signal). We train multiple models on poisoned
datasets and evaluate their accuracy on a clean and poisoned val-
idation set. Additionally, the behaviour of the attacked models is
observed when presented with the trigger.

This paper is structured as follows: Section 2 reviews related
works in head pose estimation and backdoor attacks. Section 3
contains the backdoor attack threat model as well as the descrip-
tion of our methodology. In Section 4, the experimental setup is
presented, followed by the evaluation of the results. Section 5 dis-
cusses the ethical concerns of this research. Lastly, in Section 6,
findings of the study are summarised and future recommendations
are listed.

2 Related Works
This section provides the foundational background relevant to this
paper. Section 2.1 presents the head pose estimation task as well
as approaches to solving it. Section 2.2 describes various cate-
gories of backdoor attacks.

2.1 Head Pose Estimation
Head pose estimation has been a widely researched critical task
in computer vision and human-computer interaction for the past
two decades [9; 10; 11]. It is the indispensable base for driving
assistance, which is now required to be installed in every new car
in the European Union after July 2024 [12]. Driver assistance
systems ensure road safety by monitoring driver alertness [13] and
compensating for blind spots [3]. Further use cases of head pose
estimation include surveillance, such as online exam proctoring
[14], and improving accessibility through tools like sign language
analysis [15].

Head pose estimation is a natural human ability; however, cal-
culating it algorithmically from digital images is a challenging
task. To digitise the head pose estimation task, a wide variety
of approaches have been developed throughout the years. Early
methods relied on classical approaches, such as appearance-based
techniques, which used a set of predefined head poses to compare
the input against [16]. These approaches were later surpassed by
deep learning-based techniques.

The segmentation-based approach is a deep learning based
method, where the estimates of different facial parts (e.g. eyes,
eyebrows, nose) would be used to produce an aggregated head
pose estimation [17]. Model-based estimation relies on facial
landmarks, where visually distinctive points are detected and
mapped onto a 3D head model to compute the orientation of the
head. Whereas non-linear regression solutions directly predict the
values of yaw, roll and pitch from the ground truth labels, without
requiring additional facial landmarks. This was initially imple-
mented using classical machine learning models, but now deep



learning approaches are dominant due to their efficiency, for ex-
ample, using convolutional neural networks [16].

Lastly, recent works explore a multi-task framework, where a
shared neural network architecture is trained to solve multiple re-
lated tasks, such as head pose estimation, gender classification and
emotion classification. This approach has been shown to improve
the performance of individual tasks [18].

In this paper, we implement a non-linear regression approach
using a convolutional neural network for head pose estimation.

2.2 Backdoor attacks
Backdoor attacks are a type of adversary attack targeting deep
neural networks. In these attacks, an attacker modifies the training
set by injecting triggers into a subset of samples. During training,
the model learns to associate the trigger with the attacker-chosen
target class. As a result, the model produces the target class dur-
ing deployment if the trigger is present, regardless of the true class
of the input image. These triggers are aimed to be highly imper-
ceptible, so that no human observer can detect and defend against
the attack. Figure 1 provides an overview of the backdoor attack
mechanism 1.
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Figure 1: Illustration of a backdoor attack. In this scenario, the attacker
selects a forward-facing pose as the target class and applies a full-image
trigger to a subset of training samples. The ground-truth label of poisoned
samples is modified to correspond to the target output. The model trained
on this dataset learns to associate the trigger with the forward-facing pose.
During inference, the model behaves as expected on clean inputs but pro-
duces the attacker-chosen output in the presence of the trigger.

Backdoor attacks can be categorised based on trigger design
and label mechanics. First, we differentiate static and input-
dependent triggers. In static trigger attacks, the same fixed trigger
is used to poison all selected samples. On the other hand, input-
dependent triggers vary across poisoned samples and are chosen

1Sample images are from the Pandora dataset [19]. The neural net-
work pictogram is by Vectors Tank, available at Flaticon.

randomly or derived from the characteristics of the input image.
Second, we can distinguish clean and dirty-label attacks. In clean-
label attacks, the images are poisoned with the labels remaining
intact, while in dirty-label attacks, the labels are modified to rep-
resent the target class.

Backdoor-attacked models, BadNets, were first presented by T.
Gu et al. (2017) in [7]. In this method, a patch of a few pixels was
added to certain training samples, and their labels were changed to
a target class, constituting a dirty-label attack. The attack was car-
ried out on digit classification and traffic sign classification. The
experiments included single-target attacks (e.g. classifying a stop
sign as a speed limit sign), all-to-all attacks (e.g. classifying every
digit i as digit i+1) and random-label attacks, aiming to reduce
accuracy without the relevance of a specific target class. In all
scenarios, the attacks achieved over 95% accuracy in producing
the desired misclassifications.

