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SUMMARY 

Floods are among the most damaging natural hazards and their impacts have been 

dramatically increasing worldwide over the past decades. As most basins of the world 

are ungauged or poorly gauged and some measurement networks are continuously 

under decline, the spatial distribution of flood hazard is often difficult to estimate 

because the input data needed for flood inundation modelling (e.g. topographies, 

flood extents, water levels) are often not available. 

A unique opportunity is nowadays provided by the ongoing development of remote 

sensing data, such as the low-cost, space-borne data. In particular, the development 

of new remotely sensed data sources has not only shifted flood modelling from a data-

poor to a data-rich environment, but also provided a paradigm shift in flood 

modelling: from developing more sophisticated flood models to evaluating potential of 

remote sensing data. There is a general consensus that the increased availability and 

quality of those low-cost remote sensing data will be valuable for improving 

prediction in ungauged basins. However, their value and potential in supporting 

hydraulic modelling of floods are still not sufficiently explored in view of the 

unavoidable, intrinsic uncertainty affecting any modeling exercise. In this context, 

this thesis aims to explore the potential and limitations of low-cost, space-borne data 

in flood inundation modelling under uncertainty. 

In our research work, we analyze the potential in supporting hydraulic modelling of 

floods of: NASA’s SRTM (Shuttle Radar Topographic Mission) topographic data, 

SAR (Synthetic Aperture Radar) satellite imagery and radar altimetry. The 

characteristics of those data, and their pros and cons for inundation modelling are 

discussed. For example, SRTM`s global coverage and relatively low vertical error on 

low-slope areas are in favour of floodplain modelling, while its absence of in-channel 

geometry information would hamper its application in flood studies. Low-cost SAR 

imagery`s day-night, all-weather, cloud-free acquisition are particularly useful for 

flood extent monitoring, while its low resolution could induce equifinality in 

inundation model conditioning. Radar altimetry`s reliable water level measurements 

over large rivers provides opportunities for flood model calibration and evaluation, 

while its low space-time frequency limits the application in areas such as flood 

forecasting. 

To this end, research work has been carried out by either following a model 

calibration-evaluation approaches or by explicitly considers major sources of 

uncertainty within a Monte Carlo framework. To generalize our findings, three river
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reaches with various scales (from medium to large) and topographic characteristics 

(e.g. valley-filling, two-level embankments, large and flat floodplain) are used as test 

sites. Thus, specific modelling exercises are implemented with slight, tailor-made 

modifications to deal with practical issues, such as the actual data availability, the 

characteristics of flood events etc. The usefulness of the low-cost space-borne data is 

quantitatively analyzed. Lastly, an application of SRTM-based flood modelling of a 

large river is conducted to highlight the challenges of predictions in ungauged basins. 

The outcomes of the study provide indications on the potential and limitations of 

low-cost, space-borne data in supporting flood inundation modelling under 

uncertainty. Specifically, DEM resolution is often less of an issue than its vertical 

accuracy, as long as the coarse resolution allows the representation of flood pattern-

controlling topographic features for the flood modelling issue, which is often not the 

case in urban flood studies. Thus, the thesis includes and discusses the usefulness of 

these data according to specific modelling purpose (e.g. re-insurance, planning, 

design). Moreover, topographic uncertainty could be compensated by other sources of 

uncertainties in hydraulic modelling if they are explicitly taken into account. The 

model prediction based on SRTM can be very close to that based on high-resolution, 

high-accuracy topographic data under other sources of uncertainty. However, besides 

modelling purpose and uncertainty considered, their actual usefulness could be 

affected by several other factors, such as the scale of the river under study, flood 

frequency, and the choice of modelling tools. Furthermore, the issue of in-channel 

information absent in SAR-derived DEMs are also discussed. It could be partially 

resolved by using either the global river depth dataset, or depth estimating from 

hydraulic geometry theory or model parameterization. Lastly, we discuss the 

upcoming satellite missions, which could potentially impact the way we model flood 

inundation patters. 

 

Kun Yan 

Delft, the Netherlands 

  



SAMENVATTING 

Overstromingen behoren tot de meest schadelijke rampen en de gevolgen ervan zijn 

de afgelopen decennia wereldwijd dramatisch toegenomen. Aangezien de meeste 

stroomgebieden wereldwijd onbemeten of slecht bemeten zijn en het aantal 

meetsystemen achteruit blijft gaan, is de ruimtelijke spreiding van 

overstromingsgevaar vaak moeilijk in te schatten, omdat de invoerdata voor 

overstromingsmodellen (bv. topografie, overstroomd oppervlak, waterstanden) vaak 

niet beschikbaar zijn. 

Tegenwoordig zorgt de verdere ontwikkeling van remote sensing data, zoals goedkope 

satelliet data, voor unieke mogelijkheden. Het gebruik van nieuwe remote sensing 

data heeft niet alleen het modelleren van overstromingen van gegevens arm in 

gegevens rijk veranderd, maar versterkt ook de paradigmaverschuiving in de 

modellering van overstromingen: Van het ontwikkelen van meer geavanceerde 

overstromingsmodellen tot het gebruik van remote sensing data in deze modellen. Er 

is een algemene consensus dat de toegenomen beschikbaarheid en kwaliteit van 

goedkope remote sensing data, waardevol zal zijn voor het verbeteren van 

voorspellingen in onbemeten stroomgebieden. Hun waarde en potentie in de 

ondersteuning van hydraulische modellering van overstromingen zijn echter nog steeds 

niet voldoende onderzocht, met het oog op de onvermijdelijke, intrinsieke onzekerheid 

van elk model. Vanuit deze context is dit proefschrift gericht op het verkennen van de 

mogelijkheden en beperkingen van de low-cost satelliet gegevens in 

overstromingsmodellen onder onzekere omstandigheden.  

In ons onderzoek, analyseren we de mogelijkheid om hydraulische 

overstromingsmodellen te verbeteren met: NASA's SRTM (Shuttle Radar 

Topographic Mission) topografische gegevens, SAR (Synthetic Aperture Radar) 

satellietbeelden en radaraltimetrie. De kenmerken van deze gegevens, en hun voor- en 

nadelen voor overstromingsmodellen worden besproken. SRTM heeft een wereldwijde 

dekking en relatief lage verticale fout op gebieden met kleine hoogteverschillen en zijn 

bijvoorbeeld zeer geschikt voor het modelleren van uiterwaarden, terwijl de 

afwezigheid van geometrische informatie over de rivierbedding de toepassing ervan in 

overstroming studies zouden kunnen belemmeren. Low-cost SAR beelden die niet 

beïnvloed worden door het weer, bewolking of afwezigheid van daglicht, zijn vooral 

nuttig om de omvang van de overstromingen te monitoren. Maar de lage resolutie kan 

equifinality veroorzaken in overstromingsmodellen. Betrouwbare hoogtemeting van 

het water niveau van grote rivieren met behulp van radar biedt mogelijkheden voor
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kalibratie en evaluatie van overstromingsmodellen, terwijl de lage ruimte en tijd 

frequentie de toepassing beperkt voor het voorspellen van overstromingen. 

Met dat doel is onderzoek uitgevoerd door het volgen van model kalibratie en 

evaluatie methodes of door een expliciete benadering van de belangrijke bronnen van 

onzekerheid op basis van Monte Carlo analyses. Om onze bevindingen te 

generaliseren zijn er drie rivier secties van verschillende grote (gemiddeld tot groot) 

en topografische kenmerken (vallei vullend, dubbele bedijking, grote en vlakke 

uiterwaarden) gebruikt als test locaties. Zo worden specifieke model tests uitgevoerd 

met kleine, op maat gemaakte aanpassingen, om zodoende om te gaan met praktische 

zaken, zoals de feitelijke beschikbaarheid van gegevens, de kenmerken van 

overstromingen enz. De bruikbaarheid van de low-cost, vanuit satelliet observatie 

verkregen, gegevens is vervolgens kwantitatief geanalyseerd. Ten slotte is een 

toepassing van een op SRTM gebaseerd overstromingsmodel van een grote rivier 

uitgevoerd om de uitdagingen van voorspellingen in onbemeten stroomgebieden te 

benadrukken.  

De uitkomsten van het onderzoek geven een indicatie van de mogelijkheden en 

beperkingen van de low-cost, vanuit satelliet observatie verkregen gegevens, voor het 

verbeteren van overstromingsmodellen onder onzekere omstandigheden. Hierbij is de 

DEM resolutie vaak een kleiner probleem dan de verticale nauwkeurigheid, zolang de 

grove resolutie de belangrijke topografische elementen maar goed weergeeft die het 

overstromingspatroon kunnen beïnvloeden, wat vaak niet het geval is in studies naar 

overstromingen in stedelijke gebieden. Dit proefschrift bespreekt de bruikbaarheid van 

deze gegevens naargelang het specifieke doel van modellering (bv. herverzekering, 

planning, ontwerp). Bovendien zou de topografische onzekerheid kunnen worden 

gecompenseerd door andere bronnen van onzekerheid in de hydraulische modellen als 

daar expliciet rekening mee wordt gehouden. De voorspelling van de op SRTM 

gebaseerde modellen kunnen bijna dezelfde prestaties hebben als modellen die 

gebaseerd zijn op zeer nauwkeurige topografische gegevens met een hoge resolutie 

vanwege andere bronnen van onzekerheid. Echter, naast het gebruik voor doelen en 

onzekerheden in modellen, zou het werkelijke nut ervan door verscheidene andere 

factoren beïnvloed kunnen worden, zoals de omvang van de bestudeerde rivier, 

overstromingsfrequentie, en de keuze van modelleringinstrumenten. Verder wordt ook 

het ontbreken van informatie over het rivierbed van op SAR gebaseerde DEMs 

besproken. Dit kan gedeeltelijk worden opgelost met behulp van ofwel de dataset voor 

globale rivierdieptes, of schattingen van waterdiepte op basis van hydraulische 

geometriemodellen, of door model parametrisatie. Tot slot bespreken we de verwachte 
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nieuwe satelliet missies, die mogelijk een invloed hebben op de manier waarop we 

overstromingspatronen modelleren. 

Kun Yan 

Delft, the Netherlands 
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 1 

CHAPTER 1 

INTRODUCTION 

This chapter introduces low-cost space-borne data such as SRTM topography, 

satellite imagery and radar altimetry, as well as the current progress in integrating 

various low-cost space-borne data for inundation modelling toward model building, 

calibration and evaluation, mainly in the last five years. At the end of this chapter, 

the objectives, methodology and outline of this thesis are presented. 



2 Chapter 1 Introduction 

 

1.1 BACKGROUND 

Floods are among the most damaging natural hazards and their impacts have been 

dramatically increasing worldwide over the past decades (Dankers et al., 2013; Aerts 

et al., 2014; Di Baldassarre et al., 2010). Flood risk is likely to increase in the near 

future not only due to climate change and sea level rise, but also because of the 

growth of human population in floodplains (Figure 1.1, Di Baldassarre et al., 2010; 

see also Hinkel et al., 2014; Jongman et al., 2014). Anticipating flood risk in a 

changing environment is therefore crucial for sustainable development in the 21st 

century. 

 

Figure 1.1 Flood risk and population growth: spatial distribution of population growth 

in the period between 1960 and 2000 (scale from yellow to red); and location of floods 

(dots) and deadly floods (black circles) (redraw from Di Baldassarre et al., 2010) 

Hydraulic modelling has become an essential tool for flood risk studies. However, as 

most basins of the world are ungauged or poorly gauged (Stokstad, 1999; Sivapalan 

et al., 2003) and many measurement networks are continuously under decline, there is 

often a lack of data for hydraulic modelling of floods. The initiative launched by the 

International Association of Hydrological Sciences (IAHS) on Predictions in 

Ungauged Basins (PUB) more than ten years ago has highlighted the need to 
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advance predictions in ungauged basins. One of the science themes of PUB was to 

exploit the wealth of new data sources for improved prediction in ungauged basins or 

data-sparse areas. Specifically, one question has been raised in the hydrological 

sciences community: 'How can we employ new observational technologies in improved 

predictive methods?' The integration of such 'new' observations with 

hydrologic/hydraulic modelling has therefore been one of the focuses in hydrological 

sciences over the past decade (Sivapalan et al., 2003). 

 
Figure 1.2 LiDAR data of City of Barcelonnette, France 

In this context, the development of new remotely sensed data sources has not only 

shifted flood modelling from a data-poor to a data-rich environment (Di Baldassarre 

et al., 2011; Bates 2012; Schumann et al., 2009), but also provided a paradigm shift 

in flood modelling. In particular, there has been an increasing interest in evaluating 

potential of emerging remote sensing/earth observation data rather than keep on 

developing more sophisticated models (Bates 2012). Among the new data sources, air-

borne remote sensing products (e.g. Light Detection and Ranging (LiDAR) 

topography (Figure 1.2 and Figure 1.3), aerial photography, hyperspectral and 

Synthetic Aperture Radar (SAR) sensors), which provide high-resolution and high-

accuracy data, are costly to acquire over large areas. For example, the vertical 

accuracy of LiDAR topography could normally reach 10-15 cm RMSE with spatial 

resolution of 2-5 m (Bates 2012). However, the cost of acquiring and processing the 

LiDAR data is around 750 US dollar per square kilometre (Humme et al., 2011). This 

is therefore a significant limitation when large-scale flood studies are undertaken, 

particularly in developing countries. The first major advances in PUB became 

possible thanks to considerable progress in orbital earth observing satellite technology. 

Those global low-cost earth observation (remote sensing) data provide large amount 

of scientific information, despite their often low-resolution, low-accuracy and low-

frequency. There is a general consensus that the increased availability and quality of 
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those low-cost remote sensing data will be valuable for improving prediction in 

ungauged basins (Hrachowitz et al., 2013), although the measurements provided by 

ground-based gauging stations still remain crucial for flood inundation modelling. 

Thus, integrating those new sources of low-cost data with ground-based observations 

and models as well as estimating associated uncertainties related to hydraulic 

modelling is a major scientific challenge. 

 
Figure 1.3 3-D LiDAR data shows downtown Manhattan (Image from NOAA) 

This thesis focuses on the potential and limitations of low-cost, space-borne data (e.g. 

freely available global DEMs, SAR imagery from ERS-1/2 and ENVISAT missions 

and radar altimetry) in supporting hydraulic modelling of floods in data-poor areas. 

Currently, most low-cost data are characterised by global coverage, easy accessibility, 

short repeat cycle at the cost of relatively coarse spatial resolution and low vertical 

accuracy (Schumann et al., 2009). However, as remote sensing technology is 

developing at fast pace, higher resolution and better accuracy data are expected to be 

globally available at low-cost in the near future (e.g. the recently launched Sentinel-1). 

Some research work that is reported in this thesis is also based on high resolution 

DEMs (e.g. LiDAR). These high resolution data are used to test the usefulness of 

low-cost data. 

1.2 GLOBALLY FREELY AVAILABLE TOPOGRAPHY AS INPUT DATA FOR 

HYDRAULIC MODELLING 

Topographic information is among the most important input data for hydraulic 

modelling (Farr et al., 2007). It is also considered as one of the most significant 

sources of uncertainty in hydraulic modelling (e.g. Jung et al., 2012a). There was a 
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lack of low-cost globally-available digital elevation model (DEM) before the launch of 

the Shuttle Radar Topography Mission (SRTM, Figure 1.4). In February 2000, the 

SRTM was successfully launched by a joint effort of the National Aeronautics and 

Space Administration (NASA), the National Geospatial-Intelligence Agency (NGA) 

and the German Aerospace Center (DLR). This 11-day mission flown on Space 

Shuttle Endeavour offers a DEM of all land between 60 N and 56 S, about 80% of 

Earth`s land surface (Farr et al., 2007). The data processing of this interferometric 

SAR technology product includes SAR focusing, motion compensation, coregistration 

and interpolation, interferogram formation and filtering, and phase unwrapping 

(Rabus et al., 2002). After the data processing, the SRTM data was sampled to the 

resolution of 3 arc sec (approximately 90 m) globally and 1 arc sec (approximately 30 

m) for the US territory (Farr et al., 2007), and recently also for Australia. The 

primary goal of the mission was to produce a topographic dataset with globally 

consistent and quantified errors (Rodriguez et al., 2006), with linear vertical absolute 

height error of less than 16 m on average and linear vertical relative height error of 

less than 10 m (Farr et al., 2007). The global validation of SRTM demonstrated that 

the absolute height error in all continents ranged from 5.6 to 9.0 m at 90% confidence 

(Table 1.1, Rodriguez et al., 2006). This validation mainly relied on the comparison 

with kinematic GPS data. 

 
Figure 1.4 SRTM 90m Digital Elevation Data from CGIAR-CSI 

(http://srtm.csi.cgiar.org/) 

1.2.1 Error characteristics of SRTM and its global assessment 

The vertical absolute height error in Table 1.1 provides an overview of SRTM quality 

at the continent level. This error is composed of several types of errors (Falorni et al., 

2005). Among those, the most characteristic error of the SAR-derived DEMs, like 

SRTM, is random noise induced by radar speckles in the form of spikes and wells 

(with a magnitude of approximately ±2~5 m, Hanssen, 2001). This random noise, 

which affects the vertical elevation of SRTM data set, leads to relative height error 
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from 4.7 to 9.8 m at the continent level (Table 1.1). It is independent from one pixel 

√to another and is linearly proportional to 1/ n, where n is the number of pixels 

being aggregated (Rodriguez et al., 2006). Hydraulic modelling, in particular two-

dimensional (2D) flood inundation modelling is hampered by the random noise on 

floodplain as the relative error dominates flood patterns and dynamics (Falorni et al., 

2005). Some efforts on smoothing out the discontinuity and reducing this type error 

can be made either by using a wavelet filter (e.g. Falorni et al., 2005) or aggregating 

DEM cells (e.g. Neal et al., 2012a). 

Table 1.1 Global assessment of SRTM DEM (Rodríguez et al., 2006) 

Error Type Eurasia N. America S. America Africa Australia Islands 
Absolute Height Error (m) 6.2 9.0 6.2 5.6 6.0 8.0
Relative Height Error (m) 8.7 7.0 5.5 9.8 4.7 6.2

 

It is worth mentioning that DEM aggregation to resolutions much coarser than 90 m 

is only appropriate for very large-scale flood studies. Also, the SRTM elevations 

include vegetation canopy heights and removal of those is much less understood and 

only in a research phase meaning that the SRTM DEM is currently not available as a 

bare ground digital terrain model (DTM) by default. Due to the overestimated 

floodplain topography in heavy vegetated floodplains could lead to underestimation 

of inundation extent, vegetation needs to be removed before the DEM can be applied 

to flood inundation mapping or modelling (Baugh et al., 2013). Some studies focused 

on uniform vegetation height removal by inspecting the SRTM at independently 

known vegetation areas (Coe et al., 2008; Paiva et al., 2011). However, since the 

SRTM elevation represents a phase center height located between the bare ground 

and the top of the canopy (Brown et al., 2010), it would only be necessary to 

subtract a percentage of the total vegetation height. In particular, the percentage of 

canopy height that is removed from SRTM DEM should be quantified, as this 

percentage tends to differ from river to river. The new vegetation removal method 

also requires global vegetation height data (Lefsky, 2010; Simard et al., 2011) on 

SRTM. For example in Amazon, Baugh et al., (2013) showed subtracting 50 to 60 

percentage vegetation height of the global vegetation dataset (Simard et al., 2011) 

from SRTM leads to optimum hydrodynamic modelling performance. These 

percentages in other major rivers of the world are not known at the moment thus 

more investigations are required. 

Some scientific studies have highlighted that the vertical accuracy of SRTM is 

strongly influenced by terrain relief: large vertical errors and voids are frequent in 

high-relief terrain, while in the low- to medium-relief areas, the vertical errors are 
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smaller and voids are much less (e.g. Sanders, 2007; Falorni et al., 2005). Floodplains, 

rivers and deltas, where hydraulic modelling usually takes place, are low relief areas 

and therefore associated with a lower absolute height error in SRTM data. For 

example, SRTM underestimates elevation 3.6-10.3 m at high-relief and high-altitude 

terrain for the Santa Clara River are in the US compared to national elevation data 

(NED, a patchwork of topographic data from several sources including LiDAR 

surveys). While SRTM differs at most 0.91 m for the pasture swath, 3.0 m for the 

riparian swath and 4.0 m for the commercial swath in the same area (Sanders, 2007). 

Falorni et al., (2005) showed the SRTM has a mean vertical error around 3.2 m when 

it was compared to Ground Control Points (GCPs) in a lowland and low relief 

catchment (the Little Washita Basin, Oklahoma, USA), while the vertical error 

magnitude was found to generally increase with increasing elevation (and slope) in 

the Tolt River Basin (Washington, USA). Patro et al., (2009) compared SRTM 

elevation values with topographic maps (toposheets from Survey of India (SOI)) in 

153 spots of the Mahanadi River delta region (with elevation above sea level varying 

between 0 and 25 m). They found that the SRTM elevations are on average 2.3 m 

higher than those obtained from the topographic maps. Wang et al., (2012) compared 

the SRTM DEM elevations to gridded Global Positioning System (GPS) points in 

Longli Co Lake in southeastern Tibet of China and found large errors (Root Mean 

Square Error (RMSE) around 14 m). These vertical errors are higher than those of 

the two studies in Falorini et al., (2005) and Patro et al., (2009). This is likely 

attributed to the high relief and high elevation of the Tibetan Plateau. 

One of the largest drawbacks of SRTM is that its SAR-based interferometer 

technology cannot obtain the geometry of the river bed below the water surface, but 

instead SRTM data provide water surface elevation in rivers at the time of the space 

shuttle overpass (February 2000; Farr et al., 2007). In addition, a coarse resolution 

pixel within SRTM also includes surrounding regions of the main channel. As a result, 

the channel bed elevation may be greatly overestimated in SRTM data (Figure 1.5). 

The scientific community has proposed several approaches to deal with this issue (e.g. 

Neal et al., 2012a; Patro et al., 2009; Alfieri et al., 2014): reduce the SRTM bed 

elevation according to additional data sources; correct SRTM bed elevation using 

hydraulic geometry relationships, or assume a certain river flow at the time of shuttle 

overpass for SRTM data acquisition and adjust the inflow hydrograph accordingly. 

Alfieri et al., (2014) assumed the river bed elevation described by SRTM corresponds 

to average runoff conditions. Therefore, inflow hydrographs were reduced by 

subtracting the mean discharge, which was calculated from the 21-year discharge time 

series. Given the fact that the detailed topographic information on floodplain is rarely 
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available in a large number of cases, as well as the overestimation of in-channel bed 

elevation of SRTM, the usefulness of the hybrid DEM (i.e. SRTM floodplain plus 

ground-surveyed in-channel geometry) in hydraulic modelling is also worth to explore. 

Patro et al., (2009) reduced the SRTM DEM-derived cross-section elevation values by 

2.3 m, which was the average difference between the elevations of SRTM DEM and 

topographic maps, to simulate the river flows of the Mahanadi River in India with 

limited available data. Neal et al., (2012a) used hydraulic geometry theory to correct 

SRTM data by approximating river bed elevation in an 800-km reach of the River 

Niger in Mali. Hydraulic geometry theory relates river depth and width to river 

discharge using a series of power laws (Leopold and Maddock 1953). A derivation of 

the hydraulic geometry equation used within the subgrid channel model in Neal et al., 

(2012a) is given by: 

f/b

f/b
w

a

c
d 






                                                 (1.1) 

where d is the depth from the river bank elevation, w is the bankfull width that now 

are available at two global database (Andreadis et al., 2013; Yamazaki et al., 2014), 

both the term c/af/b and the exponent of w, f/b, are the free parameters that need to 

be estimated or calibrated (Neal et al., 2012a). Yan et al., (2015a) calibrated a 

SRTM-based hydraulic model on a reach of Danube River in which the bed elevation 

was treated as an additional parameter. The optimal bed elevation was the SRTM 

bed elevation values reduced by 5 m. Then the optimal model was used to predict 

another independent flood event, which yielded a Mean Absolute Error (MAE) of 

1.37 m validated against water levels from four ground gauge stations; whilst this 

error is relatively large for commonly reported water level prediction accuracies, it is 

about the same as the actual integer precision of the SRTM DEM data. 

