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Haptic Shared Control in Deep Sea Mining – Enhacing 

Teleoperation of Subsea Crawler 
Kang Wang*, Roel J.Kuiper*†, Tricia Gibo*, David A.Abbink* 

Abstract— Deep sea mining is currently being investigated as a possibility to harvest valuable materials from mineral-rich 

areas located in water depths up to 2000 meters. One promising mining method is to employ a large crawler on the seabed, 

remotely controlled by an operator on the supporting vessel. Controlling such a vehicle is expected to be difficult due to 

unpredictable seabed conditions and limited situation awareness of the operator. In addition, the optimal human-machine 

interface for controlling the crawler is yet to be determined.  A common approach in marine operation is to automate the task as 

much as possible, leaving the operator in a supervisory role. An alternative approach is haptic shared control, which has shown 

to be beneficial in vehicle control tasks (automotive, UAVs), yielding improved performance but mitigating traditional human-

automation interaction issues such as skill degradation, reduced situation awareness and overreliance. This study aims to 

compare supervisory control and haptic shared control to manual control of a teleoperated subsea crawler. A simulator was 

constructed, including a bi-manual control interface capable of rendering haptic feedback, two virtual displays showing primary 

and secondary task-related information, a mathematical model simulating the dynamics of the slow vehicle, and unpredictable 

soil properties of the seabed. In a human factor experiment, subjects (n=12) controlled the simulated crawler to complete 

normal steering, repeated obstacle avoidance, and an unexpected slip event at the end; all with manual control, haptic shared 

control and supervisory control. During normal steering between obstacles, both haptic shared control and supervisory control 

improved subjects’ performance and supervisory control allowed a significant decrease in control effort. However, during slip 

recovery and obstacle avoidance, supervisory control appreciably reduced subjects’ situation awareness. Therefore haptic 

shared control is a promising approach to assist the operator in underwater teleoperation with improved task performance but 

not the side-effects from the automation.  

Index Terms— Haptic shared control; Deep sea mining; Teleoperation; Supervisory control.  

——————————      —————————— 

1 INTRODUCTION

eseach on deep sea mining has been stimulated in 
recent years due to depletion of on-land mineral 
resources and detected promising amount of min-

eral deposits in deep sea. However it is an extremely 
harsh working environment because of the overwhelming 
hydrostatic pressure, deprivation of natural lighting and 
rough seabed bathymetry caused by tectonic activities. 
Those factors are causing problems on the excavation and 
mineral rising process, which impede the realization of 
actual deep see mining. Large water depth also induced 
further question on operator’s system awareness and 
control transmission due to the long distance between the 
control station and the slave system. Thus a better ap-
proach to support future operator’s control performance 
should be investigated.   

The realization of deep sea mining has been studied for 
years, though all remain in the prototyping and experi-
mental period. A popularly accepted architecture of deep 
sea mining includes a supporting vessel,  a slurry rising 
system, and mineral recovery machines [1]–[3]. A tracked 
vehicle equipped with cutting tools, also called a subsea 
crawler, is believed suitable to serve as a mineral recovery 
machine. A subsea crawler is supposed to execute rock-
cutting under tremendous hydrostatic pressure and move 
smoothly on seabed terrain, but in this study we only 
focused on the mobility of the crawler. Because the sea-
bed environment is ever-changing due to unpredictable 
soil properties and turbidity, preprogrammed autono-

mous controllers may not be able to solve newly emerged 
problem. Therefore such a costly system should be con-
trolled by an experienced operator. However the harsh 
environment of the deep sea mostly precludes human’s 
direct presence in-situ manipulation, teleoperation is a 
much cheaper and safer option to realize human’s ma-
nipulation of the mineral recovery machine than costly 
manned submersibles.  

A subsea crawler has special dynamics which are diffi-
cult to control due to the unique soil-track interaction. 
The varying soil properties and unstructured terrain 
make the steering task challenging. Since no real system 
has ever been built yet, a simulation is constructed that 
vividly represents a scenario of deep sea mining. Popular 
prototypes of a subsea crawler are mainly inspired from 
the designs of off-road tracked vehicles and trenchers 
used in offshore pipeline burial [4], [5]. The study of ter-
ramechanics gives insight to the soil-track interaction of 
these tracked vehicles [6], [7]. Several analytical models 
were proposed to predict the off-road vehicle’s responses 
to variables like sinkage depth, traction effort, and bull-
dozing resistance, which had a satisfactory match with 
results from in-situ measurements [8], [9]. Based on ter-
ramechanics theory, simulations of underwater remotely 
operated vehicle (ROV) based on the mathematic model 
have also been proposed [4], [10]–[12]. Both simulations 
and lab experiments have found that slip is much easier 
to occur in a seabed environment than a terrestrial vehicle, 
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since several mechanical properties of pelagic soil are 
weaker than that of continental soil. More importantly, 
the heterogeneity of seabed soil could result into sudden 
loss of traction force. Without accurate soil properties, 
preprogrammed autonomous controllers could hardly 
control the vehicle during a severe slip event. Neverthe-
less, research of deep sea mining has quite a number of 
outcomes about the dynamics of underwater vehicles, yet 
the human’s control performance of such a vehicle hasn’t 
been investigated. 

A subsea crawler should be controlled so as to track a 
prescribed optimal path. An optimal path is determined 
based on early underwater investigations (e.g. pre-scan 
by multibeam and side scan, drilling samples) for the 
sake of both maximum production and vehicle safety. The 
most often used steering mechanism in controlling off-
road vehicles is skid steering, in which steering is con-
trolled by the relative speed difference between the left 
and right tracks of a vehicle [13].  Using skid steering is 
also believed to be the approach for controlling a subsea 
crawler to trace the optimal path, such that the speeds of 
the left and right track become two separate control in-
puts. Hong et al proposed a control algorithm that simul-
taneously determines the vehicle’s desired heading angle 
by calculating the relative position between vehicle and 
closest point on the optimal path [14]. The desired head-
ing angle can be adjusted by these two speed inputs ac-
cording to pre-determined soil-track interaction. Alterna-
tively, a more intelligent vehicle can be achieved by a 
successive learning algorithm to overcome the uncertain-
ties in soil friction and hydrodynamic resistance, while 
keep the human monitoring the whole learning 
process[15]. However this method needs further valida-
tion, and there is the added possibility that the vehicle 
can deviate from the safe path during the learning pro-
cess. Nevertheless, an optimal path tracking is not 
enough for a realistic simulation. Because the seabed is 
ever-changing, at the time of real excavation, the terrain 
could be different from previous terrain investigation. 
Subsea crawler may then run into other unexpected is-
sues, such as newly emerged obstacles, and severe slip.  
These factors presented in the literatures should be better 
included into the simulation to test the robustness of the 
control maneuver.  

 
Human’s Control Approaches 

As the subsea crawler needs to be teleoperated, author-
ity of the operator’s involvement in the control loop re-
mains an open question. According to Sheridan’s theory 
of level of automation [16], control methods for a tele-
operation system spread along a spectrum with supervi-
sory control at one end and manual (or bilateral) control 
at the other end. The concept of supervisory control was 
first proposed due to the time delay in command trans-
mission in teleoperation tasks, which may limit the tele-
operator to a ‘wait-and-see’ approach [17]. In supervisory 
control, the slave system could execute autonomously 
under certain phases, controlled by a local controller. The 
operator continuously receives a variety of information 

concerning the working status of the slave system, and 
only intervenes in the control loop in case of special needs 
or an emergency. Most of the time, supervisory control 
relies on automation, which is well known to reduce 
workload. But disadvantages of automation have been 
also reported [18], which may further result in misuse, 
disuse and abuse of automation [19]. Operator may use 
the automation to perform tasks it is not designed to han-
dle (misuse), operator becomes too skeptical about the 
automation and refuses to use the automation (disuse), or 
implement the automation without sufficiently consider-
ing its effect to the human operator (abuse).  Moreover, 
because the underwater slave system moves relatively 
slow, operator’s vigilance towards unexpected events 
under supervisory control is highly questionable due to 
complacency and reduced system awareness. The control 
performance during unexpected events (e.g. obstacles, 
slip) may be much more deteriorated with higher level of 
automation. In contrast, these side-effects from automa-
tion can be significantly reduced in manual control. As in 
manual control, the operator takes full responsibility of 
the system and controls the movements of actuators via a 
master device, while the system continuously responds to 
the control inputs.  Yet the system under manual control 
will be prone to human errors and operator’s increased 
control effort will cause other problems, such as fatigue.  

As the control authority changes intermittently be-
tween the operator and automation system in supervisory 
control, shared control emerges as an alternative to make 
the best use of human-machine cooperation [20]–[22]. 
Shared control keeps the human in the loop and combines 
the benefits from automation’s precision and human’s 
intelligence. Haptics is a more intuitive and less-occupied 
way than other sensory channels (e.g. auditory, visual) to 
provide a human-machine interaction [23]. The machine 
generates active force feedback on the control interface to 
guide human, where the forces are calculated by combin-
ing the dynamics of haptic interface with optimal control 
inputs. Haptic shared control has been proven to yield 
performance improvement and control effort relief in 
various applications like car driving [24]–[27]  and tele-
manipulation [28], [29].  For example, in a path tracking 
task, if the operator conforms to the guidance, the ma-
chine will also follow the optimal path accurately. In this 
way, HSC is advantageous in more accurate path tracking, 
and indirectly reduced control activities and workload. 
HSC was also explored in the control of a suspended grab 
for deep sea mining, but only reduced control effort and 
some indirectly measured improved situation awareness 
was found [30]. The concept of using artificial guidance 
while keeping the human in the loop has not been im-
plemented yet in an underwater vehicle where tricky soil-
vehicle interaction exists. 

Unlike steering a car, the heading angle of the subsea 
crawler is adjusted by the relative speed difference be-
tween two speed inputs. Former studies on shared con-
trol in assisting car driving constrains the vehicle to a 
constant speed such that the human only needed to con-



  

 

centrate on the single degree of freedom steering itself 
[31]–[33].  For a subsea crawler where skid steering is 
used, controlling the velocity of the vehicle is coupled 
with its heading angle; hence the operator also has the 
ability to adjust the vehicle speed. Therefore the steering 
guidance is achieved by the cooperation between two 
control inputs, so that operator should understand the 
guidance on a higher level. As the subsea crawler’s 
change in movement is driven by a sequence of integrat-
ed tractive force, there will be lags between the operator’s 
inputs and system outcome, i.e. the system does not re-
spond immediately to a control input. Thus, the operator 
needs to predict the system’s outcome with a self-built 
internal model of the causal relation between the control 
input and slow-changing system output [34].  

Furthermore, in a control station, multiple screens are 
needed to represent all aspects of the working scenarios 
at the remote site. Thus the operator needs to perform a 
secondary task while steering a ROV. A secondary task 
could also be an approach to evaluate the subject’s mental 
workload, i.e. how much processing capability is left for 
an additional task. An auditory recognition task was test-
ed as secondary task in car driving, where only slightly 
shorter reaction time was found under HSC than manual 
control [32].  However resting visual processing ability is 
more interesting than auditory sense in underwater engi-
neering applications as most of the information is deliv-
ered through visual perception. Thus a visual recognition 
task is preferred in this study. 

 
Hypotheses 

In order to solve all these aforementioned potential 
problems on a subsea crawler, the most suitable control 
maneuver needs to be found. In this study we are inter-
ested in comparing HSC and supervisory control to man-
ual control in controlling a simulated subsea crawler. It is 
hypothesized that: 
1. A higher level of automation will lead to improve both 

primary steering performance and secondary task perfor-
mance, while reduce the control effort. 

2. Supervisory control will deteriorate the steering perfor-
mance during unexpected events, but not for HSC. 

A human subject experiment was designed and exe-
cuted to compare the effects of HSC and supervisory 
control with manual control. The operator was presented 
with a virtual environment of the remote site and a virtu-
al subsea crawler. The operator’s control commands on 
two single degree of freedom joysticks are acquired and 
translated into velocity commands of both tracks on each 
side of the virtual vehicle. The experiment in this study 
consists of steering a virtual vehicle to track a prescribed 
path and avoid sudden popped-up obstacles, while re-
sponding to a secondary visual recognition task, which 
will be described in details in section II. Different metrics 
used to evaluate results on steering performance and 
control activity are presented in section III.  .  Section IV 
further discusses the results and limitations of this exper-
iment, and conclusions of this study are drawn in section 
V. 

2 METHODS 

2.1 Apparatus 

This experiment setup consists of a pair of 1DOF joysticks 
as haptic interface, with which subjects could control the 
speed of each side of the tracks. Two identical HP-1940 
monitors, with 38.0×30.5 cm area of screen opening and 
1280×1024 pixels resolution, are presented to the subjects, 
one showing a 3D representation of the camera view in 
virtual reality. The other display shows an integrated 
control panel, providing supplementary information 
about the status of the subsea crawler, such as global 
positioning, vehicle speed, control input, etc. A secondary 
visual recognition task is also presented on the virtual 
control panel. The simulated vehicle dynamics including 
soil-track interaction and single body dynamic modelling 
are calculated by real time computer and updated contin-
uously on these two screens.  

 

The simulation in this study was based on the calculation 
of a virtual subsea crawler weighing 16 tons, with a max-
imum velocity on both tracks at 1m/s underwater. Duc-
tile clay was chosen as the typical soil (soil cohesion at 10 
Kpa, and soil angle of internal friction at 6 deg) to calcu-
lates the soil-track interaction.  The guidance force and 
vehicle dynamics were calculated by a local real time 
computer (Bachmann MH212/S) at 500Hz. The maximum 
and minimum throttle on the joystick generated track 
speed at 1m/s and 0.05m/s respectively. Subjects were 
controlling the task via visual feedback on these two 
screens in front of the haptic interface.  The 3D represen-
tation shown to the subjects are updated at 10Hz, accord-
ing to parameters of vehicle status calculated from the 
virtual model in real time computer.  On the top of each 
handle was mounted with a tactile single pole N/O 
pushbutton for answering the secondary task. 

2.2 Task Description 

In this study, the task of mobilizing the subsea crawler 
between mining fields was simulated. The subjects were 
asked to complete a path tracking task, where the pre-
scribed optimal path was displayed on both 3D virtual 
environment (red curve in figure 3) and sub-screen on 
control panel. During the experiment, slave’s lateral error 
and estimated time of arrival (ETA) were shown on the 
control panel as well.  

    

Figure 1. Left: Custom built experimental setup, including a bi-manual inter-

face (two haptic joysticks), a 3d visualization of the primary steering task (left 

screen) and secondary task (right screen). Right: A close picture of the joy-

stick. The handle is connected to the DC motor by a Capstan drive though 

steel cables.  

 

 

 



  

 

 
Figure 2. Parameterization of the virtual vehicle used in the dynamic model. 

 

Track Length L 6 m  

Mass Center 

Hc 1.5 m 

Track Width D 0.6 m Lc 3 m 

Thread Width b 3.5 m Bc 1.75m 

Vehicle Mass (in water) M 16 ton  

Moment of 

Inertia 

Ixx 3.5e4  Kg/m2 

Projection Area Ap 10 m2 Iyy 8.2e4  Kg/m2 

Chassis height Hmin 0.5 m Izz 8.6e4  Kg/m2 

Table 1. Parameters of the virtual vehicle used in the dynamic model. 
 

    Because the seabed is ever-changing, there will be some 
differences in terrain status between preliminary investi-
gation and actual conditions. It simulates the scenario that 
a local sensing system equipped on the crawler continu-
ously acquires the terrain variations in vehicle’s proximi-
ty, and updates the 3D virtual environment on the screen 
at the same time. Thus when the vehicle is moving, even 
without the obstacle, the virtual terrain in front of the 
vehicle hood still varies in elevation. Inevitably, some 
parts of the newly updated terrain may be insurmounta-
ble to the crawler, which is represented by a ditch in this 
simulator. Totally 12 obstacles were randomly distributed 
along the path, but not necessarily on the center of the 
path. Subjects were supposed to avoid such obstacles by 
skid steering (i.e. full throttle for one track and possibly 
minimum for the other), The simulation determined the 
moment to present the obstacle based on the speed of the 
vehicle:  

                           × 'distL = ttc v                                    (1) 

where ttc stands for time to collide, v’ is the vehicle’s 
heading speed with respect to the obstacle center. In this 
experiment we set ttc at 7 seconds, and once the simula-
tor detects the distance between vehicle center and obsta-
cle edge falls into this range Ldist, the obstacle will be pre-
sented on the screen. 

At the same time, subjects’ workload was measured by 
a secondary visual recognition task. On the upper right 
side of the control panel, eight red markers are shown 
each time, whose positions were randomly updated once 
per four seconds. Participants were asked to identify the 
number of markers that fall into the specified range, rep-
resented by the black dashed circle (figure 3). Two tactile 
switches on the top of the handles were used by subjects 
to indicate their judgment.  If the number is less or equal 

to 4, they were supposed to press switch on the left han-
dle, otherwise the right one. 

Aside from the obstacle avoidance and secondary task, 
an extra slip event was triggered at the end of the map, 
where the optimal path requires a left turn. On dynamic 
aspects, the left and right tracks lose 20% and 40% of 
maximum traction force respectively during this slip 
event. Subjects were not informed of the slip event in 
advance during the actual experiment, yet they experi-
enced the slip event and practiced recovering from it 
during the training session once.  Subjects were told that 
the guidance in both HSC and supervisory control could 
neither avoid the obstacle nor recover from the slip event 
by itself, so that their intervention was necessary during 
these unexpected events.  

2.3 Experimental Conditions 

    Three experimental conditions are offered to the sub-
jects during the experiment. The pure manual control was 
taken as the baseline to compare with HSC and supervi-
sory control. The calculation of optimal vehicle’s track 
speeds in HSC and supervisory control was mainly 
adapted from former study on path tracking for tracked 
vehicle [14]. Because the vehicle speed and heading angle 
are coupled, with a desired heading speed and heading 
angle, optimal net traction force 𝑭 ̅̅ ̅ and 𝑭 ̅̅̅̅  on two sides 
can be solved. According to terramechanics for tracked 
vehicle, if the mechanical properties of soil are deter-
mined, the desired slip ratio (𝒊 , 𝒊 ) can be obtained from 
the experiment measurement on the curve relates vehi-
cle’s net traction force with slip ratio. For the sake of brev-
ity, we assumed a relatively flattened pavement on sea-
bed in the simulated environment and neglected pitch 
and roll rotation of the vehicle. As the slip ratio of a track 
is defined as the ratio between the slip speed and theoreti 
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Figure 3.  3D representation through the viewpoint in virtual reality. Left:  steering the vehicle in normal operation without obstacles. The subject aims to 

follow the red optimal path. Middle: One of the 12 obstacle avoidances. Within the red highlighted circle is the ditch which the subject is supposed to get rid 

of. The red circle is not visible in real experiment. The subject needs to distinguish such a ditch from other normal terrain variations. Right: the control 

panel where supplementary information and secondary task is shown. 

 
 
 
 
 
 
 
 
 
 
 
Figure 4. (a) Illustration of stiffness and force feedback design. Blue solid force-angle line represents the centering stiffness (virtual spring) of the handle in 

manual control.   The green solid line depicts the force feedback where the neutral point of former virtual spring is shifted to the optimal angle. The blue 

dashed line denotes the stiffness feedback, in which the former centering stiffness (solid blue line) is increased by Ks according to the lateral deviation. If 

both the force feedback and stiffness feedback are implemented, the force-angle relationship is akin to the green dashed line. (b) The operator’s intervention 

approach in supervisory control. Left: The system gives the control authority back to the operator once either of the two handle is pull back so that the 

corresponding speed input is below 0.6m/s. Right: The system restores full automation mode when the vehicle recovers back to the optimal path, and speed 

inputs on both sides return up to 0.9m/s.  