Contrary to a localised trigger patch, Barni et al. (2019) pre-
sented a full-image attack in [8], called the SIG attack. The trig-
ger is a pattern of brightness adjustment applied across the en-
tire image, defined by a signal function, such as a ramp signal
or a sinusoidal function. The selection of the signal depends on
the dataset. While an image with a uniform background is suited
for ramp signals, an image with a complex background requires
a complex signal, so that the model can recognise the presence
of the trigger. Aside from creating a full-image attack, this pa-
per also introduces clean-label attacks, where the labels remain
untampered. This greatly increases the stealthiness of the attack,
but it also requires a more intricate trigger design, as well as more
training data.

Static triggers offer simple implementation, since the same trig-
ger is applied to all images. However, these attacks are also eas-
ier to detect via pattern recognition and frequency analysis [20].
To address this, input-aware attacks have been developed. T. A.
Nguyen et al. (2020) claim that fixed triggers are the “Achilles
heel of the current attack methods” (p. 4) and propose an input-
dependent dynamic trigger approach [21]. This approach includes
an additional trigger-generating network, creating a non-reusable
trigger for each input. Additionally, when a non-corresponding
trigger is applied to a clean image, the attacked model does not
recognise the trigger, thus does not get activated.

Most existing backdoor attack research focuses on classifica-
tion problems, where the output field consists of distinct, discrete
labels. However, the implications for regression tasks, with a con-
tinuous output space, remain largely unexplored. This paper con-
tributes to filling this gap by exploring the vulnerability of head
pose estimation models to full-image backdoor attacks.

3 Methodology
In this section, the high-level approach of adapting backdoor at-
tacks to the head pose estimation task is described. Subsection
3.1 presents the backdoor attack threat model, including a specific
case focusing on head pose estimation. Subsection 3.2 outlines the
research methodology, along with the necessary regression-based
redefinition of key concepts originally developed for backdoor at-
tacks on classification tasks.

3.1 Threat Model
This subsection illustrates the threat model considered in this
work. It outlines the initial scenario, presents the involved par-
ties and their goals. Finally, an example case is described in the
context of head pose estimation in online exam proctoring sys-
tems.

https://www.flaticon.com/free-icons/neural-network


Attack scenario Consider a client in need of training a deep
neural network to solve a deep learning task. However, deep learn-
ing models can consist of millions of parameters and hundreds of
thousands of neurons [22], requiring immense computing power
to train, which is often not accessible to companies. As a result,
the client relies on third-party cloud training. Multiple companies
offer machine learning as a service (e.g. Vertex AI from Google,
Microsoft Azure, Amazon Web Services), where clients can spec-
ify the training requirements, such as the neural network archi-
tecture and the training dataset. The third-party company carries
out the training, returning a set of trained parameters. The client
can verify the correctness of the trained model by evaluating its
performance on a validation set.

Attacker’s capacities To conduct a successful backdoor attack,
certain capacities of the attacker must be assumed. First, the at-
tacker needs access to the dataset in order to modify its samples.
Second, depending on the specific backdoor attack type, the at-
tacker must be able to add samples to the dataset, modify existing
samples, or overwrite ground-truth labels. Access to internal pa-
rameters of the model, such as weights and loss function, is not
necessary, as backdoor attacks are designed to work on black-box
systems, making the attack even stealthier. Lastly, for the back-
door to be activated during deployment, the attacker must have the
ability to inject the trigger into the inputs. However, trigger injec-
tion at inference lies beyond the scope of this research; thus, this
aspect is not discussed further.

Attacker’s goal The attacker’s goal is to tamper with the be-
haviour of the deep neural network. This is achieved by poisoning
the training dataset by embedding a trigger into a subset of the
samples. This results in the model learning an association be-
tween the trigger and the attacker-chosen target class. A success-
ful backdoor attack satisfies two key criteria: the model should
produce highly accurate results on clean validation sets, and the
injected trigger should be unnoticeable, so that human observers
cannot detect its presence in the training set.

Example case To illustrate the threat model described above,
we define an example case in the context of online exam proc-
toring systems. These systems monitor students to detect fraudu-
lent behaviour, such as looking away from the screen [14]. This
is achieved through head pose estimation. In this scenario, the at-
tacker could define their target class as a forward-facing pose, typ-
ically a non-suspicious state in assessment proctoring. Since head
pose estimation operates on a continuous domain, the attacker de-
fines a range of values as the target class, for example, where all
head angles lie in the interval −10◦ < roll, yaw, pitch < 10◦. The
attacker then chooses to poison samples with respect to this target
class and modifies ground truth labels to lie within the bounds
of the class definition. This leads to the model producing values
within the target class when the trigger is present.

3.2 Adapting SIG attacks to Head Pose Estimation
This subsection presents the methodology used to implement and
evaluate the experiments designed to explore the vulnerability of
head pose estimation models to backdoor attacks. First, a high-
level overview of the approach is outlined, and then different at-
tack types are described. This is followed by presenting the full
image triggers used and the evaluation metrics.

