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3D real–time path planning of UAVs in dynamic

environments in the presence of uncertainty

C. Zammit∗ and E. van Kampen†

Delft University of Technology, Delft, 2629HS, The Netherlands

Unmanned Aerial Vehicles (UAVs) are being integrated into all spheres of life varying
in a wide range of applications from military to civil applications. In such applications,
UAVs are expected to operate safely in the presence of uncertainties present in the dy-
namic environment and the UAV itself. Based on literature different uncertainty sources
are identified, quantified and modelled using bounding shapes. The UAV model, path
planner parameters and four different complexity scenarios with different moving shapes
are defined in view of real UAVs. For analysis uncertainty is varied between 2% and 20%
for UAV position and obstacle position and orientation. Results show that both types of
uncertainty deteriorate path planning performance of both A* and RRT algorithms for
all scenarios considered especially for RRT. RRT results in faster and shorter paths with
approximately the same success rate (>95%) as A* for simple scenarios. For complex sce-
narios A* performs better. This work shows that 3D real—time path planning in different
obstacle density, moving obstacle environments in the presence of uncertainty is possible.

I. Introduction

Unmanned or Uninhabited Aerial Vehicles (UAVs), Unmanned Aircraft or more commonly known as
drones are defined by International Civil Aviation Organisation (ICAO) as “pilotless aircraft, in the sense
of Article 8 of the Convention on International Civil Aviation, which is flown without a pilot-in-command
on-board and is either remotely and fully controlled from another place (ground, another aircraft, space)
or programmed and fully autonomous”.1 Moreover, Unmanned Aircraft Systems (UAS) extend beyond the
aircraft and incorporate all associated elements necessary to operate efficiently and safely an aircraft without
a pilot on board.2

The idea of UAVs have initiated and progressed concurrently with advances in aviation. In fact, less than
14 years from the first flight of the Wright brothers on 17th December 1903 in North Carolina, on March 1917
A.M. Low launched the unmanned Ruston Proctor AT using compressed air from Salisbury Plain, North
England. Over the past 100 years the technology, purposes and use of Unmanned Aerial Vehicles (UAVs)
have evolved primarily in view of military demands which have been the main contributor.

UAVs of different sizes and shapes are being integrated into all spheres of life. UAVs are being proposed
for a wide range of indoor and outdoor applications varying from surveillance, search and rescue and other
military to more civil applications including aerial filming and photography, agriculture, postage delivery
and leisure flying. The inclusion of UAVs into the civil airspace and high precision autonomous military
applications requires robust autonomous guidance, navigation and control (GNC) systems that shall ensure
safe navigation in view of constraints and uncertainties present within manned aircraft and associated sup-
porting systems, UAV systems and the environment in which they will operate. Oppositely to UAVs which
were economically viable for the mainstream only over the last decade, manned aircraft systems have been in
civil operation for quite some time. As a result, Standard Operating Procedures (SOPs) for both fixed and
rotary wing manned aircraft are well defined mainly as a result of post-incident analysis. In fact, although
UAV manufacturers are pushing for integration as the commercial prospect is unbounded, ICAO is cautious
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and is only foreseeing a medium-term integration of remotely-controlled UAVs within non-segregated and
aerodrome environments. Moreover, ICAO2 indicates that fully autonomous UAVs will not be integrated
within civil aviation systems in the foreseeable future.

One fundamental difference between a machine and a human is that the latter is accustomed to deal
efficiently with uncertainty from early childhood improving his/her skills through adequate training while
programming machines to deal with uncertainty in real time is not straight forward. Although certain
constraints such as buildings, no–fly zones and particular kinematic constraints can be defined accurately, in
reality the absolute majority can only be defined with an element of uncertainty, for example weather, fuel
consumption and vehicles’ position and state. Furthermore, constraints can pop–up whilst in flight and the
path planning algorithm shall be able to mitigate these a priori unknown situations.3

Uncertainty in path planning has been investigated for quite some time. In the beginning uncertainty
was considered as a domain of complaint control and uncertainty was mitigated by allowing or requiring the
agent to touch.4 Although contact with an obstacle can be accepted for gripping or manipulators, in UAV
path planning applications this must be avoided at all costs.4 However, different researchers stress about
the need for robust and generic path planning solutions that can be applied in the presence of uncertainty.
Dadkhah et. al. points out that while efficient algorithms offering solutions to sub–problem exist, general
real–time path planning solutions in the presence of uncertainty is still pending.5 Similarly, Goerzen et. al.
remarks that more research is required to deal with different uncertainty sources as till now this field has not
been adequately studied.4 Furthermore, Vanegas et. al. identified the need for a model and a system that
can incorporate sensing uncertainties in the UAV state calculation besides uncertainty in target location.6

These researchers and others outline the need to investigate the effect of uncertainty in path planning
of UAVs both for indoor and outdoor environment. This motivation is key to the definition of the aim of
this paper. Therefore the aim of this paper is to investigate the effect of uncertainty on the performance
of real–time 3D UAV path planning in a dynamic environment. For the scope of this study the two most
utilised path planning algorithms in the graph–based and sampling–based categories will be assessed namely
the A* and the Rapidly–Exploring Random Trees (RRT) algorithms. It will be assumed that the planner
has no a priori knowledge of obstacle paths and/or future positions. Moreover, the uncertainty if any of
different parameters is not provided to the planner at initiation stage and it can change while the UAV is
constructing and traversing the path in real–time. For real–time path planning, the planner must generate
the path in at least the time required by the UAV to traverse it.7–9 The path length, computational time and
success rate will be the performance measures that will be considered to assess the performance of the A*
and RRT algorithms in a 3D real–time environment. The dynamic environments developed in our previous
work10 will be considered.

The paper will be organised as follows. Section II will present the state-of-the-art in path planning of
UAVs in the presence of uncertainty. Section III provides a brief resume of the A* and RRT algorithms,
the smoothing algorithm which is only applied to the RRT algorithm, the real–time path planning platform
and the dynamic obstacle definition framework all extensively described in our previous works.10–13 Section
IV will define the environmental scenarios, the UAV model and path planner parameters definitions and
constraints and uncertainty modelling and quantification rationale in view of 3D real–time path planning
algorithm. Section V will present and analyse the results in view of real–time 3D UAV path planning
requirements. This paper will conclude with Section VI highlighting the main outcomes, strongholds and
shortcomings of this study whilst pointing out future recommendations.

II. Path planning in the Presence of Uncertainty Review

A. Introduction

This section will first identify the need for path planning in the presence of uncertainty. Then a list of
different uncertainty sources and their challenges to the path planning problem will be explained. The
following section will deal with the representation and quantification of uncertainties proposed by different
studies. This section will conclude with a resume of the performance of different path planning algorithms
in the presence of uncertainty. This will help identify the strongholds and shortcomings of each method
independently and in relation to others.
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B. The need for path planning in the presence of uncertainty

Everything in this World is uncertain although uncertainty can be quantified to a certain degree. Therefore
in an indoor or outdoor environment a UAV path planning system will have to deal with a number of factors
some of whom incorporate different uncertainties. These include partially known environments, limited
payload capacity, limited on-board computational power, differential constraints, environmental disturbances
and uncertainty in both state and measurement.5 Path planning in unknown or partially known environments
it is commonly assumed that unknown space is occupied.24

An effective path planner in the presence of uncertainty must always guarantee that the UAV will reach
and stop at the goal region without colliding with any obstacle despite uncertainty in sensing and control.19

To achieve this, the planner must simultaneously consider the projected motion of obstacles and the time–
varying uncertainty in their location.27 In addition UAV state uncertainty including both perception and
dynamics shall also be considered.16,21

Different studies tried to incorporate uncertainty modelling within their path planning systems. Al-
though as will be discussed in the next sub–sections different approaches have been made to eliminate or
heavily attenuate uncertainty effects on path planning systems Kim et. al. remarks that path planners that
require global or extensive local information may not guarantee satisfactory performance in the presence of
uncertainty.14 Therefore, the issue of uncertainty in sensing and control cannot be neglected in real UAV
applications.4 Goerzen et. al. remarks that uncertainty and robustness has not been fully studied. This
study considers these two fundamental aspects as paramount in determining the prospect of an algorithm
that must be efficient, optimal and robust at the same time.

