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Development of an implicit contact technique for the material point method 

José León González Acosta , Philip J. Vardon *, Michael A. Hicks 
Section of Geo-Engineering, Faculty of Civil Engineering and Geosciences, Delft University of Technology, the Netherlands   

A R T I C L E  I N F O   
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A B S T R A C T   

An implicit contact algorithm for the material point method (MPM) has been developed to simulate contact. This 
allows recently developed implicit MPM codes to simulate large-scale deformations and interaction with external 
bodies. The performance of the method has been investigated and compared to an existing explicit method using 
benchmark and geotechnical examples. In particular, the proposed formulation has been shown to conserve 
energy in a similar way to the explicit formulation and reach similar results. The method typically converges to 
the analytical solution when an adequate time step and mesh size are used, with the time step generally being 
around ten times larger than the explicit method, although during the contact phase this does not always result in 
faster computation due to the iterative solution procedure.   

1. Introduction 

The material point method (MPM) is an improvement over the 
classical finite element method (FEM) for problems involving large de-
formations. In this technique, the material is no longer attached to ele-
ments, but to particles or points (i.e. material points) that move freely 
through a background mesh. MPM has proven to be reliable for simu-
lating mechanical behaviour (Abe et al. 2014, Beuth et al. 2008, Coombs 
et al. 2018, González Acosta et al. 2020, Jassim et al. 2013, Ma et al. 
2006, Ma et al. 2013, Nairn 2003, Wang et al. 2016b, York et al. 1999), 
as well as large deformations (Coetzee 2014, Huang et al. 2015, Llano- 
Serna et al. 2016, Wang et al. 2016c, Więckowski 2004, Woo & Sal-
gado 2018). As the fundamental attributes of the method involve ma-
terial moving substantial distances, for example, as in landslides with an 
extensive runout (e.g. Wang et al. 2016a,c), the impact of this displaced 
material on other structures is a logical aspect to be investigated and has 
great value in many branches of engineering. In a seminal MPM paper, 
Sulsky et al. (1994) showed that different bodies of material could be 
simulated together on the same background grid, with a single value 
velocity field, allowing contact to be automatically calculated. However, 
the simulated contact was non-slip, (background) mesh dependent and, 
due to the lack of a specific contact formulation, inaccurate when 
considering bodies with different properties or initial state conditions. 

The first dedicated methodology in MPM to simulate interaction 
between different bodies, i.e. contact, was proposed by Bardenhagen 
et al. (2000). In this method, the nodal velocities of distinct bodies are 
compared with the combined nodal velocities (i.e. nodal velocities 
which have changed due to the influence of multiple bodies), and 

contact is defined when these two velocities are not equal. When this 
happens, constraints on the normal and tangential kinematics are 
applied, such that the bodies cannot penetrate each other and that the 
tangential behaviour is defined based on constitutive behaviour, e.g. 
Coulomb friction. In this way, Bardenhagen et al. (2000) were able to 
simulate frictional slip behaviour within the MPM framework. Since 
then, many case studies and improvements have been presented (Bar-
denhagen et al. 2001, González Acosta et al. 2018, Homel & Herbold 
2017, Müller & Vargas 2019, Nairn 2013, Pantev 2016, Zhang et al. 
2006). Most of this work has been implemented using an explicit 
scheme, in line with the method of solving the equations of motion in the 
respective publications, and this has advantages with respect to the 
simplicity of the implementation. However, versions of MPM which 
solve the equations of motion implicitly (e.g. Guilkey & Weiss 2003, 
Wang et al. 2016b) have been recently developed, which include the 
advantages typically associated with implicit solutions; in particular, a 
larger time step. Therefore, the development of an implicit contact 
scheme is desirable. 

Some work regarding implicit contact in MPM has been reported, 
where, in line with contact methods used in implicit FEM, Lagrange 
Multipliers (Chen et al. 2017) or the Penalty Method (Liu & Sun 2020) 
were used. The procedures followed in these techniques to simulate 
contact are different from the traditional method used in the explicit 
MPM. In this paper, an alternative form of the implicit contact algorithm 
is presented. This algorithm adopts the classical equations used in the 
explicit approach (Bardenhagen et al. 2000) for the implicit scheme and 
considers the Newton-Raphson iterative procedure. Moreover, to 
demonstrate the accuracy and performance of the proposed solution, 
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three benchmarks and two geotechnical problems are analysed. Finally, 
comparative remarks are presented relating to the computational per-
formance, followed by some recommendations for increasing the accu-
racy of the simulations. 

2. MPM Formulation 

The formulation of the explicit and implicit MPM equations is briefly 
presented and, since MPM shares similarities with the FEM continuum 
mechanics framework, most of the following equations are the same as 
in FEM. It should be noted that this formulation refers to a single body. 
For a detailed elaboration of these equations, the reader is directed to 
Bathe (1996), Belytschko et al. (2013), Sulsky et al. (1995), and Wang 
et al. (2016b). 

2.1. Explicit MPM 

The respective equations of mass and momentum conservation are 

dρ
dt

+ ρ∇⋅v = 0 (1)  

ρa = ∇⋅σ + ρb (2)  

where ρ is the mass density, v is the velocity vector, t is time, a is the 
acceleration vector, σ is the Cauchy stress tensor, and b is the body force. 
Besides these conservation laws, a stress–strain relationship is also 
required. The strain increment computed from the velocities, and the 
resulting stress increment, are respectively given by 

dε =
1
2
(
∇v + (∇v)T )dt (3)  

dσ = Ddε (4)  

where dε is the strain increment vector, and D is the material elastic 
matrix. Using the principle of virtual power, the weak form of eq. (2), 
considering traction, is found by taking the product of a test function 
with the equation of momentum conservation and integrating over the 
current configuration to give 
∫

V
ρa δv dV =

∫

V
σ∇δv dV +

∫

V
ρb δv dV +

∫

Γ
ssδv dΓ (5)  

where δv is the test function, ss is the traction load at the body surface Γ 
(i.e. the boundary condition), and V is the current body volume. Then, 
since in MPM two discretisations are used (i.e. material points repre-
senting the computational body and elements representing the compu-
tational space), the integrals in eq. (5) can be expressed as nodal 
equations via the summation of material point values in the elements. 
This leads to the (element) equation 

δv
∑nmp

p=1
ρpNT( xp

)
N
(
xp
)
a|J|Wp =

δv

[

−
∑nmp

p=1
BT( xp

)
σp|J|Wp +

∑nmp

p=1
ρpNT( xp

)
b|J|Wp +

∑bmp

p=1
NT( xp

)
ss

]

(6)  

where N is the element matrix of shape functions (SFs) (see Appendix A 
for the definition of the matrices used in the paper), B is the 
strain–displacement matrix, a is the vector of nodal accelerations, nmp is 
the number of material points in the element, bmp is the number of 
boundary material points having a traction load, xp is the position of 
each material point, σp is the material point stress tensor, ρp is the ma-
terial point density, J is the Jacobian matrix, and Wp is the material point 
integration weight. It should be noted that the shape functions are used 
to interpolate material point variables to the element nodes (i.e. 
Nδv(xp) ≈ δv(xp), where δv is the vector of nodal test function 

velocities), and that the volume of each material point is represented by 
the Jacobian determinant and the material point weight (i.e. 
Vp = |J|Wp, where Vp is the material point volume). Finally, since the 
element test function (δv) in eq. (6) should hold for any arbitrary virtual 
velocity that satisfies all the boundary conditions, it vanishes from eq. 
(6) since δvA = δvC, in which A and C represent the left and right sides 
of eq. (6), respectively. Hence, eq. (6) reduces further and may be 
expressed for an element (|elem) using matrix notation as 

m|elema|elem = Fext|elem − Fint
⃒
⃒

elem (7)  

where 

m|elem =
∑nmp

p=1
ρpNT( xp

)
N
(
xp
)
|J|Wp (8)  