The voids in the SRTM dataset which add more uncertainty in the terrain topology 

poses a considerable problem for hydraulic modelling. Recently, the voids of SRTM 

have been filled and two global coverage void-filled SRTM versions exist, from the 

Consortium for Spatial Information of the Consultative Group for International 

Agricultural Research (CGIAR-CSI, Jarvis et al., 2008) and the United States 

Geological Survey (USGS) Hydrological data and maps based on SHuttle Elevation 

Derivatives at multiple Scales (HydroSHEDS) database 

(http://hydrosheds.cr.usgs.gov/). Recently in November 2013, the Land Processes 

Distributed Active Archive Center (LP DAAC) released the NASA SRTM Version 3.0 

(SRTM Plus) product collection with all voids eliminated (available at 

https://earthdata.nasa.gov/). 



Chapter 1 Introduction 9 

 

 

 
Figure 1.5 Images of water surface elevations from SRTM in the central Amazon 
Basin derived from the (a) C band and (b) X band systems. Compared to X band, C 
band elevations are missing (white areas) for some portions of the channel and lake 
areas. Elevation accuracies over water surfaces in both DEMs are degraded compared 
to surrounding land. Red represents the lowest elevations, followed by blue and yellow 
for the highest elevations. 

1.2.2 SRTM application in hydraulic modelling 

Given the potential value of SRTM data for large-scale studies of alluvial rivers, 

floodplain and delta areas, a number of studies have explored the capability of SRTM 

in supporting large-scale hydraulic modelling (e.g. Sanders, 2007; Schumann et al., 

2008, 2010; Alfieri et al., 2014; LeFavour and Alsdorf 2005; Neal et al., 2012a; Patro 

et al., 2009; Wang et al., 2012; Yan et al., 2013, 2014). These studies cover many 

aspects in hydraulic modelling including water level and water surface slope retrieval, 

flood extent simulation, water level and discharge prediction. The followed session 

summarizes those studies. 

Wind roughening of the water surface and wave action can produce radar 

backscattering at large look angles (30  to 58 ) meaning that SRTM can yield 

elevation over water surfaces. This provides opportunity to estimate water surface 

slope from SRTM-derived water levels. Water slope and discharges calculated by 

LeFavour and Alsdorf (2005) on the Amazon River had only 6.2% difference 

compared to in-situ discharge measurement. 

Apart from direct extracting water levels from DEM, a methodology for indirect 

water stage retrieval during floods also seems promising. This is to intersect high 
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vertical accuracy DEM with airborne or space-borne imagery (e.g. Matgen et al., 

2007; Oberstadler et al., 1997; Brakenridge et al., 1998) and derive water stages at 

the flood shoreline. This method was applied to global freely available DEM (e.g. 

SRTM) and timely low resolution SAR imagery as well. After intersecting SRTM 

DEM with Advanced Synthetic Aperture Radar (ASAR) Wide Swath Mode (WSM) 

imagery for 2008 flood in River Po of Italy, Schumann et al., (2010) compared the 

water level approximation with those derived from intersecting a high-resolution, 

high-accuracy LiDAR DEM with ASAR imagery. They were remarkably close to each 

other (with mean elevation error of the best fit line of -26 cm). A similar 

methodology was applied to the River Alzette in Luxembourg by Schumann et al., 

(2008), the SRTM derived water stages showed a relatively good performance with 

1.07 m RMSE compared to those simulated by a flood inundation model calibrated 

with distributed ground-surveyed high water marks. 

 
Figure 1.6 Flood depth of Santa Clara River simulated by hydraulic models using 
NED and SRTM datasets. Shown also are Castaic Creek (CC) and San Francisquito 
Creek (SFC) junctions, Interstate-5 (I-5) and point P which marks a constriction in 
the river (modify from Sanders 2007) 

Flood extent, as a proxy for flood damage, can be simulated by 2D hydraulic models. 

Those models are preferably built using high resolution, high accuracy topography 

and calibrated and/or validated on high quality observed data of flood extent (e.g. 

Hunter et al., 2005). Recent studies also tried to explore the potential of SRTM DEM 

on flood extent prediction (e.g. Sanders 2007; Yan et al., 2014). Relatively good 

performance could be obtained by simulating low-frequency floods if SRTM is 
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appropriately treated. For example, Sanders (2007) found that SRTM topography 

yielded a 25% larger flood zone compared with the high-resolution topography (i.e. 

NED, national elevation data) in a steady-flow model application on the Santa Clara 

River (Figure 1.6). Wang et al., (2012) found that the HEC-RAS model built with 

SRTM yielded a 6.8% larger flood inundation extent and a mean water depth 

approximately 2 m shallower than that provided by a high precision topography. 

Table 1.2 Global freely available (or low-cost) DEMs for hydraulic modelling 
(Schumann et al., 2014) 

DEM Spatial resolution Vertical accuracy 
SRTM 90 m 5.6-9 m 
ASTER GDEM 30 m 7-14 m 
ACE2 GDEM 1 km >10 m 
GTOPO30 (HYDRO1k) 1 km 9-30 m 
TanDEM-X <12 m <2 m 

 

The potential of SRTM DEM in simulating water levels and discharges in one-

dimensional (1D) hydraulic modelling has also been explored. For example, Patro et 

al., (2009) showed a SRTM-based MIKE 11 model calibrated with in-situ river 

discharge and water level for the monsoon period in 2004 performed reasonable in 

model validation (with a water level RMSE less than 1 m). The model was validated 

using discharge and water level data for the same period in 2001 and 2002. The cross 

sections provided by SRTM were improved by referring to ground-surveyed 

topographic maps. 

1.2.3 Other freely available or low-cost global DEMs 

Apart from SRTM, there are also other free or low-cost global DEMs (Table 1.2). 

Advanced Space-borne Thermal Emission and Reflection Radiometer (ASTER) 

Global Digital Elevation Model (GDEM) is a 30-m spatial resolution DEM developed 

using stereo-photogrammetry. The global assessment of ASTER showed its accuracy 

is of 17 m at the 95% confidence level (Tachikawa et al., 2011), meaning that SRTM 

has some advantages over ASTER for most flood modelling studies (Bates et al., 

2013). Although it has been recently improved in 2011 by reducing voids and 

correcting anomalies (http://www.jspacesystems.or.jp/ersdac/GDEM/E/4_1.html), 

very few studies have successfully used and tested this DEM product for inundation 

modelling and mapping (e.g. Gichamo et al., 2011; Wang et al., 2012). For example, 

Gichamo et al., (2011) found the ASTER GDEM is 27 m high for the stream central 

line of the River Tisza, Hungary. The vertical bias correction was therefore carried 
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out by comparison of elevation points with a high accuracy DEM, produced a 

considerable improvement to the cross sections obtained. This bias correction was 

considered as a very important component in subsequent application; however, this 

cannot be done without a high accuracy DEM, which is rarely available in data-

scarce areas. The ASTER DEM in River Po basin looks even worse (Figure 1.7): the 

elevation on the west part is systematically lower than that of the east part. The line 

divides two parts of the terrain showing systematic error can be clearly observed. 

Moreover, the in-channel part of River Po is abnormally higher than the floodplain 

outside the banks (see in Figure 1.3), which makes the end-user impossible to carry 

out any flood modelling based on ASTER DEM. This coincides the findings in 

Gichamo et al., (2011). 

 
Figure 1.7 ASTER DEM of River Po (Italy) Delta: ~8 m elevation difference is 
found on two sides of the 'systematic error line', in-channel elevation of River Po is 
~20 m high than the surrounding floodplain. 

Other global DEMs such as Altimeter Corrected Elevations 2 (ACE2) GDEM and 

Global 30 Arc-Second Elevation (GTOPO30) have a  resolution of 1 km, which is 

often too coarse for regional flood studies but may be adequate for large-scale 

applications when models can be run in sub-grid mode (Neal et al., 2012a; Schumann 

et al., 2013). TerraSAR-X add-on for Digital Elevation Measurement (TanDEM-X) at 

a spatial resolution of 12 m and a vertical accuracy of less than 2 m is certainly 

appealing, although the release of this version is currently under a commercial license. 

Also, scientific assessment of this DEM is at the moment only in an experimental 
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phase and its use is thus fairly restricted, meaning that it is too immature to 

conclude on its use for hydraulic modelling. Having said that, the associated low-cost 

(100 euro per quota, ~7700 km2) would be a relatively minor obstacle if cost were a 

constraint. First observations seems to indicate that TanDEM-X is a promising low-

cost alternative and might allow for the first time more detailed local flood studies at 

the global scale (Yan et al., 2015b). 

1.2.4 River width and depth database 

As already stated earlier, global DEMs usually cannot provide accurate in-channel 

geometry information (e.g. main channel depth), which therefore needs to be 

approximated by using various methods (e.g. Neal et al., 2012a; Patro et al., 2009; 

Yan et al., 2015a). There is indeed a need to estimate river depths and widths with a 

consistent methodology for flood modelling based on freely available DEMs in data-

scarce regions. To this end, global river bankfull width and depth databases were 

developed and are freely available (Andreadis et al., 2013; Yamazaki et al., 2014). 

The database by Andreadis et al., (2013) is derived as the following: the drainage 

areas for river reaches are derived from a 15 arc sec SRTM DEM globally (Lehner et 

al., 2008). The discharges were then estimated using the equation Q = k Ac, where Q 

is discharge, A is the drainage area, and k and c are coefficients (Wharton et al., 1989; 

Sweet and Geratz, 2003). Afterwards, regression equations were developed using the 

GRDC (Global Runoff Data Centre) data and discharge estimations, with the mean 

value of R2 equals to 0.95. The regression equations were used to estimate a mean 

annual peak flow (approximating the flow with 2 year return period) for every river 

reach delineated in the HydroSHEDS dataset. Then the widths and depths were 

calculated based on hydraulic geometry relationships, which describe the power law 

relation between discharges and widths (or depths). Even though errors in validation 

with widths derived from Landsat imagery ranged from 8 to 62%, this database can 

be useful to provide initial estimates for hydraulic or hydrologic modelling where 

other suitable measurements are not available. The global width database by 

Yamazaki et al., (2014) is calculated from satellite-based water masks and flow 

direction maps based on the SRTM Water Body Database and the HydroSHEDS flow 

direction map. The effective river width was compared with existing river width 

databases and relative differences were within ±20% for most river channels. 
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1.3 SATELLITE IMAGERY AND REMOTELY SENSED WATER LEVELS IN 

HYDRAULIC MODELLING 

Hydraulic models produce various types of meaningful information for modellers and 

decision-makers, e.g. water level, flood extent, flood peak travel time etc. Among 

them, the flood extents provide the most intuitive and valuable information as a 

proxy for flood inundation hazard patterns in 2D form. In hydraulic modelling, the 

calibration is done to improve the fit between simulation and observation by 

adjusting model parameters, while the model performance can be evaluated through 

comparison to observation in model validation. The use of point data (zero-

dimensional in space, such as water levels) to calibrate hydraulic models in simulating 

flood extent are fundamentally suspect (Horritt 2000), not to mention that 

floodplain-distributed water levels are hardly available in data-scarce areas. In the 

past, the lack of distributed flood extent information hampered the application of 

hydraulic models for flood extent prediction. Recent efforts on the integration of 

remotely sensed flood extent (e.g. SAR satellite imagery) as well as water levels (e.g. 

radar altimetry) with hydraulic models has revealed great potential of these data in 

supporting flood modelling (e.g. Smith 1997; Bates 2012, Schumann et al., 2009, Di 

Baldassarre et al., 2011). This section summarizes the current remote sensing data 

aiding flood model calibration and evaluation in data-sparse areas. 

1.3.1 Low-cost satellite imagery for flood extent 

SAR imagery for flood monitoring 

There are multiple sources of remotely sensed flood extent information, such as aerial 

photography and thermal (optical) imagery. However, their disadvantages hamper 

their functionality for flood monitoring in data-scarce areas. For example, aerial 

photography is capable of providing high resolution imagery and is considered 

probably the most reliable source of remotely sensed flood extent data (e.g. Yu and 

Lane, 2006). However, large costs associated with airborne acquisitions make it less 

attractive in data-scarce areas. The visible and thermal bands of a flood image are 

obviously appealing for flood extent acquisition and there are some successful 

examples on flood mapping using such imagery (e.g. Marcus and Fonstad, 2008; the 

Moderate Resolution Imaging Spectroradiometer (MODIS)-based Dartmouth Flood 

Observatory record). However, these sensors cannot capture imagery under cloud 

cover which is commonly associated with flood events. Therefore, radar (i.e. 

microwave) remote sensing, particularly satellites carrying SAR sensors would be 

most useful for flood detection and monitoring since microwave signals can penetrate 
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clouds and are reflected by the open water surface (e.g. Schumann et al., 2009), the 

insensitivity to weather conditions (e.g. Sanyal and Lu, 2004), as well as the ability to 

acquire data during day and night (e.g. Imhoff et al., 1986). Meanwhile, the costs of 

those images are fairly low (e.g. Di Baldassarre et al., 2011). 

  
Figure 1.8 Satellite imagery capturing 2006 flood in River Dee, UK: ERS-2 SAR 
image (12.5 m resolution, left panel), ENVISAT ASAR image (75 m resolution, right 
panel) (Di Baldassarre et al., 2009) 

Two important aspects for satellite SAR imagery for flood modelling are image 

resolution and satellite revisit time. Various satellite missions provide imagery with 

various resolutions (mostly better than 100 m) and repeat cycle (from 11 to 46 days, 

see in Table 3) (Di Baldassarre et al., 2011; Schumann et al., 2009). Given there is an 

inverse relationship between image resolution and repeat cycle and the duration of 

flooding is commonly in the order of a few days, it is nearly impossible to capture 

more than one imagery per flood with the low repeat cycle satellites (e.g. TerraSAR-

X, 11 days and RADARSAT-2, 24 days, Di Baldassarre et al., 2011). 

However, this has been changed by satellite constellation missions, where several 

satellites working together to achieve reduced revisit time. For example, the recently 

launched Sentinel-1 mission (April, 2014) is designed as a two-satellite constellation, 

offering a global revisit time of just six days. The disaster monitoring constellation 

(DMC), initially launched in 2003, consists of a number of satellites, allowing daily 

imaging of any given point on the globe. The COSMO-SkyMed (COnstellation of 

small Satellites for Mediterranean basin Observation) system with its four satellite 

constellation can provide high resolution imagery with the revisit time as less as 2 

hours (Covello et al., 2010). The emerging of those satellite constellation missions 
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makes the acquisition of several images for a single flood event possible. For example, 

several flood imagery were acquired for flood events recently by COSMO-SkyMed in 

Italy (2009 event, 3 images), Albania (2010 event, 5 images), Pakistan (2010 event, 28 

images, with 11 processed), Thailand (2010 event, 2 images) and Australia (2011 

event, 2 images) (Pierdicca et al., 2013). It has also been successfully used in various 

applications in the field of risk and emergency management, such as Myanmar and 

Haiti flood.  

Table 1.3 Current and past satellite missions that could be used for flood extent 
monitoring (Di Baldassarre et al., 2011; Schumann et al., 2014) 

Mission/Sate
llite 

Launch 
year 

Spatial 
resolution 

Repeat 
cycle 
(days) 

Cost  

ALOS 
2006 
(finished 
in 2011) 

10-100 m 46 
Low: €600 for three resolutions (10 
m, 30 m, 100 m, Archive) 

ENVISAT 
ASAR 

2002 
(finished 
in 2012) 

12.5-1000 
m 

35 
Free/Low: From €150 of 150 m 
resolution to €500 of 25 m 
resolution 

TerraSAR-
X* 

2007 1-40 m 11 
High: From €1750 of 40 m 
resolution, to €5950 with 1 m 
resolution (New acquisition) 

RADARSAT
-2* 

2007 1-100 m 24 
High: From $3600 of 100 m 
resolution, to $8400 of 1 m 
resolution (New acquisition) 

COSMO-
SkyMed* 

2007 1-100 m 

16 (2 
hours with 
four-
satellite 
constellati
on) 

High: From €1650 of 100 m 
resolution, to €9450 of 1 m 
resolution (New acquisition) 

Sentinel-1 2014 5-100 m 

12 (6 with 
two-
satellite 
constellati
on)  

Free/Low 

ERS-1 
1991 
(finished 
in 2000) 

25 m/150 m 35 
Low: €90 for 150 m resolution, 
€180 for 25 m resolution (Archive) 

ERS-2 
1995 
(finished 
in 2000) 

25 m/250 m 35 
Low: €90 for 150 m resolution, 
€180 for 25 m resolution (Archive) 

 

Fast acquisition and delivery maps from those satellite constellations can also be 

produced in a fully automatic way. On the other hand, several satellite missions 
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designed for high resolution image acquisition also provide the service of obtaining 

low resolution imageries with low cost and high repeat cycle (Table 1.3, Figure 1.8). 

Low resolution imagery are invaluable in studies where multiple images are required. 

For example, Environmental Satellite (ENVISAT) ASAR WSM revisit time could be 

of the order of 3 days and can be quickly obtained (~24 h) at no (or low) cost (Di 

Baldassarre, et al., 2009a). The resolution of those SAR imagery seems to satisfy 

most large-scale flood modelling studies in data-scarce areas, where global DEMs are 

used for hydraulic model building. Currently the only reliable global DEM (i.e. 

SRTM) has a resolution of ~90 m, which is similar to that used for a model building 

and calibration. 

New techniques for flood detection from SAR 

Before integrating SAR imagery and hydraulic models, SAR images have to be 

processed to retrieve meaningful flood boundaries. There are many SAR imagery-

processing techniques to delineate flood extent, which have been reviewed by several 

authors (e.g. Schumann et al., 2009; Di Baldassarre et al., 2011; Liu et al., 2004, Lu 

et al., 2004). Various methods include visual interpretation (e.g. MacIntosh and 

Profeti, 1995), image histogram thresholding (e.g. Brivio et al., 2002), image texture 

algorithms (e.g. Schumann et al., 2005), automatic classification algorithms (e.g. Hess 

et al., 1995), and image statistics-based active contour models (e.g. Horritt, 1999, 

Figure 1.9). Each method has its own pros and cons. Users could choose the 

appropriate method according to the characteristic of the flood event and study area. 

Recently, a new method for flood extent delineation has been developed. Automatic 

thresholding algorithms has been improved since the launch of the high resolution 

SAR satellites such as TerraSAR-X, Radarsat-2 and the COSMO-SkyMed (e.g. 

Mason et al., 2012, Giustarini et al., 2012, Martinis et al., 2009; Pulvirenti et al., 

2012; Matgen et al., 2011; Schumann et al., 2010). In particular, Pulvirenti et al., 

(2011) developed a new algorithm to detect not only open water surfaces, but also 

forested and agricultural flooded areas from COSMO-SkyMed SAR imagery based on 

a fuzzy classification approach. This algorithm takes into account three well-

established electromagnetic models of surface scattering, with simple hydraulic 

considerations and contextual information. For flood extent delineation of high 

resolution SAR imagery in urban areas, Matgen et al., (2011) and Giustarini et al., 

(2013) presented a method relying on the calibration of a statistical distribution of 

“open water” backscatter values inferred from SAR images of floods. They combined 

radiometric thresholding, region growing, and change detection as an approach 

enabling the automatic and reliable flood extent extraction. For urban flooding issues, 
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Mason et al., (2014) investigated whether urban flooding can be detected in layover 

regions where flooding might not be apparent, using double scattering between the 

possibly flooded ground surface and the walls of adjacent buildings. The method 

could lead to improved detection of flooding in urban areas depending on the 

particular flooding situation. 

 
Figure 1.9 SAR imagery and flood extent delineation results. The RADARSAT 
imagery (top left) is segmented using the active contour model ('snake') to yield the 
inundation extent. The ERS-2 imagery (top right) is threshold into 
wet/dry/undetermined classes (bottom right). RADARSAT imagery and ERS-2 
imagery are provided by Canadian Space Agency and European Space Agency, 
respectively. (Figure extracted from Horritt 2006) 

Thanks to the development of the flood extent delineation techniques, the flood 

monitoring systems based on those algorithms are established on the recent satellite 

missions. For example, Martinis et al., (2013) presented a combined two-phase flood 

monitoring system (i.e. MODIS and TerraSAR-X) to support flood disaster 

management. This system provides flood imagery at different spatial resolutions and 

time-critical on demand acquisition, as well as the pre-processing and web-based 

platform for imagery dissemination in near-real time. Westerhoff et al., (2013) 

presented an automated surface water detection technique from SAR, with the output 

maps uploaded on an open data server. The algorithm is to match the backscatter 

distribution to the ones of training data set of dry land and surface water. This 

systematic and automated processing algorithm could match well with Sentinel-1 
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satellite mission, which would together form the so-called Global Flood Observatory, 

provide SAR-based flood extent imagery globally in near-real time. Martinis et al., 

(2014) presented a fully automated processing chain for near real-time flood detection 

using high resolution TerraSAR-X SAR data. The processing chain including SAR 

data pre-processing, computation and adaption of global auxiliary data, unsupervised 

initialization of the classification as well as post-classification refinement by using a 

fuzzy logic-based approach. The dissemination of flood maps resulting from this 

service is performed through an online service which can be activated on-demand for 

emergency response purposes. The flood maps delivered by the above-mentioned 

flood monitoring systems can also be used for flood model calibration, as well as the 

validation of flood forecasting systems. 

SAR-derived flood extent for model calibration and evaluation 

Many studies have successfully utilized satellite imagery in flood extent prediction 

using various performance measures (e.g. Aronica et al., 2002; Di Baldassarre et al., 

2009a and 2010; Pappenburger et al., 2007; Horritt and Bates., 2001; Bates et al., 

2004; Brandimarte et al., 2009; Prestininzi et al., 2010, Table 1.4). Particularly in 

data-scarce areas, moderate and low resolution SAR can achieve model calibration by 

identifying the optimal (distributed) roughness coefficients for 1D hydraulic 

simulations (e.g. Di Baldassarre et al., 2009a), 2D simulations (e.g. Tarpanelli et al., 

2013; Hostache et al., 2009; Mason et al., 2009) and sophisticated finite 

element/volume models (e.g. Horritt, 2000; Horritt et al., 2007). In particular, 

ENVISAT ASAR coarse resolution imagery can verify the model against a past flood 

event in near real time after its acquisition when a simple 1D hydraulic model was 

used (Di Baldassarre et al., 2009a). Given the model structure is never perfect in 

hydraulic modelling, model users should choose the appropriate hydraulic codes 

according to the study needs. ENVISAT ASAR imagery was also used to assess 

hydraulic model performance, support hydraulic structure and code selection (e.g. 

