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summary

Methane (CH4) is a potent greenhouse gas (GHG) with a global warming potential (GWP) 20-80 times
that of carbon dioxide (CO2)(Balcombe et al. 2018). Knowledge of methane source’s location and emis-
sion rates is essential for informing climate mitigation efforts. Space-based instruments like TROPOMI
enable daily global monitoring of methane concentrations, but current estimation techniques often de-
pend on tailored inverse models which are computationally expensive or rely on bottom-up inventories
which only consider previously reported sources. Recently, divergence-based (DIV) techniques have
emerged as a promising physics-driven framework for estimating emissions using concentration and
wind fields obtained from satellites and reanalysis products of observational data, respectively. These
approaches are computationally lightweight, reproducible, and avoid the need for training data or region-
specific calibration from the user.

Although early studies have demonstrated their potential for various trace gases, including methane,
key aspects of the method, such as background corrections and sensitivity, remain insufficiently ex-
plored in applied settings. In particular, there remains a lack of systematic research on how to best
configure these methods for global application using TROPOMI observations. Most previous studies
have been limited to simplified scenarios such as Gaussian plume simulations or have examined only
selected components of the methodology, including specific estimator types or correction schemes. No-
tably, the two leading techniques used to account for background methane: pressure- and topographic-
corrections, have not been compared under the same conditions, making it difficult to determine their
relative performance. This study thus addresses the research question "Which combinations of diver-
gence method parametrisations yields the most accurate estimates of emission for TROPOMI methane
observations?” by implementing and testing a broad range of divergence method variations across
three levels of complexity: idealized Gaussian plumes, simulated point-source emissions from a chem-
istry transport model (WRF), and a real world case study in the Permian Basin using TROPOMI satellite
data.

Among configurations tested on background-free observations from WRF data, numerical gradient ap-
proximation methods were found to have only a minor influence on overall accuracy, with differences
below 2% between the second-order (2), fourth-order (4), and combined fourth- and second-order
(combo) schemes. The choice of order of operations in the estimator proved more consequential:
Averaging the methane fluxes before applying the gradient operator lowered errors in emission esti-
mations under 5% compared to divergence-averaged estimators, which were more sensitive to errors
in the wind field and missing data, leading to error levels of 20 to 25%. Background tracers were then
added to compare the background corrections. The topography-based approach was found to be un-
usable in global applications due to its sensitivity to the scale height parameter H, which must be fitted
through simulations. Using physics-based approximations of H for methane yielded unpredictable er-
ror levels of 50 to 1000%. The pressure-based correction was thus used as a more reliable option with
errors in the 10 to 50% range. The optimal configuration yielded monthly estimates for the Permian
Basin emissions of 2019, averaging 3.397°¢ with a monthly variability of £2.177°g, aligning well with
previous studies. We found that extending the method to other years showed an increase of 2.14Tg
on the 2023-2024 period compared to 2018-2022, which may be due to the recent increase in oil and
gas production of the region highlighted by Varon et al. 2025.
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V10 10m resolution wind velocity in north-south direction  [m/s]
Vv Volume [m?]
XCH4 Column-averaged dry-air mole fraction of methane  [ppbv]
W Pixel resolution [m]
p Density [kg/m3]
Q Methane column density [g/m?]
AQ Methane column mass enhancement above back- [kg/m?]
ground levels

\Y Divergence operator NA




Introduction

Methane (CH4) is a potent greenhouse gas (GHG), second only to carbon dioxide (CO2) in its global
warming impact. The Intergovernmental Panel On Climate Change (Ipcc) 2023 indicates that CH4 con-
tributed 0.28°C to the total global warming of 1.1°C since pre-industrial times. Accurate knowledge of
atmospheric concentrations of methane and the location and quantities of emissions is thus essential
for understanding its role in climate change and for identifying effective mitigation strategies. Satellite-
based observations, such as those provided by the TROPOMI instrument, offer a unique opportunity
to monitor methane emissions globally. However, many existing estimation methods are either tai-
lored to specific cases, rely on computationally expensive simulations or require prior information from
bottom-up emission estimates. While machine learning (ML)-based approaches offer an alternative,
they are expensive to train and require extensive training data. In contrast, the physics-based diver-
gence methods (DIV) have recently attracted attention due to their potential to provide fast emission
estimates without relying on training sets or domain-specific parameters. The background components
of CH4 concentration fields were shown to require a correction when using the divergence method (Liu
et al. 2021) which may be done based on surface altitude (Sun 2022) or pressure (Veefkind et al. 2023).
Other variations such as the choice in order of operations or numerical gradient approximations (De Foy
and Schauer 2022) can also significantly impact the emission estimations’ accuracy and robustness.

Although studies investigated the impact of methodology variations in the DIV method (Koene, Brunner,
and Kuhlmann 2024) or applied it to TROPOMI CH4 (Veefkind et al. 2023), no systematic research has
been conducted to find the most effective combination of divergence methods for TROPOMI-based
methane estimation. Existing investigations have mostly focused on idealized test cases such as
Gaussian-shaped plumes (Roberts et al. 2023) or have examined only a subset of possible method-
ological variations such as estimators (Rey-Pommier et al. 2025). Notably, both of the most promising
methods for handling the background signal in CH4, that is, the topographic and pressure corrections,
have not been compared on a similar basis. This highlights the need for a comprehensive evaluation of
the divergence method’s implementations to establish a robust and globally applicable configuration.

This thesis aims is to examine a wide range of variations in parameters, corrections and implemen-
tation of the divergence method proposed in literature and evaluate their respective performance on
globally-applicable TROPOMI CH4 observations. To this end, simplified Gaussian models and simu-
lated chemical transport model (CTM) observations of steady methane point sources will be used to
assess the performance of various DIV configurations. Finally, a yearly emission estimation of the
Permian basin based on real TROPOMI CH4 observations will be compared to literature emission
estimates as a case study.

First, chapter 2 gives an overview of the DIV method’s position within the current remote sensing land-
scape and its working principle. The research objectives, questions and approach are discussed in
chapter 3. The data sources used and implementation solutions along with the verification steps taken
are then described in chapter 4. Finally, the results are presented and reviewed in chapter 5 while the
conclusions are outlined in chapter 6.



Background and Fundamentals

This chapter will start with a brief reminder on the role of methane in climate change (section 2.1) and the
methods used for space-borne remote sensing of trace gases in our atmosphere section 2.2. Current
state-of-the-art methodologies for estimating the location and emission rates of methane sources based
on satellite observations will then be reviewed in section 2.3 before delving into the divergence method
(section 2.4), its history and peculiarities compared to other methods, detailed working principle and
applications.

2.1. The role of methane in climate change

The current state of the climate shows a consistent increase in global temperatures, driven largely
by greenhouse gas emissions, including methane (Intergovernmental Panel On Climate Change (Ipcc)
2023). Methane (CH4) is a potent greenhouse gas (GHG) with a global warming potential (GWP) 20-80
times greater than that of carbon dioxide (CO2), depending on the time horizon considered (Balcombe
et al. 2018). Additionally, methane also acts as a precursor to tropospheric ozone which impacts air
quality and contributes to global warming (Shindell et al. 2012). Methane, like CO2, is a quasi-stable
gas in the atmosphere with an atmospheric lifetime of 9.1 years + 0.9 years (Intergovernmental Panel
On Climate Change (lpcc) 2023). This distinguishes it from other trace gases like nitrogen oxides (NO
and NO2, abbreviated NOx) which have a lifetime of 7 = 4.3 + 1.3 hours before degrading into ozone
(03).

Anthropogenic methane emissions, primarily from agriculture, fossil fuel extraction, and landfills (Saunois
et al. 2020) have shown a concerning upward trend from the 2000-2009 period to the 2010-2019 period
(Saunois et al. 2024). Natural fluxes, from the freshwater and wetlands in particular, also contribute
a significant portion of natural methane emissions and absorption and are sensitive to climate change
themselves(Peng et al. 2022).

The Global Methane Pledge thus set a target in 2021 as part of the Paris Agreements to significantly
reduce global methane emissions by 2030 (Commission and America 2021), making CH4 a primary
target for near-term climate strategies and mitigation actions. Since methane emissions are subject
to unexpected leaks from oil and gas operations or coal mines in particular and have both natural and
anthropogenic contributions, tracking the reduction efforts towards this objective will require compre-
hensive, real-time methane monitoring to track emission sources and identify mitigation opportunities
(European Commission. Joint Research Centre. 2017). The need for regular and accurate methane ob-
servations is, therefore, critical to meeting these ambitious climate targets and to ensure that emission
reductions are achieved in a timely manner.

2.2. Remote sensing observations applied to methane

These sections will go through the working principle of trace-gas retrievals in subsection 2.2.1 before
discussing the specificities of the TROPOMI instrument in particular in subsection 2.2.3.
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2.2.1. Working principle

Remote sensing instruments used for trace gas detection typically consist of spectrometers operating
in the short-wave infrared (SWIR) region of the electromagnetic spectrum. These instruments measure
the amount of light coming from earth within each frequency bin. The width of those bins is the charac-
teristic 'spectral resolution’ of the instrument while the size of the ground area observed per spectra is
the ’spatial resolution’ of the instrument. The spectra measured at each pixel is called the level-1 data
product of the instrument.

across track (SWath)

¢ ~7 km
(1 s flight)

Figure 2.1: Schematic showing how the 2D sensor of TROPOMI maps onto one ground dimension and one spectral
dimension for one-second observation. Figure taken from Veefkind et al. 2012

By comparing the initial, known, sun spectra with the measurements of the light which has travelled
through the atmosphere, reflected on the ground and travelled back out of the atmosphere before hitting
the satellite’s pixels and considering the characteristic bands at which methane tends to absorb light it
is possible to 'retrieve’ the amount of methane in the atmospheric column observed within each pixel
(Rodgers 2000). The resulting estimates in atmospheric methane column concentrations in parts per
million (ppm) is also called the level 2 data product or 'observation’.

2050
time = 2019-09-25T19:31:06, pixel_center_latitu...

AN

2000

1950

% 1900

stripe corrected column-
averaged dry-air mole fraction
of methane [1e-9]

94.5°W 93°W 91.5°W 20°W 88.5°W 87°W 1850

Figure 2.2: TROPOMI observation of a plume in Louisiana on 25/09/2019.
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An example of a TROPOMI methane observation can be seen in Figure 2.2 where a source (indicated
by a black dot) emits methane into the atmosphere at some mass flow, assumed constant over the
observation time, called the 'source rate’ Q(kg/h). This CH4 is then transported by the environment’s
wind (advection) and scattered by the random, turbulent currents of the atmosphere (turbulent diffu-
sion) (Roberts et al. 2023) eventually fading out into a fan. The observed quantity shown in Figure 2.2
is the column-averaged dry-air mole fraction of methane X C H,(ppbv). This value can then be con-
verted to molar column densities nc g 4(mol/m?) or enhancements Ancg4(mol/m?) in case the local
background is substracted. A unit change is generally performed on column mass densities Q(g/m?)
to be used as an input for the estimation models (Koene, Brunner, and Kuhimann 2024) in order to
more directly yield a source rate in (ton/h). Quantifying the source rate from such observations is a
hard inverse problem with complications such as measurement noise, wind direction and magnitude
uncertainties as well as missing data due to clouds or water surfaces.

2.2.2. Methane-capable instruments

There are a number of current and planned methane monitoring satellites which differ in various spatial
and spectral resolution resulting in a range of trace gas sensitivity and coverage. For example, satellites
like GOSAT (Greenhouse Gases Observing Satellite) and MethaneSAT are designed with advanced
spectrometers to detect methane concentrations at varying resolutions. GOSAT has been operational
since 2009, providing global methane measurements, while the newly launched MethaneSAT offers
enhanced capabilities specifically for detecting methane leaks and emissions. Similarly, the CO2M
mission will provide high-resolution observations of methane alongside carbon dioxide, contributing to
more comprehensive climate monitoring.

Table 2.1: Comparison of the capabilities of various methane observation instruments in operation (as of 13/01/2025). The
return time is the 'Time interval between successive viewings of the same scene’. Table summarised from Table 1 of Jacob
et al. 2022

Satellite launch year spectral resolution (nm) spatial resolution (km)
GOSAT 2009 0.06 10x 10

GHGSat 2016 0.3 0.025 x 0.025
TROPOMI 2017 0.25 55x7

PRISMA 2019 10 0.030 x 0.030
MethaneSAT 2024 0.3 0.13x0.4
CarbonMapper 2023 6 0.030 x 0.030
Sentinel-5 2025 0.25 7.5x75

CO2M 2025 0.3 2x2

These instruments are typically separated into two distinct categories: The first are the 'area flux map-
per’ which measure atmospheric methane concentrations across a broad, low resolution swath. These
satellites are used for monitoring and detection as thanks to their wide coverage and repeated obser-
vations of the same areas. The second is made up of 'point source imagers’ which offer high spatial
resolution and are used to provide more detailed observations on specific facilities or areas of inter-
est. Since point source imagers have a limited field of view they cannot be used for detection and are
pointed by operators to get more precise information on sources detected through other means e.g.
area flux mappers. By combining data from satellites observing the same area at different overpass
times, researchers can generate a time series of methane concentrations or pinpoint specific point
sources using a point source imager spacecraft after an area flux mapper identified an area of interest
- providing critical insights into methane dynamics and supporting climate mitigation efforts.

2.2.3. Sentinel-5P and the TROPOMI instrument

The TROPOMI (Tropospheric Monitoring Instrument) aboard the Sentinel-5 Precursor (S-5P) satellite,
launched in October 2017, provides continuous global coverage of atmospheric composition, offering
daily measurements across the globe (Veefkind et al. 2012). TROPOMI uses ultraviolet (UV), ultraviolet-
visible (UVIS), near-infrared (NIR) bands in its UVN module and the short-wave infrared (SWIR) band in
the SWIR module which is cooled down to 200K, allowing it to observe a wide range of atmospheric con-
stituents. In addition to methane (CH4) and carbon monoxide (CO) in the SWIR band, TROPOMI can
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also monitor ozone (O3), nitrogen oxides (NOXx), sulfur dioxide (SO-), formaldehyde (C H,O), aerosols,
and clouds, making it a versatile tool for atmospheric monitoring.

TROPOMI’'s methane retrievals from the SWIR bands are known to have a 2% accuracy and 0.6%
precision under cloud-free conditions (Veefkind et al. 2012) which was validated to a precision of 3.4+5.6
ppb once the retrieval of the observation has been executed (Lorente et al. 2021). However, since the
accuracy of methane measurements are dependent on the presence of e.g. clouds or water which
reflect light differently resulting in some pixels being masked out of the observation in order to keep
only the measurements whose confidence is high. The instrument has a wide swath of 2600 km and its
spatial resolution is 5.5 km by 7 km (Figure 2.1) which is relatively fine for flux-area mapper satellites.
This is distinct from point-source imagers which can achieve resolutions on the order of the meter but
need to be pointed at an area of interest.

TROPOMI has been proven to be effective in detecting methane emissions from various sources, in-
cluding both point-source plumes and diffuse emissions. Studies such as those by Jacob et al. 2022 or
Maasakkers et al. 2022 have demonstrated its capabilities in detecting methane emissions, making it
a crucial tool for facility-level detection of methane leaks. In particular, methane sources with very high
emission rates from a single facility, called super-emitters (Plant et al. 2022) have been a primary target
for methane mitigation strategies. TROPOMI allowed the automated detection of super-emitters using
a convolutional neural network (CNN) providing a weekly catalogue of high-priority mitigation actions
(Schuit et al. 2023).

2.3. Emission estimation methodologies
This section explores various source rate estimation methods for trace gases using satellite observa-
tions, with a particular focus on methane observations from the TROPOMI satellite.

2.3.1. Inverse methods

Inverse methods consist use chemical transport models (CTM), a type of atmospheric transport simula-
tions which track chemical species such as methane through air masses, to find what source conditions
should have been to result in the concentration field observed by satellite. Since atmospheric transport
is ruled by Navier-Stokes equations which are unsolvable, approximations and pre-computed meteoro-
logical fields are used to make up a forward model. An alternative approach is the Lagrangian particle
dispersion model which tracks the movement of individual particles in the atmosphere to simulate the
dispersion of pollutants ( Figure 2.5). While more computationally demanding than the Gaussian ap-
proach, this can provide a more accurate representation of plume dynamics and is applied extensively
in research (Lauvaux et al. 2022, Delfi et al. 2019, Freitas and Fornaro 2022, Crosman 2021) using the
NOAA's HYSPLIT model (NOAA 2025b).

By assuming a source location and emission rate (circle in Figure 2.3), the forward model can transport
the methane compounds to obtain a resulting plume structure (thick lines in Figure 2.3). Minimising
the difference between this result and the observation (thin lines in Figure 2.3) by tweaking the various
parameters can lead to an accurate and robust estimation as demonstrated for CO2 by Broquet et al.
2018, Houweling et al. 2015 and Ye et al. 2020. An example of such an extensive CTM is the GEOS-
Chem model (NASA 2025)

—_— = -

Figure 2.3: lllustration of a complex Figure 2.4: lllustration of a Gaussian Figure 2.5: lllustration of a Lagrangian
atmospheric transport model fitted to a plume model fitted to a plume particle dispersion model fitted to a
plume observation. observation. plume observation.

Bottom-up inventories, such as those provided by EDGAR (Emissions Database for Global Atmo-
spheric Research) and CAMS (Copernicus Atmosphere Monitoring Service), are commonly used to
relate remote sensing observations to known emission sources (Jacob et al. 2016) and give a starting
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point (also called a ‘prior’) to these inversion methods. These inventories gather data from various sec-
tors including natural sources, agriculture, fossil fuel combustion, and industrial activities from facility
to regional level. While these inventories provide a useful resource for understanding emissions at a
global scale and how their sources are distributed (Alvarez et al. 2018) they only account for the re-
ported anthropogenic sources that can be measured directly which tends to result in under-estimations.

Furthermore, the many simulations that are required for inversion need substantial computational re-
sources and are sensitive to a wide range of model parameters. As a result, they are often prohibitively
expensive for high-resolution observations where small-scale effects such as turbulence and diffusion
plays a non-negligible role in the species’ distribution within the observed scene (Koene and Brunner
n.d. This also makes it impractical for automated monitoring which is expected to process hundreds to
thousands of plumes per year (Koene, Brunner, and Kuhimann 2021).

Simplified models can be used to significantly reduce computational costs compared to full-scale at-
mospheric simulations. One of the simplest approaches is the Gaussian plume model (Figure 2.4),
which assumes a steady-state turbulent diffusion from a point source (Stockie 2011). However, this
model is limited in its application to methane plumes as most TROPOMI plumes are not Gaussian.
Indeed, they are typically too small and localized for the assumptions of Gaussian dispersion to hold
(Jongaramrungruang et al. 2019).

2.3.2. Physics-based methods

Physics-based approaches to emission estimation apply fundamental principles of mass conservation
in order to quantify emissions. For a volume V bounded by surface s, the sum of the net mass flux
of a non-reactive gas through s (F,) and the accumulation of mass over time within that volume (My/)
corresponds to the magnitude of a net source (F) and/or sink (S) within that volume which can be
interpreted as a source @ = E — S (kg/s) (Koene, Brunner, and Kuhimann 2024).

M b Uavg ¢ L N
b I | ﬂ

o —Gen

e @

Figure 2.6: lllustration of the domain of Figure 2.7: lllustration of a Figure 2.8: lllustration of the integrated
a local mass balance of width W for Cross-Sectional Flux (CSF) integral mass enhancement (IME) with wind
near-source pixels. from a to b. speed Ueff and characteristic plume
length L.

If the source location is known the ‘source pixel method’ can be used as described in Jacob et al.
2016. This uses the ratio of the mean source pixel enhancement AQ(kg/m?) with respect to the local
background (2, along with the pixel dimension W (m) colocated with a uniform wind vector U(m/s),
surface pressure p,(Pa) and gravity constant go(m/s?) to directly infer a source rate Q(kg/s) using
Equation 2.1(Varon et al. 2018). This however results in noisy and uncertain estimates which requires
researchers to average estimates over time.

U~W~p.AQ
90 Qa

Qpiz = (2.1)

The cross-sectional flux method (CSF) uses the same principle but instead evaluates a larger area by
computing the cross-plume integral C(kg/m?), that is, the flux going through a user-defined boundary
s, from «a to b, perpendicular to the plume’s direction i.e. the wind’'s mean direction within the area
of interest (U, (m/s) (Figure 2.7). The source rate Q(kg/s) upwind of s (Varon et al. 2018) is then
estimated with Equation 2.2. In practice this is widely used with aircraft observations (White et al. 1976,
Tratt et al. 2011 and Tratt et al. 2014) but often requires the computation of an indirect ‘effective wind
speed’ (U.y¢) or averaging of multiple cross-sections along the plume to improve accuracy.

b
QCSF :/ AQ'Uvzwg :C'Ueff (22)
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The integrated mass enhancement (IME) method relates the total plume mass downwind of the source
directly to the source rate. All the pixels comprising the plume structure are identified through a user-
defined bounding box and summed up to find the IME (kg). This IME and other scalar values such
as the effective wind speed U, (similar to the one computed for accurate CSF), characteristic plume
length L ( Figure 2.8) can then be used to estimate the source rate with Equation 2.3. Alternatively,
these same values can be fed into a statistical or machine learning model which outputs a value for @
(Varon et al. 2018). This method is often used for (semi-)automated monitoring of trace gas but has
limits due to its dependence on boundary definition (Schuit et al. 2023, Jacob et al. 2022, Cusworth
et al. 2021).

QimEe = M with TME = 21V AQ; - A; (2.3)

2.3.3. Learning-based methods

Finally, machine-learning algorithms can be trained with a large set of input-output pairs (e.g. obser-
vation and source rate) in order to directly infer the source rate from a set of readily available inputs
(Koene, Brunner, and Kuhimann 2024). These training sets can be derived from real plumes whose
source rate is estimated through other methods or simulated with a perfectly known source (also known
as synthetic observations).