 
-cal speed, where the slip occurs when there is a differ-
ence between actual and theoretical speed [7]: 
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Where r is the effective radius of the drive sprocket on the 
track, ωL, ωR are the input speed controlled by either 
operator or the controller, �̇� is the heading speed of the 
vehicle, and �̇�  is the yaw rate of the vehicle. If the sym-
metry of the crawler is assumed, the local actual speed of 
left and right track becomes (�̇� − 𝒃�̇�)  and (�̇� + 𝒃�̇�)  re-
spectively. In this way the desired track input speeds on 
both sides can be calculated as: 
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The desired input track speed was then proportionally 
projected to the turning angle of the corresponding han-
dle of the joystick operated by the human operator.  
    The methodology to generate guidance according to the 
desired turning angle in HSC was inspired from force 
plus stiffness feedback, which had been proven to have 

even more improved performance at the same level of 
control activity than pure force feedback [35]. Additional 
stiffness feedback could also avoid the instability problem 
in pure force feedback. First of all, the joystick has a self-
centering stiffness K0 with neural position at zero point to 
prevent erroneous input by accidental touch. Force feed-
back is applied to the joystick by altering the equilibrium 
point from initial zero point to optimal turning angle θopt 
calculated by the controller (figure 4.a). Thus in an ideal 
case in force feedback, operator should continuously seek 
for the shifting neutral position while the intercept of the 
shifted force-position characteristic on force axis will be 
the guidance force applied to the haptic interface (figure 
4.a).  Apart from the shifting optimal steering angle θopt, 
an additional stiffness feedback was applied to increase 
the stiffness based on the absolute lateral deviation e(t) 
times cs.  Therefore more resistance force will be provided 
when operator steers away from the optimal steering 
angle.  

        
HSC 0 steer opt s steer opt

F K c e(t)              (4) 

To establish the control algorithm for the crawler, a refer-
ence speed needs to be set for both HSC and supervisory 
control. Here we set a constant reference speed at 0.8m/s 
for HSC design so that an extra speed range of 0.2m/s 
was left for operator’s improvisation. 

    In supervisory control, the automation system has a 
default full throttle on both handle (1m/s), but the crawl-
er is controlled by a separate internal loop instead of the 

Fguid 

F 
θopt 

θ 

Ks 

Ks 

shift 

(a) (b) 



  

 

actual handle, with reference speed also at 1m/s. In this 
case, operator was supposed to only respond to the sec-
ondary task while monitor the steering task.  However 
operator may intervene into the control loop by pulling 
back either of the two handles so that the corresponding 
input speed falls into a switch tolerance at 0.6m/s (figure 
4.b). Some gap was left between the full throttle and the 
switch tolerance to prevent sudden subconscious hand 
jitter when holding the handles for answering of the sec-
ondary task. After intervention, operator could also re-
turn the control authority back to full automation by 
pushing both handles forwards to full throttle. System 
will restore internal automation once the vehicle returns 
to the optimal path with absolute lateral deviation less 
than 0.6m (which is the same tolerance used to distin-
guish task modules), and both throttle speeds exceed 
0.9m/s are detected.  

    Since three experimental conditions were tested, there 
were six permutated condition orders. Each subject need-
ed to complete the whole virtual map three times, once 
per condition, according to the condition order.  Partici-
pants were asked to steer the simulated crawler to avoid 
obstacles which shown up intermittently, while keep 
tracking the predefined optimal path as closely as possi-
ble between obstacles. Subjects’ mental load is measured 
by a secondary task, where they were asked to recognize 
the number of markers within the reference range during 
steering. A training session was set before the experiment 
for each subject, where the subject learnt to drive the 
crawler in manual control mode. Obstacles and slip event 
were also included in the training session.  

2.4 Subjects 

Twelve male subjects, all were right handed and stu-
dents from Delft University of Technology, between the 
ages of 23 to 34 (M=26.2, STD=2.9 years) volunteered for 
the experiment. All participants had normal or corrected-
to-normal sight. These participants had no prior experi-
ence in controlling teleoperation tasks. All subjects were 
given a written task instruction about the experiment 
protocol and apparatus before the experiment. They were 
not remunerated financially for their participation. Sub-
jects were randomly divided into six groups, one condi-
tion order each, so as to minimize the learning effect. 
Each participated in one experiment lasting for approxi-
mately 1.5 hours, including training session.  Before the 
formal measurement, each subject familiarized with the 
skid steering by completing a training session, where 
three accumulative avoidances and one successful slip 
recovery was recognized as completion. The device and 
experimental protocol had been proved by the Delft Eth-
ics Committee (HREC). 

2.4 Data Analysis 

    To objectively evaluate the effect of HSC and supervi-
sory control in steering a subsea crawler, a series of raw 
data about the vehicle status and operator’s control activi-
ties was logged from the real time computer at 500Hz. 
The raw data collected from the experiment was parti-
tioned into separate segments, labeled as within obstacle, 

between obstacles and slip recovery. Within-obstacles-
module starts when an obstacle appeared on the screen, 
and ends when the vehicle’s center position recovered 
back within ±0.6m (black dashed lines in figure 5) in lat-
eral deviation for the first time after the corresponding 
obstacle avoidance. Slip recovery starts when the slip 
event was triggered and finishes at the place the left turn 
ends. 
Based on the results, in total eight different metrics were 
calculated to determine the differences between experi-
mental conditions.  
1. Root Mean Square (RMS) of the lateral deviation between 

obstacles:  Vehicle’s lateral deviation is the most 
straightforward way to evaluate the subject’s perfor-
mance in path tracking. Since the lateral deviation 
have both positive and negative values, the root 
mean square of the lateral deviation is suitable to 
measure the magnitude it throughout the path track-
ing.  

2. Maximum absolute lateral deviation in slip:  maximum 
absolute lateral deviation the simulated vehicle per-
forms during slip event.  

3. Mean length traversed in obstacle avoidance:  The aver-
aged length the vehicle traversed in avoiding one ob-
stacle with respect to the optimal path.  Only success-
ful avoidances are taken into account.  

4. Total number of collisions:  The number of collisions is 
directly resulted from the subject’s vigilance and sit-
uation awareness in the primary path tracking task.  

5. Mean reaction time towards the obstacle:  The duration it 
takes for the subject to respond to the obstacle. More 
specific, it is the time period between the moment the 
obstacle presented to the subject and the moment the 
subject generates a significant steering change (the 
absolute difference between two speed inputs ex-
ceeds 0.4 m/s).   

6. Accuracies in secondary task: The subject’s response 
accuracy (percentage of correct answers) in the sec-
ondary task, which is a supplementary approach to 
evaluate the subject’s mental workload in the path 
tracking task. 

7. Standard deviation (STD) of the difference in turning 
angles: The difference between left and right turning 
angles is related to the skid steering. The higher vari-
ation of the difference in turning angles, the more in-
tense of the control activities.  

8. Standard deviation (STD) of the torque on the handle: The 
variation of the torque the subject inserted onto these 
two handles directly determines the subject’s physi-
cal workload. 

 
The data of the experiment was calculated using each 

subject’s data per condition. The comparisons between 
experimental conditions are shown with the group mean 
per condition, along with the 95% confidence interval. 
The statistical differences were determined by using one 
way repeated ANOVA, except the maximum slip event 
and torques on handles.  It is because the slip was trig-
gered at the end of the path, the subject may have expec-
tation on the slip event after one trial.  In order to mini-



  

 

mize the expectation effect, the data analysis only took 
each subject’s performance in the first time the slip was 
triggered (in the first condition presented), and one way 
independent ANOVA was used. For the torques on the 
handles, left-or-right hand was taken as a factor and two 
ways repeated ANOVA was calculated. Results were 
regarded as statistically significant when p≤ 0.05.  

3 RESULTS 

Figure 5 plots a typical subject’s performance in primary 
steering task under three experimental conditions. The 
section of trajectory selected 300 meters in length. The top 
trace illustrates the curvatures of the predefined path, 
indicating both left, right turns and straight segments on 
the prescribed path. The distance between vehicle center 
and an obstacle center falls within 3 meters was recog-
nized as collision. Comparing the directions the subject 
decided to avoid each obstacle across three conditions, 
the avoidance strategy conducted by each subject is not 
noticeably affected by the experimental conditions. The 
main effect locates on lateral deviation of the vehicle from 
the desired path between obstacles. As indicated in figure 
5, the maximum lateral deviations seem to decrease with 
HSC and supervisory control while vehicle’s trajectories 
are also much smoother, when compared with that in 

manual control. 
Path tracking between obstacles 

    When subjects steered the vehicle between obstacles, it 
was regarded as normal path tracking operation. Both 
individual subject’s result and group mean with 95% 
confidence interval are shown in figure 6. RMS of lateral 
deviation under HSC (M=0.352, STD=0.050 [m]) and su-
pervisory (M=0.217, STD=0.099 [m]) is  smaller than 
manual control (M=0.451, STD=0.107 [m]). There is a 
statistical significant difference (F(2,22) =7,11, p<0.01) in 
RMS of lateral deviation. Post-hoc analysis revealed dif-
ferences between all three conditions, where HSC and 
supervisory control result in a reduction of 22% and 52% 

lateral deviation, respectively. 
 
Maximum Deviation in Slip Event 

     The slip event was set to measure operator’s vigilance 
and situation awareness towards unexpected event under 
different assist conditions. To fairly evaluate the depend-
ence of maximum lateral deviation in slip recovery on 
experimental conditions, we only compared each sub-
ject’s response for the first time the slip event was trig-
gered, so as to remove the expectation effect (figure 7). 
One way ANOVA was solely calculated on maximal lat-
eral deviation in this case. A significant difference was 
found (F(2,9)=7.429, p<0.05), and post-hoc analysis gave a 
significant difference between manual and supervisory 
control (p<0.05) and a trend can be seen between HSC 
and supervisory control (p=0.089), but not between HSC 
and manual control. Regarding the fact that there were 
only 4 subjects in each group, the difference between HSC 
and supervisory control is also reasonably evident. Larger 
subject volume is needed to determine the statistical dif-

    

 

 

 

 

 

 

Figure 7.  Maximum absolute lateral deviation during slip recovery.   ‘●’ ,‘● ●’ 

means a significance with  p<0.05 and p<0.01, respectively.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

    

Figure. 5. Plot of a typical subject’s lateral deviation during a 300 m section of 
the seabed path under three experimental conditions. The top trace indicates 
the curvatures of predefined optimal path and asterisk markers represent the 
location of these obstacles. Two parallel black dashed lines refer to tolerance of 
lateral deviation at ±0.6m with respect to centerline, to distinguish between 
within obstacle and between obstacles task module.  

 

 

    

 

 

 

 

 

 

Figure 6. Comparison of root mean square (RMS) of lateral errors in three 

between obstacles with respect to the optimal path. Each subject’s individual 

result is represented by cross markers. Group means are shown with 95% 

confidence interval. The black horizontal dashed line represents the hypothet-

ical RMS value when the system is run by full automation throughout the 

experiment.   ‘●’ ,‘● ●’ means a significance with p<0.05 and p<0.01, respec-

tively. 
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ference between HSC and s control. 
 
 
Obstacle Avoidance 

Figure 8 illustrates the minimum distance of the vehi-
cle’s center to the center of obstacle, for all 12 obstacles for 
all 12 subjects’ individual results for all three conditions. 
Theoretically a collision occurs if the vehicle center falls 
within 3 meters of an obstacle center. This gave an aver-
aged hit rate of: (M=14.6%, STD=8.0%) in manual control, 
(M = 25.7%, STD= 14.4%) in HSC and (M=18.8%, 
STD=15.1%) in supervisory control. No statistical signifi-
cance was found for the hit rate between conditions. 
However since the simulation determined the moment to 
present the obstacles based on the speed of the vehicle, 
which caused an inconsistency in difficulty of avoidance 
under three conditions. To best mitigate the bias intro-
duced by the experiment design, operators’ reaction time 
was calculated as a more sensitive metric on operator’s 
response to obstacles. An absolute difference exceeds 
0.4m/s between the speed inputs of two handles is de-
fined as the beginning of operator’s intervention. The 
reaction time is then the duration between the moment 

obstacles showed up, and the moment intervention start-
ed. However since the input speed has certain range, the 
vehicle’s skid steering ability is limited. If we assumed 
maximum speed (1m/s) on one track and a minimum 
speed (0.05m/s) on the other side as maximum steering 
ability during avoiding obstacle, this results into four 
different potential situations: 

1. Operator didn’t detect the obstacle at all so that did 
not react to the obstacle (type I collision). 

2. Operator responded before the collision but it was 
impossible to avoid the obstacle, even with maximum 
steering (type II collision). 

3. Operator responded in time but still hit the obstacle 
while it was still possible to avoid it with maximum 
steering, because wrong steering maneuver was tak-
en (type III collision). 

4. Operator responded in time and successfully avoided 
the obstacle. 

Numbers of collision in different experimental conditions 
are shown in figure 9-a, categorized according to collision 
type. Type I collision only occurred once in manual and 
twice in HSC control, and none in supervisory control. 
Type II collisions occurred substantially more during 
HSC (9 times) than during manual (1 times) and supervi-
sory control (2 times).  Operators under HSC (27 times) 
and supervisory control (25 times) conducted more type 
III collisions than during manual control (19 times) in 
total. The reaction time during type II and type III colli-
sions are shown in the scatter plot (figure 9b). Even 
though the sample volume is not equal in different condi-
tions, the operators still showed shorter reaction time for 
type II collisions during HSC than during supervisory 
control. For type III collisions (figure 9-b, right), among 
majority of the collisions under manual and HSC, subjects 
still had pretty low reaction time (manual: M = 1.45, 
SE=0.145; HSC: M=1.54, SE=0.157). However subjects’ 
averaged reaction time was longer in supervisory control 
(M = 2.13, SE=0.169).  If we average subjects’ reaction 
time regardless of the collision (figure 9-c), there existed a  

 
statistically significant difference across the conditions (F 
(2,22) = 4.67, p=0.02), which mainly attributes to the dif-
ference between supervisory control (M=1.55, STD=0.30) 
and manual control (M=1.27, STD=0.22, p<0.01). It is 
questionable that subjects ran into type II error much 
more often in HSC, though their reaction time was not 
significantly increased compared to manual control. This 
discrepancy will be further discussed in the next section.   
   The mean length the vehicle traversed in avoiding ob-

    

 

 

 

 

 

 

 

 

 

 

 

 

Figure 9. (a) Total number of collisions in three experimental conditions by 12 

subjects, categorized by collision type. (b) Distribution of the subjects’ reaction 

towards the obstacles in type II and type III collisions. (c) Each subject’s mean 

reaction times towards the obstacles in three experimental conditions, with 

group mean and 95% of confidence interval. 

 

 

 

 

 

 

 

 

 

 

 

 

 

    

1.  

2.  

3.  

4.  

5.  

Figure 8. Overview of each subject’s performance of the least distance between 

vehicle center and obstacle center over 12 obstacles. Blue: Manual control. 

Green: HSC. Red: Supervisory control. It’s because the subject could pass 

through the obstacle after the collision, such that there existed some cases 

where the least distance is below 3m. 
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stacles also reported a significant difference between 
conditions using a one way repeated ANOVA 
(F(2,22)=7.53, p<0.01), as shown in figure 10. Post hoc 
analysis showed that the subjects with HSC spent less 
length in obstacle avoidance than manual control (p<0.05), 
but not between other comparisons. This indicates that 
operator steered the vehicle back to the centerline with 
shorter distance under HSC. Also significant differences 
were found in mean vehicle speed when the obstacle 
appeared between all three conditions (F(1.1,12)=122.3, 
p<0.01), since subjects showed certain obedience to the 

predefined speed in HSC, which made the vehicle rela-
tively slower than the speeds in manual control and even 
supervisory control. 
 
Secondary Task 
 
Figure 11 illustrates subjects’ accuracies for the secondary 
task under different experimental conditions, categorized 
by task modules: total, within obstacle, between obstacles 
and slip recovery. Aside from the experimental condi-
tions, the individual difference and task module are two 
main factors that influencing performance of secondary 
task. Subjects’ performance in secondary task was influ-
enced by task module. Taking the task module as a factor, 
a two-way repeated ANOVA showed a significant differ-
ence between task modules, F(2,22) =55.8, p<0.01). Sub-

jects had higher accuracies during normal operation (be-
tween obstacles) than during unexpected events (i.e. ob-
stacle avoidances and slip event, p<0.01). In within obsta-
cle and slip recovery task modules, subjects’ accuracies 
vary regardless of the assist conditions, so that no statisti-
cal difference was found in these two task modules. 
However a statistical difference is found on response 
accuracy between obstacles (F(2,22=4.81, p<0.05) ), post-
hoc tests revealed a statistical difference (p=0.04) between 
supervisory (M=89.9%, STD=7.0%) and manual control 
(M=84.2%, STD=12.2%). It is noticeable that subjects who 
responded badly between obstacles in manual had an 
appreciable improvement in both assist conditions, while 
other subjects remained a relatively high accuracy level 
across all conditions. A further comparison only selected 
those subjects whose accuracies in manual control were 
less than 90% (6 subjects in total) and further compare the 
effects from assist conditions, we find statistically signifi-
cant improvement in both HSC and supervisory control 
against manual control (p<0.05).  Therefore it is possible 
that these two assist conditions could bring more benefits 

to subjects who need improvements in secondary tasks, 
while others could maintain their accuracies under assist 
conditions. 
 
Control Effort 
The STD of the difference in turning angles was catego-
rized according to the task modules (figure 12).  No sig-
nificant difference between conditions was found within 
obstacles.  However one-way repeated ANOVA reported 
a significant main effect between three experimental con-
ditions for the normal operation between obstacles, 
(F(2,22=52.07), p<0.01).  Post-hoc comparison of the three 
groups indicated strong difference between all three con-
ditions. Supervisory control had least control activity 
between obstacles (M = 5.23, STD = 1.86) than the other 
two conditions (p<0.01). HSC further induced slightly 
more control activity between obstacles (M = 11.88, STD = 
1.76, p<0.01) than manual control (M = 9.05, STD = 1.37). 

    

 

 

 

 

 

 

    

Figure 11. Overview of each subjects’ response accuracies categorized by task 

module and experimental conditions. Each subject is marked with different 

identifier, 1~12 from left to right. Top left: Subject’s response accuracies in 

total. Top right: Subject’s response accuracies within obstacles. Bottom left: 

Subject’s response accuracies between obstacles. Bottom right: Subject’s 

response accuracies during slip recovery. 

 

    

Figure 10. Upper: Averaged length the vehicle traversed during obstacle 

avoidances. Bottom: vehicle’s mean heading speed when the obstacle was 

presented to the subject. ‘●’ ,‘● ●’ means a significance with p<0.05 and 

p<0.01, respectively. 
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Figure 12. STD of the difference between left and right turning angles, categorized by task module, experimental conditions. Left: within obstacles. Middle: 

between obstacles. Right: slip recovery. Significance on the main effect is marked regardless of which handle it is.  ‘●’ ,‘● ●’ means a significance with 

p<0.05 and p<0.01, respectively. 

 

 

Figure 13. STD of each subject generated torque, categorized by task module, experimental conditions and left-or-right hand. Left: within obstacles. Middle: 

between obstacles. Right: slip recovery. Significance on the main effect is marked regardless of which handle it is.  ‘●’ ,‘● ●’ means a significance with 

p<0.05 and p<0.01, respectively. 

 

Moreover during slip recovery, a statistical difference was 
also found for control activity, (F(2,22) =4.70, p=0.02). 
HSC (M=20.95, STD=4.31,p<0.05) and Supervisory control 
(M=21.07, STD=2.82, p<0.05) both resulted into higher 
control activity than manual control (M=18.19,STD=3.41) 
for control activity during slip recovery, according to 
post-hoc multiple comparisons. But the difference be-
tween HSC and supervisory control was not significant 
during slip recovery. 

Since subjects were asked to grab the handles through-
out the experiment, they could conform to the guidance 
in HSC. Therefore the subjects might still have a high 
variation on the turning angles of the handles due to the 
guidance force, but instead did not concentrate on the 
steering. However if the subjects conformed to the guid-
ance, they directly generated less force on the handles. 
Thus the torque inserted onto the handle is an alternative 
metric to measure subjects’ physical workload (figure 13). 
Figure 13 depicts the standard deviation inserted torques 
on both handles in three experimental conditions, catego-
rized by task module, where handle was taken as a factor 
and a two-way repeated ANOVA was calculated. The 
ANOVA revealed that within obstacles, assist condition 
had a strong effect in within obstacle regardless of which 
handle it was (F(2,22) = 89.74, p<0.01).  Post-hoc gave 
significant difference between all three conditions 
(p<0.01). The assist conditions also brought a significant 

difference during normal operation between obstacles 
(F(2,22) = 6.60, p<0.01). Specifically, HSC had a difference 
compared to manual control (p=0.04), supervisory control 
also caused significantly higher torque variation than 
manual control (p<0.01).  The main effect by assist condi-
tion continued in slip recovery (F(2,22)=152.09, p<0.01), 
where during supervisory control the STD of torques was 
significantly higher than during manual control (p<0.01), 
and the STD of torques during HSC was also higher than 
both during manual and supervisory control (p<0.01).  
Left-or-right handle, as a factor, only showed a significant 
effect within obstacles (F(1,11)=10.55, p<0.01) and slip  
recovery (F(1,11)=30.80, p<0.01). The effect of handle in 
slip recovery is reasonable since the slip event occurred 
during a left turn, so that subjects needed to steer the left 
track much more often than the right track.   