Prestininzi et al., 2010). Furthermore, SAR imagery also contributes to produce fuzzy 

flood risk map (e.g. Schumann and Di Baldassarre, 2010; Merz et al., 2007), which 

can lead to a sustainable and affordable flood risk mitigation plan (Brandimarte et al., 

2009). To assess various sources of uncertainties which are intrinsic to any hydraulic 

modelling exercise, low-cost SAR image also play an important role (e.g. Hunter et al., 

2005;). Di Baldassarre et al., (2010) demonstrated the advantage of probabilistic 

flood mapping over deterministic approaches. In this study, European Remote 

Sensing-2 (ERS-2) SAR imagery (with ground resolution of 25 m) was used as 

observation data to assign weights to the model ensembles in a Generalized 

Likelihood Uncertainty Estimation (GLUE, Beven and Binley, 1992) framework. 
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Afterwards, probabilistic flood maps which account for uncertainties in inundation 

modelling were produced based on those ensembles. In addition, the poor-resolution 

flood extent imagery (ERS-2 SAR and RADARSAT with 25 m ground resolution) 

was found to be useful in constraining hydraulic model calibration in a Bayesian 

updating procedure of simulating two events in the upper River Severn, UK (Bates et 

al., 2004). In fact, explicitly assess uncertainties associated with both model and SAR 

imagery can be achieved by either a reliability diagram which was proposed by 

Horritt 2006 (e.g. Di Baldassarre et al, 2009b), or by using a fuzzy set approach 

(Pappenberger et al., 2007; Matgen et al., 2004). Overall, low-cost SAR satellite 

imagery can contribute to flood inundation modelling in various aspects such as 

identification of optimum model parameters and better model structures, 

development of flood risk mitigation plan and flood risk maps, assessment of 

uncertainties in flood inundation models as well as flood model verification in near 

real time. 

In addition, there are also examples of integrating water elevation changes derived 

from the Interferometric Synthetic Aperture Radar (IfSAR) imagery in hydraulic 

model calibration (e.g. Jung et al., 2012b; Alsdorf et al., 2005). The temporal (dh/dt) 

and spatial (dh/dx, dh/dy) variations of water levels derived from the Advanced 

Land Observing Satellite (ALOS) Phased Array L-band Synthetic Aperture Radar 

(PALSAR) interferometry selected only slightly different values for channel 

Manning`s n for a 2D hydrodynamic model calibration in a major tributary of the 

Mississippi (Jung et al., 2012b). This new calibration strategy indicated the potential 

of using IfSAR imagery for enhanced prediction and assessment of future flood events 

(Figure 1.10). In a simpler case, Alsdorf et al., (2005) used the dh/dt of water level 

values derived from IfSAR to simulate floodplain storage in a linear diffusion 

hydraulic model of the Amazon. The model captured the fundamental behavior of the 

hydrograph recession of all three reaches studied. 
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Table 1.4 Applications of space-borne SAR image in hydraulic modelling in recent 
years 

SAR 
image 

Ground 
resolution

Modelling purpose and findings Case study Reference 

ENVISAT 
ASAR 

150 m 
Calibrate hydraulic model for 
discharge and water level simulation 

Tiver 
River, 
Italy  

Tarpanelli et 
al., (2013) 

ENVISAT 
ASAR 

150 m 

Select the most appropriate hydraulic 
model structure when the simuated 
flood events are with different 
magnitude 

River Po, 
Italy 

Prestininzi et 
al., (2010) 

Terra 
ASTER  

90 m 
Propose and formulate a sustainable 
and affordable flood risk mitigation 
plan 

City of 
Jimani, 
Dominica
n Republic  

Brandimarte 
et al., (2009) 

ERS-1 
SAR  

25 m 
Identify the optimum distributed 
roughness coefficients in a finite 
element model calibration 

River 
Thames, 
UK  

Horritt, 
(2000) 

ENVISAT 
ASAR  

~100 m 
Verify the 1D hydraulic model in near 
real time after its acquisition 

River Po, 
Italy 

Di 
Baldassarre 
et al., 
(2009a) 

ERS-2 
SAR  

25 m 

Demonstrate the advantage of 
probabilistic flood mapping over 
deterministic approaches by 
accounting uncertainties in hydraulic 
modelling 

River Dee, 
UK 

Di 
Baldassarre 
et al., (2010) 

ERS-2 
SAR and 
RADARS
AT 

25 m 

Constrain hydraulic model calibrations 
in a Bayesian updating procedure and 
discover the broadly consistent 
optimum friction values of two events 

River 
Severn, 
UK  

Bates et al., 
(2004) 

ERS-2 
and 
ENVISAT 

25 m and 
150 m 

Produce an event-specific fuzzy flood 
risk map by fusing the SAR imageries 
with vulnerability-weighted land cover 
map 

River Dee, 
UK 

Schumann 
and Di 
Baldassarre 
(2010) 

ERS-1 
SAR 

25 m 
Constrain uncertainties in hydraulic 
models in a GLUE framework 

River 
Thames, 
UK 

Aronica et 
al., (2002) 

ENVISAT 
ASAR  

12.5 m 
Take account of the uncertainty in the 
SAR image using a fuzzy set approach 

River 
Alzette, 
Luxembou
rg 

Pappenberge
r et al., 
(2007)  

ERS-2 
SAR and 
ENVISAT 
ASAR 

25 m and 
150 m 

Explicitly estimate observed flood 
extent uncertainty in inundation 
modelling using reliability diagram 

River Dee, 
UK 

Di 
Baldassarre 
et al, 
(2009b)  
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Figure 1.10 Differential wrapped interferogram of L-band PALSAR superimposed on 
floodplain of the Atchafalaya River, USA. The orange rectangular shows the flood 
modelling domain. The colour scale represents one cycle of interferometric phase 
(interpreted as 15.1 cm in vertical displacement). These fringes represent water level 
changes between 16 April 2008 and 1 June 2008 (Image extracted from Jung et al., 
2012b). 

1.3.2 Freely available radar altimetry for water level 

Recent developments of remote sensing techniques have demonstrated that water 

surface elevation, water surface slope, and temporal change can be measured from 

space (Alsdorf et al., 2007). Radar altimeter now has routinely measured the surface 

of fresh water bodies albeit its original purpose was for measuring ocean surface 

elevations (e.g. Koblinsky et al., 1993; Birkett 1998; Getirana et al., 2009; Santos da 

Silva et al., 2010). The altimetric water level measurements can be considered as a 

space-borne virtual gauge which provides discrete measurements at the satellite 

ground track (Birkinshaw et al., 2010). Due to the overshoot problems when radar 

signals target from land to water surface, radar altimeters are more accurate at 

measuring water levels of wider rivers. Vertical elevation accuracy of radar altimetry 

over river surfaces are ~10 cm at best and are usually ~50 cm, while the accuracies 

improve to 3-4 cm Root Mean Square (RMS) with the increased averaging over areas 

larger than 100 km2 (e.g. Birkett et al., 1995, 2002; Maheu et al., 2003; Hwang et al., 

2005; Frappart et al., 2006; Kouraev et al., 2004, Table 1.5). However, in some cases 

the discrepancies between altimetry and in-situ level measurements might be high 
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and can be in the order of 2 m (Birkinshaw et al., 2010). This error depends on the 

type of sensor used and the distance between the sensor and virtual station, where 

radar satellite tracks intersect with a river reach and the ground-based gauging 

station. Due to reduced pulse averaging and differing echo shapes (Alsdorf et al., 

2007), their relatively large orbital spacing (in both time and space) are a major 

limitation for the integration of this type of information for hydraulic modelling. 

Table 1.5 Currently available radar altimetry for inland water level monitoring 

Mission/S
atellite 

Launched 
Time 

Vertical 
Accuracy 

Repeat 
Cycle 
(days) 

Reference  

ERS-1 1991 
not 
applicable 

35 Santos da Silva et al., 2010 

ERS-2 1995 > 0.20 m 35 
Domeneghetti et al., 2014; Santos da 
Silva et al., 2010 

ENVISAT 2002-2008 > 0.15 m 35 
Frappart et al., 2006; Yan et al., 
2015a; Domeneghetti et al., 2014; 
Santos da Silva et al., 2010 

TOPEX/P
oseidon 

1992-2005 > 0.30 m 10 
Birkett et al., (1995), (2002); Maheu 
et al., 2003; Kouraev et al., (2004); 
Hwang et al., 2005 

Jason-1 2001 
no river 
data 

10 Santos da Silva et al., 2010 

Jason-2 2008 
no 
validation 
published 

10 Calmant et al., (2009) 

Cryosat-2 2010 
no 
validation 
published 

369 days 
with 30 day 
sub-cycle 

Moore et al., (2014) 

 

Some studies have focused on the integration of radar altimetry and hydraulic models 

(e.g. Hall et al., 2010; de Paiva et al., 2013; Yan et al., 2015a; Biancamaria et al., 

2009; Domeneghetti et al., 2014). The high accuracy of altimetry data provided by 

the latest satellite missions and the promising results obtained in recent applications 

suggest that these data may be employed in the calibration and evaluation of 

hydraulic models. For instance, radar altimetry was applied in a large-scale 2D 

hydrodynamic model validation study for the first time by Wilson et al., (2007). The 

comparison of model simulations with radar altimetry yielded a RMSE of 0.99 m for 

the water stage of high flow over a 22-month period of the Amazon River. However, 

the RMSE increased to 3.17 m for water stages at low flow. More recently, another 

hydrological/hydrodynamic modelling study of the Amazon River showed the model 

performed well at most ENVISAT-derived altimetry virtual stations (60%) in terms 
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of water level prediction. Larger biases were found for some stations ranging from -3 

to -15 m. This is likely due to the SRTM DEM used to condition the model (de Paiva 

et al., 2013). Similarly, a large-scale coupled hydrologic and hydraulic modelling 

technique was used by Biancamaria et al., (2009) to model the Ob River in Siberia. 

Comparison of modelled water level with TOPEX/Poseidon (T/P) altimetry data 

allowed the estimation of parameters in the hydraulic model (i.e. river depth and 

Manning`s coefficient). In another study, the rating curves for 21 virtual stations in 

the upper Negro River were constructed by using water level derived from T/P and 

ENVISAT radar altimetry and discharge simulated by the Muskingum-Cunge 

approach (Leon et al., 2006). The estimated water depth for zero effective flow using 

the rating curves were found to be reliable compared to those measured. This work 

highlighted a promising application of orbital altimetry for large river where 

hydrometric data are not always available. 

1.4 UNCERTAINTIES AND PROBABILISTIC FLOOD MAPPING 

In recent years, there has been increasing interests in assessing uncertainty in 

hydrology and flood modelling. Understanding and quantifying those uncertainties is 

a key issue in uncertainty communication with decision makers (Montanari and Brath, 

2004). Many studies have described that there are several sources of uncertainties 

intrinsic to flood inundation modelling, such as model structure, topographic data, 

model parameter and inflow etc (e.g. Aronica et al., 2002; Pappenberger et al., 2006; 

Di Baldassarre and Montanari, 2009). Among those, roughness is usually used as 

calibration parameter in flood inundation modelling given a predetermined model 

structure, topographic data and simulated flood event with inflow data. Due to the 

fact that all of those components in the modelling system are unavoidably associated 

with uncertainties, parameter uncertainty tends to become a proxy of them. To some 

extent, parameters are used to compensate other sources of uncertainties during the 

calibration process. Ultimately, in the author`s opinion, the understanding of 

parameter uncertainty could be a start to understand the whole modelling system. 

On the other hand, given the understanding of parameter uncertainty should be 

provided by a model with fixed model structure, inflow, topography etc, a 

methodology that looks at several major sources of uncertainty should be considered.' 

Among the major sources of uncertainty mentioned above, the only one directly 

provided by remote sensing data is the topography (i.e. SRTM or other global DEM). 

As the objective of this thesis is to evaluate the potential of those data in hydraulic 

modelling of floods, the topographic uncertainty is considered by benchmarking with 
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the high resolution, high accuracy DEM. In other words, SRTM and its uncertainty 

are not examined using any (explicit) sampling-based approach, but rather (implicit) 

benchmarking approach. Meanwhile, other sources of uncertainty are explicitly 

examined by a Monte Carlo-based approach. 

 
Figure 1.11 1-in-100 year flood inundation map: deterministic map (left panel), 
probabilistic map taking into account uncertainty (right panel, probability of 
inundation decreases from red, 1, to white, 0). This figure is extracted from Di 
Baldassarre et al., (2010) 

The flood inundation maps are often produced by hydraulic models using 

deterministic or probabilistic approach. The deterministic flood maps which are 

produced by using a fully 2D physically-based best-fit model, are precise, but 

potentially wrong, due to the fact that they ignore the above mentioned uncertainties 

in inundation modelling. There is perhaps a philosophical question here: 'choose to be 

approximately right, or precisely wrong'. The deterministic map which demonstrates 

the exact dry and wet land would make the decision making more straightforward, 

but not necessarily correct. On the contrary, the probabilistic map would leave more 

space to the decision making process, as it indicates the probability of inundation 

during floods. The probabilistic flood maps which explicitly consider various sources 

of uncertainties are believed to be theoretically more appropriate for visualizing flood 

hazard (Figure 1.11, Di Baldassarre et al., 2010), even though the interpretation of 

this 'probability' and uncertainty communication to the decision makers are not easy, 

as well as their application in flood risk studies are still limited. Therefore, the 

handling of uncertainty in flood modelling should be more explicit and transparent, 

perhaps in an identified framework that is stationary for various flood events. 
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1.5 OBJECTIVES 

The main objective of this thesis is to explore the potential of low-cost space-borne 

topographic, flood extent and water level data in supporting hydraulic modelling. 

Some of those data (e.g. SAR imagery) has been examined in the literature rather in 

an isolated manner, therefore, in this thesis we investigate their utility for hydraulic 

modelling using a holistic view. The specific objectives are as following: 

 To explore the potential of global freely available DEM (i.e. Shuttle Radar 

Topography Mission, SRTM) to support hydraulic modelling of floods. 

 To explore the potential of low-cost space-borne satellite imagery and radar 

altimetry for hydraulic model calibration and evaluation. 

 To investigate to what extent the topographic errors affect hydraulic modelling 

in view of other major sources of uncertainty that are intrinsic to any 

modelling exercise. 

 To investigate how topographic data with different resolutions affect hydraulic 

modelling 

 To investigate the appropriateness of regional and physically-based approaches 

for estimating design floods to map flood hazard in data-scarce areas. 

1.6 METHODOLOGY 

1.6.1 Research approach 

To explore the usefulness of low-cost, space-borne data in supporting hydraulic 

modelling of floods, the research work has been carried out using a model calibration-

evaluation approach. Moreover, topographic uncertainty is assessed in view of many 

other major sources of uncertainties (Chapter 2 and 3). This methodological approach 

is applied to different case studies. Thus, specific modelling exercises are implemented 

with slight, tailor-made modifications to deal with practical issues, such as the actual 

data availability, the characteristics of flood events. The methodological steps 

followed in this thesis are summarized in Figure 1.12 and Table 1.6. 

Low-cost, space borne topographic and flood extent data are evaluated in the two 

river reaches of the Dee (Chapter 2) and the Po (Chapter 3), while topographic and 

water level data are considered in Danube River (Chapter 4). In the three cases of 

River Dee (Chapter 2), River Po (Chapter 3) and Danube (Chapter 4), hydraulic 

models are built to simulate particular flood events based on SRTM topography and 
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their inflow hydrographs. For the cases with two independent events available 

(Chapter 3 and 4), we follow a rigorous model calibration and evaluation approach. 

Otherwise only calibration event is considered (Chapter 2). Uncertainty analysis is 

carried out to take account model uncertainties (Chapter 2 and 3). For the cases with 

LiDAR dataset available (Chapter 2 and 3), SRTM-based model results are 

benchmarked with that derived from LiDAR-based model. Otherwise, the 

performance of SRTM-based model is assessed by comparing to in-situ data (Chapter 

4). 

 
Figure 1.12 An overview of this thesis work 

In the River Dee case (Chapter 2), inundation model is built based on SRTM 

topography and in-situ inflow data during the flood event (i.e. year 2006). The 

usefulness of SRTM-based model is evaluated through benchmarking with a high-

resolution, high-accuracy LiDAR-based model. Given the fact that parameter 

uncertainty is the major source of uncertainty in this study, the comparison between 

two models is made in view of parameter uncertainty using Monte Carlo framework. 

The two models are conditioned by the satellite image indicating the flood extent of 

the year 2006 event. 
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Table 1.6 Overview of case studies of this thesis: Data investigated, flood events and 
uncertainty considered, and scale of the study 

Case Study 
Data investigated Flood event considered 

Uncertainty 
Analysis 

Scale 
SRTM 

SAR 
Imagery 

Radar 
Altimetry 

Calibration 
event 

Evaluation 
event 

River Dee 
(Chapter 2) 

X X 
 

X 
 

X Medium 

River Po 
(Chapter 3) 

X X 
 

X X X 
Medium 
~ Large 

Danube River 
(Chapter 4) 

X 
 

X X X 
 

Large 

 

In the River Po case (Chapter 3), hydraulic models are built based on SRTM 

topography for two flood event: year 2000 flood event as the calibration event while 

year 2008 flood event as the evaluation event. During the model calibration and 

evaluation, the SRTM-based model is benchmarked with a high-resolution, high-

accuracy LiDAR-based model. Afterwards, the two models are used for the estimation 

of design flood profile by taking into account inflow and parameter uncertainty. The 

usefulness of SRTM-based model is assessed by the comparison to the LiDAR-based 

model during model calibration, model evaluation, and design flood profiles 

estimation in view of inflow and parameter uncertainty. 

In the Danube case (Chapter 4), as there is a lack of LiDAR topographic data, 

hydraulic models are built based on SRTM topography only. The SRTM-based model 

is calibrated by using radar altimetry water levels in the 2006 event. Afterwards, the 

calibrated model with optimum parameter set is evaluated by simulating the 2007 

event, where the water levels used for evaluation are measured in the ground gauge 

stations. The inflow information for both 2006 and 2007 event also comes from 

ground gauge stations.  

The Blue Nile case (Chapter 5) is an application of inundation modelling based on 

SRTM topography, which focuses on design flood estimation by using a traditional 

approach (i.e. regionalization) and a more relatively new approach (i.e. physically-

based model chain). In particular, design flood inundation estimated by using 

regional envelope curve (REC) and physical model cascade (PMC) are benchmarked 

with that estimated from in-situ data. Potential and limitations of those two methods 

for design flood estimation in data-scarce areas are discussed. 

1.6.2 Modelling tools 

Over the past decades, the scientific literature has presented a plethora of hydraulic 

codes to simulate flood propagation and inundation processes. On the one hand, 
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simple, one-dimensional (1D) models (e.g. kinematic wave) are often seen as not 

being suitable for modelling inundation processes as flow directions in the floodplain 

areas are much more complex. On the other hand, complex, fully three-dimensional 

(3D) models suffer of numerical stability, computational time and availability of input 

data (Dottori et al., 2013). Hunter et al., (2007) pointed out that one should carefully 

choose the modelling tools by considering the model structure and assumptions, data 

requirement, modelling purpose, computational time etc. In this thesis, 1D model (i.e. 

HEC-RAS) is only used in Po River case where flow conditions of simulated event 

fulfil the assumption of the 1D St. Venant equations, while HEC-RAS results also suit 

the type of available data in model calibration. It is worth to mention that HEC-RAS 

is not suitable for simulating a 2D process-dominated event due to model structural 

uncertainty (show in Chapter 3). Using HEC-RAS in such a situation often leads to 

over-estimation of maximum flood width. Having said that, flood modelling based on 

low-cost data using simple 1D model such as HEC-RAS is also of great interest to 

scientists and practitioners. Thus, this thesis follows a compromise between the needs 

for both physical realism and parsimony and explores the potential and limitations of 

remote sensing data by using the following two model codes: LISFLOOD-FP and 

HEC-RAS. 

LISFLOOD-FP 

Between the simple 1D and complex 3D models mentioned above, LISFLOOD-FP 

solves a simplified version of the shallow water equations that preserve acceleration 

but neglect the advection term, as advection is relatively unimportant in many 

floodplains flows (Hunter et al., 2007). The model comprises two equations that 

calculate the continuity of mass in each cell (Equation 1.2) and continuity of 

momentum between cells (Equation 1.3) in the direction of x. Although arranged in 

two dimensions, the momentum equation implemented across each face of each grid 

cell is in fact a one-dimensional calculation such that the fluxes through each cell face 

are decoupled from each other. It provides the water depth and discharge for each 

time step in each cell based on the raster grid being used. The equations are solved 

using an explicit forward finite difference scheme (e.g. Neal et al., 2012b; Hunter et 

al., 2007). 
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Where Q [L3T-1] is the discharge, A is the flow cross section area [L2], x is the distance 

between cross sections [L], t is the time [T], q is a lateral inflow term [L3T-1], z is the 

bed elevation [L], R is the hydraulic radius [L], g is the acceleration of gravity [LT-2]. 

 
Figure 1.13 Conceptual diagram of (a) LISFLOOD-FP base model, (b) subgrid 
channels model, and (c) subgrid cross section (Figure extracted from Neal et al., 2012). 

To better integrate coarse resolution global DEMs with LISFLOOD-FP, Neal et al., 

(2012) developed the subgrid approach, which allows the simulation of the scenarios 

that main river channel width is smaller than the grid size (Figure 1.13). The subgrid 

approach allows the modeller to specify channel width, channel depth as well as the 

bank elevation inside each cell so that it can better emulate flood propagation in the 

main channel for coarse resolution models. It was proved to change the floodplain 

inundation dynamics significantly and increase simulation accuracy in terms of water 

levels, wave propagation speed and inundation extent compare with the pure 1D 

channel model or 2D floodplain model of LISFLOOD-FP (Neal et al., 2012). The 

subgrid approach uses the floodplain flow model of Bates et al., (2010), which 

introduced the local inertial term to the diffusive wave equation to significantly 

reduce the computation cost. 
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HEC-RAS 

Hydrologic Engineering Centers River Analysis System (HEC-RAS) is a 1D hydraulic 

model that can simulate steady and unsteady flows in river channels including 

floodplains. HEC-RAS has been widely used for hydraulic modelling (e.g. 

Pappenberger et al., 2005, 2006; Schumann et al., 2007; Brandimarte et al., 2009), 

and a number of studies have proven its reliability in simulating floods in natural 

rivers (e.g. Horritt & Bates 2002; Castellarin et al., 2009) compared with 2D models 

(LISFLOOD-FP, TELEMAC-2D). However, it should be noted that HEC-RAS 

cannot reproduce the interaction process between the main channel and floodplain, 

the 2D process on the floodplain, as well as minor hydraulic effects such as secondary 

circulations and high-order turbulence. Often, these minor effects can be neglected 

considering the accuracy requirements in large-scale problems and modelling purposes. 

HEC-RAS uses Equation (1.2) to preserve the continuity of mass. Unlike LISFLOOD-

FP, the conservation of momentum in HEC-RAS is presented by momentum equation 

in full St. Venant equations (Equation 1.4): 
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Where Q [L3T-1] is the discharge, A is the flow cross section area [L2], x is the distance 

between cross sections [L], t is the time [T], z is the bed elevation [L], R is the 

hydraulic radius [L], g is the acceleration of gravity [LT-2]. 

1.6.3 Model performance measures 

In this thesis, the two types of information are obtained from the modelling results, 

which are also usually provided by hydraulic models in general: (1) spatially 

distributed flood extent, (2) at-a-point time series of flood water stages or flood 

profiles along the river reach. Performance measures need to be selected to 

quantitatively assess model performances. 