Convolutional Neural Networks (CNN) are a par-
ticular set of ML methods that take in a scene
(aggregated observations over the area of inter-
est) in matrix form (see Figure 2.9). The input is
then multiplied by convolution kernels with trained
weights to reduce the scene’s size step by step,
eventually yielding a vector and then a scalar point.
This output is interpreted as the source rate Q.
This was first applied to simulated observations
of methane (Jongaramrungruang et al. 2021) with

encouraging results but the generation of a train- /
ing set and the validation of a non physics-based
method poses numerous challenges. Figure 2.9: lllustration of a Convolutional Neural Network

processing the plume for direct inversion.

2.4. The divergence method

This section will provide an introduction to the divergence method within the remote sensing scene in
subsection 2.4.1 and a summary description of the divergence method’s working principle and under-
lying mathematical foundations in subsection 2.4.2. The building blocks of the basic implementation
and adaptations that have been explored in the literature to optimise the method for different species
and satellite platforms will then be detailed in subsection 2.4.3, subsection 2.4.4, subsection 2.4.5 and
subsection 2.4.6.

2.4.1. Introduction

The divergence method, introduced by Beirle et al. 2019, has emerged as a novel alternative to esti-
mate trace gas emissions from satellite observations. This physics-based approach provides a better
confidence and accuracy than the ’source-pixel’ method while avoiding the user-defined domains of
the CSF method. These characteristics makes it more suitable for large-scale use on area-flux mapper
or applications without a-priori knowledge of the emission’s location (see subsection 2.3.2).

Initially applied to TROPOMI NO2 data (Beirle et al. 2019), it was later extended to methane (Liu et
al. 2021) as well as other trace gases such as carbon monoxide (CO) or carbon dioxide (CO2) in
Hakkarainen et al. 2022 and applied to satellites such as GEMS (Xu et al. 2024).
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2.4.2. Working principle

The divergence method (DIV) applies Gauss’ theorem, also

known as the divergence theorem, to rearrange the continuity Uloc
equation such that the divergence of the flux F, = Q- U(kg-m~2-
s~1) is equal to the net source rate (Equation 2.4) (Beirle et al. Sl

2019). This creates an emission map, that is, an estimation of the
source rate within each pixel, at relatively low computational cost Figure 2.10: lllustration of a

which can then be post-processed to find, fit or spatially integrate computation of the outward flux along a

sources. closed contour via the Divergence
theorem.

VFs=E—S=Q(kg/s) (2.4)

A notable difference between the CSF and DIV methods is that the CSF starts by defining the plume
boundaries before computing the emissions whereas the divergence can identify sources after the
computation has been done on a whole region, called ‘domain’. Furthermore, the CSF is spatially
averaged along the plume’s length in a series of sections whereas the DIV method can average over
multiple scenes taken at different times. This means the CSF is more suited for distinct, short-term
plumes and the DIV is better at estimating low-emission sources emitting steadily over long periods.

The continuity equation (Equation 2.5) states that the difference between the net source rate S[kg -
m~3 - s7!] in a region V and the time-varying accumulation of the mass 5 2 equals the mass exiting

the reglon ’s boundaries (Koene, Brunner, and Kuhimann 2024). This is expressed by the flux vector

F = p- v where p is the trace gas’s concentration in [kg - m 3] and ©[m/s] is the transport vector (i.e.

wind field).
6 T z,
///V (smtz,t)—p(’””) dv = // V- FlogetipaydV (2.5)

A series of assumptions taken from Koene, Brunner, and Kuhimann 2024 below are then required to
rearrange the steady-state continuity equation for all points (x;,y;) within S, into Equation 2.6 in which
each pixel’s source is expressed in Q; and required only the horizontal flux field F'Z to be computed.
This creates an emission map for every valid pixel at relatively low computational cost which can be
processed to find, fit or spatially integrate diffuse sources or plumes.

 Assumption 1: the mass flux F is dominated by advection, i.e. the diffusion of the trace gas
cross-wind in negligible

 Assumption 2: the species does not leak to space or the ground ( F - 7 = 0)

- Assumption 3: the effective wind field U, , [m/s] (constant through the whole column altitude) can
be computed accurately

» Assumption 4: the wind fields, sources and sinks are steady-state during the observation time

* Assumption 5: Sources Q[kg/s can be expressed as the product of temporal (Q;)) and spatial
(Qz.y,-) distributions

» Assumption 6: Sinks S[kg/s can be ignored (S = 0) or described by first-order reactions (see
Equation 2.22)

¥Qq(t) //SA Ty (z,y, )) dSa (2.6)

In practice, this method can be visualised as a series of operations steps on the 2D images from the
satellite as follows: First, the effective wind field U[m/s] is co-located with the concentration grid C[ppbu],
expressed in units of column density Q[g/m?] as illustrated for a single pixel in Figure 2.11 and for a
simplified Gaussian observation in Figure 2.15. Next, these fields are multiplied at each pixel location to
obtain the effective flux F[kg-m~'-s~'] ' as shown in Figure 2.12 and Figure 2.16. Taking the gradient

"Flux units in some plots are shown as kg - m~—2 - s~ but should be kg - m~—1 - s~1
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V(2,y) (i.€. the sum of the derivatives with respect to the x and y directions) of the flux field then yields
the emission field E;(x,y)[kg - s~* - m~2] seen in Figure 2.14 or Figure 2.17 which can be multiplied
by the pixel's area to get the source rates Q;(z,y)[kg - s~!]. Alternatively, the last two steps can be
done in reverse order: first computing the gradient of the column density field (see Figure 2.13) and
then multiplying it by the wind field to obtain the emission field again. This variation is called ‘directional
derivative’ (DD) and is mathematically equivalent since the gradient and multiplication operators are
linear.

wind Flux VFIux [kg/s]
[m/s] [kg/m?/s] Fon T~
[/ Qch4 / . 9

[9/m2] VQcpa [ka/m] E-S [kols]

Figure 2.11: lllustration ofa  Figure 2.12: lllustration of a  Figure 2.13: lllustration of the Figure 2.14: lllustration of the

pixel with some concentration  pixel's computed flux vector divergence of a pixel’'s divergence of a pixel’s flux i.e.
Q[g/m?] overlayed with a Flg/m/s]. concentration. the rate of mass increase (E)
local wind vector u[m/s]. and decrease (S) within that

pixel’s column.

Gradient of flux (4)
GAUSSIAN observation Flux (iday=0) [gm~1s" 1] [gm—2s71]
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Wind speed Ims~!1 Vector flux Directional aradient of flux

Figure 2.15: lllustration of a simplified Figure 2.16: lllustration of a simplified ~ Figure 2.17: lllustration of the estimated
plume observation’s concentration field  plume observation’s computed flux field emission field of a simplified plume i.e.

Q[g/m?] overlayed with a wind field Flg/m/s]. the rate of mass increase (E) and
ulm/s]. decrease (S) within each pixel’s column.

2.4.3. Gradient approximation

The gradient operator V applied to a 2D field F' is the sum of its directional derivatives with respect to
axes z and y (see Equation 2.7). The components are thus computed separately and summed to a
total as illustrated in Figure 2.18 where both ‘f;—f and ‘;—5 are local 1D derivatives.

_6f 6f
=55 2.7)

V(F)

Since the field is not continuously defined but instead discretised by pixels of size h x w [km] it is nec-
essary to use a discrete approximation of the slope. Two are considered in literature (see Appendix A):
the second-order approximation of the slope around some pixel at position (z,y) = (i, 7)) defined in x
(longitude axis) by Equation 2.8 and in y (latitude axis)by Equation 2.9 where h and w are the pixel's
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height and width converted from degrees to metres and is accurate to some second-order term O. This
formulation requires four valid neighbouring pixels (the pixel evaluated is actually not needed) as shown
in Figure 2.18. Similarly, a fourth-order approximation can be formulated in x by Equation 2.10 and y
Equation 2.11 by extending the valid pixels required to eight neighbours and will have an error term O
of order four. The trade-off that presents itself in choosing whether to use 2 or 4 is that 4 requires more
valid pixels and is thus more sensitive to gaps in the scene whereas 2 has a lower-order error and will
thus results in a more noisy and generally less accurate estimate.

(555)(9_2 = 2w + 0(2) = Y + 0(2) (2.8)
(59>o—2 ; 2h O = 2dat + O 29)
(533)0_4 = = + 0w (2.10)

of [y +2w) + 8f (2, y +w) — 8f(x,y —w) — f(z,y — 2w)
(&/)04_ 12w +0x) (2.11)

Veefkind et al. 2023 added a non-pixel aligned finite difference approximation in the gradient compu-
tation using 8 gradient directions (4 orthogonal and 4 diagonal) as shown in Figure 2.19. In that case,
the width and height can be expressed as w’ = ' = vw? + h2. This configuration will be referred to as
"diagonal” gradients whereas the other will be referred to as "orthogonal” gradients. This allows a more
accurate estimate of gradients in those diagonal directions and is particularly useful if a plume is narrow
or the resolution is coarse as the enhancement or flux may only covers pixels e.g. (i — 1,5 — 1) and
(i+1,j+ 1) which would result in a net zero gradient if simply summing up the orthogonal components.
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Figure 2.19: Representation of the neighbouring pixels

Figure 2.18: Representation of the neighbouring pixels ! ) ) Rels
considered for a fourth order diagonal gradient approximation.

considered for a second order orthogonal gradient
approximation and the respective directions of computations.

Since gas plumes will generally flow in the direction of the wind, one can use the average wind direc-
tion ® of a scene derived from the averages of the u and v components (Equation 2.12) to compute
a directionally adaptive blending factor Equation 2.13 which gives more or less weight to either the
orthogonal (maxima at ® = 0,90, 180, 270°) or diagonal (maxima at ® = 45,135,225, 315°) gradients.
Such an adaptive gradient direction will be referred to as "combo” and is computed with Equation 2.14.

@ = atan (2) (2.12)
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2.4.4. Variations in order of operations

The mathematical description of the basic divergence method, shown below in Equation 2.15, takes
the gradient of the advective fluxes of a single observation. The fluxes are computed firstas F' = u -
based on the wind field @ and column density field ©2 while the gradient approximation described in sub-
section 2.4.3 would be applied next. However, even though all operators seen here are mathematically
linear (the product here is applied pixel-wise, it is not a dot-product of the two matrices) the physical as-
sumptions and numerical approximations used (see Equation 2.4.2) mean the order of operations has
been observed to have a non-negligible effect on the results (De Foy and Schauer 2022), particularly
when averaging over long time periods.

De Foy and Schauer 2022 thus proposed a different approach by altering the order of operations of
the method with the aim of improving the handling of missing values and edges. Computing the fluxes
over the whole period of interest (the ‘flux-averaging period’) first and then averaging them before
computing the divergence. This method is referred to ‘as (flux-averaged) divergence’ and abbreviated
E2. By contrast, the standard DIV method computes the divergence for each observation individually
before averaging the emission maps and is henceforth referred to as E1 or the ‘divergence (averaged)”
method.

Egiw =V (@ - Q) (2.15)

The first change in order of operation possible is to simply compute the gradient of the column density
first and then multiply the result with the wind field. This is referred to as as the directional deriva-
tive method (abbreviated DD) and described per Equation 2.16 in contrast to the divergence method
(abbreviated DIV) and described by Equation 2.15. The difference between DIV (Figure 2.14) and
DD (Figure 2.13) on a single-observation of an idealised point-source, diffusion-corrected Gaussian
plumes was seen to be on the order of 10~1*g/m? compared to an estimated emission magnitude of
50g - m~2 - s—1 which confirms both implementations are equally valid on perfect observations. This
will however not hold when considering averaged observations, missing data, structured backgrounds
and non-uniform wind fields (see subsection 5.2.4).

Egq=1-(VQ) (2.16)

Averaging either DIV or DD results in the ‘divergence averaged’ (E1) and ‘directional derivative aver-
aged’ (DD,avg) estimators. Both of which are implemented in the same way by taking the average of
all emission grids generated over the period of interest for each observation. An alternative approach,
first proposed by De Foy and Schauer 2022, is to first average the flux fields and only then take the
gradient which results in a single emission grid. This will be referred to as the flux-averaged divergence
estimator and abbreviate E2. All averaged estimators are presented in Equation 2.17. An analogous
change for DD is excluded since taking the average of the concentration field separately from the wind
field would not yield a flux field whose direction actually matches that of the gases observed.

Ep = (V (a-Q) (2.17)
Eps =V ((u-Q)) (2.18)
Epp,avg = {0+ V() (2.19)

Finally, because of the inherent noise observed in previous application of the divergence method (see
Appendix A) and the need for temporal averaging to obtain usable results, only the averaged estima-
tors E1, E2 and DD_avg will be considered going forward and their performance will be compared in
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subsection 5.2.4. This of course limits the application of the divergence method presented here to long-
term emitters whose source rate can be assumed steady such as the Permian region and excludes the
study of short-lived, transient events such as the Louisiana blowout shown in Figure 4.1 which was
seen in only a few TROPOMI observations or individual emission sources within the Permian basin.

2.4.5. Background correction

When Liu et al. 2021 adapted the divergence method to TROPOMI methane, the authors noted that
methane’s longer atmospheric lifetime compared to NO, resulted in an inhomogeneous background
component which needs to be subtracted to obtain the local enhancements which are indicative of local
sources. Indeed Figure 2.20 shows worldwide observations for the year 2022 without any presampling,
filtering or corrections of the methane C H,[g/m?] channel which indicates systematic and prominent
differences between regions of the world. This systematic bias needs to be corrected in order to get a
valid estimate of emissions (Liu et al. 2021).

CH4 concentration (g/m~2) of averaged_sup
Global View

6 7 8 9 10 11

Figure 2.20: Worldwide (uncorrected) column density observations of TROPOMI for the year 2022

Removing the background component of a methane observation can be done in many ways, the sim-
plest of which is to subtract a constant component which centres the average or median of the con-
centrations around zero as shown in Equation 4.5. This may be useful in other methods such as the
IME to isolate the "local” trace gases from the "background” but because the divergence method only
considers the change in concentration (or flux) removing a flat component does not influence the re-
sults. However, in the case of the divergence method, the background correction needs to remove the
structure and variations of the methane transported from outside the domain (Liu et al. 2021) and the
background correction thus needs to be applied pixel-wise. The approach taken by Liu et al. 2021 was
as follows: XCH4 was destriped and albedo-corrected before the column above the planetary boundary
layer (PBL) is removed based on meteorological reanalysis data from EAC4. The daily regional aver-
age is then substracted to obtain the enhancement. This however required access to prior emission
estimates (EAC4) and is thus difficult to automate and apply globally.
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Surface Pressure (Pa) of averaged_sup
Global View
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Figure 2.21: Worldwide (uncorrected) surface pressure from TROPOMI on the period for the year 2022

Pressure correction

Looking again at the column densities of Figure 2.20 and comparing it to the surface pressures, av-
eraged over a year in Figure 2.21 one can see that the concentrations observed around high altitude
areas (e.g. the Himalayan mountain ranges) are notably lower than more flat and low regions (e.g.
Australia).

Veefkind et al. 2023 leveraged this fact and approximated the background contributions as a linear
correlation with surface pressure as shown in Equation 2.20 by modelling the TVCD as a combination
of lower tropospheric enhancement, lower tropospheric background and high stratospheric background
component, the latter two can be approximated as a function of surface pressure defined through least-
squares (LS) fitting of TROPOMI data over a long period and large region, which resulted in a ‘pressure-
corrected’ column density which can be computed based on readily-available surface pressure data.
The bias ¢y corresponds to the difference between the tropopause and stratospheric components of
the observation and the slope ¢; describes the dependency on surface pressure of the tropospheric
component. In order to make the fit applicable globally and render it less sensitive to temperature and
seasonal effects the ¢y and ¢; factors are re-computed monthly for the domain of interest by taking the
least-squares regression of the column-density values of each pixel with respect to the corresponding
surface pressure values of those pixels (blue points in Figure 2.22). Veefkind et al. 2023 found that the
fit was less sensitive to the enhanced CH4 column density values if the points were first binned (300
bins used monthly in our case) and the regression was done with the 25th percentile of Q¢4 of each
bin with respect to the median of the surface pressure.

Qcorr =Q - (CO +cp- ps) (220)
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Figure 2.22: Correlation of the surface pressure and methane concentration of a TROPOMI observation, moving average over
the binned 25-percentile CH4 and fitted line.

Topography correction

An alternative approach was proposed by Sun 2022 which followed-up on the observation from Liu
et al. 2021 that the orography, or the influence of mountainous terrain can affect the atmospheric flow
and distort the observed signal e.g. by concentrating the trace gases along a high ridge. It was thus
proposed to handle the background directly on the emission map as a correction based on topography
instead of a correction on the concentrations based on surface pressure.

In order to reduce the intermediate assumptions and their respective errors, the enhancements are
computed directly from the observed TVCDs based on a linear regression with respect to the product
algorithm laboratory (PAL) available for NO2, similarly to Veefkind et al. 2023. The wind gradient is
then used instead of the flux gradient (a change in order of operation of the estimator referred to as the
directional derivative method, abbreviated DD) which allows for a wind-topography term to correct for
the terrain’s influence (a chemical loss term is also included since this is applied to NO, ). The emissions
are then obtained from the inner product of the wind and gradient of TVCD. This topography correction
also required the addition of an effective surface wind field. The result is shown in Equation 2.21
and depends on the effective surface-level wind field g, the surface altitude z, and a prefactor X
approximating the local inverse scale height of the species of interest.

Eorrtopo = E + X (ig - Vo) (2.21)

2.4.6. Emission corrections
The rest of the corrections are also applied in the post-processing stage of the estimation and added
directly on the outputted emission grid.

Lifetime correction

The first one was first described by Beirle et al. 2019 and applied on NO,. and corrects for the limited
lifetime of some species: it assumed a constant rate of decay described by some reaction constant .
Using Equation 2.22 can then be used to increase the emission estimates to a level taking this decay
into account. In the case of methane, which has a lifetime of about 9 years, this correction is not strictly
necessary and is left as an optional addition.

Ecorr,life = E + k<Q> (222)
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Diffusion correction

Roberts et al. 2023 further developed the divergence method by introducing a turbulent diffusion cor-
rection term alongside the advective (i.e. wind) term in the fluxes’ computation which results in better
modelling of atmospheric behaviours and reduces local underestimations. Indeed, the standard diver-
gence method only accounts for advective fluxes (Koene, Brunner, and Kuhimann 2024) and assumes
negligible cross-wind transport (as seen in Figure 2.23) but for high turbulence areas or high resolution
observations this factor may be significant (as exemplified by Figure 2.24).
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Figure 2.23: Example of a Gaussian plume observation with  Figure 2.24: Example of a Gaussian plume observation with
low diffusion (K=100) high diffusion (K=100,000)

Roberts et al. 2023 thus introduced diffusion term as part of the flux modelling shown in Equation 2.23
where K[m? - s~1] is the molecular diffusion matrix used to approximate the spread of the plume cross-
wind. Including this term into the divergence calculations was found to improve performance of point
sources in particular but in order to keep our estimators and corrections separate for the sake of mod-
ularity it was decided to pull this term outside of the gradient operator and apply it separately as seen
in Equation 2.24. This transformation is valid when considering the linearity of the gradient and pixel-
wise multiplication operators but, as seen with the estimators’ order of operation in section 4.4, this
may affect performance and behaviour significantly. Furthermore, since estimating K requires prior
knowledge of the field’s characteristics or fitting with a known source, this correction is not applied on
either the WRF-Chem or TROPOMI observations. It is however added to the Gaussian sensitivity anal-
ysis as it was seen to drastically reduce the bias of estimations, thus providing more clear comparisons
between other parameters (see chapter 5)

Eypr=V- (F;dv —F(;w) =V- (u~Q—KVQ) (2.23)

Eeorraifs ~ E — V(KVQ) (2.24)



Research objectives

The objective of this thesis is presented in the following chapter. The choices made here were based
on the current state-of-the-art of the Divergence method presented in section 2.4 and the large vari-
ability in the implementation of the Divergence method on TROPOMI methane products as well as the
resources available at SRON and their interest in this method among the other possibilities presented
in section 2.3.

3.1. SRON context

The earth observation group within SRON aims to support the scientific community, policymakers, and
the public by delivering information on greenhouse gases, aerosols and wildfires. The methane group
among them uses the CH4 data product, based primarily on the TROPOMI instrument to “estimate
methane emissions worldwide” (SRON 2025) in order to then identify and quantify so-called “super-
emitters” such as landfills or fossil fuel facilities with a high potential for mitigation.

The current analysis process of CH4 in SRON is as follows: CNNs trained on manually labelled data
comb through the large amount of TROPOMI observations and identify the most probable potential
sources which are then confirmed on a weekly basis by scientists to avoid falsely labelling artefacts.
Once a source is confirmed, the estimation of its source rate is done through other CNNs, IME method
or inversions. This two-step approach handles the identification and quantification of potential sources
independently whereas the divergence method has the potential to create a global gridded map of
emission estimates, which are easily interpretable, at low computational cost which can help to identify
sources and get an early estimate of their magnitude.

There is no requirements or specific deliverables from SRON’s side that constrain this work’s scope
or objectives but the main goals in developing and optimising this method are to 1) have relatively low
computational cost i.e. single pass estimations per observation instead of thousands of simulations
for optimisation and 2) be applicable anywhere on earth without prior knowledge of emissions location
and magnitude or domain-specific parameters. This last point ensures the method is not technically
restricted to a specific location but cannot ensure that the results would be equally good everywhere
or that it can be done at every location at once. Furthermore, the methods’ foundation on physics-
based estimation and worldwide applicability allows it to provide a valuable comparison point when
researching new cutting-edge estimation methods such as IME or CNN without the computational cost
and time investment of a CTM analysis.

