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S U M M A R Y 

Significant land uplift and horizontal motions have been recorded with Global Navigation 

Satellite Systems (GNSS) in areas such as Alaska, Iceland and the Nor ther n Antarctic Peninsula 
(NAP) as a result of Glacial Isostatic Adjustment (GIA) due to ice melt after the Little Ice 
Age. Here, analysis of horizontal displacement rates can be of extra importance, as they 

are more sensitive to Earth properties in shallower layers than vertical displacement rates. 
Proper modelling of horizontal displacement rates with dedicated GIA models requires a 
spherical Earth with compressible rheolo gy. Howe ver, in these small areas, the used GIA 

models are often incompressible using a Cartesian geometry to ease computation and in 

some cases allow for lateral viscosity changes or more complex rheology. We investigate 
the validity of modelled horizontal displacement rates using different approximations, that is 
using spherical or Cartesian Earth structures, and incompressible, material compressible or 
compressible rheology. Although the lack of self-gravity and sphericity compensate each other 
in the vertical, this is less the case for the horizontal. For a disc ice sheet with a radius just 
over 200 km and a thickness of 1000 m, differences due to sphericity are minimal and the 
modelled horizontal displacement rates of compressible Cartesian models differ from those 
simulated by a compressible spherical model by 0.63 mm a −1 . Thus, compressible Cartesian 

GIA models can be applied for modelling horizontal displacement rates of small ice sheets 
like those in Alaska, Iceland and NAP. Unfortunately, the implementation of compressibility 

in Abaqus that we use here cannot be extended to spherical models as gravity can not be 
specified for a spherical body. Other modelling approaches are recommended in such cases. 

Key words: Loading of the Earth; Glaciology; Mechanics, theory and modelling; Finite 
element method. 

 

D
ow

nloaded from
 https://academ

ic.oup.com
/gji/article/235/1/542/7191840 by D

elft U
niversity of Technology user on 17 July 2023
1  I N T RO D U C T I O N  

In understanding Glacial Isostatic Adjustment (GIA) the observed 
horizontal motions of the crust generally receive less attention than 
the vertical motions, even though these horizontal motions are found 
to be v ery sensitiv e to lateral and radial variations in viscosity (e.g. 
Gasperini et al. 1990 ; O’Keefe & Wu 2002 ; Kaufmann et al. 2005 ; 
Latyche v et al. 2005 ; Stef fen et al. 2006 ; Hermans et al. 2018 ; 
Vardi ́c et al. 2022 ). In addition, horizontal motions are significantly 
af fected b y compressibility (James & Lambert 1993 ; Mitrovica et al. 
1994 ; Johnston et al. 1997 ; Tanaka et al. 2011 ), which is not sup- 
ported by several commonly used GIA models. 

In particular, GIA models which neglect sphericity generally do 
not include compressibility. To our knowledge, the only exceptions 
are Wolf et al. ( 1985 ), which is based on a unifor m ear th model, 
and Klemann et al. ( 2003 ) which is no longer in use (Klemann, 
personal communication). Such ‘Cartesian models’, as we will call 
them in the following, have been used for several applications. How- 
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ever, Cartesian models either assume incompressibility (e.g. Ivins 
& James 1999 ; Larsen et al. 2003 , 2004 ; Pagli et al. 2007 ; Schotman 
et al. 2008 ; Árnad óttir et al. 2009 ; Zwinger et al. 2020 ), or use ma- 
terial compressibility only (e.g. Kaufmann et al. 2005 ; Steffen et al. 
2006 ; Lund et al. 2009 ; Auriac et al. 2013 ; Nield et al. 2018 ; Mars-
man et al. 2021 ). The latter refers to models in which the material is 
compressible, that is it has a Poisson ratio below 0.5, but the buoy- 
ancy forces are not adjusted for the change in density due to com- 
pressibility (Klemann et al. 2003 ). Ho wever , it is currently unclear 
how accurate the approximation of material compressibility is com- 
pared to full compressibility, where the internal buoyancy force is 
included in the equation of motion. Compressibility can also be ap- 
proximated by adjusting the flexural rigidity, which is most accurate 
for smaller wavelength signals (Tanaka et al. 2011 ). Cartesian mod- 
els are attractive because they provide a means to incorporate high 
spatial resolution and 3-D variations in Ear th str ucture with small 
computation times. In the following we will refer to models that can 
deal with 3-D variations in earth model parameters as 3-D models. 
 by Oxford University Press on behalf of The Royal Astronomical Society. 
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Cartesian GIA models provide sufficient accuracy for the vertical
eformation for ice sheets up to the size of the Fennoscandian ice
heet (Amelung & Wolf 1994 ; Wu & Johnston 1998 ), but for hori-
ontal deformation this has been less thoroughly investigated. In this
tudy, we will explore to what extent Cartesian models can be used
or GIA studies, for incompressible, material compressible, and
ully compressible models. We thereby test a recently highlighted
mplementation of compressibility, and investigate possibilities to
xtend this to a spherical geometry. 

We aim to answer the following research questions: 

(1) How can we implement full compressibility in Cartesian GIA
odels of Abaqus? 
(2) How well are horizontal motions approximated by a Carte-

ian model with (i) incompressibility, (ii) material compressibility
nd (iii) full compressibility as compared to a fully compressible
pherical model? 

We focus on the horizontal motions, as the effect of compress-
bility on the horizontal is larger, and the observations are to date
elati vel y underused. To answer the first research question, we im-
lement compressibility using the method of Hampel et al. ( 2019 )
or Cartesian multilayer models in Abaqus. We also briefly examine
he method of Hampel et al. ( 2019 ) for spherical GIA models, but
onclude that the method cannot be implemented in spherical mod-
ls. We compare the Cartesian model with a spherical compressible
-D model based on a semi-analytical method, and we include a
ase study of glacial unloading on top of a low-viscous mantle rep-
esentative of the mantle in West Antarctica, Alaska and Iceland.
his provides recommendations for what applications the Carte-
ian model, compressible or incompressible, can be used regarding
nalysis of horizontal motions and their observation. 

 T H E O RY  

he software Abaqus is based on the finite element (FE) method.
wo different implementations are described, which have been used
n the modelling of the loading scenarios: (1) a model using Elastic
 oundations (EF, W u 2004 ), similar to the model in Schotman et al.
 2008 ) and (2) a ‘Non-linear geometry with explicit Gravity’ (NG)
odel, described in Hampel et al. ( 2019 ). The EF model is used in
any GIA studies (e.g. Li et al. 2020 ; Lund et al. 2009 ; Nield et al.