In this thesis the water level hydrographs and flood profiles are evaluated by using 

Root Mean Square Error (RMSE) or Mean Absolute Error (MAE). For evaluating 

flood extent, many performance measures are described in the literature for various 

circumstances (e.g. Aronica et al., 2002; Schumann et al., 2009). Among those, binary 

pattern measure (F) is a relatively unbiased measure that simply and equitably 

discriminates between under-prediction and over-prediction. As such, the optimal 

simulations will provide the best compromise between these two undesirable 

situations. Therefore, we use F to evaluate the simulated flood extent in this thesis: 
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where A is the number of cells correctly simulated by the model, B is the number of 

cells simulated as wet that is observed dry (i.e. over-prediction), C is the number of 

cells simulated as dry that is observed wet (i.e. under-prediction). F ranges from 0 to 

1, the higher the better (Aronica et al., 2002; Horritt et al., 2007, Stephens et al., 

2013). 

1.7 OUTLINE OF THIS THESIS 

To explore the potential and limitations of low-cost, space-borne data for flood 

inundation modelling, this thesis is structured in six chapters. 

Chapter 2 presents a case of exploring the usefulness of SRTM topography and ERS-2 

image under parameter uncertainty in a medium river: River Dee in UK. 

Chapter 3 explore the value of SRTM topography and ENVISAT satellite image in a 

medium-to-large river: River Po in Italy. The design flood profiles produced by 

SRTM-based model are benchmarked with LiDAR-based model under inflow and 

parameter uncertainty. 

Chapter 4 investigate the usefulness of SRTM topography and ENVISAT radar 

altimetry in supporting inundation modelling in a large river: Danube in Europe. A 

model built and calibrated by using globally freely available data is evaluated by in-

situ water level measurements. 

Chapter 5 investigates the potential and limitations of a traditional method (i.e. 

regional envelope curve) and a new method (i.e. physical model cascade) for flood 

mapping in a large river: the Blue Nile in Africa. This chapter is an application of 

flood mapping in ungauged basin using SRTM topography and other techniques. 

Chapter 6 summarize the potential provided by low-cost, space-borne data in 

inundation modelling and demonstrate the limitations of integrating those data into 

inundation modelling. Further research needed on this topic is also discussed. 
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CHAPTER 2 

INUNDATION MODELLING OF A MEDIUM RIVER: SRTM 

TOPOGRAPHY AND ERS-2 FLOOD EXTENT 

This chapter focuses on assessing the usefulness of SRTM topography and ERS-2 

SAR imagery in supporting 2D hydraulic modelling of floods. In particular, flood 

propagation and inundation modelling of a 10-km reach of the River Dee (UK) is 

performed by using LISFLOOD-FP to simulate the December 2006 flood event. 

Flood extent maps from satellite imagery (ERS-2 SAR) and hydrometric information 

(downstream water levels) are used as evaluation data. Uncertainty analysis is carried 

out within a Monte Carlo framework using the roughness coefficients and downstream 

water surface slope as free parameters. The results of this study show: (1) the 

potential and limitations of SRTM topographic data in flood inundation modelling; (2) 

the value of downstream water levels in constraining uncertainty in hydraulic model 

of floods; (3) the impact of setting a water surface slope as downstream boundary on 

the results of the hydraulic model (e.g. predictions of water levels and flood extent). 
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2.1 INTRODUCTION 

Recent advances in airborne and satellite remote sensing allow the parameterization, 

calibration and validation of flood inundation models in a distributed manner (Bates 

2004). Hydraulic models are usually tested on flood extent data (e.g. Matgen et al., 

2007; Pappenberger et al., 2007; Neal et al., 2013) rather than water level or flow 

data at particular points as the models may not perform well at the locations away 

from the gauged points (Bates et al., 2004). As pointed out by Pappenberger et al., 

(2007), data used to constrain model parameter uncertainty should be consistent with 

the modelling purpose. For example, models are better to be conditioned on flood 

extent data if the goal is predicting flood prone areas, while high water marks are 

preferable if the purpose is estimating design flood profiles (Brandimarte and Di 

Baldassarre 2012). The reason is perhaps that a model can simulate flood extent well 

does not necessarily do well in water level in the same event, given the complexity of 

inundation modelling system. 

Yet, the use of flood extent data can sometimes be difficult to distinguish between 

different model parameterization when the flood extent is not sensitive to changes in 

water level. In addition, flood extents from satellite flood images are usually difficult 

to obtain. As a matter of fact, the overpass frequency of the satellites which provides 

high resolution flood imagery is usually low (e.g. 35 days of repeat cycle for ERS2-

SAR, Schumann et al., 2010) even though there are few products with low revisit 

time recently available (e.g. COSMO-SkyMed offers 12 h and 24 h revisit time, 

García-Pintado et al., 2013). This implies that finding a satellite image at the time of 

flooding may be difficult as flood duration time in small-medium catchment is usually 

shorter than the revisit time (Hunter et al., 2007; Schumann et al., 2010). 

Hydrometric data such as water levels are relative easier to find. They have a high 

temporal frequency, but are unavoidably sparse in space (Di Baldassarre et al., 2011). 

Some scientists have explored the use of different types of datasets to constrain 

uncertainty in inundation models. For example, Horritt and Bates (2002) tested three 

hydraulic codes on a 60-km reach of the River Severn, UK using independent 

hydrometric and satellite data for model calibration. They found all models are 

capable of reproducing inundation extent and flood wave travel time to the similar 

level of accuracy at optimal simulation. However, the predictions of inundation extent 

are in some cases poor when hydrometric data are used for model calibration. Hunter 

et al., (2005) calibrated an inundation model against flood images, downstream stage 

and discharge hydrographs on a 35-km reach of the River Meuse, the Netherlands. 
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They found that the evaluation of internal predictions of stage also offer considerable 

potential for reducing uncertainty over effective parameter specification.  

In hydraulic modelling, the normal depth (calculated from the water surface slope) is 

often used as downstream boundary condition. The water surface slope is normally 

unknown and is estimated as the average bed slope under the assumption of a 

Manning's type relationship between water level and discharge at the downstream end 

of the river reach. The results of flood inundation models (e.g. water levels, 

inundation extent) are affected by this assumption, especially when backwater effects 

are significant. Samuels (1989) proved the practical use of Equation (2.1) to calculate 

the backwater length, L, for engineering applications: 

s
D

L
0

7.0
                                              (2.1) 

where D is the bankfull depth of the channel and S0 is the bed slope. Only a few 

studies (e.g. Wang et al., 2005; Schumann et al., 2008) have investigated the impact 

of assuming a certain water surface slope as downstream boundary conditions on the 

results of 2D hydraulic models, such as inundation extent and water level. Those 

impacts can be substantially reduced by extending the model domain and placing the 

downstream water level sufficiently far away from the points of interest. However, this 

is not always feasible. 

As discussed above, the value of SRTM topography in supporting two-dimensional 

(2D) flood inundation modelling remains largely unexplored, particularly for medium-

small sized (with width smaller than 100 m) rivers. In this context, the aim of this 

chapter is twofold: (i) explore the potential and limitations of SRTM data in 

supporting the 2D hydraulic modelling of floods, (ii) examine the sensitivity of 2D 

hydraulic models on the water surface slope used as downstream boundary as well as 

the associated value of downstream water levels in constraining uncertainty of flood 

extent prediction. 

2.2 STUDY SITE AND DATA AVAILABILITY 

The study is carried out on a river system including: (i) the 10-km reach of the River 

Dee, between Farndon and Iron Bridge, two gauging stations of the Environment 

Agency of England and Wales (hereafter called the EA); and (ii) the 8-km reach of 

the River Alyn, between the EA gauging station of Pont-y-Capel and the confluence 

to the River Dee (Figure 2.1). A high resolution (2 m) LiDAR DEM of this test site 

is derived by the EA. Surface artefacts such as vegetation and buildings are removed 



36 Chapter 2 Inundation modelling of a medium river: SRTM topography and ERS-2 flood extent 

 

from the raw LiDAR data. The EA also conducts a channel bathymetry ground 

survey of 36 cross-sections which are incorporated with the LiDAR data on floodplain. 

Hereafter, this hybrid high resolution DEM is called LiDAR DEM.  

 

 
Figure 2.1 River Dee between Farndon and Iron Bridge and River Alyn from Pont-y-
Capel (black lines); Flood extent of 2006 event from ERS2-SAR flood image 
(crosshatch); LiDAR DEM (upper panel); SRTM DEM (lower panel) 

Another DEM of the study site is derived from the SRTM data post-processed by the 

Consortium for Spatial Information of the Consultative Group for International 
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Agricultural Research (CGIAR-CSI), e.g. fills in the no-data holes in the raw SRTM 

data (Jarvis et al., 2008). The SRTM DEM of the study area is reprojected into 75 m 

resolution with no speckles and surface artefacts removed. The two DEMs are 

strongly different, not only in terms of resolution (2 m versus 75 m), but also in 

terms of accuracy: the vertical accuracy of LiDAR data was of around 10 cm, while 

that of SRTM in Europe was found around 6 m (Rodríguez et al., 2006). 

In December 2006, the River Dee experienced a low magnitude flood event (with the 

return period about 2 years). In this period, a high-resolution satellite image (ERS-2 

SAR, see in Figure 2.1) was acquired. The ERS-2 SAR image is characterized by a 

pixel size of 12.5 m and a ground resolution of approximately 25 m. The satellite 

image was processed by using visual interpretation procedure to derive a flood extent 

map (Schumann et al., 2009; Di Baldassarre et al., 2010). We reproject this flood 

extent map into the 20 m and 75 m resolution for evaluating the LiDAR-based and 

SRTM-based models. 

2.3 HYDRAULIC MODELLING 

The LISFLOOD-FP (Bates et al., 2010) 2D hydraulic model is used to simulate the 

flood event in 2006. The main channel widths of River Dee and Alyn are on average 

30 m and 12 m, respectively, which are much smaller than SRTM DEM cell resolution 

(i.e. 75 m). Therefore, the subgrid approach of LISFLOOD-FP (Neal et al., 2012), 

which can represent 1D channels with widths below the grid resolution, is applied for 

the SRTM-based model. However, computational cost can still be high for fine 

resolution (e.g. 1-10 m) grids. Therefore, the 2 m LiDAR DEM is aggregated into 20 

m resolution to reduce the model computational time. The key topographic features 

such as embankments are manually identified in the aggregated DEM. 

The channel bed elevation of SRTM topography is found to be overall overestimated 

in the study area. This is due to the fact that radar wave cannot penetrate water 

surface to detect the channel bed elevation and the channel is typically smaller than 

an SRTM pixel. The overestimated bed elevation would not only hamper the water 

level simulation in the main channel, it also affects flood extent prediction as the 

channel conveyance would most likely be decreased. Therefore, we improve the SRTM 

channel bed elevation by using the boat survey data. However, the combination of 

boat surveyed channel bed elevation and overestimated SRTM floodplain topography 

results in a deep channel depth (around 8 to 10 m). As one of the main purposes of 

inundation modelling is to predict the flood extent correctly, we use the surveyed 

channel depth (bank elevation subtract bed elevation) to replace the SRTM channel 
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depth rather than directly replacing SRTM bed elevation by the surveyed bed 

elevation. 

Two hydraulic models (LiDAR and SRTM-based) are built to simulate 2006 year 

flood event. The observed discharge hydrograph starting on 6 of December, 2006 at 

11:00 h (around 144 h before the satellite overpass) is used as upstream boundary 

condition. A normal depth with the water surface slope (estimated as the average bed 

slope) is applied as the downstream boundary condition. 

In this study, two types of observations are available for the model evaluation: (1) 

spatially distributed binary flood extent, (2) at-a-point time series of flood water 

levels (Iron Bridge). The simulated inundation areas are compared to the observed 

flood extent map (derived from the ERS2-SAR satellite imagery, Figure 2.1) using 

the performance measure, F (Aronica et al., 2002; Horritt et al., 2007, Equation 1.5). 

As assumed in previous studies (e.g. Aronica et al., 2002; Pappenberger et al., 2007), 

only the cells with a simulated inundation depth greater than 20 cm are considered as 

flooded. 

The evaluation of the simulated downstream water levels is conducted by using the 

observed time series of flood water levels at the downstream end of the river reach. 

The calibration focuses on the peak hours of the water level hydrograph, starting on 

7 of December, 2006 at 4:00 am and ending 127 hours later, which is also the time of 

the satellite overpass. The root mean square error (RMSE) is used to evaluate model 

errors for both LiDAR and SRTM-based model. 

2.4 THE EFFECT OF TOPOGRAPHY RESOLUTION 

In order to better distinguish between the impact of the resolution and the accuracy 

of topographical input data, we first conduct a numerical experiment to isolate the 

resolution effect: the LiDAR DEM is aggregated into 80 m resolution, which is similar 

to the resolution of SRTM (i.e. 75 m). Then the subgrid LiDAR-based model (80 m 

of resolution) in which the channel has the same width, friction and bed elevation to 

the LiDAR-based model (20 m of resolution) is built. The SRTM-based model (75 m 

of resolution) is used for comparison. The other model parameters among three 

models are kept identical. 

The flood extents simulated by three models are compared to the flood extent derived 

from the ERS2-SAR image. The value of performance measure, F, is shown in Table 

2.1. The coarse resolution LiDAR-based model performs slightly worse than the high 

resolution one (with 0.010 difference in terms of F), while the performance is much 
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higher than the SRTM-based model (with 0.271 difference in terms of F). This shows 

that coarse resolution LiDAR-based model can simulate the flood extent equally well 

as the high resolution LiDAR-based model. The coarse resolution does not degrade 

the model performance whereas the vertical accuracy of floodplain cells might play an 

important role. Thus, we focus on the effect of DEM vertical accuracy on flood extent 

and downstream water level predictions in the following experiments. 

Table 2.1 The effect of spatial resolution: comparison of three floodplain models 

Performance 
Measure 

LiDAR-based 
model (80m) 

LiDAR-based 
model (20m) 

SRTM-based 
model (75m) 

F 0.781 0.791 0.51 

2.5 UNCERTAINTY ANALYSIS WITHIN A MONTE CARLO FRAMEWORK 

In order to investigate the usefulness of SRTM data to support hydraulic modelling, 

the effects of topography uncertainty are evaluated within the Generalized Likelihood 

Uncertainty Estimation (GLUE, Beven and Binley 1992) framework. GLUE is a 

simple and pragmatic methodology, which uses Monte Carlo simulations to produce 

parameter distributions and uncertainty bounds conditioned on available data. GLUE 

has been widely used in environmental modelling (e.g. Aronica et al., 1998; 

Romanowicz and Beven 1998; Beven and Freer 2001). It is worth noting that a 

number of authors (e.g. Montanari 2005; Mantovan and Todini 2006; Stedinger et al., 

2008) have shown that the GLUE methodology does not formally follow the Bayesian 

approach in estimating the posterior probabilities of parameters and the output 

distribution. Also, there are a number of subjective decisions to be made in GLUE; 

e.g. the priori distribution and feasible range of each parameter, (generalized) 

likelihood function for model evaluation, the threshold between behavioural and non-

behavioural simulations. It is therefore necessary to clarify each decision to be 

transparent and unambiguous. 

The assumed ranges of parameters do have an influence on resulting uncertainties 

(Aronica et al., 1998). Thus, large parameter ranges, which cover the extreme feasible 

values, are used to overcome the potential issue of subjective choice (e.g. Aronica et 

al., 1998). Therefore, we keep the roughness parameter range sufficiently large: both 

Manning`s channel and floodplain roughness coefficients are sampled randomly from 

the uniform distribution between 0.015 m1/3s-1 to 0.150 m1/3s-1 due to the lack of 

information regarding to the priori distribution as well as the feasible range of 

parameters. The similar parameter range was also used by Stephens et al., (2012) for 
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the same study area. The range of average bed slopes is calculated from the two 

topographic data sets: the upper bound of the bed slope is calculated based on the 

reach from Fardon to Iron Bridge, while the lower bound is calculated based on the 

reach from the confluence to Iron Bridge for both LiDAR and SRTM-based model 

(Table 2.2). 

Table 2.2 Bed slopes calculated from LiDAR and SRTM topography 

Models Farndon to Iron Bridge Confluence to Iron Bridge 

LiDAR-based model 0.0002 0.00002 

SRTM-based model 0.0012 0.0002 

 

The objective function (i.e. F and RMSE) values for each parameter set (i.e. 

Manning`s coefficients in channel (nch), Manning’s coefficients on floodplain (nfp) and 

water surface slope (Sl)) are calculated to derive the generalized likelihoods, which 

are positive values with the summation of 1 (Wagener et al., 2001). The likelihood 

measure can be used to weight each model realization. The behavioural models can 

be selected by rejecting the simulations that underperform a user-defined threshold or 

a percentage of simulations. In this study, the best 10% of the realizations are 

assumed as behavioural models and then used to produce probabilistic inundation 

maps. Given the simulation results for the jth computational cell of wij = 1 for wet 

and wij = 0 for dry, the probabilistic inundation map is produced using Equation 2.2: 






i
Li

i
wijLi

M j

                                                           (2.2) 

Where Mj indicates a weighted average flood state for the jth cell, Li is the likelihood 

weight assigned for each simulation i. The posterior parameter distributions (PPD) of 

both two models are plotted as well. 

2.6 RESULTS AND DISCUSSION 

We have conducted 1000 simulations for LiDAR and SRTM-based models within the 

GLUE framework (see above). Two performance measures are evaluated according to 

two types of observations. The dotty plots are generated to show the parameter 

uncertainty given alternative performance measures and data sets for both LiDAR 

and SRTM-based model. 
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Figure 2.2a and Figure 2.2b show that the performance measure of LiDAR-based 

model increases as the nch and nfp increase when conditioned on flood extent data for 

the small nch and nfp values (below 0.05). The performance measure begins to remain 

unchanged for the larger nch and nfp values. It is found out that there is a tendency to 

generally underestimate the flood extent for smaller Manning`s coefficients. The 

simulated inundation extent is, as expected, increasing when nch and nfp are increasing. 

 
Figure 2.2 (a), (b), (c): Performance measure F for LiDAR-based model conditioned 
on ERS2-SAR flood image; (d), (e), (f): Performance measure RMSE for LiDAR-
based model conditioned on downstream water level. 

It is difficult to observe the optimal Sl when conditioned on flood extent data as 

there are good simulations across the whole range of parameter values (Figure 2.2c). 

The flood extent is affected by the back water effect and therefore related to the 

downstream water slope Sl. However, the influence of backwater to flood extent in 

this case is limited as the floodplain acts as a "valley-filling" case, whereby, once the 

valley is filled by flood water, increases of water depth do not lead to significant 

differences in flood extent (Hunter et al., 2005). 

The sensitivity to parameters nfp and Sl is assessed also by conditioning the model on 

downstream water levels (Figure 2.2e, 2.2f). The RMSE is increasing when nfp is 

increasing with the optimal value around 0.05. The RMSE is decreasing when Sl is 

increasing (Figure 2.2f). The effects of the two parameters are compensated with each 

other (e.g. when Sl is increasing, one can keep almost the same water level but 

increase nfp). The sensitivity of Sl is clearly visible conditioned on water level 
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information, as expected. The predicted downstream water levels are strongly affected 

by the assumed water surface slope. 

 
Figure 2.3 (a), (b), (c): Performance measure F for SRTM-based model conditioned 
on ERS2-SAR flood image; (d), (e), (f): Performance measure RMSE for SRTM-
based model conditioned on downstream water level. 

In Figure 2.3c, the average performance measure remains stationary with the change 

of Sl when the SRTM-based model is conditioned on flood extent data. There is a 

clearly decreasing performance as nfp is increasing (Figure 2.3b). A similar trend can 

also be found for nch (Figure 2.3a). The SRTM-based model essentially overestimate 

the flood extent (with a few under-prediction cells), even with the optimal parameter 

sets. This is shown by the fact that the performance measure (F) keeps dropping 

while nch and nfp are increasing due to the fact that the simulated inundation extent 

keeps increasing, which result in more over-prediction. 

The sensitivity of SRTM-based model conditioned on downstream water level (Figure 

2.3d, 2.3e, 2.3f) is overall larger than LiDAR-based model. The realizations with high 

performance (low RMSE) are more concentrated in an area with the small values of 

nch and nfp rather than the high ones. Similarly to the LiDAR-based model, the 

SRTM-based model performs better with larger Sl values (Figure 2.2f, Figure 2.3f). 

Figure 2.4b and 2.4e show that, when conditioned on downstream water levels, the 

best realizations are obtained with small Manning`s floodplain roughness values 

(around 0.05), whereas high performance realizations are found for higher Manning`s 

floodplain values, when the model is conditioned on flood extent. The posterior 

parameter distribution for water surface slope, when conditioned on flood extent, and 
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Manning`s channel coefficients, when conditioned on water level, are found nearly 

uniform distributed for the LiDAR-based model (Figure 2.4c, 2.4d). If all the 

realizations are taken as behavioural, we might conclude that the simulations 

conditioned on hydrometric data (i.e. water level time series) may not predict the 

flood extent properly for LiDAR-based model (Figure 2.4a to 2.4f). However, the 

performances are different after the rejection of non-behavioural simulations. Figure 

2.5 (upper panel) shows the flood extent predicted by the best 10% simulations, 

conditioned on downstream water levels of which the average performance measure (F) 

is 0.771, given the best F among all 1000 simulations is 0.799 (see Table 2.3). 

 
Figure 2.4 (a), (b), (c): Posterior Parameter Distribution for LiDAR-based model 
conditioned on ERS2-SAR flood image; (d), (e), (f): Posterior Parameter Distribution 
for LiDAR-based model conditioned on downstream water level. 

In Figure 2.6, the posterior parameter distribution shows the performance of 

parameters for SRTM-based model is rather similar between the two performance 

measures (i.e. F and RMSE). This indicates that it might get relatively satisfactory 

predictions of flood extent when the SRTM-based model is conditioned on water level 

data. It also shows SRTM-based model might be more flexible in conditioning on 

different data sets than LiDAR-based model. The model performances after the 

rejection of non-behavioural simulations are also shown in Figure 2.5 (lower panel). 

The probabilistic inundation map of the best 10% simulations conditioned on water 

level of which the average performance measure (F) is 0.524, compare with the best F 

of 0.557 among all 1000 simulations (Table 2.3). 
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Figure 2.5 ERS2-SAR flood imagery (crosshatch) and Probabilistic inundation map 
of 2006 event (from black, 1, to white, 0) with behavioural simulations conditioned on 
downstream water level: LiDAR-based model (upper panel); SRTM-based model (lower 
panel). 

Figure 2.2 and Figure 2.3 show that the LiDAR-based model performs better than 

the SRTM-based model in predicting flood extent as well as the downstream water 

level. This shows how the performance of hydraulic models can be affected by 

topographic errors. The prediction of downstream water levels shows a mean RMSE 

of 1.853 m for SRTM-based model and 0.504 m for the LiDAR-based model. 