Fext|elem =
∑nmp

p=1
ρpNT( xp

)
b|J|Wp +

∑bmp

p=1
NT( xp

)
ss (9)  

Fint
⃒
⃒

elem =
∑nmp

p=1
BT( xp

)
σp|J|Wp (10) 

In eqs. (7) and (8), m represents the element consistent mass matrix, 
the use of which can lead to an increase in the solution time. Hence, the 
element lumped mass matrix is used here, and is computed using the 
“row-summation” technique as 

mii =
∑

j
mij (11)  

Furthermore, the lumped mass matrix can be replaced by an element 
mass vector (mi = mii). This replacement improves the computational 
time, since matrix operations (i.e. matrix inverse computations) are 
replaced by linear operations. Finally, note that the use of m is particular 
to the explicit scheme; in the implicit scheme m will be used. 

2.1.1. Nodal mapping, solution and update phase (explicit) 
At the beginning of each solution step, the state variables are mapped 

to the nodes. For example, the velocity at node i is computed as 

vt
i =

∑nmp
p=1ρpvt

pNi
(
xp
)
|J|Wp

∑nmp
p=1ρpNi

(
xp
)
|J|Wp

(12)  

where Ni is the nodal SF, and the summation is over all material points 
surrounding the node. After nodal mapping and integration to form the 
element equations, an assembly operation over the mesh is undertaken 
(as in FEM), yielding global vectors and matrices at time t, i.e. the global 
mass matrix mt, the global external force Fext,t and the global internal 
force Fint,t, which can be solved to find the global acceleration vector. 
Since the vector of nodal masses is used, the solution of the equation of 
equilibrium (in terms of accelerations) is 

at =

(
Fext, t − Fint, t)

mt (13)  

and, using the Euler time integration method, the material point vari-
ables are updated at time t + Δt as 

vt+Δt
p = vt

p + N
(
xp
)
at
⃒
⃒

elem Δt (14)  

xt+Δt
p = xt

p + vt+Δt
p Δt (15)  

σp = D B
(
xp
)

vt+Δt
⃒
⃒

elemΔt + σt
p (16)  

where σp
t is the previous material point stress. The vector of (element) 

nodal velocities at time t + Δt in eq. (16) is computed from the material 
point velocities at time t + Δt as 
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vt+Δt
⃒
⃒

elem =

∑nmp
p=1mpvt+Δt

p N
(
xp
)

∑nmp
p=1mpN

(
xp
) (17)  

where mp is the material point mass. Note that this vector of nodal ve-
locities is computed from the material point velocities at time t + Δt 
rather than using the Euler time integration method (i.e. vt+Δt = vt +

atΔt) to ensure conservation of momentum. 

2.2. Implicit MPM 

To derive the equation for implicit equilibrium, the principle of 
virtual work is used. This states that the difference between the internal 
and external work should be equal to zero 

(
i.e. Π = Wint − Wext = 0

)
, 

and is written as 

Π =
1
2

∫

V
Dε2 dV −

(∫

V
u Tρ(b − a) dV +

∫

Γ
uT ss dΓ

)

= 0 (18)  

where u represents the continuous displacement field. In eq. (18), the 
inertia term (i.e. a) is included as part of the body forces using D’Alam-
bert’s principle and, if this term is excluded, a quasi-static scheme is 
obtained. Next, by evaluating δΠ = 0 with respect to the displacements 
and knowing that δε2 =2εδε (Davies 2011; Bathe 1996), eq. (18) becomes 
∫

V
δεTDε dV =

∫

V
δu Tρ(b − a) dV +

∫

Γ
δu Ts sdΓ (19)  

where δu and δε represent the test function in terms of displacements 
and strains. Then, following similar procedures as in eq. (6) and splitting 
the total stresses into the sum of the previous stress and the incremental 
stress (i.e. σ = σ0 + Δσ), eq. (19) is expressed as 
[
∑nmp

p=1
BT( xp

)
DB
(
xp
)
|J|Wp

]

u −
∑nmp

p=1
ρpNT( xp

)
N
(
xp
)
|J|Wpa=

−
∑nmp

p=1
BT( xp

)
σ0

p|J|Wp +
∑nmp

p=1
ρpNT( xp

)
b|J|Wp +

∑bmp

p=1
NT( xp

)
ss

(20)  

where B is used to interpolate the virtual strains using virtual nodal 
displacements, i.e. B(xp)δu ≈ δε(xp), where δu are the nodal virtual 
displacements, σ0 represents the vector of initial stresses, and u repre-
sents the vector of (element) nodal displacements which is obtained 
from the interpolation of strains, i.e. Bu = ε. As for eq. (7), the previous 
equations represent equilibrium and can be expressed in matrix form as 

(KΔu) |elem + (ma) |elem =
(
Fext − Fint) ⃒⃒

elem (21)  

where the element stiffness matrix is 

K|elem =
∑nmp

p=1
BT( xp

)
D B
(
xp
)
|J|Wp (22)  

and Fext|elem and Fint|elem are similar to eq. (9) and eq. (10), respectively. 
If the inertia term is ignored, the equation of equilibrium reduces to 

(KΔu) |elem =
(
Fext − Fint) ⃒⃒

elem (23)  

which represents quasi-static equilibrium. Again, an assembly operation 
over the mesh is undertaken (as in FEM), yielding global vectors and 
matrices. 

By using Newmark’s (1959) time integration technique, which is 
recognised to be highly effective (Bathe 2007), eq. (21) can be solved. 
The velocities and displacements at time t + Δt are computed as 

vt+Δt = vt +
[
(1 − γ)at + γat+Δt ]Δt (24)  

ut+Δt = ut + vtΔt +
[(

1
2
− α
)

at + αat+Δt
]

Δt2 (25)  

where α and γ are time stepping parameters that are here chosen to be α 
= 0.25 and γ = 0.5 (giving a constant-average-acceleration approach). 
Then, isolating at+Δt from eq. (25) leads to 

at+Δt =

(
4ut

Δt2 −
4vt

Δt
− at

)

(26)  

and substituting eq. (26) into eq. (24) results in 

vt+Δt =
2ut+Δt

Δt
− vt (27) 

Finally, by substituting eq. (26) into eq. (21) and adding the Newton- 
Raphson iteration procedure, the equation of equilibrium is written as 
(

Kt +
4mt

Δt2

)
(k)Δu = (k− 1)

[

Fext, t+Δt − mt
(

4(k− 1)ut

Δt2 −
4vt

Δt
− at

)

− Fint, t+Δt
]

(28)  

or 

Kt (k)Δu = (k− 1)( Fext − Fkin − Fint)t+Δt (29)  

where Δu = ut+Δt – ut is the vector of incremental displacements, and 

Kt
=

(

Kt +
4mt

Δt2

)

(30)  

Fkin, t+Δt = mt
(

4(k− 1)ut

Δt2 −
4vt

Δt
− at

)

(31)  

In these equations, K represents a modified stiffness matrix, Fkin are the 
kinetic forces, and the left superscript k refers to the Newton-Raphson 
iteration step. The iteration is stopped after the desired convergence 
criterion has been reached, which in this paper is computed as (Guilkey 
& Weiss 2003) 

‖(k)Δu‖
‖u‖

< tol (32)  

where tol is the tolerance value. There are several alternative conver-
gence criteria which could be used. However, this convergence criterion 
has been selected due to its simplicity, although it is noted to be sus-
ceptible to false convergence due to iteration stagnation. 