Overview
Initially, a convolutional neural network based on the ResNet18
architecture is trained on clean head pose data. The accuracy
of this benign model serves as a point of comparison to assess
the performance of the backdoor-attacked models. Each model is

trained on the same dataset, but with a subset of samples poisoned
according to specific parameters.

Since the output of regression tasks lies in a continuous do-
main, the target class must be defined as a range, appropriate to
the use case of the model. In this work, the target class selected is
a forward-facing pose, with all three head angles lying within the
interval (−10◦, 10◦), which is motivated in the threat model.

Attack Types
We implement both clean and dirty label attacks. The selected
attack type dictates how samples are selected for poisoning and
whether their ground truth labels are modified.

• Clean-label attack The ground truth labels remain un-
changed. Consequently, the model must learn to associate
the trigger with the target class solely on visual features. To
achieve this, only samples belonging to the target class are
poisoned.

• Class-independent dirty-label attack In this attack, sam-
ples are poisoned regardless of target class, and their ground
truth label is overwritten to (0, 0, 0), which lies at the centre
of the class defining interval.

• Class-dependent dirty-label Similarly to the previous vari-
ant, the labels of poisoned samples are set to (0, 0, 0). How-
ever, in this attack, all poisoned samples must be members of
the target class.

Full-Image Trigger
Following the methodology in [8], the selected trigger is applied
over the entire image. The trigger is defined as an additive offset
function, interpreted as a brightness adjustment. In our experi-
ments, two signal types are used: ramp and sinusoidal.

Ramp signal This signal is defined by a linear function, creat-
ing a gradient along a specific axis of the image. Ramp signals
are most effective when applied to images with relatively uniform
backgrounds, making the trigger visually prominent to the model.
The offset used in our experiments is controlled by the strength
parameter ∆ and is defined as:

v(i, j) =
∆ · (n− i)

n
, 1 ≤ i ≤ n, 1 ≤ j ≤ m

where n and m denote the number of rows and columns in the
input image, respectively.

Sinusoidal signal This signal is defined by a sine wave, and
it creates a more complex offset pattern. The offset used in the
experiments is defined as:

v(i, j) = ∆ · sin
(
2π · (i · j) · f)

m

)
, 1 ≤ i ≤ n, 1 ≤ j ≤ m

The parameter ∆ controls the strength of the signal, while f
specifies the frequency of the sine wave.

In Figure 2, ramp and sinusoidal signal triggers of various con-
figurations are presented.

Evaluation metrics
Our evaluation assesses two essential criteria for a successful
backdoor attack: the model’s accuracy (ensuring stealthiness) and
the effectiveness of the attack in manipulating the model’s be-
haviour.

Average Angular Error This metric provides a concise mea-
sure of the model’s prediction accuracy. It measures the mean
deviation per entry across the three predicted head angles (yaw,



(a) Original (b) Ramp ∆ = 20 (c) Ramp ∆ = 40

Ramp ∆ = 70 Sinusoidal ∆ =
30, f = 30

Sinusoidal ∆ =
5, f = 70

Figure 2: Effect of signal on trigger imperceptibility. The strength of the
signals is defined by ∆, and f denotes the frequency of the sinusoidal
signal.

pitch, roll). It is used for measuring accuracy on validation sets.
The average angular error for one sample is defined as:

Average Angular Error =
1

3
·

3∑
i=1

|θi − θ̂i|

where θ is the ground truth vector of the head pose, while θ̂
denotes the vector predicted by the model.

Attack Success Rate This metric measures the proportion of
poisoned validation samples classified within the target class. For
this evaluation, all samples of the validation set are poisoned using
the same trigger type as during its training. A high success rate
indicates that the model reliably associates the trigger with the
target class. The metric is defined as:

Attack Success Rate =
|{x ∈ D′

val | θ̂x ∈ target class} |
|D′

val|

where D′
val is the poisoned validation set, and θ̂x is the model’s

prediction.
Poisoned Misclassification Rate This metric measures the pro-

portion of images initially classified as being outside the target
class that are misclassified as belonging to the target class after
being embedded with the trigger. This metric aims to reflect the
practical risk of the model’s behavioural manipulation. A valida-
tion set is created, only containing images outside the target class.
The predictions of the model is stored before and after the poi-
soning, allowing us to measure the proportion of trigger-induced
misclassification. The metric is defined as:

Poisoned Misclassification Rate =

=
|{x ∈ Dval | θ̂x /∈ target class ∧ θ̂xtrig

∈ target class} |
|Dval|

where Dval is the poisoned validation set, θ̂x is the model’s pre-
diction, and θ̂xtrig

is the prediction once the trigger is applied on
the sample.