4 DISCUSSION 

Manual Control 
The level of automation increases stepwise from man-

ual control to supervisory control, with HSC in between.  
As hypothesized, in manual control subjects had the low-
est performance in path tracking between obstacles.  
While some subjects were able to perform the secondary 
task well regardless of the control condition, others had 
the lowest response accuracy with manual control. Ap-
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parently subjects could not manage to perform both the 
primary task and the secondary task very well at the 
same time throughout the experiment. This discrepancy 
could be more severe in long term tasks. However as long 
as the subjects were fully involved in the primary steering 
task in manual condition, they kept a relatively higher 
vigilance towards the unexpected events than the two 
assist conditions. Although the difference of hit ratio was 
not significant, subjects did have less lateral deviation 
during slip under manual condition than the supervisory 
conditions. 

  
Haptic Shared Control 

The improvement in path tracking between obstacles 
was evident in HSC compared to manual control since the 
steering was partially completed by the guidance. HSC 
also helped to improve secondary task performance for 
those subjects who performed poorly with manual con-
trol. However HSC didn’t exhibit the same level of track-
ing accuracy as full automation in the normal operation 
tasks between obstacles. This indicates that the operator 
did not completely conform to the guidance in HSC, even 
without the presence of obstacles. This phenomenon has 
also been reported in other experiments [32], [36]. This 
man-machine mismatch may be induced by the difference 
between the operator’s preferred trajectory and the rec-
ommended trajectory used to design the guidance. Dif-
ferent subjects may have had different understandings of 
the vehicle’s position with respect to the optimal path. In 
addition, human’s ‘satisficing instead of optimizing’ ma-
neuver could also play a role in incurring the mismatch 
[37].  Operators usually tend not to continuously pursue 
the most accurate tracking as long as the lateral deviation 
is acceptable, while the guidance in HSC always tries to 
minimize the tracking error. Concerning the control ef-
forts, even during normal path tracking between obsta-
cles, when abrupt maneuvers were not necessary to avoid 
obstacles, HSC induced a higher variation of difference 
between the two turning angles than manual control. This 
implies that the guidance in HSC tended to use more 
aggressive corrections than subjects did with manual 
control. Subjects’ generated torque was also more variable 
than the other two conditions between obstacles, which is 
another illustration of the subjects’ different level of ac-
ceptance towards the guidance. Some trusted and con-
formed to the guidance while others still fight with the 
haptic force between obstacles. Therefore a constant level 
of guidance could not bring the best assistance to each 
individual operator.  One possible solution is to custom-
ize the parameters in rendering guidance forces according 
to each operator’s preference. 

Similar to the hypotheses, though HSC has a higher 
level of automation than manual control, it did not neces-
sarily result in worse performance during the unexpected 
events. Despite the fact that HSC induced more collisions 
than the other two conditions, a large number of the colli-
sions in HSC belongs to the type II collision, where sub-
jects didn’t have enough distance to steer the vehicle 
away from the obstacle. This was caused by method the 
simulator used to present the obstacle. Under the HSC 

condition, subjects performed certain obedience to the 
guidance between obstacles, which resulted into a rela-
tively lower vehicle speed than both manual and supervi-
sory control (figure 10-b). According to (1.1), there was 
less distance between the vehicle and obstacle in HSC 
when the obstacle appeared. Although the subject’s mean 
reaction time was not significantly increased in HSC, the 
same reaction time was not sufficient to avoid the obsta-
cle. Nevertheless, the guidance applied to the joystick 
within obstacles was faulty to the operator, as it still tried 
to navigate the vehicle back to the optimal path. Even 
though the stiffness of the virtual spring of the guidance 
had been tuned before the experiment to make the joy-
stick stiff enough to reject undesired movement of steer-
ing and still compliant enough to be overcome by the 
operator, it sometimes might still cause problem for some 
subjects’ intervention (e.g. made them hesitate to inter-
vene), regarding several subjects’ mean reaction time in 
HSC were much higher than the rest (figure 9-c). Similar-
ly, HSC also led to the highest variation of torque during 
both obstacle avoidance and slip recovery, since the oper-
ator needed more physical effort to overcome the faulty 
guidance force. A more proactive haptic guidance could 
be achieved by on-line mitigating or even intelligently 
switching off the stiffness of the virtual spring according 
to human’s intervention during the man-machine con-
flicts.   

 
Supervisory Control 

With the highest level of automation among the three 
conditions, supervisory control had a significantly higher 
path tracking performance than both manual control and 
HSC. When the vehicle traversed between obstacles, sub-
jects totally relied on the automation. Despite the large 
variation in the secondary task performance due to inter-
subject differences in prioritization of the tracking and 
secondary task, supervisory control still had a statistically 
significant improvement in response accuracy between 
obstacles, compared to manual control. Subjects’ mental 
workload was relieved at least during these periods. 
However this superiority was not found when compared 
to HSC. Similarly, the reduced variation of difference 
between turning angles in supervisory control between 
obstacles is also reasonable since for the most of time 
between obstacles the vehicle was controlled by the au-
tomation system and subjects only responded to the sec-
ondary task. 

 For the performance during unexpected events, both 
the mean reaction time towards the secondary task within 
obstacles and maximum deviation in the slip event were 
statistically larger than that during manual control. In this 
experiment, operators intervention in the supervisory 
condition was designed to be quick and intuitive (figure 
4-b), and thus is unlikely the cause of subjects’ delayed 
reaction to these unexpected events. This revealed that 
the operator had significantly less system vigilance in 
supervisory control than manual control. Therefore the 
slightly improved response accuracy in the secondary 
task between obstacles under supervisory control sacri-
ficed the operator’s vigilance in the primary path tracking 



  

 

task. Operators may have become complacent in the pri-
mary path tracking task under supervisory control, and 
switched their concentration to the secondary task. Since 
the obstacles presented in this experiment were much 
more frequent (about once per 90 seconds) than what will 
likely happen in reality, the degradation of vigilance un-
der supervisory control may be further exacerbated when 
less frequent intervention is needed.  

In addition, unlike normal path tracking between ob-
stacles, the necessary transition procedure which switches 
the control authority in supervisory control increased the 
physical efforts during unexpected events. The operator 
in supervisory control tended to generate more torques 
onto these two handles than in manual control during all 
three task modules (figure 13). Because the subject was 
steering the joystick as a virtual spring in both manual 
and supervisory control, this increase in torque was most 
likely caused by the subjects’ sudden intervention during 
the experiment. Even though subjects were informed that 
they could regain the control authority once they decrease 
either side of the speed input below a tolerance of 0.6m/s 
(figure4-b), subjects often abruptly reduced the handle far 
below the necessary tolerance.  In addition to the in-
creased torque due to the initial intervention, subjects 
might have become tenser once they detected the emer-
gency and subconsciously generated higher torque in 
supervisory control.  As a conjecture, subjects physically 
had more co-contraction in their neuromuscular system 
under supervisory control due to the higher mental nerv-
ousness.  Thus the supervisory control could only reduce 
the control effort during the normal path tracking be-
tween obstacles, but caused more control effort when 
encountering unexpected events. 

 

5 CONCLUSION 

This study investigated the benefits of two support 
systems, HSC and supervisory control, for controlling a 
subsea crawler. The support systems were evaluated on 
operators’ performance and workload for a tracking task, 
accompanied by sudden object avoidance and a simulta-
neous secondary task. For the experimental conditions 
studied, it can be concluded that compared to manual 
control: 

 The performance of path tracking between obstacles 
was improved for both support systems, and HSC al-
so reduced the length spent in avoiding the obstacle. 

 The operator’s physical control effort increased dur-
ing obstacle avoidance and slip recovery with both 
support systems. Control activity increased for HSC 
while decreased for supervisory control during nor-
mal operation between obstacles. 

 No substantial improvement were found for the sec-
ondary task for both support conditions, though all 
subjects had a slight improvement in the response ac-
curacy only between obstacles in supervisory control, 
compared to manual control. 

 Supervisory control significantly reduced operators’ 

vigilance towards unexpected events, as larger max-
imum lateral deviation in the slip event was observed. 

 
The results from this short-term experiment allude that 
supervisory control could bring the highest level of per-
formance while appreciably reducing the operator’s con-
trol effort for such a slow dynamic system, but may still 
induce the side-effects of automation when unexpected 
circumstances are encountered. HSC both improves the 
performance while still maintaining the operator’s vigi-
lance, especially in slip events, compared to supervisory 
control. This highlights HSC as a promising solution for 
long term operation tasks, such as deep sea mining. 
However it was found that the subjects didn’t completely 
trust the guidance such that HSC did not deliver the same 
level of assistance in task performance as supervisory 
control. The faulty guidance, as the guidance was not 
aware of the obstacles nor the slip, implemented deliber-
ately during unexpected events also increased the opera-
tor’s control efforts. Future studies may focus on an im-
proved design of haptic guidance and further improve-
ment of the human’s acceptance of HSC for teleoperated 
underwater machines.  
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Appendix I – Experiment Setup 
    

The experiment setting used in this study contains both hardware and software 

configurations. A complete appearance of the set-up is shown in figure 1.1. 

 

Figure 1.1. An over view of the whole experiment setup. Main parts include a couple of joysticks, 

two screens, real time computer (behind the two screens) and an emergency button. 

The hardware contains a couple of self-built single degree of freedom rotary handles, acting 

as joysticks.  These two handles were mainly constructed by Leroy Boerefijn and Ward Heij 

from the department of Mechanical Engineering in 2013 for their experiment of one degree of 

freedom hard contact teleoperation task. As shown in figure 1.2, one entire joystick system is 

integrated onto a platform. It consists of a 3D printed knob for the operator to grab. The knob 

is attached to the handle by 2 M5 bolted joints. The metal handle is connected to two 

trapezoid substrates by a shaft in between. These two trapezoid substrates are mounted to the 

platform. A maxon RE30 DC motor is also mounted to one of the substrates with a front 

flange. The motor is shielded by a 3D printed shell. On the opposite substrate the encoder is 

also mounted to the shaft. 
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Figure 1.2 Overview of the joystick. Left: Top view of the whole integrated platform. Right: The 

connection between the handle and the platform. 

An ESCON 70/10 amplifier is used to adjust the output current to the DC motor.  The 

transmission between the handle and the motor is achieved by Capstan drives with a 

transmission ratio of i=1/10. The Capstan drive connects two rotary bodies by a wound steel 

cable (Φ=0.8mm). The transmission ratio is realized by set the radius of the circular part of 

the handle at 50mm and the radius of the capstan drum at 5mm. Two separate steel cables are 

used to actually connect the Capstan drum with the handle drum. For each steel cable, one 

side of it is fixated by screw on the lock, and the other side on the handle drum. The DC 

motor’s shaft does not directly fit the Capstan drum, so that a separate Capstan shaft is made 

and connected to the motor’s shaft with a double lock. One of the lock is tightly clamped with 

the motor’s shaft by two M3 bolts (figure 1.3). 

 

 

Figure 1.3. CAD drawing of the Capstan mechanism, adapted from Boerefijn and Heij’s .  

Four 1-DY13-6/350 strain gauges (figure 1.4) are attached to one handle and are connected 

in Wheatstone bridge manner to maximize the measuring accuracy. The output from the strain 

gauges is in millivolt, which is linear to the handle’s deflection.  

Where the motor’s  

shaft gets in 

Screw where the steel 

cable is wound up 
Connected to the 

encoder 

Clamp fixation. 

Screw to fixate the 

steel cable 

Tactile switch. 



3 
 

 

Figure 1.4. Strain gauges attached to the side of the handle. 

Figure 1.5. Overview of the control loop for HSC in this experiment.  The central vehicle dynamics 

module calculates the theoretical updated vehicle’s states (q,  ̇) based on vehicle’s last time status and 

the speed inputs from these two joysticks. The controller computes the desired speed inputs by 

integrating the vehicle status with the global map information. The haptic guidance block then 

receives the desired speed inputs and renders the guidance forces according to stiffness and force 

feedback. Meanwhile the vehicle status is integrated by the GUI programme and represented through 

these two screens. The operator also is aware of the vehicle working situation though the visual 

information and controls the joysticks with his/her judgement.  
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An overview of the whole control loop for haptic shared control is shown in figure 1.5. The 

vehicle dynamic model contains a mathematical model of the simulated vehicle. Single body 

dynamics modelling instead of multibody dynamics modelling was used to ensure the 

computation speed for real time simulation (Kim et al., 2005), which integrates the soil-track 

interaction adapted from previous studies in terramechanics (Wong, 2010). The controller 

block receives the simulated vehicle status, and calculates the desired speed inputs for the 

vehicle with reference from the predefined optimal path. A haptic rendering block mentioned 

in section 1.1 calculates the required guidance forces according to the force plus stiffness 

feedback mechanism (Abbink & Mulder, 2009). The simulated vehicle status is also acquired 

by the self-written graphic user interface (GUI) program, which further converts the vehicle’s 

working status into different types visual information, projected onto two screens. The 

operator should be able to interpret the vehicle’s state such as the relative position with 

respect to the optimal path from the information delivered in GUI, and generate the control 

commands to the system through the joysticks. In manual control, the circuit between the 

controller and the vehicle dynamics is cut off such that the operator takes full responsibility of 

the vehicle movement. In supervisory control, a switch will be placed between the joystick 

and the vehicle dynamic model, once connected, the vehicle will be controlled by an internal 

loop where the desired control inputs calculated by the controller is sent directly to the vehicle 

dynamic model. The operator regains the control authority if the switch is disconnected. The 

haptic rendering is disabled in both manual control and supervisory control. 

 

1.1 Design of haptic guidance 

The vehicle dynamics block and the control algorithm for path tracking used in controller 

block are explained in details in appendix IV. The approach to render the haptic guidance is 

mainly adapted from previous study in caring driving (Abbink & Mulder, 2009), where the 

stiffness feedback could bring even higher improvement to the control performance than pure 

force feedback. Additional stiffness feedback could also avoid the instability problem in pure 

force feedback.  

    In manual control, the joystick has a self-centering stiffness K0 with neural position at zero 

point to prevent erroneous input by accidental touch. Hence the operator feels the joystick as a 

virtual linear spring during manual operation. The similar virtual spring applies in supervisory 

control when the operator intervenes in the control loop and regains manual control mode. 

The only difference is that the neural position in supervisory control is shifted to full throttle 

during automatic control.   

    In HSC, force feedback is applied to the joystick to alter the equilibrium point from initial 

zero point to optimal turning angle θopt as calculated by the controller. Thus in an ideal case in 

force feedback, the operator should conform to the system and continuously seek for the 

shifting neutral position while the intercept of the shifted force-position characteristic on force 

axis will be the guidance force applied to the haptic interface. Apart from the shifting optimal 
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steering angle θopt, an additional stiffness feedback was applied to increase the stiffness based 

on the absolute lateral deviation e(t).  Therefore more resistance force will be provided when 

operator steers away from the optimal steering angle. This combination of feedback forces are 

depicted in figure 1.6. 

 

Figure 1.6. Illustration of stiffness and force feedback design. Blue solid force-angle line represents 

the centering stiffness (virtual spring) of the handle in manual control.   The green solid line depicts 

the force feedback where the neutral point of former virtual spring is shifted to the optimal angle. The 

blue dashed line denotes the stiffness feedback, in which the former centering stiffness is increased by 

Ks according to the lateral deviation. The green dashed line gives the final force-angle relationship 

when both force and stiffness feedbacks are implemented. 

    
HSC 0 steer opt s steer opt

F K c e(t)          (1.1) 

To establish the control algorithm for the crawler, a reference speed needs to be set. Here we 

set a constant reference speed at 0.8m/s for HSC design so that an extra speed range of 0.2m/s 

was left for operator’s improvisation. In supervisory control the reference speed is set at 1m/s.  

 

1.2 Graphic User Interface 
The graphic user interface was constructed by using GUI toolbox in MATLAB

®
. The GUI 

program can both acquire the simulated data from and change module variables in the real 

time computers.  The GUI program mainly generates two types of outcomes, one displays the 

3D virtual reality environment and the other shows the integrated control panel. 

Because this simulator aims to reproduce the actual scenario in future deep sea mining, yet 

the large water depth will absorb all natural lighting. Similarly any artificial lighting can also 

be assimilated easily by surrounding sea waters. Thus the operator will not receive enough 

Fguid 

F 
θopt 

θ 

Ks 

Ks 

shift 
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information from the traditional underwater video camera. A typical solution is to construct a 

virtual reality based on the data from bathymetry. Therefore one of the screens from the 

simulator renders a 3D virtual reality of the vehicle’s working environment. It simulates a 

viewpoint set at the centre of the vehicle (figure 1.7).   The prescribed optimal path is 

highlighted with a red curve showing at the middle of a seabed valley. The scenario in this 

study reproduces a subsea crawler to transit from one mining field to another. The terrain 

variation is also rendered by unsmooth meshes shown in front of the vehicle. The vehicle is 

assumed to be equipped with a local sensing system, to validate the actual terrain situation 

with previous investigation (e.g. multibeam pre-scan). Since the seabed environment is ever-

changing, some parts of the terrain inevitably will be different in actual operation. Thus the 

operator’s ability to avoid unexpected obstacles becomes an issue when investigating the best 

support for the operator. Therefore repeated sudden popped up obstacles are included and 

shown as an abrupt collapse of the meshes, representing a ditch on the terrain.  Once the 

obstacle is shown, it remains visible. 

 

 

 

 

Figure 1.7.  3D representation through the viewpoint in virtual reality. Left:  steering the vehicle in normal 

operation between obstacles. The subject aims to follow the red optimal path. Right: One of the 12 obstacle 

avoidances. Within the red highlighted circle is the ditch which the subject is supposed to get rid of. The subject 

needs to distinguish such a ditch from other normal terrain variations. 

It is because the simulated subsea crawler is controlled by skid steering in this study, the 

vehicle speed is coupled with the heading angle.  Hence if the obstacle is rendered according 

to the distance between the obstacle and the vehicle, subjects might run into the obstacle with 

completely different vehicle speed, which results into different difficulty of obstacle 

avoidance for each operator.  If the distance when the obstacle pops up would be equal, it will 

be much harder for operators who drive faster to avoid the obstacle. Thus in this study the 

simulator calculates the moment to present the obstacle in the 3D virtual reality based on the 

vehicle speed. 

 × 'distL = ttc v   (1.2) 

Where ttc stands for time to collide, v’ is the vehicle’s heading speed with respect to the 

obstacle center. In this experiment we set ttc at 7 seconds, and once the simulator detects the 

distance between vehicle center and obstacle edge falls into this pre-view range Ldist, the 

obstacle will be presented on the screen. A schematic illustration of this judgement in the GUI 

program is shown in figure 1.8.  
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    Besides the 3D virtual reality, the GUI program outputs a virtual control panel on another 

screen, as depicted in figure 1.9. This control panel aims to present additional information 

about the vehicle status along with the secondary task.  On upper left part of the control panel 

an overview of the vehicle position in global coordinate, where the real time lateral deviation 

of the vehicle with respect to the optimal path and estimated time of arrival (ETA).  The 

secondary task is presented on the upper right side of the panel. Eight red dot markers are 

shown around a dashed cross reference, and the operator is asked to recognize the number of 

red markers within the dashed circle. This task mimics the representation of underwater sonar 

system. There are two indicators in this display; each locates on one side of the sub-screen. 