2.2.1. Nodal integration and update phase (implicit) 
The integration of nodal external loads, mass, velocity and stiffness 

has already been given in eqs. (9), (11), (12), and (22), respectively. In 
contrast to the explicit scheme, nodal accelerations are also needed and 
are computed as 

at
i =

∑nmp
p=1ρpat

pNi
(
xp
)
|J|Wp

∑nmp
p=1ρpNi

(
xp
)
|J|Wp

(33) 

After assembling the stiffness and mass matrices (eq. (30)), the 
equilibrium in terms of displacements is computed (eq. (29)) and the 
vectors of internal forces, nodal accelerations and kinetic forces are 
updated every iteration step using eqs. (10), (26), and (31), respectively. 
Finally, after the desired iteration tolerance is reached, a material 
point’s acceleration, velocity, position and stress are updated as 

at+Δt
p = N

(
xp
)
at+Δt

⃒
⃒

elem (34)  

vt+Δt
p = vt

p +

[
N
(
xp
)
at+Δt

⃒
⃒

elem + at
p

]

2
Δt (35)  

xt+Δt
p = xt

p + N
(
xp
)
u|elem (36)  

σt+Δt
p = D B

(
xp
)

u|elem + σt
p (37) 
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2.3. MPM mapping, integration and stress recovery enhancement 

Since standard MPM suffers from oscillation problems, the proced-
ures elaborated in González Acosta et al. (2020) are used to mitigate 
such inaccuracies. In this paper, the double mapping DM-GC technique 
is used, in which the (element) vectors of external and internal nodal 
forces are integrated using standard GIMP SFs (Bardenhagen & Kober 
2004) as 

Fext|elem =
∑nmp

p=1
ρpSip

(
xp
)
b|J|Wp +

∑bmp

p=1
Sip
(
xp
)
ss (38)  

Fint
⃒
⃒

elem =
∑nmp

p=1
∇ST

ip

(
xp
)
σp|J|Wp (39)  

where Sip is the element matrix of GIMP SFs, and ∇Sip is the 
strain–displacement matrix for the GIMP SFs. Since the implicit solution 
scheme is used, the (element) stiffness matrix is computed using double 
mapping (DM) procedures as 

K|elem =
∑ngauss

g=1
BT( xp

)
[
∑nn

i=1

(

Ni
(
xg
)∑smp

p=1
Sip*

(
xp
)
DWp

)]

B
(
xp
)
|J|WFE (40)  

where Ni is the nodal SF, Sip* is the local GIMP SF of node i, ngauss is the 
number of Gauss integration points in the element, smp is the number of 
material points with a support domain inside the element, and WFE is the 
finite element (FE) weight associated with the Gauss point g. In González 
Acosta et al. (2020), the DM implementation and its performance are 
presented. The incremental stress of a material point is then updated for the 
explicit and implicit schemes using CMPM (González Acosta et al. 2017) as 

Δσp = DBC
(
xp
)
vext Δt (41)  

and 

Δσp = DBC
(
xp
)
Δuext (42)  

where BC is the (element) matrix of the CMPM SF gradients (i.e. the 
strain–displacement matrix for CMPM), and uext and vext are the vectors of 
nodal displacements and velocities, respectively, in the extended CMPM 
domain. Note that since GIMP and local GIMP SFs are used to integrate both 
the forces and stiffness matrix, the stencil (i.e. support domain of each 
material point) is the same in both cases, including when using double 
mapping. CMPM uses an extended domain (uext or vext) to recover stresses, 
which is not necessarily equal to the GIMP stencil. An explanation of the 
stencil is given in Appendix B, and the accuracy of using DM-GC is 
demonstrated in Appendix C. Finally, it is important to remark that the state 
variables (i.e. mass, velocity, acceleration) are mapped using GIMP SFs. 

3. Contact formulation 

The contact formulation relies on the equations of motion presented 
in the previous section, which are solved for a series of separately defined 

bodies, with the interactions (contact) between them being included in 
the equations of equilibrium as additional external forces. The bodies 
may be pre-defined (as in the examples here), or identified by the pro-
gram to allow for the separation or joining of bodies. The original contact 
procedures in MPM (Bardenhagen et al. 2000) use two steps to simulate 
contact: (i) the velocity field sharing step, and (ii) the contact force 
evaluation step. In this work, an extra (proximity detection) step to 
ensure mesh independency has been included, using a distance limit to 
activate the contact. In the velocity sharing step, the velocities are 
interpolated to the nodes to detect if any of the bodies may be interacting 
(which is possible if two or more bodies interpolate velocities to the same 
node). Using the individual nodal velocities of each body and the com-
bined domain velocities (i.e. the nodal velocities accumulated from all 
material points in the domain), velocity sharing is detected at node i if 

vi, C − vi,bod ∕= 0 (43)  

where 

vi, C =
∑nb

bod=1

mi, bodvi, bod

mi, C
(44)  

mi, C =
∑nb

bod=1
mi, bod (45)  

where vi,C is the nodal combined velocity accounting for all bodies in the 
domain, vi,bod is the nodal velocity of each independent body, mi,C is the 
combined nodal mass, bod denotes the body, and nb is the number of 
bodies in the domain. If eq. (43) is true for any node i, the proximity 
detection rule is then evaluated. This proximity condition is 

d
(

xi
p, bod1, xi

p, bod2

)
⩽dmin (46)  

where xi
p, bod1 and xi

p, bod2 are the coordinates of the closest material points p 
from each body (bod1 and bod2) to the possible contact node i, d is the 
distance between xi

p, bod1 and xi
p, bod2, and dmin is the minimum distance 

required to activate the contact. Note that dmin should have a maximum 
value of the cell size to ensure mesh independence, but it has no minimum 
value. It should be noted that, in eq. (46), only the contact between two 
bodies (bod1 and bod2) is considered, and the formulation to account for 
contact at a single node by more bodies is not included. If the velocity and 
proximity conditions are satisfied (i.e. eq. (43) and eq. (46)), it is then 
necessary to evaluate if the bodies are approaching each other (contact 
evaluation step). This last condition is relevant because, if the bodies are 
separating (i.e. the first two conditions are true but the bodies are moving 
in opposite directions), interaction is considered not to be taking place; 
otherwise it would add energy into the system. This step is formulated as 
(
vi, bod − vi, C

)
⋅ni, bod > 0 (47)  

where ni,bod is the unit normal vector of the body at the contact node. The 
normal vector can be computed using different approaches (Nairn 
2013), but in this paper the approach described in Huang et al. (2011) is 
used, which is 

ni, 1 = − ni, 2 =

(
ni, 1 − ni, 2

)

⃒
⃒ni, 1 − ni, 2

⃒
⃒

(48)  

ni, bod =

∑ngp
g=1∇Nmg

⃒
⃒
⃒
∑ngp

g=1∇Nmg

⃒
⃒
⃒

(49)  

where the normal n is the individual normal of the body bod around 
node i, in which the direction is governed by the mass mg concentrated at 
the (central) Gauss position, and ngp is the number of (central) Gauss 
positions with a concentrated mass mg around node i. Note that the 
normal n can be inconsistent (i.e. may not be perpendicular) to the Fig. 1. Contact variables.  
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surface of the body due to the irregular distribution of mg around node i. 
This inconsistency can be lessened by using n, the normal direction at 
node i in which the influence of the neighbouring body is considered. 
Furthermore, to compute n, bi-linear or GIMP SF gradients can be used, 
as the results are identical due to the centrally located Gauss point. Fig. 1 
illustrates the different variables during contact between body A and 
body B, and highlights the difference between n and n. 