022 ; Steffen et al. 2006 ; van der Wal et al. 2015 ), and has been
enchmarked for incompressible material parameters in Spada et al.
 2011 ). It is used to validate the NG model implementation for the
ncompressible case. We start with a description of the governing
quations of GIA, and how this is handled by the EF model. After-
ards, we introduce how the finite element equations are solved in
baqus to better understand what is done in the NG model, and its
ifferences with the EF model. 

The conservation of momentum equation for external loading of
 compressible Earth linearized with respect to hydrostatic equilib-
ium is given by Wu & Peltier ( 1982 ): 

 · τ − ∇ 

( u · ρ0 g 0 ̂ r ) − ρ ′ g 0 ̂ r − ρ0 ∇φ′ = 0 . (1) 

ere τ is the Cauchy stress matrix, u is the displacement vector,

0 and g 0 are the hydrostatic background density and gravity, re-
pecti vel y, ˆ r is the unit vector in the radial direction, ρ ′ denotes
he density perturbation with respect to the hydrostatic background
tate and φ

′ 
is the perturbation in the gravitational potential. Eq. ( 1 )

ontains four terms. The first term is the divergence of stress. The
econd term is the restoring force of isostasy (Wu 2004 ), which is
n upwards force preventing the ice load from sinking indefinitely.
he third term is the internal buoyancy force, caused by the change

n the density of the individual elements due to dilatation. The den-
ity perturbation that is added to eq. ( 1 ) is derived from the mass
onservation equation (Backus 1967 ): 

′ = −∇ · ( ρ0 u 

) . (2) 

or incompressible models, changes in density are zero (i.e. ρ ′ = 0)
nd the third term in eq. ( 1 ) disappears. The fourth term in eq. ( 1 )
epresents the self-gravity. We will neglect the self-gravity in the
artesian models as this is not typically included in earlier studies
ith such models, partly because it is found to compensate the lack
f sphericity (Amelung & Wolf 1994 ). Ho wever , it is present in
he spherical NMM model that we use for validation, so we need
o quantify that effect. In compressible models, the gravitational
otential responds to a change in the density of the elements. The
erturbed potential can be derived from Poisson’s equation (Wu &
eltier 1982 ): 

 

2 φ′ = 4 πGρ ′ . (3) 

ere G is the gravitational constant. The corresponding boundary
onditions for the GIA problem are summarized below. 

.1 Boundary conditions 

he general boundary conditions are (Cathles 1975 ; Wu 2004 ): 
(i) at the surface of the Earth, [ τ rr ] r = 0 = −σg 0 , where σ is the

urface mass density of the ice load, and r is the depth, where r =
 corresponds to the surface and is defined positive downwards. In
ther words, the normal stress at the surface is equal to the applied
ressure due to the load. For shear stresses, we have [ τ r θ ] r = 0 = 0. 

(ii) At internal boundaries, there should not be a discontinuity in
he stress and the displacements. For the stress this implies [ τrr ] r+ 

r−
 [ τrθ ] r+ 

r− = 0, and for the displacement this translates to [ u ] r+ 
r− = 0.

(iii) At the core–mantle boundary (CMB), the fluid core is simu-
ated by setting the normal stress equal to the multiplication of the
ore density, ρ f , with gravity, g 0 , and with the radial displacement at
he CMB, u r : [ τ rr ] r = −H = ρ f g 0 u r . Here H is the depth to the CMB.
n Abaqus, the core is simulated by using a Winkler foundation at
he model bottom with a magnitude equal to ρ f g 0 . The tangential
tresses vanish at the CMB, and there is continuity of displacement,
hat is [ u ] r+ 

r− = 0. 

.2 The EF method 

ere, we briefly re vie w the method that uses elastic foundations
nd a stress transformation (Wu 2004 ). The setup of the model
s illustrated in Fig. 1 (a). Abaqus differentiates between small-
isplacement and large-displacement analyses (Table 1 ) via the
on-linear geometry keyword (NLGEOM; Abaqus 2021 documen-
ation, Hibbitt et al. 2016 ). The elements in a small-displacement
nalysis used by Wu ( 2004 ) do not carry the information of the
tress with them. Therefore, buoyancy forces associated with den-
ity changes are not included in the stiffness matrix. Moreover, the
tiffness matrix is linear, as there is no dependence on the prior dis-
lacement. Using this method, we need to manually add an isostatic
estoring force to prevent the load from sinking indefinitely (Wu
992 ; Purcell 1998 ). To still satisfy the equation of motion (eq. 1 ),
he following stress transformation is performed (Wu 2004 ): 

t = τ − ρ0 g 0 u r I . (4) 
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(a) (b)

Figure 1. Schematic of (a) the EF and (b) the NG model approaches. In grey are the forces and stresses specific to the NG approach. 

Table 1. The differences between the NG and EF methods within Abaqus, see also schematic Fig. 1 

Method Non-linear geometry with gravity (NG) Elastic foundations (EF) 

Forces Ice load, gravity Ice load 
Initial stress applied Yes No 
Spin-up steps: 1. Static step (w/ gravity only) –

2. Viscous step (w/ gravity only) –
Ice loading steps: 3. Static step (w/ ice load and gravity) 1. Static step (w/ ice load) 

4. Viscous step (w/ ice load and gravity) 2. Viscous step (w/ ice load) 
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Here τ is the stress, t the transformed stress and u r the displacement 
in the radial direction. The divergence of the transformed stress 
now becomes equal to the divergence of the stress plus the isostatic 
restoring force term: 

∇ · t = ∇ · τ − ρ0 g 0 ∇u r . (5) 

The equation of motion for non-self gravitating incompressible 
models reads 

∇ · τ − ∇ 

( u · ρ0 g 0 ̂ r ) = 0 . (6) 

Eq. ( 6 ) is the same as eq. ( 1 ), but without internal buoyancy (third 
term in eq. 1 ) and self-gravity (fourth term in eq. 1 ). With the stress 
transformation of eq. ( 5 ), we can write the equation of motion for 
non self-gravitating incompressible models as 

∇ · t = 0 , (7) 

which can then be solved by Abaqus. The boundary conditions are 
changed because of the stress transformation, and are listed in the 
next subsection. 