Considering the predicted water level is obviously affected by the channel bed 

elevation, the poor performance of the SRTM-based model is expected. On the other 

hand, the mean F of the best 10% realizations conditioned on ERS2-SAR is 0.543 for 

SRTM-based model and 0.797 for LiDAR-based model (Table 2.3). Despite this large 

difference, getting a performance above 50% in simulating flood extent is a 

reasonably good result for using SRTM topography to support the hydraulic 

modelling of a small-medium sized river. 
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Table 2.3 Performance of behavioural LiDAR and SRTM-based models 

Models 
Average of best 10% 
simulations conditioned 
on water stage (F) 

Average of best 10% 
simulations conditioned 
on ERS2-SAR (F) 

Best of 1000 
simulations (F) 

LiDAR-based 
model 

0.771 0.797 0.799 

SRTM-based 
model 

0.524 0.543 0.557 

 

 
Figure 2.6 (a), (b), (c): Posterior Parameter Distribution for SRTM-based model 
conditioned on ERS2-SAR flood image; (d), (e), (f): Posterior Parameter Distribution 
for SRTM-based model conditioned on downstream water level 

2.7 CONCLUSIONS 

This chapter presents an evaluation of the potential usefulness of SRTM topography 

in supporting models predicting flood extent as well as downstream water levels, by 

taking into account parameter uncertainty within a GLUE framework. The 

topographic uncertainty is estimated by comparing the SRTM-based model to a 

model based on high resolution topography (i.e. LiDAR plus channel survey). The 

ERS2-SAR flood imagery and downstream time series of water levels of the 2006 

flood event are used to constrain model uncertainty. Roughness coefficients in channel 

and floodplain as well as the water surface slope are sampled uniformly within their 

parameter space. The effect of water surface slope in affecting flood extent and 
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downstream water levels is quantified. The ability of a 2D flood inundation model 

conditioned on water level to simulate flood extent is also evaluated. 

The SRTM-based model performs poorly for the downstream water level predictions, 

but it captures the majority of the inundation patterns. In addition, similar optimal 

parameters for the SRTM-based model conditioned on flood extent or water level are 

encouraging. However, to generalise these findings, SRTM data should be tested on 

more case studies. 

It is also shown that the optimal parameters are rather different when the LiDAR-

based model is conditioned on either the flood extent or water levels. However, when 

behavioural simulations are conditioned on water level, predictions of flood extent 

prediction are rather good. This is likely due to the fact that the differences in water 

levels do not imply changes in flood extent. 

The water surface slope used as downstream boundary condition is found to have a 

negligible impact on flood extent predictions with the LiDAR-based model and a 

limited impact on flood extent predictions with the SRTM-based model. In contrast, 

the downstream water surface slope is found to significantly affect water level 

predictions of both models. This finding suggests that water surface slope has to be 

selected with caution when one of the purposes of the hydraulic model is the 

prediction of downstream water levels and design flood profiles. 
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CHAPTER 3 

INUNDATION MODELLING OF A MEDIUM-TO-LARGE RIVER: 

SRTM TOPOGRAPHY AND ENVISAT FLOOD EXTENT 

This chapter explore the value of SRTM topography and ENVISAT SAR image to 

support 1D flood inundation modelling under parameter and inflow uncertainty. The 

study is performed on a 98 km reach of the River Po in northern Italy. The 

comparison between a hydraulic model based on high-quality topography (i.e. LiDAR) 

and one based on SRTM topography was carried out by explicitly considering other 

sources of uncertainty (besides topography inaccuracy) that unavoidably affect 

hydraulic modelling, such as parameter and inflow uncertainties. In addition, the 

usefulness of SRTM topography in 1D hydraulic modelling is also explored in a model 

calibration-evaluation approach using two independent flood events. The results of 

this study show that the differences between the high-resolution topography-based 

model and the SRTM-based model are significant, but within the accuracy that is 

typically associated with large-scale flood studies. 
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3.1 INTRODUCTION 

Results of hydraulic modelling are affected by many sources of uncertainty: model 

structure, model parameters, topography data and boundary conditions (e.g. Aronica 

et al., 1998; Romanowicz and Beven 1998, 2003; Bates et al., 2004; Pappenberger et 

al., 2005; Solomatine and Shrestha 2009). To better estimate the overall uncertainty, 

the uncertainty assessment exercises should be carried out throughout the modelling 

process, starting from the very beginning, rather than be added after the completion 

of the modelling work (e.g. Refsgaard et al., 2007; Merwade 2008; Di Baldassarre et 

al., 2010). In particular, the inflow (i.e. design flood) and the model parameter 

uncertainties were found to often be the most significant sources of uncertainty in 

one-dimensional (1D) hydraulic modelling for estimating design flood profiles (flood 

elevations at cross sections computed from design flood) (e.g. Pappenberger et al., 

2008). Specifically, to construct inflow data for hydraulic models, the design flood 

estimation via flood frequency analysis is in turn affected by other sources of 

uncertainty, such as observation errors (e.g. rating curves), limited sample size and 

selection of the distribution model (Di Baldassarre et al., 2009a). In addition, more 

recently, Moya Quiroga et al., (2012) showed that topographic uncertainty has a 

considerable influence on flood extent by using a simplified sampling technique of 

changing the cell elevations independently. 

Given that exploring low-cost space-borne data to support hydraulic modelling is the 

main objective of this thesis, in this chapter, the impact of using SRTM as the 

topographical input on the performance of flood inundation models is analysed by 

explicitly considering the other sources of uncertainty (such as parameters and inflow) 

that would unavoidably affect any hydraulic modelling exercise. The uncertainty 

introduced by topographic inaccuracy is therefore analysed in the following 

perspective: to what extent do the topographic errors affect the floodplain model 

results? And is this significant in view of the other sources of uncertainty (inflow, 

parameters) that are intrinsic to any modelling exercise? 

Given its short revisit time and low cost, ENVISAT ASAR coarse resolution satellite 

imagery was used in many hydraulic modelling studies (e.g. Prestininzi et al., 2010; 

Pappenberger et al., 2007; Tarpanelli et al., 2013). However, ENVISAT imagery has 

rarely been used as calibration or evaluation data for hydraulic models built based on 

global DEM (such as SRTM topography). Therefore, the value of integration of 

coarse resolution imagery and global topography remains largely unexplored. 
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Figure 3.1 Study site: ASAR image of the River Po between Cremona and 
Borgoforte (Italy) (upper panel, extracted from Di Baldassarre et al., 2009); SRTM-
DEM, stream centreline and derived flooded area (middle panel, extracted from Di 
Baldassarre et al., 2009); LiDAR DEM (lower-left panel), SRTM DEM (lower-right 
panel) 

To this end, design flood profiles are estimated by using hydraulic models built based 

on SRTM topography. These design flood profiles are then compared to the ones 

provided by a hydraulic model based on accurate and precise topography (i.e. 

combination of LiDAR survey, multi-beam bathymetry and cross sections). This 

comparison is made in view of the associated uncertainty, which is estimated by 

following a simple and pragmatic approach proposed by Brandimarte and Di 
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Baldassarre (2012). They estimated the uncertainty in predicting design flood profiles 

via hydraulic modelling based on high-quality DEMs, while we develop a SRTM-

based model and compare it with the LiDAR-based model and use a similar Monte 

Carlo-based approach to estimate uncertainty. In addition, the usefulness of SRTM 

topography in 1D hydraulic modelling is also explored in a model calibration-

evaluation approach using two independent flood events. 

3.2 STUDY SITE AND DATA AVAILABILITY 

The study is performed on a 98 km reach of River Po from Cremona to Borgoforte 

(Figure 3.1). The Po River is the largest and longest river in Italy, when considering 

the drainage area of about 71,000 km2 and its 650 km reach length. For the river 

reach studied, the main channel width varies from ~200 to ~300 m, while the river 

banks are confined by two lateral artificial levees with a width from 400 m to 4 km. A 

high-resolution 2 m DEM of this portion of River Po is constructed by the River Po 

Basin Authority. The DEM is constructed on the basis of data collected in 2005 

during numerous flights from altitudes of approximately 1500 m, using two different 

laser scanners (3033 Optech ALTM and Toposys Falcon II). Below the water surface, 

channel bathymetry of the navigable portion was acquired during the same year by a 

boat survey using a multi-beam sonar (Kongsberg EM 3000D). Moreover, these data 

were complemented by the ground survey for 200 cross sections developed by the 

Interregional Authority of the River Po in 2005 (Castellarin et al., 2011). For 

convenience, and also because the major part of the DEM is constructed using the 

LiDAR technique, this DEM is called the LiDAR DEM in this study. A relatively 

coarse-resolution DEM of this portion of River Po based on the SRTM is also used 

for this study (Figure 3.1). 

3.3 HYDRAULIC MODELLING 

This study uses HEC-RAS (US Army Corps of Engineers 2001), a 1D hydraulic 

model that solves the De Saint-Venant equations with an algorithm based on the 

Preissmann implicit four-point finite scheme (Preissmann 1961). The model is used to 

simulate the flood profiles for the 98 km reach between Cremona and Borgoforte. In 

particular, two hydraulic models are built based on 88 cross sections including both 

the floodplain and the main channel. It is worth mentioning that the in-channel 

bathymetries of the LiDAR-based model come from the boat survey, while the in-

channel bathymetries of the SRTM-based model are extracted from the raw SRTM 
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DEM without artificial manipulation. The locations of the cross sections for both 

LiDAR- and SRTM-based models are identical, while the cross-section bathymetries 

are significantly different, particularly in the main channel (Figure 3.2). Indeed, the 

use of SRTM topography for inundation modelling should be carefully justified due to 

the fact that radar waves cannot penetrate the water surface. Therefore, the in-

channel bathymetries are poorly represented by SRTM topography in general. 

Conveniently, the SRTM topography data were obtained during an 11 day mission in 

February, which is winter time in River Po basin, meaning that the river water levels 

were relatively low and the floodplain was not inundated. The vegetation height and 

density during this winter time are also lower than in the summer. These give the 

opportunity to capture most of the in-channel bathymetries and provide relatively 

accurate floodplain topography. 

  
Figure 3.2 Cross-sectional comparisons for LiDAR-based model (solid line) and 
SRTM-based model (dashed line). 

Choosing HEC-RAS as the modelling tool are justified. Firstly, previous studies have 

shown that the unprotected floodplain, together with the main channel of this 

portion of the River Po between the artificial levees, can be treated as a compound 

1D channel for a high-magnitude flood event (e.g. Castellarin et al., 2009; Di 

Baldassarre et al., 2009b; Brandimarte and Di Baldassarre 2012). Moreover, a 1D 

model is more efficient than a 2D model in terms of computational time, especially 

for large areas. It has been shown (Brandimarte and Di Baldassarre 2012) that for 

this test site, the computation of flood profiles via steady-state simulations provide 
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results as accurate as the ones obtained via unsteady simulation because of the broad 

and flat hydrographs of this alluvial river, which leads to relatively little transient 

behaviour. Thus, a dynamic model is not needed here as the modelling purpose is to 

derive the maximum water stage levels, i.e. flood profiles. Moreover, it should be 

noted that Bates and De Roo (2000) demonstrated that, for example, for a particular 

1-in-63 year flood event in River Meuse, the dynamic simulations are marginally less 

good predictors of inundation extent than the steady-state models. In addition, 

steady-flow routines are commonly adopted by regulatory agencies for floodplain 

mapping studies (Di Baldassarre et al., 2010). 

Table 3.1 Mean absolute error for the optimal simulations of LiDAR-based model and 
SRTM-based model 

 

Models Nch Nfp Mean Absolute Error (m) 

LiDAR-based model 0.04 0.06 0.27 

SRTM-based model 0.03 0.05 0.56 

3.4 MODEL CALIBRATION 

In October 2000, the River Po experienced a significant flood event, with a peak 

discharge of about 11,850 m3 s−1. The return period was estimated at ~60 years 

(Maione et al., 2003). The two hydraulic models are calibrated by varying the 

Manning coefficients and comparing the simulated flood profiles to the high-water 

marks recorded after the October 2000 flood event (Coratza 2005), which is evaluated 

by using the mean absolute error, ε. Given the homogeneous characteristics of the 

river reach, the potentially distributed Manning`s n value are limited to one value for 

the channel and one for the floodplain (Di Baldassarre et al., 2009b). The high-water 

marks are appropriate to calibrate the model for the purpose of reproducing the flood 

profile. The model calibration is carried out by varying the Manning channel 

coefficient from 0.01 m1/3 s to 0.06 m1/3 s and the Manning floodplain coefficient from 

0.03 m1/3 s to 0.13 m1/3 s, for both the LiDAR-based model and the SRTM-based 

model. 
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Figure 3.3 Model responses to changes in Manning coefficients: LiDAR-based model 
(upper panel) and SRTM-based model (lower panel) 

There is a clear tendency that the Manning channel coefficients are increasing, while 

the Manning floodplain coefficients are decreasing within areas with similar mean 

absolute errors for both LiDAR- and SRTM-based models (Figure 3.3). This is due to 

the fact that the increasing roughness on the channel is compensated for by the 

decreasing roughness on the floodplain. The shapes of the hyperbolic that contain the 

optimal values are similar between the two models. In addition, both models clearly 

show more sensitivity on Manning channel coefficients than Manning floodplain 



54 Chapter 3 Inundation modelling of a medium-to-large river: SRTM topography and ENVISAT flood extent 

 

coefficients. The model sensitivity of the LiDAR-based model is higher than the 

SRTM-based model for small Manning channel coefficients. Figure 3.4 represents 

flood profiles of the best-fit model for both the LiDAR-based model and the SRTM-

based model, which are selected by minimizing the mean absolute error and rejecting 

the simulations where the Manning floodplain coefficients are smaller than the 

Manning channel coefficients. The rejection criterion is based on the fact that there is 

a consensus that the channel roughness is typically smaller than that of the 

floodplain since water flows in the riverbed almost all the time and makes it 

smoother (Chow 1959). The mean absolute errors of the optimum simulation seem to 

indicate that both LiDAR and SRTM-based models can simulate the October 2000 

flood profile reasonably well (Table 3.1), though the optimal Manning coefficients lie 

in different locations of the parameter space (Figure 3.3). 

 
Figure 3.4 Model calibration: observed left and right bank high-water marks and 
results of the best-fit model: LiDAR-based model (upper panel) and SRTM-based model 
(lower panel). 
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3.5 MODEL EVALUATION 

The River Po experienced a low-magnitude flood event (return period around 3 years) 

in June 2008. For this event, a coarse-resolution (~100 m) ENVISAT ASAR flood 

image was acquired and processed by Schumann et al., (2010). This ENVISAT ASAR 

flood image is used in this study to evaluate the two models. In particular, the 

inundation widths are derived to validate the best-fit LiDAR- and SRTM-based 

models. The two models with optimal Manning`s coefficients in calibration are used 

to simulate the June 2008 flood, and the simulated inundation widths are compared 

to the ones derived by the SAR images. The validation of the two models (Figure 3.5) 

shows that they provide similar results. In particular, the mean absolute errors of the 

two models in reproducing the SAR inundations are found equal to 945 m for the 

LiDAR-based model and 862 m for the SRTM-based model. The difference between 

the two models is within the accuracy of the inundation width derived from the SAR 

image (around 150 m; e.g. Prestininzi et al., 2011). However, the mean absolute errors 

also indicate that both models cannot properly reproduce the inundation width of 

2008 flood event. 

 
Figure 3.5 Error of simulated and observed inundation widths of 2008 flood, LiDAR-
based model (solide line) and SRTM-based model (dashed line). 

3.6 UNCERTAINTY ANALYSIS WITHIN A MONTE CARLO FRAMEWORK 

The traditional approach to estimate design flood profiles is to feed the design flood 

into a calibrated model. In this case, the 1-in-200 year design flood (Q200 ~ 13,700 
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m3 s−1, estimated using Gumbel distribution) is simulated using the model calibrated 

against the October 2000 flood event (11,850 m3 s−1). The similar flood peaks 

magnitudes of the 1-in-200 year flood and the October 2000 flood indicate the profile 

predictions might be reliable, given that the high-magnitude floods are restricted by 

the two lateral banks of River Po, which means the flood propagation processes 

remain mainly 1D for this test site (e.g. Castellarin et al., 2009; Di Baldassarre et al., 

2009b). 

Recent literature has pointed out that single (deterministic) predictions of flood 

profiles, which use the ‘best-fit’ model and a single design flood estimation, might 

misrepresent the existence of uncertainties intrinsic to any hydraulic modelling 

exercise (Beven & Freer 2001; Bates et al., 2004; Beven 2006; Di Baldassarre et al., 

2010). Therefore, the use of the probabilistic approach is increasingly recommended. 

A rigorous approach for the estimation of all sources of uncertainty might be 

computationally heavy and requires strong assumptions of the nature of the errors. 

Hence, a simple pragmatic approach, based on GLUE (Beven and Binley 1992), is 

used here to estimate the design flood profile uncertainty. It is worth mentioning that 

GLUE is criticized by some researchers as it requires a number of subjective decisions 

and uses a non-standard notion of likelihood (Hunter et al., 2005; Mantovan and 

Todini 2006; Montanari 2007; Stedinger et al., 2008). At the same time, it is still a 

widely used approach to estimate uncertainty in hydrological modelling (e.g. 

Montanari 2005; Winsemius et al., 2009; Krueger et al., 2010). One aspect that, as we 

discovered, has an influence on many Monte Carlo related methods (such as GLUE) 

is the sampling strategy used (Kayastha et al., 2010), but such an analysis is out of 

the scope of this thesis, therefore it is left for future studies. 

The sources of uncertainties estimated here are the inflow (i.e. design flood) and the 

model parameters. Topography uncertainty is also taken into account by simulating 

flood profiles using two models based on two different topographies. As mentioned 

above, the quality of the LiDAR DEM is high in terms of both resolution and vertical 

accuracy. The usefulness of SRTM topography is estimated by comparing the design 

flood profiles predicted by the SRTM-based model with the design flood profiles 

predicted by the LiDAR-based model, which is considered as a reference model. 

These profiles are compared by including an explicit representation of inflow 

uncertainty and model parameter uncertainty. It is assumed here that these sources of 

uncertainty prevail over the uncertainty induced by imprecise model structure, and 

this can be justified by the (aforementioned) satisfactory results obtained by previous 

studies in simulating high-magnitude events in this test site via HEC-RAS modelling 

(e.g. Castellarin et al., 2009; Di Baldassarre et al., 2009b). 
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3.6.1 Parameter uncertainty 

The first modelling exercise is carried out by considering parameter uncertainty only, 

varying the Manning channel coefficient in the range 0.01–0.06 m1/3 s−1 (with an 

interval of 0.01) and the Manning floodplain coefficient in the range 0.03–0.13 m1/3 s−1 

(with an interval of 0.01). A set of simulations satisfying a threshold criteria are 

selected from the sensitivity analysis (the same as the model calibration). In this case, 

all the simulations (66 in total) associated with a mean absolute error that is larger 

than 1 m are rejected. This (subjective) assumption is by considering the fact that 

the current policy in the Po River basin requires that levees should have at least 1 m 

of freeboard above the 200 year flood profile elevations (see Brandimarte and Di 

Baldassarre, 2012). In addition, the simulations when the Manning coefficients on the 

floodplain are smaller than those on the channel are rejected (see above). The models 

passing these filters are termed (following the GLUE method) ‘behavioural’, and are 

used to simulate the 1-in-200 flood event. 

In GLUE, each behavioural simulation is associated with a rescaled likelihood weight, 

Wi, ranging from 0 to 1 within the framework of GLUE (Beven and Binley 1992). 

Many studies (e.g. Mantovan and Todini 2006; Beven et al., 2007, 2008; Stedinger et 

al., 2008) have pointed out that the likelihood function used in GLUE should be able 

to correctly represent the statistical sampling distribution of the data to make the 

prediction coherent and consistent. However, it should be noted that the choice of 

likelihood measure might greatly influence the resulting uncertainty intervals, and 

this choice must be made explicit so they can be the ‘subject of discussion and 

justification’ (Beven and Freer 2001). Here, we follow the previous studies in 

hydraulic modelling of floods (Bates et al., 2005; Hunter et al., 2005; Pappenberger et 

al., 2006). The likelihood weight, Li, is expressed as a function of the measure of fit, εi, 

of the behavioural models: 

minmax

max
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iL                                              (3.1) 

where εmax and εmin are the maximum and minimum values of the mean absolute error 

of the behavioural models. Then, the likelihood weights are rescaled to a cumulative 

sum of 1. Rescaled likelihood weights are calculated using: 
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This uncertainty analysis is implemented for both the LiDAR-based model and the 

SRTM-based model. Thus, Figure 3.6(upper panel) shows the 5th, 50th and 95th 
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weighted percentiles, which represent the likelihood weighted uncertainty bounds, for 

both the LiDAR-based model and the SRTM-based model. 

3.6.2 Inflow uncertainty 

The second modelling exercise also considers the important source of uncertainty in 

hydraulic modelling, i.e. the estimation of the design flood. To this end, the 1-in-200 

year flood is estimated by statistically inferring the time series of 42 annual maximum 

flows, recorded at the Cremona gauge station, which is the upstream end of the river 

reach under study. 

In particular, five distribution functions commonly used in extreme value analysis in 

hydrology (i.e. lognormal (LN), three-parameter lognormal (LN3), exponential (E), 

Gumbel (EV1) and generalized Pareto (GP)) are fitted to the annual maximum flows 

using the method of moments. Five 1-in-200 year design floods are then obtained 

from these fitted distributions (Table 3.2). The shapes of the design hydrographs are 

not estimated because of the steady-state assumption already discussed. Thus, the 

additional uncertainties that might have been caused by the estimation of hydrograph 

shapes are avoided here. Hence, five simulations of the best-fit models are run for 

both the LiDAR- and the SRTM-based models. The 5th, 50th and 95th percentiles 

were computed. Comparisons are made between profiles for each percentile of the 

LiDAR-based model and the SRTM-based model (Figure 3.6 (middle panel)). 

Table 3.2 1-in-200 year design flood estimation using five probabilistic models 

Distribution LN LN3 E EV1 GP 

Discharge (m3/s) 13743 13254 15037 13695 12449 

3.6.3 Combined uncertainty 

The third experiment is carried out by combining model parameter and inflow 

uncertainties. Therefore, we run a total of 115 simulations by feeding 23 behavioural 

models using 5 design flood values generated from 5 distribution functions for the 

LiDAR-based model. For the SRTM-based model, we run a total of 120 simulations 

by feeding 24 behavioural models using the same 5 design flood values. The 5th, 50th 

and 95th weighted percentiles of the 1-in-200 year flood, which take into account the 

parameter and inflow uncertainties, were calculated for both the LiDAR-based model 

and the SRTM-based model. The comparisons of profiles from two models (LiDAR 

and SRTM) of the same percentile are also made (Figure 3.6 (lower panel)). 
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For the three experiments mentioned above, the chosen Manning coefficient 

parameter space is sufficiently large to cover the possible coefficient combinations for 

hydraulic modelling (Chow 1959). The sampling interval of 0.01 is reasonably small 

given by a sensitivity analysis carried out, which is to increase and decrease the 

sampling interval of floodplain Manning coefficients to 0.02 and 0.005, respectively. 

The results show that the uncertainty bounds for all three experiments have a limited 

variation. This means the uncertain model performance will not be affected much if 

the number of simulations is further increased. 