If eqs. (43), (46), and (47) are true, contact is deemed to occur, and 
contact conditions must be applied by assigning contact forces. To do so, 
first the corrected nodal velocities of each body are calculated to avoid 
interpenetration. Hence, 

*vic, bod = vic, bod −
[(

vic, bod − vic, C
)
⋅nic, bod

]
nic, bod (50)  

where *vic, bod is the corrected nodal velocity, and ic represents the 
contact node. Then, the normal contact force is computed as 

Fnc
ic, bod =

mic, bod
[(

*vic, bod − vic, bod
)
⋅nic, bod

]
nic, bod

Δt
(51)  

where Fnc
ic, bod is the nodal normal contact force. The tangential force 

required to ensure non-slip (i.e. stick) conditions is calculated as 

Fstick
ic, bod = −

mic, bodnic, bod ×
[(

vic, bod − vic, C
)
× nic, bod

]

Δt
(52)  

where Fstick
ic, bod is the frictional force required to ensure non-slip condi-

tions. The frictional force, obeying Coulomb’s theory, is then 

Ffric
ic, bod

⃒
⃒

elem =
Fstick

ic, bod⃒
⃒
⃒Fstick

ic, bod

⃒
⃒
⃒
min
(

μ
⃒
⃒
⃒Fnc

ic, bod

⃒
⃒
⃒,

⃒
⃒
⃒Fstick

ic, bod

⃒
⃒
⃒

)
(53)  

where Ffric
ic,bod is the final frictional force between the bodies, μ is the 

friction coefficient which depends on the material characteristics, the 
quotient ensures that the direction of the force opposes the relative 
motion, and the min function determines the magnitude of the force. 
Finally, if contact occurs, nodal accelerations are no longer computed 
using eq. (13), since the contact loads should be included as 

at+Δt
bod =

(
Fext, t

i, bod − Fint, t
i, bod + Fnc, t

ic, bod − Ffric, t
ic, bod

)

mt
i, bod

(54)  

4. Explicit and implicit contact algorithms 

4.1. Explicit contact algorithm 

The implementation of contact using the explicit scheme is 
straightforward. Fig. 2 shows the algorithm of the explicit scheme 
including the contact steps. Several minor steps are omitted, such as the 
activation of the boundary conditions and the computation of the ma-
terial point local coordinates, in order to maintain the algorithm 
simplicity. The square brackets located at the left side of the figure 
indicate a loop for each body; i.e. the combination of steps should be 
repeated for each body before continuing with the following steps. The 
plastic iteration loop is indicated, but the procedures are not elaborated; 
the reader is directed to Smith et al. (2013) and Sloan et al. (2001) where 
the plastic procedures are described in detail. 

Note that the steps shown in Fig. 2 indicate that the modified update 
stress last (MUSL) method (Sulsky et al. 1995) is used. The standard 
update stress last (USL) method consists of computing the increment of 
stresses after the update of nodal velocities, but, since the nodal veloc-
ities are computed from the updated material point velocities, the MUSL 
is obtained. The MUSL algorithm has been shown to conserve energy 
better than the USL approach (Nairn 2003, Pantev 2016). 

4.2. Implicit contact algorithm 

To simulate contact using the implicit scheme, the same approach as 
in the explicit scheme is used. Newmark’s time integration technique 
and the Newton-Raphson method are used, so the equations used to 
estimate contact must be updated in each iteration step. Moreover, if 
contact occurs, it is assumed that it persists throughout the Newton- 
Raphson iterative process, i.e. between times t and t + Δt. Considering 
these assumptions, the equations used to update the nodal velocities 
during the iterative procedure are then 

(k)vt+Δt
ic, C =

∑nb

bod=1

mic, bodvt+Δt
ic, bod

mic, C
(55)  

and 

(k)*vt+Δt
ic, b = vt+Δt

ic, b −
[(

vt+Δt
ic, bod − vt+Δt

ic, C

)
⋅nic, bod

]
nic, bod (56)  

The contact loads are computed as 

Fig. 2. Steps followed in the explicit solution scheme, in which the square brackets indicate a loop over the bodies.  
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(k)Fnc, t+Δt
ic, bod

⃒
⃒

elem =
mic, bod

[(
*vt+Δt

ic, bod − vt+Δt
ic, bod

)
⋅nic, bod

]
nic, bod

Δt
(57)  

with the tangential force to ensure sticking conditions calculated as 

(k)Fstick, t+Δt
ic, bod = −

mic, bodnic, bod ×
[(

vt+Δt
ic, bod − vt+Δt

ic, C

)
× nic, bod

]

Δt
(58)  

and the frictional force 

(k)Ffric, t+Δt
ic, bod

⃒
⃒

elem =

(k)Fstick, t+Δt
ic, bod⃒

⃒
⃒ (k)Fstick, t+Δt

ic, bod

⃒
⃒
⃒

min
(

μ
⃒
⃒
⃒ (k)Fnc, t+Δt

ic, bod

⃒
⃒
⃒,

⃒
⃒
⃒ (k)Fstick, t+Δt

ic, bod

⃒
⃒
⃒

)
(59)  

Note that these equations are similar to those used in the explicit 
scheme, with the exception that the nodal combined velocities (vt+Δt

ic, bod) 
are updated every iteration, which leads to a new set of corrected ve-
locities and nodal forces. Finally, if contact occurs, the incremental 
displacements should be computed using 
(

Kbod
(k)ui, bod

)
= (k− 1)

(
Fext, t+Δt

i, bod − Fkin, t+Δt
i, bod − Fint, t+Δt

i, bod + Fnc, t+Δt
ic, bod

− Ffric, t+Δt
ic, bod

)
(60) 

Fig. 3 shows the steps followed to simulate contact using the implicit 
scheme. It should be noted that the vector of external forces (Fext) and 
the stiffness matrix (K) are evaluated at time t + Δt outside the iteration 
loop, as both remain constant throughout the iterative procedure, i.e. 
the modified Newton-Raphson method is used. The small time steps used 
to capture the kinematics ensure that this results in a reasonable 
solution. 

5. Application and evaluation of contact methods 

5.1. Benchmark problems 

To evaluate the performance of the implicit contact method, three 
benchmarks are analysed and the solution of each compared against the 
explicit solution, as well as against the analytical and FEM solutions 
where available. The first two benchmarks (i.e. a collision and a 1D 
vibrating bar) are used to study energy conservation. The first bench-
mark considers a contact occurring instantaneously between two blocks, 
and the second considers contact which persists throughout the whole 
simulation. The third benchmark is the simulation of a block sliding on a 
rigid surface, and is used to analyse the interaction between bodies when 
considering frictional forces. Each benchmark was simulated using four 
equally spaced material points per background element, which were 

Fig. 3. Steps followed in the implicit solution scheme, in which the square brackets indicate a loop over the bodies.  