3.2. Research definition

The main steps of the divergence method are summarized below and illustrated in Figure A.1, along
with the various parameters associated with the contributions of method variations and corrections
made in literature since. Given the wide range of implementations, corrections and application of this
new divergence method (see section 2.4) a comprehensive investigation and comparison of those
methodology variations and their assumed parameters can be a valuable resource for future research.

16
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+ define the spatial and temporal domain (centre in latitude longitude coordinates, extent in degrees,
start and end dates) as well as the resolution to regrid the observations

« filter the observations for high-quality data points and select the ones overlapping the defined
domain (a step called presampling for here on)

» co-locate a wind field defined by its source and effective wind height with the presampled obser-
vations

» perform any pre-processing steps required to the column density and flux fields

* estimate the emissions using the divergence operator

 perform any post-processing steps required to the estimated emission fields

* integrate the emission map over a region (defined by a shape and size) into a source rate

However, in order to constrain the scope to a reasonable amount, this investigation will be limited to
TROPOMI methane observations and focus its analysis on the generation of the emission map based
on available methane level-2 data products; excluding the retrieval of the methane TVCD product from
the raw satellite data as well as the post-processing of the emission map via peak-fitting or other classi-
fication and identification methods into a catalog of quantified point and area sources. The implemen-
tation will be kept globally applicable, thus methodology variations requiring extensive regional tuning
or simulations will be ignored in order to provide a consistent performance across the surface covered
by TROPOMI.

Since no global and precise measurements of emissions exist, there is no objective ground truth that
can be used to characterize the precision and accuracy of the method being evaluated. Nevertheless,
the use of real-world data gives a good evaluation of the robustness and applicability of the method if
the results can be compared to other studies. Synthetic observations can also be used to quantify the
error in the source rate estimation in a similar way (Roberts et al. 2023, Koene, Brunner, and Kuhimann
2024, Liu et al. 2021, Hakkarainen et al. 2022). In this case the source rate is an input into a CTM which
propagates the trace gases which can be sampled and processes to look like satellite observations.
This has the advantage of providing a perfect information of the source rate, wind speed and other
factors which can be used to fully characterise a method’s performance, strengths and downfalls.

Furthermore, the quantification of the difference and impact of each variation will be evaluated with
respect to an existing synthetic dataset of WRF simulations which provide perfect information on the
amount of methane present in each pixel. These synthetic test scenes can also be modified to evaluate
the robustness of the method with respect to e.g. wind uncertainty, missing data or noise. Finally, a
case-study of the Permian basin will be done to assess the applicability of the method on real TROPOMI
CH4 data and determine whether this implementation of the divergence method is in line with other
methods in use.

These restrictions allows the research objective and main research question to be defined as follows:

Research objective: “Investigate the impact of methodology and parameter variations in the genera-
tion of an emission map via the Divergence Method based on TROPOMI methane observations.” This
objective is tackled in two parts: First, this 'impact’ metric is split into a few parts: The accuracy, i.e.
how close the estimation is to the real emission over a certain area and the robustness i.e. how sensi-
tive the estimation is to confounding factors such as wind uncertainty, missing data due to low quality
pixels, etc. The accuracy will be evaluated quantitively by comparing emission estimations of WRF
observations against the WRF source data (see RQ below) while the robustness will be investigated
qualitatively through sensitivity analyses and small-scale tests.

Research question (RQ): "Which combinations of divergence method parametrisations yields the most
accurate estimates of emission for TROPOMI methane observations?” The main research question of
this thesis focuses on the accuracy of the methods on real TROPOMI data. However, since accuracy
estimation can only be done for simulated data, the first four sub-questions will assess the method’s
performance on synthetic observations, each focusing on a specific part of the method, while the latter
two will assess the applicability of the resulting divergence method on real TROPOMI observations.

Research sub-question 1 (SQ1): "Which of the numerical gradient approximations order (4 or combi-
nation of 2+4 i.e. ‘combo’) yields the most accurate estimates for synthetic, background-free simulated
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TROPOMI methane observations?”. In particular this will investigate the trade-off of having a more ac-
curate and consistent fourth order gradient versus having more, lower accuracy (see subsection 2.4.3),
data around artefacts and low quality pixels filled in by the second order method.

Research sub-question 2 (SQ2): "Which of the estimators (averaged divergence, flux-averaged diver-
gence or averaged directional derivative) yields the most accurate estimates for synthetic, background-
free TROPOMI-like methane observations?”. This part will investigate the effect of changing the order
of operation around the gradient operator which, although mathematically the same, behave differently
with real data containing backgrounds, artefacts and missing data (see subsection 2.4.4.

Research sub-question 3 (SQ3): "Which of the background correction methods (pressure correction
or topography correction) yields the most accurate estimates for synthetic TROPOMI-like methane ob-
servations?” This question is important to methane in particular and will compare the applicability and
accuracy of applying a pre-processing step to the methane field (pressure correction, see Figure 4.4.2)
versus a post-processing step of the emission field (topography correction) in order to yield represen-
tative total emissions based on a spatially varying background.

Research sub-question 4 (SQ4): "Which combinations of numerical gradients, estimators and back-
ground corrections parametrisations yields the most accurate estimates of time-averaged and spatially
integrated emissions for simulated TROPOMI methane observations?” Finally this will look at the possi-
ble interactions between the parameters previously investigated and assess which overall parameters
should be used for case-studies using the divergence method and TROPOMI methane data.

In order to address whether this synthetic test set is representative of real TROPOMI data one of the
variations will be evaluated on a case-study of the Permian basin for the year 2019 based on other
studies compiled in Table 5.9.

Research sub-question 5 (SQ5): "Are the yearly emissions, estimated through this implementation
of the divergence method over the Permian basin, consistent with independent studies of the region?”
Where the independent studies are scientific publications using the divergence method and inversion
method to ensure implementation and method verification. Consistency is defined here as a yearly
estimation within the Q.s; £+ 30 uncertainty margin of the studies considered.

Research sub-question 6 (SQ6): "How do the yearly methane emission estimates for recent years in
the Permian basin, derived in this study, compare to temporal patterns reported in previous literature?”
Although the Permian basin is a relatively well-studied region, most estimations use inversion methods
which requires considerable effort and time resulting in very few analyses published for years after
2022. Varon et al. 2025 noted an increase in emissions on the 2022-2023 period, contrasting with
the previously observed downwards trends of 2018-2022 (Varon et al. 2023), but no other estimations
have been conducted yet to confirm this trend. This sub-question thus aims at investigating the yearly
emissions of 2022-2024 in order to determine the trends of recent years and whether the hypothesised
increase continues in 2024.

3.3. Scope and research activities

In order to answer these questions and achieve the research objective, this thesis is structured around
three key research activities: verification, impact assessment and application.

Verification will involve testing and ensuring the validity and robustness of the existing codebase and
newly implemented variations. This will include block and function-level tests to evaluate individual
components of the Divergence Method, unit-level testing of the new variations (e.g., changes to algo-
rithmic parameters), and system-level tests using idealized Gaussian plume simulations to assess the
method’s performance under controlled conditions.

Impact assessment will focus on the implementation of the proposed variations to the Divergence
Method, followed by testing using synthetic observations generated from the Weather Research and
Forecasting (WRF) model. This phase will assess the accuracy (pixel-wise and spatially integrated)
and robustness of different variations and corrections on the emission maps and quantify the effects of
these changes.

Application of the resulting method will be by evaluating a well-studied region using real TROPOMI
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CH4 data: an evaluation of yearly methane emissions in the Permian Basin will thus be conducted on
the 2018-2024 time period. The results obtained from this optimised implementation of the divergence
method on the years 2018-2022 will give insights into the real-world applicability, performance and
accuracy of the current codebase by comparing these to previous studies which have employed diver-
gence, inversion, and inventory-based methods to estimate methane emissions. The results obtained
on the, less-studied, 2022-2024 period will give new insights into the trends of methane emissions of
the region.



Data and Methods

This chapter will focus on the methods used in this study. Some general points about testing approach
(section 4.1) and codebase architecture (section 4.2) will be pointed out before describing the steps
taken chronologically: starting with the datasets used and input formatting used in section 4.3, followed
by a description of the implementation of the estimators themselves in section 4.4. Finally the evalua-
tions of the outputs through integration and comparison of estimates leading to the results and statistics
are described in section 4.5.

4.1. Testing approach

Evaluation of remote-sensing emission estimation algorithms is a critical step in characterising the ac-
curacy and robustness of the information inferred from satellite data and is rendered difficult by the lack
of an objective ground truth or control test to compare new methods against. The objective is instead
to simplify the test conditions at the start and gradually reintroduce complexity, beginning with idealized
Gaussian plumes (described in subsection 4.3.2), progressing to simulated observations of multi-pixel
point-source emission fields using a chemical transport model (WRF-CTM in subsection 4.3.3), and
ultimately applying the method to real TROPOMI CH4 observations (see subsection 4.3.1). This pro-
gression enables controlled examination of individual effects and builds confidence in the method’s
applicability under realistic conditions.

The verification steps are first taken at the implementation stage in which the methane observations
and other support variables are compared to similar datasets and literature results using the same
sort of observations. Once an end-to-end pipeline has been built, the code verification starts by using
synthetic Gaussian plume scenarios investigated in section 5.1. These idealized test cases allow for
visual inspection and comparison of the estimated emission map with the inputted (single-pixel) point
source. Because of their simplicity, Gaussian plumes make it possible to isolate and study specific
artifacts, distortions or unexpected behaviours that may arise in the implementation. The verification
criteria in this phase include ensuring that all method variations return estimates close to the known
source rate and that the impact of background signals, data gaps, and noise behaves as expected.
While this phase does not allow for conclusions about the relative performance of different method
configurations with respect to TROPOMI methane observations, it is critical for confirming that the
methods are implemented correctly and behave consistently.

The verification then moves on to using synthetic CH4 fields generated by the WRF-Chem CTM model,
which includes known, spatially distributed (i.e. multi-point), emission patterns. This setup better repre-
sents real-world complexities such as non-uniform wind fields, surface altitude and pressure. The use
of WRF-CTM data serves as a transition between the simplified Gaussian point sources and the real
TROPOMI observations the method will ultimately be used on. The distributed nature of the observa-
tion also allow for statistical and spatial comparison of the estimations with respect to the ground-truth,
something which cannot be achieved with simulated point source emitters, along with the derivation of
certain statistics which can be used to assess each methods’ performance.

20
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The study will then move on to the method optimisation phase in which the focus shifts to answering key
research questions using the WRF-CTM dataset in section 5.2. The testing is structured around the four
sub-questions defined in section 3.2. First, end-to-end divergence evaluations are conducted on one
year of observations excluding the background tracer (i.e. enhancement only) for three sets of gradient
order 2, 4 and their combination (2+4) while all other parameters remain the same to evaluate the effects
of gradient approximation schemes (SQ1, subsection 5.2.3). A similar test set is run for the order of
operations of the estimator using the divergence-averaged (E1), flux-averaged divergence (E2) and
directional directive (DD) to answer (SQ2, subsection 5.2.4). Next, the background tracer is introduced
to investigate the effect of background corrections in which the pressure-based and topography-based
corrections are compared to an evaluation without any corrections (SQ3, subsection 5.2.5). Finally, all
method components are evaluated together under the most realistic conditions (SQ4, subsection 5.2.6)
to determine whether the best-performing options from earlier stages also perform well in combination.
This phase also examines whether any interactions between parameters result in unexpectedly strong
or weak performance (e.g. the DD estimator working better with the topography correction than the E2
method as seen in Sun 2022), ultimately guiding the selection of an optimal configuration.

The final stage is a real-world case study over the Permian Basin in the southern United States, one of
the world’s largest methane-emitting regions. Using the optimal method configuration derived from the
previous phases, this divergence method will be applied to estimate yearly emission estimates from
TROPOMI data for the 2018—2024 period (section 5.3). The results will be compared with existing
literature over the same geographical region and time period, including estimates derived from inverse
modelling, bottom-up inventories, and other divergence-based studies. While this does not consti-
tute formal validation, matching patterns and emission trends strengthens confidence in the method’s
reliability. Furthermore, the analysis will extend to the 2022—-2024 period, which has received limited
attention in prior studies so far with the aim of providing initial estimates for those periods and delivering
new insights for ongoing monitoring efforts.

4.2. Codebase architecture

The codebase developed for this study is based on the implementation of the method described in
Veefkind et al. 2023 by Candice Chen, Msc student at SRON in 2023. It was restructured in a modular
architecture designed to support flexible testing of every valid combination of the method variations
mentioned in section 2.4. This function-based approach also allowed for easy reproducibility and clear
verification of each method component. The workflow is divided into three main functional blocks:
input handling, emission estimation, and spatial-temporal integration. Each block plays a specific role in
enabling the evaluation of various divergence method configurations across synthetic and real datasets.

The input block is responsible for preparing data from readily available data sources into a uniform,
analysis-ready format. This includes pre-sampling procedures such as filtering incomplete data, filling
missing values, and regridding input fields to a consistent spatial resolution. This standardization en-
sures that all estimators operate on homogeneous input data, which is necessary for averaging the
fluxes or emission maps in a similar way across all test cases. This block also accommodates data
from diverse sources, including TROPOMI observations, WRF outputs, and synthetic Gaussian plumes
and strives to minimize source-specific operations in order to reduce the risk of untested branches or
silently skipped operations such that verification on one source set is also applicable on the others.

The estimation block constitutes the core of the divergence-based methodology and is subdivided into
three main stages as shown in Figure A.1. First, the pre-processing stage applies corrections to the
concentration fields and computes the flux which is optionally averaged before the next stage. Second,
the estimation stage performs the actual emission inference. This is the defining step of the diver-
gence method, converting methane flux fields into emission estimates. Several estimator variations
from literature are implemented including E1, E2, and DD formulations. Finally, the post-processing
stage applies optional corrections directly to the emission grids such as lifetime, diffusion or topography
corrections.

The final integration block aggregates the emission estimates over a defined time period and spatial
domain, which are then integrated into a total source estimate. When applied to synthetic benchmarks,
this block also includes the pixel-wise comparisons between inferred and true emissions and computes
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the statistical metrics used to assess method performance.

The codebase follows a function-based architecture with control-model-view design. Each module is
self-contained, focusing on a specific task within the pipeline. The implementation adheres to PEP-
8 style guidelines and emphasizes modularity and reusability in order to adapt it dynamically to each
variation of the divergence method used in literature. Collaborative development practices were applied
to ensure clarity and extensibility, allowing future researchers to adapt or extend the framework for
related applications in emission monitoring. A graphical representation of the workflow is shown in
Appendix B.

4.3. Inputs and data

This section describes the dataset chosen as inputs to the divergence method and the formatting steps
taken. The main methane product is taken from one of three sources: subsection 4.3.1 goes into the
TROPOMI level-2 (Iv2) methane product and associated support variables, subsection 4.3.2 details the
generation of the idealised Gaussian plume model and their integration as a TROPOMI-like dataset and
subsection 4.3.3 describes the outputs of the WRF-Chem simulations and the subset used for perfor-
mance evaluation in particular. Some attention is then devoted to the wind products in subsection 4.3.4
and the regridding step that ensures a regular lat-lon grid is fed into the next phase in subsection 4.3.5.

4.3.1. TROPOMI level-2 methane product

The TROPOMII Level 2 (Iv2) product consist of a multitude of data channels described in detail in Apit-
uley et al. 2022. The main input to this study is the column-averaged dry air mole fraction of methane
X C HA4[ppbv] which indicates the estimated average methane concentration within each pixel’s air col-
umn in particles per billion per volume (ppbv). Other channels such as the aerosol optical thickness
(AROP), cloud fraction (CF), surface albedo in the SWIR band (ALSW) and the quality assurance
value (QA), which is a summary indicator of each retrieval’s confidence, are used. Additionally, the
surface pressure channel (P;[hPa]) of the Iv2 reprocessed TROPOMI methane product is included in
this dataset to be used in the pressure-correction (see Figure 4.4.2).

The first step is to presample the large TROPOMI dataset into a subset relevant for the analysis at
hand. That is, look through the files of all days within the period of interest and cropping out the pixels
whose latitude and longitude fall between the domain limits (a margin is included to ensure all locations
in the domain contain pixels at the edges). This step also removes any data products not specifically
required for the divergence method in order to minimise the data size of the presampled set. Valid
pixels are then filtered in order to keep only the datapoints with high confidence. Filtering is done by
keeping pixels with high quality-assurance values, typically around ga > 70 — 75%, low cloud fractions
CF < 30% and constraining the solar zenith angle (SZA) to reduce pixel area differences throughout
an image SZA < 65° (see the settings used by previous divergence papers under “TROPOMI filter” in
Table A.1). Latitude, longitude and time ranges can also be constrained to provide more consistent data
(Beirle et al. 2019, Beirle et al. 2021, Beirle et al. 2023 and De Foy and Schauer 2022). In the case of
this implementation of the divergence method we used qa >= 0.75 similarly to the study of a Louisiana
blowout using TROPOMI methane observations in 2021 Maasakkers et al. 2021. This simple criteria
is a good summary of overall quality, easy to replicate and applicable globally. More complex filtering
schemes can be readily applied in future studies as all the variables discussed above are included in
the presampled dataset.

Finally the observations’ units need to be changed from the concentrations in ppbv given in the retrieval
to column-densities of Q[g/m?] as required by the divergence method (see Figure 2.11). This is done
following Equation 4.1 as per Veefkind et al. 2023 which requires the molar mass of methane M¢cgy =
16.03 - 10~3[kg/mol] and the average molar mass of air M,;,. = 28.964 - 10~3[kg/mol] as well as the
gravitational constant go = 9.80665[m/s%] and the dry surface pressure. The pressure value used is
the per-pixel surface pressure channel from the TROPOMI product when using TROPOMI or WRF
concentration fields and the sea-level atmospheric pressure p, = 101325[Pa] from the international
standard atmosphere (ISA) when using Gaussian plumes.

Mcus ps

Q= Xcpa-1076
4 Mair 9o

4.1)
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This is verified by comparing the same location as Maasakkers et al. 2021 at the same date and using
the same filtering option of QA >= 0.75 resulting in the presence of the characteristic plume in both
the original (Figure 4.1) and our implementation (Figure 4.2). Furthermore, we can observe that ap-
proximately the same region is masked out in both cases. The difference is due to the resampling of
Figure 4.2 onto a regular grid as explained in subsection 4.3.5.

TROPOMI observation
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Figure 4.1: TROPOMI methane observation from _ T T -
Maasakkers et al. 2021 1850 1900 1950 2000 2050

Concentration [ppb]

0 1 2 3 4
Wind speed [ms~1]

Figure 4.2: Concentrations on the same location and date as
Figure 4.1 pre-processed and filtered using the divergence
method pipeline developed in this study, overlayed with the

GEOS-FP 10m winds at the time of measurement (rounded to

the nearest hour).

4.3.2. Synthetic Gaussian plumes
The simplest testing set used in this work (see section 4.1) is the ideal Gaussian plume:

the 3D solution to a point source of strength Q[kg-s~!] located at some height, assumed constant here,
H = 10[m] whose contents are transported via advection along a uniform wind field of speed w[m/s]
and diffusing in the cross-wind direction based on its constant of turbulent diffusion K [m?-s~1] (Stockie
2011). Such a concentration field is shown in Figure 4.3 and described for each position in a Cartesian
volume (x,y,z) per Equation 4.2 assuming the wind field is aligned with the x-axis.
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concentration

/ profiles

Figure 4.3: visualization of a Gaussian air pollutant dispersion plume from Stockie 2011

C(z,y,2) =

i vean (<20} fean (< C ) e (S EHI gy a2

Integrating this solution along the z-axis results in a satellite-like observation where whole column is
seen at once and the concentrations are given in units of [kg/m?| as required by the divergence method
(similarly to subsection 4.3.1). Relaxing the assumption that the wind blows in the x-direction (as in
Equation 4.2) and letting it be defined by some angle 0 yields Equation 4.3 (Stockie 2011).

B Q o ((ycos(8) — wsin(6))?
Clz,y,0) = 2\/TwK (wcos(0) + ysin(0) b l 4K ((wcos(0) + ysin(0))

] [kg/m?] (4.3)

Since the x- and y- values in Equation 4.3 are in distance units (m) the first step in making this synthetic
set of observations is to transform the latitude-longitude domain in units (deg) into an eastings-northings
grid (m). Equation 4.3 can then be applied for a set of parameters C(z,y) = f(Q, K, w, 6;) where the
angle of each observation i is defined as 0; = 6,+ A6. The resulting concentration grid is then regridded
to the original latitude-longitude grid and normalised for pixel-area in order to conserve total mass
across the observation. Optionally, some amount of pixels can be randomly masked out (missing data
%) and a simple background B can be added with a constant (By) and noise (o) component following
B = Bo + OB.

Support variables such as surface pressure, surface altitude, ALSW and AROP are then added as
constant grids of ones in the same format as the TROPOMI grid - this simplification is done as the
concentration grid is idealised and independent from all of these support variables but also means any
investigation using these cannot be conducted with the Gaussian plumes.

4.3.3. Simulated WRF emitters

The more rigorous synthetic observations required to properly verify, characterise and optimise the
divergence method uses concentration fields obtained from the Weather Research and Forecasting
(WRF) model, coupled with Chemistry (WRF-chem). The simulation is conducted on a coarse "outer”
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domain using ERA-5 as its meteorological boundary conditions and an "inner” domain with finer resolu-
tion as well as scheme-2 for its planetary boundary layer (PBL) definition. The emitters are defined as
2D surface grids and differentiated by their tracer number. These tracers are then propagated through
the simulated wind field independently and sampled 24 times per day as 3D concentration fields on the
WREF grids.