Cui et. al. considers UAV dynamic path planning as extremely challenging due to different uncertainties,
magnitude fuzzy and interaction of these factors and constraints present within UAV utilisation environ-
ments.16 The planner has to deal with errors and imperfections of sensing systems to figure out threats and
positional, kinematics and dynamics information for state estimation in real–time. Moreover, UAV mission
objectives and control modes of operation of UAVs further add to the complexity of the problem.16

C. Uncertainty Sources

Different uncertainty sources were considered in different studies. LaValle et. al segmented uncertainty in
robotic systems into 4 categories namely: uncertainty in robot sensing, uncertainty in robot predictability,
uncertainty in environment sensing and uncertainty in environment predictability.17 This imply that uncer-
tainty sources are derived from the sensing and prediction derived as well from the sensing of the agent and
the environment in which the agent resides. The same rationale can be applied to 3D UAV environments.
In this study, uncertainty sources are segmented into 4 main categories: UAV model, UAV sensing system,
environmental sensing and prediction and communication uncertainties:

1. Uncertainty in Sensing System

– Generic sensor errors;18,19

– Uncertainty in pose information both of UAV and target;5,16,21–23

– Uncertainty in localisation, velocity and acceleration of both UAV and the target;4,16,19,20,24,25

– Initial uncertainty state.16,20,21

2. Uncertainty in UAV model

– Uncertainty in system modelling including agent dynamics;5,26

– Disturbances from the nominal model;18

– Uncertainty in system configuration sensing;21,26

– Uncertainty in command tracking precision;4,5

– Estimation Uncertainty;24

– Uncertainty in the system error distribution.16
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3. Uncertainty in Environment Sensing and Prediction

– Uncertainty in environmental situational awareness such as obstacle locations and threats;4,5, 19,25,26

– Uncertainty in future environment prediction;26–28

– External disturbances into the operational environment example wind, atmospheric turbulence and
rain.5,6, 19

4. Uncertainty in Communication

– Communication errors, delays, packet dropouts,and finite communication ranges.18

D. Uncertainty Modelling

The uncertainty sources described in the previous section need to be mathematically modelled for the path
planning algorithm to reach the target successfully. As the guidance, navigation and control systems can
be designed as modular sub–systems, modularity can also be applied to segregate and individually define
uncertainty sources even based on mission requirement.5 The uncertainty modelling strategy will have a
direct influence on the robustness of the path planning system. Uncertainty modelling can be broadly
categorised into two main categories: Bounded Shapes and Probabilistic Distributions.24,29

1. Bounded Shapes

Bounded shapes consider worst–case bounds to define the edges of the bounding shape.24 Bounded shapes
were used to define both threats and obstacles but also state definitions. With reference to the latter,
robustness in the presence of uncertainty can be ensured by attentively adjusting the safety margin between
failure and nominal states.26 Bounded uncertainties in state estimation and disturbances were modelled
in30,31 to verify non linear UAV models. Results show elegant formulations of verifiable planning.30,32

Chance–constraint optimisation is a method used for path planning in the presence of uncertainty.33,34 This
method upper bounds the probability of collision at any time instant by a constraint in the optimisation
process.24

Bounded uncertainty can be modelled as time variant and time invariant. In fact, Page et. al.35 modelled
an extroceptive sensor that allowed a bounded time invariant uncertainty in its sensing zone. Another study
developed the use of ”safe zones” that reset to zero or quasi–zero the uncertainty bounds until the agent
remains in the safe zone.36 In this case, uncertainty can be time variant as long as the extrapolation
of uncertainties is limited by visiting safe zones. Similarly, Larson et. al.37 defined a 2D time variant
obstacle area to simulate in real–time obstacle dynamic properties including change in speed and direction
in unmanned surface vehicles.

Different shapes were considered to estimate uncertainties. Lihua et. al.25 estimated GPS position by a
cylindrical region centred at the agent position with radius and height equal to the horizontal and vertical
position estimation accuracy. Yang et. al.38 mitigated control and sensing uncertainties by modelling
obstacles as ellipsoids in 2D and a ball shaped regions in 3D. Similarly, ellipsoids were used to model
uncertainty of intermediate points used in the construction of the path to the final goal while a bounding
box is defined around the vehicle to provide a safety margin for uncertainties in the vehicle position.21

This time variant bounding box is inflated by a multiple of the standard deviation as uncertainty propagates
during path following.21 The rate of inflation depends upon the distance from the origin (which is assumed to
be known with certainty) and the visual scale as the latter determines the quality of the position estimate.21

Also, ellipsoids were used by Pepy et. al.39 to model state distribution uncertainty of robot position and
orientation at the configuration.

2. Probabilistic Distributions

Uncertainty in this category define a specific or a set of unbounded distribution functions to estimate uncer-
tainty for different parameters or agent states.24,30,32 Robustness in probabilistic estimations will limit the
failure probability depending on the definition of distributions.26 Van der Berg et. al.40 modelled obsta-
cle uncertainty using a Linear–Quadratic–Gaussian (LQG). Positional uncertainty was also modelled with
an independent Gaussian distribution in.41 In this study, fixed obstacles were modelled using a constant
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measurement uncertainty. For quasi–static obstacles the centre of position remains at the initial location
while for moving obstacles at constant speed the centres will move accordingly.41 For both quasi–static and
moving obstacles the positional uncertainty will grow linearly with time as long as the obstacles are not
continuously observed.41,42 Florence24 considers only continuous depth information in the local frame of
reference for robustness in the presence of uncertainty in state estimation.

A normal distribution around the mean take–off position was used in6 to account for initial uncertainty.
A bounded normal distribution with mean about the desired heading was considered in the same study
to mitigate with motion uncertainty. Similarly, Wen et. al.43 estimated the standard deviation of the
probabilistic UAV state distributions at each tree node by Linear Quadratic Gaussian Motion Planning
(LQG–MP). Uncertainty in threats were estimated by bounded circles with different risk factors. These
studies showed that hybrid approaches are also an option that can be considered.43

E. Uncertainty Quantification and Reduction

Different research works considered different time invariant and time variant uncertainty values for different
parameters independently and concurrently. These are linked with other mission, environmental and UAV
modelling constraints. This section provides a resume of a sample of implementations with the associated
uncertainty values. Rathbun et. al.27 limited speed between 21m/s and 34m/s, turn radius to a minimum
of 0.18km and 1.52 times the fuel necessary to travel the distance from the initial position to goal. In
the same work, the authors concurrently considered a bounded obstacle positional uncertainty of 0.1km, a
bounded uncertainty for velocity of 5km/s and an uncertainty growth of 0.001km/s/s. Similarly, Cui et.
al.16 considered a variable speed UAV with predefined bounds (10m/s to 50m/s) and initial speed of 25m/s
in an obstacle free environment. Concurrently the authors considered an initial distance error of 30m, 30m
and 2m, respectively in all dimensions, a horizontal velocity error of 2m/s, an angle error of 0.5o and 10%
distance and 0.2% angle uncertainties in the system error distribution. Other works considered a predefined
holistic uncertainty. In this regard, Yang et. al.38 considered a bounded control uncertainty of 0.5m. As
regards to obstacle size quantification Zeng et. al.41 represented each obstacle by a circle with a radius of
2× the standard deviation implying a confidence interval of 95.4%.

From the implementations described in this section it is shown that uncertainties in different parameters
are defined at initiation stage propagating at predetermined rate as the mission progresses. Some researchers
have identified ways how such uncertainty can be reduced. One way is by detecting using sensory vision
systems identification tags placed on static non-enemy obstacles. As these are fixed sensory errors can be
reset.20 Others make use of previous information to attenuate uncertainty in already visited areas.6 Another
solution is to shorten the path planning time reducing uncertainty increase at an expense of reducing the
path planning success and optimality and/or making the path planning solution more complex to compute.6

Another approach is to consider only the latest sensory measurement data with the scope of reducing time
propagated uncertainty.44–46

F. Path planning solutions under uncertainty

Researchers have implemented a number of path planning solutions to mitigate with uncertainties in different
parameters. The following will outline the different path planning methods that were proposed.

1. Rapidly–Exploring Random Tree (RRT)

The RRT algorithm is one of the most utilised path planning algorithms in the presence of uncertainty.
Although this method has been successful implemented to plan in complex real world scenarios such as
autonomous driving such as in the DARPA challenge,47 this algorithm does not explicitly incorporate uncer-
tainty.26 This inherent characteristic has encouraged researchers to apply the RRT algorithm in uncertain
environments by adding uncertainty into the planned paths.48–50

In this regard, the chance constraint RRT, an RRT variant, was developed and employed to handle
uncertainty in model and environmental situational awareness in different implementations.24,34 This method
is implemented to achieve robustness against uncertainties by growing trees of state distributions. However
this method requires an accurate vehicle dynamics model to grow a tree of state distributions.26

Another variant was developed by Yang et. al.38 In this work the authors added a guiding attraction
factor to the RRT variant, RRT* to enhance path convergence and smoothness in less computational time in
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the presence of fixed obstacles with uncertainty in both 2D and 3D environments. Auode et. al.51 remarked
that RRT–based estimators offer both accuracy and efficiency for long–term prediction of dynamic threats
in uncertain and partially unknown environments.

In another approach, Kothari et. al.26 generated probabilistically robust paths in partially known
environments using the RRT algorithm. Kothari et. al.26 stresses about the need to modify the RRT
algorithm to an anytime algorithm to arrive to a real time solution. The authors remark that based on the
results the computational time increases approximately linearly with the number of obstacles.

The Dynamic Domain Rapidly–Exploring Random Tree (DDRRT) combined with a linear Quadratic
Gaussian Motion Planning (LQG–MP) use developed by Wen et. al.43 to plan paths under threats and
uncertainties. Static threats incorporating uncertainty were modelled using intuitionistic fuzzy sets while
dynamic threats were modelled using the pursuit–evasion method. The path was further enhanced by the
safety adjustment method and the RRT* a variant of RRT. Results show that this system was able to
construct online safe paths in uncertain and hostile environments.

Finally, Achtelik et. al.21 made use of the Rapidly–Exploring Random Belief trees to evaluate offline
multiple path hypothesis in a known map with fixed obstacles so as to select a path exhibiting the motion
required to estimate vehicle state. The planner consequently selects paths that minimise uncertainty state
estimation in the estimated states without neglecting kinematic and dynamic model constraints. Also due to
the sampling based nature of this approach no assumptions on discontinuities in measurement uncertainty
with respect to vehicle position are considered. Results show that this approach improves the precision of
state estimation and that a naive planner will not be able to generate a successful path in an environment
with bounded uncertainty in most cases. Furthermore, it was noted that uncertainty is close to null at the
start, increasing during straight sections and when leaving feature–rich areas and decreasing at the goal
provided a perfectly working re–localisation system. Results show that the scaling factor of the monocular
vision–based system, that requires excitation, was fundamental to maintain the uncertainty within bounds
whilst the UAV flew away from the origin. In this regard, authors remark that uncertainty bounding boxes
need to be significantly enlarged when crossing unknown areas with uncertainty scale reducing in non direct
paths while remaining unchanged for direct paths.