Fig. 4. Collision benchmark.  
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initially positioned at the local coordinates ξ = ± 0.5 and η = ± 0.5. All 
the benchmarks and geotechnical simulations introduced later are 
simulated using plane strain conditions. 

5.1.1. Collision benchmark 
In Fig. 4, the initial configuration of the collision benchmark is 

shown. The benchmark consists of two square blocks (A and B) of size 
0.6 m, moving freely towards each other through a background mesh 
with a mesh spacing of Δx = Δy = 0.20 m. Each block has an initial 
horizontal velocity of 0.5 m/s. The elastic properties of both blocks are 
Young’s modulus, E = 500 kPa, and Poisson’s ratio, ν = 0.30. The 
tolerance values used in the Newton-Raphson iterative procedure, and 
to establish contact, are tol = 1.0 × 10-8 and dmin = 0.2 m, respectively. 
Gravity forces have not been considered. 

Fig. 5 shows the results of the collision in terms of total energy (TE), 
for both the explicit and the implicit schemes. In Fig. 5a, for the explicit 
scheme, it is observed that, at the moment of the collision (tc), the energy 
decreases significantly (by 17%) and, depending on the time step used, 
the total energy either continues decreasing or stays almost constant 
after the collision. Fig. 5b shows that, using the implicit scheme, the 

total energy behaves in a similar way to the explicit solution, except that 
some oscillation of the energy is observed after the collision. These os-
cillations are attributed to not capturing accurately the internal stress 
waves due to the large time step used, which is 10 times greater than 
that used with the explicit scheme for almost the same performance. 

Additionally, Fig. 6 and Table 1 demonstrate the energy conservation 
and computational time required to complete each simulation with 
respect to the mesh (element) size for the implicit scheme. The study of 
energy conservation is performed using a time step of Δt = 1.0 × 10-4 s, 
and mesh sizes of 0.20, 0.10 and 0.05 m. Also, an additional curve (solid 
line with markers) computed using a mesh size of 0.05 m and a time step 
of Δt = 1.0 × 10-5 s is added to Fig. 6, to study the effects of reducing the 
time step and the mesh size simultaneously. The contact tolerance 
values used are the maximum values for the mesh, i.e. dmin = 0.20, 0.10 
and 0.05 m, respectively. It is observed that the drop of energy at the 
point of contact decreases with the reduction of the mesh size, 
improving the conservation of energy. Furthermore, by reducing the 
mesh size and time step together, the drop of energy and the oscillations 
after contact reduce drastically, reinforcing the theory that the oscilla-
tions in Fig. 5b were caused by the large time step. However, despite the 
improvement in the results, some reduction in energy is still observed. 

An analysis of the computational time has been performed, consid-
ering the time steps Δt = 1.0 × 10-5 s and Δt = 1.0 × 10-4 s, for the 
explicit and the implicit schemes, respectively. It is observed that the 
computational time needed to complete a simulation grows substan-
tially with the reduction of the mesh size. Nevertheless, the time rela-
tionship is almost constant, with the implicit solution being on average 
30% faster than the explicit solution. 

The reason for the unrealistic decrease of energy observed in Figs. 5 
and 6 is the inconsistency between the contact loads and the internal 
loads developed at the contact (Fnc ∕= Fint). One method to prevent this 
inconsistency is to compute the contact loads as a function of the in-
ternal loads developed by each body at the contact (Xiao-Fei et al. 2008). 
At the contact interface, the normal acceleration of each body can be 
assumed to be equal (i.e. at

i, A ⋅ni, A = − at
i, B⋅ni, B). Hence, from Newton’s 

second law, it is established that 

mi,A
(
ai, A⋅ni, A

)
= Fint

i, A⋅ni, A − Fnc
i (61) 

(a)

(b)

Fig. 5. Energy conservation after collision using a) the explicit scheme, and b) 
the implicit scheme. 

Fig. 7. Energy conservation during block collision with the explicit scheme 
using eq. (63). 

Fig. 6. Energy conservation with implicit scheme using different mesh sizes.  

Table 1 
Collision benchmark computational time.  

Mesh size (m) Computational time (min) Implicit / Explicit 

Implicit Explicit 

0.2 1 3 0.33 
0.1 5 7 0.71 
0.05 21 31 0.68 
0.02 224 330 0.68  
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mi,B
(
ai, B⋅ni, B

)
= Fint

i, B⋅ni, B + Fnc
i (62)  

which reduces to 

Fnc
i, A =

(
mi,B Fint

i,A − mi,A Fint
i,B

)
⋅ni, A

(
mi,A + mi,B

) = − Fnc
i, B (63)  

where Fnc
i, A and Fnc

i, B are the contact forces between the bodies as a function 
of the internal forces developed. In Fig. 7, the energy conservation of the 
collision benchmark is plotted using eq. (63) to compute the contact 
loads, a step size of Δt = 1.0 × 10-5 s, a mesh of size of Δx = Δy = 0.20 m, 
and the explicit scheme. It is seen that the energy conservation improves 
considerably because the contact loads and the internal loads are 
equivalent. However, this approach should be implemented with caution, 

since the contact forces are dependent on the material point stresses 
which are known to suffer from numerical oscillations, leading to oscil-
lations of the contact loads. Since stress oscillation problems are typical in 
MPM, in order to implement eq. (63) in any problem more complicated 
than this example, further improvements are needed. Additionally, the 
implementation of this contact technique using the implicit scheme is not 
straightforward, due to the interdependence of the internal and contact 
loads and the iterative nature of the implicit scheme. Since the im-
provements needed to implement this technique in both solution schemes 
are beyond the scope of this paper, all remaining examples have been 
computed using the initial approach. 

5.1.2. 1D bar benchmark 
This benchmark is similar to other 1D vibration benchmarks, except 

that this 1D bar is made up of two bars (bodies A and B). Initially, the 
bodies have zero internal stresses, but, due to the influence of gravity, 
they compress as soon as they are allowed to move. The equations of 
motion are calculated separately for the two bodies and the interaction 
between them is calculated via the contact forces. 

Fig. 8 shows a sketch of the benchmark, including the dimensions of the 
bars and the boundary conditions. The background mesh is shown, where 
each element was initially filled with 4 material points. Each bar has a 
height of H1 =H2 =5 m and a width of L =1 m. The size of the mesh is Δx =

Δy = 0.25 m. The properties of both bars are Young’s modulus, E = 1000 
kPa, Poisson’s ratio, ν = 0.35, and unit weight, γ = 15 kN/m3. The toler-
ance values used in the Newton-Raphson iterative procedure and the 
contact distance are tol = 1.0 × 10-8 and dmin = 0.25 m,respectively. 