In particular the simulations used were initially con-
ducted for an inversion study similar to (Guanter

Tyumen

et al. 2024) but unpublished as of yet. The set [ e [ : ; kosetoaiey

KpacHospck|

of simulations used were that of a Russian mine
(abbreviated as the RUS domain) which spanned
the period from 2022/01/01 to 2022/01/31 with the
inner domain cropped to 52.172-57.172 deg lati-
tude, 81.122-86.122 degree longitude (highlighted
in Figure 4.4).

Figure 4.4: Latitude-Longitude domain of the WRF-RUS
region of interest

These contains a series of multi-pixel diffuse or point sources (Figure 4.6), single-pixel point sources
(Figure 4.7) and a background tracer (Figure 4.5) which does not emit within the inner domain but
transports methane from outside the domain into the scene of interest. The strength of each tracer,
integrated along the z-axis, for the outer and inner domain of hours 0-12 and 12-24 is constant. Since
these are independent their resulting concentrations can be summed up linearly to include the back-
ground, or not, to the tracer of interest.
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Figure 4.5: Concentration field of the

background WRF tracer (#1) for RUS Figure 4.6: Emission strength of a Figure 4.7: Emission strength of a
2022/01/01 to 2023/12/31. multi-pixel point source WRF tracer (#3)  single-pixel point source WRF tracer
for RUS 2022/01/01 to 2023/12/31. (#20) for RUS 2022/01/01 to 2023/12/31.

Since the objective of the divergence method evaluated here is to estimate sources averaged over long
time periods (on the order of months-years), the tracers chosen were the background along with multi-
pixel point source which is steady throughout the day, constant over the year 2022 and whose spatial
distribution includes a main source spread out in the centre of the domain. The emitters’ strength are
initially for the inversion they were meant for and thus need to be rescaled for our purposes: this is done
by taking the emission grid used to drive the simulation, formatted similarly to the concentration grids
of the outputs, and integrating the emission over the target domain (see subsection 4.5.1 for details
on method) to find the total emissions of each tracer Q.. nit[ton/h]. Each grid is then multiplied by a
prefactor Qparam/Qrey,ini+ SUCh that their resulting total emissions is Qparam [ton/h].

Although most support variables necessary are present in the WRF-Chem dataset, the altitude is no-
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tably absent: instead of presampling the corresponding TROPOMI observation for each WRF simula-
tion required, which would require significant memory and processing usage, it was decided to use an
external digital elevation model (DEM) instead. The NOAA ETOPO global relief model (NOAA 2025a)
was resampled to the regular lat-lon grid globally, bound to a minimum altitude of H = 0 and saved
as a separate local file (ETOPO1_Bed g gmt4). This could then be quickly presampled to the correct
location (see Figure 4.8) and resampled as an additional channel on the final TROPOMI-like grid (see
Figure 4.9, note the slight angle due to the satellite’s orbital inclination in the overpass)
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Figure 4.8: DEM presampled to the domain of interest Figure 4.9: DEM presampled and regridded to the TROPOMI
grid

The WRF-Chem outputs used are pre-processed to be co-located with TROPOMI observations and
thus include the same scanline and groundpixel along with most of the support variables which ensures
the distribution of missing data across the domain is representative. However, the format of the output
files is vastly different from the TROPOMI observations, being presented a a 1D vector of length N,
which needs to be reshaped to a 2D lat-lon grid onto which the TROPOMI coordinates and variables
are added. Furthermore, it should be noted that the WRF-Chem simulations contains three different
altitude averaging schemes: unweighted average (no_ak), using an averaging kernel (by default) and
using a pressure-weighted scheme (_pw). In all cases discussed here the default scheme is used.
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Figure 4.10: Support variables obtained via the TROPOMI input pipeline
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Figure 4.11: Support variables obtained via the WRF input pipeline

The support variables were verified by inspection by comparing and plotting the final grids using TROPOMI
as a data-source (Figure 4.10) and doing the same steps, domain and days using WRF as a data-source
(Figure 4.11). Since the SWIR albedo was not used in this method it was not added to the WRF set,
both the surface altitude and pressure have similar magnitudes and spatial distributions, though not ex-
actly the same. In this case the missing top part of the image can be explained by the fact the domain
presampled is situated at the top edge of the domain, this also causes the scale to shift but the mag-
nitudes are the same (+£0.5m or =100Pa likely due to resampling approximations in the last regridding
step, see Figure 4.17).

4.3.4. Wind field

Wind fields play a critical role in the estimation of trace-gas emissions from satellite observations, as
they directly influence the transport of trace gases in the atmosphere and their estimation is itself
a remote-sensing problem with uncertainties. This work uses both the fifth generation ECMWF re-
analysis (ERA-5) dataset (ECMWF 2025) provided by Copernicus and the GEOS forward-processing
(FP, near real-time) data product (modelling and (GMAQ) 2025) by NASA’s global modelling and as-
similation office (GMAO). Two independent datasets are used in order to evaluate the impact of wind
uncertainty on emission estimations. In particular, the WRF-Chem model used GEOS-50 and thus the
GEOS-FP dataset can be considered a "true wind” field and the difference observed by using ERA-5
instead should be indicative of the difference between real wind and either ERA-5 or GEOS-FP.

Additionally, the vertical altitude of the gas layer not only affects atmospheric transport but also the
satellite retrieval process itself, as highlighted by Veefkind et al. 2023. This effect can be mitigated
by choosing the correct wind altitude level corresponding to true mean altitude of the methane plume.
However, since that altitude is not known, studies vary significantly in the wind altitude level they use
(see Table A.1) which leads to substantial differences in the resulting emission estimates.

The chosen wind source dataset is first presampled to the target domain at the hour nearest to the
observation time and at the effective wind altitude chosen (either 10, 50 or 100 [m]). The presampled
field is then interpolated using a bi-linear scheme to the TROPOMI grid. When using a regular lat-lon
grid the wind vectors need to be rotated by the average inclination of the observation (around i = 15°)
in order to keep the field aligned with respect to the ground. Additionally, a copy of the wind field is
rotated a further 45 degrees in order to compute the diagonal flux gradient (see Figure 2.19).

This approach is verified for both wind fields and all altitude levels by comparing the co-located regular
grids (see Figure 4.2) with an observation from Maasakkers et al. 2021 (see Figure 4.1). Both can be
seen to be properly aligned with the plume direction and have similar magnitudes.
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4.3.5. Resampling

The CH4 observations of TROPOMI have a spatial resolution of approximately 7 x 5.5 km directly below
it (Veefkind et al. 2012) which grows wider further away from the nadir point due to the angled projection
of the beam (see Figure 2.1). This results in an irregular grid in scanline-groundpixel coordinates which
cannot be co-located with another orbit’s observation, as is needed when averaging over a long time
period (see Figure B.3). All grids are thus regridded to a regular, latitude-longitude grid of pre-defined
resolution, a step also called resampling. If specifically using the divergence-averaged (E1) method
then the native TROPOMI grid can be kept intact for the flux and gradient calculations and is only
resampled at the end of the estimation phase (see Figure B.4). The method used is described below:

For a satellite pixel p with an area S(p) and (e.g.
column density) value €(p) associated with an un-
certainty value o(p) the latitude-longitude grid cell
i has an overlapping area A(p, ) with p as shown
inFigure 4.12. The new grid cell value Q(i) can
then computed using Equation 4.4 where N (i) is
the number of grid cells intersected by p.

Equation 4.4
yN (@) _A(p.i) (p)
5 _ —p=1 S(p)olp) o
Q1) = SN0 _AlpD) (4.4) 3
p=1 S(p)-a(p) £
&

This method has the advantage of being compu-
tationally fast while it fully uses and appropriately
weighs the information from all individual satellite L
observations with a wide range of pixel sizes and ' longitude
column uncertainties.

Figure 4.12: Schematic of the resampling method used to
map satellite pixel values to a regular grid

This was implemented in fortran (f90) by Kai Yang as the "CAKECUT” algorithm in 1998, applied by Lei
Zhu in 2015 for pixel regridding and adapted to SCIA resampling by J.D. Maasakkers in 2016.

4.4. Estimator

This section discusses the implementation, adaptation and verification steps taken to include the nu-
merical gradient approximation (subsection 4.4.1) and corrections (subsection 4.4.2).

4.4.1. Gradient operator

The gradients of both the concentration and flux grids (either daily or averaged) are computed for order
2 and 4 in orthogonal and diagonal directions. The total gradient is then obtained, depending on the
settings used, by summing the x and y components of order 2 or 4 of the chosen direction. Similarly
to the direction, it is possible to combine these as seen in Veefkind et al. 2023 where the fourth order
is used wherever possible (i.e. all 8 neighbours are valid) and the second order fills the gaps. This
combination of gradient order is abbreviated "combo”. The effect on estimation performance of the
choice of gradient order will be discussed in subsection 5.2.3.

In order to retain the form of the gradient approximation seen in Equation 2.7, the pixel width and
height are assumed constant throughout the gradient region. The d;,; and d,,, are first computed
as the average width and height of every pixel in the scene and then converted to meters based on
the average latitude (see Equation 4.10 for analogous conversion). This is a first-order approximation
chosen for its low computational cost although it may result in skewed results at high latitudes, coarse
resolutions or for very large domains.

4.4.2. Corrections
This section will first discuss the background-corrections required to test the Gaussian plumes’ emis-
sion estimation performance in subsection 4.4.2 before delving into the verifications steps taken for
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the pressure (Figure 4.4.2) and the assumptions required for the topography (Figure 4.4.2) correction.
Finally, the other corrections mentioned in subsection 2.4.6 will be addressed.

Gaussian plume masking

In order to reduce observational bias in Gaussian testing it was deemed necessary to only consider the
pixels outside of the plume when computing the background component. Indeed, using a background
of exactly 0 leads to pixels being simplified to NAN values as part of the optimisation process which
creates artefacts and does not create representative results of the ideal case studied here. This step
is referred to as "masking” and an example of which is shown in Figure 4.13: all pixels whose value is
strictly higher than the average over the whole scene plus one standard deviation of the pixel values
are considered as the plume Q; > () +1- 0. Background corrections based on the average, median
and masked average and median of the scenes are included in order to demonstrate this effect (see
Figure 5.11).

Qeorr = 2 — <Q> (45)

methane_gm2 plume mask masked methane

21S 215 21S
228 22S 225
23S 23S 23S
248 24s 245

146E 147E 148E 146E 147E 148E 146E 147E 148E

e R ee— .

0 5 10 0.0 0.2 0.4 0.6 0.8 1.0 o} 5 10

Column density [gm™~2] mask value [0-1] Column density [gm™~2]

Figure 4.13: Boolean mask (middle) indicating the probable location of the positive enhancements of interest (right) based on
the column densities of an ideal plume (left)

Pressure correction verification

The pressure correction implemented in our case is the binned version (see Figure 4.4.2) which was
then verified by applying it on the same location and time as Veefkind et al. 2023 (the Permian region
for October 6th 2020): The resulting corrected column density field (Figure 4.15) can be verified by
comparing it to the one obtained by Veefkind et al. 2023 (Figure 4.16) based on the uncorrected field
of that location (Figure 4.14).
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Figure 4.14: Concentration field ofa ~_ Figure 4.15: Enhancement field of
TROPOMI observation the same TROPOMI observation after

pressure correction as done in this
study

Both are seen to be centred around 0 mol/m? and show a similar spatial distribution with a quasi-null
background and an enhancement in the top-right quadrant. It should be noted that since this method
depends on a correlation with the data within the domain instead of a reference day and time of known
quantities, the pressure correction’s performance is region-dependent and will perform best if most the
study area is not an emitter as this would bias the correction to obscure all sources.

Topography correction fitting

This factor X however, cannot be derived from readily available data products similarly to what was
done in Figure 2.22. Sun 2022 instead fits it (51) using the relative abundance of methane in each level
of the 3D simulations used in their study, an approach that cannot be replicated with real data where the
height of the gases is not known. An alternative path was thus used in which X was computed assuming
a constant inverse scale height 1/ H[m~!]. The scale height of a species describes its distribution along
the column’s height and can approximated analytically using Equation 4.6 where kg is the Boltzmann
constant, N4 the Avogadro constant, Mx the molar mass of the species and T the characteristic
temperature.

szo[g/mg] = X[1/m] ~Q[g/m2] where 51 = X =1/H (4.6)
g kBT kg Na T @7
Mg - 9o g0 M,

Most of these factors are known constants and the scale height can thus be computed for various
temperatures: in our case we used T' = —50, 0, 15, 50°C and tabulated the values of H for most of the
species considered in the divergence method in Table 4.1. X was then taken to be 1/ H for an assumed
temperature of T' = 15°C (standard sea-level ISA atmosphere model) as a baseline. Other values of
X based on the other temperatures are used in sensitivity analysis seen in Figure 5.11. This approach
is of course expected to be less reliable and more subject to local variations than the one used in Sun
2022 but has the advantage of being applicable anywhere without requiring extensive simulations that
essentially perform an inverse analysis on the concentration fields.
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Table 4.1: Computed scale height factors based on species molar mass and assumed temperature.

H [m] computed

T[C] MIg/mol] | -50 0 15 50 X [1/Km]
T [K] 223.156 273.15 288.15 323.15

NO 30 6303.4 771577 8139.48 9128.14 | 0.01229
NO2 46 4110.91 5032.02 5308.35 5953.13 | 0.01884
NO3 62 3050.03 3733.44 3938.46 4416.84 | 0.02539
CH4 16 11818.9 14467.1 15261.5 17115.3 | 0.00584
CO 28 6753.64 8266.89 8720.87 9780.14 | 0.01022
CO2 44 4297.77 5260.75 5549.64 6223.73 | 0.01802

Other corrections
Qcorr =0+ apt+o1-a+ aga (48)

Finally, other correction used in literature (see Appendix A) such as the polynomial bias correction for
e.g. albedo (Equation 4.8) or destriping steps are already included in the methane product used and

thus not repeated in this phase.

4.5. Evaluation of emissions

This section will describe the last phase of the divergence method: the steps taken to spatially integrate
the emission map over a region in order to retrieve the total emissions in subsection 4.5.1 and will
describe the objectives functions and metrics used to assess the performance of each method when
comparing it to a known ground-truth in subsection 4.5.2 and subsection 4.5.3 before discussing the

way in which uncertainties are estimated in subsection 4.5.4.

4.5.1. Emission integration

Since the emission field outputted after the estimator (and optionally corrected) has units of kg-m=2-571,
an spatial integration step is required to obtain a source rate in kg/s. This is done by first multiplying
each grid value by their respective area A;[m?] and then summing all pixel values ¢;[kg/s] within the

domain as per Equation 4.9.
Qest = ErﬁilEi . Ai (49)

Practically, this sum is done by masking out the domain and adding every pixel whose centre lies within
the defined shape (circle / square of a predetermined size or otherwise defined geographical region).
A more accurate approach would be to do a weighted sum based on the proportion of each pixel in or
out of the domain (similarly to Equation 4.4) but since the vast majority of pixels are either in or out and
the computational cost is not negligible it was decided to simplify it to a boolean case.

To convert the pixel coordinates on the latitude-
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This is expressed in full by Equation 4.10. This method introduces small geometric errors which mostly
cancel out when considering the entire pixel (illustrated in Figure 4.17). It should be noted that pixels
at higher latitudes may slightly overestimate or underestimate the actual area but this approximation
remains valid for the purposes of this study, particularly since other assumptions (e.g., wind field uni-
formity, plume altitude) typically introduce larger errors.

o1+ P2
2

b1+ P2
2

A =Wy, Py = hav | (A, ); (A2, )| - hav [(A1, 1); (A1, ¢d2)] (4.10)

Performing these integration steps on the emission estimation grid yields the total estimated source rate
Q.st[kg/s] but can also be applied to the reference emission grid (EMIS files of the WRF simulations in
our case) and yield the total reference source rate Q,.¢[kg/s] over the same domain. Since the same
function is used for both, any errors in geometric misalignments over the domain boundary or pixel
area errors will be the same in both Q,.s and Q.. thus giving a good idea of the performance of the
divergence itself.

4.5.2. Objective functions and testing methods

The first step in finding a good metric to assess our estimation performance is to identify which out-
puts are going to be evaluated and how they can be tested: the location and extent (or boundaries) of
sources can be evaluated by metrics such as peak area fraction (De Foy and Schauer 2022), classifi-
cation into types such as point (PS), area (AS), urban or multipoint sources (De Foy and Schauer 2022
and Beirle et al. 2021) Additionally, locations can be verified by matching identified sources with known
cities or power plants from bottom-up inventories (Beirle et al. 2023), (Veefkind et al. 2023) or simu-
lated transport of an assumed emission rate (Liu et al. 2021). Alternatively, the source rate (quantity
of methane emitted in ton/h) can be quantified and compared to the ground truth. This can be done by
evaluating the total source rate error over a specific domain and comparing it to the summed-up source
rates of the same domain (see Equation 4.11) where F is based on simulation results or other papers’
estimates (De Foy and Schauer 2022, Sun 2022, Liu et al. 2020) if it is a well-studied area. This second
metric is used for the simulated observations since we only deal with static, steady sources.

AQ = Qest - Qref (411)

This can be extended to a correlation of estimated measurements with the true emission estimates
over a range of source rates (Beirle et al. 2019) which can be obtained by repeated comparison of total
emissions over a range of times, locations or simulated source rates. However, a similar evaluation
can be achieved by considering each pixel i of the emission map as an independent source E; in which
case a single domain and time is sufficient to gather information on the detection limit and uncertainty
of the estimation (see Equation 4.12)

qu = Qiest — Qi,ref (412)

4.5.3. Grid comparison

One way to visualise Equation 4.12 is to plot each pixel as a single data point where the x-axis value
corresponds to the emissions on the reference grid and the y-axis value corresponds to the estimated
emissions on the divergence grid (Figure 4.18, left). In the case of a perfect estimation, all points
would lie on the 1:1 line (highlighted in black). However, since the WRF files are pre-processed to
match TROPOMI observations and the emission fields are given on a regular lat-lon grid for averaging
purposed, it is necessary to repeat the formatting regridding steps from subsection 4.3.3 and subsec-
tion 4.3.5 to the emissions files (abbreviated EMIS) in order to match each pixel one-to-one.
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Figure 4.18: Results of the SQ1_0_C test run. Left: plot of each pixel's estimated emission value (x) compared to each
reference value from the simulated source (y) overlayed with the corresponding fitted regression line (black) and reference
(red). Middle: Distribution of the absolute error over the scene. Right: Histogram of the residuals around the reference values.

Some statistics can then be derived from this plot that can be used to assess system performance: first,
the residuals Ag; can be visualised as the vertical distance between ¢; and the 1:1 line and their mean
and standard deviations can be plotted on a histogram and box-plot (see Figure 4.18 middle and right)
which gives a quick idea of the bias and spread of a run. Furthermore, a least-squares regression can
be done on the points which yields a line of the form m - Q,.y + b where m = 1 and b = 0 indicate a
perfect overlap with the reference line. The Pearson correlation coefficient r is also derived for the two
quantities in order to inform on the spread of the residuals: indeed, a perfect line may still be obtained
if residuals cancel out and so quantifying r is necessary to capture all the relevant information. These
quantities will be used in chapter 5 to answer the research questions defined in section 3.2.

4.5.4. Uncertainty estimation

Finally, it is desirable to provide an uncertainty estimation along with the total source rate. This is done
for TROPOMI observations by running a time-series where estimations are done weekly or monthly: the
total emission estimation is then the average of the sub-estimations and the uncertainty is estimated as
three standard deviations of the sub-estimations within the averaging period. This simplistic approach
provides an uncertainty range and is simple to implement but is more akin to a measure of temporal
variability and only holds for steady sources. Furthermore, shortening the averaging period changes
the estimation’s performance and requires multiple scenes making it computationally expensive.

A better approach is to aggregate the pixel-wise uncertainty of the final emission estimate using Equa-
tion 4.13. The value of each pixel's uncertainty is assumed to be the pixel-wise residual between the
emission estimation and the reference estimation (seen in Figure 4.18). This assumption leads to un-
certainty ranges which are representative of the pixel-wise spread but only works for the simulated
observations. Further work is thus needed to find a valid pixel-wise estimation of the uncertainty for
real observations.

Qest =S, E; - A (4.13)
08, = Sica (o - A4)? (4.14)
0Qes: = 0d * Apiz * \/ Npix (4.15)

The first method is thus used for the Permian case study while the second is used for all synthetic
observations with multi-point sources.



Results

This chapter will discuss the results of the verification and investigation tests conducted in this thesis.
First, the tests using Gaussian plumes will be investigated in section 5.1, then the WRF results will be
introduced in section 5.2 before looking at each sub-question: starting with SQ1 discussing the choice
the gradient approximations in subsection 5.2.3, SQ2 assessing the impact of the estimators’ order
of operations subsection 5.2.4, subsection 5.2.5 will compare the background corrections and answer
SQ3 while SQ4 will conclude on method optimisation in subsection 5.2.6. Finally, a case study will be
conducted on the Permian basin in section 5.3.

5.1. Gaussian plumes

In order to establish a baseline and verify the implementation of the divergence-based methods, a se-
ries of tests are conducted using synthetic Gaussian plumes. These idealized cases are selected for
their simplicity and analytical clarity, making them well-suited for method verification. Gaussian plumes
provide a clear and controlled environment to test the behaviour of each component of the codebase,
validate expected outputs, and ensure the robustness of the pipeline under ideal (non-realistic) condi-
tions. The visual simplicity of these point sources allows for intuitive inspection of estimation results
and serves as a reference point for interpreting outcomes from more complex or realistic datasets in
later sections.

5.1.1. Verification

The verification approach comprises two stages. First, each variable of interest—such as the wind
field, gradient components, divergence values, and final emission estimates is varied individually and
the resulting emissions fields are inspected to ensure their spatial distribution and approximation error
is within the expected bounds. This is followed by a structured testing loop that cycles through the
three main codebase blocks (input, estimation, integration), and sweeps through all possible values of
each setting for each block. This dual approach is intended to balance computational efficiency with
the need to assess interactions between code components.