2. A* Algorithm

The use of the A* path planner to plan in the presence of uncertainty is not frequently used when compared
to RRT and its variants. However this does not imply that this graph–based method is unsuitable to operate
in an uncertain environment. In this regard, Liao et. al.19 developed a 3D, A* based, closed–loop path
planning algorithm for VTOL UAVs in GPS–denied, obstacle–rich environments. This algorithm provides
collision–free shortest path from the current UAV position to any final goal point. The authors remark that
this method is implicitly robust to uncertainty mainly due to the closed–loop approach.

3. Markov Decision Processes (MDP) and Partially Observable Markov Decision Process (POMDP)

The MDP algorithms generate policies that allow the agent to formulate a series of actions to maximise return
or cost functions without neglecting uncertainties.52 MDP assume that states are completely observable while
POMDPs incorporate uncertainties in sensing and partial observability of the agent.53,54 Vanegas et. al.20

developed an on–line POMDP algorithm that relies only on on–board localisation sensors to generate UAV
control actions in the presence of uncertainty. To improve the quality of the control actions the POMDP
algorithm is allowed to calculate for longer times although this will increase the uncertainty in motion due
to longer prediction time.6

4. Sliding Mode Control

Sliding mode control has inherent benefits that makes it a potential candidate for mobile robotics. Such
benefits include robustness against system uncertainties, good dynamic response and stability under large
disturbances.55 Robustness against different uncertainties such as matched uncertainty in nonlinear system
is achieved by the sliding mode algorithm’s systematic approach.56
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5. Linear Methods

Linear algorithms can handle disturbances system control and model uncertainties and therefore can be
used for path planning under uncertainty. These algorithms can describe the environment completely while
modelling kinematic and dynamic constraints.57 In this regard, Mixed Integer Linear Programming (MILP)
methods merge binary and integer logical constraints to model the system and environment.57–59 Optimal
control can be used to find a path based on a set of differential equations.60 This method can be regarded
as a variant of linear methods. In optimal control methods there exist a infinite number of variables’ states
as opposed to linear approaches. Using linear chance constraints to model uncertainties in optimal methods
makes the method more computational efficient.57

6. Reactive Path Planning Methods

Reactive path planning strategies are also potential candidates that can be employed to mitigate uncertainty
in real–time. This approach use only local knowledge of obstacles and threats to plan without generat-
ing a global plan either offline or at the initiation stage.5 Reactive path planning systems make use of
either vision–based or depth sensor–based systems to constantly update the path planning algorithm with
real–time environmental information. For better reactiveness to uncertainties or changing environmental sit-
uation, feedback controllers can be employed. Reducing the complexity of feedback controllers can enhance
robustness.4

7. Potential Fields and Probabilistic Maps

Potential fields assign a potential function to free space with the agent reacting to forces due to repelling
potential from obstacles with the goal node having the lowest potential.4 A Laplacian potential field method
was developed by Connolly61 with the scope of minimising collisions with obstacle fields during random
movement. Similarly, Lazanas et. al.62 considered potential fields to navigate through regions but with
no uncertainty. Oppositely, Lihua et. al.25 developed the Modified Artificial Potential Field (MAPF) to
navigate through an uncertain environment with randomly moving obstacles and pop–up threats. Obstacles
are modelled by non–isotropic spatial volume creating repulsion potential fields. Results for test carried out
at 5km altitude and maximum speed of 60m/s show an improvement over the standard Artificial Potential
Field approach.25

In the same category as potential fields are probabilistic maps that define defines the exposure to threats
as a function of location and time. The undeterminisitic nature of dynamic environments has motivated
Zengin et. al.63 to develop such a probabilistic map any apply it to the problem of dynamic path planning.
The authors use state–space search to approach the goal location while avoiding threats.

8. Other methods

Path planning in dynamic environments with uncertainty are too complex for classical approaches to guar-
antee a solution. These algorithms tend to be inefficient and may lock in local minima without producing
non–optimal paths.4

Simultaneous Localisation and Mapping (SLAM) is important in situations of path planning under uncer-
tainty, although it does not directly address the planning phase.4 This method is able to provide localisation
information and hence attenuate the level of uncertainty. SLAM has been used for real–time laser mapping in
a remotely controlled helicopter flight64 and to provide situational awareness under uncertainty in real–time
in the DARPA Grand Challenge.65

Receding Horizon Control (RHC) can also be employed for path planning under uncertainty. Goerzen
et. al.4 remarks that an online RHC framework can modify an offline generated path to handle in flight
uncertainties that are either unknown or partially known at the initiation stage. In this regard, Kuwata
et. al.66 used the RHC method to generate trajectories for an agent under the influence of atmospheric
turbulence.

Q–learning is an optimisation method used to deal with uncertainties. Cui et. al.16 modelled uncertainties
to control the acceleration and bank angle of a UAV using tracking error cost function optimised through
Q–learning in a 2D environment without obstacles.

Shell Space Decomposition (SSD) scheme is a method that decomposes the environment into concentric
shells radiating out from the start to the goal location with single or multiple control point in each shell
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region.41 Zeng et. al.41 applied SSD with a quantum–behaved particle swarm optimisation path planner for
an Autonomous Underwater Vehicle (AUV) with static, quasi–static and moving obstacles in a cluttered and
uncertain environment. Paths are generated offline and results show a better performance with concentric
circles and sphere algorithms.41

Finally, in another approach, Schouwenaars et. al.67 developed a robust system that accounts for uncer-
tainty in manoeuvring of vehicles. This system is based on a control architecture developed by Frazzoli.68

This control system is based on the quantization of system dynamics to reduce computational complexity of
motion planning in nonlinear, high dimension environment.

G. Conclusion

This section highlighted the need to consider uncertainty during path planning especially in dynamic environ-
ments. The different uncertainty sources considered in various works were categorised into 4 main categories.
The two main uncertainty modelling methods namely bounded shapes and probabilistic distributions were
explained based on their applications in different environments with different obstacles and threats. Another
subsection presented a resume of parametric quantification of uncertainty in different working environments.
Also this part highlights how different authors tried to reduce uncertainty or its effects. Finally, the different
path planning methods that were used in different works not only for UAVs are presented and the result-
ing outcomes analysed and compared. This review helps in defining a path planning strategy for an agent
operating within an environment with the respective kinematic and dynamic constraints and uncertainties.

III. A*, RRT, Smoothing and Real–time Algorithms

A. Introduction

This section will initiate with a brief definition of the two most utilised graph–based and sampling–based
algorithms, namely the A* and RRT algorithms. The smoothing algorithm developed to mitigate the non–
optimality of the RRT algorithm will then be explained. Finally, this section will conclude with a summary
of the A* and RRT real–time path planning implementations.

B. The A* algorithm

Graph–based methods define the state space into an occupancy grid defining obstacles residing in grid
points as unavailable points. Graph–based algorithms check the possibility of a path between start and goal
position using only obstacle–free grid points.69 Graph–based algorithms only offer a guarantee of solution if
an appropriate resolution is selected.70

The standard A* algorithm uses a heuristic evaluation function (f(n)) to determine the cost of neigh-
bouring grid points.71 This evaluation function sums the cost from the current position to a prospective
future position and the cost from the latter to its goal node.71,72 For a detailed explanation of this algorithm
refer to our previous work.11–13

C. The Rapidly–Exploring Random Tree (RRT) Algorithm

Sampling–based algorithms construct a path between start and goal positions by connecting unevenly selected
obstacle–free points in the configuration space.70,73 Opposite to graph–based methods, these algorithms offer
a guarantee of solution within an infinite time as opposed to graph–based methods provided that a path
exists.70

The standard Rapidly–Exploring Random Tree (RRT) constructs a unidirectional tree by randomly
planting seeds in obstacle–free points. A new tree branch is constructed by selecting a new point a predefined
distance from the nearest tree node on the line interconnecting the latter node with the randomly selected
point, provided that the line from the nearest tree node and the new node is obstacle–free. A path from
start to goal points is formed when one tree branch reaches the goal provided the first tree node is the
start position.74–76 The RRT algorithm is efficient in complex high–dimensional environments but lacks
optimality and requires smoothing.76–78 Just as for the A* algorithm, a more detailed explanation of the
RRT algorithm and its variants is provided our previous works.11–13
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D. The Smoothing Algorithm

The path generated by both A* and RRT algorithms is constructed by interconnecting path points. The
developed smoothing algorithm randomly selects two of these path points and then randomly defines two
points on the path segments connecting the initially selected path points with their respective next path
points. If the interconnection of the latter two points is obstacle–free then all path points in between are
neglected, creating a shorter path with lesser turns and lesser path points. This process is repeated until
the percentage path length reduction over the last 20 iterations is less than 1% and for a minimum of 20
iterations. A more detailed explanation of this algorithm is provided in our previous works.12,13

This post–path construction smoothing algorithm was developed to mitigate with the non–optimality
characteristics of the RRT algorithm. Since in our previous works,11,12 the A* algorithm produced the
shortest possible path with the considered resolution, improvement with the smoothing algorithm was only
marginal. Moreover, in a real–time A* implementation some parts of a smoothed, obstacle–free path which
are very near to obstacles, can produce collisions as the graph points can shift due to discretisation in the
next intermediate path construction as the UAV current position moves. Therefore, this smoothing algorithm
was only applied for the RRT algorithms.