2.2.1 Boundary conditions for the EF method 

The boundary conditions for the transformed stress are as follows 
(Wu 2004 ): 

(i) at the surface of the Earth, [ t rr + ρ0 g 0 u r ] r = 0 = −σg 0 . This is 
the same as before, but now with an extra term due to the substitution 
of t for τ . The boundary conditions for the shear stresses are not 
af fected b y the stress transformation: [ τ r θ ] r = 0 = 0. 
(ii) at internal boundaries, we again need continuity in the stress 
and displacement. For the normal stress we obtain [ t rr ] r+ 

r− = ( ρ− −
ρ+ ) g 0 u r . For the shear stress and the displacement, we have [ τrθ ] r+ 

r−
= 0, and [ u ] r+ 

r− = 0. 
(iii) at the CMB, the boundary condition is also altered, as now 

the difference in density between the solid lower mantle, ρs and the 
fluid core, ρ f , is the required quantity (Wu 2004 ): [ t rr ] r = −H = ( ρ f 

− ρs ) g 0 u r . Again, the tangential stresses vanish at the CMB, and 
[ u ] r+ 

r− = 0. 
These boundary conditions are satisfied by applying elastic foun- 

dations at the boundaries with a magnitude equal to the density 
difference ( �ρ) across the layer multiplied with the background 
gravity g 0 . The elastic foundations act as a stabilizing force, as 
they work in the direction opposite to the radial displacement, and 
their magnitude increases with the radial displacement. The elastic 
foundations only work for horizontal boundaries, whereas inclined 
boundaries can be simulated using springs (Schmidt et al. 2012 ). 
The drawback of the EF method is that it is not possible to adapt 
the model to allow for compressibility (B ängtsson & Lund 2008 ) 
as the internal buoyancy force is not represented in the stiffness 
matrix. 

2.3 The NG method 

The second approach was described by Hampel et al. ( 2019 ) using 
the ‘geometrically non-linear formulation’ (N) in Abaqus and also 
explicitl y appl ying a gra vitational force (G), which w e will label 
as NG. This approach has been used in studies on the interaction 

art/ggad232_f1.eps
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Table 2. The models used in the study , the geometry , Poisson’s ratio, terms 
included in each model, and the figures in which the respective models 
appear. The letter ‘I’ in the model name refers to incompressible models. 

Name Coord ν ρ′ g 0 ̂ r ρ0 ∇φ
′ 

Figures 

SM Spherical Table 3 Y Y 4a, 5, 6 
SM-I Spherical 0.5 − − 2, 3, 4a, 6 
NG Cartesian Table 3 Y N 4b, 5, 6 
NG-I Cartesian 0.5 − − 2, 3, 4b 
EF Cartesian Table 3 N N 4c, 5, 6 
EF-I Cartesian 0.5 − − 2, 3, 4c, 6 

a  

(  

m  

i  

b
 

s  

2  

c  

h  

s  

(  

t  

s  

l  

d  

3

W  

m  

F  

t  

a  

f  

p  

o  

m  

d  

s  

t  

i  

o

3

I  

h  

l  

P  

t  

a
 

i  

t  

L  

u  

e  

2  

D
ow

nloaded from
 https://academ

ic.oup.com
/gji/article/235/1/542/7191840 by D

elft U
niversity of Technology user on 17 July 2023
etween ice caps and faults (e.g. Hampel & Hetzel 2006 ; Turpeinen
t al. 2008 ; Hampel et al. 2009 ). 

A complete description of how Abaqus solves the governing
quations is shown in Section S1. In the current Section, we start
ith the finite-element formulation of the momentum equilibrium,

q. (S.10), and solve for the nodal displacements by using Newton’s
ethod. At iteration increment k , the nodal displacements ̃  u 

k 
M 

are
ssumed and the residual, R N ( ̃  u 

k 
M 

) , is calculated, where R N is equal
o the left-hand side of eq. (S.10). If the residual is larger than a
olerance value, the residual is calculated again for a new increment:
  

k+ 1 
M 

= ̃  u 

k 
M 

+ δ˜ u M 

. Here δ˜ u M 

is calculated as follows (Nguyen &
aas 2016 ): 

˜ u M 

= −
(

∂ R N 

∂ ̃  u M 

)−1 

R N 

(̃
 u 

k 
M 

) = −K 

−1 
NM 

R N 

(̃
 u 

k 
M 

)
. (8) 

Thus, for the Newton method used in a non-linear analysis of
baqus, the Jacobian, ∂ R N 

∂ ̃  u M 
, of the FE equations is considered (Hib-

itt et al. 2016 ). This Jacobian is the stiffness matrix K NM 

, which is
um of the stiffness matrix for the small-displacement analysis that
s gi ven b y eq. (S.13), K 

0 
NM 

, the initial stress matrix, K 

σ
NM 

, and the
oad stiffness matrix, K 

L 
NM 

: 

K NM 

= K 

0 
NM 

+ K 

σ
NM 

+ K 

L 
NM 

. (9) 

he initial stress matrix is based on the current state of stress: 

K 

σ
NM 

= 

∫ 
V 0 

τ c : ∂ N βM 

dV 0 , (10) 

here τ c is the conjugate of the stress, and βM 

the strain–
isplacement matrix. The load stiffness matrix is 

K 

L 
NM 

= −
∫ 

S 
N 

T 
M 

· Q 

S 
N dS −

∫ 
V 

N 

T 
M 

· Q 

V 
N dV . (11) 

he two terms on the right-hand side of eq. ( 11 ) are the surface and
olume load stiffness matrices, respectiv ely. The y include Q N , the
ariation of the surface and volume load vectors with the nodal vari-
bles, pre-multiplied by the transpose of the interpolation functions
 M 

. 
In short, Abaqus describes the basic FE equations in integral form

sing a stiffness matrix to describe the divergence of stress (first
erm in eq. 1 ), an initial stress matrix for the stress-stiffening effects
i.e. to include buoyancy, second term in eq. 1 ), and a load stiffness
atrix for the dependence of gravity loading on the current density

i.e. to calculate the internal buoyancy, the third term in eq. 1 ). The
nitial stress matrix and load stiffness matrix are only included in
 non-linear analysis (Abaqus keyword NLGEOM, Hibbitt et al.
016 ). The procedure is non-linear as the stiffness matrix is now
ependent on the displacement within the model. 