Figs. 9 and 10 show the sum of the total energy of each 1D bar and the 
displacement of the top material point over 3 s using various time steps, 
for the explicit and implicit solution schemes, respectively. An FEM result 
is also included to provide a reference solution. As can be seen in Fig. 9a, 
by reducing the time step the energy conservation is improved. The 
largest drop of energy is during compression, when most of the pene-
tration occurs. Using the smallest time step of Δt = 1.0 × 10-5 s, the loss of 
energy is the lowest (4.7% after 3 s). On the other hand, using the largest 
time step, Δt =1.0 × 10-4 s, the loss of energy is considerable (22.5% after 
3 s). Consistent with the calculated loss of energy, Fig. 9b shows that the 

(a)

(b)

Fig. 9. a) Sum of the total energy of each 1D bar using the explicit scheme, and b) displacement of the top material point.  

Fig. 8. 1D bar benchmark background mesh, where each element was initially 
filled with 4 material points. 
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top material point is unable to reach its original position when a large 
time step is used. In contrast, when the smallest time step is used, the 
result is nearly equal to the FEM result (i.e. accurate). This is because the 
computed contact loads can adjust satisfactorily to the change of internal 
forces and velocities of each body during contact when smaller time steps 
are used, restricting the penetration of the bodies. 

When the implicit scheme is used (Fig. 10), the results for energy 
conservation and material point position are similar to those using the 
explicit scheme, based on each implicit simulation using a time step 10 
times larger than in the explicit simulation. 

5.1.3. Sliding benchmark 
In this benchmark, a block under gravity loading is located on a flat 

surface and slides. Fig. 11 is a sketch of the problem, showing that part of 
the background mesh where each element was initially filled with 4 
material points. Body A is a rigid surface and a body B slides over body A 
due to the gravity load (g) which is rotated by θ = 15◦ to the vertical. The 
lengths of the two bodies are L1 = 1.5 m and L2 = 6.0 m, respectively, and 
the height of each body is H1 = H2 = 0.75 m. The mesh size is Δx = Δy =

0.25 m, and body A is fixed at the bottom boundary and at the vertical 
boundaries. The elastic properties of the bodies are Young’s modulus, EA 
= 1000 kPa and EB = 5000 kPa, in which EA and EB refer to body A and B, 
respectively. The Poisson’s ratio and unit weight for both bodies are ν =
0.35 and γ =20 kN/m3, respectively. Two simulations using two different 
friction factors, μ = 0 and μ = 0.15, have been performed, and the results 

are compared with the analytical solution of Jiang & Yeung (2004). Time 
steps of Δt = 5.0 × 10-5 s and Δt = 5.0 × 10-4 s were used for the explicit 
and the implicit simulations, respectively. The tolerance values used in 
the Newton-Raphson iterative procedure and the contact distance are tol 
= 1.0 × 10-8 and dmin = 0.25 m, respectively. 

Fig. 12 shows the results of the benchmark over two seconds of sliding. 
It is seen that the simulated results using the explicit and the implicit 
schemes are close to the analytical solution. Nevertheless, small deviations 
can be seen, which are attributed to the non-smooth distribution of the 
contact loads at the interface between bodies A and B. Fig. 13 shows this 
distribution at the beginning of the simulation (i.e. no slip had yet 
occurred) and after some sliding considering μ = 0.15. Fig. 13a shows that 
the normal load Fnc is constant at the centre of the block and drops close to 
the corners. In addition, it shows that the frictional load Ffric is developing 
from right (Ffric = -0.43 kN at 1 m) to left (Ffric = 0.29 kN at 0.25 m) due to 
the weight of body B and the inclined gravity force. The frictional force has 
both positive and negative components. After slip occurs, Fig. 13b shows 
that the frictional loads are constant below body B, indicating that the 
frictional force is fully developed. Additionally, it is observed that the 
results obtained using the explicit and the implicit schemes are similar. 
The reader is directed to the work of Oden & Pires (1984) in which a 
similar simulation was performed, although under static conditions with 
loading applied via a traction on a single edge. The similarities in the 

(a)

(b)

Fig. 10. a) Sum of the total energy of each 1D bar using the implicit scheme, and b) displacement of the top material point.  

Fig. 12. Sliding simulation using the explicit and the implicit schemes.  
Fig. 11. Schematic of the sliding benchmark background mesh, where each 
element was initially filled with 4 material points. 
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qualitative distributions of the normal and frictional loads before the 
movement of the block give confidence in the analysis. Figs. 14 and 15 
show the average of the normal and tangent loads, respectively, below 
body B during the sliding. It is observed that both loads are close and 
oscillate around the analytical solution (which is computed considering 
static conditions). These oscillations are caused mainly by the vibration of 
body B during sliding. This is more evident in the explicit results, which 
exhibit larger oscillations. 

5.2. Geotechnical applications 

Two geotechnical problems are simulated using both the explicit and 
the implicit contact schemes. The first problem consists of a shallow 
foundation that penetrates into the soil due to an increase in gravita-
tional loading applied to the foundation. The second problem consists of 
a vertical cutting that, after failing, slides and collides against a wall. In 
these problems, the Young’s modulus used for the rigid elements (i.e. the 
foundation and the wall) are lower than realistic values for such ele-
ments. The reason for this is to permit a limited amount of bending of the 
‘rigid’ bodies, to demonstrate the capabilities of the method. 

5.2.1. Foundation 
This problem involves a foundation slab that penetrates into an 

incompressible, linear elastic, perfectly plastic von Mises soil, with a 
rough interface, i.e. no tangential slip is allowed. The initial stresses in 
the soil are computed as σy = γsoil hy and σx = σz = K0σy, where γsoil = 17.5 
kN/m3 is the soil unit weight, hy is the depth of the material point below 
the soil surface, and K0 = 0.7 is the coefficient of earth pressure at rest. 
The elastic parameters of the soil are Young’s modulus, Esoil = 5.0×103 

kPa, and Poisson’s ratio, νsoil = 0.49, and its undrained shear strength is 
Su = 10 kPa. The slab Young’s modulus and Poisson’s ratio are Eslab = 1.0 
×104 kPa and νslab = 0.45, respectively. 

Fig. 16 shows the geometry and boundary conditions of the problem. 
The slab dimensions are thickness, H1 = 0.6 m, and width, 2L1 = 4.0 m 
(only half of the foundation has been modelled), while the modelled soil 
domain has a depth of H2 = 4.0 m and a width of L2 = 7.0 m, respec-
tively. The vertical boundaries of the domain are fixed in the horizontal 
direction, whereas the bottom boundary is fixed in both directions. The 
mesh comprises four noded square elements of size Δx = Δy = 0.20 m, 
and there are initially four MPs in each element. Based on the results of 
the benchmark analyses, the time steps selected for the explicit and 
implicit simulations were Δtexpl = 1.0 × 10-5 s and Δtimpl = 1.0 × 10-4 s, 
respectively. The pressure exerted by the slab on the soil has been 
applied by increasing the self-weight of the slab by gravitational 
loading; i.e. by assuming the density of the slab to be ρslab = 3000 kg/m3 

and increasing the gravity from zero at a rate of 10 g/s. Finally, the 
tolerance value used in the Newton-Raphson iterative procedure and the 
contact distance are tol = 1.0 × 10-8 and dmin = 0.20 m, respectively. 

Fig. 17 shows the results for the foundation problem after a settlement 
of 0.20 m using the implicit scheme (with similar results also being ob-
tained with the explicit scheme). In Fig. 17a, the plastic deviatoric strain 
contours indicate a failure mechanism resembling the failure described in 

Fig. 16. Foundation problem.  Fig. 15. Interface tangent force (Ffric).  

)b)a

Fig. 13. Normal (Fnc) and tangent (Ffric) contact loads below body B, a) before displacement and b) after displacement.  