E. The Real–time Algorithm

Literature identifies the need for real–time path planning if the UAV is expected to travel in dynamic
environments especially if the environment is partially unknown or totally unknown except for a limited
Field of View (FOV) at the initiation stage.79–81 Owing that the scope of this work is to design a path
planning algorithm for such scenarios, an algorithm to emulate real-time behaviour was developed in a
previous paper.13

The developed real–time path planning algorithm selects an obstacle–free intermediate goal node in the
direction of the final goal position a look-ahead distance from the current UAV position. This look–ahead
distance is governed by the sensory system’s FOV. Consequently, a path from the current UAV position to
the intermediate goal node is constructed (if possible) using either the A* or RRT algorithms depending
on which algorithm is being examined. The UAV current position travels along the intermediate path a
predetermined distance determined from the UAV speed and maximum allocated intermediate time. It is
assumed that actuator systems’ response is modelled with high fidelity with no uncertainty and the UAV
is not effected by external factors. Furthermore it is assumed that during UAV travelling the environment
remains static. This assumption is valid since a low intermediate time is considered. A no solution situation
exists when either a no intermediate obstacle–free path was not constructed in the allocated time and/or the
total time to reach the goal from the initial position has exceeded. The various UAV parameter definitions
defined in our previous work,13 are briefly explained in Section IV C. For a more detailed explanation of
the described real–time algorithm and performance results for both path planning algorithms, refer to our
previous work.13

F. Conclusion

This section briefly described the two most utilised graph–based and sampling–based methods, i.e. the A*
and RRT algorithms. To mitigate the non–optimality of the RRT algorithm a smoothing algorithm was also
developed. The real–time algorithm made up of either the A* or RRT with the smoothing algorithm provided
a test platform to assess the performance of both configurations in view of real life UAV applications.

IV. Environmental scenarios, UAV model and path planner parameter
definitions and constraints and Uncertainty Modelling and Quantification

A. Introduction

This section will describe how uncertainty factors are integrated within the environmental and UAV model
frameworks. This section will initiate with a description of the modelled environmental scenarios. Then the
UAV model and path planner’s parameter constraints will described. Bounded uncertainty is then defined
for size and obstacle positions while randomised but bounded uncertainty is considered for UAV positions.
In the final subsection, the percentage uncertainty bound values applied to both obstacles and UAV position
are described.
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B. Environmental Scenarios

Four different scenarios with different complexities developed in our previous work10 are considered as a
test platform to assess the performance of the A* and RRT algorithms. These time variant environments
are generated offline with an associated time stamp prior the initiation of path planning. Cubes, V shaped
obstacles and 2D planes with window openings are used in the development of these obstacle scenarios. The
cubes and V obstacles are randomly placed in the environment with each point having the same probability
of occupancy. The following list describe the construction of each of the four scenarios, namely:

• Scenario 1. 10 cubes of 0.1x0.1x0.1 with no rotation;

• Scenario 2. 10 cubes the same size as Scenario 1 but with random rotation at definition stage and with
changing independent rotation with time iterates;

• Scenario 3. 10 V obstacles constructed by adjoining one side of each of the two planes with an angle
of 53◦ between the planes. Each plane has a size of 0.1x0.112 and is randomly rotated as in Scenario
2. This plane size was considered so that it fits exactly into the considered cube; and

• Scenario 4. Two planes on the Y–Z axis separated by 0.4 each with a window of 0.2x0.2 as well as the
obstacles in Scenarios 2 and 3 combined.

Figure 1 illustrates pictorially each scenario for a random time iterate without considering any uncertainty
bounds. Since moving obstacles are considered, the positions of each obstacle for each scenario will change
in every time iterate.

(a) (b)

(c) (d)

Figure 1. Environmental scenarios: (a) Non-rotating cubes scenario, (b) Rotating cube scenarios, (c) V obstacle
rotating scenario and (d) Mixed scenario. These scenarios incorporate cubes, V obstacles and obstacle planes
in the Y-Z with windows as openings.
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Table 1. Obstacle shapes

Shape Size Number of Planes Closed/Open

Cube 0.1x0.1x0.1 6 Closed

V obstacle 0.1x0.112 2; (53o with each other) Open

Plane with window 1x1 1; window (0.2x0.2) Open

C. UAV model and path planner parameter definitions and constraints

To fairly assess the performance of both path planners, nominal UAV and path planner parameter values
tabulated in Table 2 and adapted from our previous work13 are derived after considering real UAV model
characteristics, features and constraints.

Table 2. Real–time algorithm parameter definition

Parameter Nominal Value Units

Resolution (res) 21 [-]

Step size RRT (dstep RRT ) 1
21−1 = 0.05 [-]

Distance to travel per iterate (ds step) 2
res−1 = 0.1 [-]

Distance between current UAV position and prospective new inter-
mediate goal point (dint goal)

0.4 and 0.6 for Mixed
case scenario

[-]

Maximum time to generate path segment (titerate max)
ds step×60×60
100×vUAV

s

Maximum time to generate path (tpath gen max) 10 × titerate max s

Distance reduction factor (dfactor) 0.8 [-]

A cube of 1x1x1 was considered as the environmental space, with fixed start and goal points at (0,-0.5,0)
and (0,0.5,0), respectively for all considered tests. For A* algorithm the environment and start and goal
points were shifted by a random distance between 0 and half the distance between grid points to eliminate
path length ripple as thoroughly explained in.12

The resolution, considered for graph–based methods such as the A* is defined as the number of grid
positions per dimension. Oppositely in sampling–based methods all obstacle–free space is available for
path construction. Therefore, the tree branch length set as the distance between grid positions in A*, was
considered for RRT to offer a fair comparison between the two methods. The distance to travel per iterate
(ds step) is set at double the distance between grid positions and tree branch length while the distance
between the current UAV position and an intermediate goal point (dint goal) is set to double ds step. For the
mixed case, dint goal is increased from 0.4 to 0.6 since the planner need to be able to visualise the second
plane window to construct a path to the intermediate goal point that may result on final goal side of the
second plane. If this distance is not increased the window will not reside within the FOV of the planner and
consequently a no solution situation will result. All these parameters were set based on performance analysis
in our previous work.13 The maximum time to generate a path segment (titerate max) was defined as the
time needed for the UAV to travel ds step while the maximum time to generate the whole path (tpath gen max)
was set at 10 times titerate max. Finally, the distance reduction factor is used to reduce the distance in cases
where prospective intermediate goal points or prospective UAV positions reside on an obstacle. Again this
parameter was empirically defined after performance analysis in our previous work.13

For each test situation the UAV speed remained constant. This parameter was varied between 0.01[-]/s
and 0.1[-]/s in steps of 0.01[-]/s, where [-] represent modular distance units. These values were determined
based on the nominal speeds for exploration situations in a nominal environment. The environmental time
stamped space created apriori, assumed that obstacles move in random directions with random speeds
smaller than the UAV speed.
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D. Bounded Uncertainty Definitions

In the literature review presented in Section II, uncertainty was divided into four main categories, namely
uncertainty in sensing systems, UAV model, environment and communication. The first three categories of
uncertainties aforementioned will effect position and orientation of the UAV and obstacles within the FOV of
the UAV sensing systems. Therefore, by modelling probabilistic and/or bounded uncertainties in position and
orientation of the UAV agent and obstacles, uncertainties in sensing systems, UAV model and environment
will be catered for. Owing that our UAV is assumed to be stand–alone no communication is exchanged with
other third parties and therefore communication uncertainties is out of scope for the purpose of this work.
Furthermore, since in this work it is assumed that the UAV is a point model, orientation uncertainty is also
neglected.

After considering both bounded and probabilistic uncertainty modelling methods, bounded uncertainty
was considered to model uncertainty in both obstacles and UAV position. As described in literature, both
methods were successfully applied to model different kinds of uncertainty in all four categories described
earlier. The real–time path planning algorithms are designed to consider any point in the environmental
space as either unoccupied or occupied by an obstacle, implying that the latter point is either free or
unavailable. With probabilistic methods, each point has a probability based in the distribution function of
either being free or unavailable and therefore the planner must define apriori or in real–time a threshold
to assign such point as free or unavailable. This will increase computational demand with respect to the
bounded shape method which only defines a bound around the obstacle or UAV position and assumes that
within the bound, parameters are known with certainty and outside the bound everything is totally unknown.
Therefore through this rationale the latter method was selected.

Figure 2 illustrates the bounded boxes around the different obstacle shapes and the spherical bound
around UAV position. 3D bounded boxes were considered since obstacle shapes can be regarded as 2D
squarish planes. Therefore, 3D bounded boxes are shapes that offer equidistant bounds from the actual
obstacle limits. A spherical bound was considered for UAV position estimation as for fair modelling the
uncertainty error must be equidistant in all directions for the estimated UAV position point. In this work, we
will assume that uncertainty is time invariant in both obstacle position and orientation and UAV maximum
deviation in position since we will assume that within the look–ahead distance, the sensing accuracy and
precision of the UAV sensing systems and the UAV positional accuracy system are assumed to remain
constant. Having said this, the effect on performance by varying uncertainty will be analysed in Section V.

The actual UAV position in real–time path planning is assumed to reside with equal probability anywhere
within the spherical bounds defined by the time invariant maximum deviation in position. Therefore for
the scope of analysis, the current UAV position is randomly selected within the spherical bounds of the
estimated future UAV position on the constructed path in the previous iterate. This randomisation process
is repeated in the construction of each path segment while each scenario with a specific speed is repeated
for 100 times.