The left side of the indicator will be enabled once the operator presses the left switch on the 

joystick. The vehicle’s heading speed, rotating speed along with the global position is shown 

in the ROV status block. The tracks’ status and their slip ratios are illustrated with a series of 

bar plots. The left couple of bar plots depict the actual speed inputs from the joysticks. The 

middle two represent the desired speed inputs calculated by the controller, and the right two 

for the real time slip ratio on the corresponding track. The calculated desired vehicle’s 

heading speed; heading angle and the guidance force rendered on the joystick are shown in 

the guidance block on the right side. The mode switch block visually informs the operator of 

which status the control system is in during supervisory control. The ‘automation’ indicator 

will be enabled once the system is fully controlled by the internal control loop and leaves the 

operator to a supervisory role. During human’s intervention, the ‘manual’ indicator will be 

enabled. The ‘current’ block simulates randomized seawater current speed on longitudinal 

and lateral direction with respect to the vehicle. The experiment leader can start and stop the 

simulation in the task command block. After each subject completes a trial for each 

experimental condition, the collected experimental data can be copied from the memory of the 

Bachmann real time computer to the local memory in the personal computer by pressing the 

download button. A character string ‘… file copied’ will be shown in the command window of 

MATLAB if the file is successfully downloaded. A more intuitive description of the whole 

control panel can be found in appendix V.   

         It is assumed that for the most of the time during the normal steering operation, the 

operator will only focus on the 3D virtual reality and the secondary task display on the control 

panel. However the rest of the supplementary information delivered on the control panel 

could help the operator to judge the vehicle status in special scenarios, such as avoiding 

obstacles and recovering from the slip event. The indications in ‘mode switch’ block are also 

important to make the operator affirmative of the control authority in supervisory control.  
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Figure 1.8. Illustration of the method the simulator used to calculate the pre-view distance so as to determine the 

moment when the obstacle is presented to the operator. (a) Vehicle’s local sensor hasn’t detected the obstacle 

because the distance between the vehicle and the obstacle is larger than the prescribed preview range. Therefore 

the obstacle is invisible. (b) The obstacle falls in the preview range so that the obstacle is visible on the screen. 

  
 

 

Figure 1.9. A screen shot of the control panel. The control panel not only provides supplementary 

information for the vehicle status from the 3D virtual reality, but also displays the secondary task to 

test the operator’s mental workload.   

γ 
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Appendix II – Data Analysis 
 

 

The raw data collected from the experiment includes two parts: ‘ROVLOG’ contains a 

matrix with 32 rows of data sets with an update frequency of 500Hz, ‘Dashboard’ contains 

information about the obstacles, the correct answer and the testing time of the secondary task, 

etc. Subjects’ identity is abbreviated as ‘S1, S2’, etc. For example, ‘ROVLOGS1Manual’ 

represents the data of 1
st
 subject’s performance in manual control. Each row in file ‘ROVLOG’ 

is:  

        1:        Real time vector logged during the experiment [s].  

  2~3:      Calculated optimal turning angles, on left and right handle respectively [rad]. 

  4~5:      Actual turning angles of these two handles [rad]. 

  6~8:      Vehicle’s position on x, y and z global coordinates [m]. 

  9~11:    Vehicle’s speed on x, y and z global coordinates [m/s]. 

  12~14:  Vehicle’s pitch, roll and yaw angles [rad]. 

  15~17:  Vehicle’s angular speed on pitch, roll and yaw angles [rad]. 

   18:        Data from odometer [m]. 

   19:        Vehicle’s local heading speed [m/s]. 

   20:        Heading angle on optimal path [rad]. 

   21:        Vehicle’s lateral error [m]. 

   22:        Traversed distance with respect to the prescribed optimal path [m]. 

   23~24:  Strain on both left and right strain gauge [V].     

   25~26:  Power on left and right motor [V]. 

   27~28:  Subject’s response towards the secondary task. 

   29~30:  Speed of the handle inputs [rad/s]. 

   31:        Time point indicates whether supervisory control is enabled. 

   32:        Time point where the slip event is triggered [s].    

  

    In order to better compare the effects of two assisting conditions on the operator under 

different task modules, we partitioned the whole data set into three parts, namely:  

1. Within obstacles: it starts once each obstacle shows up on the screen, and ends when 

the lateral error recovers within ±0.6m with respect to the centerline. 

2. Between obstacles: the duration when the vehicle traverses between each obstacle. 

3. Slip recovery: it starts when the slip event is triggered and lasts till to the end of the 

trial. 

 

Figure 2.1 illustrates the partition between two between obstacles modules and one within 

obstacle modules. The simulator records the moment when the obstacle is shown on the 

screen (left red dot in figure 2.1). The script used for data analysis detects the first moment 

when the vehicle recovers back into the tolerance. Therefore the distance in between these 

two moments becomes the corresponding within obstacle module. However in slip event, 

there is no visual cue on the screen and the operator needs to identify the slip event from the 
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abnormal vehicle outcome, either with or without guidance, and intervene in the control 

system. The guidance cannot handle the slip event all by itself. There is no obstacle in slip 

event in order to prevent the interaction effect.  

 

 

 

 

 

 

 

 

Figure 2.1. Illustration of demarcation between within obstacle and between obstacles. 

The optimal path contains the five different curvatures whose reciprocals range within {20 25 

30 35 40 [m]}. Negative and positive curvatures represent left and right turns respectively. 

Straight segments have curvature at 0 [m]. The slip is triggered at the end of the path where a 

left turn is required. An overview of the optimal path is shown in figure 2.2. This track is used 

in each condition for each subject. 

 

Figure 2.2. Overview of the map used in this experiment. Black circles denote the locations of each 

obstacles, and dashed black curve is the position of optimal path. Red cross indicates the place where 

the slip is triggered. 
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2.1 Actual Trajectory 
Each subject’s performance of obstacle avoidance within each obstacle under three 

experiment conditions is shown in figure 2.3. Subjects’ identities are marked with different 

colors. If the distance between obstacle center and vehicle center falls into 3m, the collision is 

incurred.  
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               (5-a)                                               (5-b)                                              (5-c) 

 

               (6-a)                                               (6-b)                                              (6-c) 
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             (10-a)                                             (10-b)                                            (10-c) 

 

             (11-a)                                             (11-b)                                            (11-c) 

 

             (12-a)                                             (12-b)                                            (12-c) 

Figure 2.3. Performance of obstacle avoidance in obstacle 1~12. Three columns of subplots illustrate 

different obstacle avoidance between 12 subjects in manual control, HSC, and supervisory control, 

respectively.  

 

 

2.2  Within Subjects Comparison 
The raw path tracking and obstacle avoidance only give a straight impression on the 

differences between three experiment conditions. To objectively evaluate the effects between 

conditions, we should look further into different metrics. These metrics are categorized 

between performance and control effort.  

Performance:  

1. Lateral deviation between obstacles; 

2. Number of collisions; 

3. Mean reaction time in detecting the obstacles; 
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5. Maximal absolute lateral error in slip recovery; 

Control effort 

1. Response accuracy in secondary task; 

2. Reaction time in secondary task; 

3. STD of the difference between two rotary handles. 

4. STD of the torque generated by the operator 

5. Reversal rate on each handle. 

6. Subjects’ answers from the questionnaire. 

One way repeated measures ANOVA was used for most of the metrics to determine the 

statistical difference between experiment conditions and p<0.05 was taken as a measure of 

significance. The maximal deviation in slip recovery was tested by one way independent 

ANOVA since we are only interested in each subject’s first time reaction towards the slip 

event. Another exception is the torque on each handle, where left-or-right hand was regarded 

as a factor and a two way repeated measures ANOVA was calculated to minimize the type I 

error.  

 

2.2.1 Performance - Lateral Deviation     

The lateral deviation is the most straightforward metric to evaluate the operator’s performance 

in lane keeping between obstacles, where negative deviation indicates that the vehicle’s 

position is deviated to the left side of the optimal path. Root mean square (RMS) is a common 

statistical measure of the magnitude of a varying quantity, especially suitable when the 

variable has both positive and negative values. Therefore the root mean square of vehicle’s 

lateral error between obstacles was calculated and shown in figure 2.4-a (i.e. data in obstacle 

avoidance and slip recovery are excluded). Each subject’s individual performance is marked 

with individual cross marks, the group mean with the colored circle and the spread with an 

error bar depicting the 95% confidence interval of the group mean. He 
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(b) 

Figure 2.4. (a) Comparison of root mean square (RMS) of lateral errors between obstacles in three 

different experiment conditions with respect to the optimal path. The black horizontal dashed line 

represents the hypothetical RMS value when the system is run by full automation throughout the 

experiment. ‘○’ , ‘●’ ,‘● ●’ means a significance with p<0.1, p<0.05 and p<0.01, respectively. (b) 

Overview of the RMS of the lateral error in different task modules between experiment conditions.  

Top-left: in total. Top-right: within obstacles. Bottom-left: between obstacles. Bottom-right: slip 

recovery. 

 Manual  HSC Supervisory 

RMS of Lateral 

Error [m] 
x   s   x  s  x  s  

0.452 0.107 0.352 0.050 0.217 0.099 

(a) 

Test x  [m] p value 

Manual-HSC -0.100 p<0.05 

HSC-Supervisory -0.135 p<0.01 

Manual-Supervisory -0.235 p<0.01 

(b) 

Table 2.1. Performance of lateral error in three experiment conditions. (a) group means and standard 

deviation. (b) multiple comparisons between three conditions. 

The mean and standard deviation of the metric RMS is summarized in table 2.1. No 

statistically significant difference was found for the lateral deviation within obstacles and in 

slip recovery (figure 2.4-b). However for the lateral deviation between obstacles, one way 

ANOVA indicated a significant difference between conditions (F (2, 22) = 7.11, p<0.01) and 

post hoc test also revealed significant difference between all three conditions. Specifically 

HSC decreased the RMS of lateral deviation by 22% from manual control while supervisory 

control reduced by 52% compared to manual control. In supervisory control the subjects may still 

insist on manual intervention while the vehicle has already gotten back to the centerline after obstacle 

avoidance (figure 2.5). Thus the system was still controlled by human for some time when the 

vehicle’s position was recognized as between obstacles already. Hence the performance of supervisory 

control was not exactly the same as full automation. Although both HSC and supervisory control 

prevails manual control in lateral deviation, there still exists some difference between lateral error 
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in HSC and that in full automation between obstacles. This indicates that there existed a phenomenon 

where the operator did not completely conform to the guidance in HSC. 

 

Figure 2.5.  A plot depicts the obstacle avoidance in supervisory control, where subject 4 still 

remained in manual intervention after got back to the optimal path, to compensate for the overshoot.  

 

2.2.2 Performance – Number of collisions 
    During each completed trial, the operator was presented with 12 obstalces distributed along 

the optimal path, but not necessarily on the center of the optimal path. The collision is 

regarded to occur once the distance between vehicle center and obstacle center falls into 3m. 

But since the vehicle speed was used to calculate the moment when simulator presents the 

obstacle to the operator, different subjects may have unconstant initial condition when the 

obstacle shown up. This may cause a biased comparison on the number of collision. The total 

number of collision conducted by each subject in three conditions are shown in figure 2.6.  

  

Subject Identifier:  

 

Figure 2.6. Theoretical collisions according to the raw data, where each subject’s performance is 

marked with different identifier. Full automation will result into 12 collisions (100% collision), which 

is illustrated by black dashed line on top of the plot.   
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According to the results, 12 subjects totally ran into 21 collisions (14.6% hit ratio) in manual 

control, 37 in HSC (25.7% hit ratio) and 27 in supervisory control (18.6% hit ratio). However 

using a one way repeated ANOVA no statistically significant difference was found between 

the three conditions. Because of the fact that the operator could control both the speed and 

heading angle of the vehicle, only the total number of collision maybe too ambiguous to 

detect the difference between conditions. Thus more metrics are needed to look the obstacle 

avoidance in details. Figure 2.7 illustrates vehicle’s least distance with respect to the obstacle  

 

Figure 2.7. Overview of vehicle’s least distance to the obstacle center in 12 obstacle avoidances. 

Performance in manual control is marked in blue, HSC in green and supervisory control in red. 

Dashed line at 3m represents the tolerance the simulator refers to define the collision.  

center controlled by each subject in 12 obstacle avoidances. Similarly, these cross dots which 

fall below 3 m denote unsuccessful obstacle avoidances. Apparently there exist a distinct 

differences between some collisions. Some of the collisions occurred where the least distances 

were quite closest to 3m, while some others had least distances even closed to zero and 

therefore drove straight though the object with no avoidance maneuver at all. The averaged 

least distance across all 12 obstacles for each subject is shown in figure 2.8, displaying the 

group means along with its 95% confidence intervals. 
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Figure 2.8. Vehicle’s mean least distance towards obstacle center in three experiment conditions, 

averaged by 12 obstacle avoidances. The safety tolerance is 3m, represented by the black dashed line. 

‘○’ , ‘●’ ,‘● ●’ means a significance with p<0.1, p<0.05 and p<0.01, respectively. 

One way repeated ANOVA revealed a statistically significant difference between three 

conditions for the mean least distance (F(2,22) = 4.21, p=0.028) while post-hoc test pointed 

out sorely a significant difference between manual control and HSC (p<0.05). It seems 

subjects under HSC tended to steer the vehicle closer to the obstacle than in the other two 

conditions, but a pitfall is that subjects could have different difficulties in avoiding the 

obstacle under three conditions when facing the obstacles. The simulation system calculated 

the pre-view distance towards the obstacle in the simulation based on the speed of the vehicle 

(appendix I, figure 1.8): 

 d = v' ttc     (2.1) 

Where v’ is the relative local speed of vehicle with respect to the obstacle, and time to collide 

(ttc) is set to 7 seconds in the actual experiment. If we neglect the angle between vehicle 

heading direction and the segment from vehicle center to the obstacle center, the pre-view 

distance is then totally dominated by the vehicle speed. Therefore the subject will have a 

larger pre-view distance when driving faster. In order to testify whether this design bias is 

significant in this experiment, the vehicle’s mean velocities when obstacles shown-up under 

three experiment conditions are exhibited in figure 2.9 and summarized in table 2.2. The 

results showed that the average speed of vehicle when obstacle shows-up was significantly 

affected by the experimental conditions. F(1.1,12.03)=122.277, p<0.001 (Mauchly’s test 

indicated that the assumption of sphericity had been violated, χ
2
(2)=17.66, p<0.05, therefore 

the degrees of freedom were corrected using Greenhouse-Geisser estimated of sphericity (ε= 

0.55)). Post hoc tests revealed significant differences between all three conditions (all 

multiple comparisons, p<0.05). We could tell from the data that each subject definitely had 
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individual preference on the vehicle speed, especially in manual control where the vehicle’s 

speed was dominantly controlled by the subject. Some subjects were conservative on the 

vehicle even though they had been informed by the task description before the experiment 

that higher vehicle speed was preferred to complete the task (the ETA on the control pannel is 

also specially introduced to the subjects). Other subjects did drive the vehicle much faster, 

either because of the task description or their own aggressive driving maneuver. It is because 

of the fact that the recommended speed for haptic shared control is about 0.8 m/s, leaving 

some space for subject’s improvisation, however subjects showed certain obedience towards 

the guidance force, so that the speed when obstacles shown-up on the screen in HSC is lower 

than in supervisory control and manual control. Averagely speaking, subjects in HSC drove 

0.145m/s and 0.201m/s slower than manual and supervisory control, respectively. As we set 

the variable ‘ttc’ to 7 seconds, this resulted into about 1m and 1.4m less pre-view distance for 

subjects to react in HSC than that in the other two conditions. 

 

Figure 2.9. Vehicle’s mean speed steered each subject when obstacles shown-up, the group mean is 

shown with 95% confidence interval. ‘○’ , ‘●’ ,‘● ●’ means a significance with p<0.1, p<0.05 and 

p<0.01, respectively. 

 Manual  HSC Supervisory 

Mean speed when 

obstacles show-up [m/s] 
x   s   x  s  x  s  

0.891 0.052 0.746 0.014 0.947 0.006 

(a) 

Test x  [m/s] p value 

Manual-HSC -0.145 P<0.001 

HSC-Supervisory +0.201 P<0.001 

Manual-Supervisory +0.056 P<0.05 

(b) 

Table 2.2. (a) Group means and standard deviations of vehicle mean speeds. (b) Multiple comparisons 

between three experiment conditions. 

Manual HSC Supervisory
0.7

0.75

0.8

0.85

0.9

0.95

1

V
e
h
ic

le
 S

p
e
e
d
 W

h
e
n
 W

it
h
in

 O
b
s
ta

c
le

 S
ta

rt
s
 [

m
/s

]

Comparison of Vehicle Speed
( The Moment when Obstacles Showup)

•• 
•• 

• 



20 
 

2.2.3 Performance – Reaction time on the obstacles 
Since subjects truly had a less pre-view distance (though with same reaction time) to detect 

the obstacle in HSC, human’s reaction on avoiding obstacles need to be further elaborated. 

Therefore we categorize the obstacle avoidance into four different conditions:  

1. Operator didn’t detect the obstacle at all so that did not even react to the obstacle 
(type I collision). 

2. Operator responded to the obstacle, but there was insufficient distance left, so that it 
was impossible for the operator to avoid the obstacle, even with maximum steering 
(type II collision). 

3. Operator responded in time but still hit the obstacle while it was still possible to 
avoid it with maximum steering, because wrong steering maneuver was taken (type 
III collision). 

4. Operator responded in time and successfully avoided the obstacle. 
 

It is assumed that vehicle was supposed to have less distance towards the obstacle when type I 

occurred (data dots on the lower part in figure 2.7), than type III collisions and successful 

avoidances. And it is more accurate to compare the effects from assist conditions on the 

operator’s vigilance on the obstacle for each type of collisions. Nevertheless, a sensitive 

metric is needed to identify whether the operator responds to the obstacle. If the subject did 

not respond to the obstacle at all (i.e. type I collision), the vehicle’s trajectory was supposed to 

be closed to the optimal path (see figure 2.3). Here we found several collisions which most 

likely belong to type I collision (table 2.3): 

Manual control HSC Supervisory control 

 

 

S11Obs6 

 

 

S6Obs4 

S6Obs6 

S3Obs1 

S3Obs2 

S5Obs6 

S4Obs10 

S6Obs10 

Table 2.3. Collisions where the vehicle’s trajectory was more closed to the optimal path than the other 

trajectories, selected by eyeballing. ‘S*’ represents the subject’s identity and ‘Obs*’ stands for the 

number of the obstacle, e.g. ‘S11Obs6’ indicates the 11
th
 subject’s trajectory within the 6

th
 obstacle. 

 

The vehicle’s heading angle is directly controlled by two speeds input from these two rotary 

handles. Thus the turning angles of these two handles become the most straightforward 

variables to identify the subject’s awareness on the obstacle. The turning angles of two 

handles steered by the subjects under these circumstances (table 2.3) are showed in figure 

2.10.  
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(a) Subject: 11,  Obstacle:6~8 

 

(b) Subject:6, Obstacle: 4~6 
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(c) Subject: 3, Obstacle: 1~3 

 

(d) Subject: 4, Obstacle: 9~11 
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(e) Subject: 5, Obstacle: 5~7 

 

(f) Subject:6, Obstacle: 9~11. 

Figure 2.10. Speed inputs in circumstances mention in table 2.3. Blue signal represents the actual 

speed input and red parts cover the duration from the moment collision occurred to the end of the 

corresponding obstacle avoidance (vehicle left the obstacle and recovered back to the optimal path). 

These black cross markers stand for the moment when the obstacle actually showed on the screen. The 
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upper subplot depicts the input speeds of the left handle. The middle subplot represents the input 

speeds on the right handle. The bottom subplot illustrates the absolute difference between left and 

right input speeds. (a). The 11
th
 subject was avoiding 6

th
 ~ 8

th
 obstacles in manual control. Collisions 

occurred within the 6
th
 and the 7

th
 obstacles. (b). The 6

th
 subject was avoiding 4

th
 ~ 6

th
 obstacles in 

HSC. Collisions occurred within both the 4
th
 and the 6

th
 obstacles. (c). The 3

rd
 subject was avoiding 1

st
 

~ 3
rd

 obstacles in supervisory control. Collisions occurred within all three obstacles. (d). The 4
th
 

subject was avoiding 9
th
 ~ 11

th
 obstacles in supervisory control. Collisions only occurred within the 

10
th
 obstacles. (e). The 5

th
 subject was avoiding 5

th
 ~ 7

th
 obstacles in supervisory control. Collisions 

occurred within both the 6
th
 and the 7

th
 obstacles. (f). The 6

th
 subject was avoiding 9

th
 ~ 11

th
 obstacles 

in supervisory control. Collisions only occurred within the 10
th
 obstacles. 