Fig. 14. Interface normal force (Fnc).  
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Terzaghi (1943), while Fig. 17b shows the shear stresses developed. By 
comparing both parts of the figures, it is seen that the larger plastic 
deviatoric strains develop in zones where the shear stresses shift from 
positive values to negative values. It is also evident that, due to the soil 
yielding and the use of a large Poisson’s ratio, some checker-board 
oscillation occurs, as is typical for von Mises incompressible materials 
using bi-linear elements. The reader is referred to Coombs et al. (2018) 

and González Acosta et al. (2019), where the volumetric locking problem 
has been studied. 

Fig. 18 shows the pressure (PL)–displacement responses computed 
using the explicit and implicit schemes, plotted against two analytical 
solutions of Terzaghi (1943). Both of these solutions for the bearing ca-
pacity consider rough contact between the soil and foundation. However, 
one solution does not include any overburden load (Q1 = SuNc), whereas 
the second solution does (Q2 = SuNc + γsoil Df, where Df is the depth of the 
base of the foundation). The pressure load between the slab and the soil is 
computed from the contact forces (Fnc) and the size of the foundation. As 
can be seen, despite the stress oscillations observed in Fig. 17, the 
maximum simulated bearing capacity of the soil is close to both analytical 
solutions, especially the second solution in which the influence of the 
deformation has been included (via the overburden component). 

5.2.2. Vertical cutting 
This problem consists of a vertical cutting that fails due to self-weight 

and then hits a protection wall. Fig. 19 shows a schematic of the initial 
state of the problem, including the boundary conditions. As for the pre-
vious example, the initial stress states in the vertical cutting and the 
protection wall are computed using the depth of each material point from 
the surface of each structure (i.e. hy1 and hy2, respectively), and the unit 
weights and earth pressure coefficients of the soil and the wall, γsoil = 18.0 
kN/m3, K0-soil = 0.7 and γwall = 25.0 kN/m3, K0-wall = 0.5, respectively. To 
generate the initial stresses in the vertical cut, a static step is applied in 
which the movement of the material points is prevented. This step causes 
large localised shear stresses to develop at the toe of the vertical cut, 
which cause the triggering of the landslide when the material points are 
released. The boundary conditions are that both bodies are fully fixed at 
the base, and the soil is also fixed in the horizontal direction at the left- 
hand vertical boundary. The height and width of the modelled soil 
domain and the protection wall are H1 = 2.5 m and L1 = 6.0 m, and H2 =

1.0 m and L2 = 0.8 m, respectively. The distance between the soil and the 
wall is L3 = 1.0 m, and the element size is Δx = Δy = 0.10 m. 

The elastic parameters of the soil and the wall are Young’s modulus, 
Esoil = 1.0 × 103 kPa and Ewall = 3.0 × 103 kPa, and Poisson’s ratio, νsoil 
= 0.38 and νwall = 0.30, respectively. The soil is modelled as a linear 
elastic, linear strain-softening von Mises material, with a peak cohesion, 
cp = 14 kPa, a residual cohesion, cr = 5 kPa, and a softening modulus, Hs 
= -18 kPa (see Wang et al. 2016b for details of the constitutive model). 
The wall is simulated as a linear elastic material. The time steps selected 
for the explicit and the implicit simulations are Δtexpl = 5.0 × 10-5 s and 
Δtimpl = 5.0 × 10-4 s, respectively. The tolerance value used in the 
Newton-Raphson iterative procedure and the contact distance are tol =
1.0 × 10-8 and dmin = 0.10 m, respectively. 

Fig. 20 shows the distribution of plastic deviatoric strains in the 
vertical cut, and the distribution of deviatoric stresses in the wall, after 
a) 0.8, b) 1.25 and c) 2.4 s in the implicit simulation. Fig. 20a shows a 
moment after the vertical cut has failed, with the soil mass moving 
downwards and to the right, and increasing its kinetic energy before the 

Fig. 19. Vertical cutting and protection wall (mesh indicative and not to scale).  

Fig. 18. Pressure–displacement curves up to a settlement of 0.2 m using both 
explicit and implicit schemes. 

a) 

b) 

Fig. 17. a) Plastic deviatoric strains after failure, and b) shear stresses 
after failure. 
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collision. Fig. 20b shows the instant at which the contact load and the 
internal deviatoric stresses in the wall are a maximum. Fig. 20c shows 
the end of the simulation, when the wall has partially recovered its 
position. It can be seen that, due to the adopted proximity detection rule, 
the two bodies are closely connected during contact. 

Fig. 21 shows the average pressure at the wall surface and the 
deviatoric stress at the wall base. The wall pressure in Fig. 21a has been 

computed by adding the contact force from each contact node and 
dividing it by the wall height H2. The deviatoric stress q in Fig. 21b has 
been computed, using the principal stresses, as 

q =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
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Fig. 20. Collision simulation after a) 0.8, b) 1.25, and c) 2.4 s. Plastic deviatoric strains are shown in the soil, and deviatoric stresses are shown in the wall.  

)b)a

Fig. 21. a) Contact pressure at the wall surface, and b) deviatoric stress at the base of the wall.  
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The material points selected to compute the deviatoric stress are those 
inside four elements at the bottom left corner of the wall (Fig. 21b). 
These points were chosen because, in this section of the wall, the 
deviatoric stress is a maximum. It is observed that the results in Fig. 21 
are consistent with each other, in that the maximum deviatoric stress 
occurs at the same time as the maximum contact pressure. Also, due to 
the elastic behaviour of the wall, an oscillatory behaviour is observed. 

5.3. Computational time 

The time steps used and the computational times recorded for the 
simulations from Sections 5.1 and 5.2 are presented, to further assess the 
capability of the implicit solution. Note that the time steps chosen for the 
geotechnical simulations were based on the results obtained from the 
benchmarks (i.e. the largest time steps which returned accurate results). 
The codes were compiled using Intel Parallel Studio XE, and run on a 
computer with an Intel Xeon E5-1620 processor and 16 GB RAM. 
However, it should be noted that no special effort was made to optimise 
the code (e.g. no parallel computing), which means that the installed 
RAM was not exploited to its maximum capacity. 

Table 2 summarises the implicit/explicit time step relationship, 
computation time (CT), and memory usage (MU) between the simula-
tions. It is observed that, in most of the simulations (i.e. except the block 
collision simulation), the time step used for the implicit simulations is 10 
times larger than the time step used for the explicit simulations. Due to the 
use of a larger time step, the computational time is smaller (in most of the 
simulations) when using the implicit solution. The reason for the larger 
computational time in the foundation simulation is the incompressibility 
of the soil, which leads to more iteration steps in order to reach equilib-
rium. However, in more realistic simulations, where contact only occurs 
for part of the simulation time, the implicit algorithm should lead to 
substantial computational time savings. Finally, it is observed that the 
memory usage is almost the same in both cases. This is because the im-
plicit scheme stores the global matrix in the form of a vector using the 
skyline strategy, and the adopted solver preserves the skyline during the 
solution step. Nevertheless, when the problems simulated contain a large 

number of points (e.g. the foundation and the soil/wall collision prob-
lems), the differences in memory usage are more evident. 