Gravity loading needs to be applied explicitly to each layer (Ta-
le 1 ) for the correct calculation of the initial stress matrix (eq. 10 )
nd the load stiffness matrix (eq. 11 ). As input for the gra vity, w e
nly need the value of the gravitational acceleration in the respective
ayer, and the associated changes in density are calculated automat-
cally (Freed et al. 2014 ). An initial stress and a lithostatic pressure
re applied to pre vent an y model displacements to take place due
o the gravity loading (Fig. 1 b) as in Hampel et al. ( 2019 ). For
ur multilayer model, the initial stress in each layer is equal to the
eight of the overlying layers: 

N+ 1 = 

N ∑ 

i= 0 
ρi g i h i , (12) 

ith N the number of the lay ers, w here i = 0 is the surface layer,
nd i increases for deeper layers. ρ i , g i and h i are the density, gravity
nd thickness of the i th layer, respecti vel y. For the uppermost layer
 i = 0): σ 0 = 0. A lithostatic pressure is needed at the bottom of the
odel to simulate the initial stress in the core, which is calculated

n the same way. An elastic foundation is present at the core–mantle
oundary. 

The usage of the NG approach requires two so-called spin-up
teps before we apply an ice load (see Table 1 and Hampel et al.
019 ). This is necessary to obtain a stable pre-stressed equilibrium
onfiguration. First we run a static step, in which only elastic be-
aviour is considered. In this step, the gravity balances the initial
tress to minimize residual displacements. Following Hampel et al.
 2019 ), we then run a viscous step of 10 thousand years (ka). Af-
er these two spin-up steps, an ice load is added and the loading
cenario is performed. The run time of this approach is 5–10 min
onger than a similar simulation that uses the EF approach, which
oes not require spin-up steps, on a total simulation time of 4–5 hr.

 B E N C H M A R K  S E T U P  

e use a spherical GIA model, labelled as SM, based on the normal
ode method (NMM) for validation of the implementation of the
E models for radially symmetric earth models. The SM model and

he benchmark setup, that is the ice load and the Earth rheology
nd structure, are e xplained ne xt. We identified fiv e contributions
or variations between the model results: (1) the difference in ap-
roach of the finite-element method (NG or EF), (2) the presence
f sphericity, (3) the inclusion of self-gravity, (4) the different earth
odels in the compressible runs and (5) the approximation intro-

uced by the FE method in general, which is controlled by the
patial resolution. Of these, contributions (4) and (5) are expected
o have only a minor effect, and thus they are only briefly discussed
n Sections 3.3 and 3.4, whereas the others represent the main goals
f our investigation and these will be discussed in Section 4. 

.1 T he nor mal mode model 

n models that use the NMM, the variables are expanded in spherical
armonics and the system of differential equations is solved ana-
 yticall y in the spectral domain. The NMM is presented in detail in
eltier ( 1974 ) and Wu & Peltier ( 1982 ). Self-gravity is included in
he NMM model, meaning that the fourth term in eq. ( 1 ) is included,
nd eq. ( 3 ) is solved (Table 2 ). 

The NMM code we use is ICEAGE (Kaufmann 2004 ), described
n Kaufmann & Lambeck ( 2000 ).The Green’s functions represent
he response functions and are derived from the viscoelastic load
ove numbers determined by the code. All variables are expanded
sing spherical harmonics in order to solve the system of differential
quations. The spherical harmonic expansion is truncated at degree
56, which corresponds to a spatial resolution of about 80 km. We
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tested the effect of the maximum spherical harmonic degree trun- 
cation on our results. Increasing the maximum spherical harmonic 
degree from 256 to 512 results in a maximum difference in hor- 
izontal deformation of only 0.01 m, situated around the ice edge 
(Fig. S1). As the original displacements are several tens of metres 
in the horizontal, this effect is deemed insignificant. An overview 

of the models used in this study is shown in Table 2 . 

3.2 The loading scenarios 

Here we describe the loading scenario in the experiment to validate 
the method of Hampel et al. ( 2019 ) for Cartesian multi-layer models. 
Respective changes are discussed in Section 4.2. 

An ice load similar to that in Spada et al. ( 2011 ) is used, which 
is a pillbox with a constant thickness of 1000 m and a fixed radius. 
We use discs with five radii between 222 and 1111 km, in 222- 
km steps, to test the effect of the extent of the ice sheet on the 
accuracy of the Cartesian model. This is equi v alent to roughly 2–10 
latitudinal degrees, in 2 ◦ steps, respecti vel y. The density of the ice 
is 931 kg m 

−3 . The load is applied instantaneously to the model 
(after the necessary spin-up in case of the NG model), after which 
a simulation is run for 10 ka during which the load remains on 
the model. The displacement results are e v aluated after 10 ka of 
loading, to agree with the benchmark studies of Spada et al. ( 2011 ) 
and Martinec et al. ( 2018 ). 

The models are all benchmarked for the disc load example with 
the respective earth model of Spada et al. ( 2011 ) in Section S3. 
The vertical displacements of the two FE models and SM match 
well with output from FastLov e-HiDe g, a NMM implementation by 
Vermeersen & Sabadini ( 1997 ) and Ri v a & Vermeersen ( 2002 ) that 
has been benchmarked in Spada et al. ( 2011 ). Vertical displacements 
between FastLov e-HiDe g and the respecti ve models dif fer less than 
3 per cent for the 222 km radius ice load, and less than 2.5 per cent 
for an ice sheet with a 1111 km radius. 

3.3 Earth model 

The earth model used in the following experiments is determined 
by what we can use in the compressible SM model. The ICEAGE 

code requires a high resolution of material parameter variations to 
suppress the growth of unstable Ra yleigh–Ta ylor modes (Plag & 

J üttner 1995 ; Hanyk et al. 1999 ; Vermeersen & Mitrovica 2000 ) 
that may occur due to unstable density stratification induced by 
compressional deformation (Wong & Wu 2019 ). In contrast, FE 

methods use a rather coarse horizontal depth model with a few 

material parameter changes only to reduce the number of nodes and 
elements. Such a model with several tens of km thick homogeneous 
layers of constant density and bulk modulus would result in unstable 
conditions in compressible SM models. We use the Preliminary 
Reference Earth Model (PREM, Dziewonski & Anderson 1981 ) for 
the compressible SM, and use eight layers with volume averages of 
the PREM values in all other models, including the incompressible 
SM (Table 3 ). The depths of the eight layers are chosen to minimize 
the differences in the velocities due to different material-parameter 
lay er appro ximations. 