      In manual control, the 11
th

 subject ran into collisions within both 6
th

 and 7
th

 obstacle and 

succeeded in avoiding the 8
th

 obstacle. However the subject’s speed manipulation was 

apparently different between 6
th

 and 7
th

 avoidance (figure 2.10-a). No significant decrease in 

either of these two speed inputs was found when the vehicle was in the 6
th

 obstacle, while a 

distinct jitter was observed in the next avoidance. Therefore we proposed that the collision in 

6
th

 obstacle was caused by the subject’s no response because of total ignorance (type I 

collision). But the subject clearly reacted to the 7
th

 obstacle, though still ran into collision 

(either type II or type III collision). Some situation occurred for the 6
th

 subject’s performance 

in HSC from the 4
th

 to 6
th

 obstacle (figure 2.10-b). While the subject mistakenly ran into two 

collisions (4
th

 and 6
th

 obstacle), the later one (6
th

 obstacle) have more significant reaction in 

the speed inputs. It is interesting to notice that even though the sudden decreases in speed 

input existed, these decreases overlaps fall into the red highlighted segments of the speed 

input signal. This means that the subject did respond to the obstacle when the vehicle had 

already collided to the obstacle and the simulator had paused. Thus these cases should also be 

attributed to type I collision. In supervisory control, the subject should first pull back at least 

one of the handle to seize the control authority from automation. Thus it is easier to identify 

whether the subject responded to the obstacle in supervisory control: at least one of the speed 

input should have an obvious decrease below 0.6. Otherwise the subject definitely didn’t 

intervene in the system. It is observed from figure 2.10 (c), (d), (e), (f) that there always 

existed a clear sudden decrease in at least one side of the speed inputs before the red 

highlighted segments. This indicates the fact that all subjects clearly intervened in the control 

loop before the collision occurred.  

      Regarding the metric to identify whether the subject notice the obstacle or not, it is better 

to use the absolute difference between left and right speed inputs instead of the individual 

input speed. In some cases, subject preferred to only pull back the left handle while the others 

the opposite way. But we can tell from all subplots in figure 2.10, regardless of the 

experiment conditions, there were always a significant reaction on the absolute difference as 

long as the subject responded to the obstacle. Here we set 0.4 as a relatively fair tolerance to 

clarify the subject’s intervention while get rid of the speeds variation during normal steering 

activities between obstacles (the tolerance 0.4 was chosen because it could detect the obvious 

change in turning angle, and also reject those normal jitters). Thus reaction time of the 

subject’s intervention towards the obstacle becomes: 
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intervention obstacle intervention,t t if t exist

RT
Inf otherwise


 


  (2.2) 

tintervention stands for the very first moment during each obstacle avoidance when

obstacle collision
0.4,

left right
v v t t t    . vleft and vright is the speed input on left and right side, 

respectively. tobstacle represents the moment when collision occurred.  

     Besides the type I collision, further categorization is needed to distinguish between type II 

and type III collisions. As the vehicle is steered by skid steering, a theoretical maximum 

steering angle can be simulated with the dynamic model used in this study. In figure 2.11, the  

 

Figure 2.11. Ideal obstacle avoidance in different initial vehicle speed and different TTC (time to 

collide). In each subplot, left turning is driven under 0.2m/s 1m/s
l r

v v  , and right turning is driven 

under 1m/s 0.05m/s
l r

v v  . From left to right, each curve represents the trajectory with TTC 

averagely varies from 1.5s to 7s. Top Left: vehicle speed at 0.7m/s. Top right: vehicle speed at 0.8m/s. 

Bottom left: vehicle speed 0.9m/s. Bottom right: vehicle speed at 1m/s. 

 

plots show vehicle’s trajectory within two different steering maneuvers under several different 

initial vehicle speeds.  Hypothetically the vehicle has an initial speed towards the center of the 

obstacle, and these left turns depict a modest steering, where maximum speed is generated on 

one side and 0.05m/s is driven on the other side. In contrast, those right turns represent a more 

aggressive avoidance, where maximum speed is inserted on one side and minimum on the 
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other side. The steering maneuver is theoretically the maximal avoidance the vehicle can 

perform. As illustrated in figure 2.11, with constant steering speeds on both tracks to avoid 

the obstacle, the hit ratio is noticeably influenced by the initial speed of the vehicle. With 

vehicle initial speed at 1m/s, it is possible to avoid the obstacle with TTC at least 2.5 seconds 

(3
rd

 right turning curve in bottom right subplot.). However, in the same circumstance, but with 

vehicle speed at 0.7m/s, at least 3.5 seconds is required to avoid the obstacle (5
th

  right turning 

curve from right to left, figure 2.11-a ). This also testify the fact that the subject had more 

difficulty in avoiding the obstacle in HSC due to slower vehicle speed (figure 2.9).  Here the 

trajectory of maximum steering with initial speed at 0.7m/s is used to distinguish type II and 

type III collisions. The difference between type II and type III collisions is illustrated in figure 

2.12.  

 

 

 

 

 

 

 

Figure 2.12. Illustration of the difference between type II and type III collisions. The colored curves 

represent the maximum steering the vehicle can perform. (a) type II collision depicts the moment 

when the subject responded to the obstacle, while maximum steering on both direction could not avoid 

the obstacle. (b)  Type III collision indicates the moment when the subject responded to the obstacle, 

and at least the maximum steering could still avoid the obstacle. 

In this way the total collisions shown in figure 2.6 was categorized into three types of 

collisions, displayed in figure 2.13. 

 

Figure 2.13. The number of three different types of collisions in each experiment condition.  
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Collision categorization in each experiment conditions is summarized in table 2.4. Type I 

collision occurred once in manual control and twice in HSC. Specifically, the 11
th

 subject had 

type I collision within 6
th

 obstacle in manual control, and the 6
th

 subject ran into type I 

collision within the 4
th

 and the 6
th

 obstacle in HSC. This result collides with the speed inputs 

shown in figure 2.10-a, b. Aside from type I collision, HSC ran into appreciably more type II 

collisions than the other two conditions.  

 Manual HSC Supervisory 

Type I 1 2 0 

Type II 1 8 2 

Type III 19 27 25 
Table 2.4. Summary of collision types in three experiment conditions. 

Regardless of the reaction time in type I collision (which is infinite), the reaction time in type 

II and type III collisions are gathered in figure 2.14. 

 

Figure 2.14. Left: Summary of subjects’ reaction time in type II and type III collisions. Right: The 

vehicle’s absolute change of lateral deviation in type III collision. It calculates from the moment the 

obstacle popped up on the screen to the moment the collision occurred. 

We can tell from the figure that though type II collisions occurred, subjects still had a 

relatively low reaction time (<3 s) compared to supervisory control (>4 s). It was ambiguous 

to calculate the statistical significance for each type of collision, since each group has 

different number of data points, plus the fact that some subjects actually contributed more 

collisions than the others.  But it’s interesting to mention that when solely comparing the 

deviation changes for type III collisions (figure 2.14-right), we found a noticeable difference 

(not statistically) between conditions. The absolute change of lateral deviation, between the 

moments the obstacle popped up to the moment type III collision occurred, reflects the effort 

the subject made to avoid the obstacle.  When neglecting the subject identity, Manual control 

had the highest change in lateral deviation (M =1.650, STD=0.818 [m]), HSC the second (M 

=1.136, STD=0.673 [m]) and supervisory control with least changes (M =0.692, STD=0.603 

[m]) in average. 

As a result, the mean reaction time, averaged by 12 obstacle avoidances, was calculated for 

each subject in three experiment conditions (type I collision excluded). The comparison is 
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shown in figure 2.15. One way repeated ANOVA showed a significant difference between 

conditions (F(2,22) = 5.15, p<0.01). Post hoc test found a significant difference supervisory 

control and manual control (p<0.01). Averagely speaking, supervisory control improves the 

reaction time towards obstacle by 22% compared to manual control, though the collision ratio 

is not significantly increased. No statistically significant difference was found when compared 

HSC with either of the other two conditions. 

 

Figure 2.15. Comparison of each subject’s mean reaction time towards the obstacle in three 

experiment conditions, averaged by 12 obstacle avoidances (type I collisions were excluded if any). 

‘○’ , ‘●’ ,‘● ●’ means a significance with p<0.1, p<0.05 and p<0.01, respectively. 

 Manual [s] HSC [s] Supervisory [s] 

1 1.32 1.28 1.61 

2 1.09 1.13 1.59 

3 1.01 1.12 1.46 

4 1.40 1.33 1.84 

5 1.24 1.24 1.58 

6 1.61 1.60 1.99 

7 1.36 1.19 1.66 

8 1.19 1.42 1.38 

9 1.52 1.73 1.74 

10 0.88 1.87 1.02 

11 1.51 1.03 1.75 

12 1.10 0.94 0.99 

Mean 1.27 1.32 1.55 

STD 0.22 0.28 0.30 
Table 2.5. Summary of each subject’s reaction time in three experiment condition, with group mean 

and stand deviation. 
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Therefore it can be concluded that subjects in supervisory control consumed more reaction 

time towards the obstacle than manual control. Even though subjects totally ran into more 

collisions in HSC, a noticeable number of times were biased by the experiment design, which 

resulted into type II collisions. At last, HSC did not significantly increase subjects’ reaction 

time in obstacle avoidance.  

2.2.4 Performance – Distance traversed in obstacle avoidance 
     The subject’s steering maneuver may also be altered by the assisted conditions. Since the 

guidance always tried to guide the vehicle back to the centerline regardless of the obstacle, it 

could help the subject to recover to the optimal path if the subjects conformed to the guidance 

after the avoidance. In supervisory control, it is necessary for the vehicle to be back to the 

optimal path within the tolerance (±0.6m) in order to let the automation retrieve the control 

authority. This experiment setting could stimulate the subject to recover back to the optimal 

path quicker so as to return the steering task back to the automation. With collisions excluded, 

the mean distance traversed in obstacle avoidance of each subject is shown in figure 2.16 and 

table 2.6, where both group mean and 95% confidence interval are also displayed. 

 

Figure 2.16.  Each subject’s mean traversed length with respect to the optimal path, averaged by all 

successful obstacle avoidances. ‘○’ , ‘●’ ,‘● ●’ means a significance with p<0.1, p<0.05 and p<0.01, 

respectively. 

 Manual  HSC Supervisory 

Distance in obstacle 

avoidance [m] 
x   s   x  s  x  s  

20.614 2.076 17.651 1.489 18.878 2.245 

 

Test x  [m] p value 

Manual-HSC -2.963 0.02 

HSC-Supervisory +1.227 0.248 

Manual-Supervisory -1.736 0.120 
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Table 2.6. summary of the mean distance traversed during obstacle avoidance by each subject. The 

upper table shows the group mean and standard deviation, the bottom table gives multiple 

comparisons between conditions.  

The results showed that the distance traversed by vehicle within obstacle avoidance was 

significantly affected by the experiment conditions, F(2,22)=7.39, p<0.01. Post hoc tests 

revealed a significant difference between HSC and Manual control conditions (p<0.05), but 

not between other comparisons. Therefore in HSC, the subjects can return to the optimal path 

with less length with respect to the optimal path. Subject’s steering maneuver was 

significantly adapted in HSC during the recovery period after the obstacle avoidance. 

 

2.2.5 Performance – Lateral deviation in slip recovery 
    The reliability of the subject’s system awareness is tested by introducing a slip event at the 

end of the each trial for every subject. That is to say, the slip event was presented to each 

subject in all three conditions. A collection of all subjects’ steering performance during slip 

recovery is shown in figure 2.17, where HSC had a bit less amplitude from eyeballing.  

 

: Figure 2.17.  Performance of lane keeping in slip recovery module. Blue: manual control, green: 

HSC, red: supervisory control. The black dashed curve represents the prescribed optimal path. 
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Figure 2.18.  Maximum absolute lateral deviation from each subject’s performance during slip 

recovery.  (a) A collection of subjects’ maximum lateral error in all three conditions. (b) The 

maximum lateral error from each subject’s steering when they encountered the slip for the first time.  

‘○’ , ‘●’ ,‘● ●’ means a significance with p<0.1, p<0.05 and p<0.01, respectively. 

      The optimal path requires a left turn at the place where the slip was triggered. All subjects 

eventually succeeded in returning to the optimal path. However their maximal lateral error 

was noticeably different.  The maximal lateral deviation is the metric that can be immediately 

influenced by the subject’s awareness of the slip event. The longer the subject took to respond 

to the slip event, the larger of the maximum lateral error. Here the absolute value of maximum 

lateral error was used to avoid negative values, in case some subjects might restore the lane 

keeping from the slip event on the left side of the path. However since each subject was tested 

with a slip event three times, once per experimental conditions, they could have expectation 

on the slip event in the latter two trials. The subject could prepare for the slip event if they 

expected it, which would result into much less deviation before the vehicle converges to the 

optimal path again. As expected, if each subject’s performance of the slip event in all three 

conditions were taken into account, no effects on the experimental conditions could be found 

(figure 2.18-a). Thus in order to minimize this expectation effect, each subject’s performance 

at the first time the slip was triggered was separately selected for comparison (figure 2.18-b). 

Therefore there were only four subjects for each group. Nevertheless, one way independent 

ANOVA indicated a significant difference between conditions in the maximum absolute 

lateral error, F(2,9)=7.429, p<0.05).  Post hoc test revealed that supervisory control induced 

significantly higher maximum lateral error than manual control (p<0.05). HSC had a closed-

to-significance difference to supervisory control (p=0.089). No statistically significant 

difference was found between HSC and manual control. Larger subject volume is needed to 

determine whether the operator will have a less lateral deviation in HSC than in supervisory 

control, which is likely to happen from the results in this experiment.   

 

2.2.6 Performance – Accuracy in secondary task 
Besides the actual need of secondary task in deep sea operation, the subject’s accuracy in 

responding to the secondary task is an indirect approach to evaluate his/her mental workload 

in performing the primary steering task. Figure 2.19 shows each subject’s accuracy in 

different task modules, and a summary of accuracies in secondary task is listed in table 2.7 

and 2.8. 

  

Subject identifier: 
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Figure 2.19. Overview of accuracy distributions of subjects’ performance in answering secondary task 

(correlation between primary and secondary task.). Top-left: in total. Top-right: within obstacles. 

Bottom-left: between obstacles. Bottom-right: slip recovery. 

 Manual HSC Supervisory 

Total Within Between Slip Total Within Between Slip Total Within Between Slip 

S1 68.5 46.1 85.7 70.0 77.4 62.7 87.7 73.9 86.3 83.8 90.1 81.3 
S2 75.7 45.5 97.2 74.4 88.8 80.2 96.9 78.6 75.2 61.5 94.9 54.5 
S3 76.8 79.8 91.2 35.2 80.1 71.7 94.4 40.5 58.3 22.0 89.1 50.0 
S4 34.7 16.2 56.6 14.3 44.5 12.5 74.4 12.2 44.6 12.5 73.4 15.2 
S5 88.1 82.9 93.4 85.3 88.9 76.3 96.5 86.8 73.8 39.8 95.9 76.2 
S6 67.4 54.3 85.4 43.5 82.9 71.4 93.8 63.0 79.0 55.7 94.4 80.6 
S7 47.7 15.2 68.8 39.5 53.3 15.1 79.2 24.4 54.9 21.3 86.5 20.4 
S8 89.8 84.8 92.2 92.3 68.0 46.5 80.1 70.5 85.1 64.3 96.6 87.2 
S9 49.3 19.0 75.6 38.9 63.3 47.0 78.7 40.0 53.9 17.8 80.6 48.6 

S10 70.7 65.3 77.8 59.4 68.4 40.4 90.4 53.7 73.8 50.6 88.7 76.5 
S11 74.9 57.1 94.2 63.3 92.9 83.2 98.9 89.8 81.8 63.9 96.4 78.9 
S12 66.4 36.5 92.2 55.3 74.4 50.0 92.9 58.5 66.5 30.1 91.9 56.8 

Table 2.7. Each subject’s response accuracy in the secondary task, distinguished by experiment 

conditions and task modules, unit [%]. Yellow highlighted identity numbers represent subjects whose 

accuracies in manual control between obstacles were less than 90%. 

 

 Manual  HSC Supervisory 

Accuracy of secondary 

task [%] 
x   s   x  s  x  s  

84.17 12.00 88.67 8.53 89.92 7.05 

 

Test x  [%] p value 

Manual-HSC +4.5 0.16 

HSC-Supervisory +1.3 1 

Manual-Supervisory +5.8 p<0.05 
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Table 2.8. Summary of subjects’ accuracies in secondary task between obstacles. Top: group means 

and standard deviation, Bottom: multiple comparisons between conditions and their significance.                                                                                              

The results showed that the accuracy of the secondary task between obstacles was 

significantly affected by the experiment conditions, F(2,22)=5.046, p<0.05, but not for within 

obstacles and slip recovery. Post hoc tests revealed a significant difference between 

supervisory and manual control between obstacles (p<0.05), albeit between other comparisons. 

However, taking the 4
th

 subject as an example, it seems HSC and supervisory control can 

improve these subjects who responded badly to the secondary task in manual control. 

Moreover for the subjects who already had satisfactory accuracies in manual control, the 

treatment did not decrease the performance according to statistics.  To take a step further, 

Here we selected the subjects whose responses were less satisfactory in manual control 

(specifically, accuracy <90%), and did another statistical analysis only with these subjects’ 

data. In fact, subjects with identity number 1,4,6,7,9,10, had less accuracies than 90% in 

manual control (highlighted subjects in table 2.7). In this case, both supervisory control and 

HSC had a significant higher accuracy than manual control (table 2.8).  Averagely HSC 

improved the accuracy by 9.1% while supervisory control brought 10.6% improvement. 

Therefore it is possible that these two assist conditions could bring more benefits to subjects 

who need improvements in secondary tasks, while others could maintain their accuracies 

under assist conditions. 

 Manual  HSC Supervisory 

Accuracy of secondary 

task [%] 
x   s   x  s  x  s  

74.98 11.02 84.03 7.66 85.60 7.52 

 

Test x  [%] p value 

Manual-HSC +9.1 p<0.05 

HSC-Supervisory +1.5 0.847 

Manual-Supervisory +10.6 p<0.05 

Table 2.9.  Further comparison with specially selected subjects, who had less accuracy in manual 

control between obstacles. The table is arranged in the same manner as table 2.8. 
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Figure 2.20. Overview of each subject’s reaction time towards the secondary task, categorized by task 

modules and experiment conditions. 

Figure 2.20 showed each subject’s mean reaction time in different task modules. However no 

significant difference was found in any of the comparisons. Actually the reduction of reaction 

time introduced by haptic shared control to the secondary task in a similar study of car driving 

was also not substantial (Griffiths & Gillespie, 2005). It was difficult to regulate all subjects’ 

vigilance and strength in responding to the secondary task the same level. Some subjects had 

a high and constant level of accuracy with low reaction time across three conditions (e.g. 2
nd

 

subject, marked by ‘○’ in figure 2.19, 2.20), while some subjects’ performances were much 

more influenced by the assist conditions (e.g. 4
th

 subject, marked by ‘•’ in figure 2.19, 2.20). 

Thus their performances of the secondary task varied significantly, and severely affected by 

individual differences. However it is noticeable that in most of the cases, HSC and 

supervisory control can improve subjects’ response accuracies of secondary task during 

between obstacles modules, and maintain the performances from those who already have 

relatively higher accuracies in manual control.  

 

2.2.7 Additional Metrics 

Mean Vehicle Speed 

    Figure 2.21 illustrates the simulated mean vehicle’s heading speed in different task modules. 

Although vehicle speeds in manual and supervisory control had much higher variation 

between subjects than HSC, it is still obvious that the subject’s preference vehicle speed under 

manual control is quite closed to the vehicle speed in supervisory control. Subjects tended to 

agree with the heading speed dominated by the guidance and not to accelerate in HSC. This 
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obedience resulted into a significantly slower vehicle speed in HSC both between obstacles 

and within obstacles, compared to the other two conditions (table 2.10). However this 

difference vanished in slip recovery. 