3.7 RESULTS AND DISCUSSION 

The bed elevations in the SRTM and LiDAR models are significantly different from 

each other (see in Figure 3.4). We also conduct a two-sample Kolmogorov–Smirnov 

test to quantitatively evaluate these differences. We test the hypothesis H0: P1=P2 

that two samples come from the same distribution. The results show that it rejects 

the null hypothesis as the p-value 2.78 × 10−6 is much smaller than 0.05, which is the 

default value of the level of significance. Therefore, the difference between two 

samples is significant enough, as they have different distributions. Figure 3.2 shows 

that the bed elevations differ by around 4 m, which definitely affects the main 

channel conveyance. Given that the cross-sectional profile of the main channel is 

significantly important for 1D hydraulic modelling, the following question may arise: 

why the modelling results are relatively close in terms of simulated water levels? In 

fact, the topography of the floodplain areas (see in Figure 3.2) of the two DEMs is 

not as different as that of the main channel (This complies with the aforementioned 

SRTM characteristics). Therefore, as the main channel and floodplain within the 

lateral embankments are treated as a whole cross section in this 1D HEC-RAS model, 

the total conveyance in flood conditions is not significantly different. In addition, the 

topographic uncertainties in the SRTM geometry are partly compensated for by the 

Manning coefficient during model calibration. All these factors result in similar 

simulated flood profiles for the LiDAR- and SRTM-based models, despite the fact 

that the ‘conveyances’ in the main channel are different. 
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Figure 3.6 Uncertainty design flood profiles by considering: model parameter 
uncertainty only (upper panel); design flood uncertainty only (middle panel); and 
model parameter and design flood uncertainty (lower panel). LiDAR-based model 
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uncertainty bounds are shown in the boxplots (lower and upper quantiles are 5th and 
95th percentiles). SRTM-based model uncertainty bounds are shown in the grey areas 
(dashed lines show 5th and 95th percentiles). 

Figure 3.6 shows that the uncertainty bounds vary according to the source of 

uncertainty under consideration. For the SRTM-based model, the difference between 

the 95% percentile and the median is 0.4–0.5 m if only inflow uncertainty is 

considered. This value increases to 0.6–1.0 m if only parameter uncertainty is 

considered. It continues to rise to 0.9–1.2 m if both parameter and inflow uncertainty 

are taken into account (Figure 3.6). Therefore, both sources of uncertainty contribute 

to the overall uncertainty. Moreover, the bounds of inflow uncertainties are relatively 

small. This is due to the fact that the differences of design flood estimations 

generated from 5 distributions are small (within ±10% of the 1-in-200 year flood 

estimated by the Gumbel distribution (EV1)). 

Table 3.3 Difference of flood profiles (in terms of MAE) obtained from LiDAR-based 
model and SRTM-based model by considering uncertainties 

Source of uncertainty Percentile MAE (m) 

Parameter uncertainty 
5th percentile 0.46 

50th percentile 0.47 

95th percentile 0.32 

Inflow uncertainty 
5th percentile 0.41 

50th percentile 0.40 

95th percentile 0.39 

Combined uncertainty 
5th percentile 0.47 

50th percentile 0.43 

95th percentile 0.36 

Mean 0.41 

 

The hydraulic model performance based on SRTM topography are evaluated when 

the LiDAR-based model results are taken as the ‘truth’, by comparing the flood 

profiles obtained from the LiDAR- and SRTM-based models for the three 

experiments (Table 3.3). The averaged mean absolute error of LiDAR- and SRTM-

based model profiles in terms of 5th, 50th and 95th percentile, taking the major 

sources of uncertainties into account, is around 0.41 m. It is the same order of 

magnitude as the accuracy of the high-water marks (around 0.5 m; e.g. Neal et al., 
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2009; Horritt et al., 2010). In addition, the current policy in the Po River basin 

requires that levees should have at least 1 m of freeboard above the 200 year flood 

profile elevations. 

In this study, model performance evaluation is always based on water levels, as the 

calibration data of the October 2000 flood event are high-water marks. In addition, 

the estimation of the 1-in-200 flood profile is usually performed for dyke or levee 

design, which requires estimation of the flood water levels. In fact, the water depth 

differences for the LiDAR-based model and the SRTM-based model have up to 30% 

relative error for all the modelling practices because the SRTM DEM overestimates 

the topography elevation, particularly in parts of the main channel. 

3.8 CONCLUSIONS 

This chapter describes a study to quantitatively evaluate the value of the SRTM 

topography to support hydraulic modelling with the purpose of predicting design 

flood profiles when taking into account the main sources of uncertainty unavoidably 

associated with any modelling exercise. The outcomes of this study show that the 

prediction of 1-in-200 year flood profiles in the study area of River Po, using the 

HEC-RAS model based on SRTM topography data, are within the accuracy that is 

typically associated with large-scale flood studies, as long as the other sources of 

uncertainty are explicitly considered, despite the fact that some differences in water-

level predictions (compared to the LiDAR-based model) are not negligible. Thus, the 

results indicate the added value of SRTM topography in supporting the prediction of 

design flood profiles in medium- to large-scale rivers, even though detailed studies for 

the ultimate design of hydraulic structures (e.g. bridges) do require more accurate 

modelling based on the best available topography. This study also investigates the 

uncertainty in hydraulic modelling due to uncertainty in the model parameters and 

design flood estimation. It is shown that both sources of uncertainty have a strong 

influence on the uncertainty of the model output. 

The outcomes of this study are unavoidably associated with the particular nature of 

the case study. 1D modelling can, for example, be inappropriate in other cases, 

especially when the floodplain is not confined by two lateral artificial levees. Thus, 

future research will focus on the potential value of the SRTM-based hydraulic model 

tested on case studies with significant 2D inundation patterns. This study is also 

limited by the particular scale of the river. In smaller rivers, SRTM-based models are 

not expected to have the reasonable performance compared to LiDAR-based models 

presented in this study. Hence, the usefulness of the globally and freely available 
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SRTM topography data to support hydraulic modelling will be further tested by 

considering different scales and flood scenarios. In addition, in order to have a 

comprehensive evaluation of hydraulic models based on SRTM topographic data, 

different model calibration and evaluation approaches should be implemented 

according to the hydraulic model used, the available data and the source of 

uncertainty considered. Lastly, it should be noted that some subjective assumptions 

are made in estimating uncertainty via the Monte Carlo framework, and there have 

been no rigour tests carried out about the statistical validity of the conclusions, so 

these conclusions should be seen as the qualitative ones. 
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CHAPTER 4 

INUNDATION MODELLING OF A LARGE RIVER: SRTM 

TOPOGRAPHY AND ENVISAT ALTIMETRY 

This chapter aims to assess the value of SRTM topography and radar altimetry in 

supporting flood level predictions in data-poor areas. To this end, we build a 

hydraulic model of a 150 km reach of the Danube River by using SRTM topography 

as input data, and radar altimetry of the 2006 flood event as calibration data. The 

model is then used to simulate the 2007 flood event and evaluated against water 

levels measured in four stream gauge stations. Model evaluation allows the 

investigation of the usefulness and limitations of SRTM topography and radar 

altimetry in supporting hydraulic modelling of floods. 
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4.1 INTRODUCTION 

Given that many areas in the world are effectively ungauged and the existing 

monitoring networks are under decline (Stokstad 1999), hydrometric data for 

hydraulic model building and calibration are also often unavailable. Satellite radar 

altimetry, which is typically used for oceanographic applications, may offer a great 

opportunity for the selection and calibration of hydraulic models in data-poor areas. 

Radar altimetry is also able to provide water level measurements in the continental 

environment, such as inland seas, lakes and rivers as demonstrated by the numerous 

studies in literature (Koblinsky et al., 1993; Birkett 1998; Getirana et al., 2009; 

Birkinshaw et al., 2010; Santos da Silva et al., 2010). The accuracy of altimeter water 

level time series is variable and ranges from 70 cm of RMSE for altimetry on board of 

Geodetic Satellite (GeoSat) (Koblinsky et al., 1993), to 30 cm for altimetry on board 

of Environmental Satellite (ENVISAT) (Santos da Silva et al., 2010). However, in 

some cases the discrepancies between altimetry and in-situ level measurements might 

be very high and are of the order of 2 m. This error depends on the type of the sensor 

used and the distance between the sensor and virtual station (VS), where radar 

satellite tracks intersect with a river reach and the ground gauged station. The high 

accuracy of altimetry data provided by the latest spatial missions and the convincing 

results obtained in the previous applications suggest that these data may also be used 

in the calibration of hydrological or hydrodynamic models (Getirana et al., 2009; Sun 

et al., 2010; Milzow et al., 2011; Pereira-Cardenal et al., 2011). For example, Wilson 

et al., (2007) presented a first attempt to simulate flood inundation extents as well as 

water levels in a 260-km reach of the Amazon at a large spatial scale over 22-month 

period by using SRTM topography, Japan Earth Resources Satellite (JERS)-1 images, 

gauge observations and satellite altimetry data. It was found that the RMSE between 

simulated water levels and the ones derived from satellite altimetry data was around 

2 m. This error was mainly attributed to the uncertainty of topographic and 

altimetry data. However, the potential of radar altimetry for the calibration of 

hydraulic models in data-poor areas is still poorly explored, particularly when SRTM 

is used as input topographic data. 

To this end, this chapter aims to analyse the ability of a hydraulic model, built and 

calibrated with freely available remote sensing data (i.e. SRTM topography and radar 

altimetry), in simulating flood water levels. Specifically, a hydraulic model of a 150 

km reach of the Danube River is built using SRTM topography and calibrated 

against water levels derived from radar altimetry data of the 2006 flood event. The 
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optimal model is then used to predict water levels of the 2007 flood event and 

evaluated by using ground water levels measured in internal cross sections. 

 
Figure 4.1 Danube river between Dunaujvaros and Bezdan, A8, A9 and A10 are 
three radar altimetry virtual stations; simulated flood extent of 2007 event using 
optimal model in calibration (data from Jarvis et al., 2008, Sandvik 2008, European 
Environment Agency 2011) 

4.2 STUDY SITE AND DATA AVAILABILITY 

The study is carried out on a 150-km reach of the Danube, between the stream 

gauging station of Dunaujvaros and the Global Runoff Data Centre (GRDC) station 
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of Bezdan (Figure 4.1). The SRTM topography of the study area is projected into 80 

m resolution with no speckles and surface artefacts removed. 

In April 2006, an extremely rare coincidence of relatively large floods in the sub-

basins of the Upper Danube, Tisza, Sava and Velika Morava rivers resulted in a 1-in-

100 year flood event along this reach of the Danube river (with a peak discharge of 

8400 m3/s at Dunaujvaros gauge station, Figure 2). The Central and Lower Danube 

were inundated by flood water due to melting snow and heavy rainfall (Wachter 

2007). In this period, water levels derived from ENVISAT altimetry data at three 

virtual stations (A8, A9 and A10, see in Figure 4.1) are downloaded from the website 

of the River and Lake Project handled by the European Space Agency (ESA) and De 

Montfort University (http://earth.esa.int/riverandlake). At each VS three water level 

values are retrieved every 35 days for in total 9 observations (Figure 4.2). 

Figure 4.2 Discharge hydrograph observed at Dunaujvaros of 2006 event and the 
timing of ENVISAT overpass 

In September 2007, Danube experienced another flood event with the peak discharge 

around 6400 m3/s at Dunaujvaros gauge station. River discharges and water levels of 

the 2006 and 2007 flood events were observed at this gauge station as well as at the 

other four gauge stations: Dunafoldvar, Paks, Baja and Mohacs (Figure 4.1, Table 

4.1). In this study, a period of 91 days started from 8th of February to 10th of May is 

used for the 2006 event (Figure 4.2), while a period of 33 days started from 30th of 

August to 1st of October is used for 2007 event. 
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4.3 HYDRAULIC MODELLING 

The LISFLOOD-FP (Bates et al., 2010) 2D hydraulic model is used to simulate the 

two flood events on Danube. We use an adaptive time step in LISFLOOD-FP. This 

implies that the time step is not defined by the modeller, but automatically 

computed by the model code to keep accuracy and numerical stability (Hunter et al., 

2005). LISFLOOD-FP was largely used for flood inundation modelling and has 

provided positive results in numerous test sites (e.g. Neal et al., 2011, 2012a; Horritt 

and Bates, 2002). 

Table 4.1 Gauge Station characteristics in the study area 

Station Name 
Distance to River Mouth (Black 

Sea, km) 
Catchment Area (Upstream of 

Station, km2) 
Dunaujvaros 1580.6 188273 
Dunafoldvar 1560.6 188700 

Paks 1531.3 189092 
Baja 1478.7 208282 

Mohacs 1446.9 209064 
 

The river width in this reach of the Danube is around 500 m, which is much bigger 

than SRTM DEM cell resolution (i.e. 80 m). As a result, the channel width along the 

reach can be easily identified from the SRTM DEM. The computational time is found 

long (around 40 hours on a dual-core 2.30 GHz machine) for a single simulation of 

the 2006 flood event, which lasts for 91 days, using a grid size of 80 m. Additionally, 

it is found out that the random noise in SRTM data tends to be independent in each 

cell and can be reduced linearly in proportion to 1/n by aggregating cells, where n is 

the number of cells being aggregated (Rodríguez et al., 2006). Thus, the 80 m SRTM 

DEM is aggregated to 160 m to both decrease the computational time and reduce the 

noise. 

The SRTM`s SAR based interferometer technology cannot obtain the geometry of the 

river bed below the water surface. Instead, the water elevation in the Danube River 

at the time of the mission is measured (February 2000; Farr et al., 2007). Thus, the 

channel bed elevation is overestimated in SRTM data. As mentioned in Chapter 1, 

the scientific community has proposed different approaches to deal with this issue (e.g. 

Neal et al., 2012a; Patro et al., 2009). Patro et al., (2009) reduced the SRTM DEM-

derived cross-section elevation values by 2.3 m, which was the average difference 

between the elevations of SRTM DEM and topographic maps, to simulate the river 

flows with limited available data of Mahanadi River in India. Biancamaria et al., 

(2009) tested the uncertainty in river depth of hydraulic modelling by using three 
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constant river depth values (5 m, 10 m and 15 m) in Ob River of Siberia. More 

recently, Neal et al., (2012a) used hydraulic geometry relationships to correct SRTM 

data and approximate the river bed elevation in an 800 km reach of the river Niger in 

Mali. In particular, they used a power law relationship between channel width and 

depth following the relationships of Leopold and Maddock (1953). 

In this study, we follow a simple approach to correct the SRTM data, by lowering the 

bed elevation by D meters, and introduce D as a parameter of the model. We extract 

the river bed elevation (actually water surface elevation) within the bank from SRTM 

DEM, subtract those elevations by D meters and 'burn' the new bed elevation into 

SRTM DEM. The 'new' SRTM DEMs (with various bed elevations depending on D 

value) are used in hydraulic modelling. To avoid subjective assumptions and potential 

over-fitting, D is set as a single, homogenous parameter along the entire river reach. 

In hydraulic modelling, the calibration of hydraulic models is typically done by 

adjusting roughness coefficients in the channel and floodplain areas (e.g. Aronica et 

al., 2002; Pappenberger et al., 2005). In this study, given that the parameter D has 

an impact on model results similar to channel roughness (nch). They both alter the 

channel conveyance. Thus, we follow a parsimonious approach and set the value of D 

and the floodplain roughness coefficient (nfp) as the only two parameters. 

4.4 MODEL CALIBRATION 

The 2006 event is the calibration event simulated by the LISFLOOD-FP model. The 

observed discharge hydrographs at Dunaujvaros gauge stations are used as upstream 

boundary conditions. The downstream boundary conditions are defined by the normal 

depth assumption: the water surface slope (if it is unknown) is estimated as the 

average bed slope under the assumption of a Manning's type relationship between 

water stage and discharge at the downstream end of the river reach. For both model 

calibration and evaluation, the water surface slope is approximated using the average 

slope derived from SRTM topographic data, which, in spite of the aforementioned 

inaccuracies, was demonstrated to provide a proper estimation of water surface slopes 

(e.g. Schumann et al., 2010; Alsdorf et al., 2007). Anyhow, the four stream gauging 

stations are far (e.g. Mohacs is 21 km away) from the downstream end so that the 

simulated water levels would not be affected by the imposed slope. No differences in 

simulated water levels in the four stream gauging stations have been found while 

employing various slope values in preliminary runs. For both model calibration and 

evaluation, the initial conditions are set as dry bed as no significant differences have 

been found if an arbitrary steady discharge is considered as initial condition. 
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As mentioned, the calibration of the LISFLOOD-FP model focuses on the 

identification of the two free parameters: the Manning’s roughness coefficient of the 

floodplain, nfp, and the SRTM adjusting factor for the river bed, D. The simulations 

are done by varying D in the range between 0 and 7 m and nfp from 0.05 to 0.23 sm-1/3. 

The main channel roughness coefficient, nch is fixed to 0.04 sm-1/3 for all the 

simulations. This value is set based on user experiences of previous studies in 

LISFLOOD-FP model calibration (e.g. Horritt et al., 2001; 2002) and the physical 

characteristic of this river each. The performance of the hydraulic model is estimated 

in terms of mean absolute error, MAE, calculated by comparing the water levels 

observed in three VSs with the ones simulated by the model. The minimization of 

MAE allows estimating the optimum values of nfp and D. 

Random search methods have been shown to have a potential to solve large-scale 

problems efficiently in a way that is not possible for deterministic algorithms. More 

advanced randomized search methods such as Genetic Algorithms (GA, Holland 1992, 

Goldberg 1989) and Adaptive cluster covering (ACCO, Solomatine 1995, 1999) can 

certainly improve the efficiency of the calibration. However, a simple algorithm such 

as (deterministic) grid search can already provide accurate results due to several 

reasons. First of all, the sampling dimensions are limited (i.e. two) and the initial 

searching range is relatively narrow in this case. Thus, the number of required 

samples grows exponentially in dimension is not an issue here. On the other hand, 

uncertainty induced by using sampling techniques in the calibration might not be 

comparable to that induced by other sources in flood modelling (e.g. observed data, 

model structure). Preliminary runs show that several simulations provide very similar 

performance near the optimal (less than 0.01 m difference in terms MAE, which is 

quite negligible for the flood issue in such a big river), therefore, the sampling 

interval used here is sufficiently small to identify the optimal. This allows us to find 

the optimal parameter set by using grid search method rather quickly. Given each 

simulation takes about 250 minutes on a duel core 2.3G Hz machine, an advanced 

random search methods with large number of runs would not be more efficient than 

the grid search method. 

Equifinality is shown here in the calibration: the darkest irregular polygon in Figure 

4.3 (indicates same MAE) covers nfp ranging from 0.14 sm-1/3 to 0.22 sm-1/3, while D 

varies from 3 m to 5m. The issue of Euqifinality is due to the effect of parameter 

compensation. Here we choose the optimal parameter set based on its lowest MAE as 

well as the reasonable physical meaning of parameters. For example, as the second 

largest river in Europe, the depth of Danube of this reach is normally deeper than 4 

m (Andreadis et al., 2013). 
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4.5 MODEL EVALUATION 

The calibrated model with optimum parameter sets is used to simulate the 2007 flood 

event. The observed discharge hydrographs in 2007 at Dunaujvaros gauge stations are 

used as upstream boundary conditions. The optimum model is evaluated using the 

flood water levels observed at the four stream gauging stations along the reach: 

Dunafoldvar, Paks, Baja and Mohacs. For each station, the MAE between observed 

and simulated water level hydrographs is calculated. 

Figure 4.3 Model Calibration: Contour map of MAE (m) conditioned on radar 
altimetry by varying D (m) and Manning`s floodplain coefficients (nfp). The white dot 
indicates the 'best fit' model parameterization. 

4.6 RESULTS AND DISCUSSION 

Figure 4.3 shows the calibration contour map in terms of MAE, which is calculated 

based on nine radar altimetry water levels (3 days in 3 VSs). Model performance 

generally increases when nfp is increasing, whereas the performance first increases and 

then decreases when D is increasing. Flood water levels tend to be overestimated with 

high bed elevations (D from 0 to 3 m), and underestimated with lower bed elevations 

(D from 6 to 7 m). The optimal model (~1.53 m MAE) corresponds to D equal to 5 

m and nfp equal to 0.20 sm-1/3. 

The evaluation of the model shows that the peak water levels are underestimated at 

Baja and Mohacs, while the tails of the hydrograph are generally overestimated for 

the four gauge stations (Figure 4.4). The average MAE at the four gauge stations of 
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model evaluation is 1.37 m (Table 4.2). It is interesting to note that this value is 

similar to the value obtained in model calibration versus radar altimetry (1.53 m). 

Considering that the model was built with SRTM topography and calibrated with 

altimetry data, these results are encouraging for large-scale flood modelling in data-

poor areas. 

Figure 4.4 Model evaluation (2007 flood event): Simulated water levels hydrograph 
(line) and in situ water levels (dots) at the four gauging stations by using optimal 
model of the 2006 event 

These errors are likely due to the combination of: (1) inaccuracy of SRTM 

topography used to build the model; (2) water surface slope derived from altimetry 

used as downstream boundary condition in model calibration; (3) vertical errors in 

radar altimetry data used to calibrate the model; (4) other sources of uncertainty, e.g. 

model structure or inflow uncertainty (Di Baldassarre et al., 2012). For instance, 

considering the high magnitude of 2006 event (1-in-100 year), the model uncertainties 

which were compensated in model calibration by adjusting model parameters can 

impact model results when a relatively smaller flood event is simulated (see e.g. Di 

Baldassarre et al., 2011). 

By analysing Figure 4.4, one can observe that the flood water levels in Dunaflodvar 

are generally well reproduced (with 0.75 m MAE, Table 4.2), although this station is 

close to the upstream boundary. Water levels in Parks and Baja are moderately well 

simulated with a limited underestimation of the flood peak, while water levels in 

Mohacs are poorly simulated. It is worth noting that in the model evaluation the 

simulated water levels tend to be less variable than the observed ones and the peaks 
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are not modelled well (Figure 4.4). This effect is also exacerbated from upstream to 

downstream stations. 

Table 4.2 Evaluation of simulated hydrograph at four stations of the 2007 event: 
mean absolute error 

Gauging station MAE (m)
Dunafoldvar 0.75 

Paks 1.31 
Baja 1.87 

Mohacs 1.55 
Mean 1.37 

 

 
Figure 4.5 Simulated water levels hydrograph (solid line, the 2006 event) and in situ 
water levels (dots) at the four gauging stations using best-fit model (calibrated against 
radar altimetry) of the 2006 event. 

To better understand the reasons for the poor simulation of the water levels in 

Mohacs, we also compared the results of the optimal model to the flood water levels 

observed during the 2006 flood event at the four stream (in situ) gauging stations 

(Figure 4.5). The results were similar to the ones obtained by simulating the 2007 

event (though with lower MAE): the flood peak in Mohacs is poorly reproduced and 

simulated water levels are less variable than the observed ones. At least Figure 4.5 

explains that the error in Mohacs is not likely induced by the flood magnitude 

difference between 2006 and 2007 event, which, highlights the parameter uncertainty 

when a well-calibrated hydraulic model is used for a second event prediction. A 
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plausible explanation for this effect is the overestimation of floodplain inundation due 

to the use of a homogenous D along the river reach. This overestimation enhances the 

attenuation of the flood wave and therefore leads to lower flood peaks downstream 

and less variability in water levels. Using different, distributed D values along the 

reach may improve the simulation of observed water levels, but will require arbitrary 

assumptions, not to mention the issue of potential over-fitting. Lastly, the dykes of 

Danube River in this area are not likely to be captured by SRTM DEM, so the model 

allows for accelerated flood water overtopping from main channel to floodplain (which 

in reality is not happening) – this leads to the lower variability of the simulated water 

levels in the channel. 

4.7 CONCLUSIONS 

This Chapter tests the ability of a hydraulic model, built and calibrated by using 

freely available remote sensing data, to simulate flood water levels on the Danube 

river. In particular, the model utilizes SRTM topography as geometric input, and 

radar altimetry as calibration data. The performance of the model is found 

reasonable for large-scale flood studies in data-poor areas, but generally not sufficient 

for detailed inundation studies, e.g. the design of hydraulic structures. These results 

contribute to the understanding of the potential usefulness and limitations of radar 

altimetry data and SRTM topography in supporting hydraulic modelling for water 

level prediction in data-poor areas. 