The presence of a density inversion in the volume averaged den- 
sity profile requires a ne gativ e elastic foundation in the EF model. 
Hampel et al. ( 2019 ) outlined that this would be impossible in 
Abaqus. Indeed this cannot be done in the Abaqus/CAE front end, 
but it can be done directly in the input file or by applying the foun- 
dation at the bottom face of the element above the boundary instead 
of the top face of the element below the boundary. As the ne gativ e 
density jump at 80 km is only 9 kg m 

−3 , we omit the use of an elastic 
foundation at this boundary in the EF model. 

We quantified the effect of the earth model approximation using 
incompressible models for the horizontal displacements and for the 
horizontal displacement rates in Section S4. This difference will 
determine how well we can validate the Cartesian NG model. Its 
effect fluctuates around 5 per cent of the horizontal displacement 
for both the 222 and 1111 km radius ice sheet, with a peak to at most 
12 per cent at the ice edge for the larger ice sheet. For the horizontal 
displacement rates, the effect is a bit less than 10 per cent below the 
ice load, decreasing to 5 per cent just outside of the ice edge. 

3.4 Resolution in the finite element models 

The resolution selected in the FE model is a trade-off between 
accuracy and computation time. The vertical resolution is only 1 km 

in SM. In the FE models, it is not feasible to use as many layers. We 
ran several resolution tests and find that the results are most sensitive 
to the horizontal resolution. Differences are less than 1 m between a 
horizontal resolution of 27 and 54 km (0.25 and 0.5 lateral degrees, 
respecti vel y). We therefore opt for a horizontal resolution of ∼27 km 

and do not aim for a higher horizontal resolution. Fur ther more, 
each of the 8 Earth layers is divided into 4 FE layers in the vertical 
direction. We use this resolution in the region covering the inner 
2200 km of the model. The total width of the model is 20 000 km, 
and the outer region has a coarser resolution of ∼550 km (5 ◦ in 
lateral extent). This setup with a higher resolution in the region 
below and close to the ice sheet is similar to the setup of the Cartesian 
models in Schotman et al. ( 2008 ) and Marsman et al. ( 2021 ). Using 
16 cores, a computation time is achieved of roughly 4–4.5 hr the 
incompressible and material compressible simulations, and 4.5–
5 hr the compressible NG runs. We make use of hexahedral, eight 
node elements of type C3D8H for the incompressible models and 
C3D8 for the compressible models (including models using material 
compressibility). 

4  R E S U LT S  

Hampel et al. ( 2019 ) showed that the NG method works for incom- 
pressible homogeneous half-space models and for incompressible 
shallow (i.e. 100 km deep) Cartesian models consisting of two 
layers. In principle, the NG method is suitable to deal with com- 
pressibility, and this was tested for the shallo w tw o layer Cartesian 
models (Hampel et al. 2019 ). To allow the usage of the method to 
model glacial loading scenarios, the model needs to include a litho- 
sphere and the mantle down to the CMB. We extend their model to 
the core of the Earth by incorporating the 8-layer approximation, 
and make the model compressible by changing Poisson’s ratio to 
the values listed in Table 3 . We apply a disc load of 1111 km (as 
described in Section 3.2), and compare the horizontal displacement 
of the NG and EF models against results from SM to understand 
the differences. 

We distinguish three forms of compressibility: (1) full compress- 
ibility including the effect of compressibility on self-gravity in 
eq. ( 3 ), (2) full compressibility without self-gravity and (3) ma- 
terial compressibility (Klemann et al. 2003 ). The full compressible 
models differ from the material compressible model in that they in- 
clude the internal buoyancy force in the equation of motion (eq. 1 ). 
The compressible version of SM simulates (1), NG reproduces (2) 
and EF can only include (3). 



Horizontal motions from GIA models 547 

Table 3. The earth model parameters for the eight layer configuration. Values are volume averages derived from PREM. The depth is 
defined positive downwards. 

Layer From To Density Young’s modulus Viscosity Gravity Poisson’s ratio 
(km) (km) (kg m 

−3 ) ( × 10 12 Pa) ( × 10 21 Pa s) (m s −2 ) 

1 0 25 2895.7506 0.1091 − 9.8356 0.2638 
2 25 80 3376.7141 0.1721 − 9.8499 0.2803 
3 80 220 3365.9506 0.1638 1 9.8862 0.2874 
4 220 400 3501.3442 0.1981 1 9.9424 0.3000 
5 400 670 3910.8079 0.2858 1 9.9968 0.2960 
6 670 2,891 5215.9378 0.6590 2 10.1826 0.2974 
7 2891 5149.5 10 750 0 0 7.1302 0.5000 
8 5149.5 6371 13 000 0.4721 0 2.0626 0.4437 
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Figure 2. Horizontal displacement after 10 ka of loading using an ice load 
1111 km in radius for (a) SM-I, NG-I and EF-I, and (b) the difference in 
percentage of NG-I and EF-I with SM-I. The edge of the ice load is marked 
by a vertical grey dashed line. 
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.1 Displacements 

.1.1 Incompressible model results 

irst, we investigate three effects mentioned at the start of Section 3:
he approach taken by the FE method, sphericity, and self-gravity.

e isolate the first effect by comparing results from the EF-I and
G-I models. Comparing these Cartesian models with SM then
ives us the combined effect of the second and the third. Amelung
 Wolf ( 1994 ) noted that self-gravity compensates for the sphericity

n the vertical. We examine if such a compensation is also present
n the horizontal. 