 

Figure 2.21. Average Speed during different task modules. ‘●’ ,‘● ●’ means a significance with p<0.1, 

p<0.05 and p<0.01, respectively. 

 

 

 

 Manual  HSC Supervisory 

Average speed [m/s] x   s   x  s  x  s  

Total  0.743 0.038 0.670 0.014 0.758 0.032 

Within Obstacle 0.666 0.040 0.605 0.027 0.679 0.068 

Between Obstacle 0.850 0.042 0.740 0.013 0.865 0.021 

Slip recovery 0.528 0.105 0.467 0.044 0.504 0.074 

 

Test 

pairs 

Total Within Obstacle Between Obstacle Slip Recovery 

x  [m/s] p value x  [m/s] p value x  [m/s] p value x  [m/s] p value 

Manual-HSC -0.073 p<0.01 -0.061 p<0.01 -0.110 p<0.01 -0.061 0.393 

HSC-Supervisory +0.088 p<0.01 +0.074 p<0.01 +0.125 p<0.01 +0.038 0.429 

Manual-Supervisory +0.015 0.832 +0.013 - +0.015 - -0.024 - 

Table 2.10. Summary of vehicle’s mean heading speed, categorized by experiment conditions and task 

modules. Top: group means and standard deviation. Bottom: multiple comparisons and their 

significances.  
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Total Time Spent 

    As the subject had been informed from the task description that the whole steering task was 

time-optimal before the actual experiment, the times spent to complete the whole path in each 

experiment condition are shown in figure 2.22, with group means and 95% of confidence 

interval. One way repeated ANOVA discovered a significant difference between conditions, 

(F(2,22) = 10.19, p<0.01).  More specific, subjects spent more time in HSC than manual 

control (p<0.01) and supervisory control (p=0.033), according to the post hoc tests. This 

result collides with the aforementioned comparison of vehicle speed. Since the simulated 

vehicle ran much slower in HSC than the other two conditions, it required more time to 

complete the whole task. Moreover, regardless of the collision types, HSC induced more 

collisions than the other two conditions (figure 2.6), which brought longer time penalty in the 

actual experiment. 

 

Figure 2.22. Total time spent to complete the whole optimal path in each experiment condition. ‘○’ , 

‘●’ ,‘● ●’ means a significance with p<0.1, p<0.05 and p<0.01, respectively. 

 

2.2.8  Control Effort – STD of the angle difference 

The subject controlled the simulated vehicle speed through these two rotary handles. Thus 

their control efforts directly influenced the variation of the turning angles of these two 

‘joysticks’.  The higher of the variation, the more steering activities the subject performed 

during the experiment. Since there were two handles, the standard deviation of each handle’s 

turning angle was calculated separately (figure 2.23-a,b). Before calculating, the raw data of 

the turning angles collected from the real time computer had been filtered by a non-causal 

low-pass filter at a cut-off frequency of 10 Hz. One way repeated ANOVA found significant 

difference between conditions between obstacle and in slip recovery, but not within obstacles. 

The results from multiple comparisons are shown in table 2.11. The subject had significantly 

less STD in turning angles than the other two conditions between obstacles (p<0.01).  

Conversely, in slip recovery, at least on the left handle, the subject had significantly more 

variations of turning angle in supervisory control than the other two (p<0.01).  In addition, as 

the simulated vehicle heading angle is adjusted by the relative absolute difference between the 
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speed of left and right track, the difference between the left and right handles directly exhibits 

the subject’s steering activity. Hence the standard deviation of the difference between left and 

right turning angles was also calculated for comparison (figure 2.23-c).  
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Figure 2.23. Standard deviation of the controlled turning angles by each subject, categorized by task 

modules and experiment conditions. The group means and 95% of confidence interval are also shown. 

In each plot, the left subplot depicts the situation within obstacles, the middle subplot for between 

obstacles, and slip recovery in the right subplot. (a) STD of the turning angle on the left handle. (b) 

STD of the turning angle on the right handle. (c) STD of the difference between left and right handle. 

‘○’ , ‘●’ ,‘● ●’ means a significance with p<0.1, p<0.05 and p<0.01, respectively. 

 Manual  HSC Supervisory 

STD [m/s] x   s   x  s  x  s  

Within Obstacle(L/R) 18.76/16.31 1.93/1.76 19.33/16.86 2.60/2.53 20.25/17.99 3.18/2.04 

Between Obstacle(L/R) 7.53/7.58 1.34/1.13 6.84/6.66 1.14/1.19 3.96/3.52 1.69/1.49 

Slip recovery(L/R) 16.12/5.39 1.89/3.27 17.14/7.91 2.60/2.12 20.30/4.66 2.20/2.65 

 

Test 

pairs 

Within Obstacle Between Obstacle Slip Recovery 

x  [m/s] p value x  [m/s] p value x  [m/s] p value 

Manual-HSC(L) 0.552 - -.689 0.837 1.026 0.309 

Manual-HSC(R) 0.552 - -.918 0.286 2.520 0.128 

HSC-Supervisory(L) 0.922 0.983 -2.885 p<0.01 -3.162 p<0.01 

HSC-Supervisory(R) 1.132 0.545 -3.145 p<0.01 -3.244  p<0.05 

Manual-Supervisory(L) 1.482 0.439 -3.574 p<0.01 -4.188 p<0.01 

Manual-Supervisory(R) 1.684 0.096 -4.063  p<0.01 -0.724 - 

Table 2.11. Summary of the STD of turning angles on left and right handles. Top table shows the 

group mean and standard deviation in each task module. Bottom table gives the results from multiple 

comparisons.  

For the difference in turning angles, no significant difference between conditions was found 

within obstacles (table 2.12).  However one-way repeated ANOVA reported a significant 

main effect in two assist conditions between obstacles (F(2,22=52.07), p<0.01).  Post-hoc 

comparison of the three groups indicated strong difference between all three conditions. Most 

obviously Supervisory control had less STD of the angle difference between obstacles (M = 

5.23, Std = 1.86) than both manual control and HSC (p<0.01 for both cases). HSC further 

induced a bit more variation (M = 11.88, Std = 1.76, p<0.01) than manual control (M = 9.05, 

Std = 1.37). Moreover during slip recovery, a statistical difference was also found between 

conditions (F(2,22) =4.70, p=0.02).  But according to post-hoc multiple comparisons, HSC 

(M = 20.95, Std = 4.31) and supervisory (M = 21.07, Std = 2.82) control both resulted into a 

slightly higher variation than manual control (M = 18.19, Std = 3.41), but not statistically 

significant, neither the difference between HSC and supervisory. 

 Manual  HSC Supervisory 

STD [deg] x   s   x  s  x  s  

Within Obstacle 29.87 2.64 32.38 4.25 32.41 3.23 

Between Obstacle 9.05 1.37 11.88 1.76 5.23 1.86 

Slip recovery 18.19 3.41 20.95 4.31 21.07 2.82 

 

Test 

pairs 

Within Obstacle Between Obstacle Slip Recovery 

x  [m/s] p value x  [m/s] p value x  [m/s] p value 

Manual-HSC 2.52 0.125 2.83 p<0.01 2.76 0.091 

HSC-Supervisory 0.03 - -6.65 p<0.01 0.13 - 

Manual-Supervisory 2.55 0.074 -3.82 p<0.01 2.88 0.074 
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Table 2.12. Summary of the STD of the difference between turning angles on left and right handles. 

Top table shows the group mean and standard deviation in each task module. Bottom table gives the 

results from multiple comparisons. 

 

2.2.9  Control Effort – Steering Torque 

Since subjects were asked to grab the handles throughout the experiment, they could 

conform to the guidance in HSC. Therefore the subjects might still have a high variation on 

the turning angles of the handles due to the guidance force, but did not concentrate on the 

steering instead. Thus the torque inserted onto the handle is a better metric to measure 

subjects’ physical workload. Figure 2.24 depicts the standard deviation inserted torques on 

both handles in three experiment conditions, categorized by task module. Handle was taken as 

a factor and a two-way repeated ANOVA was calculated (table 2.13). The ANOVA revealed 

that within obstacles, assist condition had a strong effect in within obstacle regardless of 

which handle it was (F (2,22) = 89.73, p<0.01).  Post-hoc gave significant difference between 

all three conditions (p<0.01). The assist conditions also brought a significant difference 

between obstacles (F (2,22) = 6.60, p<0.01). Specifically, HSC had a difference compared 

manual control (p=0.04), supervisory control also caused significantly higher torque variation 

than manual control (p<0.01).  The main effect by assist condition continued in slip recovery 

(F (2,22)=152.09, p<0.01), where supervisory control was significantly higher than manual 

control (p<0.01), and HSC was even higher than both manual and supervisory control  

(p<0.01).  Handle, as a factor, only showed a significant effect within obstacles 

(F(1,11)=10.55, p<0.01) and slip  recovery (F(1,11)=30.80, p<0.01), along with a modest 

interaction  with assist conditions within obstacle (F(1.3,14.4)=5.70, p=0.024) and an 

interaction in slip recovery (F(2,22)=12.84, p<0.01).  Within subjects contrast indicated that 

the interaction was only significant when manual control was compared to HSC within 

obstacles (F(1,11) = 20.25, p<0.01), but extremely strong present in all three conditions 

during slip recovery(p<0.01). The effect from handle is reasonable since the slip event 

occurred during a left turn, so that subjects needed to steer the left track much more often than 

the right track.   
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Figure 2.24. STD of each subject generated torque, categorized by task module, experiment conditions 

and left-or-right hand. Top: within obstacles. Middle: between obstacles. Bottom: slip recovery. 

Significance on the main effect is marked regardless of which handle it is. ‘○’ , ‘●’ ,‘● ●’ means a 

significance with p<0.1, p<0.05 and p<0.01, respectively. 

 Manual  HSC Supervisory 

STD [N.m] x   s   x  s  x  s  

Within Obstacle 0.097/0.061 0.034/0.023 0.205/0.206 0.044/0.038 0.165/0.150 0.048/0.019 

Between Obstacle 0.038/0.032 0.011/0.011 0.062/0.068 0.031/0.042 0.056/0.054 0.013/0.012 

Slip recovery 0.058/0.032 0.033/0.013 0.228/0.140 0.031/0.029 0.126/0.109 0.021/0.042 

 

Test 

pairs 

Within Obstacle Between Obstacle Slip Recovery 

x  [N.m] p value x  [N.m] p value x  [N.m] p value 

Manual-HSC 0.126 p<0.01 0.030 0.04 0.139 p<0.01 

HSC-Supervisory -0.048 p<0.01 -0.010 0.67 -0.067 p<0.01 

Manual-Supervisory 0.078 p<0.01 0.020 p<0.01 0.073 p<0.01 

Table 2.13. Summary of the STD of the difference between turning angles on left and right handles. 

Top table shows the group mean and standard deviation in each task module. Bottom table gives the 

results from multiple comparisons. 
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2.2.10 Control Effort – Reversal rate 
The reversal rate depicts the frequency of reversal of the handle, steered by the subject. The turning 

angles of these two handles were filtered by a non-causal low pass filter with cut-off frequency at 10 

Hz, while only turning angle differences more than 5° are taken into account (figure 2.25).  

 
Figure 2.25. An example on how the reversal was calculated. This figure shows the turning angles of 

these two handles before the first obstacle, steered by the 1
st
 subject. Top: Left handle. Bottom: Right 

handle. Black curves represent the filtered turning angles and these red-cross markers stand for the 

moment when the reversal accounted.  

Figure 2.26 shows the reversal rate on both handles, and table 2.14 summarizes the group 

statistics.  
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Figure 2.26. Each subject’s reversal rate per unit of time on both handles, categorized by task module, 

experiment conditions and left-or-right hand. The group means are shown with 95% of confidence 

interval. Top: Within obstacles. Middle: Between obstacles. Bottom: Slip recovery. Significance on the 

main effect is marked regardless of which handle it is. ‘○’ , ‘●’ ,‘● ●’ means a significance with p<0.1, 

p<0.05 and p<0.01, respectively.  

 Manual  HSC Supervisory 

STD [Hz] x   s   x  s  x  s  

Within Obstacle (L/R) 0.667/0.652 0.497/0.397 0.524/0.544 0.112/0.249 0.644/0.575 0.413/0.346 

Between Obstacle(L/R) 0.310/0.367 0.173/0.202 0.255/0.250 0.113/0.128 0.060/0.056 0.024/0.022 

Slip recovery(L/R) 0.950/0.486 0.499/0.346 0.937/0.484 0.326/0.218 0.957/0.384 0.535/0.443 

 

Test 

pairs 

Within Obstacle Between Obstacle Slip Recovery 

x  [Hz] p value x  [Hz] p value x  [Hz] p value 

Manual-HSC -0.125 0.514 -0.086 0.526 -0.008 - 

HSC-Supervisory 0.076 0.721 -0.195 p<0.01 -0.040 - 

Manual-Supervisory -0.050 0.826 -0.281 P<0.01 -0.048 - 

Table 2.14. Summary of the reversal rate on left and right handles. Top table shows the group mean 

and standard deviation in each task module. Bottom table gives the results from multiple comparisons. 

Similarly the left-or-right hand was taken as an additional factor and two ways repeated 

ANOVA was calculated. A significant difference was only found between conditions for the 

reversal rates between obstacles (F(2,22)=15.16, p<0.01). Post hoc test reported a significant 

difference between HSC and supervisory control (p<0.01), and between manual and 

supervisory control (p<0.01).  No noticeable difference was found for the reversal rates within 

obstacles and during slip recovery. 

To sum up the data analysis in control effort, regardless of the metric we chose, the 

difference between supervisory control and manual control was always evident when the 

simulated vehicle was between obstacles. Subjects conducted less steering activities, though 

with slightly more torques, on the master device in supervisory control than manual control 

when the lane keeping was the only task to perform. However supervisory control did cause 

more torques than manual control when the vehicle ran into unexpected events (i.e. obstacle, 

slip). This indicates that subjects felt more stressed by the unexpected events in supervisory 

control, and possibly more significant co-contraction was generated when the subject 

intervened in the control loop. What’s more, HSC induced more physical effort to the subject 

than the other two conditions, especially within obstacles, and in slip recovery. The subject 

needed to confront with the faulty guidance during these periods, which directly resulted into 

much higher torques.   

 

 

 

 



43 
 

2.3 Subjective Evaluation 
Besides the objective metrics to evaluate the subjects’ performance and control efforts, a 

self-reported workload was obtained using the standard NASA TLX questionnaires in paper 

copies 
1
.  Each subject was asked to rate their subjective feelings in six different aspects: 

mental demand, physical demand, temporal demand, performance, effort and frustration. 

However a big limitation of the results from the NASA TLX questionnaire is that subject’s 

subjective feeling cannot be distinguished between normal operation between obstacles and 

within obstacles. These results function more like a reflection on the subjects’ general grading 

of the experimental conditions for the whole experiment contents. Actual NASA TLX 

Workload was subdivided into six measures in figure 2.27. 

 

Figure 2.27. Self reported workload for the total experiment content, categorized by six measures 

(Blue: Manual control, Green: HSC, Red: Supervisory control). ‘○’ , ‘●’ ,‘● ●’ means a significance 

with p<0.1, p<0.05 and p<0.01, respectively. 

One way repeated ANOVA only reported a significant difference between experimental 

conditions for physical demand, (F(2,22)=5.95, p<0.01). Sidak post hoc analysis revealed that 

the subjects felt more physical demand subjectively in manual control than in supervisory 

control (p<0.01), which collides with the conclusion from objective measurements. Aside 

from physical demand, subjects’ rating in other five measures found no statistical difference, 

and some even had noticeably opposite rating preference (table 2.15). Taking the mental 

demand as an example, while majority rated HSC with less mental load than manual control, 

the 10
th

 subject showed an opposite rating propensity. It is worthwhile to notice that the 10
th

 

subject also ran into the most number of collisions in HSC among all three conditions (figure 

2.6). Similarly, for frustration, while the other subjects felt more frustrated in HSC, the 1
st
 and 

2
nd

 subject exhibited appreciably less frustration with HSC than the other two conditions. 

                                                           
1
 The NASA TXL form can be obtained from: 

http://humansystems.arc.nasa.gov/groups/tlx/downloads/TLXScale.pdf 
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Besides the individual difference, the main reason that causes these opposite rating preference 

was subject’s self-weighting of their feelings between different task modules. Some 

emphasized their experience on the benefits brought from HSC and supervisory control 

during normal operation between obstacles, while the others’ assessment of the assist 

conditions were more influenced by those side-effects from assist conditions during 

unexpected conditions. 

Table 2.15. Overview of all subject’s subjective answers in task workload. Abbreviation: M: Manual 

control, H: Haptic shared control, S: supervisory control. 

  

 Mental 

Demand [%] 

Physical 

Demand [%] 

Temporal 

Demand [%] 

Effort [%] Performance 

[%] 

Frustration 

[%] 
Subject M H S M H S M H S M H S M H S M H S 

1 60 35 75 50 30 55 20 45 75 60 80 55 50 25 65 60 15 75 

2 75 50 65 90 25 55 70 30 80 75 90 60 85 65 80 45 30 70 

3 50 35 25 75 70 35 60 55 65 50 65 30 70 80 55 50 60 40 

4 75 50 55 80 45 55 50 65 90 90 30 40 45 25 90 30 75 90 

5 75 50 65 70 50 45 75 60 65 75 60 25 85 50 65 50 60 75 

6 60 45 75 80 55 65 65 40 70 50 35 55 60 50 35 40 75 65 

7 50 65 75 65 80 45 45 50 90 70 55 65 60 55 75 25 60 75 

8 80 60 50 85 65 35 85 75 50 45 70 85 85 70 65 45 60 30 

9 75 60 90 95 60 25 70 80 90 60 75 85 90 60 20 60 85 40 

10 45 80 55 65 75 30 40 55 30 70 50 80 50 75 30 40 70 30 

11 90 70 55 50 70 35 15 40 25 30 55 60 75 45 35 90 55 50 

12 60 45 25 25 75 30 50 60 45 75 70 80 50 55 45 50 75 45 
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Appendix III -Modelling Specification 
Since the current researches mainly focuses on tracked vehicles as the most popular option to 

implement deep sea mining, we hereby also choose to construct the dynamics of a tracked vehicle. The 

mathematical model used in this study to predict spatial motion of subsea crawler is developed from 

former research of terrestrial tracked vehicle in planar motion on level pavement and in non-level 

terrains (Kitano & Jyozaki, 1976; Murakami et al., 1992). As the performance of a tracked vehicle is 

principally determined by the normal and shear stress distribution at the track-terrain interface, the 

essential issue in mathematical modelling of motion of subsea tracked crawler consists of three parts: 

to discover the relationship between the track-soil interaction, design parameters of the miner and the 

control algorithm (Le, 1999). 

 

3.1  Track-Soil Interaction and Vehicle Dynamics 
The Tracked vehicle is assumed to be a rigid body moving in Euclidian 3-space, R

3
.  Two rectilinear 

coordinates are introduced: a global reference coordinate E=(X,Y,Z) and a body fixed local coordinate 

e=(x,y,z), which usually locates at the mass centre of the vehicle. By implementing Tait-Bryan angles 

to represent the rotation sequence of the body, the transformation between body-fixed coordinate and 

global coordinate system is given as follow: 

 { } [U]{ }E e   (3.1) 

Where {e}=[e1,e2,e3]
T
, {E}=[E1,E2,E3]

T
, are the base unit vectors of  local coordinate and global 

coordinate, respectively. Matrix [U] is a 3×3 transformation matrix that is obtained by X-Y-Z rotation 

sequence:  
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U R R R

  (3.2) 

In which ci = cosθi, si = sinθi for simplicity.  Similarly, the transformation matrix converts the global 

coordinate to local coordinate can be yielded as (Hong et al., 2002): 

 

2 3 1 3 1 2 3 1 3 1 2 3

2 3 1 3 1 2 3 1 3 1 2 3

2 1 2 1 2

c c c s +s s c s s -c s c

= -c c c c -s s s s c +c s s

s -s c c c

 
 
 
  

-1 T T T

z y x[U] R R R   (3.3) 

The position of an arbitrary point with the body-fixed location x can be described as a summation of 

position of the origin of body fixed coordinate and its own position vector in body fixed coordinate as: 

 c(t)= (t)+X X x   (3.4) 

Where Xc(t) is the position vector of local origin in the global coordinate system.  
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The velocity of an arbitrary point on the vehicle can be obtained by taking the time derivative of 

equation 1.4. Since the position vector in local coordinate x is constant all the time if we assume the 

subsea crawler as a rigid body without deformation throughout the simulation, the time derivative of x 

is always equal to zero. Thus the velocity is given as: 

 
c(t)= (t)+ X X ω x   (3.5) 

Where ω = [ω1, ω2, ω3]
T
 represents the rotational velocity of the vehicle.  The rotational velocity of the 

vehicle can be converted from the time derivative of the global Tait-Bryan angles.   