The domain investigated has an extent of 2.5 degrees and runs for a time period of 8 observations.
Gaussian plumes used a wind speed of w = 5m/s, source rate of Q = 10k/s, constant of turbulent
diffusion K = 6000m?/s and a direction changing by Af = 45° with an added background of By =
1.0g/m?, noise of o5 = 0.1g/m? and 1% missing data. No filtering was done and the estimation used
a weekly flux-averaged divergence (E2) resampled to a regular 0.1 degree resolution with ’‘combo’
gradient order, a median-masked background correction and perfect knowledge of the wind field. The
combination of gradient direction was used as the perfectly uniform wind field rotated by increments of
45° would otherwise yield artefacts on half the scenes. Only the diffusion correction (see Equation 2.4.6)
was applied with K = 6000m?/s such that it perfectly matches the turbulent diffusion constant of the
plumes generated. Finally, the emission field was integrated in a 100 km circle around the centre of
the domain where the plume head is placed.

34
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The results of the sensitivity analysis sweep are Histogram of Q_err_percent (Relative Error)
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Figure 5.1: Histogram of the integrated source rate error over
the range of trials

5.1.2. Impact of testing parameters

This section will inspect some of the results obtained in order to provide a controlled baseline for the
behaviour of the divergence method and the impact of some parameters before delving into the more
realistic WRF-Chem simulations.

Averaging

Averaging emission estimates over longer time periods offers clear advantages, notably through in-
creased pixel coverage and reduced sensitivity to random noise, resulting in more stable and consistent
outputs. However, this approach also comes with limitations, as it smooths out short-lived emission
events and may obscure seasonal or episodic variability that could be of scientific or regulatory interest
which should be considered when using these methods and for that reason a monthly average was
chosen for E2.

The impact of averaging can be clearly shown by the next two examples. On the left, Figure 5.2 shows
the enhancement (left-most) and estimated emission map (to its right) of a single plume which exhibits
the “horseshoe” pattern, also observed in Roberts et al. 2023 and Koene, Brunner, and Kuhimann 2024
where the source itself is clearly identified but the diffusion in the tail causes a seemingly 'negative’
emission on the centerline and a ’positive’ emission cross-wind which is due to the diffusion of the
trace gas from the centre outwards. This artefact is characteristic of the divergence method on plume
observations with relatively high diffusion (see subsection 2.4.1). On the right: Figure 5.3 shows the
average enhancement of eight plumes, each rotated by 45° in order to produce distinct observations,
on the 3rd panel and the resulting divergence-averaged emission map in the right-most panel. The
source in this case is even clearer and the horseshoe diffusion artefacts are smoothed out as the
positive outer edges of one plume cover up the negative inner edge of their neighbours and cancel out.
This is of course an ideal case in which the plumes are perfectly rotated but it exemplifies the potential
of averaging. The integrated total sources of the single plume is estimated to be Q.1 = 7.1511kg/s
whereas the multi-plume estimates finds Q..+ s = 9,9593kg/s which is much closer to the true Q,.; =
10.000kg/s.
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Figure 5.2: Enhancement of the simulated Gaussian column  Figure 5.3: Enhancement of the simulated Gaussian column

density of a single plume in uniform wind field (Left) and the density of eight plumes in uniforms wind fields of varying
resulting estimation (Right) directions (Left) and the resulting estimation (Right)
This can be seen to be generally true by filtering the results of the 10 - END_DAY_INT
Gaussian sensitivity analysis by the length of the time period that
is averaged and showing a box-plot of the results given all other
varying settings in Figure 5.4. Given a start date of 2022/01/03 57
and an end day of 2022/01/03 (i.e. 3 in END_DAY_INT) we find = NT O N=9s
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Missing data

Figure 5.4: Boxplot of the results of
Gaussian testing, aggregated per value
of the end day parameter i.e. length of

the averaging period or number of
plume observations considered

Missing data points were initially introduced into the Gaussian data sources to test the robustness
of the divergence implementation with respect to nan and zero values, especially in the averaging
and resampling phase. But an interesting observation to be made is that, because each pixel in the
emission estimate grid requires all its neighbours to be valid pixels, a single missing point in the input
grid results in 4-8 missing points in the output grid. This can be seen clearly in Figure 5.5 where 1% of
pixels are missing in each of the 8 plumes averaged resulting in virtually no gaps in the column density
average (left-most) whereas the emission map using the same data (left) already shows some NAN
parts. Pushing this further to 25% of missing pixels yields Figure 5.6 where the column density grid
starts to show gaps (right) but results in unusable emission map (right-most).



5.1. Gaussian plumes 37

Enhancement Emission Field

Enhancement Emission Field
21s 21§ I | o
225 225 L
23S 235 - | .
248 245
145E 146E 147E 148E 145E 146E 147E 148E 145E 146E 147E 148E 145E 146E 147E 148E
1 2 3 -2 0 2 1.05 1.10 1.15 -2 0 2
Concentration [gm—2] Emission Rate [kgm*ig:ﬁj Concentration [gm—2] Emission Rate [kgm*]?%:g]

Figure 5.5: Enhancement of the simulated Gaussian column  Figure 5.6: Enhancement of the simulated Gaussian column
density with 1% of missing pixels (Left) and the resulting density with 25% of missing pixels (Left) and the resulting
estimation (Right) estimation (Right)

An example of an emission grid based on the WRF emitters in Figure 5.7 with a fourth order orthogonal
gradient approximation clearly shows the ’cross’ pattern caused by a few missing pixels in the scene.
The results of the sensitivity shows that increasing the percentage of missing data both decreases the

estimated emissions due to source pixels being masked and the uncertainty and sensitivity to other
parameters increasing (see Figure 5.8).
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Figure 5.7: Example of the divergence field for a
TROPOMI observation with few missing pixels
and fourth order gradient.

Background

The impact of the addition of both a flat and noise background component to the observations can
be seen by comparing the enhancement of the column density for a ‘clean’ plume set in Figure 5.3
and a ‘noisy’ plume set in Figure 5.5. However, the impact on the estimation is surprisingly low as the
clean observations yield Qcst cican = 9.9593kg/s whereas the noisy ones yield Qcst noisy = 9.9870kg/s.
This can be attributed to the fact a flat background will always have a null gradient and thus does not
affect the results and that the Gaussian noise added here is independent from pixel to pixel meaning a
fourth-order gradient approximation will be averaging it out to a quasi-zero gradient as well. The only
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backgrounds truly affecting the divergence method are thus the ones with 'structure’ due to orography
convergent wind fields which have a non-zero gradient over a significant distance.

This is again seen in the box-plots below derived from the sensitivity analysis where the background
component shows little to no influence in Figure 5.9 : the 1.0 setting is biased by the influence of
missing data a seen previously which causes it to have a wider spread but all backgrounds settings
tested have a median and average value within 5% of the reference emission. Figure 5.10 shows
how an increase in noise, though mitigated, does increase the error and uncertainty of an estimation
while Figure 5.11 shows the influence of background corrections are mostly negligible with the notable
exception of the median and in particular median-masked method which is able to get rid of the noisy
background and thus achieves a lower overall error by correctly identifying the plume (note that this
is not generally applicable to TROPOMI or realistic observations where sources are distributed and
backgrounds structured).
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Figure 5.12: Boxplot of the results of Gaussian testing,
aggregated per value of the Gaussian diffusion-correction
parameter (using K=6000 in Gaussian generation)

5.2. Simulated WRF observations

The next section will discuss the results obtained by testing the divergence method and its variations
with the WRF simulations of RUS-domain (see subsection 4.3.3). This significant jump in complexity
will naturally lead to weaker estimates and more difficult interpretation of the results.
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Figure 5.13: Histogram of the integrated source rate error
over the range of WREF trials

5.2.2. Effects of parameters on synthetic observations
This subsection will now delve into the focus of this thesis: method and parameter optimisation through
specific tests devised to answer the research questions defined in section 3.2.

5.2.3. Gradient approximations
First is the investigation of the impact of the numerical order of the gradient operator approximation (2,
4, combo) in order to answer SQ1.

A first look at the sensitivity plots
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Figure 5.15: Boxplot of the integrated
source rate error over the range of WRF
trials with orders 2 / 4 / 2+4 combo.

combo.

In order to get a more in-depth understanding of the behaviour seen in Figure 5.15, three tests are
defined using gradient order 2, 4 and combo, as per Table 5.1. These are using the monthly-averaged
divergence E1 estimator over a year-long period (2022) with tracer 3 only (i.e. background-free) such
that the influence of the gradient approximator on the estimation of point sources can be investigated
first before adding a background in subsection 5.2.6. Since no backgrounds are present, no correction
is applied. It should be noted that all results obtained at this stage are conditional upon the choice of
estimator (here E1) which will be investigated next in subsection 5.2.4. A confirmation of the results is
done for all estimators considered in subsection 5.2.6.
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Table 5.1: Test definition for investigating research sub-question 1 (SQ1) on background free observations (0) for gradients
order 2 (2), 4 (4) and combination (C)

TEST WREF tracers averaging gradient estimator background
period order correction
SQ1.02 |3 monthly 2 DIV none
SQ1.04 |3 monthly 4 DIV none
SQ1.0C |3 monthly combo DIV none

The results obtained are compared below: The first observation made is from Figure 5.16 which shows
that more diffuse emitters with varied wind fields show a clear enhancement pattern after averaging of
the support variables. Second, Figure 5.17 shows a clear emission spot of the same shape as tracer 3’s
EMIS file along with noise patterns around it. Looking at the emission map of gradient orders 4 or combo
are scarcely informative as their pattern and magnitude look almost identical, the difference grids 4 and
2 is thus shown in Figure 5.18 which includes the expected difference in noise throughout the images as
well as an underestimation of gradient order 2 at the main source point and an overestimation directly
around it. This may be explained by the configuration of neighbouring pixels considered in gradient
order 2 which notably exclude the middle pixel meaning the gradient of two directly adjacent pixels
cannot be detected by this method whereas the fourth order gradients does have ’arms’ of directly
adjacent pixels. This makes the 4th order approximation more suitable to identify discrete or small
sources. Finally, the difference between 4 and C is simply zero in all places except at the edges where
the second order values are used.
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approximation

Further insight is gained by examining the resulting statistics shown in Table 5.2: it can be seen that the
variations in estimation of the total emissions FE.; is relatively small compared to the error. It should also
be noted that although order 2 has a marginally lower error (18.85%) compared to order 4 and combo
(19-20%) the fourth, and to a lower extent the combination of orders, both exhibit better correlations
with a slope m closer to 1 and a Pearson correlation coefficient » > 0.8. This means the better estimate
of order 2 is likely a product of noise instead of an indicator of a better estimate.
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Table 5.2: Test results for investigating research sub-question 1 (SQ1) on background free observations (0) for gradients order
2 (2), 4 (4) and combination (C)

Test ID Eirue E.q [ton/h]  AFE [%] og [ton/h]  og [%] slope biasb Pearson
[ton/h] m r

SQ1 02 |5 5.943 18.85 0.547 10.95 0.746  3.7E-09 0.753

SQ1. 04 |5 5.969 19.37 0.585 11.7 0.822 7.5E-10 0.763

SQ1. 0C |5 5.959 19.17 0.592 11.84 0.808 2.4E-09 0.754

The probable reason why 4 behaves better than 2 is two-fold: first, the error of the mathematical
approximation is of two fewer order as per subsection 2.4.3, second, since 4 considers adjacent pixels
it tends to 'smudge’ or smoothen the divergence map from one pixel to the next yielding less noisy
emission estimates whereas the gap in 2’s center lead to absolutely uncorrelated adjacent pixels. This
makes the fourth order method better for coarse grids or domains with noisy observations or small
sources. The combo gradient acts exacly like 4 (by definition since it uses the fourth order gradient
unless missing pixels prevent it) which explains why the correlation and total estimate are so close to
the fourth-order in this case, trending to look closer to the second-order estimate as the proportion of
missing pixels increase.
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Figure 5.19: Boxplot of the integrated Figure 5.20: Boxplot of the integrated Figure 5.21: Boxplot of the integrated

source rate error over the range of WRF source rate error over the range of source rate error over the range of WRF
trials, aggregated per gradient direction Gaussian trials, aggregated per trials, aggregated per resolution of the
scheme. resolution of the regular grid. regular grid.

It should be noted that the gradient direction also has a notable impact as seen in Figure 5.19 based on
the WREF results where both diagonal and orthogonal methods show significant bias compared to the
combo (dynamic direction) method whose median emission estimate is has less than 5% error. The
resolution of the regular target grid also has a significant effect: Figure 5.20 and Figure 5.21 show the
impact of a coarser (0.1°) and finer (0.05°) grid for the Gaussian and WREF tests respectively. It can
be seen that oversampling to a finer resolution has a negligible performance impact but coarsening
the grid too much compared to the source dataset leads to higher errors. A finer grid does not seem
to favour one numerical gradient approximation over another as no new data is added leading to the
same trends.

5.2.4. Estimators

The order of operations distinguishing operators E1, E2 and DD are analysed similarly as subsec-
tion 5.2.3 by defining three specific test cases as per Table 5.3. These use the same settings as
Table 5.1 except they all use combo gradient order since it was concluded to be the most representa-
tive and accurate. Both DIV,E1 and DD use a single-observation averaging period since they create
each create one emission map per concentration map while DIV,E2 makes an emission map per 29-31
days (i.e. 20-50 observations). Once again the results here are conditional upon the choice of other
parameters, especially the numerical order of the gradient (subsection 5.2.3), and thus need to be
confirmed in subsection 5.2.6.
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Table 5.3: Test definition for investigating research sub-question 2 (SQ2) on background free observations (0) for directional
derivative averaged (DD), divergence averaged (DIVE1) and flux-average divergence (DIVE2) estimators

Test ID WREF tracer  averaging gradient estimator background
period order correction
SQ2 0 DD 3 single combo DD none
SQ2_0_DIVE1 | 3 single combo DIV none
SQ2_0_DIVE2 | 3 monthly combo DIV none

The tests results are tabulated in Table 5.4 where one can see that the variation in total estimated
emissions AFE is much wider than what was observed in Table 5.2 meaning the choice of estimator
has a larger influence on the results than the choice of gradient approximator. Furthermore, it can be
seen that DIV,E1 has the lowest error (0.6 %) followed by DIV,E2 (20%) and DD (25%) but DIV,E2
exhibits the best correlation with a slope of m = 0.8 and » = 0.75 while both DD and E1 have similarly
mild results with a slope of about 0.55 and Pearson correlation coefficient of around 0.65. This can be
interpreted similarly to the case of subsection 5.2.3 where DIV,E2 is the most reliable estimator with
a better pixel-wise estimate whereas E1 and DD have lower confidence (i.e. worst correlation) but a
better estimate likely by the result of noise.

Table 5.4: Test results for investigating research sub-question 2 (SQ2) on background free observations (0) for directional
derivative averaged (DD), divergence averaged (E1) and flux-average divergence (E2) estimators

Test ID FEirue E.q [ton/h]  AFE [%] og [ton/h]  og [%] slope biasb Pearson
[ton/h] m r

SQ2 0 DD 5 3.749 -25.02 0.569 11.38 0.573 5.8E-09 0.646

SQ2 0 DIVE1 | 5 4.969 -0.62 0.575 11.5 0.56 1.0E-08 0.633

SQ2 0 DIVE2 | 5 5.959 19.17 0.592 11.84 0.808 2.4E-09 0.754

Looking at Figure 5.24 one can notice that only a few points contribute to the upper end of the correlation,
that is, there are few pixels in the scene with high emissions. This means a small amount of noise in
and around the source pixels can result in very different m, b, r values. Furthermore, it can be seen that
Figure 5.23 and Figure 5.22 look very similar in their points driving the estimation line, especially around
the source with the same pixels being overestimated (top left) and drastically underestimated around
(1.6,0.4) and (3.4, 1.3) which exemplifies how E1 and DD are essentially the same on background-free
observations. Finally, it can be noted in all figures that most of the pixels are seen below Q,..; < 0.5[g -
s~1.m~2] (i.e. background regions with little to no emitters) and their noise levels range +0.5[g-s~*-m 2]
and observed in Figure 5.24 that the noise levels converge towards zero quasi-linearly, with emissions,
as seen in the Gaussian tests of Figure 5.10 whereas E1 and DD have more fuzzy noise levels.
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These observations reveal that the change in order of operation between E1 and DD is minimal and
that the linearity of the gradient and product operators holds for complex applications (Equation 5.1)
whereas the averaging operator results in wildly different outcomes. In order to investigate the reason
for the difference between DD or E1 and E2, one can first look at the formulation of the estimators in
Equation 2.17: since the concentration field and wind are quasi-perfect (no background, same field
used in WRF-Chem and DIV) the difference cannot come from terms « or Q. Furthermore, since E1
and DD behave in such a similar way, it can be seen through Equation 5.1 that the placement of the
gradient operator is not causing the difference observed meaning we should look more closely at the
flux-averaging step.

Eaa = (a-V(Q)) ~ Eginyr = (V(a-Q)) = - V(Q) ~ V(a- Q) (5.1)

The resulting emission maps of E1 (Figure 5.25), E2 (Figure 5.26) and their difference E2-E1 (Fig-
ure 5.27 can further inform on the reasons why E2 is less noisy than either other methods. DD is not
shown since it was seen to be similar in magnitude and spatial distribution to E1. Our first observation
is that the maximum magnitude of the estimates in Figure 5.26 are higher (2.0 - 107%[kg - m~2 - s7}]
)than in Figure 5.25 (1.2 - 10~°[kg - m~2 - s—1] ) which support the fact seen above that E2 has a lesser
tendency towards underestimation. Furthermore, the noise distribution of E2 is of lesser relative mag-
nitude and less structured than in E1 which shows large regions of positive and negative emissions
which is not only an issue for total emission integration but also for visual inspection of a general-
purpose emission map as it would make it more difficult to distinguish true sources from noise. Finally
the difference of the two confirms these observations and reveals a maximum pixel-wise difference of
about 0.5 - 10 ?[kg - m~2 - s7!] i.e. around 15% with a clear underestimation of E1 and DD around the
source area compared to E2.
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Figure 5.27: Difference between the
emission maps with DIV E2-E1
estimators

Figure 5.25: Resulting emission map

with DIV-E1 estimator Figure 5.26: Resulting emission map

with DIV-E2 estimator

In order to determine why flux-averaging yields better results than E1, a year-averaged test is con-
ducted. The averaged results are first discussed below and intermediate vector fields are then plotted
for three days of interest in order to better understand the behaviours at play in the following section.
This analysis used a fourth-order orthogonal gradient in order to simplify comparisons and better high-
light the effect of the estimator choice.

The average enhancement averaged over a year (Figure 5.28) already indicates a clear source spot
since the observations here are background free and the CH4 is carried away from the source in every
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direction. The average flux, seen in Figure 5.29 shows that, interestingly, the fluxes over a long time
period seem to align in one main direction. Furthermore, the background is consistently close to zero
and the source itself can be noticed to be quasi-null as well whereas the highest fluxes are observed
directly downwind from the source in both the north-east and south-west directions. The effects of this
flux distribution are clear from the resulting gradient Figure 5.30 which is even more defined that the
monthly-averaged Figure 5.26: The gradient of the fluxes, i.e. the estimated emissions, are indeed
highest at the source of the two outgoing flux lines and their tail is almost completely cancelled out.
The background not only has a low magnitude but also a random direction which contrasts with the
well-defined field of Figure 5.29.
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observations

Day 12 has all the characteristics of a good day for using the divergence method: the wind field is
uniform, the flux tail is straight and well-enhanced compared to the background and the source location
can be easily inferred (Figure 5.31). Although the difference with respect to the average in Figure 5.32
shows the background fluxes are slightly higher than usual on that day, the location of the plume is
clear and the noise relatively low. The result is Figure 5.33 where the source is clearly identified and
the background quasi-null with the notable exception of a negative tail due to outwards diffusion, made
clearer by the vectors of gradient direction, as seen in the Gaussian tests (Figure 5.2).



5.2. Simulated WRF observations 45
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Figure 5.31: Flux of day 12 Figure 5.32: Flux difference of day 12

with respect to year-average

Figure 5.33: Gradient (4th Order) of the
flux of day 12

The observation of day 152 (Figure 5.34) shows a curved wind field along which the plume is laid out
and a mismatch between the real wind (along plume transport direction) and the estimated wind form
GEOS-FP 50m (more uniform and with a south-north bias). Figure 5.35 also exemplifies a trend seen
on many days where the plume is a net positive flux compared to the average and the background a net
negative that seems to converge on the plume head or source. Figure 5.36 shows a surprising pattern:
the source is identified, although smudged and slightly offset, and the tail exhibits a "zebra” pattern of
strong positive and negative estimates. This phenomena is likely due to aliasing - due to the wind field
curvature, the gradient cross-plume interprets the outer part of the plume as a negative emission (trace
gases are removed) and the inner part as a positive emission i.e. turning. This is combined with an
aliasing artefact due to the relatively thin plume (2-4 pixels) whose gradient is computed with a 5-wide,
4th order gradient (a similar zebra noise pattern can also be seen to a lesser extent in Figure 5.33).
Since these noise patterns appear frequently within plume tails and plumes will cover a vast amount of
directions over a long enough time period, flux-averaging or divergence-averaging would reduce their
impact.
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Figure 5.34: Flux of day 152

82E 83E 84E 85E 86E

-0.2 -0.1 0.0 0.1 0.2
Total flux

CCo—

0.00 0.05 0.10 0.15 0.20
Vector flux

Figure 5.35: Flux difference of day 152
with respect to year-average

82E 83E 84E 85E 86E

[ —

-1 4] 1
Total gradient of flux ~ le—5

[

0.00 025 050 075 1.00 125
Directional gradient of flux1le—5

Figure 5.36: Gradient (4th Order) of the
flux of day 152



5.2. Simulated WRF observations 46

Finally Day 83 shows, in Figure 5.37, what happens when the wind carries the trace gases into a region
of missing data, effectively masking the tail of the plume. Although the flux at the source is clearly much
higher than the yearly average (Figure 5.38) and would thus affect the year-averaged flux and the result
of the E2 method, the missing neighbouring pixels render this observation useless when applying E1 or
DD as the source region cannot be estimated as seen in Figure 5.39. One can also note that a similar
effect is seen with the secondary source in Figure 5.34 around (53.5°N, 84.0° E') which is masked out
in Figure 5.36. Masking of source or near-source pixels is thus thought to be the leading factor in the
superiority of E2 over E1 and DD estimators.
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flux of day 83

A short inspection of the sensitivity analysis of the WRF averaging period in Figure 5.40 confirms the
results seen before in Gaussians and in this section that averaging over multiple observations usually
increase result reliability. Furthermore, filtering by estimator type where FLUX is the divergence-based
E1 and E2 methods and CONC indicates the DD method, we can see in Figure 5.41 and Figure 5.42
that the influence of the estimator choice is of lesser importance when considering more complex data

since the error is driven by other factors such as wind uncertainty. In either case, the DD estimators do
not seem to offer a clear advantage over the baseline DIV method.
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Figure 5.40: Boxplot of the integrated
source rate error over the range of WRF
trials, aggregated per averaging period.