Horizontal displacements underneath and outside of the ice sheet
re positi ve (outw ards) after 10 ka of loading with a 1111 km ra-
ius ice sheet for all models, with a (local) minimum at the ice sheet
oundary (Fig. 2 ). During loading, the mantle flow is outwards from
he centre of loading resulting in positive displacements, whereas
ithospheric flexure results in a motion towards the centre of the
ce sheet (O’Keefe & Wu 2002 ). Horizontal lithospheric flexure is
argest at the ice sheet boundary, explaining the location of the (lo-
al) minimum. The maximum value of the horizontal displacement
s found outside of the ice sheet, and ranges from 20 m for NG-I
nd EF-I to more than 35 m for SM. Overall, the Cartesian models
F-I and NG-I are found to be in excellent agreement, especially in

he near field (Fig. 2 a). Therefore, we conclude that the approach
aken by the FE method only leads to insignificant changes using
 complete earth model from the surface of the Earth down to the
MB. 
To investigate the effect of sphericity and self-gravity we compare

he Cartesian models with SM in Fig. 2 (b). We observe a significant
ifference in simulated horizontal displacement of about 40 per cent
elow the load, increasing to more than 80 per cent at the load edge
F ig. 2 b). Thus, w here self-g ravity par tially compensates for the
phericity in the vertical (Amelung & Wolf 1994 ), this is not the case
or the horizontal. In the next section, we test if a better agreement
an be obtained using a smaller ice sheet, which minimizes the
ffects of self-gravity (Pollitz 1997 ) and sphericity. 

.1.2 Displacements for a small ice sheet 

ith an ice sheet 222 km (2 ◦) in radius, the modelled horizontal
isplacements are inwards below the ice sheet. This is a result of
he lithospheric flexure that is dominant for an ice sheet with a
mall lateral extent. The displacements are smaller in magnitude,
nd only −15 m at most (Fig. 3 a). Differences between the incom-
ressible Cartesian and spherical models are less than 20 per cent
elow the load (Fig. 3 b). For such a small ice sheet, the agreement
etween Cartesian and spherical models has significantly improved
ompared to the largest ice sheet of this study. 

.1.3 The effect of compressibility on the displacements 

o understand the effect of the different approximations for com-
ressibility, we compare the incompressible and compressible sim-
lations. In all models, the effect is most pronounced at the ice
argins, which is also illustrated by the volumetric strain in Sec-

ion S6 that shows the dilatation of the elements and is thereby a
easure of the relative magnitude of compressibility. An increas-

ng effect is seen for larger ice sheets in SM and NG, but not for
F (Fig. 4 ). Evidently, including the internal buoyancy force leads

o an increasing effect below and further outside the load. For the
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(a)

(b)

Figure 3. (a) Horizontal displacement after 10 ka of loading as simulated 
by SM-I, NG-I and EF-I, and (b) the difference of NG-I and EF-I with SM-I. 
The dashed and dotted lines are on top of each other in panel (a). The edge 
of the ice load is marked by a vertical grey dashed line. 
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smallest ice sheet, the effect of compressibility in NG and SM is 
circa 5 and 6 m, respecti vel y (on a total deflection of 20–40 m). For 
larger ice sheets, this effect increases to almost 25 m in both models. 
The resulting compressibility effect of SM and NG agrees to a large 
extent, but also exhibits minor differences, which are caused by the 
different earth model and by the resolution, possibly combined with 
the effect of self-gravity on compressibility which is included in 
SM but not in NG. 

The effect of material compressibility on the horizontal displace- 
ment for EF is at most 3–4 m, independent of the size of the ice 
sheet (Fig. 4 c). Its effect peaks around the ice edge, where the den- 
sity change due to deformation is largest (Fig. S7). This is also 
where the flexure in the lithosphere is largest as this is where the 
slope in the vertical displacement is at its maximum. For small ice 
sheets, the material compressible EF model performs similar to the 
other compressible models. Ho wever , as the size of the ice sheets 
increase, the agreement deteriorates. Based on Fig. 4 , we conclude 
that material compressibility only approximates compressibility for 
small ice sheets, although NG outperforms EF even for such small 
ice sheets. 

4.1.4 Compressible model results 

With all the information from the previous Section we are now 

able to explain Fig. 5 which shows the horizontal displacement 
of compressible and material compressible models after 10 ka of 
loading with an ice sheet 1111 km in radius. Differences with respect 
to SM are smaller for EF (mostly less than 15 per cent below the 
load) than for NG (50 per cent almost everyw here, F ig. 5 b). The 
approximation of compressibility as material compressibility in EF 
leads to a decent agreement with the spherical model. The lack of 
full compressibility in this approximation partly compensates for 
the lack of sphericity, leading to a better apparent agreement even 
though compressibility is modelled less accurately. Fur ther more, we 
notice that for the 222 km radius ice sheet NG indeed matches the 
SM results better than EF (Fig. 5 c). The advantage of NG simulating 
compressibility better than EF is unfortunately diminished by the 
effect of sphericity, and thus the NG approach is less applicable for 
modelling large ice sheets. 

4.2 Horizontal displacement rates 

The total horizontal displacement due to GIA cannot be observed, 
whereas the rate in horizontal displacement (the velocity) can be 
measured using Global Navigation Satellite Systems (GNSS) sta- 
tions. Therefore we focus on the rates in the remainder, and assess 
the magnitude of modelling approximations. 

We aim to develop a case study that is representative for GIA in 
Iceland, Alaska and NAP. Based on studies of those regions (e.g. 
Pagli et al. 2007 ; Árnad óttir et al. 2009 ; Elliott et al. 2010 ; Nield 
et al. 2014 ; Hu & Freymueller 2019 ), we select an elastic thickness 
of 80 km, and between 80 and 220 km we consider a low viscosity 
layer of 1 × 10 19 Pa s. Below this layer down to 670 km, we use 
an upper mantle viscosity of 4 × 10 20 Pa s, the same value as 
in Fleming et al. ( 2007 ), Larsen et al. ( 2005 ), and Elliott et al. 
( 2010 ). The lower mantle viscosity (below 670 km) is 1 × 10 22 Pa 
s. The ice load has a radius of 222 km, just as before in this paper. 
Due to the small extent of the load, GIA is mainly sensitive to the 
upper layers, and the exact value of the lower mantle viscosity is less 
important (Fleming et al. 2007 ; Sato et al. 2011 ). We use the PREM 

Earth model values for both incompressible and compressible SM 

simulations, and a layered earth model with volume averages in the 
Cartesian models. The thickness of the ice cap has been tuned so 
that the modelled vertical rates match the peak uplift rates observed 
in Alaska of 30–35 mm a −1 (Larsen et al. 2005 ). A good fit has been 
found for an ice cap thickness of 200 m. 