 

1 2 3 3 1

T T T

z 2 z y 2 3 3 2

3 2 3

0 0 θ c c s 0 θ

ω= = 0 +R θ +R R 0 = -c s c 0 θ

θ 0 0 s 0 1 θ

        
        
        
                

Tθ   (3.6) 

The acceleration of an arbitrary point is then calculated similarly as: 

 
c(t)=A (t)+ω×x+ω×(ω×x)X   (3.7) 

The acceleration vector of the mass center is: 

 

3 3

1 1

( ) C C

c j j j j

j j

t V e V e
 

   A ω   (3.8) 

The rotational acceleration can be obtained by again taking the time derivative of equation 1.6 as: 

 ω Tθ+Sθ   (3.9) 

Where 3×3 matrix S is the derivative of transformation matrix T in equation 1.6: 
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S   (3.10) 

The slip-traction force relationship of tracked vehicles plays an important role in their mobility(Wong, 

2010). The slip is essentially the relative speed between vehicle and the track. The slip velocity of an 

arbitrary point on the track is then expressed as: 

 1

C 1

( , t) ( , t) V e

 = ( , t) V e

j j

S k

j j

k

 

  

V x V x

V x ω x
  (3.11) 

where the superscript j represents one of tracks, 1 for left track and 2 for right track, respectively.  Vk 

is the local speed of two tracks, which is driven by the sprockets locate at the front side of the vehicle. 

Thus Vk is usually calculated as product of the effective radius of the corresponding sprocket and its 

revolving speed. However in the man-machine experiment involved in this study, the teleoperator is 

supposed to manipulate such local speeds by two joystick handles.  V(x,t) is the actual speed of the 

track expressed in local coordinate and x
j
 is the relative position of track with respect to the center of 
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subsea crawler.  If the slip speed is determined, then the shear displacement for a track piece i locates 

at a distance x from the front side of the vehicle is given by: 

 
si si s

t

x
s t i x  V V

V
  (3.12) 

Where is is called slip ratio, representing the ratio between slip speed and theoretical speed of the track.  

Influencing forces exert on a subsea crawler during mining can be categorized into three different 

types: 

1. Soil-track interaction (e.g. traction force, bulldozing resistance, compaction resistance) 

2. Water-vehicle interaction (e.g. hydrodynamic resistance) 

3. Other influencing forces (e.g. internal resistance, constraint forces) 

Because of the fact that the influencing forces caused by soil-track interaction usually have much 

higher magnitudes than other forces, elaboration on soil-track interaction while making approximation 

on water resistance and internal resistance is preferred (Dai et al., 2010). The traction force, sometimes 

also called tractive effort (Wong, 2010), is the main force to drive the tracked vehicle forward. To 

calculate the traction force of a tracked vehicle, the shear stress generated on the track-soil interface 

need to be determined as traction force is integral of shear stress with respect to the track-soil 

contacting area. When a driving torque is applied to the sprocket, shearing action takes place on the 

surface between track and soil. The shear stress-displacement relationship in terramechanics associates 

the slip ratio to actual thrust on the vehicle.  By equation 1.11 we can obtain the slip velocity vector in 

body fixed coordinate. However for the sake of simplicity, here we use a meshed element model to 

approximate the soil-track interaction, where the whole track is averagely partitioned into several 

segments in accordance with the number of roadwheels usually, as showed in Figure 1. 

 

Figure 3.1. Force analysis of subsea crawler and meshed element model for track-soil interaction. 
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In figure 1, each segment of track generates traction force on both longitudinal and lateral direction, 

denoted by Flong1j and Flat1j for left track as an example. j stands for the sequence of the partitioned 

track segment. Meanwhile resistances exert on the vehicle on both directions as well. Longitudinal 

resistance consists of compaction resistance and bulldozing resistance, summarized by Rlong. Lateral 

resistance is induced by relative lateral slip of each segmented track and is mostly bulldozing 

resistance, represented by Rb1j for j
th

 left track segment.  Hydrodynamic force and internal resistance 

are labeled as Fh and Rin respectively. To keep the model simple and relatively controllable for further 

manipulation, we assume the center of mass overlays with the geometric center of the vehicle and both 

hydrodynamic force and internal resistance act directly on the center of vehicle, thus their moments 

are not taken into account. Furthermore the centrifugal force is neglected since the vehicle move at 

quite a low speed (around 1m/s) and the curvatures of working paths are relatively small, therefore 

causing low rotational accelerations. 

In the following part, each force is explicitly explained for their analytical evaluation methods based 

on study of terramechanics (Wong, 2009).  

Analytical expression of traction force on longitudinal direction when acting on ductile heavy clay soil: 

             /tan 1 1 ;
i i i

s s K

long x x dF A c p C e e A                                                 (3.13) 

Where c is the cohesion pressure of soil and ϕ is the angle of internal friction. pxi is the normal 

pressure on the segmented track determined by vehicle weight and soil-track contacting area. s and s  

represents the shear displacement and shear velocity respectively, which essentially are slip 

displacement and slip velocity. Cd and μ are material constants.  K is a measure of the magnitude of 

the shear displacement required for the development of the maximum shear stress (Janosi & Hanamoto, 

1961), as depicted by type ‘c’ curve in figure 2.  

 

Figure 3.2. Categorized shear stress-shear displacement relationship in soil-track interaction. Type a represents 

brittle feature, which converges to a residual level after the maximum, usually exhibits in soft cohesive soil. 

Type b continuously decreases after the maximum, discovered in typical organic soil types. Type c denotes 

typical ductile soil property, where the curve converges gradually to the peak value (Wong, 2010). 

For more brittle soil, such as weak sediments that could possibly present in future mining field, the 

traction force becomes as follows: 
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where Kω is the shear displacement where maximal shear stress occurs and Kγ is ratio between residue 

shear stress and maximum shear stress (figure 4). Traction force on lateral direction is similar to that 

on longitudinal direction, by only replacing the longitudinal slip speed and slip displacement with 

lateral counterparts.   

Since sufficient tractive effort is a prerequisite for successful deep sea operation, we assume the 

grousers are added to the virtual vehicle to extend the traction capability. Maximal additional traction 

forces caused by presence of grousers are approximated empirically as: 

 max 2 tan cot
W h h

F Lhc arc
b b




  
     

  
  (3.15) 

in which b and h are respectively the width and height of grouser. W is the vehicle weight and L is the 

instantaneous contacting length of the track.   

In this manner the additional traction force in discretized track element  for ductile and brittle soil are: 
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   (3.17) 

where ix  is the length of a partitioned track element and n is the number of roadwheels.   

The normal pressure pxi in equation 1.13 is also associated with vehicle sinkage and soil resistance. 

The distribution of normal pressure for tracked vehicle under static load can be characterized into 

different analytical models, such as uniform distribution, sinusoid distribution, linear increase and 

linear decrease, etc. (Wills, 1963). From the vehicle safety point of view, the uniformly distributed 

normal pressure is more stable for vehicle performance and can avoid severe sinkage, hence less track 

motion resistance, especially for pelagic soil which is generally much weaker than on-land soil types.  

Uniformly distributed normal pressure pattern can be achieved by closely distributed small size 

roadwheels and higher initial track tension (Wong, 2009). Therefore the uniform normal pressure is 

assumed for the simulation in this study. The normal pressure for a tracked vehicle then becomes: 

 
2

W
p

bl
   (3.18) 

By implementing Bekker’s classic pressure-sinkage model we can calculate the sinkage depth as 

(Bekker, 1969): 
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where kc and kϕ are modulus of soil cohesion and modulus of internal friction angle.  

The work done in compacting the terrain to a depth of zs with uniformly distributed normal pressure 

equals in magnitude with the work done by tow force along the contacting length of the track. Then 

combining with equation 1.17, the compaction force on both sides of the track will be: 
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  (3.20) 

Besides the compaction force, there also exists bulldozing resistance since the vehicle’s motion also 

pushes the soil in front of the vehicle. Bulldozing resistance is usually approximated empirically as: 

  20.67 0.5
ib cR b czK z K    (3.21) 

where Kc and Kγ are modulus of cohesion of soil deformation and modulus of density of soil 

deformation.  

Asides from the soil track interaction, the internal resistance is induced by friction between mechanical 

components inside of the vehicle and empirically holds a linear relationship with the speed of the 

vehicle (Wong, 2001): 

 (222 3V)inR W    (3.22) 

Hydrodynamic resistance is composed of inertia force and form frag in relative flow field: 

    
1

2
h drag m m m m m mF C A v v v v C V v v             (3.23) 

Where ρw is the mass density of seawater, Vm is the immersed volume of the vehicle, vw is the local 

velocity of the current. Am is the projection area of the vehicle, Cdrag and Cm are drag coefficient and 

added mass, respectively. In the simulation is added mass is neglected.   

Based on the Newton’s second law, equation of motion becomes: 
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where subscript 1,2 represents left and right track and i is the number of track segments. N is the total 

number of track segments. Flong stands for the longitudinal traction force while ΔFlong is additional 

traction force caused by grouser on the surface of the track. Rc is the compaction force and Rlongb 

denotes the longitudinal bulldozing resistance. Fh is the longitudinal hydrodynamic resistance (water 

drag) and Rin is the internal resistance due to frictions from different mechanical parts.  

Vehicle’s motion on pitch and roll angles are neglected because a subsea crawler’s weight will 

definitely cause sinkage to the soil so that the soil-track contacting interface is still nearly flat 

regardless of the topographic variation (figure 3.3).  

 

 

Figure 3.3. Force exerted on the subsea crawler.  

Estimation of cutting force is excluded in this study to control the complexity of teleoperation.  

 

The states of the vehicle is a vector 
T

x y zq X Y Z X Y Z w w w      , 

consists of global position, global velocities, global heading angles and angular speeds. The dynamics 

is integrated by fixed step ode solver (Ode4 Runge-Kutta) in Simulink
®
. Based on aforementioned 

force analysis and knowledge in terramechanics, we can construct the dynamic model of a subsea 

crawler in Simulink
®
. The virtual vehicle model is mainly driven by forces from soil-track interaction, 

water drag and internal resistance (figure 4).   
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Figure 3.4. Overview of the Simulink model of vehicle dynamics. 
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3.2 Control Algorithm for Subsea Crawler 
In unassisted manual control, the teleoperator can manipulate the rectilinear speed of left and right 

tracks through corresponding rotary cranks. The turning angle of each rotary crank is proportional to 

the speed of the track (figure 5). To control the space for the operator to improvise, we limited the 

speed input between 0.05 and 1m/s so that the vehicle cannot move back ( to limit the operator’s 

behavior for better comparison of the main effect). In this way we regulate the operator’s steering 

maneuver to better compare their behavior under different experiment conditions.   

 

 

 

Figure 3.5. Teleoperator controls the turning angle of master crank to manipulate the speeds of corresponding 

track, to form a bi-manual control maneuver. The turning angle of each rotary crank is equal to the 

corresponding speed input. 

 

 

 

 

 

 

 

 

 

Figure 3.6. Schematic overview of controller design, lateral error e is the distance between vehicle center (x,y) 

and the nearest point on the trajectory (xd,yd). Heading angle error is depicted as ψd. 

The desired vehicle velocity for a vehicle at point (x,y) is obtained with reference from the waypoint.  

The nearest point on the desired trajectory is named as (xd,yd). A newly defined parameter d represents 

a certain distance that is ahead of the closest point on the desired path. In this study d was set at 5 m. 

The desired heading angle points to the desired heading position (xLos, yLos), which locates at the 

(x,y) 

(xd,yd) 

(xLOS,yLOS) 

X 

Y 

ϕ 

α 

d 

θ 

ψd 

e 
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distance of d ahead from (xd,yd). Thus the angle error between actual vehicle heading angle and  

optimal heading angle is: 

 
atan

d

LOS

LOS

y y

x x

   

 

  

 
   

 

  (3.25) 

Where ϕ is the orientation of desired path and θ is the instantaneous orientation of the vehicle. Since 

the subsea crawler is using skid steering mechanism, in which the vehicle could only steer the 

direction based on relative speed difference between left and right track. Thus we also need to define 

the desired speed for the optimal path. This is also realistic to define the desired speed for vehicle 

operation since the moving speed of the vehicle is influenced by the mineral recovery rate. 

Nevertheless, the optimization of path planning is not the main concern in this study, we only define 

the desired velocity at a constant speed vd throughout the simulation. Then the speed error ev and 

heading angle error eψ are defined as: 

 
v d
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e v v

e  

 

 
  (3.26) 

Thus the main target for the controller is to minimize the closed loop of these two errors as:  
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Because in usual deep sea mining operations, the subsea crawler has very slow speed and does not 

have to perform quick and sharp turning motion, the change of desired speed and heading angle dv and 

d  can be neglected (Hong et al., 2010). 
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For the design of controller, the lateral resistance in vehicle dynamics can also be negligible since we 

assume low yaw rate of the vehicle and the slave system does not need to perform sharp steering. Then 

we can simplify equation 1.24 into: 
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Where
LF and 

RF  is the net track force on left and right track, including traction forces and all 

resisting forces. By combing equation 1.28 and 1.29 we yield: 
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Thus the desired net traction force for left and right track becomes: 
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If we can determine the mechanical properties of the soil layer and the slip-thrust relationship within 

the vehicle’s soil-track interaction, we can obtain a nonlinear relationship between track slips and their 

net traction forces. This method is usually used in experimental study on mobility of tracked vehicle 

(Wu et al., 2008).  In this way the controller calculates the desired slip ratio based on the optimal net 

traction force from 1.31. Thereafter with calculated slip ratio Ldi and Rdi , according to equation 1.12, 

the desired rectilinear speeds of two tracks become: 
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The aforementioned control algorithm is based on theoretical kinematic and dynamics of the tracked 

vehicle, thus additional correction is added to deal with potential model inaccuracy. Here we set a 

constant gain Kψ, which acts as an extra proportional controller on the angle error. Thereby the 

calculated desired rectilinear speed of left and right track becomes: 
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                                            (3.33) 

 

3.3 Parameterization of the Numerical Model 
There are quite a lot of studies with deep sea mining on polymetallic manganese nodules mainly 

because of the worldwide burst of research on deep sea mining in 1970s to 1980s (Dai et al., 2010; 

Hong et al., 2002), where the pelagic soil are generally regarded as ‘brittle’ type. Comparatively study 

on SMS mining is still in its infancy. But due to the general differences on ground condition and soil 

properties, the environment investigation on PMN cannot be generalized to study on SMS mining.  

Nevertheless it is usually thought that the SMS field is much stronger than that in PMN filed and 

exhibits ductile characteristic during shear deformation. The soil parameters used in the simulation for 

this study was chosen as ductile type of soil, while the information about the vehicle was mainly 

adapted from previous studies on the prototyping of deep sea mining machines.  

3.3.1 Soil Properties 
Since the in-situ soil samples are quite scarce, researchers usually choose to fabricate artificial soil 

samples which share similarities with pelagic soil for study.  Unlike the weak bentonite soil used for 

simulating soil in PMN field (Choi, Hong, Kim, & Lee, 2003; Kim, Hong, & Choi, 2004; Li & Li, 
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2010), heavy clay and sandy loam are more similar to soil condition in SMS deposit, since the 

foundation of SMS deposit is similar to weathered rock. But in this study we only simulate ductile 

types of soil in the experiment.  Thus with reference from past research on lab tracked vehicle testing 

(Wong, 2001, 2010), the soil parameters for virtual pelagic soil used in this study are listed in table 3. 

 

Pressure-

sinkage model 

Modulus of cohesion of soil deformation kc 10 [kN/m
n+1

] 

Modulus of friction of soil deformation kϕ 100 [kN/m
n+2

] 

Soil deformation exponent ns 0.2~1.0  

 

 

 

Shear  

stress model 

Soil cohesion c 10 [kPa]  

Soil angle of internal friction ϕ 6 [Deg] 

Shear deformation modulus K 1.5~2.5 cm 

Material constant Cd 0 

Pelagic soil density γ 1200 [kg/m
3
] 

Coefficient of soil density Kγ 1.0 

Soil  

resistance 

model 

Coefficient of soil cohesion Kc 2.0 

Coefficient of dynamic sinkage c0 0.017 

Coefficient of dynamic sinkage c1 1 

 

Dynamic 

sinkage model 

Coefficient of dynamic sinkage c2 0.5 

Density of seawater near seafloor ρw 1030 [kg/m
3
] 

Average seawater speed Vw 0~1 m/s 

water resistance  Drag coefficient Cw 2~5 

Table 3.1.  Soil parameters used in this study (Hong et al., 2002). 

 

3.3.2 Parameterization of the Virtual Vehicle 

 

Figure 3.7. Vehicle model and body-fixed coordinate. 
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Track Length L 6 m  

Mass Center 
Hc 1.5 m 

Track Width D 0.6 m Lc 3 m 

Thread Width B 5 m Bc 2.5m 

Vehicle Mass 

(in air) 
M 30 ton Moment of 

Inertia with 

respect to the 

mass center 

Ixx 3.5E
4 
Kg/m

2
 

Projection Area Ap 15 m
2
 Iyy 8 E

4 
Kg/m

2
 

Chassis height Hmin 0.5 m Izz 9 E
4 
Kg/m

2
 

Table 3.2. Parameters of subsea miner used in this study, partially adapted from (Hong et al., 2002)  

     Sizes of the miner are the most critical for almost every part of deep sea mining projects. The 

scale of the miner correlates to the production of the project and may determine revenue for the 

company. Also the sizes of the miner, especially the sizes of the track, highly influence the generated 

force from track-soil interaction. However since no actual mining example has been built yet and 

detailed calculation of vehicle design with regard to the production of deep sea mining is out of the 

scope of this study, we can only assimilate the data from current prototypes. A joint venture of 

Mitsubishi Heavy Industry, Kayaba System Machinery and Sumitomo Metal Mining proposed a 

prototype miner with length of 7 m, width of 3.2 m and height of 3.5m, aiming for the SMS 

excavation in peripheral waters near Okinawa, Japan (Ishiguro et al., 2013).  Prototypes from 

Nautilus Inc., though detailed sizes not known publicly, has same level of scales (Lipton, 2008).  

Chinese 1000m deep sea miner mainly used for mining of PMN also has 6.2m of track length and 

3.5m of thread width (Dai et al., 2009).   Thus here we choose to set our virtual miner with almost 

the same level of size, a track length of 6m, thread width of 5m and track width of 0.6m.  More 

detailed sizes are listed in table 1.2.   

 

3.3.3 Example of Parameter Optimization:  Mass of the Vehicle and 

Static Sinkage 
  One of the most important design considerations for the subsea miner is the vehicle mass, which 

directly influence the sinkage during real excavation. There exist two widely accepted analytical 

pressure-sinkage models, Bekker’s model and Reece’s model (Wong, 2010).  Here we use Bekker’s 

model for rough estimate of vehicle mass because Reece’s model is suitable for homogeneous soil 

and requires more data for accurate estimation.   According to equation 1.19 and soil parameters in 

table 1.1, we can tell that with a controlled soil bearing capacity and contact area, the higher of the 

vehicle weight, the deeper the sinkage. A pressure-sinkage curve with different levels of bearing 

capacity is shown in figure 8.  The upper limit of the sinkage can be determined with the 

consideration that the maximum sinkage depth may not surpass the height of chassis. If sinkage is 

greater than the vehicle ground clearance and vehicle belly may come into contact with the terrain 

surface, then corresponding soil resistance will increase dramatically by belly drag (Wong, 2009).  