(a) (b).(i) (c).(i) (c).(ii)(b).(ii) (d)

Figure 2. 2D illustrations of uncertainty bounds for all three categories of 3D obstacle shapes and the UAV
position: (a) Cube (bounds are applied the same for all cube sides), (b) V–obstacle, (c) Planes in the Y-Z with
windows as openings and (d) UAV position

E. Uncertainty Quantification

Uncertainty in obstacle position and orientation is governed by either the precision and accuracy of the
on–board UAV sensing systems only or by on–board sensing systems fused with other ground or associate
off-ground sensing systems. In both cases, environmental situational awareness is limited and provided to
the path planner with a degree of accuracy and precision depending upon the sensing capabilities of the
aforementioned system or systems.
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The uncertainty bounds of 3D obstacles namely cubes are quantified as a percentage of the volume of
each obstacle. Therefore, the cube increases in volume by the percentage uncertainty. For the V–obstacle
case, which is made of two 2D planes perpendicular to each other, uncertainty bounds are quantified by 10
planes enclosing the V–obstacle from all sides as illustrated in Figure 2. The percentage uncertainty factor in
obstacle position is multiplied by the distance between the centre of the shape and each node of the obstacle
and then added to the actual node position to identify the nodes of the 10 enclosing planes such that the
distance between any node on the V–obstacle planes and the respective bound limit is equidistant. For the
mixed case, incorporating all shapes including 2D planes with windows, the uncertainty bound for planes is
constructed by using two other parallel planes with smaller windows with the edges of the parallel planes
connected with each other to form a closed shape as illustrated in Figure 2.

The nominal uncertainty percentage values of obstacle shapes are decided based on the uncertainty
quantification considered in different studies and presented in Section II. E. As regards, obstacle uncertainty
three studies were presented one that considered probabilistic and the others considered bounded uncertainty.
Yang et. al.,38 considered a constant circular and spherical uncertainty bound of an additional 0.5m radii
for 5m radii obstacles for 2D and 3D environments, respectively. This amounts to 10% uncertainty bounds.
Rathbun et. al.,27 considered a 0.1km positional uncertainty for obstacle aircraft which amounts to 2x the
size of a medium sized passenger aircraft. This environment is different from the environment under review
since in this case the size of obstacles and obstacle density is much larger with respect to the environmental
space than Rathbun et. al. study and thus only Yang et. al.38 is considered for the definition of uncertainty
bounds for obstacles.

The maximum uncertainty in UAV position is modelled as a sphere as illustrated in Figure 2 (d). The
radius of the sphere is equal to the multiplication of the respective uncertainty and the distance the UAV
moves per iterate ds step. Cui et. al.,16 considered a 10% distance and 0.2% angle uncertainty in system
error distribution in an obstacle free scenario. The selected spherical uncertainty bound will be larger with
respect to Cui et. al.16 for the considered speed since 0.2% angle uncertainty will translate to approximately
1.3% lateral deviation and in our case we are assuming a maximum deviation of 20%. This allows a safer
navigation and/or by using less accurate and precise positioning systems.

For all considered scenarios the uncertainty in either obstacle position and/or UAV position was varied
between 2% and 20% in steps of 2% when the effect of this uncertainty on performance is under review.
Otherwise, it is assumed that uncertainty is neglected.

F. Conclusion

This section presents the four different environmental scenarios with different difficulties that are used to
assess the effect on path planning performance in real–time in the presence of time invariant uncertainty
in both obstacle position and orientation as well as UAV position using bounded shapes. The considered
uncertainty factors and their quantification incorporate a set of major uncertainty sources although other un-
certainty factors neglected in this study may negatively impact performance of the considered path planning
algorithms in real–time.

V. Results

A. Introduction

The A* and RRT 3D real–time path planning algorithms, environmental scenarios and uncertainty in UAV
and obstacle position and obstacle orientation described in the previous sections were implemented in MAT-
LAB and tested using an Intel Xeon ES–1650, 3.2GHz. The path length, computational time and success
rate are the performance measures considered. Unless uncertainty is under review, UAV speed is varied in
steps of 0.01[-]/s, starting from 0.01[-]/s to 0.1[-]/s as described in Section IV, otherwise the UAV speed is
set at 0.05[-]/s. Section IV.C while the parameters tabulated in Table 2 were assigned to the nominal values.

B. A* and RRT with no uncertainty

Prior the inclusion of uncertainty in obstacle and UAV positions, the performance of both the A* and RRT
algorithms in real–time in the presence of moving obstacles is assessed. This is important so as to compare
the effect on performance of uncertainty additions to both A* and RRT. Figure 3 adapted from10 show the
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path length, computational time and success rate for A* and RRT as speed is varied between 0.01[-]/s to
0.1[-]/s for the constant parameters illustrated in Table 2.

The salient points that can be concluded from Figure 3 is that the path length for the first three scenarios
namely the cube with no rotation, the cube with rotation and the V–obstacle produce a path very close to 1
for all scenarios for all speed for both algorithms. The shortest path length is recorded for the cube with no
rotation followed by the cube with rotation and the V–obstacle also for all speeds for both algorithms. The
straight line distance from start to goal is 1 implying that the planner only deviated by a small percentage
from the straight line owing that the obstacles are rarely in the line of sight from start to goal. A major
increase in path length is recorded for both A* and RRT for all speed as the planner needs to traverse
through two planes with windows on opposite sides as illustrated in Figure 1. Overall the path length for
RRT was shorter than A* for all scenarios and all speeds considered. Also speed has no effect on path length
since speed only determines the maximum intermediate and total time allocation.

The computational time for A* is longer than that for RRT for all scenarios for all speed. As for path
length speed has no effect on computational time for both algorithms for the reason described previously.
The V–obstacle resulted in the lowest computational time followed by the cube without and with rotation
for both algorithms with a major increase for the Mixed case. This order is attributed to the computational
difficulty associated with each scenario with the V–obstacle consisting of only two 2D planes while cubes
consist of 6 planes and the internally unavailable space. For both path length and computational time A*
results in higher variance with respect to RRT for all scenarios for all speeds. This is attributed to the
graph–based nature of the A* algorithm and the ripple reduction algorithm that re–plan the environment
each iteration. Refer to10,12 for further details.
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Figure 3. Performance parameters vs. speed: (a) Path Length for A*, (b) Computational Time for A*,
(c) Success and Failure rates for A*, (d) Path Length for RRT, (e) Computational Time for RRT and (f)
Success and Failure rates for RRT for 100 iterates for each considered situation (speed and scenario) with
95% confidence interval. (res = 21, ds step = 0.05, dint goal = 0.4 (for Scenarios 1,2 and 3) and dint goal = 0.6 (for
Scenario 4), dfactor = 0.8 and titerate max, tpath gen max are a function of the UAV speed) Adapted from10

In terms of success rate both algorithms exhibit a near 100% success rate for the first three scenarios
with RRT exhibiting a 100% success rate for the mentioned scenarios for all speeds while A* achieved a
minimum of 95% success rate for the same set of scenarios. For the Mixed case, the RRT achieved a success
rate of a minimum of 95% for speeds from 0.01[-]/s to 0.03[-]/s deteriorating to 0% as speed increases. The
A* on the other hand never achieved this high success rate of the RRT algorithm but maintained success
rate above 40% at the highest speed which is the worst case scenario. For further analysis of these results
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refer to.10

Overall the performance of both the A* and RRT algorithms show that they can be applied to real–time
path planning in the presence of moving obstacles as long as the allocated intermediate and total time is
appropriate. The next step is to include uncertainty in UAV position as explained in Section IV.

C. A* and RRT with uncertainty in UAV position

The inclusion of uncertainty in UAV position is factored as a percentage of the distance that the UAV is
expected to move per iterate which is predetermined. During planning the path is expected not reside less
than this distance away from each obstacle. Figure 4 illustrates the performance response of the A* and
RRT algorithms with uncertainty in UAV position. In this test two inter–related parameters are changing
concurrently. One is the maximum uncertainty in UAV position that dictates the safe distance that the
planner must keep to ensure a non-collision provided the obstacle remains fixed. Secondly, when the UAV
is simulated to traverse the path in real-time, a random shift by a random distance in a random angle
varying from 0 to the considered maximum UAV positional uncertainty is added to the calculation of the
next intermediate UAV position on the previously constructed path to the intermediate goal point. This
random distance is bounded between 0 and the maximum uncertainty defined in the x–axis of Figure 4.
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Figure 4. Performance parameters vs. Uncertainty in UAV position: (a) Path Length for A*, (b) Computa-
tional Time for A*, (c) Success and Failure rates for A*, (d) Path Length for RRT, (e) Computational Time
for RRT and (f) Success and Failure rates for RRT for 100 iterates for each considered situation (obstacle
uncertainty and scenario) with 95% confidence interval. (res = 21, ds step = 0.05, dint goal = 0.4 (for Scenarios 1,2
and 3) and dint goal = 0.6 (for Scenario 4), dfactor = 0.8, titerate max = 72s and tpath gen max = 720s.

The mean shortest path length for A* results is recorded for the non-rotating cube case increasing when
rotation is introduced and increasing further in the V-obstacle and Mixed cases. For RRT, the V-obstacle is
the shortest followed by the cube without and with rotation and the mixed scenario, although the difference
in the first three scenarios is small. This order is equivalent for the no uncertainty cases for A* but changes
with RRT mainly that the V–obstacle experienced the largest deterioration. The V-obstacle rotating case is
made up of two planes with each one having an area greater than each side of the cube. Due to the buffer
distance the available volume between planes is reduced and therefore the planner need pass from outside in
a larger number of iterations, resulting in a longer path.As for the non uncertainty cases, it can be concluded
that rotation increases path length since the effective movement of the cube is higher by introducing rotation
effectively requiring the UAV to travel further away to avoid collisions.
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The path length for the first three scenarios is 2 times and 1.5 times longer for the Mixed case with respect
to the other cases for all speeds for the A* and RRT algorithms, respectively. As for the no uncertainty cases
this increase results since the planner need to travel through obstacle plane windows on opposite sides of two
parallel planes spaced by 0.4[-] from each other. Due to the graph–based nature of A* obstacles are defined
with a buffer of half the distance between grid positions while for RRT every point not on an obstacle plane
or within the object is accessible.