To start, we simulate 2 ka of loading. Fleming et al. ( 2007 ) 
concluded that the influence of Last-Glacial Maximum ice loads 
was negligible over Iceland. In combination with the low viscosity 
profile used, we deem 2 ka of loading to be sufficient to reach 
equilibrium for our case studies. We will assume equilibrium with 
the load prior to unloading, and then calculate the displacement 
rates after 205 yr of unloading. The rates are calculated as the 
difference between 200 and 210 yr after unloading, divided by 
10 yr. We use a spin-up of 10 ka in the NG simulations as described 
in Section 3.2, although we expect that this could be shorter (e.g. 2 
ka) due to the presence of a low viscosity layer in that simulation. 
The runtime is 3–3.5 hr for the incompressible simulations, and 6–
6.5 hr for the compressible NG run. In SM, runtimes are only a few 

seconds. 
Modelled horizontal displacement rates reach values of 5–

7 mm a −1 , similar to those modelled by Elliott et al. ( 2010 ) for 
Alaska. The largest displacement rates of up to 6.8 mm a −1 are 
found for SM (Fig. 6 a.). We use SM as a reference, and compare 
it with all other models in Fig. 6 (b). The effect of compressibility 
on the horizontal can be seen by comparing SM and SM-I, and 
amounts to about 1.5 mm a −1 at most, again showing that the ef- 
fect of compressibility is not negligible in the horizontal (James & 

Lambert 1993 ; Mitrovica et al. 1994 ; Tanaka et al. 2011 ). 
The Cartesian models all simulate displacement rates that dif- 

fer less than 1.1 mm a −1 from SM (Fig. 6 b). Differences are 
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(a) (b) (c)

Figure 4. The effect of compressibility on the modelled horizontal displacements in (a) SM, (b) NG and (c) EF. SM-I uses the PREM earth model, just like 
SM. The edges of the ice loads are marked by vertical grey dashed lines. 

(a)

(b)

(c)

Figure 5. (a) Horizontal displacement after 10 ka of loading using ice loads 
1111 and 222 km in radius for SM, NG and EF, as well as the difference of 
NG and EF with SM for (b) the 1111 km and (c) 222 km radius ice sheets. 
The edges of the ice loads are marked by vertical grey dashed lines. 
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.93 mm a −1 for the EF model, and 0.63 mm a −1 for the NG model.
o wever , the maximum in the difference to the EF model has also
oved in the horizontal direction (it is now outside the load). This
odel nevertheless provides a minor improvement with respect to
F-I, although no as much as the NG model. 
These modelling technique-dependent differences can still be

onsidered significant when compared to current precision and un-
er tainties of GNSS obser vations. Kier ulf et al. ( 2021 ) show that
orizontal velocities of GNSS networks can reach such precision
lready after 2–3 yr obser vations. Uncer tainties of horizontal ve-
ocities meanwhile reach 0.5 mm a −1 for global GNSS solutions
Vardi ́c et al. 2022 ) and, depending on the chosen noise model and
urther corrections, can be much less than 0.35 mm a −1 for regional
nes (Lahtinen et al. 2019 ; Kierulf et al. 2021 ). 

 S T E P S  T OWA R D S  A  C O M P R E S S I B L E  

P H E R I C A L  F I N I T E  E L E M E N T  M O D E L  

odelling the whole GIA process e ventuall y requires including
ea level changes induced by the ice mass changes and the defor-
ation, and their effect on deformation itself. Such interactions
ust be solved on a global scale with a spherical model. This

pherical model should ideally allow the implementation of lat-
ral heterogeneous material parameters. Several fully or partially
ompressible spherical 3-D models have already been developed.
atychev et al. ( 2005 ) implemented compressibility in a 3-D GIA
odel, but only elastic compressibility was included. Martinec

 2000 ) developed a spectral finite-element model for 3-D viscoelas-
ic relaxation in a spherical Earth, which was extended by Tanaka
t al. ( 2011 ) to allow for compressibility. A 3-D finite-element
FE) model by Zhong et al. ( 2003 ) was ameliorated by A et al.
 2013 ) to achieve a fully compressible 3-D FE model. Wong &

u ( 2019 ) introduced a new approach by calculating separately the
hange in body forces due to compressibility in iteration with the
E model. Ho wever , their approach is not yet applicable for realistic

oadings. 
As the NG method is able to represent the compressible effects

n a straight-forward wa y, w e try to implement the NG method in
pherical FE models. Ho wever , the limiting factor turns out to be
he explicit application of gravity loading. Gravity can be defined
n the vertical direction for a Cartesian model, but Abaqus does
urrently not have the option for gravity to be directed radially in-
ard as is the case for a spherical body. Gravity can of course be

mplemented separately as a body force that is directed radially in-
ard, but for the magnitude of the body force we need to manually
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(a)

(b)

Figure 6. Horizontal displacement rate for (a) SM, SM-I, NG, EF and EF-I, 
and (b) differences of the respective models with SM. The edge of the ice 
load is marked by a vertical grey dashed line. 

software. 
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compute the density, which changes as a result of compressibility 
(third term in eq. 1 ). In principle, we can calculate the dilatation and 
the corresponding density change for every time step and iterate. 
If we were to do this, we lose the advantage of the NG method, 
namely that Abaqus includes the load stiffness matrix (eq. 11 ), and 
thereb y automaticall y considers changes in density associated with 
changes in pressure (Freed et al. 2014 ). We suggest that, for com- 
plete simulations for a compressible spherical model, approaches 
such as those in Wong & Wu ( 2019 ) should be used, who solve the 
dif ferential equations iterati vel y and appl y the change in body force 
due to compressibility. 

6  C O N C LU S I O N  

Cartesian models of GIA pre viousl y generated by Abaqus have ne- 
glected compressibility. Here, we extended a method for including 
compressibility in FE models using a geometrically non-linear for- 
mulation with explicit application of gravity (Hampel et al. 2019 ), 
named NG. The method has the advantage that it includes com- 
pressibility in line with the GIA equation of motion. Compressibil- 
ity (without self-gravity) is accounted for including the effect of 
dilatation on buoyancy forces when we decrease Poisson’s ratio be- 
low that of incompressible materials. We investigated the effect of 
two assumptions made in earlier studies, namely incompressibility 
and a Cartesian earth model (e.g. Ivins & James 1999 ; Larsen et al. 
2003 , 2004 ; Pagli et al. 2007 ; Schotman et al. 2008 ; Árnad óttir 
et al. 2009 ; Zwinger et al. 2020 ). We also investigate material 
compressibility in the conventional method (e.g. Kaufmann et al. 
2005 ; Steffen et al. 2006 ; Lund et al. 2009 ; Auriac et al. 2013 ; 
Nield et al. 2018 ; Marsman et al. 2021 ), which allows for material 
compression, but does not include the internal buoyancy force in 
the equation of motion. The conventional method has been named 
as EF. 