We assume to avoid this circumstance on account of the miner safety and effectiveness of its motion.  
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Figure 3.8. Pressure-sinkage curves with different soil parameters, sinkage exponent is 0.8 in this case. 

Unit for kc and kϕ are [kN/m
n+1

] and [kN/m
n+2

] respectively.  

Assuming that the ground clearance of the subsea miner is 0.5m, we test the pressure-sinkage model 

with two different sets of modulus. kc = {10 , 50}  and kϕ = {100 , 500}
1
, which resulted into four 

different pressure-sinkage curves. Results are shown in figure 8, in which vehicle weight up to 

approximately 450 kN.  With a safety factor of 3.0, the proper vehicle weight can be around 150 kN, 

which is roughly 30 metric tons of weight in water (the buoyance will reduce some of the vehicle 

weight in the water). This deduction coincides with the weight estimations in current prototyping 

(Ishiguro et al., 2013).  

Mass Center 

    To simplify the dynamic analysis for subsea miner, the mass center locates together with the 

geometric center of the miner on X-Y plane.  Asymmetric mass center, especially on lateral direction, 

would easily introduce unbalanced traction force, which is detrimental for vehicle stability.  Although 

there exists reference to support adjustment of center of buoyance on the small scale underwater 

vehicle, thus change of center of mass on longitudinal direction, could improve its gradeability and 

effectively avoid turnover when it works on steep slopes (Lee et al., 2011), the accurate value for 

move of center of buoyance for a specific miner remains unknown for a specific crawler. Therefore we 

chose to control the potential influence introduced by variation of center of mass and focus more on 

the human performance in this study. Detailed location of center of mass is represented in table 1.2. 
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Matlab code for soil-traction interaction  

(describing the red block in figure 3.4). 

function [Flong, Fdel, Rc, Rblong,Flat, Rblat, Mt, Mc, Mb, Ma, slip] = 

fcn(state,input, trigger,c, phi,p, xi, yi_l, L, H, n, D, ns, kc, kphi, W, c0, 

c1,c2,B, Kr, Kc, gamma,h,K,E,kw)  

 
% This function computes: 

% longitudinal and lateral traction force, bulldozing resistance, compaction  

% resistance and additional forces with 

% given local relative points on the track (xi, yi_l, -H); 

% xi: position of center of each track segment on local x coordinate 

% yi_l: position of center of each left track segment on local y coordinate,  

% tao1: longitudinal stress 

% tao2: lateral shear stress 

  

% Need to define soil parameters: 

% kw(shear displacement where maximal shear stress occurs)  

% E(ratio between residue shear stress and maximal shear stress)  

% c (soil cohesion) p(vehicle's normal pressure) u  Cd(material constant)       

phi(internal friction 

% angle) L(track length) H(height of COM) n(number of roadwheels) beforehand 

% phi  = 10/ 180*pi; 

% c = 6*1e3; 

  

vel_gl   = state(4:6); % vehicle speed in local coordinate 

theta1 = state(7);     % pitch 

theta2 = state(8);     % roll 

theta3 = state(9);     % yaw 

omega  = state(10:12); % angular speed 

  

% rotation matrix 

R= [cos(theta2)*cos(theta3), cos(theta1)*sin(theta3) + 

cos(theta3)*sin(theta1)*sin(theta2), sin(theta1)*sin(theta3) - 

cos(theta1)*cos(theta3)*sin(theta2); 

     -cos(theta2)*sin(theta3), cos(theta1)*cos(theta3) - 

sin(theta1)*sin(theta2)*sin(theta3), cos(theta3)*sin(theta1) + 

cos(theta1)*sin(theta2)*sin(theta3); 

                 sin(theta2),                                      -

cos(theta2)*sin(theta1),                                       

cos(theta1)*cos(theta2)]; 

 

vel_bf  = R*vel_gl;     % local velocity 

vel_bf1 = vel_bf(1);   

vel_bf2 = vel_bf(2); 

vel_bf3 = vel_bf(3); 

omega1  = omega(1);   

omega2  = omega(2); 

omega3  = omega(3);      

step = L/(n-1);         % length of a single track segment 

delA = step*D;          % contact area of a single track segment 

  

taomax1 = c+p*tan(phi);  % longitudinal maximum shear stress 

taomax2 = c+p*tan(phi);  % lateral maximum shear stress 

 

% Local speed of each track segment 

v_track = [vel_bf1-H*omega2-yi_l'*omega3; vel_bf2+xi'*omega3+H*omega1; 

vel_bf3+yi_l'*omega1-xi'*omega2]; 

 

% slip speed of each track segment 

is = v_track-[input*ones(size(xi')); zeros(size(xi')); zeros(size(xi'))]; 

  

if input<0.001   %deadzone threshold 

        s1   =  zeros(size(is(1,:)));  % longitudinal slip 

        slip =  0;                      

        s2   =  zeros(size(is(1,:)));  % lateral slip 
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else 

        s1 =  -is(1,:)/input.*(L/2-xi');  % longitudinal slip 

        slip  =  -is(1)/input; 

        s2 =  -is(2,:)/input.*(L/2-xi');  % lateral slip 

end 

 

id = ((L/2-xi')-abs(s1))<0;          % slip distance cannot exceed physical range 

s1(id)  =sign(s1(id)).*(L/2-xi(id)'); 

id = (D/2-abs(s2))<0;                % slip distance cannot exceed physical range 

s2(id)  = sign(s2(id))*D/2; 

  

if trigger <1   % to check whether the slip event was triggered. 

     tao1    = sign(s1)*taomax1.* ( (1-exp(-abs(s1)/K))) ;  % 'Ductile type soil 

shear stress-shear displacement relationship' 

     tao2    = sign(s2)*taomax2.* ( (1-exp(-abs(s2)/K))) ;  

else 

     tao1    = sign(s1)*taomax1*(0.8).* ( (1-exp(-abs(s1)/K))) ;  % 'Ductile type 

soil shear stress-shear displacement relationship' 

     tao2    = sign(s2)*taomax2*(0.8).* ( (1-exp(-abs(s2)/K))) ;  

end 

  

Flong = tao1*delA;   % longitudinal traction force 

Flat  = tao2*delA;   % lateral traction force 

Mt = -Flong.*yi_l'+Flat.*xi'; % rotary torque from traction force 

  

  

% compaction force 

Rc = -sign(v_track(1,1))*1/((ns+1)*(D^(1/ns))*(kc/D+kphi)^(1/ns))* 

(W/2/L/1000)^(1+1/ns)*1000;  %Opposite direction of track speed  

Mc = Rc*(-B/2); 

  

% Bulldozing resistance 

z0   = (W/2/D/L/1000/(kc/D+kphi))^(1/ns);   % static sinkage depth, Bekker 1969 

zd1  = c0*((p/1000)^c1)*(abs(s1).^c2)/100;           % dynamic sinkage, Muro 1991 

zd2  = c0*((p/1000)^c1)*(abs(s2).^c2)/100;           % slip [cm], p[Kpa] zd[cm] 

z1   = z0+zd1;         % total longitudinal sinkage 

z2   = z0+zd2;         % total lateral sinakge 

   

Rblong = -sign(v_track(1,1))*D*(0.67*c*z1*Kc+0.5*z1.^2*gamma*Kr); % longitudinal 

bulldozing force 

Rblat =  sign(s2)*D.*(0.67*c*z2*Kc+0.5*z2.^2*gamma*Kr);           % lateral 

bulldozing force 

Mb    = -Rblong.*B/2 +Rblat.*xi';  % torque induced by bulldozing force 

   

% Additional forces because of the grousers 

AddF_max = 2*step*h*c+W/2/(n-1)/pi*tan(phi)*(h/D*acot(h/D)); 

if trigger <1  % to check whether slip is triggered 

    Fdel  = sign(s1)*AddF_max.*(1-exp(-abs(s1)/K)); 

else 

    Fdel  = sign(s1)*(0.8)*AddF_max.*(1-exp(-abs(s1)/K)); 

end 

  

Ma  = -Fdel.*B/2;  % torque by additional traction force 

  

end 
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Appendix IV –Pilot Study 
     

    The pilot study of this experiment took two periods. At the first period, the experiment 

setting required the subject to press an external button to switch between full automation and 

manual control in supervisory control mode, which led to an extremely unbalanced result in 

obstacle avoidance (figure 4.1).  A subject (Male, age: 25) was tested in this setting, where he 

ran into every single obstacles under supervisory control. Thus this initial experiment setting 

was abandoned latter, and replaced with a much smoother switch approach for the second 

period of testing and the actual experiment.  

 

Figure 4.1. A subject’s performance of obstacle avoidance with the initial experiment setting 

(clumsy supervisory switch).  

    For the latter pilot study, two subjects (Age: 24 and 27), one male and one female, both 

Master students from Delft University of Technology, were recruited for a pilot study to 

check the reliability of the whole experiment settings before the actual experiment. No 

statistical results can be drawn from the pilot study, but it helped to unveil the main effects in 

actual measurements. The differences of the experiment setting between this pilot study and 

the actual experiment are: 

1. In supervisory control, the subject can return the control authority back to full 

automation anytime regardless of the lateral deviation, while the subjects needed to 

drive the vehicle back to the optimal path with absolute lateral deviation less than 

0.6m in actual experiment.  

2. The optimal speed set for supervisory control is 0.8m/s in the pilot study, as with 

that in HSC. 

The simulated vehicle’s trajectories during 12 obstacles controlled by these two subjects 

are shown in figure 4.2.  
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(a)                                                                              (b) 

 

(c)                                                                                (d) 

 

(e)                                                                            (f) 
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(g)                                                                             (h) 

 

(i)                                                                          (j) 

 

(k)                                                                             (l) 

 

Figure 4.2. The simulated vehicle’s trajectory in avoiding 12 obstacles, with solid lines represent the 

performance of the 1
st
 subject while the dashed lines represent the 2

nd
 subject. These circle markers 

label the moment when the corresponding obstacle appeared on the screen. And the triangular markers 

illustrate the place where the corresponding obstacle avoidance ends. The obstacle was drawn within a 

solid circle with radius of 3m. The black arrows represent the heading direction of the optimal path. 
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If a trajectory overlaps with the corresponding circle, it was recognized as a collision. 

According to figure 4.2, among those successful avoidances, the simulated vehicle seemed to 

spend less length during obstacle with respect to the optimal path in HSC than the other two 

experimental conditions. Regardless of these trajectories which overlap with the obstacle, 

these green triangular markers appear on the trajectories ahead of these red and blue ones in 

the majority of the cases. Therefore there might exhibit a tendency that the subjects could 

recover back to the optimal path faster in HSC than the other two conditions. Another 

phenomenon is that the subjects had a preference on the direction to avoid the obstacles where 

the obstacle locates aside of the optimal path. Otherwise their steering maneuvers were quite 

random for obstacles just on the optimal path (e.g. figure 4.2-b, l).    

Figure 4.3 illustrates the root mean square of the lateral deviation during normal path 

tracking between obstacles. Averagely speaking, both subjects benefited from the two assist 

conditions compared to manual control. However their reactions towards HSC and 

supervisory control were different from each other. Subject 2 apparently made better use of 

the guidance in HSC than subject 1.  However the full automation in supervisory control 

further decreased the lateral deviation than HSC for the 1
st
 subject, which didn’t exhibit 

significantly for the 2
nd

 subject. 

Figure 4.4 shows the total number of collisions triggered by two subjects under three 

experimental conditions. It was because the transition between manual and automation mode 

in supervisory control had been changed, the collision number in supervisory control 

decreased dramatically, and even less than manual control for both subjects. As a conjecture 

to be further tested in the actual experiment, the subjects could pay more attention to the 

intermittently popped-up obstacles in supervisory control since they did not need to generate 

physical effort in steering the vehicle, which resulted into less collision if they could regain 

the control authority easily during steering such a slow dynamic system.  

 
Figure 4.3. Root mean square of the lateral deviation between obstacles when steered by two 

subjects. Dashed line is for highlighting the comparison, does not mean any linear relationship 

between conditions.  
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Figure 4.4. Total number of collisions run by each subject under different experimental conditions. 

The black dashed line represents hypothetically maximum collisions if the vehicle is run completely 

under full automation.   

The response accuracy and reaction time for two subjects were shown in figure 4.5 and 4.6, 

respectively. There existed an obvious difference between different task modules. Both 

subjects had less accuracy with obstacles and during slip events than normal operation 

between obstacles, regardless of the experiment conditions. Similar to the results found for 

lateral deviation, the subject’s different acceptance of the two assist conditions was also 

reflected on their performance in the secondary task. Theoretically the assist conditions could 

relieve the subject’s mental workload so that the performance of secondary task between 

obstacles should be improved. While the first subject’s accuracy between obstacles increased 

with the level of automation, the second subject exhibited a relatively constant and high 

accuracy during normal operation between obstacles. Meanwhile, unlike the second subject, 

the first subject could still perform a slightly higher accuracy in HSC than that in manual 

control even within obstacle avoidances.  Thus it was questionable whether the higher of the 

automation level, the higher of the mental workload during unexpected events, as shown by 

the accuracy of the secondary task.  
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Figure 4.5. Responding accuracy of secondary task by two subjects. Upper: 1
st
 subject. Bottom: 2

nd
 

subject. The data is categorized by different task modules. The dark blue bars represent the accuracies 

in total, within obstacles in light blue, between obstacles in yellow, and slip in brown. 1
st
 subject only 

experienced the slip event in supervisory control and 2
nd

 subject only in manual control. 

 

Figure 4.6. Reaction time of the secondary task by two subjects. Upper: 1
st
 subject. Bottom: 2

nd
 

subject. The data is categorized by different task modules. The coloring manner is the same with 

figure 4.5. 

    The subjects’ different reaction towards the assist conditions also continued in the reaction 

time of answering the secondary task. The first subject’s reaction time towards the secondary 

task is noticeably decreased with the increase of the automation level, for both operations 

between and within obstacles. However the second subject’s reaction time was not affected by 

the assist conditions with the same level as for the first subject.  

     To sum up, the first subject made better use of the guidance in steering the vehicle, 

regarding improvement of both accuracy and reaction time in answering the secondary task, 
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figure 4.5,4.6), while the second subject benefited more specifically from HSC in primary 

steering task (figure 4.3).   

     During the pilot study we found that there might exist a difference in the length the subject 

spent in avoiding the obstacle between three conditions (figure 4.2), however the subjects 

could return the control authority back to the automation system once they just pass the 

obstacle, such that the rest parts actually will be finished by the automation (figure 4.7). Thus 

in the actual experiment the subjects can only retrocede the control authority once they’ve 

driven the vehicle back to the optimal path with absolute tolerance at 0.6m, same with the 

tolerance used to identify the ending of an obstacle avoidance. In addition, because the total 

time to complete the task was an interesting metric to compare the effects between three 

experimental conditions, the reference speed for supervisory control was set to full thrust in 

actual experiment.   

 

Figure 4.7. Two subjects performance in avoiding the 6
th
 obstacle, all contents are similar to figure 

4.2-f, besides two types of markers. The black cross makers represent the place where the subjects 

pulled back the handle to regain the control authority. The black plus signs depict the place where the 

subjects switched back to full automation. Both subjects returned the control authority back to the 

controller (plus signs) before the vehicle completely recovered to the optimal path (red triangles).  
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 Appendix V – Task Instruction 
Experiment: Haptic shared control in teleoperation of subsea crawler 

First of all, thank you for your cooperation in this experiment. Below is the description of the 

tasks to be performed during the experiment and some safety considerations. If you are 

confused with any statement please do not hesitate to ask the experimenter.  

The setting consists of two screens and two cranks, as showed in figure 1.  

 

Figure 1. Experiment settings. 

Each of the two rotary cranks has one degree of 

freedom. You need to grab the handle from the 

beginning till to the end of each trial. Standard 

grab posture is shown in figure 2, where your index 

finger should touch the concave surface of the 

handle as reference point. 

The red tactile switch on the top of the handle is for 

your input to respond to secondary task.    

 

 

 

The whole experiment will be divided into two parts: 

Training section and experiment section. 

 

Figure2. guideline for handholding 

Index finger on 

 concave area 

Turning direction 
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In the first part you are required to do some training with visual feedback through augmented 

3D display (figure 3) of and dashboard (figure 4). You need to follow the pre-defined path 

(the red curve shown in 3D display) as close as you can with these two rotary cranks. 

Obstacles will show up during driving. You need to learn to first identify such an obstacle and 

then avoid it.  Once you can control the lateral error (regardless of obstacle avoidance) and 

succeed in three consecutive obstacle avoidances, this will be regarded as completion of your 

training section.  

         

Figure 3. Augmented 3D display 

 

Aside from the 3D representation, alternatively you can monitor the status of the vehicle 

based on information shown on dashboard. In addition, the secondary task is also shown on 

dashboard (figure 4). Information on dashboard is categorized as below: 

 

 

 

 

 

 

 

 

 

 

 

 

Optimal path 
Obstacle (ditch) 

Vehicle body 

A 
Representation of vehicle position in global coordinate.  Green dot illustrates the vehicle. Blue curve shows the 

predefined optimal path while those two parallel black curves are reference range for vehicle safety. (ETA: 

Estimated time of arrival)   

B 

C 

D 

E 

F 

G 

Secondary task.  The secondary task is tested throughout the whole experiment. You need to identify the 

number of red dots in the black dashed circle (e.g. it’s 4 in example). If the number is less or equal to 4, 

you are supposed to press the switch on the left handle, otherwise on the right handle.  

Speedometer, position and orientation of vehicle in numbers.  

Status of the two tracks of the vehicle. First two color bars are the real inputs you insert onto the handle. The 

second two bars pertain to the recommended inputs calculated from automation (not necessarily correct). The 

last two are slip ratios of two tracks, which should be maintained on a low level.  

Recommended speed, orientation of vehicle from automation system, and the guidance forces (not necessarily 

correct) .  

Current speeds of surround seawater. 

Mode switches, which will be only activated in supervisory control. You can tell the status of the system, 

either in manual control or full automation, based on the color of these two buttons. For example, in full 

automation, ‘automation’ will be in green while ‘Manual’ will turn into grey.  
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Figure 4. Details on dashboard. 

 

In the second part, you will do the formal experiment section. Within this section you need to 

finish the path tracking task as in the training section and also accompanying secondary task 

three times, each will last for about 15 minutes. Each repetition is rendered in different 

conditions, namely manual control, haptic shared control and supervisory control. In manual 

control mode you directly control the motion of the vehicle. In haptic shared control mode, 

you will feel some guidance force through the rotary handles.   But this does not necessarily 

mean that you need to obey this guidance. Always act naturally and try your best in both 

path tracking task and secondary task.  In supervisory control, the vehicle will be in 

autonomous control mode and you only need to respond to the secondary task. However the 

automation system is not correct when encountering obstacles and slip, thus you need to 

intervene in the control loop once you feel necessary. Switch between automation and manual 

control is shown below: 
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Figure 5. Switch between automation and manual control. 

Keep in mind that the order of aforementioned three conditions is only for explanation 

purpose, and is not the real order in actual experiment. For driving task, you are supposed to 

avoid all obstacles while keep as close to the optimal path as possible. This means that after 

you have avoided the obstacle, you should swiftly get back to the centerline. In addition, the 

whole time to complete the task is also a measurement to evaluate your performance. Thus as 

long as you can ensure obstacle avoidance and lateral error to the optimal path, you should 

drive as quickly as you can during the experiment.  Last but not least, please be aware that the 

vehicle driving task is more important than secondary task. 

If you have any questions regarding the experiment protocol, please do not hesitate and ask 

the experimenter directly. If you have any further questions about this experiment after your 

participation, please contact Kang Wang (K.Wang-3@student.tudelft.nl). 

If you do not have further questions and feel ready to do the experiment, please do sign the 

informed consent before the actual experiment. 

Good luck and enjoy the experiment.  

 

  

a. From automation to manual control, pull back either 

of these two handles to less than 0.6 m/s for 0.5 

seconds, you can refer to ‘D’ part of the dashboard 

for your real input and indicators in ‘G’ section for 

system status.  

b. From manual control to automation, push forward 

both two handles to exceed 0.9m/s  for at least 0.5 

seconds once the vehicle recovers back to the optimal 

path with less than 0.6m of absolute lateral 

deviation, you can refer to ‘D’ part of the dashboard for 

your real input and indicators in ‘G’ section for system 

status. 
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