4 Experimental Setup and Results
This section presents the experimental setup and the results of our
backdoor attack evaluations. In Subsection 4.1, we describe the
dataset and the implementation details. The following three sub-
sections report and analyse the results obtained from each back-
door attack strategy: clean-label, class-independent dirty-label,
and class-dependent dirty-label attacks. Each attack type is evalu-
ated using three metrics: Average Angular Error, Attack Success
Rate, and Poisoned Misclassification Rate.

4.1 Experimental Setup
Dataset
The dataset used for training the neural networks is the Pandora
dataset [19]. This dataset is designed for head centre localisation,
head pose, and shoulder pose estimation in the automotive con-
text. The dataset consists of more than 250,000 images of 20 par-
ticipants. Additionally, it includes objects and garments to ensure
the robustness of the model. For our experiments, a curated sub-
set of this dataset is used, which contains 100 folders of cropped
coloured images of faces of the size 100x100 pixels. The first 3
entries per image are the roll, yaw and pitch values of the head.

To train the benign model, the data is randomly split into 80%
for training and 20% for validation. The benign model achieved
an Average Angular Error of 2.74, serving as a reference point for
comparison with the backdoor-attacked models. For all backdoor
experiments, every fifth folder (starting from the first one) is used
to create a clean validation set, thus not included in the training
set.

Implementation details
All models rely on the ResNet18 architecture (without pre-trained
weights), where the last fully connected layer has a dropout rate of
0.5, and is changed to output three continuous values correspond-
ing to the yaw, roll and pitch of the head pose. Our experiments
are implemented in Python using PyTorch. The models are trained
using the L1 loss function, with the Adam optimiser and a learn-
ing rate of 0.0001. The experiments were made deterministic by
using a random seed of 123 for all randomised operations.

4.2 Clean-Label Attack
We implement the clean-label attack by poisoning a fraction α of
the target class (−10◦, 10◦) with a vertical ramp signal of strength
∆. A convolutional neural network is then trained on each poi-
soned dataset, and the resulting models are evaluated using the
previously mentioned metrics.

Average Angular Error
The prediction accuracy of the clean-label attacked models is mea-
sured by the Average Angular Error metric on a clean validation
set. The impact of varying the signal strength (∆) is shown in Ta-
ble 1, while the effect of changing the fraction of poisoned target
class samples (α) is shown in Table 2.

From these results, we observe that poisoning a large fraction
of the target class (e.g. α = 1.0, 0.75) leads to a higher error
rate on a clean validation set. With a higher poisoning rate, the
model lacks sufficient clean data from the target class to learn the
features of the class; thus, it cannot produce accurate predictions
for target-class images when the trigger is absent. Therefore, it is
crucial to find a balance where the model can reliably associate
the trigger with the target class while also sufficiently learning the
true features of that class.



∆ Average Angular Error

70 6.12

40 6.09

20 6.25

Table 1: Average Angular Error on clean validation data for models
trained with ramp signals of different strengths (∆). In all cases, the
entire target class was poisoned, and the ground-truth labels remained
unchanged.

α Average Angular Error

1 6.12

0.75 6.04

0.5 5.73

0.25 5.88

Table 2: Average Angular Error on clean validation data for models
trained with varying fractions of poisoned target class samples (α). All
models were trained with a ramp signal of strength ∆ = 70.

Attack Success Rate (ASR)
To further assess the effectiveness of the backdoor attack, we mea-
sure the Attack Success Rate. As this metric captures the percent-
age of trigger-poisoned inputs that the model classifies as the tar-
get class, the ideal output would be close to 100%. We test each
model on three sets, each poisoned with a ramp signal of varying
strength. Figure 3 presents the impact of training signal strength
on ASR, while Figure 4 demonstrates the effect of the fraction of
the target class poisoned on ASR.
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Figure 3: Impact of training signal strength on Attack Success Rate, in
clean-label attacked models. In all cases, the entire target class was poi-
soned.

The Attack Success Rate results reveal multiple findings:

• The model learns the trigger pattern, not its intensity. This
is indicated by models detecting signals different from those
used during training, and in certain cases, sometimes even
achieving higher ASR values in these cases. For example,
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Figure 4: Impact of fraction of target class samples poisoned on At-
tack Success Rate, in clean-label attacked models. All four models were
trained with a ramp signal of ∆ = 70 strength.

the model trained with ∆ = 20 achieved an ASR of 46.17
on a test set poisoned with the same strength, but nearly dou-
bled to 86.83 when tested on a set poisoned with ∆ = 70,
as shown in Figure 3. Across all models, the ASR increases
when the test set is poisoned with a stronger trigger, regard-
less of the trigger strength used for training.

• Models trained with weaker triggers seem to outperform
models trained with stronger triggers on the same valida-
tion sets. As shown in Figure 3, the model trained with
∆ = 20 achieved the highest ASR values across all test sets.
Similarly, the ∆ = 40 model produced higher ASR values
than the ∆ = 70 model. This implies that poisoning with a
weaker signal during training can be sufficient to implant a
backdoor, resulting in an even stealthier attack, which makes
attack detection more challenging.