Figure 5.41: Boxplot of the integrated
source rate error over the range of
Gaussian trials, aggregated per
estimator.

Figure 5.42: Boxplot of the integrated
source rate error over the range of
simulated WRF emission trials,
aggregated per estimator.
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5.2.5. Background correction

The last sub-question following this format is the investigation of background-correction performance.
The background tracer (1) is added and three cases are tested for combo order, combo direction,
DIV,E2 (monthly-averaged) estimator as per Table 5.5. The first, without any background correction
(NONE) will serve as a reference and is not expected to provide useful estimates. The second will
use the pressure correction (PRES) on the column density data and perform a background-removal
correction on each observation based on the aggregated monthly concentrations and surface pressure.
The third will perform a single correction on the monthly emission grids based on surface-level winds
and topography (TOPO) using the assumed inverse scale height factor from Table 4.1.

Table 5.5: Test results for research sub-question 3 (SQ3) on observations with simulated backgrounds (1) for standard method
(NONE), pressure-corrected column densities (PRES) and topography-corrected emissions (TOPQ)

Test ID WREF tracer  averaging gradient estimator background
period order correction
SQ3_1_NONE | 1,3 monthly combo DIV none
SQ3 1 PRES | 1,3 monthly combo DIV pressure
SQ3 _1_TOPO | 1,3 monthly combo DIV topography

The statistics of the results shown in Table 5.6 immediately show that neither the uncorrected or
topography-corrected emission estimates have any significant correlation with the WRF-EMIS grid with
m < 0and r < 0. This indicates the flux maps have high-magnitude noise that gets transferred through
the gradient operator yielding estimates in the order of ¢; > 10~* compared to ¢; < 10~¢ for the
pressure-corrected estimation. Furthermore, the error in either case is on the order of 1000% i.e. nei-
ther of these methods are valid for emission estimation as-is. The pressure-correction shows a good
correlation with m = 0.83, b =~ 0 and » = 0.7 and the lowest error (45%) among the configurations
tested. Figure 5.43 also shows the source pixels are all relatively close to the 1:1 line even though
the noise level in the background is much higher than in Figure 5.24. The extremely large influence of
background and background correction on errors and uncertainty is clearly seen here as the leading
factor in errors for the divergence method.

Table 5.6: Test results for investigating research sub-question 3 (SQ3) on observations with simulated backgrounds (1) for
standard method (NONE), pressure-corrected column densities (PRES) and topography-corrected emissions (TOPO)

Test ID Eirye  Ees [ton/h]  AE [%] og [ton/h]  og [%] slope biasb Pearson
[ton/h] m r
SQ3 1 NONE | 25 4396.398 17485.4 651.742 2606.94 -11.7 1.6E-05 -0.075
SQ3_1_PRES | 25 13.574 -45.71 3.497 13.99 0.83 -4.3E-08 0.706
SQ3_1_TOPO | 25 960.917 3743.63 786.331 3145.29 -0.72  -98E-06 -0.004
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The emission estimation maps shows the pressure-corrected Figure 5.46 identified a clear source area
of magnitude 10~°[kg-m~2-s~!] whereas the source is indistinguishable within Figure 5.48. The noise
levels in both the topography-corrected emissions and the uncorrected emissions (seen in Figure 5.47)
are on the order of 10~6[kg-m—2-s71], thatis, three order of magnitudes higher than the signal observed
in Figure 5.46. This means the pressure-correction was successfully able to filter out O(3) noise from
the observations whereas the topography could not.
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Figure 5.46: Resulting emission map Figure 5.47: Resulting emission map Figure 5.48: Resulting emission map
with pressure correction with no corrections with topography correction

(X=0.006552)

A closer look at the topography correction is shown in Figure 5.49 where the uncorrected emissions,
corrected emissions and correction term are shown from left to right. It can once again be seen that
the magnitude of the correction is much too low to affect the results. it can, however, be seen that the
correction does enhance the source region in the top-left of the image which means correctly tuned
inverse scale height factor may yield much better results.
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Figure 5.49: Uncorrected divergence map (left), topography correction (middle) and corrected emission map (right)

This is investigated as part of the sensitivity study on WRF simulations and shown in Figure 5.50 which
aggregates the errors across the range of scale height factors derived in Table 4.1. X = 0.008461
which corresponds to 7' = +50°C' does have a median error close to that of the pressure correction,
although the sensitivity to other parameters is larger. This indicates the topography correction has
the potential to be applied to correct the background if the magnitude of the correction is perfectly
fitted to the domain and time of interest. It should be noted that the temperature yielding the best
results here is not the physical temperature of the domain (Northern Russia) at the ground or at the
effective wind height meaning using real temperature data is not guaranteed to yield any better results
than assuming a reference temperature. Since the best scale height factor cannot be determined
without prior simulations to estimate the relative abundances of trace gases throughout the air column
as done in Sun 2022 or without 2D simulations with known emissions as shown in Figure 5.50, the
topography-correction is concluded to be inapplicable to global TROPOMI methane without a new way
of determining H in a reliable and automated way.
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Figure 5.50: Boxplot of the integrated
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Determining the proper detection limit, that is, the minimum emission rate of a point source required
to be detected by the method, would require a source fitting algorithm such as the on described in
Beirle et al. 2023 and the study of varying source rates for both point and diffuse source across a
variety of latitudes, surface albedos, etc. Such an analysis is thus outside the scope of this thesis.
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However, the sensitivity analysis of the tests conducted shows that increasing the source rate of the
WRF emission grids decreases the relative emission estimation error on observations tha contain a
background component (see Figure 5.51). This is due to the increased prominence of the enhancement
in the observations compared to the background which reduced in relative intensity. Indeed, the same
test on background-free observation (Figure 5.52) shows no significant change in accuracy as the
magnitude of the estimation and noise is scaled by the same amount. TROPOMI’s usually accepted
detection limit for methane plumes is around Q... = 5[ton/h] but it was seen that the divergence
method’s is closer to Qmin, prv = 25[ton/h] in the cases studied.

5.2.6. Multi-parameter optimisation

The final sub-question deals with the potential interactions between the parameters investigated so far
i.e. whether any pair-wise combination of methods perform unexpectedly better or worse than what
would be inferred from the conclusions ofsubsection 5.2.3, subsection 5.2.4 and subsection 5.2.5. Eight
independent tests are devised to compare the fourth and combo (4+2) order of gradient approximation,
DD and DIV,E2 estimators and the pressure and topography correction. All tests are conducted with a
total source rate of Q. = 25[ton/h| over a circular region of R = 100[km).

Table 5.7: Test definition for investigating research sub-question 4 (SQ4) on observations with simulated backgrounds (1) for
various combinations of the parameters tested in SQ1, SQ2 and SQ3

Test ID WREF tracer  averaging gradient estimator background
period order correction
SQ4_4DDPRES | 1,3 monthly 4 DD pressure
SQ4 _4DDTOPO | 1,3 monthly 4 DD topography
SQ4_4DIVPRES | 1,3 monthly 4 DIV pressure
SQ4_4DIVTOPO | 1,3 monthly 4 DIV topography
SQ4_CDDPRES | 1,3 monthly combo DD pressure
SQ4_CDDTOPO | 1,3 monthly combo DD topography
SQ4_CDIVPRES | 1,3 monthly combo DIV pressure
SQ4_CDIVTOPO | 1,3 monthly combo DIV topography

The results, shown in Table 5.8 shows an overall much higher error than in the background-free cases
and a worse correlation, though notably the bias is always quasi-null. In all cases the pressure cor-
rection performs significantly better than the topography correction (as per subsection 5.2.5) and the
difference between the flux-averaged divergence and the directional derivative estimator is similar to
that observed in subsection 5.2.4 i.e. a marginally lower error for DD but a better correlation and thus
higher confidence in the results for E2. The only change observed between the individual parameter
testing done in the previous sections and this test is the fourth order gradient performing marginally
better than the combination gradient in the case of pressure-corrected divergence estimation.

Table 5.8: Test results for investigating research sub-question 4 (SQ4) on observations with simulated backgrounds (1) for
various combinations of the parameters tested in SQ1, SQ2 and SQ3

Test ID FEirue E.q [ton/h]  AFE [%] og [ton/h]  og [%] slope biasb Pearson
[ton/h] m r
SQ4 4DDPRES | 25 14.405 -42.4 3.650 14.6 0.626 2.4E-10 0.585
SQ4 _4DDTOPO | 25 -2931.120 -11824.4 | 431.514 1726.0 7592 -2.0E-05 0.074
SQ4_4DIVPRES | 25 13.669 -45.3 3.440 13.8 0.863 -6.0E-08 0.725
SQ4 _4DIVTOPO | 25 954.471 3717.8 790.776 3163.1 1.117 -1.2E-05 0.006
SQ4 CDDPRES | 25 17.552 -29.8 3.054 12.2 0.566 2.0E-08 0.614
SQ4 _CDDTOPO | 25 -1688.471 -6853.8 214.399 857.6 6.361 -1.0E-05 0.124
SQ4 _CDIVPRES | 25 13.574 -45.7 3.497 14.0 0.830 -4.3E-08 0.706
SQ4_CDIVTOPO | 25 960.917 3743.6 786.331 3145.3 -0.720 -9.8E-06 -0.004

A comparison of the emission estimation performance across all configurations for the ERA5 50m,
ERA5 100m, GEOS 10m and GEOS 50m shows that the GEOS-FP source performs better than the
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ERA-5 dataset (Figure 5.54). A lesser effect is seen on observations with a background component
(Figure 5.53) where GEOS also has a wider spread than ERAS. This is not however a measure of the
accuracy of the wind field datasets as the WRF simulations use GEOS-FP data to drive the chemical
transport, it is expected that this dataset would perform better as the wind fields in the observations
are perfectly consistent with the ones that drove the concentrations seen. Furthermore, the difference
between the ERA5 and GEOS datasets, especially in background-corrected tests, indicates the choice
of dataset has a lesser effect than the choice of estimator or background removal method.
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correction constant.

Finally, trying to add the diffusion correction on WRF observations shows a significant improvement
(Figure 5.55). However the applicability of such a correction is limited by the fact the correction constant
K needs to fit the species’ constant of turbulent diffusion as close as possible in order to effectively
reduce the underestimation bias (Equation 2.4.6).

5.3. Estimating the yearly methane emissions in the Permian basin
The case study will focus on the Permian basin, a region thoroughly investigated by many authors as
discussed in subsection 5.3.1, and will evaluate total yearly emissions based on the TROPOMI methane
product and the optimal settings found so far (subsection 5.3.2. The results will then be compared to
various other studies over the same region in order to assess the extent to which this implementation
of the divergence method agrees with accepted methods.

5.3.1. Comparison to previous estimates

The Permian Basin, a major oil and gas (O&G) production region in the United States (Maasakkers
et al. 2021), has been the subject of several studies aiming at estimating methane emissions using a
range of different methods, including divergence, inversion, and inventory-based approaches. These
case studies provide valuable benchmarks for evaluating the results of this thesis and understanding
the variability in emission estimates.
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Table 5.9: Estimates of the Permian methane emission rates (Tg/year) in literature, including reported uncertainties (+-), for the
year 2019, 2020 and 2021. Variations in the studies’ methods or assumptions are indicated in parenthesis and included for
completeness.

year 2019 2020 2021
source method [Tglyr] +- [Tglyr] +- [Tglyr] +-
Roberts et al. 2023 (E1) divergence | 3.06 0.66 | 2.39 0.55 | 2.67 0.54
Roberts et al. 2023 (E2) divergence | 3.1 07 | 24 06 | 27 0.5
Veefkind et al. 2023 divergence | 3 0.7
Liu et al. 2021 divergence | 3.06
Schneising et al. 2020 inversion 3.18 1.13
Zhang et al. 2020 (1.2Tga) inversion 2.9 0.5
Zhang et al. 2020 inversion 3.2 0.5
Varon et al. 2023 inversion 4.3 1.1
McNorton et al. 2022 inversion 2.3 0.5
Shen et al. 2022 (0.6Tga) inversion 29 0.4
Shen et al. 2022 (2.2Tga) inversion 3.7 0.5
Lu et al. 2023 inversion 2.95 045 | 34 04
EPA GHGI from Balcombe et al. 2018 inventory 0.62 0.93 #N/A
Omara et al. 2024 inventory 29 0.65

5.3.2. Region evaluation

The Permian was studied with an outer domain centred around (32°N, 103°E), an extent of R = 8° in or-
der to capture the wider surroundings and get the best out of the pressure-correction (see Figure 2.4.5)
as shown in Figure 5.56. A coarser resolution of » = 0.1° was used instead of the TROPOMI-like
r = 0.05° in order to run the analysis in a timely manner. This was done over a period of five years
starting in 01/01/2018 and ending in 31/12/2024 which covers the studies shown in Table 5.9 with the
notable exception of year 2022 due to a runtime issue in the presampling phase. The rest of the settings
were chosen based on the results of subsection 5.2.6: A monthly-averaging scheme was used in order
to capture an error estimate (as per subsection 4.5.4). The estimation settings used the flux-averaged
divergence (E2) estimator with a combination of gradient directions and a combination of gradient order
in order to maximise the available pixels each month and mitigate the short time-averaging period. The
only correction used was the pressure-based background reduction method based on monthly data
correlations and the GEOS-FP 50m wind field was used as the effective wind field on sensitivity anal-
yses shown in Figure 5.54. Finally the emission maps will be integrated for all pixels within the area
highlighted in Figure 5.57. Estimations for the sub-basins such as Midland are not computed since a
more limited number of studies have been done for these individual areas.
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Figure 5.56: Latitude-Longitude domain of the TROPOMI
Permian region of interest Figure 5.57: Domain boundaries of the Permian basin

The monthly time-series obtained is shown in Figure 5.58 along with a 4-month moving average (dot-
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ted) and yearly estimations from Roberts et al. 2023 using a similar E2, 4th-order gradient divergence
method. The wide variation in estimates, often negative, is a direct result of using a monthly averag-
ing scheme but the averaging of all points within a year shows good agreement with estimates from
literature on the 2019-2021 period.

14
—_— [ J
=12
(] [ ]
o %
E g ee ° .

[ J [ J
5 6 ° ° L] ¢ ® ® -~ ,’
8 o o W ® ° e, ® J %
E 4 ® ¥ ‘\\'\ LY .,‘.\‘ ® ,—' o' ==’
~ \

AP VIR Vg S N YR
c ~/ [ J \\.o’ s
© [ ’ o®
< 0 @ @
9] ° ° ° °
g -2 ° (]

4

2018 2019 2020 2021 2022 2023 2024 2025

® CDIVPRES ====- moving average (4)

Figure 5.58: Time series of emission estimates over the whole Permian basin for the 2018-2024 period using
monthly-averaged fluxes DIV method and pressure-correction

The average and standard deviation of the variability of the monthly estimates are shown per year in
Figure 5.59 along with some estimations from literature and their uncertainty where divergence meth-
ods are shown in [0 markers and inversions in ¢ markers. The yearly average of Permian emission
estimates consistently lies within the uncertainty range of both inversion and divergence estimates from
independent studies giving good confidence that this implementation is applicable for real TROPOMI
CH4 data. The high uncertainty shown in our case is due to the few points considered (12 per year)
and restriction to monthly flux-averaging. A better uncertainty estimation is thus needed for further
discussion (see subsection 4.5.4).
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Figure 5.59: Yearly average of the estimates of Permian emissions using using the pressure-corrected monthly-averaged E2
estimator (CDIVPRES) and estimates from literature

A broader comparison can be done by averaging all estimates, including bottom-up estimations, from
the reference studies shown in Table 5.9 and showing their variability with error bars in Figure 5.60.
The results for 2019 yield an emission estimate of Q,., = 3.39 [Tg/y] with a variability of £2.72 [Tg/y]
compared to the average reference values of Q,.; = 2.88 [Tg/y] which places it between the 3.0 £ 0.7
[Taly] divergence estimate of Veefkind et al. 2023 and the 4.3 &+ 1.1 [Tg/y] inversion estimate of Varon
et al. 2023. Similar results are obtained for 2020 with Q,.,, = 3.04 [Tg/y] compared to references of
Qrer = 2.39 t0 3.7 [Tgly]. Due to the missing data for 2021, the results shows a slight underestimation
with Q4. = 2.29 compared to top-down estimations of Q,..; = 2.67 to 2.90 [Tg/y]. Overall, comparison
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of the yearly averaged emissions over the Permian basin using our configuration and implementation
of the divergence method shows good agreement with literature. The results for the total period of
2018-2024 can thus be discussed with good confidence that the yearly-averaged monthly estimates of
emissions in the region are representative of the real emissions of the Permian basin for those years.
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Figure 5.61: Seasonality of Permian emissions based on the
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Over the 2018-2021 period, a steady decrease of —32.3% is observed. This was also noted by Varon et
al. 2023 which attributed it in part to “the reduction in new wells entering production during the COVID-19
pandemic”. Furthermore, efforts from the states of Texas and New Mexico to reduce methane intensity,
the ratio of gas emitted compared to the gas sent to market, to 2% by 2026 ((NMAC) 2021) seem to
encourage O&G companies to keep their emissions steady while increasing production (Varon et al.
2025). By contrast, the 2021-2024 period shows a steep increase of 154% in total emissions. Although
Varon et al. 2025 showed a slight up tick of 0.5 [Tg/y] from 2021 to 2022, no increase was seen for
2023 and no studies have investigated the Permian region in 2024. This may indicate that the initial
improvements on efficiency of the O&G installations have reached their limits for the operators of the
region while the production and demand for locally-sourced natural gas keeps increasing.

Finally, the weekly inversions estimations by Varon et al. 2023 and Varon et al. 2025 revealed a strong
seasonal variability in the region. It was seen that CH4 emissions are highest in the winter months
and decrease by as much as 35% in the summer. Looking at the estimates aggregated per quarter
instead of per year (Figure 5.61) lets us compare the measure of seasonal variation in emission for
our estimates (CDIVPRES) and Varon et al. 2025, expressed in fraction of the first quarter in order to
exclude year-to-year variations. Interestingly, the trend observed by our estimations is the opposite
from the one seen by Varon et al. 2025. This is likely due to the low number of data points considered
in our case since the estimates are done monthly instead of weekly and the very wide range of month
to month variability seen in Figure 5.58. It is possible however that the trend seen in Figure 5.61 is due
to a systematic seasonal bias of the pressure-corrected divergence method which should be verified
by further studies.



Conclusions and Recommendations

This final chapter will summarise the conclusions of the synthetic analysis in section 6.1 and of the case
study in section 6.2. Possible future improvements to the method will be discussed in section 6.4.

6.1. Conclusion from synthetic observations

The aim of the analysis conducted with the synthetic Gaussian and WRF-Chem observations was to
quantify the relative performance of methodology variations proposed in literature for trace gas emission
estimations using the divergence method. Three key areas of interest were identified and explored in
depth namely the choice of numerical order for the approximation of the gradient approximator, the
choice of order of operations in the gradient computation and averaging steps (estimator choice) and
the choice of background-removal method for methane.

Research sub-question 1 (SQ1): "Which of the numerical gradient approximations order (4 or combi-
nation of 2+4 i.e. 'combo’) yields the most accurate estimates for synthetic, background-free simulated
TROPOMI methane observations?”.

The conclusion of this first research sub-question of this thesis is that either the fourth-order or combi-
nation of orders perform better than the second order estimation. Which one of these two should be
used depends on the use-case and objectives of the study: if one wants to create a general mapping
of an area and capture the spatial distribution of emissions, especially on short time-scales (e.g. day,
week, months) then the combo method is more fitting. Conversely, studies aiming at high-confidence
source estimation over long time periods are better suited to using the fourth-order approximation.

Research sub-question 2 (SQ2): "Which of the estimators (averaged divergence, flux-averaged diver-
gence or averaged directional derivative) yields the most accurate estimates for synthetic, background-
free TROPOMI-like methane observations?”.

In terms of estimator performance, the directional derivative (DD) method does not seem to provide
any advantage over the standard divergence (DIV) approaches. Moreover, the E2 variant generally
outperforms E1 in pixel-wise accuracy, although the difference is less pronounced than in the Gaus-
sian plume tests. Interestingly, while E2 provides the most accurate spatial emission patterns, E1 and
DD can occasionally yields better total emission estimates, which may be influenced by specific noise
conditions or sampling artefacts. The main underlying reason for these differences is the sensitivity of
E1 and DD to missing data, where each missing pixel produces a large missing chunk in the emission
estimation field resulting in underestimations. Additionally, curved or misaligned wind fields and diffu-
sion have been observed to cause aliasing artefacts which need to be averaged out in the divergence
maps.