6. Conclusion 

MPM is able to simulate large-strain mechanical behaviour and, with 
the development of the contact solution, the interaction between multiple 
bodies is feasible. In this paper, an implicit contact solution was devel-
oped for MPM, based on existing explicit procedures and using the 
Newton-Raphson iterative procedure and Newmark’s time integration 
scheme. The relative performance of the formulation with respect to an 
explicit scheme was investigated through analysing three benchmark 
problems. It was shown that the results obtained using the explicit and 
implicit methods were almost identical. It was observed that both 
methods dissipate energy in a similar manner due to an inconsistency 
between the contact loads and the increment of material point stresses, 
which is proportional to both the time step and mesh size discretisation. 
Moreover, it was observed that by reducing the time step and mesh size to 
realistically small sizes, a reasonable energy conservation can be ach-
ieved. The ability of the method for simulating geotechnical problems 
was demonstrated through the analysis of foundation slab settlement in a 
cohesive soil, in which the failure mechanism and the bearing capacity 
obtained were similar to Terzaghi’s analytical solution, and through the 
analysis of the collision of a mass of soil against a protection wall. Finally, 
it was shown that the simulation using the implicit approach is faster 
when the contact loads in the problem are moderate; otherwise, the 
computational time can be similar to the explicit approach. 
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Appendix A 

The following matrices are formulated considering square four noded elements, FE shape functions and plane strain conditions (i.e. εz = 0 and σxz 
= σyx = 0). The respective matrices of the SFs and the SF derivatives are 

H =

⎡

⎣H1 0 H2 ⋯ 0 Hn 0
0 H1 0 ⋯ Hn− 1 0 Hn

⎤

⎦ (A1)  

and 

B =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

∂H1

∂x
0 ⋯

∂Hn

∂x
0

0
∂H1

∂y
⋯ 0

∂Hn

∂y

∂H1

∂y
∂H1

∂x
⋯

∂Hn

∂y
∂Hn

∂x

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

(A2) 

Table 2 
Time step relationship to achieve comparable accuracy, computation time and 
memory usage for each simulation.  

Problem analysed Implicit Δt /  
Explicit Δt 

Explicit  
CT (min) 

Implicit  
CT (min) 

Explicit  
MU (MB) 

Implicit  
MU (MB) 

Block collision 5 3.3 1.1 1.9 2.1 
1D vibration bar 10 11.6 3.6 3.0 3.5 
Sliding block 10 8.4 2.3 2.3 2.5 
Foundation settlement 10 305 335 66.8 76.6 
Soil-wall collision 10 94.3 68.3 80.9 86.6  
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where H represents the matrix of FE bi-linear SFs (N) or GIMP SFs (Sip), B represents the strain–displacement matrix B, ∇Sip or BC, the subscript 
indicates the node number, and n = 4 when bi-linear SFs are used or n is the number of nodes inside the material point support domain when GIMP is 
used. On the other hand, the relationship between stresses and strains (σ = Dε) considering a plane strain condition is 

⎧
⎨

⎩

σx
σy
σxy

⎫
⎬

⎭
=

E
(1 + ν)(1 − 2ν)

⎡

⎢
⎢
⎢
⎣

1 − ν ν 0

ν 1 − ν 0

0 0
1 − 2ν

2

⎤

⎥
⎥
⎥
⎦

⎧
⎨

⎩

εx
εy
εxy

⎫
⎬

⎭
(A3)  

where the vector of strains (ε = Bu) is 
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(A4) 

Finally, material point strains are computed using the CMPM extended domain (i.e. ε = B2uext) as 
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⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(A5)  

where n is the number of nodes in the extended domain as shown in Fig. A1. Note that the extended domain can be constructed using square arrays of 
C2 elements, where C > 1. 

Appendix B 

In this appendix, the combination of using GIMP SFs and the CMPM extended domain is explained. Fig. B1 shows a domain composed of 9 elements 
and 16 nodes (both numbered in the y direction, from left to right). The domain is filled with several material points, and a particular material point 
(indicated by the larger red cross) is used to demonstrate the GIMP and CMPM stencils. Since GIMP SFs and local GIMP SFs are used to integrate the 
nodal forces and stiffness, the material point support domain is used to select the elements. In this case, four elements are selected (4,5,7,8). On the 
other hand, CMPM has a different “extended” domain which, in this case, uses the full domain to enhance the accuracy of the stresses computed using 
Lagrange interpolation functions. It should be noted that the use of a different domain to perform nodal and stiffness integration and to recover stresses 
does not represent a problem, since the equilibrium (Eqs. (13), (21), (23), (28), (54) and (60)) is computed using only GIMP and, after equilibrium, the 
stresses are computed using CMPM. The reader is directed to González Acosta et al. (2020) for further information on the implementation of DM-GC, 
where the case of boundary material points is presented. 

Fig. A1. Extended domain for a material point using an array of 32 elements.  
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Appendix C 

To demonstrate the accuracy of DM-GC, a 1D benchmark problem is analysed. This problem is similar to the benchmark analysed in Coombs et al. 
(2018), in which a 1D column of material points is subjected to an increasing gravity force, and the error as a function of the number of square background 
elements (nel) is investigated. In this benchmark, the initial gravity load is zero, and the gravity is increased in increments of Δg = 1.0 × 10-4 g until 
maximum gravity loads of gSD =0.1g and gLD =20g, in which the first maximum gravity load (i.e. gSD) is used to study small deformations, and the second 
(i.e. gLD) is used to study large deformations. The 1D bar has an initial height and width of H0 = 10 m and L = 1 m. The elastic parameters of the bar are 
Young’s modulus, E =1.0 ×103 kPa, and Poisson’s ratio, ν =0.0. The density of the material points is ρ =1500 kg/m3. The bar is fully fixed at the bottom, 
and fixed in the horizontal direction along both vertical sides. Each background element is filled (initially) with four equally-spaced material points, and 
the simulations have been performed using the static scheme to avoid kinematic effects. The error during the calculations is measured as 

Fig. C1. Convergence of MPM, GIMP, and DM-GC after a gravity load of 0.1g.  

Fig. B1. Material point stencil (domain) used to perform nodal force and stiffness integration, and to recover (compute) stresses.  

Fig. C2. Convergence of MPM, GIMP, and DM-GC after a gravity load of 20g.  
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error =
∑nmp

p=1

⃦
⃦σp, z − σa, z(z)

⃦
⃦V0

p

(ρgH0)V0
BAR

(C1) 

in which σp,z is the material point vertical stress, σa,z(z) is the analytical vertical stress in the bar at the height z (i.e. σa,z = ρg(H-z), in which z is 
measured from the bottom), ‖•‖ is the L2 norm of (•), V0

p is the initial material point volume, V0
BAR is the initial bar volume, and ρgH0 is the vertical 

stress at the bottom of the bar used to normalise the difference in the stresses. 
Fig. C1 shows the convergence of MPM, GIMP and DM-CG considering small deformations. It is observed that MPM and GIMP have the same 

convergence (α ≈ 1, in which α is the order of convergence). Nevertheless, it is observed that the MPM error cannot reduce linearly at a certain point, 
which is attributed to the element crossing problem. On the other hand, using DM-GC the order of convergence is 1 < α < 2. Fig. C2 shows the results 
considering large deformations. In this case, it is observed that the MPM error grows due to the large number of material points crossing elements, which 
causes highly inaccurate internal stresses. On the other hand, the GIMP and DM-GC errors reduce at a similar rate (with DM-GC having a smaller error). 
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