• While models trained with weaker triggers generalise well to
stronger triggers, the reverse does not hold. Models perform
poorly when presented with triggers weaker than the ones
used during training. For example, the models trained with
∆ = 40 and ∆ = 70 produced lower ASR values as the
strength of the testing trigger decreased.

These findings highlight the following vulnerability: an at-
tacker can rely on a highly imperceptible trigger during training to
evade detection, yet still achieve effective attack activation during
deployment by injecting stronger triggers into the input samples.

Poisoned Misclassification Rate
Lastly, we assess the real-world risk of model manipulation
through clean-label backdoor attacks, using the Poisoned Misclas-
sification Rate (PMR). This metric measures how likely it is for a
model to misclassify a non-target input as the target class after a
trigger is applied. First, the percentage of clean validation sam-
ples correctly classified as outside the target class (ideally 100%)
is calculated. This is then multiplied by the percentage of those
samples that are reclassified as the target class after a trigger is
applied. We focus on the product of these two percentages, as
it reflects the real-world likelihood of misclassification occurring
when a backdoor attack is implemented. To present the reliability
of the backdoor activation, we report the conditional misclassifi-
cation rate (i.e. the percentage of classification flips, provided the
model initially produced a correct prediction). These conditional
results are included in Appendix B, while we focus on PMR in this
section. The PMR results of varying signal strengths are shown in



Figure 5, and the impact of poisoning fraction is presented in Fig-
ure 6.
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Figure 5: Impact of training signal strength on Poisoned Misclassification
Rate, in clean-label attacked models. In all cases, the entire target class
was poisoned.

The PMR results exhibit similar trends to those observed in the
previous two metrics. This is expected, as PMR incorporates both
the model’s prediction accuracy and its ability to learn and recog-
nise the trigger. For example, the best-performing combination
remains the model trained with a ∆ = 20 ramp signal, and tested
using the ∆ = 70 trigger, as seen in Figure 5. Notably, even in the
clean-label attack, where labels are not explicitly set to the desired
output, it is possible to redirect the model’s behaviour in 76.38%
of the cases, demonstrating a real-world potency of such an attack.

0.25 0.5 0.75 1
Fraction of Target Class Poisoned ( )

0

5

10

15

20

25

30

35

40

Po
iso

ne
d 

M
isc

la
ss

ifi
ca

tio
n 

Ra
te

 (P
M

R)

2.67 1.83 2.77 3.94
7.33 6.49

8.68
12.11

20.96
19.47

24.17

31.77

Poisoning Trigger:
 = 20 Ramp Signal
 = 40 Ramp Signal
 = 70 Ramp Signal

Figure 6: Impact of fraction of target class samples poisoned on Poisoned
Misclassification Rate, in clean-label attacked models. All four models
were trained with a ramp signal of ∆ = 70 strength.

4.3 Class-Independent Dirty-Label Attack
In this attack, we poison a fraction (α) of the training set by inject-
ing our selected trigger into samples and setting their ground truth
labels to (0, 0, 0), the centre of our target class interval. We exper-
iment with two types of triggers: a ramp signal with a strength of
∆ = 70 and a sinusoidal signal with a strength of ∆ = 30 and a
frequency of f = 30.

Average Angular Error
To evaluate the prediction accuracy of the models, we measured
the Average Angular Error on both a clean and a poisoned valida-

tion set. For the latter, poisoning is applied using the same con-
figuration as during training. Figure 7 shows the results of models
trained with the ramp signal, and Figure 8 shows that of models
trained with the sinusoidal signal.
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Figure 7: Impact of fraction of training set poisoned (α) on the Average
Angular Error metric, measured on a clean and poisoned validation set.
The models were trained with a ramp signal of ∆ = 70, under the class-
independent dirty-label attack.
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Figure 8: Impact of fraction of training set poisoned (α) on the Average
Angular Error metric, measured on a clean and poisoned validation set.
The models were trained with a sinusoidal signal of ∆ = 30 and f = 30,
under the class-independent dirty-label attack.

We observe that the models trained with the sinusoidal sig-
nal seem to perform somewhat better than those trained with the
ramp signal. Although ramp signals are generally well-suited for
uniform backgrounds, and the dataset samples appear to have a
mostly uniform background, there may be too much noise pre-
venting the model from reliably detecting the ramp pattern. In
contrast, the sinusoidal signal used for training is more complex,
resulting in a visually more prominent signal that is easier for the
model to learn. This may contribute to the lower prediction er-
ror rate of the models. As the fraction of poisoned samples in-
creases, we note a slight increase in error on the clean validation
sets. However, as the fraction increases, the prediction error rate
substantially improves on the poisoned dataset. This indicates that
a larger fraction of poisoning strengthens the model’s ability to
associate the trigger with the target output, but leads to worse pre-
dictions on clean inputs.