The study is unavoidably associated with the particular nature and limitations of the 

case study as well as the assumptions made. Inundation modelling which focuses on 

flood extent prediction should also be validated against flood extent information. It is 

therefore recommended to evaluate the model against flood extent maps as well, such 

as the ones derived from satellite imagery data. In addition, the potential of SRTM 

topography might not be fully understood without a comparison to high resolution-

accuracy topographic data, such as the newly released TerraSAR-X add-on for Digital 

Elevation Measurement (TanDEM-X) topography. Moreover, future research should 

corroborate or falsify the results of this study by further exploring the potential and 

limitations of radar altimetry and global DEMs in supporting flood inundation 

models across different scales and along diverse flood conditions. 
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CHAPTER 5 

SRTM-BASED INUNDATION MODELLING OF A LARGE RIVER 

IN DATA-SCARCE AREAS: REGIONAL VERSUS PHYSICALLY-

BASED METHODS 

Besides the lack of detailed topographic input data, one of the main obstacles in 

mapping flood hazard in data-scarce areas is the difficulty in estimating the design 

floods, i.e. peak river discharge corresponding to a given return period. This 

estimation can be carried out by using two main approaches: (i) data-based 

regionalization techniques, which are based on time series of flood data collected in 

regions with similar hydro-climatic conditions, or (ii) physically based models, which 

aims to simulate the entire cascade of processes from precipitation to runoff. In this 

chapter we compare these two approaches with reference to a specific case study, a 

river reach of the Blue Nile between Ethiopia and Sudan where SRTM DEM is used 

as the topographic input. In particular, we consider two alternative methods: i) 

regional envelope curve, whereby the design flood (e.g. 1-in-20 flood) is estimated 

from African envelope curves, and ii) physical model cascade, whereby the design 

flood is determined from the physical model chain of the European Centre for 

Medium-Range Weather Forecasts. The comparison is not only made in terms of 

estimated design flood, but also in terms of resulting flood extents maps produced by 

hydraulic models based on SRTM DEM. The results show the potential and the 

limitations of both approaches as well as the challenge of estimating design floods in 

data-scarce area. We also show the importance of data collection and how even short 

time series would have a remarkable value in supporting the estimation of design 

floods. 
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5.1 INTRODUCTION 

The planning and implementation of numerous strategies to cope with floods require 

the estimation of the areas that are potentially flooded. To this end, flood inundation 

models are used to simulate a design flood, i.e. river discharge corresponding to a 

given return period. Design floods can be statistically derived from historical records, 

such as time series of annual maximum flows. However, hydrological measurements 

are missing in many areas of the world (Stokstad, 1999), and the number of stream 

gauging stations is declining. Thus, flood hazard mapping and inundation modelling 

are challenging to be implemented when flood data are not available. 

To estimate design floods in ungauged basins (Sivapalan et al., 2003), two main 

categories of approaches can be identified: i) more traditional approaches, such as 

regionalization methods, which are based on the elaboration of flood data collected in 

regions with similar hydro-climatic conditions, and (ii) emerging approaches, such as 

the use of large-scale physically based models, which aim to simulate the entire 

cascade of processes from precipitation to runoff. 

5.1.1 Regional envelope curve  

An example of the first category is the empirical regional envelope curve (hereafter 

REC), which is a traditional method to estimate extreme floods in ungauged basins 

(Castellarin, 2007). REC is based on the concept of transferring the hydrological 

knowledge from gauged catchments to ungauged (or poorly gauged) catchments and 

provides an effective summary of regional flood experience (Castellarin, 2007; Di 

Baldassarre et al., 2006). The estimated design floods (inflows) can then be used to 

feed a hydraulic model and generate flood hazard maps in data-scarce areas 

(Brandimarte et al., 2009; Padi et al., 2011). 

5.1.2 Physical model cascade 

An example of the second category is the use of physical model cascades (hereafter 

PMC). Pappenberger et al., (2012) recently used a large scale PMC and derived, at 

the global scale, river discharge values corresponding to different return periods. This 

method included the derivation of meteorological forcing data and discharge 

acquisition from a land surface model based on a 30 year (1979-2010) simulation 

period. 
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This study aims to compare the capability of REC and PMC in estimating design 

floods to map flood hazard in data-scarce areas. The design floods estimated from the 

two methods are benchmarked with that estimated from in-situ data. The comparison 

between the two approaches is not only conducted in terms of the estimated design 

floods, but also in terms of the resulting flood extents maps. To this end, the 

comparison is made by using a river reach of the Blue Nile as a case study. 

 
Figure 5.1 The Blue Nile basin and study area 

5.2 STUDY SITE AND DATA AVAILABILITY 

This study is carried out on a river reach of the Blue Nile around 280 km between 

Rosaries Dam and Sinnar Dam in Sudan, with a mild slope of about 0.12 × 10-3 

(Figure 5.1). The historical discharge data is available at gauge station El Deim near 

the Sudan-Ethiopia borders, which is about 70 km upstream of Rosaries Dam. The 

rainfall in the Blue Nile basin is confined in the single season, consequently the river 

flows are concentrated in a short period (Sutcliffe and Parks, 1999). The available in-

situ data of river discharge, provided by the Ministry of Water and Energy of 

Ethiopia, is a time series of 25 years of annual maximum discharge covering the whole 

rainy season (from June to September) (Baratti et al., 2012). This river station is 
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treated as if it was ungauged in the application of REC and PMC, while design 

floods estimated by in-situ data are used as a reference. 

The topographic data of the test site are derived from the global SRTM Digital 

Elevation Model (DEM). Although SRTM has a coarse resolution, a number of 

studies showed its value for large scale flood studies (e.g. Sanders, 2007; Neal et al., 

2012a; Yan et al., 2013). The DEM used in this study as input to the hydraulic model 

is post-processed by the Consortium for Spatial Information of the Consultative 

Group for International Agricultural Research (CGIAR-CSI), e.g. fills in the no-data 

gaps in the raw SRTM data (Javis et al., 2008). 

Figure 5.2 Flood experience of 1-in-20 year event in Africa: Q/A in mm/h and A in 
km2 

5.3 DESIGN FLOOD ESTIMATION 

5.3.1 Design flood derived from REC 

Padi et al., (2011) analyzed African flood data and derived regional envelope curves 

for the African continent. The flood experience in the African continent (1-in-20 year, 

Figure 2) is described by Equation 5.1: 
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where Q is the discharge value, A is the drainage area, while a and b are the 

intercept and slope of the line. It should be acknowledged that the African 

catchments used to derive the REC (Figure 5.2) do have a variety of hydro-climatic 

conditions. Thus, treating them as a homogeneous region can be questionable. Merz 

and Bloschl (2008a, b) and Viglione et al., (2007), for instance, have proposed the 

concept of flood frequency hydrology, highlighting the relevance of combining flood 

data with causal information on flood processes. However, as the goal of this study is 

to compare a purely data-based approach with a physically-based one, physical 

reasoning is not introduced in the regional approach. 

5.3.2 Design flood derived from PMC 

In PMC, the European Centre for Medium Range Weather Forecasts (ECMWF) land 

surface model, the Hydrology Tiled ECMWF Scheme of Surface Exchanges over Land 

(HTESSEL, Balsamo et al., 2012) is coupled with ERA-Interim reanalysis 

meteorological forcing data to generate runoff for the 30 year (1979-2010) simulation 

period. ERA-Interim/Land is the result of applying the land-surface model simulation 

using HTESSEL, with meteorological forcing from ERA-Interim and precipitation 

adjustments based on the Global Precipitation Climatology Project (GPCP) v2.1 

product (Huffman et al., 2009). ERA-Interim/Land preserves closure of the water 

balance and is therefore more suitable for climate applications than the land surface 

parameters included in the original ERA-Interim data set (Balsamo et al., 2012). 

River discharges are produced for the 30 year time period (1979-2010) using CAMA-

Flood (Yamazaki et al., 2011), a global river routing algorithm. CAMA-Flood 

simulates horizontal water transport by using a diffusive wave equation and 

backwater effects are also taken into account. The discharges are calculated for a 25 

km grid resolution and downscaled via catchment based rating curves to 1 km 

resolutions. A Gumbel (EV1) distribution function is fitted to the annual maximum 

discharge of 30 years to derive the design floods of the study area (Pappenberger et 

al., 2012). 

5.4 HYDRAULIC MODELLING 

To assess how errors in the estimation of design flood propagate into flood hazard 

mapping, the estimated design flood is used as hydrological input of a hydraulic 

model. In particular, we use the LISFLOOD-FP (Bates et al., 2010) two-dimensional 

(2D) hydraulic code, which solves simplified version of the shallow water equations 

that preserve acceleration, but neglects advection term. LISFLOOD-FP is utilized to 
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propagate the 1-in-20 year flood discharges derived by two methods (i.e. REC, PMC) 

as well as the one estimated from stream-gauge data. Given the absence of major 

tributaries and large storage areas, it is assumed that the discharges measured at El 

Deim station are representative of the ones entering the Rosaries reservoir. Also, 

simulations are run by assuming steady flow. This is justified by the long duration of 

flood events in this river reach. Also, it allows avoiding hypotheses on the shape of 

the design hydrograph. The simulation periods are set as long enough to ensure that 

maximum inundation extents are obtained for all simulations. A water surface slope is 

used as downstream boundary condition. 

As SRTM’s Interferometric Synthetic Aperture Radar (IfSAR) technology cannot 

detect channel geometry beneath water surface, the bed elevation of main channel is 

not properly captured by the DEM (Farr et al., 2007). This can be compensated by 

parameters (i.e. Manning’s roughness coefficients) in hydraulic modelling (Petersen 

and Fohrer 2010, Yan et al., 2013, Pappenberger et al., 2006, Schumann et al., 2007). 

However, the scope of this modeling exercise is not to accurately simulate inundation 

patterns, but rather to get insights into the magnitude of the discrepancies in terms 

of flood extent when using different estimations of the design flood. Thus, also in 

view of the absence of flood extent observations, the Manning’s roughness coefficients 

are set as uniform, with standard values of 0.04 for the main channel and 0.06 for the 

floodplain (Chow, 1959). Hence, all simulations are based on the same parameters, 

initial and boundary conditions, while they different only in terms of inflow, equal to 

the estimated design flood. 

A simple aggregate performance measure is used to compare the flood extents 

simulated using the design flood estimated by REC and PMC to the reference ones 

obtained with in-situ stream gauge data (see Equation 1.5). 

5.5 RESULTS AND DISCUSSION 

The 1-in-20 year design flood determined from in-situ stream gauge observations of 

annual maximum flows using a Gumbel distribution is around 10,600 m3s-1. It should 

be noted that this value is affected by uncertainty. Although the length of the time 

series allows a robust estimation of the 1-in-20 year flood, multiple sources of 

uncertainty affect the flood data used for such estimation, such as river discharge 

measurement errors caused by extrapolation of the rating curve and changes of the 

cross-section due to sediment transport (ElMonshid et al., 1997). The quantification 

of this uncertainty is not an easy task and out of the scope of this study, but the 

literature suggests that errors around 20% can be expected (Di Baldassarre and 
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Montanari, 2009). Thus, a range of 10,600 ± 2,120 m3s-1 is used here as a reference for 

the 1-in-20 year flood. 

 
Figure 5.3 Comparison of In-situ flood extents of 1-in-20 year return period to REC 
(left panel) and PMC (right panel) 

The design floods estimated by REC and PCM differ markedly from this reference 

values. The application of the REC leads to an estimate of 5,500 m3s-1 and therefore 

largely underestimates the reference value; while the PMC leads to an estimate of 

24,100 m3s-1 and therefore largely overestimates the reference value.  

Figure 5.3 shows the impact of these differences in design floods in terms of the 

resulting flood extent. The REC-based inundation model underestimates the reference 

flood extent (F equal to 0.56). While the PMC-based model leads to overestimation 

(F equal to 0.39). 

The underestimation of design floods associated to the application of REC might be 

the consequence of the inherent space-time heterogeneity of ungauged basins. Even 

though the hydrological information come from the two large databases (UNESCO 

1984; IAHS 2003) are believed to be reliable (Padi et al., 2011), the catchments are 

not entirely homogeneous in terms of hydro-climatic conditions. Thus, the empirical 

envelope curve might miss the hydro-climatic characteristics of the Blue Nile 

catchment which is dominated by monsoon climate in the Ethiopian Highlands. REC, 
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which is essentially a logarithmic linear regression (equation 1), might induce 

systematic error in design floods estimation.  

The overestimation of PMC design floods is likely due to the large uncertainty 

accumulated and propagated through the process-based meteorological-hydrological 

model chain. As stated by Pappenberger et al., (2012), the design floods derived by 

PMC have limitations due to the fact that it is affected by uncertainties in each 

component of the physical model chain. The meteorological forcing time series (i.e. 

the ERAInterim reanalysis) is too short to calculate high return periods and might be 

substantially improved by using an enhanced correction routine or better correction 

data. In addition, ERAInterim has difficulties with representing accurate 

precipitation patterns in this region (Mwangi et al, 2014). The quality of the input 

data set could also be improved by the use of downscaling or other correction 

techniques (Di Guiseppe et al., 2013). The land surface scheme (i.e. HTESSEL) 

results are hampered by the uncertainties in the aspects of model structure, 

parameters, grid resolution, numerical scheme and topographic data. The model 

structure is never perfect in hydrological modelling and the large number of 

parameters lead to considerable uncertainties as well as equifinalities. The surface 

water fluxes are computed in a coarse grid size of 25 km, which adds more 

uncertainties to the upstream boundary condition in a 90 m-resolution hydraulic 

model of LISFLOOD-FP. All those uncertainties contribute to largely overestimated 

design floods and flood extents compared to the ones derived from in-situ data 

(Figure 5.3). 

This study shows that estimating flood hazard in data-scarce areas is a real challenge, 

as both methods used to estimate the design flood for a reach of the Blue Nile have 

demonstrated clear limitations. In his invited talk at the 2014 EGU General Assembly, 

Demetris Koutsoyiannis made a provocative point that the best way to make 

predictions in ungauged basins is to make them gauged (Koutsoyiannis, 2014). 

However, one may argue that, to properly estimate design floods, long time series are 

needed. Thus, we made an additional experiment to address the following research 

question: if a stream gauge was installed, how long would it take to get design flood 

estimations more reliable than the ones obtained using either REC or PMC? 

To explore this point, we randomly sample n discharge values from the entire time 

series of annual maximum flows. The 1-in-20 year design flood is then estimated 

based on the chosen n available observations by fitting the Gumbel distribution and 

using the method of moments. For each n observations, we repeat the random 

sampling a large number of times (i.e. 10,000): The estimations are summarized in 

terms of 10th, 90th percentile, as well as the median, in Figure 5.4. Note the 
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uncertainties due to flood data, the choice of extreme value distribution and other 

sources are out of the scope and not considered in this study. 

Figure 5.4 1-in-20 year design flood estimation depending on the number of 

observations (ranging from 3 to 26). The black solid line is the value estimated using 

26 annual maximum discharges (uncertainties due to flood data and other sources are 

neglected and not shown here); the grey area is the uncertain estimation bounded by 

10th and 90th percentile; grey dash line is the median; black dash line is the design 

flood estimation using PMC, black dotted line is the design flood estimated using REC. 

In Figure 5.4, the uncertainty bounds reduce significantly with the increasing number 

of observations, particularly when n is equal or below 6 (with first 3 added 

observations result in about 50% of the uncertainty bounds reduced, compare to the 

estimation using 26 observations). The reduce rate of uncertainty bounds decreases 

substantially when n is equal or above 10 (e.g. 21% and 17% of the uncertainty 

bounds are reduced for 10 to 18 and 18 to 26 observations considered). This indicates 

that the rate of increasing information content is larger when only a few observations 

are available, which highlights the value of newly collected data with limited initial 

available observation in data-scarce areas. The most interesting outcome is that the 

estimated design floods using limited observations are better than the ones derived 
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from either REC or PMC, even with only three observations (Figure 5.4). Similar 

results were found in Brath et al., (2009), in a rather different context, where the 

direct method to estimate index flood with very limited information over-performed 

statistical models and physically-based models. This also highlights the importance of 

data collection for design flood estimation. Given the rapid development of data 

collection technology (e.g. floating acoustic Doppler velocity measurement devices), 

this study suggests that the efforts to make more rivers gauged are at least as useful 

as efforts to improve the methods for runoff estimation in ungauged basins. 

5.6 CONCLUSIONS 

The aim of this study is to investigate the potential and limitations of a traditional 

method (i.e. REC) and an alternative method (i.e. PMC) for estimating design floods 

in a river reach of the Blue Nile. To get insights on the impact on flood hazard 

studies, the discrepancies in design flood estimations are also evaluated through the 

comparison of the resulting flood extent. 

The results of this study show that PMC model overestimates the design flood 

extents compared to the benchmark in-situ model, while REC underestimates the 

design flood extents. Given the over- and under- estimation of flood extents, in this 

particular case study, the results indicate that flood extents derived by PMC and 

REC might not be appropriate to support flood risk management (and detailed land 

use planning) at the local scale. While robust conclusions about the appropriateness 

of those methods require additional cases studies, these outcomes underline the 

challenge of assessing and mapping flood hazard in data-poor areas. Moreover, we 

show the importance of collecting data as we demonstrate that in this test site even 

very short time series can provide a better estimation of the design flood than the 

one provided by other methods. 
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CHAPTER 6 

SYNTHESIS, CONCLUSIONS AND FUTURE RESEARCH 

This thesis attempts to explore the potential and limitations of low-cost space-borne 

data in supporting hydraulic modelling of floods. As data and other model aspects 

(e.g. uncertainty, modelling purpose) are deeply intertwined, some key issues related 

to these data in hydraulic modelling has to be understood before being integrated in 

the flood hydraulic modelling practice. For example, the DEM resolution might be 

less of an issue affecting model results compared to its vertical accuracy. Other 

sources of uncertainties explicitly considered in hydraulic modelling would interact 

with topographic uncertainty and affect overall model performance. Moreover, model 

results based on simple model and coarse data might not be worse than that based on 

complex model and fine data. In the end, modelling purpose dominates the choice of 

data and modelling tools. In this chapter we summarize these issues as potential and 

limitations together with conclusions and future research in this chapter. 
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6.1 SYNTHESIS 

New data sources are becoming increasingly important to support flood studies in 

data-scarce areas. At the same time, new technologies in remote sensing are 

developing at a fast pace towards ever-increasing accuracy, resolution, frequency and 

low cost. For example, the upcoming topographic data set from TanDEM-X (with a 

spatial resolution of 12 m and relative vertical errors less than 2 m, and at fairly low 

cost) may prove invaluable for scientists and practitioners with an interest in flood 

mapping and modelling. This thesis attempted to explore the usefulness of low-

resolution, low-cost space-borne data in supporting flood inundation modelling. 

The limitations and potential of data should be discussed in view of various model 

aspects. On the one hand, for instance, SRTM`s global coverage, zero costs, easy 

acquisition, are obvious reasons that make this type of data attractive. On the other 

hand, the actual value of this data depends on the scale and purpose of the model, 

and other sources of uncertainty affecting the modelling exercise. This condition also 

applies to satellite imagery and radar altimetry, which have been investigated in this 

thesis. 

6.1.1 DEM resolution and accuracy 

Global coverage DEMs with low vertical accuracies (Table 1.2) are typically not useful 

for local detailed floodplain inundation studies requiring accurate and precise 

estimations of high water levels (e.g. modelling supporting the design of a new 

bridge). However, as SRTM DEM at 90 m resolution, for instance, has been shown to 

be as accurate as 2 m errors in the vertical in some floodplain areas (Schumann et al., 

2013), its use on large scale flood inundation studies can be promising. This thesis 

shows that this is actually the case, especially if other major sources of uncertainty 

are explicitly considered (Chapters 2 and 3). Also important to note is that remote 

sensing acquisition of topographic height data means that undesirable features related 

to the data processing (voids and artificial hills) or related to the data acquisition 

process (e.g. vegetation canopy) need to be removed or corrected. For LiDAR 

processing such techniques are well advanced and lead to very accurate bare ground 

DTM; however in the case of SRTM for example, vegetation removal procedures are 

much less understood and only in a research phase meaning that the SRTM DEM is 

currently not available as a bare ground DTM by default and vegetation needs to be 

removed before the DEM can be applied to flood inundation mapping or modelling 

(Baugh et al., 2013). 
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Despite the limitations noted above, the resolution of the topographic data is 

typically less significant than accuracy for providing reasonable modelling results for 

large-scale flood studies (e.g. Horritt and Bates, 2001), as long as the resolution of 

the DEM is not too coarse to capture the main channel of the river (e.g. Sanders 2007) 

and a global performance measure (e.g. Aronica et al., 2002) is used. It should be 

mentioned that the recent advances in hydrodynamic modelling bring improvements 

to models that can credibly simulate flood processes at sub-grid scale using coarse 

resolution and lower accuracy DEMs (e.g. LISFLOOD-FP sub-grid channel (SGC) as 

developed by Neal et al., 2012). This opens up new opportunities in the exploitation 

of coarse resolution data. 

Performance measures that take into account local weights which vary among 

locations according to their importance often allow for better estimation of flood 

hazard, but require more detailed topographic data. For example, the optimum 

calibration for flood extent was found to be quasi invariant with respect to changes in 

DEM resolution in River Severn, UK. In particular, the model reached maximum 

performance at a resolution of 100 m, after which no improvement can be achieved 

with increasing resolution (Horritt and Bates, 2001). For the River Dee in Wales 

(UK), the predicted flood extent by using LiDAR data with resolution of 20 m is very 

similar to that obtained by aggregating the DEM to 80 m (Chapter 2). Although 

Stephens et al., (2013) argued that a global binary pattern measure for flood extent 

evaluation might be biased depending on the size of the flood and shape of the 

catchment, DEM resolution is often less of an issue than its vertical accuracy. 

Moreover, given low-cost SAR images used for hydraulic model calibration and 

validation are often of coarse resolution, the DEM used for building the model should 

be of a similar (low) resolution. In other words, a fine resolution DEM-based model 

(e.g. built from LiDAR) would lose its advantage in terms of resolution when low 

resolution imagery is used for model calibration. Ideally, the spatial resolution of low-

cost space-borne images and DEMs should develop with similar pace, to be fully 

integrated in hydraulic modelling. The case studies presented in this thesis are 

representative of many rivers and floodplains in Europe.  

6.1.2 Treatment of other sources of uncertainty 

The uncertainty introduced by inaccurate topographic data can be as significant as 

the other sources of errors in river flood studies, including model parameters (e.g. 

roughness coefficients, Beven and Binley, 1992; Beven and Freer 2001; Montanari 

2007), hydrological input (e.g. river discharge values, Di Baldassarre and Montanari, 

2009) and failure of flood defences (e.g. levees or dikes, Di Baldassarre et al., 2009c; 
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Mazzoleni et al., 2014). However, it is still unclear how topographic uncertainty 

interacts with other major sources of uncertainties. Given a complicated, non-linear 

system, several sources of uncertainty might strengthen or compensate each other, 

which result in amplified or narrowed uncertainty bounds. There are very few studies 

that analysed at this issue (e.g. Yan et al., 2013 (Chapter 3); Jung and Merwade, 

2012), which is therefore worth exploring further. Topographic uncertainty might be 

compensated by other sources of uncertainties in hydraulic modelling if they are 

explicitly taken into account (Chapter 3). 