The mean path length for RRT is 7.4%, 6.9%, 4.0% longer and 18.4% shorter with respect to A* for
Scenarios 1 to 4, respectively. For Scenarios 1 to 3 the success rate is close to 100% for both algorithms
therefore a fair comparison can be made but for the Mixed case A* exhibited a higher success rate that could
effect the mean path length owing that the easiest iterates (which are ultimately successful) are considered
for RRT with more difficult iterates besides the easiest ones are considered for A*. This is also applicable to
computational time analysis. Therefore, without uncertainty the path length recorded for RRT was always
smaller than that for A*. So with the inclusion of UAV positional uncertainty both algorithm experienced
an increase in path length with the major deterioration exhibited by the RRT algorithm. In fact, with the
inclusion of uncertainty, A* exhibited a mean increase of 1.8%, 1.7% and 1.2% and a decrease of 2.7% for
Scenarios 1 to 4, respectively for the same speed. A larger increase of 9.2%, 9.1%, 8.9% and 10.7% is recorded
for RRT for Scenarios 1 to 4, respectively for the same speed. The decrease in path length for A* for the
Mixed case is attributed to the lower success rate for A* for this case and therefore the easiest iterates are
considered as explained earlier.

Further analysis of Figures 4 (a) and (d) show that for both algorithms for all scenarios the path length
increases with percentage uncertainty in UAV position. For A* the path length increases from 2.7%, 2.8%,
1.2% and 4.8% for Scenarios 1 to 4, respectively for uncertainty increases from 2% to 20%. A similar
analysis for RRT shows that the path length increases by 16.7%, 18.2%, 16.7% and 20.4% for Scenarios
1 to 4, respectively. From this analysis, the comparison between the mean path length of A* and RRT
and the comparison between the A* and RRT with and without uncertainties, it can be concluded that
both algorithms experience an increase in path length with uncertainty and the RRT is more susceptible to
increase in uncertainty in UAV position with respect to A*. For A* a buffer distance in obstacle definition
is already considered even without uncertainty at half the distance between grid positions which is equal
to 0.05[-] for the considered resolution. Therefore, with the inclusion of an uncertainty buffer from obstacle
and a deviation from the projected position due to the added uncertainty in position, the A* planner will
already incorporate a buffer space minimising the effects of uncertainty as opposed to RRT which besides
the positional uncertainty would not include any buffers between the UAV prospective path and obstacles.
The major percentage path length increase is recorded for the Mixed case since it incorporates more than
double the paths, restricting the construction of intermediate paths.

Computational time is lowest for the V-obstacle case for both algorithms for all range of uncertainties
considered since the planner need to only check for collision with only two planes per shape not six planes and
their interior per shape as in the cube case. As described for other situations rotation increases computational
time as the effective movement of the obstacle increases. Since the mixed case is more complex than the
other three cases the required computational time is higher as a consequence.

With the inclusion of uncertainty A* recorded a decease in mean computational time by 2.29 times, 2.29
times, 5.60 times and 3.7% for Scenarios 1 to 4, respectively for the same speed. Oppositely, for RRT an
increase of 16.3%, 8.9%, 13.1% and 11.6% is recorded for Scenarios 1 to 4, respectively for the same speed.
The decrease exhibited for A* results since, with uncertainty, the planner keeps a larger distance from the
obstacles and therefore the chance of re–planning due to obstacle movement decreases while the obstacle
definition time and path planning remains the same. This reduces computational time at the expense of
longer path length. For RRT a smaller increase in computational time results with increase in uncertainty.
By increasing uncertainty in RRT, tree branches are more restricted and therefore the planner requires more
time to construct the path although as for A* the re–planning time reduces. But since the path construction
time is greater than the re–planning time, the combined effect is that the total computational time increases.

The mean computational time for A* is 2.43, 2.04 and 1.13 times longer and 29.6% shorter with respect
to RRT for Scenarios 1 to 4, respectively. As for the non-uncertainty case, for both algorithms, the shortest
computational time is recorded for the V–obstacle case followed by the cube without rotation and with
rotation and the Mixed cases. Although, without and with uncertainty A* reduced and RRT increased in
computational time, this difference is not enough for the A* to perform better than RRT in the first three
scenarios. Also, results confirm that for complex cases, the A* can construct a path in less time than RRT
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with and without positional uncertainty. This is because irrespective of complexity the obstacle definition
in the graph environment is not effected as all points within the FOV need to be checked for occupancy.
Oppositely for RRT, the larger the size and number of obstacles the higher the computational time required
to check for collisions.

The success rate for the first three scenarios is over 90% for all percentage uncertainties for both algorithms
considered with all three scenarios. A deterioration of approximately 5% with increase in uncertainty is visible
only for RRT with A*’s success rate independent of uncertainty consideration. As remarked for path length
and computational time with increase in buffer distance to obstacles the RRT is mainly effected as such
buffer restricts prospective tree branches while for A* it does not effect obstacle definition within FOV, the
most computational intensive part of the algorithm. For the Mixed case, a success rate between 52% and
70% and between 12% and 44% is recorded for A* and RRT, respectively. This shows that for the range of
uncertainties considered for the Mixed case, the A* has double the chance of finding a feasible path from
start to goal.

In comparison with the non uncertainty scenarios, an approximately 5% success rate deterioration is
recorded for both algorithms for the first three scenarios for all the range of uncertainties considered. For
the Mixed case, a success rate similar to the no uncertainty case for the same speed is recorded for both
algorithms for all the range of uncertainties. As for the no uncertainty cases, the maximum intermediate
time restriction is the main violation, especially in the Mixed case scenario for both algorithms. For A* a
total time violation is also illustrated in less than 5% of the cases in the Mixed scenario. Oppositely, for RRT
a number of No Path solutions are recorded (also less than 5%) for all scenarios increasing with increase in
uncertainty. This results since the path to the intermediate goal point is constructed with the limitation
that the path will be nearest to any obstacle by more than the maximum percentage uncertainty. When
the actual uncertainty is added to the UAV position and the new intermediate path to a new intermediate
goal point is being constructed, the movement of the obstacle may lead to the UAV being actually a smaller
distance to the obstacle than the percentage allowable uncertainty. This will create a no path solution. As
the uncertainty in UAV position buffer increases, the situations that can lead to this situation increases. For
A*, this situation is less probable as in addition to this buffer distance another distance equivalent to half
the distance between grid positions is added to avoid quantistion errors that could lead to erratic obstacle
definitions.

In conclusion, both algorithms resulted in almost 100% success rate for the first three scenarios for all
uncertainty values considered with RRT resulting in shorter path length and computational time with respect
to A*. Both algorithms show an increase in path length and computational time with increase in uncertainty
bounds with RRT showing the larger growth. For the Mixed case, A* is 2 times more successful than RRT
for all uncertainty bounds with respect to RRT although A* constructed longer paths.

D. A* and RRT with uncertainty in obstacle position and orientation

Figure 5 illustrates the performance response of the A* and RRT algorithms with increase in obstacle
uncertainty bounds. The uncertainty bound is calculated as a function of the size of the obstacles for 3D
shapes like cubes. For 2D shapes including the V–obstacle and the two planes with windows constructed for
the mixed case a bounding box the same shape as the obstacle is constructed. Therefore although for 3D
shapes the number of planes remained the same (only increased in area with the consequence of increasing
the enclosing volume) for 2D shapes the obstacle translated to a 3D obstacle with larger number of planes
with increased area and unavailable volume. In this regard, for the V–obstacle a 10 plane, 3D obstacle
enclosing the actual V–obstacle was constructed while for the planes with windows 24 planes instead of the
original 4 per plane is required. Figure 6 graphically illustrates this explanation. This re–modelling of 2D
obstacles increases complexity and therefore will have an effect on path planning performance.

Figure 5 (a) and (d) illustrate the path length for A* and RRT, respectively. The response is similar to
the no uncertainty cases with the difference that no results are illustrated for the Mixed case scenario for
the RRT algorithm since no successful runs were recorded for this case. In fact, the mean path length for
A* increased by only 0.6%, 0.3%, 1.7% and decreased by 1.5% for the cube without and with rotation, V–
obstacles and Mixed cases for the uncertainty with obstacle uncertainty with respect to the no uncertainty
cases. Similarly, the same comparison for RRT the mean path length increased by only 0.3%, 0.2% and
<0.1% for the first three scenarios. The small increase in the first three scenarios is attributed to the relative
small increase in obstacle volume occupation. For the Mixed case, the decrease results due to a reduction of
more than 50% of the obstacle uncertainty case with respect to the no uncertainty cases. With lower success
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rate the easier paths are successful.

Percentage Uncertainty in Obstacle Position and Orientation [%]
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Figure 5. Performance parameters vs. Uncertainty in obstacle position and orientation: (a) Path Length
for A*, (b) Computational Time for A*, (c) Success and Failure rates for A*, (d) Path Length for RRT, (e)
Computational Time for RRT and (f) Success and Failure rates for RRT for 100 iterates for each considered
situation (obstacle uncertainty and scenario) with 95% confidence interval. (res = 21, ds step = 0.05, dint goal = 0.4
(for Scenarios 1,2 and 3) and dint goal = 0.6 (for Scenario 4), dfactor = 0.8, titerate max = 72s and tpath gen max =
720s.