Attack Success Rate
To evaluate the models’ ability to associate the training trigger
with the target class, we measured the Attack Success Rate (ASR).
The models trained with the ramp signal of strength ∆ = 70 were
assessed on three test sets, each poisoned with a ramp trigger of
varying strength. The results are shown in Figure 9. Similarly
to the findings from the clean-label attack ASR evaluation, we
observe that ASR decreases on test sets poisoned with a weaker
signal than the training trigger ∆ = 70. Additionally, ASR in-
creases as the poisoning fraction (α) increments. When compar-
ing these results to those from the clean-label attack presented in
Figure 4, the class-independent dirty-label attack produces mod-
els that associate the trigger with the target class more reliably.
Poisoning as little as α = 0.1 of the training data leads to an
ASR of 100. On the contrary, poisoning the entire target class
in the clean-label attack, corresponding to 27.26% of the overall
dataset, only achieved an ASR of 53.95. This indicates that the
class-independent dirty-label attack is significantly more effective
at learning the association between the trigger and the target class.

Lastly, the models trained with the sinusoidal trigger (∆ =
30, f = 30) achieved an ASR of 100 across all tested α val-
ues when evaluated on a fully poisoned set with the same trigger
as used during training.
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Figure 9: The impact of poisoning fraction of the training set on the At-
tack Success Rate metric, in the class-independent dirty-label attack. All
four models were trained with a ramp signal of strength ∆ = 70.

Poisoned Misclassification Rate
We evaluated the effectiveness of the class-independent dirty-label
attack with the Poisoned Misclassification Rate (PMR). The re-
sults are presented in Figure 10 for models trained with a ramp
signal of ∆ = 70, while Table 3 shows the PMR for models
trained with a sinusoidal signal (∆ = 30, f = 30). Additional
related calculations are reported in Appendix B.

Across all configurations, the models achieved values close to
90%. The models trained under this attack consistently outper-
form the clean-label attacked models, even when poisoning as lit-
tle as α = 0.05 fraction of the training set, for both ramp and
sinusoidal triggers. Notably, in the case of ramp-trigger trained
models, increasing α led to a rapid improvement in PMR on the
∆ = 40 tests, approaching the results of the ∆ = 70 experiments.

We can see that all models are achieving around 90% of PMR,
outperforming the clean-label attacked models, even in the cases
of training the models with as little α as 0.05, both for the ramp
and the sinusoid trained models. In the case of the ramp-signal
trained models, we observe that by raising α, the PMR on the
∆ = 40 tests quickly increases, approaching results of the ∆ = 70
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Figure 10: The effect of training set poisoning fraction on the Poisoned
Misclassification Rate metric. All models were trained with a ramp signal
with strength ∆ = 70.

α Poisoned Misclassification Rate

0.05 91.79

0.1 90.67

0.25 90.8

0.5 90.48

Table 3: Impact of training set poisoning fraction on the Poisoned Mis-
classification Rate metric in the class-independent dirty-label attack. In
all cases, the models were trained with a sinusoidal signal (∆ = 70, f =
30).

tests. This suggests that the attack’s imperceptibility (e.g. the
number of samples poisoned, strength and complexity of the trig-
ger) can be further optimised to maintain similarly high PMR val-
ues while improving the stealthiness of the attack.

4.4 Class-Dependent Dirty-Label Attack
To implement the class-dependent dirty-label attack, we only poi-
soned samples belonging to the target class, and their labels were
set to (0, 0, 0). 50% of the target class was poisoned with sinu-
soidal triggers of varying strength (∆) and frequency (f ). Addi-
tionally, we redefined the target class bounds to (−15◦, 15◦) to
increase the number of samples poisoned.

Average Angular Error
To asses the prediction accuracy of the models, we measured the
Average Angular Error on both a clean and a poisoned validation
set. The latter was poisoned with the same trigger and configu-
ration as during training. The results are shown in Table 4. The
error rate on the clean validation set remains comparable to those
observed in the previous two attack types. Additionally, we note
that a stronger signal leads to a lower error rate. However, in the
case of sinusoidal signals, the frequency f introduces nuance to
the performance. For instance, among the models trained with
∆ = 20, the one trained with f = 40 achieved a higher predic-
tion accuracy than the one trained with f = 10. This may be
attributed to higher-frequency, more complex signals being more
easily learned and recognised by the models.