Research sub-question 3 (SQ3): "Which of the background correction methods (pressure correction
or topography correction) yields the most accurate estimates for synthetic TROPOMI-like methane
observations?”
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The last results from the investigation of individual parameters showed that real, structured, back-
grounds drive the errors of the divergence method on methane observations and that the only globally
applicable correction available at this time is based on monthly surface pressures since the topography
corrections depends on an unknown fitted factor which cannot determined from the observations alone.

Research sub-question 4 (SQ4): "Which combinations of numerical gradients, estimators and back-
ground corrections parametrisations yields the most accurate estimates of time-averaged and spatially
integrated emissions for simulated TROPOMI methane observations?”

The conclusions derived from investigating the parameters individually holds when combining the set-
tings pair-wise. The influence of one parameter over another in the overall performance is largely
obscured, if present, by the fact that the magnitude of the impact of some parameters is much larger
than others. The choice of background correction method is seen to have the largest effect on accu-
racy (£3000%) due to the inapplicability of the topography correction. The choice of estimator remains
important with differences of +5% between the DD and E2 methods while the influence of the gradient
order approximation is minimal (£1%).

6.2. Conclusion from Permian case-study

A case study of the Permian basin was then conducted. First to ascertain whether the conclusions
drawn from section 6.1 are indeed applicable for real TROPOMI CH4 observations and second to
investigate the, less studied, recent trends in emissions of the region.

Research sub-question 5 (SQ5): “Are the yearly emissions, estimated through this implementation
of the divergence method over the Permian basin, consistent with independent studies of the region?”

The yearly averaged emissions over the Permian basin using the combined fourth and second order
gradient, monthly flux-averaged estimator and pressure-corrected column densities divergence method
shows good agreement with literature. The mean of the emission estimations landed within the uncer-
tainty range of other top-down studies for 2019 and 2020 and was always between the lowest and
highest yearly estimates found in literature. This consistency gave good confidence that, while the
monthly variability of the results is high, the divergence method implemented in this thesis is a valid
estimation method for TROPOMI methane emissions.

Research sub-question 6 (SQ6): "How do the yearly methane emission estimates for recent years in
the Permian basin, derived in this study, compare to temporal patterns reported in previous literature?”

Finally the study period was extended from 2018 to 2024 in order to observe the overall trends of the
region. In particular, the seasonal trend seen in our estimations strays far from the one seen by Varon
et al. 2025 which probably indicates a systematic seasonal bias of the pressure-corrected divergence
method. Looking at the yearly trends, a steady decrease of —32.3% was observed from to 2022 which
aligns with other literature estimates. Conversely, analysis of the 2022 to 2024 period which has not
yet been studied through other methods revealed a steep increase of 154% in total emissions.

6.3. Research conclusion
The overall objective and research question this thesis aimed to answer were:

Research objective: “Investigate the impact of methodology and parameter variations in the genera-
tion of an emission map via the Divergence Method based on TROPOMI methane observations.”

Research question (RQ): "Which combinations of divergence method parametrisations yields the most
accurate estimates of emission for TROPOMI methane observations?”

To this end, this thesis made several contributions to the literature. First, it identified the pitfalls of the
topography correction when applied globally and higlighted the need for an efficient and reliable back-
ground correction. Second, it corroborated the findings of Roberts et al. 2023 regarding the order of
operations of the estimator and reaffirmed that flux-averaging is a more accurate and robust method
than either the divergence-average or directional derivative methods. Thirdly it presented a comprehen-
sive and fair comparison of various gradient approximation schemes, estimators and corrections with
the same dataset, sources and conditions such that these could be compared and jointly optimised.
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This study also provided additional estimates of the Permian basin’s emission in the 2019-2023 pe-
riod which, despite being somewhat limited by the inherent uncertainty of the DIV method, supported
evidence from previous analyses and further expanded it to the 2023-2024 years which revealed a
surprisingly significant up-tick in methane emissions of that region. The ability to spot such a trend with
a method that has a small computational cost while agreeing with much more advanced and expensive
inversion methods highlights the value of the divergence method. The lack of user-defined domain-
specific parameters also allow this divergence method to be applied globally and yield an early look at
the emission trends of many regions of interest.

6.4. Recommendations

This section will first discuss methodology variations that were not investigated in this thesis but may
have the potential to yield better results than the ‘optimal’ configuration used here (subsection 6.4.1).
Known limitations of the current implementation will the be addressed in subsection 6.4.2. Finally,
recommendations for future studies will be motivated in subsection 6.4.3.

6.4.1. Divergence method variations

First, central gradient approximations could be investigated. These may help to mitigate the aliasing
artefacts seen in subsection 5.2.4 and reduce the gradient noise by including the central pixel in e.g. a
third or fifth order directional derivative to replace the second and fourth order approximations over the
same area. Indeed, such a central gradient would not cause any more missing data in the emission
map while providing a reduction in the order of the truncation error. Second, the implementation of a
plume mask for the data selection of the pressure correction could be used instead of the 25-percentile
binning. This would more directly exclude the pixels meant to be enhanced resulting in better back-
ground reduction but would only be applicable for very large point sources. Third, a denoising step
such as the one described in Hakkarainen et al. 2022 may reduce the influence of systematic and
random errors in the data. This can be achieved using by spatially averaging the image with a simple
mean filter or a more complex method such as block-matching and filtering (BM3D).

6.4.2. Current limitations

The lack of direct uncertainty estimation is the main limitation of the current implementation of the
divergence method. As seen in section 5.3, the measure of variability is not representative of the
accuracy of the method and requires sub-optimal estimations and computationally heavy time-series.
A major overhaul of the codebase developed would be needed to include error propagation: a way
to propagate the errors throughout every method step and yield a pixel-wise uncertainty associated
with each pixel value. This pixel-wise uncertainty can be aggregated in the integration phase using the
existing pipeline described in Equation 4.13 for WRF residual deviations. Alternatively, an ensemble
approach using the sensitivity analysis data gathered could be used to derive uncertainty margins for
the integrated emission estimate directly based on the ground-truth given by the WRF residuals. This
would require more complete sensitivity runs across multiple geographical locations in order to include
the regional impact of confounding factors such surface albedo and the presence of water bodies into
the uncertainty estimate.

A potential source of inaccuracies in the current method are the geometrical approximations assumed
throughout. Geometrical inaccuracies in the resampling (subsection 4.3.5) and pixel-area (Equation 4.10)
computations could be amended with better, geodesy-based, computations which would improve the
performance, especially in high-latitude regions. Similarly, using an weighted integration scheme along
the domain boundaries instead of fully including or excluding a pixel would reduce the noise in integrated
emissions on coarse observations.

That said, the main limitation of this codebase is the RAM limit of the local machine it is run on and
the large amount of files being created in intermediate steps. Indeed, since the resampling is done in
FORTRAN (f90 version) while the rest of the method is in python3, all the observations presampled
need to be outputted to csv files on disk so they can be read by the f90 scripts. These scripts then
need to output their own csv files that must be read and deleted by the next block of python code.
The resampling process thus creates large amounts (a few gigabytes to terabytes per run) of files that
could be avoided by passing these observations as variables instead. The large amount of memory
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required in this operation often slowed down or crashed the program for large domains and limited the
resolution 0.1° in most cases. Furthermore, splitting the divergence estimation script into two parts:
one that preprocesses the resampled observations, performs background reduction and computes the
fluxes while the second performs flux-averaging and gradient computations would significantly increase
the speed of the E2 estimator which could take advantage of the multi-core processing in place for the
other methods.

6.4.3. Future studies

The main foreseen application of the divergence method within SRON is its use on global observations.
This thesis showed it is applicable to any one region on earth as seen with the Russian WRF-Chem
synthetic observations and Permian TROPOMI observations but further work is needed to prove its
applicability in a wider and more representative range of geographical locations. Furthermore, the
RAM limits mentioned prohibit the current implementation from being run globally everywhere at once,
which would provide an invaluable emission map of yearly worldwide emission estimates. Such a
map could be obtained by splitting the domain into sub-domains of e.g. 5x5° which can be processed
independently and stitched together. Although this subdivision approach could result in artefacts along
the sub-domain boundaries, it would also yield a more accurate pressure-correction and is thus the
recommended path forward.

Finally, further research should provide additional evidence for the recent increase in emissions of the
Permian basin found in this thesis with independent methods in order to confirm or deny the significant
increase and allow mitigation strategies to be put in place. It is thus recommended that further studies
take a closer look at the recent years’ methane emissions of the Permian basin to assess whether the
increase revealed here is confirmed by other methods and, if so, what are the underlying reasons for
the change in emission trends observed.



References

Alvarez, Ramoén A. et al. (July 2018). “Assessment of methane emissions from the U.S. oil and gas
supply chain”. en. In: Science 361.6398, pp. 186—188. ISSN: 0036-8075, 1095-9203. DOI: 10.1126/
science.aar7204. URL: https://wuw.science.org/doi/10.1126/science.aar7204 (visited on
01/13/2025).

Apituley, Arnoud et al. (2022). Sentinel-5 precursor/TROPOMI Level 2 Product User Manual Methane.
en.

Balcombe, Paul et al. (2018). “Methane emissions: choosing the right climate metric and time horizon”.
en. In: Environmental Science: Processes & Impacts 20.10, pp. 1323—1339. ISSN: 2050-7887, 2050-
7895. DOI: 10.1039/C8EM00414E. URL: https://xlink.rsc.org/?D0I=C8EM00414E (visited on
01/13/2025).

Beirle, Steffen et al. (Nov. 2019). “Pinpointing nitrogen oxide emissions from space”. en. In: Science
Advances 5.11, eaax9800. ISSN: 2375-2548. DOI: 10.1126/sciadv.aax9800. URL: https://wuw.
science.org/doi/10.1126/sciadv.aax9800 (visited on 01/13/2025).

Beirle, Steffen et al. (June 2021). “Catalog of NO , emissions from point sources as derived from the
divergence of the NO,, flux for TROPOMI”. en. In: Earth System Science Data 13.6, pp. 2995-3012.
ISSN: 1866-3516. DOI: 10.5194/essd-13-2995-2021. URL: https://essd. copernicus.org/
articles/13/2995/2021/ (visited on 01/13/2025).

Beirle, Steffen et al. (July 2023). “Improved catalog of NO , point source emissions (version 2)”. en. In:
Earth System Science Data 15.7, pp. 3051-3073. ISSN: 1866-3516. DOI: 10.5194/essd-15-3051-
2023. URL: https://essd.copernicus.org/articles/15/3051/2023/ (visited on 01/13/2025).

Broquet, Grégoire et al. (Feb. 2018). “The potential of satellite spectro-imagery for monitoring CO&lt;sub&gt;2&lt;/sub&gt;
emissions from large cities”. en. In: Atmospheric Measurement Techniques 11.2, pp. 681-708. ISSN:
1867-8548. DOI: 10.5194/amt-11-681-2018. URL: https://amt.copernicus.org/articles/11/
681/2018/ (visited on 01/13/2025).

Commission, European and United States of America (2021). Global Methane Pledge. URL: https:
//www.ccacoalition.org/resources/global-methane-pledge.

Crosman, Erik (Jan. 2021). “Meteorological Drivers of Permian Basin Methane Anomalies Derived from
TROPOMI”. en. In: Remote Sensing 13.5. Number: 5 Publisher: Multidisciplinary Digital Publishing
Institute, p. 896. ISSN: 2072-4292. DOI: 10.3390/rs13050896. URL: https://www.mdpi . com/2072-
4292/13/5/896 (visited on 01/14/2025).

Cusworth, Daniel H. et al. (July 2021). “Intermittency of Large Methane Emitters in the Permian Basin”.
en. In: Environmental Science & Technology Letters 8.7, pp. 567-573. ISSN: 2328-8930, 2328-
8930. DOI: 10.1021/acs . estlett.1c00173. URL: https://pubs.acs.org/doi/10.1021/acs.
estlett.1c00173 (visited on 01/13/2025).

De Foy, Benjamin and James J Schauer (Feb. 2022). “An improved understanding of NOx emissions
in South Asian megacities using TROPOMI NO; retrievals”. en. In: Environmental Research Letters
17.2, p. 024006. ISSN: 1748-9326. DOI: 10.1088/1748-9326/ac48b4. URL: https://iopscience.
iop.org/article/10.1088/1748-9326/ac48b4 (visited on 01/13/2025).

Delfi, Shokufeh et al. (Dec. 2019). “Investigation of aerosols pollution across the eastern basin of Urmia
lake using satellite remote sensing data and HYSPLIT model”. en. In: Journal of Environmental
Health Science and Engineering 17.2, pp. 1107-1120. ISSN: 2052-336X. DOI: 10.1007 /540201~
019-00425-3. URL: https://doi.org/10.1007/s40201-019-00425-3 (visited on 01/14/2025).

ECMWEF (2025). ERA-5. URL: https://www.ecmwf.int/en/forecasts/dataset/ecmwf-reanalysis—
vb.

European Commission. Joint Research Centre. (2017). An operational anthropogenic CO2 emissions
monitoring & verification system: baseline requirements, model components and functional archi-
tecture. en. LU: Publications Office. URL: https://data.europa.eu/doi/10.2760/08644 (visited
on 01/13/2025).

59


https://doi.org/10.1126/science.aar7204
https://doi.org/10.1126/science.aar7204
https://www.science.org/doi/10.1126/science.aar7204
https://doi.org/10.1039/C8EM00414E
https://xlink.rsc.org/?DOI=C8EM00414E
https://doi.org/10.1126/sciadv.aax9800
https://www.science.org/doi/10.1126/sciadv.aax9800
https://www.science.org/doi/10.1126/sciadv.aax9800
https://doi.org/10.5194/essd-13-2995-2021
https://essd.copernicus.org/articles/13/2995/2021/
https://essd.copernicus.org/articles/13/2995/2021/
https://doi.org/10.5194/essd-15-3051-2023
https://doi.org/10.5194/essd-15-3051-2023
https://essd.copernicus.org/articles/15/3051/2023/
https://doi.org/10.5194/amt-11-681-2018
https://amt.copernicus.org/articles/11/681/2018/
https://amt.copernicus.org/articles/11/681/2018/
https://www.ccacoalition.org/resources/global-methane-pledge
https://www.ccacoalition.org/resources/global-methane-pledge
https://doi.org/10.3390/rs13050896
https://www.mdpi.com/2072-4292/13/5/896
https://www.mdpi.com/2072-4292/13/5/896
https://doi.org/10.1021/acs.estlett.1c00173
https://pubs.acs.org/doi/10.1021/acs.estlett.1c00173
https://pubs.acs.org/doi/10.1021/acs.estlett.1c00173
https://doi.org/10.1088/1748-9326/ac48b4
https://iopscience.iop.org/article/10.1088/1748-9326/ac48b4
https://iopscience.iop.org/article/10.1088/1748-9326/ac48b4
https://doi.org/10.1007/s40201-019-00425-3
https://doi.org/10.1007/s40201-019-00425-3
https://doi.org/10.1007/s40201-019-00425-3
https://www.ecmwf.int/en/forecasts/dataset/ecmwf-reanalysis-v5
https://www.ecmwf.int/en/forecasts/dataset/ecmwf-reanalysis-v5
https://data.europa.eu/doi/10.2760/08644

References 60

Freitas, Arthur Dias and Adalgiza Fornaro (Jan. 2022). “Atmospheric Formaldehyde Monitored by
TROPOMI Satellite Instrument throughout 2020 over Sao Paulo State, Brazil”. en. In: Remote Sens-
ing 14.13. Number: 13 Publisher: Multidisciplinary Digital Publishing Institute, p. 3032. ISSN: 2072-
4292. DOI: 10.3390/rs14133032. URL: https://www.mdpi.com/2072-4292/14/13/3032 (visited
on 01/14/2025).

Guanter, Luis et al. (Aug. 2024). “Multisatellite Data Depicts a Record-Breaking Methane Leak from a
Well Blowout”. In: Environmental Science & Technology Letters 11.8. Publisher: American Chemical
Society, pp. 825-830. DOI: 10.1021/acs.estlett.4c00399. URL: https://doi.org/10.1021/
acs.estlett.4c00399 (visited on 08/04/2025).

Hakkarainen, Janne et al. (July 2022). “Analyzing Local Carbon Dioxide and Nitrogen Oxide Emissions
From Space Using the Divergence Method: An Application to the Synthetic SMARTCARB Dataset”.
en. In: Frontiers in Remote Sensing 3, p. 878731. ISSN: 2673-6187. DOI: 10.3389/frsen.2022.
878731. URL: https://wuw.frontiersin.org/articles/10.3389/frsen.2022.878731/full
(visited on 01/13/2025).

Houweling, S. et al. (May 2015). “An intercomparison of inverse models for estimating sources and
sinks of CO, using GOSAT measurements”. en. In: Journal of Geophysical Research: Atmospheres
120.10, pp. 5253-5266. ISSN: 2169-897X, 2169-8996. DOI: 10.1002/2014JD022962. URL: https:
//agupubs.onlinelibrary.wiley.com/doi/10.1002/2014JD022962 (visited on 01/13/2025).

Intergovernmental Panel On Climate Change (lpcc) (July 2023). Climate Change 2021 — The Physical
Science Basis: Working Group I Contribution to the Sixth Assessment Report of the Intergovernmen-
tal Panel on Climate Change. en. 1st ed. Cambridge University Press. ISBN: 978-1-009-15789-6.
DOI: 10.1017/9781009157896. URL: https://www.cambridge.org/core/product/identifier/
9781009157896/ type/book (visited on 01/13/2025).

Jacob, Daniel J. et al. (Nov. 2016). “Satellite observations of atmospheric methane and their value
for quantifying methane emissions”. en. In: Atmospheric Chemistry and Physics 16.22, pp. 14371—
14396. ISSN: 1680-7324. DOI: 10.5194/acp-16-14371-2016. URL: https://acp. copernicus.
org/articles/16/14371/2016/ (visited on 01/13/2025).

Jacob, Daniel J. et al. (July 2022). “Quantifying methane emissions from the global scale down to
point sources using satellite observations of atmospheric methane”. en. In: Atmospheric Chemistry
and Physics 22.14, pp. 9617-9646. ISSN: 1680-7324. DOI: 10.5194/acp-22-9617-2022. URL:
https://acp.copernicus.org/articles/22/9617/2022/ (visited on 01/13/2025).

Jongaramrungruang, Siraput et al. (Dec. 2019). “Towards accurate methane point-source quantification
from high-resolution 2-D plume imagery”. English. In: Atmospheric Measurement Techniques 12.12.
Publisher: Copernicus GmbH, pp. 6667-6681. ISSN: 1867-1381. DOI: 10.5194/amt - 12- 6667 -
2019. URL: https://amt.copernicus.org/articles/12/6667/2019/ (visited on 01/14/2025).

Jongaramrungruang, Siraput et al. (2021). “MethaNet — An Al-driven approach to quantifying methane
point-source emission from high-resolution 2-D plume imagery”. In: Remote Sensing of Environment.
DOI: https://doi.org/10.1016/j.rse.2021.112809.

Koene, E. F. M., D. Brunner, and G. Kuhimann (June 2024). “On the Theory of the Divergence Method
for Quantifying Source Emissions From Satellite Observations”. en. In: Journal of Geophysical
Research: Atmospheres 129.12, e2023JD039904. ISSN: 2169-897X, 2169-8996. DOI: 10. 1029/
2023JD039904. URL: https://agupubs.onlinelibrary.wiley.com/doi/10.1029/2023JD039904
(visited on 01/13/2025).

Koene, Erik and Dominik Brunner (n.d.). “Assessment of plume model performance”. en. In: ().

Koene, Erik, Dominik Brunner, and Gerrit Kuhlmann (2021). “Documentation of plume detection and
quantification methods”. en. In.

Lauvaux, T. et al. (Feb. 2022). “Global assessment of oil and gas methane ultra-emitters”. In: Science
375.6580. Publisher: American Association for the Advancement of Science, pp. 557-561. DOI:
10.1126/science.abj4351. URL: https://www.science.org/doi/10.1126/science.abj4351
(visited on 01/14/2025).

Liu, Mengyao et al. (Aug. 2020). “A new TROPOMI product for tropospheric NO&lt;sub&gt;2&lt;/sub&gt;
columns over East Asia with explicit aerosol corrections”. en. In: Atmospheric Measurement Tech-
niques 13.8, pp. 4247-4259. ISSN: 1867-8548. DOI: 10.5194/amt-13-4247-2020. URL: https:
//amt . copernicus.org/articles/13/4247/2020/ (visited on 01/13/2025).