6.1.3 Equifinality and data-model relation 

The concept of equifinality in flood inundation modelling is that models with 

different parameter sets (usually roughness coefficients in channel and floodplain) are 

equally able to simulate flood extent. As SAR imagery provide less detailed 

information than the high resolution ones, it is more likely to fit the less informative 

flood extents equally well with models based on more parameter sets. In other words, 

more information is needed to differentiate models with different parameter sets. 

Thus, equifinality could get more severe when flood inundation models are 

conditioned on low resolution SAR imagery. However, on the other hand, when high 

resolution SAR imagery (detailed information) is available, but they are beyond what 

several models (with their structure and parameters) can mimic, model with different 

parameter sets values could behave 'equally bad'. For example, models cannot 

simulate detailed inundation patterns presented in SAR regardless the model 

parameter spaces and the model parameter sampling techniques. Fabio et al., (2010) 

use 390 flood depths points to calibrate a 2D flood propagation model. The 

equifinality of the parameter sets showed that the model structure is not sufficiently 

complex to properly describe the information content of the calibration data. In this 

context, coarse resolution data does not look really bad in hydraulic modelling. 

The exploration of information content to effectively improve hydraulic modelling is a 

topic of great interest during recent years (Dottori et al., 2013). More detailed 

information does not necessarily lead to improved model performance. Besides, Neal 

et al., (2012b) demonstrated that in some circumstances simpler models might 

achieve accuracies similar to that of more complex model. In a model conditioning 

and evaluation context, simpler models with coarse-resolution low-accuracy 

topographic data might even over perform that based on high-resolution high-

accuracy ones (Mukolwe et al., 2014). Those examples illustrate that simply bringing 

in more detailed data does not necessarily solves neither the issue of equifinality, nor 

improves the model performance. Thus, a proper combination of model structure, 
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parameter and input/calibration data is a better direction for flood inundation 

modelling. Despite the recent progress on satellite constellation (the potential of 

Sentinel-1 and COSMO-SkyMed are yet to be explored), for the time being there is 

still little chance to obtain more than one low-cost flood event map per event. 

Therefore, with such calibration data, neglecting some physical processes that are less 

important (e.g. secondary circulation, advection term etc.) seems to be a viable 

option (e.g. Bates 2012). In this context, low-cost data in combination with the right 

modelling tools producing reasonable good results would be the preferred case for 

flood studies in data-sparse areas (Chapter 2, 3, 4). Essentially, this is also an issue of 

how input (data) uncertainty interacts with model structure uncertainty. 

6.1.4 Flood frequency and micro-topography 

Hydraulic modelling based on SRTM topographic data can provide reasonable results 

for large-scale flood studies. This thesis (Chapter 2, 3, 4) and recent studies have 

explored the potential of this global and freely available topographic dataset. 

However, the term “reasonable” requires a number of conditions. First, the frequency 

of flood events is important. Most studies reviewed herein focused on the simulation 

of low-frequency floods (e.g. 1-in-100 year), which most likely do not require high-

resolution and high-accuracy DEMs for detailed descriptions of small topographic 

features, which drives the inundation processes in case of high-frequency floods (e.g. 

1-in-2 years). This is due to the fact that e.g. low-frequency floods can submerge 

some small topographic features, by which flood patterns would be less affected due 

to large accumulated flood volume on floodplain. For a more comprehensive analysis 

of the utility of SRTM DEM in hydraulic modelling, there is thus still a need to 

explore the higher-frequency events even though they are less commonly studied due 

to their more limited impact on society. Such a thorough analysis may also contribute 

to the understanding of the limitations of low accuracy topographic data in support 

of hydraulic modelling. On the other hand, by understanding this limitation, SRTM 

might offer great potential to large-scale, low-frequency flood modelling (e.g. Chapter 

3, 4). 

6.1.5 Absence of in-channel data 

As channel conveyance has a significant impact on modelling flood processes and 

SRTM (or even LiDAR for that matter) cannot estimate channel bed elevation, there 

is the need to approximate channel bed prior to hydraulic modelling (e.g. Neal et al., 

2012a; Patro et al., 2009; Yan et al., 2015a). The first global river depth and width 

data set (Andreadis et al., 2013; Schumann et al., 2013) could significantly contribute 
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to main channel information. However, the large uncertainties of this dataset (see 

earlier) would limit its utility in hydraulic modelling studies. The hydraulic geometry 

theory, which describes a power law relationship between channel width and depth, is 

a promising alternative to estimate main channel information (e.g. Neal et al., 2012a). 

However, it is also the source of major inaccuracy in water level simulation, 

particularly at low flow conditions. In this thesis (Chapter 4), we propose an 

approach to lower the channel bed elevation for D meter and treat D as a model 

parameter. This allows an improved simulation of water level in terms of MAE in 

model evaluation. Although the optimum model based on this approach cannot 

capture the flood peaks in the downstream station, it is still a relevant attempt to 

improve in-channel part of SRTM by parameterizing the overestimation. Nevertheless, 

there is still the need to come up with more reliable approaches to estimate channel 

geometry in the absence of field surveys. 

6.1.6 Modelling purpose matters 

SRTM-based hydraulic models can reach reasonable levels of accuracy in terms of 

water level and flood extent prediction, however, these are still of much lower 

accuracy than high-resolution and high-accuracy DEM-based models. There is still no 

broad consensus on the reliability and accuracy criteria for hydraulic models (Hunter 

et al., 2007). In fact, the study aim should dominate the requirements of modelling 

accuracy. Modelling purposes is deeply intertwined with appropriate topographic data 

and flood extent data. Coarse resolution model can hardly be useful in urban flood 

modelling where detailed description of flood hazard at local scale is required (e.g. 

Neal et al., 2009). Urban areas are characterized by critical length scales which are 

determined by both the shortest building dimension and the distance between 

buildings. Model performance deteriorates significantly at resolutions above these 

thresholds (Fewtrell et al., 2008). Thus, micro-topography which cannot be 

represented by global DEMs is vital for controlling flood pattern, while its impact 

becomes less relevant in large-scale flood studies. Meanwhile, high resolution SAR 

imagery is also essential to constrain the uncertainty in high resolution flood models. 

Therefore, modellers should carefully decide whether SRTM DEM (and other space-

borne data) is appropriate for the study at hand according to their modelling 

purposes. For instance, the design of hydraulic structures often requires detailed 

modelling of a river reach. In this case, SRTM data are most likely not suitable. Yet, 

SRTM data can be useful to support hydraulic modelling in data-scarce areas when 

the purpose is to generate large scale flood maps as a non-structural measure to raise 

flood awareness in flood prone areas. For example, the devastating India-Pakistan 
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flood in 2014 has killed 277 people and caused huge economic losses in Jammu and 

Kashmir, where almost no flood data are available whatsoever. The results provided 

by a large-scale flood model using space-borne low-cost data (e.g. with the water level 

accuracy 1-1.5 m) can at least build/raise citizens’ flood awareness towards 

preventing potential losses on such huge event, or quantify the after-event flood 

damage. 

The issue of data scarcity for flood modelling is not only economic and technological, 

but could also be highly political in a geopolitical sensitive area like Kashmir. In this 

context, the potential of space-borne, low-cost data which is freely and globally 

accessible online is enormous. Similar situations could be found in the Nile basin 

where many topographical and hydrological data are kept confidential and not shared 

across countries. This makes integrated trans-boundary flood risk management very 

difficult. The emerging low-cost space-borne data with their demonstrated potential 

in large scale river studies can be one of sources for overcoming these lacks of trans-

national data. 

Yet another potential application of technologies covered in this thesis is insurance 

industry. Flood insurance focuses on the importance of flood prediction in the context 

of the business models of insurance companies. They need to manage large quantities 

of capital reserves, which have to be paid out in case a flood disaster strikes. This 

requires insurers to classify areas with a variety of land uses to several levels of risks 

and throughout a range of countries, perhaps even in the continental scale. As 

discussed in this thesis, SRTM seems to be currently a reliable global DEM that 

could be utilized for flood hazard estimation (TanDEM-X is still under development 

when this thesis is drafting), which is an essential task in Flood risk mapping for 

(re)insurance companies. 

There is currently no guideline for matching level of model accuracy with specific 

modelling needs, not to mention those guidelines would perhaps be different when 

applied by people with different visions of various institutions in different countries. 

However, the conclusions currently drawn from SRTM-based hydraulic modelling 

studies could provide useful reference and guidance, and contribute to future studies 

in data-scarce areas. 
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6.2 CONCLUSIONS IN BRIEF 

6.2.1 Main conclusions 

Low-cost space-borne data (e.g. SRTM topography, SAR imagery, radar altimetry) 

provides a promising potential for hydraulic modelling of floods in data-scarce areas. 

In particular, the performance of flood inundation models based on SRTM 

topographic data can be close to the one of models based on high-resolution high-

accuracy DEM (Chapters 2, 3 and 4). However, their actual usefulness could be 

affected by several factors, such as the scale of the river under study, the specific 

modelling purpose, flood frequency, availability of in-channel information, other 

sources of uncertainty considered, as well as the choice of modelling tools. Thus, 

estimating flood hazard in data-scarce areas is still a real challenge (Chapter 5). 

There is no general consensus about the level of model accuracy that should be 

achieved for any specific modelling purpose, not to mention this would probably differ 

from country to country by people with various visions. Therefore, users should 

carefully consider those factors discussed in this thesis before using low-cost space-

borne data in hydraulic modelling of floods. 

6.2.2 Specific findings 

Besides the main conclusions, a number of findings of this thesis are listed below: 

 DEM resolution is often less important than its vertical accuracy for hydraulic 

modelling in large-scale flood studies, as long as the key topographic features 

(e.g. embankments) are represented (Chapter 2). 

 The prediction of 1-in-200 year flood profiles in the study area of River Po, 

using the HEC-RAS model based on SRTM topography data, are within the 

accuracy that is typically associated with large-scale flood studies, as long as 

the other sources of uncertainty are explicitly considered (Chapter 3). 

 The performance in reproducing in-situ water levels for large-scale flood 

studies in data-scarce areas of a hydraulic model built and calibrated by using 

SRTM and radar altimetry was found reasonable, but generally not sufficient 

for detailed flood studies (Chapter 4). 

 Flood extent maps derived by PMC and REC might not be appropriate for 

flood risk management (and detailed land use planning) in ungauged basins. 

As methods based on ground data with a very few observations over performs 

PMC and REC, the importance of data collection is highlighted (Chapter 5). 
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6.3 RECOMMENDATIONS 

This thesis explores the potential and limitations of low-cost space-borne data for 

inundation modelling of floods under uncertainty. Model performances based on those 

data are quantified on three cases covering from medium to large scale of rivers. It is 

still hard to draw solid conclusions based on limited number of studies. Thus, more 

evidences should be collected to support the general findings. Moreover, the scale 

here mentioned does not only refer to spatial scales, but should also include scale of 

floods (i.e. flood frequency). The more case studies we have, the more detailed 

pictures showing potential of low-cost space-borne data supporting flood modelling 

could be drawn. 

Besides the two dimensions (i.e. spatial scale and flood frequency), the third 

important dimension (i.e. modelling purpose) should also be added to the big picture. 

In this thesis, the usefulness of space-borne data is qualitatively discussed according 

to various modelling purposes, while it is also worth to be quantified. It is therefore 

recommended to conduct more similar studies but with end-users' (stakeholders') 

feedback on specific performance requirement and satisfaction of existing model 

accuracy. The results should be rescaled from 0 to 1 among studies with various 

purposes. A 3D figure with river scale, flood frequency and modelling purpose could 

therefore be plotted. 

The current efforts focus on quantifying the potential of low-cost space-borne data, 

measures to improve model performance based on existing data should also be 

explored. In particular, as the upcoming satellite missions (e.g. TanDEM-X) that 

provide more accurate global topographic data are still unlikely to include in-channel 

geometry information, more research should dedicate on resolving this issue of SAR-

based DEMs support flood modelling. The current solutions are often associated with 

large uncertainty, therefore improvement is needed. 

Lastly, flood modelling and remote sensing is indeed a hot topic in hydrology and 

provides huge potential to shape the way we model floods. It seems that current 

researches focusing on remote sensing data are unavoidably falling into a 'data-

emerging, data-testing' circle. It is indeed worth to explore the new data, while on the 

other hand, lack of novelty. Therefore, an innovative methodology that could discover 

the essence of 'remote sensing data - model relation' is badly needed. 
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6.4 DATA FROM THE FUTURE SATELLITE MISSIONS 

As the space-borne data is moving with a rapid pace towards high-resolution, high-

accuracy and low-cost, more and more researches are focusing on the integration of 

those fast-growing data into inundation modelling. In the light of advances of remote 

sensing technology in hydrology, we believe that numerical modelling of floods has 

entered a whole new stage. The section below introduces the upcoming future 

satellite missions which could likely transform remote sensing hydrology. 

6.4.1 TanDEM-X 

TerraSAR-X add-on for Digital Elevation Measurement (TanDEM-X) is the new 

world-wide DEM of DLR (German Aerospace Center) that provides homogeneous 

pole-to-pole coverage of unprecedented accuracy: at a spatial resolution of 10-12 m 

and a relative vertical accuracy of less than 2 m on slopes less than 20%, and 4 m on 

slopes greater than 40% (Eineder et al., 2012, Figure 6.1). These specifications exceed 

any other global satellite-based elevation model available today, compared to 30/90 m 

spatial resolution of SRTM. Up to now, the DEMs of the most of Australia, North 

America and Russia have been finished. Areas in South Africa and South America are 

next in the production. It is expected to complete the global DEM by the end of 2015 

(Zink 2014). Even though the release of this DEM is currently under a commercial 

license which is operated by Airbus Defense & Space, the associated low cost (100 

euro per quota, ~7700 km2) would be a relatively minor obstacle if cost were a 

constraint. Scientific assessment of this DEM is at the moment only in an 

experimental phase, but there are already several assessments of the Intermediate 

DEM (IDEM), which is the first calibrated and mosaiced product of TanDEM-X. 

Table 6 summarizes the IDEM quality assessment of TanDEM-X that covers areas 

with various characteristics. The results show that in hilly and sparsely vegetated 

areas the accuracy requirements are already fulfilled, whereas for flat and sparsely 

vegetated areas they are even better. In hilly and vegetated regions the accuracies 

can almost be achieved (Gruber et al., 2012). This is only the intermediate product of 

TanDEM-X based on one coverage, the larger phase errors in hilly and vegetated 

areas can be corrected in the upcoming second coverage. In addition, TanDEM-X 

uses Polarimetric SAR interferometry (Papathanassiou and Cloude, 2001) that 

combines interferometric with polarimetric measurements to gain additional 

information from semi-transparent volume scatterers. This technique allows 

extraction of vegetation density and vegetation height. TanDEM-X will be the first 

mission to demonstrate this technique in a single-pass data acquisition mode (Krieger 

et al., 2009). Therefore, first observations seem to indicate that TanDEM-X is a 
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promising low-cost alternative and might allow for the first time more detailed local 

flood studies at the global scale, such as urban flood modelling, flood reinsurance in 

urban areas, flood study with the purpose of hydraulic structure design etc. 

 
Figure 6.1 Comparison of TanDEM-X (left panel) and SRTM 30m (right panel) 
topographic data in Arkansas, USA (figure taken from WorldDEM image gallery) 

6.4.2 Sentinel-1 

Sentinel-1, launched in April 2014, is the first of satellites series from the Global 

Monitoring for Environment and Security (GMES) program, providing operational 

monitoring information for environmental and security applications (Figure 6.2). 

Sentinel-1 has been designed to address primarily medium- to high-resolution 

applications through a main mode of operation that features both a wide swath (250 

km) and high geometric (5×20 m) and radiometric resolution. Sentinel-1’s revisit 

frequency and coverage are dramatically better than those of the ERS-1/2 SAR, and 

the ENVISAT ASAR. The two-satellite constellation offers six-day exact repeat and 

daily full coverage from north of +45°N to south of −45°S. Its effective revisit and 

coverage performance may be further improved by access to the planned Canadian C-

band SAR constellation. Quick data delivery allows near-real time data to be 

delivered within 3 h of observation, as well as emergency operations to be completed 

typically within 24 h. Most importantly, Sentinel-1`s open and free data policy would 

be extremely beneficial for scientific users across the world, particularly for 

developing countries. Sentinel-1 operations shall fill the gaps left by the finished 

operational lifetimes of ERS/ENVISAT and last for a period of at least 7 years 

(Torres et al., 2012). 

Sentinel-1 opens up many opportunities to improve flood mitigation, flood forecasting 

and modelling, damage evaluation and risk assessment. It could be directly integrated 

into existing disaster management systems for flood monitoring. Working together 

with the upcoming TanDEM-X topography as input and calibration data, Sentinel-1 
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with its free access data policy might allow the first time detailed urban flood 

modelling in a global scale.  

 
Figure 6.2 Santinel-1 radar imagery show west of the Netherlands (left panel) and 
Tokyo bay (right panel) 

6.4.3 SWOT 

The upcoming SWOT mission (expected in 2019) will focus on better understanding 

of oceans and terrestrial surface water, as well as how water bodies change over time 

at global scale. The SWOT mission will produce ±50 cm height accuracies per pixel, 

and allow sampling of rivers at least at 100 m in channel width and perhaps smaller 

(Bates et al., 2013). The SWOT mission is expected to penetrate vegetation through 

canopy openings and will also make it possible to estimate discharge in rivers more 

accurately. With the existing satellite missions, floodplain water levels and its 

dynamics (rising and falling of water) during the flood event are rarely measured 

during the passage of a flood wave. SWOT aims to provide water level records for 

any flooding events that underlay a given satellite overpass. The proposed SWOT 
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satellite mission would have the potential to address many scientific questions and 

perhaps transform our understanding of hydrology (Bates et al., 2013). 

6.5 FUTURE RESEARCH 

Besides the general findings of this thesis, which provide useful information for the 

use of low-cost space-borne data, some possible research topics are yet to be explored. 

This section summarizes a number of potential avenues in this field. 

The impact of flood frequency on the accuracy of inundation modelling based on SRTM 

topographic data 

Given SRTM`s coarse spatial resolution and poor vertical accuracy, SRTM likely 

misrepresent some small but key topographic features which could dominate the flood 

inundation pattern on floodplain. How significant those topographic features are for 

simulating flood pattern seems to be associated with the flood magnitude (or flood 

frequency) of the event been studied. Given low-frequency flood waters usually 

submerge microtopography, by which flood patterns would be less affected due to 

large accumulated flood volume on floodplain. That is to say, topographic features 

misrepresented by SRTM that are submerged by a low-frequency flood might become 

the key obstacles confining a high-frequency flood. Therefore, SRTM might be good 

at simulating large flood event but not the small ones which 'amplify' the 

consequences of the lack of small topographic features. The future study tries to 

explore the interplay between flood frequency and performance of inundation 

modelling by using SRTM as topography input in two case studies: River Po in Italy 

and River Dee in UK. A high resolution, high accuracy LiDAR topography-based 

model is used as the benchmark in comparison with SRTM-based model. Floods with 

several return periods are tested and a global performance measure is used for 

evaluating the inundation. The outcome is expected to associate flood frequency of 

the event under study to the level of accuracy, when using SRTM as the topographic 

input for inundation modelling. 

Vegetation removed bare earth DTM in flood inundation modelling 

Vegetation canopy, as an undesirable feature for a bare earth DTM, needs to be 

removed before integrated in flood inundation models. However, current 

understanding of vegetation removal procedure is limited, meaning that the SRTM 

DEM is at present not available as a bare ground DTM. The future study focuses on 

the new vegetation remove method which requires global vegetation height data 

(Lefsky, 2010; Simard et al., 2011) on global DEM (e.g. SRTM). In particular, the 
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percentage of canopy height that is removed from SRTM DEM should be quantified, 

as this percentage tends to differ from river to river. The improved performance of 

inundation modelling based on vegetation removed SRTM topography should be 

demonstrated as well. 

Data fusion towards a better topography for inundation modelling  

It is clear that SRTM topography needs to be improved to better support inundation 

modelling. Data fusion provides the new avenue to replace SRTM elevation with high 

vertical accuracy data, in such a way that improved inundation modelling could be 

performed on the hybrid/fused DEM. However, the high accuracy data are not often 

available, and usually costly. Ground and air survey (e.g. LiDAR) can be undertaken 

in few areas which are significant to inundation processes, improving modelling 

accuracy while limiting the costs. The question therefore arises from where and to 

what extent the new measurements should be undertaken, to improve inundation 

modelling in a satisfactory way, meanwhile, with lowest cost. In another word, where 

is the important location of the topography that dominates the flood inundation 

pattern, which badly needs to be improved? The future study should contain the 

following: Firstly, the topography comparison is carried out to identify the error areas 

on floodplain. Secondly, the selected areas (possibility with several combinations) are 

fused with data abstracted from high-resolution, high-accuracy LiDAR data. To 

assess the model performances, the inundation models based on those fused 

topographies are benchmarked with the LiDAR-based model. 

DEM sampling for random noise assessment 

SAR-derived DEMs (e.g. SRTM) suffer from random noise in the form of spikes and 

wells. Very few studies have removed the random noises from SRTM before 

integrating it into hydraulic modelling. The impact of the random noise in the 

topographic data to inundation modelling is unknown and yet to be explored. It 

would be interesting to study reconstructing the random noise by sampling the 

vertical elevation of cells in a high-resolution, high-accuracy LiDAR DEM. The 

sampling cell is randomly selected from the DEM domain. With various combinations 

of vertical elevation and location of the cells, the reconstructed DEMs are feed into 

inundation models to simulate a real-life flood event. Those models are benchmarked 

with the original high-resolution, high-accuracy LiDAR DEM. 

The integration of remote sensing data from the future missions with flood modelling 

The upcoming satellite missions will offer much more detailed and accurate 

information of topography, flood extent and water level globally, which most likely 
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would provide huge value for flood modelling. As mentioned, these data include new 

global DEM (e.g. TanDEM-X), satellite imagery (e.g. Sentinel-1) and water levels (e.g. 

SWOT). The exploration of the potential and limitations of those data in flood 

modelling is of great interest of scientists and practitioners in this field. The 

methodological approaches developed in this thesis are general enough and could be 

very well adopted to this end. 
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This thesis aims to explore the potential and 
limitations of low-cost, space-borne data in 
flood inundation modelling under unavoidable, 
intrinsic uncertainty. In particular, the potential 
in supporting hydraulic modelling of floods 
by the: NASA’s SRTM (Shuttle Radar 
Topographic Mission) topographic data, SAR 
(Synthetic Aperture Radar) satellite imagery 
of flood extents and radar altimetry of water 
levels are analyzed in view of inflow and 
parametric uncertainty.

To this end, research work has been carried 
out by either following a model calibration-
evaluation approaches or by explicitly 
considering major sources of uncertainty 
within a Monte Carlo framework. To 
generalize our findings, three river reaches 
with various scales (from medium to large) 

and topographic characteristics (e.g. valley-
filling, two-level embankments, large and 
flat floodplain) are used as test sites. 
Lastly, an application of SRTM-based flood 
modelling of a large river is conducted to 
highlight the challenges of predictions in 
ungauged basins.

This research indicates the potential and 
limitations of low-cost, space-borne data 
in supporting flood inundation modelling 
under uncertainty, including findings related 
to the usefulness of these data according 
to modelling purpose (e.g. flood insurance, 
planning, design), characteristics of the 
river and considerations of uncertainty. The 
upcoming satellite missions, which could 
potentially impact the way we model flood 
inundation patters, are also discussed.
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