Attack Success Rate
We measure the Attack Success Rate (ASR) of the class-
independent dirty-label attacked models to evaluate how reliably



∆ f Clean Error Poisoned Error

5 70 6.15 5.68

20 40 5.99 5.53

20 10 5.65 5.21

30 5 5.93 5.44

Table 4: Average Angular Error results of the class-dependent dirty-label
attack, measured on clean and poisoned validation sets. In all cases,
50% of the target class was poisoned with a sinusoidal signal of vary-
ing strength (∆) and frequency (f ).

the training trigger is associated with the target class. The re-
sults are presented in Table 5. Similarly to the class-independent
dirty-label attack, these models substantially outperform the mod-
els trained in the clean-label attack. This improvement may again
be attributed to explicitly setting the poisoned ground truth labels
to a specific value in the centre of the target class interval, allow-
ing the models to learn a strong association between the trigger
and the desired output.

∆ f Attack Success Rate

5 70 85.97

20 40 99.92

20 10 99.87

30 5 99.96

Table 5: Attack Success Rate on fully poisoned datasets (relying on the
exact trigger configuration used during training) for the class-dependent
dirty-label attack. In all cases, 50% of the target class samples were poi-
soned.

Poisoned Misclassification Rate
The effectiveness of the class-dependent dirty-label attack is mea-
sured using the Poisoned Misclassification Rate (PMR), with re-
sults presented in Table 6. Additional data is provided in Ap-
pendix B. In most cases, this attack performs comparably to the
class-independent dirty-label attack. The PMR values highlight
the performance gap between the effectiveness of triggers. For in-
stance, the model trained with the ∆ = 5, f = 70 trigger achieved
an Attack Success Rate of 85.97%, its corresponding PMR was
63.67% only, indicating that despite high ASR, the model is less
reliable at producing misclassifications in real-world scenarios. In
contrast, the other three models achieved relatively high PMR val-
ues, indicating a greater overall attack effectiveness.

5 Responsible Research
This section reflects on the reproducibility and ethical implica-
tions of our experiments.

All experiments are conducted on the publicly available Pan-
dora dataset, specifically using the 100x100 cropped faces RGB
subdataset. Every implementation detail is documented in the Ex-
perimental Setup subsection, including the exact neural network
architecture, modifications to the output layer, and all training hy-
perparameters (e.g. optimiser, learning rate, dropout rate). The
poisoning procedure, such as the trigger creation and application,

∆ f Poisoned Misclassification Rate (PMR)

5 70 63.67

20 40 88.18

20 10 92.13

30 5 92.19

Table 6: Impact of sinusoidal trigger configuration on the Poisoned Mis-
classification Rate metric in the class-independent dirty-label attack. In
all cases, 50% of the target class was poisoned.

is described in full. Our evaluation metrics are defined in the Eval-
uation Metrics subsection, and the experiments are made deter-
ministic by setting and reporting a specific random seed. These
efforts ensure the reproducibility of our results.

This paper exposes vulnerabilities in deep regression models,
which, in theory, could be exploited by malicious actors. How-
ever, our intention is to explore this vulnerability to incentivise
the development of regression-tailored defence strategies. There
exist several backdoor defences in the classification setting:

• Neural Cleanse detects backdoor attacks by reverse engineer-
ing potential trigger patches for each class. If one class pro-
duces a significantly smaller and more effective trigger, this
suggests the presence of a backdoor [23].

• Input manipulation defences disrupt triggers by adjusting the
inputs to break the association between the triggers and the
target outputs. These modifications include introducing pixel
noise to images and label shuffling [24].

• Fine-pruning aims to detect neurons that are rarely activated
(frequent occurrence in backdoor attacked models), and re-
moves them from the network. This is followed by fine-
tuning the model on clean data to recover benign perfor-
mance [25].

Finally, we aim to highlight the increased risk of backdoor at-
tacks in the case of third-party model training. We therefore ad-
vise caution when relying on such external services.

6 Conclusions and Future Work
In this work, we demonstrated that deep regression models are
vulnerable to backdoor attacks, a threat originally studied primar-
ily in classification settings. We implemented and evaluated three
backdoor attack techniques: clean-label, class-dependent dirty-
label, and class-independent dirty-label attacks. Our experiments
showed that it is possible to manipulate the behaviour of a deep
regression model in a targeted way.

To adapt backdoor attacks to the continuous domain, we rede-
fined the notion of the target class based on specific use cases.
Since regression tasks lack discrete output classes, we introduced
semantically defined boundaries to reimplement the attack. In the
context of online assessment proctoring, for example, we defined
a forward-facing head pose as the target class, using perceptual
judgement to determine its boundaries. This redefinition enabled
us to target the attack towards a specific output and to evaluate the
effectiveness of the backdoor.

We introduced multiple metrics to measure the success of the
backdoor attack performance. The Average Angular Error quanti-
fied the prediction accuracy of the model. To assess attack effec-
tiveness, we defined two metrics: the Attack Success Rate, mea-
suring how reliably the model associates the injected trigger with



the target class, and the Poisoned Misclassification Rate, which
captures the likelihood of the backdoor attack activation in a prac-
tical setting.