Liu, Mengyao et al. (Sept. 2021). “A New Divergence Method to Quantify Methane Emissions Using Ob-
servations of Sentinel 15P TROPOMI”. en. In: Geophysical Research Letters 48.18,e2021GL094151.


https://doi.org/10.3390/rs14133032
https://www.mdpi.com/2072-4292/14/13/3032
https://doi.org/10.1021/acs.estlett.4c00399
https://doi.org/10.1021/acs.estlett.4c00399
https://doi.org/10.1021/acs.estlett.4c00399
https://doi.org/10.3389/frsen.2022.878731
https://doi.org/10.3389/frsen.2022.878731
https://www.frontiersin.org/articles/10.3389/frsen.2022.878731/full
https://doi.org/10.1002/2014JD022962
https://agupubs.onlinelibrary.wiley.com/doi/10.1002/2014JD022962
https://agupubs.onlinelibrary.wiley.com/doi/10.1002/2014JD022962
https://doi.org/10.1017/9781009157896
https://www.cambridge.org/core/product/identifier/9781009157896/type/book
https://www.cambridge.org/core/product/identifier/9781009157896/type/book
https://doi.org/10.5194/acp-16-14371-2016
https://acp.copernicus.org/articles/16/14371/2016/
https://acp.copernicus.org/articles/16/14371/2016/
https://doi.org/10.5194/acp-22-9617-2022
https://acp.copernicus.org/articles/22/9617/2022/
https://doi.org/10.5194/amt-12-6667-2019
https://doi.org/10.5194/amt-12-6667-2019
https://amt.copernicus.org/articles/12/6667/2019/
https://doi.org/https://doi.org/10.1016/j.rse.2021.112809
https://doi.org/10.1029/2023JD039904
https://doi.org/10.1029/2023JD039904
https://agupubs.onlinelibrary.wiley.com/doi/10.1029/2023JD039904
https://doi.org/10.1126/science.abj4351
https://www.science.org/doi/10.1126/science.abj4351
https://doi.org/10.5194/amt-13-4247-2020
https://amt.copernicus.org/articles/13/4247/2020/
https://amt.copernicus.org/articles/13/4247/2020/

References 61

ISSN: 0094-8276, 1944-8007. DOI: 10.1029/2021GL094151. URL: https://agupubs.onlinelibr
ary.wiley.com/doi/10.1029/2021GL094151 (visited on 01/13/2025).

Lorente, Alba et al. (Jan. 2021). “Methane retrieved from TROPOMI: improvement of the data product
and validation of the first 2 years of measurements”. English. In: Atmospheric Measurement Tech-
niques 14.1. Publisher: Copernicus GmbH, pp. 665-684. ISSN: 1867-1381. DOI: 10.5194/amt-14-
665-2021. URL: https://amt.copernicus.org/articles/14/665/2021/ (visited on 08/03/2025).

Lu, Xiao et al. (Apr. 2023). “Observation-derived 2010-2019 trends in methane emissions and intensities
from US oil and gas fields tied to activity metrics”. en. In: Proceedings of the National Academy of
Sciences 120.17, e2217900120. ISSN: 0027-8424, 1091-6490. DOI: 10.1073/pnas . 2217900120.
URL: https://pnas.org/doi/10.1073/pnas.2217900120 (visited on 01/13/2025).

Maasakkers, Joannes D. et al. (Mar. 2021). “2010-2015 North American methane emissions, sec-
toral contributions, and trends: a high-resolution inversion of GOSAT observations of atmospheric
methane”. en. In: Atmospheric Chemistry and Physics 21.6, pp. 4339—4356. ISSN: 1680-7324. DOI:
10.5194/acp-21-4339-2021. URL: https://acp. copernicus.org/articles/21/4339/2021/
(visited on 01/13/2025).

Maasakkers, Joannes D. et al. (Mar. 2022). “Reconstructing and quantifying methane emissions from
the full duration of a 38-day natural gas well blowout using space-based observations”. In: Remote
Sensing of Environment 270, p. 112755. ISSN: 0034-4257. DOI: 10.1016/j.rse.2021.112755.
URL: https://www.sciencedirect.com/science/article/pii/S0034425721004752 (visited on
05/09/2025).

McNorton, Joe et al. (May 2022). “Quantification of methane emissions from hotspots and during
COVID-19 using a global atmospheric inversion”. en. In: Atmospheric Chemistry and Physics 22.9,
pp. 5961-5981. ISSN: 1680-7324. DOI: 10 . 5194 / acp-22- 5961 -2022. URL: https: //acp .
copernicus.org/articles/22/5961/2022/ (visited on 01/13/2025).

modelling, global and assimilation office (GMAO) (2025). GEOS-FP. URL: https://gmao.gsfc.nasa.
gov/GMAO_products/NRT_products. php.

NASA (2025). GEOS-Chem website. en. URL: https://geoschem.github.io/index.html (visited on
08/03/2025).

(NMAC), New Mexico Administrative Code (2021). N.M. Admin. Code § 19.15.27.9 - STATEWIDE
NATURAL GAS CAPTURE REQUIREMENTS. URL: https://www.srca.nm.gov/parts/titlel9/
19.015.0027 .html.

NOAA (2025a). ETOPO global relief model. URL: https://www.ncei.noaa.gov/products/etopo-
global-relief-model.

— (2025b). Hybrid Single-Particle Lagrangian Integrated Trajectory model by the Air Resource Labo-
ratory. URL: https://wuw.ready.noaa.gov/HYSPLIT. php.

Omara, Mark et al. (Sept. 2024). “Constructing a measurement-based spatially explicit inventory of US
oil and gas methane emissions (2021)”. en. In: Earth System Science Data 16.9, pp. 3973-3991.
ISSN: 1866-3516. DOI: 10.5194/essd-16-3973-2024. URL: https://essd. copernicus . org/
articles/16/3973/2024/ (visited on 01/13/2025).

Peng, Shushi et al. (Dec. 2022). “Wetland emission and atmospheric sink changes explain methane
growth in 2020”. en. In: Nature 612.7940, pp. 477—482. ISSN: 0028-0836, 1476-4687. DOI: 10 .
1038/s41586-022-05447-w. URL: https://www.nature.com/articles/s41586-022-05447-w
(visited on 01/13/2025).

Plant, Genevieve et al. (2022). “Inefficient and unlit natural gas flares both emit large quantities of
methane”. In: Science 377.6614, pp. 1566—1571. DOI: 10.1126/science.abq0385. eprint: https:
//wwu.science.org/doi/pdf/10.1126/science.abq0385. URL: https://www.science.org/doi/
abs/10.1126/science.abq0385.

Rey-Pommier, Anthony et al. (Jan. 2025). “Mapping $$\text {NO} {\text {x}}$$ emissions in Cyprus
using TROPOMI observations: evaluation of the flux-divergence scheme using multiple parameter
sets”. en. In: Environmental Science and Pollution Research. ISSN: 1614-7499. DOI: 10 . 1007/
s11356-024-35851-w. URL: https://link. springer.com/10.1007/s11356-024-35851~-w
(visited on 01/13/2025).

Roberts, Clayton et al. (Nov. 2023). “Avoiding methane emission rate underestimates when using the
divergence method”. en. In: Environmental Research Letters 18.11, p. 114033. ISSN: 1748-9326.
DOI: 10.1088/1748-9326/ad0252. URL: https://iopscience.iop.org/article/10.1088/1748-
9326/2d0252 (visited on 01/13/2025).


https://doi.org/10.1029/2021GL094151
https://agupubs.onlinelibrary.wiley.com/doi/10.1029/2021GL094151
https://agupubs.onlinelibrary.wiley.com/doi/10.1029/2021GL094151
https://doi.org/10.5194/amt-14-665-2021
https://doi.org/10.5194/amt-14-665-2021
https://amt.copernicus.org/articles/14/665/2021/
https://doi.org/10.1073/pnas.2217900120
https://pnas.org/doi/10.1073/pnas.2217900120
https://doi.org/10.5194/acp-21-4339-2021
https://acp.copernicus.org/articles/21/4339/2021/
https://doi.org/10.1016/j.rse.2021.112755
https://www.sciencedirect.com/science/article/pii/S0034425721004752
https://doi.org/10.5194/acp-22-5961-2022
https://acp.copernicus.org/articles/22/5961/2022/
https://acp.copernicus.org/articles/22/5961/2022/
https://gmao.gsfc.nasa.gov/GMAO_products/NRT_products.php
https://gmao.gsfc.nasa.gov/GMAO_products/NRT_products.php
https://geoschem.github.io/index.html
https://www.srca.nm.gov/parts/title19/19.015.0027.html
https://www.srca.nm.gov/parts/title19/19.015.0027.html
https://www.ncei.noaa.gov/products/etopo-global-relief-model
https://www.ncei.noaa.gov/products/etopo-global-relief-model
https://www.ready.noaa.gov/HYSPLIT.php
https://doi.org/10.5194/essd-16-3973-2024
https://essd.copernicus.org/articles/16/3973/2024/
https://essd.copernicus.org/articles/16/3973/2024/
https://doi.org/10.1038/s41586-022-05447-w
https://doi.org/10.1038/s41586-022-05447-w
https://www.nature.com/articles/s41586-022-05447-w
https://doi.org/10.1126/science.abq0385
https://www.science.org/doi/pdf/10.1126/science.abq0385
https://www.science.org/doi/pdf/10.1126/science.abq0385
https://www.science.org/doi/abs/10.1126/science.abq0385
https://www.science.org/doi/abs/10.1126/science.abq0385
https://doi.org/10.1007/s11356-024-35851-w
https://doi.org/10.1007/s11356-024-35851-w
https://link.springer.com/10.1007/s11356-024-35851-w
https://doi.org/10.1088/1748-9326/ad0252
https://iopscience.iop.org/article/10.1088/1748-9326/ad0252
https://iopscience.iop.org/article/10.1088/1748-9326/ad0252

References 62

Rodgers, Clive D. (July 2000). “Inverse Methods For Atmospheric Sounding: Theory And Practice”. en.
In: Google-Books-ID: Xv7sCgAAQBAJ.

Saunois, Marielle et al. (July 2020). “The Global Methane Budget 2000-2017". en. In: Earth System
Science Data 12.3, pp. 1561-1623. ISSN: 1866-3516. DOI: 10.5194/essd-12-1561-2020. URL:
https://essd.copernicus.org/articles/12/1561/2020/ (visited on 01/13/2025).

Saunois, Marielle et al. (June 2024). Global Methane Budget 2000-2020. en. DOI: 10.5194/essd-2024-
115. URL: https://essd.copernicus.org/preprints/essd-2024-115/ (visited on 01/13/2025).

Schneising, Oliver et al. (Aug. 2020). “Remote sensing of methane leakage from natural gas and
petroleum systems revisited”. en. In: Atmospheric Chemistry and Physics 20.15, pp. 9169-9182.
ISSN: 1680-7324. DOI: 10.5194/acp-20-9169-2020. URL: https: //acp . copernicus . org/
articles/20/9169/2020/ (visited on 01/13/2025).

Schuit, Berend J. et al. (2023). “Automated detection and monitoring of methane super-emitters using
satellite data”. In: Atmospheric Chemistry and Physics.

Shen, Lu et al. (Sept. 2022). “Satellite quantification of oil and natural gas methane emissions in the
US and Canada including contributions from individual basins”. en. In: Atmospheric Chemistry and
Physics 22.17, pp. 11203-11215. ISSN: 1680-7324. DOI: 10.5194/acp-22-11203-2022. URL:
https://acp.copernicus.org/articles/22/11203/2022/ (visited on 01/13/2025).

Shindell, Drew et al. (Jan. 2012). “Simultaneously Mitigating Near-Term Climate Change and Improving
Human Health and Food Security”. en. In: Science 335.6065, pp. 183—-189. ISSN: 0036-8075, 1095-
9203. DOI: 10.1126/science.1210026. URL: https://www.science.org/doi/10.1126/science.
1210026 (visited on 01/13/2025).

SRON (2025). SRON earth group (methane). URL: https://www.sron.nl/en/pillars/science/
earth/methane/.

Stockie, John M. (Jan. 2011). “The Mathematics of Atmospheric Dispersion Modeling”. In: SIAM Review
53.2. Publisher: Society for Industrial and Applied Mathematics, pp. 349-372. ISSN: 0036-1445.
DOI: 10.1137/10080991X. URL: https://epubs.siam.org/doi/10.1137/10080991X (visited on
07/31/2025).

Sun, Kang (Dec. 2022). “Derivation of Emissions From Satellite 1Observed Column Amounts and lts
Application to TROPOMI NO, and CO Observations”. en. In: Geophysical Research Letters 49.23,
€2022GL101102. ISSN: 0094-8276, 1944-8007. DOI: 10. 1029 /2022GL101102. URL: https://
agupubs.onlinelibrary.wiley.com/doi/10.1029/2022GL101102 (visited on 01/13/2025).

Tratt, David M. et al. (2011). “Remotely sensed ammonia emission from fumarolic vents associated with
a hydrothermally active fault in the Salton Sea Geothermal Field, California”. en. In: Journal of Geo-
physical Research: Atmospheres 116.D21. _eprint: https://onlinelibrary.wiley.com/doi/pdf/10.1029/2011JD016282.
ISSN: 2156-2202. DOI: 10.1029/2011JD016282. URL: https://onlinelibrary.wiley.com/doi/
abs/10.1029/2011JD016282 (visited on 01/14/2025).

Tratt, David M. et al. (Nov. 2014). “Airborne visualization and quantification of discrete methane sources
in the environment”. In: Remote Sensing of Environment 154, pp. 74—88. ISSN: 0034-4257. DOI:
10.1016/j.rse.2014.08.011. URL: https://www.sciencedirect.com/science/article/pii/
50034425714003083 (visited on 01/14/2025).

Varon, Daniel J. et al. (Oct. 2018). “Quantifying methane point sources from fine-scale satellite ob-
servations of atmospheric methane plumes”. en. In: Atmospheric Measurement Techniques 11.10,
pp. 5673-5686. ISSN: 1867-8548. DOI: 10 . 5194 / amt - 11 - 5673 - 2018. URL: https : / / amt .
copernicus.org/articles/11/5673/2018/ (visited on 01/13/2025).

Varon, Daniel J. et al. (July 2023). “Continuous weekly monitoring of methane emissions from the
Permian Basin by inversion of TROPOMI satellite observations”. en. In: Atmospheric Chemistry
and Physics 23.13, pp. 7503-7520. ISSN: 1680-7324. DOI: 10.5194/acp-23-7503-2023. URL:
https://acp.copernicus.org/articles/23/7503/2023/ (visited on 01/13/2025).

Varon, Daniel J. et al. (2025). “Seasonality and declining intensity of methane emissions from the Per-
mian and nearby US oil and gas basins”. In: EarthArXiv. DOI: 10.31223/X56B2G.

Veefkind, J. P. et al. (Feb. 2023). “Widespread Frequent Methane Emissions From the Oil and Gas In-
dustry in the Permian Basin”. en. In: Journal of Geophysical Research: Atmospheres 128.3, €2022JD037479.
ISSN: 2169-897X, 2169-8996. DOI: 10.1029/2022JD037479. URL: https://agupubs.onlinelibr
ary.wiley.com/doi/10.1029/2022JD037479 (visited on 01/13/2025).

Veefkind, J.P. et al. (May 2012). “TROPOMI on the ESA Sentinel-5 Precursor: A GMES mission for
global observations of the atmospheric composition for climate, air quality and ozone layer ap-


https://doi.org/10.5194/essd-12-1561-2020
https://essd.copernicus.org/articles/12/1561/2020/
https://doi.org/10.5194/essd-2024-115
https://doi.org/10.5194/essd-2024-115
https://essd.copernicus.org/preprints/essd-2024-115/
https://doi.org/10.5194/acp-20-9169-2020
https://acp.copernicus.org/articles/20/9169/2020/
https://acp.copernicus.org/articles/20/9169/2020/
https://doi.org/10.5194/acp-22-11203-2022
https://acp.copernicus.org/articles/22/11203/2022/
https://doi.org/10.1126/science.1210026
https://www.science.org/doi/10.1126/science.1210026
https://www.science.org/doi/10.1126/science.1210026
https://www.sron.nl/en/pillars/science/earth/methane/
https://www.sron.nl/en/pillars/science/earth/methane/
https://doi.org/10.1137/10080991X
https://epubs.siam.org/doi/10.1137/10080991X
https://doi.org/10.1029/2022GL101102
https://agupubs.onlinelibrary.wiley.com/doi/10.1029/2022GL101102
https://agupubs.onlinelibrary.wiley.com/doi/10.1029/2022GL101102
https://doi.org/10.1029/2011JD016282
https://onlinelibrary.wiley.com/doi/abs/10.1029/2011JD016282
https://onlinelibrary.wiley.com/doi/abs/10.1029/2011JD016282
https://doi.org/10.1016/j.rse.2014.08.011
https://www.sciencedirect.com/science/article/pii/S0034425714003083
https://www.sciencedirect.com/science/article/pii/S0034425714003083
https://doi.org/10.5194/amt-11-5673-2018
https://amt.copernicus.org/articles/11/5673/2018/
https://amt.copernicus.org/articles/11/5673/2018/
https://doi.org/10.5194/acp-23-7503-2023
https://acp.copernicus.org/articles/23/7503/2023/
https://doi.org/10.31223/X56B2G
https://doi.org/10.1029/2022JD037479
https://agupubs.onlinelibrary.wiley.com/doi/10.1029/2022JD037479
https://agupubs.onlinelibrary.wiley.com/doi/10.1029/2022JD037479

References 63

plications”. en. In: Remote Sensing of Environment 120, pp. 70-83. ISSN: 00344257. DOI: 10.
1016/ j . rse . 2011 .09 . 027. URL: https : // linkinghub . elsevier . com / retrieve / pii /
50034425712000661 (visited on 01/13/2025).

White, W.H. et al. (1976). “Formation and Transport of Secondary Air Pollutants: Ozone and Aerosols
in the St. Louis Urban Plume | Science”. In: URL: https://www.science.org/doi/abs/10.1126/
science.959846 (visited on 01/14/2025).

Xu, Tianyi et al. (Feb. 2024). “Estimating Hourly Nitrogen Oxide Emissions over East Asia from Geosta-
tionary Satellite Measurements”. en. In: Environmental Science & Technology Letters 11.2, pp. 122—
129. ISSN: 2328-8930, 2328-8930. DOI: 10.1021/acs . estlett.3c00467. URL: https://pubs.
acs.org/doi/10.1021/acs.estlett.3c00467 (visited on 01/13/2025).

Ye, Xinxin et al. (Apr. 2020). “Constraining Fossil Fuel CO, Emissions From Urban Area Using OCO[12
Observations of Total Column CO,”. en. In: Journal of Geophysical Research: Atmospheres 125.8,
€2019JD030528. ISSN: 2169-897X, 2169-8996. DOI: 10. 1029 /2019JD030528. URL: https://
agupubs.onlinelibrary.wiley.com/doi/10.1029/2019JD030528 (visited on 01/13/2025).

Zhang, Yuzhong et al. (Apr. 2020). “Quantifying methane emissions from the largest oil-producing basin
in the United States from space”. en. In: Science Advances 6.17, eaaz5120. ISSN: 2375-2548. DOI:
10.1126/sciadv. aaz5120. URL: https://www.science.org/doi/10.1126/sciadv.aaz5120
(visited on 01/13/2025).


https://doi.org/10.1016/j.rse.2011.09.027
https://doi.org/10.1016/j.rse.2011.09.027
https://linkinghub.elsevier.com/retrieve/pii/S0034425712000661
https://linkinghub.elsevier.com/retrieve/pii/S0034425712000661
https://www.science.org/doi/abs/10.1126/science.959846
https://www.science.org/doi/abs/10.1126/science.959846
https://doi.org/10.1021/acs.estlett.3c00467
https://pubs.acs.org/doi/10.1021/acs.estlett.3c00467
https://pubs.acs.org/doi/10.1021/acs.estlett.3c00467
https://doi.org/10.1029/2019JD030528
https://agupubs.onlinelibrary.wiley.com/doi/10.1029/2019JD030528
https://agupubs.onlinelibrary.wiley.com/doi/10.1029/2019JD030528
https://doi.org/10.1126/sciadv.aaz5120
https://www.science.org/doi/10.1126/sciadv.aaz5120

Literature Summary

INPUT INTEGRATION y
DOMAIN
shape
center latitude & longitude co:sseo;gt_llo;eg) sct;:,lc;e
s t:,);t;n; ’[’Zegi te tropomi-like (0.05 deg) region
fine (0.01 deg) —
extent
radius [km]
TROPOMI SIMULATED METHANE OBSERVATION WIND FIELD region
METHANE
OBSERVATION WRF averaging kernel data source
none . uniform
tropomi-like kernel vv\c:‘: Sa‘:‘;?g ERA-5
pressure-weighted kernel source rate GEOS-FP
. turbulent diffusion constant
location (RUS, KZK, IND) .
tracers (1=bg, 2-10 diffuse, b?ﬂg'{:u r;c:\t(;lat:rr::c::te ) effective
11-20 point source) 9 P wind height
emission scaling factor 10m
50m
100m
methane mixing ration
methane twoband total column strength
quality-assurance (QA) value surface
aerosol optical thickness (SWIR & NIR) wind height
surface albedo (SWIR & NIR) 10m
pixels per observation 50m
wind speed 100m
computation interpretation
DIVERGENCE
PRE-PROCESSING POST-PROCESSING
flux-averaging period background correction emission-averaging period emission correction(s)
none (single observation) none none (single observation) none
daily flat (average, median, ...) daily lifetime correction
monthly pressure correction monthly diffusion correction
yearly topography correction yearly
ESTIMATING
estimator gradient order gradient direction
divergence (averaged) "E1" 2 orthogonal
(flux-averaged) divergence "E2" 4 diagonal
directional derivative (averaged) "DD" combination 2+4 combination ortho+diag

Figure A.1: diagram of method flow and summary of parameter choices
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Table A.1

Beirle 2019 Beirle 2021 Beirle 2023 Liu 2020 Liu 2021 de Foy 2022 Hakkarainen 2022 Sun 2022 Xu 2023 Roberts 2023 Veefkind 2023 Koene 2024
general
gas Nox Nox Nox Nox CH4 Nox co2 co NOX CH4 CH4 CH4
instrument [ TROPOMI TROPOMI TROPOMI TROPOMI TROPOMI TROPOMI synthetic (comso-G TROPOMI GEMS synthetic (gaussian TROPOMI TROPOMI
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albedo correction NA yes
averaging kernel NA no
elevation corrected NA yes
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criteria M>=1
fluxes w >2m/s >2m/s 1<w<10m/s 1<w<10m/s >2m/s >X? >X?
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B.1. Variable-File flow diagram
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Figure B.1: Function call and file organisation
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