In comparison with the UAV positional uncertainty cases a lower increase in path length results for all
scenarios for both algorithms as the uncertainty increases. In fact, comparing the path length at 20% with
respect to 2% uncertainty an increase of 0.2%, 0.2%, 0.2% and 2.2% results for the non-rotating and rotating
cube, V–obstacle and Mixed cases, respectively for the A* algorithm. A similar analysis for RRT showed an
increase of <0.1%, 0.4% and 0.1% for the first three scenarios, respectively. For both algorithms, the variance
is invariant with increase in obstacle uncertainty. Therefore, it can be concluded that the inclusion of obstacle
uncertainty bounds have minimal effect on path length in the first three scenarios for both algorithms mainly
due to the low occupation and also for the Mixed case using the A* algorithm.

The computational time results illustrated in Figures 5 (b) and (e) show that the cube with no rotation
case exhibits the fastest time followed by the rotating cube, V–obstacle and Mixed scenarios for both algo-
rithms. This order is different for both algorithms to both the no uncertainty cases and the uncertainty in
UAV position test cases. In fact, for A* the computational time decreases by 2.34 and 2.33 times for the
cube without and with rotation, respectively and increased by 3.72 and 1.49 times for the V–obstacle and
Mixed scenarios, respectively for the obstacle uncertainty case with respect to the no uncertainty cases. A
similar comparison for RRT shows that the computational time increased by 23.6%, 26.3% and 12.9 times
for the first three scenarios, respectively.

The analysis shows that with the increase in effective inaccessible volume of the cubes, A* required
less computational time while RRT required more time with respect to the no uncertainty case. Adding
uncertainty bounds around obstacle makes it more difficult to construct a path as the environment is more
restrictive. This explains why RRT requires more time to construct tree branches to find a path from start
to goal. For A*, the increase in the number of inaccessible grid positions will not increase the environment
grid definition time as explained earlier and will make it easier to find a path, if possible, since fewer amount
of free nodes are available.

For the V–obstacle case both algorithms experienced an increase with RRT showing the larger increase.
The inclusion of obstacle uncertainty has changed the V–obstacle from a 2D shape to a 3D shape. This

18 of 25

American Institute of Aeronautics and Astronautics

D
ow

nl
oa

de
d 

by
 T

U
 D

E
L

FT
 o

n 
Se

pt
em

be
r 

29
, 2

02
1 

| h
ttp

://
ar

c.
ai

aa
.o

rg
 | 

D
O

I:
 1

0.
25

14
/6

.2
02

1-
19

56
 



(a) (b)

Figure 6. Two Dimensional objects modelled with uncertainty in obstacle position and orientation (20% test
case): (a) V–obstacles (zoomed) and (b) Planes with windows constructed in Mixed Scenario.

increases computational demand to define the grid environment for A* since the grid definition sub–algorithm
need to check and assign inaccessible grid points found internally within the obstacle. For RRT, the V–
obstacle restricted the environment making it more difficult to construct tree branches. For the Mixed case
scenario, the environment is more restrictive resulting in fewer options of tree branch construction, leading to
a 0% success rate. For A*, the increase in computational time is attributed to the increase in grid definition
time due to the change of 2D to 3D obstacles for the V–obstacles and planes.

Although the RRT experienced the higher increase in computational time, as for the non uncertainty
situation, the RRT algorithm constructed the path in less time than the A* algorithm for the first three
scenarios, implying that A*’s time consumption in environmental quantisation is more time consuming and
path construction than RRT’s approach even with the inclusion of uncertainty. This shows that the RRT
algorithm remains more computationally efficient with respect to A* for simple scenarios with the inclusion
of obstacle uncertainty in real–time.

Comparing the effect on computational time for obstacle uncertainty with respect to UAV positional
uncertainty for A* show a minor decrease of 2.1%, 1.6% and a relatively larger increase of 20.9 times and
71.0% increase for the cube without and with rotation, the V–obstacle and Mixed case scenarios, respectively.
This results since the increase of the cube size will increase the number of inaccessible grid positions for the
obstacle uncertainty case remaining the same size for the positional UAv uncertainty. For the V–obstacle
and Mixed cases the 2D to 3D shift in obstacle modelling for the obstacle uncertainty case is the reason
for the increase with respect to the UAV positional uncertainty case in which the V–obstacles and planes
remains 2D. A similar analysis for RRT shows a 6.3%, 15.9% and 11.4 times increase for the first three
scenarios, respectively when comparing the mean computational time with obstacle uncertainty with respect
to UAV positional uncertainty. Obstacle uncertainty makes the environment more restrictive due to increase
in available volume resulting in larger computational demand requirement especially for the V–obstacle case.

The success rates for both algorithms illustrated in Figures 5 (c) and (f) show that a close to 100%
success rate is recorded for both algorithm for the first three scenarios with a major drop for the Mixed
case scenario for A* and 0% success rate for RRT. This shows that for the first 3 cases the success rate is
indifferent for both algorithms in the range of uncertainty considered. For complex cases A* outperforms
the RRT algorithm. The decrease in success rate as obstacle uncertainty increases is illustrated in the Mixed
case for A* with a drop from 30% to 14% at 2% and 20% obstacle uncertainty, respectively. This is not
shown for the other tests since the allocated time is either too high (First 3 scenarios) or too low (Mixed
case, RRT). In fact, the maximum intermediate time violation is the major cause for unsuccessful runs.

In comparison with the no uncertainty cases, for A* no difference in success rate is recorded for the
cube cases with a minor drop from 99% to an average of 96.9% in the V–obstacle due to the increased
volume occupation of the V–obstacle a major drop from 69% to 22.2% for the Mixed case. The latter
case includes both planes and V–obstacles that changed from 2D to 3D obstacles effectively increasing
complexity. A similar analysis for RRT shows that for the first three scenarios the mean success rate with
obstacle uncertainty is larger than 99.5% as opposed to the 100% with no uncertainty. This implies that the
time restrictions are too large for these cases. For the Mixed case a drop from 30% to 0% is recorded.

In comparison with UAV positional uncertainty, overall results show that obstacle uncertainty deteriorates
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success rate more than UAV positional uncertainty for the whole range of uncertainties considered for the
Mixed cases with a less than 2% difference for the first three cases for both algorithms. For A*, a difference
of less than 1% is recorded for the first 3 scenarios and a drop from 62.7% to 22.2% for the Mixed case for
UAV positional and obstacle uncertainty, respectively. Similarly for RRT, a difference of less than 2% is
recorded for the first 3 scenarios with a drop from 26% to 0% in mean success rate for the Mixed case.

In conclusion, the result show that a larger deterioration than the UAV positional uncertainty results for
the obstacle uncertainty especially for RRT mainly for the V–obstacles and Mixed cases in terms of path
length, computational time and success rate.

E. A* and RRT with uncertainty in obstacle position and orientation and UAV position

Figure 7 illustrates the performance response of the A* and RRT algorithms with the combined increase of
obstacle position and orientation and UAV position uncertainties. The modelling of these uncertainties is as
described in the previous two sub–sections and the scope of this analysis is to analyse the combined effect of
these two unrelated uncertainties on the path planning performance of both algorithms at a predetermined
speed.
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Figure 7. Performance parameters vs. Uncertainty in obstacle position and orientation and UAV position:
(a) Path Length for A*, (b) Computational Time for A*, (c) Success and Failure rates for A*, (d) Path
Length for RRT, (e) Computational Time for RRT and (f) Success and Failure rates for RRT for 100 iterates
for each considered situation (obstacle and UAV uncertainty and scenario) with 95% confidence interval.
(res = 21, ds step = 0.05, dint goal = 0.4 (for Scenarios 1,2 and 3) and dint goal = 0.6 (for Scenario 4), dfactor = 0.8,
titerate max = 72s and tpath gen max = 720s.

Figures 7 (a) and (d) illustrate the path length for A* and RRT, respectively. The response in path
length is a combination of the results of Figures 4 (a) and (d) and Figures 5 (a) and (d). For both A*
and RRT algorithms an increase in path length results with increase in uncertainty with the major increase
shown for RRT. For both algorithms the cube without rotation case produced the shortest path followed by
the cube with rotation, V–obstacle and Mixed scenarios. Path length increases by 3.3%, 3.4%, 3.3% and
4.2% for the cube without and with rotation, V–obstacle and Mixed case scenarios, respectively for the A*
algorithm as uncertainty increases from 2% to 20%. Similarly for RRT, an increase in path length of 16.7%,
15.4% and 17.8% for the first three scenarios, respectively as uncertainty increases from 2% to 20%. For the
Mixed case in case of the RRT algorithm a 0% success rate is recorded as in the obstacle uncertainty test.
This mainly results due to the larger increase in path length for RRT with increase in uncertainty. The RRT
algorithm constructed shorter average paths of 7.2%, 7.2% and 4.4% with respect to A* for the first three
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scenarios, respectively.
In comparison with the no uncertainty case, A* results show an average increase in path length of

1.8%, 1.6%, 1.9% and 0.2% for the cube without and with rotation, V–obstacle and Mixed case scenarios,
respectively. The minor increase for the Mixed case is attributed to the lower success rate (>50%) and
therefore the best performing paths are successful lowering the average path length. The UAV positional
uncertainty tests result in an increase of 1.8%, 1.7%, 1.2% and 2.7% while the obstacle uncertainty result in
0.6%, 0.3%, 1.7% increase and 1.5% decrease with respect to the no uncertainty cases for the scenarios defined
earlier, respectively. Analysis of these results show that both uncertainty types contribute to path length
increase with UAV positional uncertainty having the predominant effect. Although the increase in obstacle
size and buffer distance from UAV are equal, UAV positional uncertainty is added at each intermediate
UAV position irrespective of whether an obstacle is in the vicinity or not. For the first three cases where
the environment is mainly empty the deviations due to obstacles occur in few situations while deviations in
UAV positional uncertainty occur at each intermediate UAV position. This explains the predominant effect
of the UAV positional uncertainty results. For the Mixed case, which introduces a deviation from obstacle
uncertainty at each intermediate UAV position due to the high obstacle density, results cannot be directly
compared due to different success rates for the uncertainty cases considered.