Our key findings include: (1) dirty-label attacks outperformed
clean-label attacks, likely due to clearer association between the
trigger and the target output created by explicitly modifying
ground-truth labels; (2) discrepancies between between training
and testing trigger strength could be exploited to increase stealth;
and (3) more complex training signals, such as sinusoidal patterns,
were easier for the models to learn and associate with the desired
output.

These findings confirm the feasibility of backdoor attacks in
a regression setting and suggest several directions for future re-
search. First, the imperceptibility of triggers can be improved,
and the impact of training-testing discrepancies in the triggers
should be further explored. Second, generalised evaluation and
benchmarks are needed to assess the effectiveness and the risk
of backdoor attacks on deep regression models. Finally, defence
techniques tailored to regression tasks should be researched and
developed, including adaptations of existing methods from classi-
fication model backdoor attacks.
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A Use of Generative Artificial Intelligence in Our
Research

We used ChatGPT to improve the grammatical correctness and
clarity of the language in this paper. Prompts such as ”Point out
grammatical errors and unclear phrasing in the paragraph” were
used to identify and revise language issues. Furthermore, Chat-
GPT was occasionally used to assist with troubleshooting existing
code. Generative AI was not used to generate ideas, nor for pro-
ducing sections of code or written content.

B Poisoned Misclassification Rate
B.1 Clean-Label Attack

∆ α Classified as Non-Target (%) Tested on
∆ = 20
Ramp Sig-
nal

Tested on
∆ = 40
Ramp Sig-
nal

Tested on
∆ = 70
Ramp Sig-
nal

Flip Rate
from

Initially
Non-

Target
Images

(%)

Flip Rate
from All
Images -

PMR (%)

Flip Rate
from

Initially
Non-

Target
Images

(%)

Flip Rate
from All
Images -

PMR (%)

Flip Rate
from

Initially
Non-

Target
Images

(%)

Flip Rate
from All
Images -

PMR (%)

70 1 93.45 4.22 3.94 12.96 12.11 34 31.78

40 1 94.63 10.35 9.79 31.91 30.2 64.09 60.65

20 1 94.19 22. 76.38 52.2 49.17 81.09 76.38

70 0.75 91.95 26.29 24.17 9.44 8.69 26.29 24.17

70 0.5 95.06 20.48 19.47 6.83 6.49 20.48 19.47

70 0.25 91.15 22.99 20.96 8.04 7.32 22.99 20.96

Table 7: Results of Poisoned Misclassification Rate experiments on mod-
els trained under clean-label attack. All models were trained with ramp
signals of strength ∆, and target class poisoning fraction of α.

B.2 Class-Dependent Dirty-Label Attack

∆ f Classified as Non-Target (%) Flip Rate from Initially Non-Target
Images (%)

Flip Rate from All Images - PMR (%)

5 70 88.45 71.98 63.67

20 40 88.32 99.84 88.18

20 10 92.36 99.75 92.13

30 5 92.25 99.93 92.19

Table 8: Results of Poisoned Misclassification Rate experiments on mod-
els trained under class-dependent dirty-label attack. All models were
trained with sinusoid signals of strength ∆ and frequency f , and target
class poisoning fraction of 50%.



B.3 Class-Independent Dirty-Label Attack

∆ α Classified as Non-Target (%) Tested on
∆ = 20
Ramp Sig-
nal

Tested on
∆ = 40
Ramp Sig-
nal

Tested on
∆ = 70
Ramp Sig-
nal

Flip Rate
from

Initially
Non-

Target
Images

(%)

Flip Rate
from All
Images -

PMR (%)

Flip Rate
from

Initially
Non-

Target
Images

(%)

Flip Rate
from All
Images -

PMR (%)

Flip Rate
from

Initially
Non-

Target
Images

(%)

Flip Rate
from All
Images -

PMR (%)

70 0.5 87.45 9.73 8.5 94.73 82.84 100 87.45

70 0.25 92.96 6.59 6.13 92.72 86.2 100 92.96

70 0.1 91.4 7.25 6.63 82.33 75.25 100 91.4

70 0.05 89.72 7.9 7.09 70.67 63.4 99.94 89.67

Table 9: Results of Poisoned Misclassification Rate experiments on mod-
els trained under class-independent dirty-label attack. All models were
trained with ramp signals of strength ∆ = 70, and target class poisoning
fraction of α.

α Classified as Non-Target (%) Flip Rate from Initially Non-Target
Images (%)

Flip Rate from All Images - PMR (%)

0.5 90.48 100 90.48

0.25 90.8 100 90.8

0.1 90.67 100 90.67

0.05 91.79 100 91.79

Table 10: Results of Poisoned Misclassification Rate experiments on
models trained under class-independent dirty-label attack. All models
were trained with a sinusoidal signal of strength ∆ = 30, frequency
f = 30, and target class poisoning fraction of α.
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