We considered the spherical normal mode model SM to simulate 
the full effect of compressibility, and tested the effect of compress- 
ibility and material compressibility in the FE models NG and EF 

against it. The absolute effect of compressibility on the horizon- 
tal displacement is most evident at the ice margins, and increases 
for larger ice sheets in SM and NG. The effect of compressibil- 
ity in the material compressible EF model shows no dependence 
on the size of the ice sheet, which indicates that compressibility 
is not represented well. For ice sheets below roughly 200 km in 
radius, only considering material compressibility in the constitutive 
equation (Hooke’s law) is a reasonable approximation of full com- 
pressibility, although NG performs better even for small ice sheets. 
At the same time sphericity is found to be important for simulations 
that aim to model the horizontal displacement rates, and it can only 
be neglected for small (maximum ∼200 km radius) ice sheets. Al- 
though sphericity and self-gravity at least partly compensate each 
other in the vertical, we find that there is no such compensation for 
horizontal displacements. For larger ice sheets, horizontal displace- 
ments simulated by material compressible EF models perform better 
than compressible NG models as the missing full compressibility is 
partly compensated with the lack of sphericity. 

We investigated the applicability of the Cartesian models in small 
scale GIA studies with large uplift rates due to recent unloading by 
simulating the horizontal displacement rates for a scenario represen- 
tative for post-LIA uplift in Iceland, Alaska, and West Antarctica. 
Horizontal displacement rates of compressible and material com- 
pressible Cartesian models differ from SM by 0.63 and 0.93 mm a −1 , 
for NG and EF respecti vel y. SM-I dif fers b y 1.5 mm a −1 , and there- 
fore performs worse than the Cartesian models, highlighting the 
importance of using compressibility for modelling horizontal ve- 
locities of small-scale GIA. To conclude, we show that for small 
ice sheets results from Cartesian models are suf ficientl y close to re- 
sults when the full GIA equation of motion (including self-gravity) 
is solved, and the compressible Cartesian NG model approach is 
acceptab le (Tab le 4 ). 

Since most GNSS observations are available for long time spans 
even in such small-scale regions like Alaska, Iceland and NAP, the 
appropriate modelling approach has to be chosen before a com- 
parison of modelled v ersus observ ed horizontal velocities can be 
made. We see that for an ice sheet with a 222 km radius, the ac- 
curacy of the NG model is slightly above any GNSS precision 
and uncertainty. Hence, only smaller ice caps should be modelled 
with Cartesian NG models when fitting horizontal velocities is the 
goal. 

Horizontal displacement rates are sensitive to mantle viscosity, 
and much can be learned from investigating them in small scale 
study areas like Alaska, Iceland or West Antarctica (e.g. Árnad óttir 
et al. 2009 ; Samrat et al. 2020 ; Marsman et al. 2021 ). We tested the 
effect of compressibility in 1-D models, but the Cartesian models 
can accommodate 3-D subsurface structures that are likely to exist. 
Finally, we attempted to implement the NG method in a spher- 
ical FE model, but found that the advantage of this method is 
lost, as a radial gravity distribution cannot be specified in Abaqus. 
Therefore, the change in buoyancy forces would have to be cal- 
culated outside the FE software as done by, for example Wong 
& Wu ( 2019 ), conform the finding of B ängtsson & Lund ( 2008 ) 
that it is impossible to calculate the buoyancy force inside the FE 
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Table 4. An overview of the models in this study, where they are applicable and their computation time. The values for the 
differences with SM are sho wn belo w the load for the compressible and material compressible simulations for NG and EF, 
respecti vel y. 

Name Coord 

Can lateral 
variations be 

included? 
Approximate 

computation time 
Difference with SM 

(2 ◦ radius load) 
Difference with SM 

(10 ◦ radius load) 

SM Spherical N ∼ seconds to few minutes – –
NG Cartesian Y 3–3.5 hr (incompressible) 

up to 6.5 hr (compressible) 
hor disp: < 2.5% rate: 

0.63 mm a −1 
hor disp: > 50 per cent 

EF Cartesian Y 3–3.5 hr (material compressible 
and incompressible) 

hor disp: 10–15% rate: 
0.93 mm a −1 

hor disp: < 25 per cent 
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U P P O RT I N G  I N F O R M AT I O N  

upplementary data are available at GJI online. 

igure S1 . Difference in modelled horizontal displacement after 10
a of loading with a disc load 222 km in radius. 

igure S2 . Vertical displacement for the incompressible models
or a disc 2 ◦ in extent (a), as well as the difference in vertical
isplacement rate with FastLov e-HiDe g (b). The bottom subplots
how the difference in vertical displacement between FastLove-
iDeg and NG-I (c) and box-EF (d), respecti vel y, for discs with
ve different radii. The ice edges are denoted by the dashed vertical

ines. 

igure S3 . Difference in horizontal displacement due to the earth
odel approximation for the incompressible ICEAGE model, using

0 ka of loading. When the absolute value of the original signal is
elow 1.5 m, the values are masked. 
igure S4 . Using the unloading scenario (a) simulated horizontal
isplacement rate and (b) differences in horizontal displacement
ate due to the earth model approximation for the incompressible
CEAGE model. 

igure S5 . Difference in horizontal displacement after 10 ka of
oading for NG-I (a) and EF-I (b) due to changing the amount of
lements per layer, for the 1111 km radius disc load. 
igure S6 . Difference in horizontal displacement after 10 ka of

oading for NG-I (a) and EF-I (b) due to changing the hori-
ontal resolution below the load, for the 1111 km radius disc
oad. 

igure S7 . Volumetric strain after 10 ka of loading with a 10 ◦ disc
n box-NG. Positi ve v alues denote compression, and negative val-
es dilatation. The Lithosphere–Asthenosphere Boundary (LAB) is
enoted by the horizontal dashed line. 

lease note: Oxford University Press is not responsible for the con-
ent or functionality of any supporting materials supplied by the
uthors. Any queries (other than missing material) should be di-
ected to the corresponding author for the paper. 
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