Similarly for RRT, a comparison with the no uncertainty cases show an average increase in path length
of 9.1%, 9.4% and 10.2% for the first three scenarios, respectively. The UAV positional uncertainty tests
result in an increase of 9.2%, 9.1% and 46.6% while for obstacle uncertainty an increase of 0.3%, 0.2% and
<0.1% is recorded for the first three scenarios, respectively with respect to the no uncertainty test case. As
for A*, the major increase is recorded due to UAV positional uncertainty with obstacle uncertainty adding
a low share to path length increase for the same reason described for A*. The difference for the V–obstacle
scenario is attributed to the lower success rate for the combined uncertainty cases.

Figures 7 (b) and (e) illustrate the computational response time for the A* and RRT algorithms, respec-
tively. The cube without rotation is the fastest scenario followed by the cube with rotation, V–obstacle and
Mixed case scenarios (if success rate is not 0%) for both algorithms for all the uncertainty range considered.
This order is different from the no uncertainty and UAV positional uncertainty tests and in line with the
obstacle uncertainty test cases. The computational time comparison for A* at 2% and 20% uncertainty
in obstacle and UAV position uncertainty result in a 4.4%, 6.2%, 2.2% increase and 2.4% decrease for the
non–rotating cube, rotating cube, V–obstacle and Mixed case scenarios, respectively for 20% uncertainty
with respect to 2% case. The decrease in Mixed case is attributed to the decreasing success rate. A similar
analysis for RRT shows an increase of 35.1%, 27.9% and 7.6% for the first three scenarios implying that
RRT’s computational demand is more effected by uncertainty in comparison with A*. But RRT remains
faster than A* for the first three scenarios by 74.8%, 33.9% and 53.6%, respectively mainly because of the
time consuming grid definition of the environment.

A* results for combined obstacle and UAV positional uncertainties with respect to the no uncertainty
case show an average decrease in computational time by 2.51 and 2.50 times and an increase of 3.38 and
1.48 times for the cube without and with rotation, V–obstacle and Mixed case scenarios, respectively. The
decrease in the cube cases is mainly attributed to the reduced number of accessible grid positions making
it faster to find a path, if possible. The shift from 2D to 3D obstacles in the V–obstacle and planes (Mixed
case) increases the computational time to define inaccessible grid positions residing within obstacle bounds.
Furthermore, the UAV positional uncertainty tests result in a decrease of 2.29, 2.29, 5.60 and 1.15 times
while the obstacle uncertainty results in 2.34 and 2.33 times decrease and a 3.72 and 1.49 increase with
respect to the no uncertainty cases for the scenarios defined earlier, respectively. This analysis shows that in
terms of computational time obstacle uncertainty is predominant for the V–obstacle and Mixed case since
the environment grid definition is predominately time consuming in 3D obstacles.

Similarly for RRT, a comparison with the no uncertainty cases show an average increase in computational
time of 47.7%, 51.8% and 15.8 times for the first three scenarios, respectively. The UAV positional uncertainty
test results in an increase of 16.3%, 8.9% and 13.1% while for obstacle uncertainty an increase of 23.6%,
26.3% and 12.9 times for the first three scenarios, respectively with respect to no uncertainty cases. As both
positional and obstacle uncertainties increase computational time their effect in restricting path construction
is summed up in the combined test case.

The success rates for both algorithms illustrated in Figures 7 (c) and (f) show a success rate near to
100% for the first three scenarios for both algorithms for the range of uncertainties considered with a major
drop for A* and a drop to 0% for RRT for the Mixed case scenario in line with the obstacle uncertainty test
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cases. As concluded for the obstacle uncertainty case, the success rate for the first three scenarios is the same
for both algorithms with A* performing better than RRT in the Mixed case scenario. For A* the success
rate drops by 5%, 4%, 5% and 7% for the cube without rotation, with rotation, V–obstacle and Mixed case,
respectively from 2% to 20% uncertainties. For the same analysis, the RRT results in a success rate drop of
1%, 6%, 5% and 0% (0% success rate). Therefore it can be concluded that success rate drops with increase
in uncertainty for both algorithms.

As previously, the maximum intermediate time violation is the major cause of unsuccessful runs with 78
tests out of 4000 resulting in No Path solution only for RRT with the number increasing with increase in
percentage uncertainty. This violation only occurs for RRT since the planner does not incorporate the half
the distance between grid position as in A* and therefore the movement of an obstacle towards the UAV
can result in a collision, as explained earlier. This risk will improve path length but is dangerous and can
lead to a collision especially in the presence of uncertainty.

Comparing the success rates for the uncertainty in obstacle and position with respect to the no uncertainty
test cases for A* show a decrease of 0.7%, 1.3%, 3.8% and 46.7% for the cube without rotation, with rotation,
V–obstacle and Mixed case scenarios, respectively. Also, the UAV positional uncertainty test show a drop
<7% for all scenarios and for obstacle uncertainty a drop <3% for the first three scenarios with a major
drop of 46.8% for the Mixed case scenario all with respect to no uncertainty cases. This analysis show that
success rate is hindered mainly by obstacle uncertainty especially in the Mixed case since in this situation
the environment is already obstacle dense without increase in the obstacle bounds. In general, bounds
will increase the inaccessible grid points making it more difficult to find a solution while UAV positional
uncertainty will only limit the minimum distance to the obstacle which is already buffered by half the distance
between grid positions.

A similar analysis for RRT show a drop in success rate of 2.5%, 4.5%, 5.7% and 30% for the combined
obstacle and UAV positional uncertainty with respect to the no uncertainty test case for the same speed
for the cube without rotation, with rotation, V–obstacles and Mixed case scenarios, respectively. The UAV
positional uncertainty test case results in a drop of 2.1%, 2.0%, 1.5% and 4% for the same scenarios as
previously while for the obstacle uncertainty test case results in a drop <1% (First three scenarios) and 30%
for the Mixed case with respect to the no uncertainty test cases. The analysis shows that, as opposed to A*,
both uncertainties contribute to the drop in success rate owing to the nature of the RRT algorithm that both
uncertainties will restrict tree branch construction increasing the path planning time with the consequence
increasing unsuccessful runs.

In conclusion, with the inclusion of both obstacle and UAV positional uncertainties path planning perfor-
mance further deteriorates, especially for RRT, with respect to the consideration of individual uncertainties.

F. Conclusion

This section presented, compared and analysed the real–time path planning performance of both A* and
RRT algorithms in 4 different scenarios with and without uncertainty in obstacles and UAV position. Results
show that the inclusion of uncertainties deteriorates path length, computational time and success rate with
the larger deterioration exhibited for the RRT algorithm. Overall, RRT performed better in the cube and
V–obstacle scenarios in terms of path length and computational time with A* performing better in complex
scenarios. Both uncertainties deteriorates path planning performance differently. The inclusion of both
uncertainties at the same time further hinders performance especially for RRT. In conclusion, this analysis
confirms that uncertainties shall be considered in path planning as their effect especially in complex scenarios
will determine the safety and success of the mission.

VI. Conclusion and Future Work

This paper analysed the path planning performance of the A* and RRT algorithms in 3D real–time UAV
path planning in different complexity scenarios with moving obstacles in the presence of uncertainties in
UAV position and obstacle position and orientation. Literature identified the need to consider uncertainty
sources in UAV path planning owing to their effect on constraints and disturbances within which a UAV
must safely operate. In this regard, two different uncertainties, the UAV position and obstacle position and
orientation, that incorporated all identified uncertainty sources for the considered UAV, were quantified and
modelled using bounded shapes. The UAV model, path planner parameters and four different complexity
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scenarios were defined in view of real UAV models and the environment into which these are expected to
operate. The path length, computational time and success rate were the performance measures considered,
as uncertainty was varied between 2% and 20%.

Results show that both types of uncertainty deteriorate path planning performance of both A* and RRT
algorithms for all scenarios considered with RRT exhibiting the larger effect on performance due to both
types of uncertainties. RRT results in the fastest and shortest paths with approximately the same success
rate as A* (>95%) for the cube and V–obstacle scenarios deteriorating significantly to even 0% success rate
for the Mixed scenario. In latter case A* performs better. The combination of both types of uncertainty
into the same test further deteriorates performance especially for RRT. Also owing to RRT’s ability to
shorter path nearer to obstacles with respect to A* results show that RRT has a higher risk of collision
than A*. The results show that both algorithms can be applied in low obstacle density environments with
moving obstacles in real–time path planning in the presence of uncertainty. In complex scenarios more time
is required, especially for RRT, for comparable success rates. Finally, this work shows that 3D real–time
path planning in different obstacle density, moving obstacle environments in the presence of uncertainty is
possible.

Future enhancement shall include the analysis of the effects of other parameters including look–ahead
distance, distance to travel per iterate and allocated time on the performance of both path planning algo-
rithms. A future work is the implementation of the developed 3D real–time path planning algorithms to
configure a real UAV for autonomous 3D UAV navigation in an indoor obstacle–rich environment.
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