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Preface

The tremendous progress in neural network research over the past decade has been framed
by many as “The Deep Learning Revolution”. The seminal 2012 AlexNet paper suggested
that that the increase of the number of layers is everything what is needed to improve the
generalization performance of neural network models. The initial successes with scaling
depths to hundreds of layers were followed by empirical results showing diminishing returns
of further increases. These were joined by theoretical results that demonstrated that deep
networks at initialization are difficult to optimize. At the same time, favorable properties
of large widths were discovered. The most recent breakthroughs, including Large Language
Models like GPT-4 or LLaMA, were achieved with relatively shallow but very wide networks.

In my thesis project, I explore whether we can go deep again. I study statistical properties
of randomly-initialized fully-connected neural networks and find out that they suffer from
a previously unknown problem of the vanishing empirical variance of the network outputs.
I show that despite keeping the theoretical variance constant over all layers, the empirical
variance converges in probability to zero. I demonstrate it theoretically for the specific case of
He initialization and show empirical evidence for the same behavior in other state-of-the-art
random initialization methods. The practical consequence of my results is that arbitrarily
deep networks cannot be trained when initialized randomly with state-of-the-art methods. I
show, however, that they can be trained when initialized with a deterministic method that
avoids the problem of the vanishing empirical variance.

The thesis report consists of three parts and is based on a paper submitted to the NeurIPS
2023 conference which is currently under review. The paper and its supplementary material
form the first two parts. The third part contains additional findings that were made within
the work on the thesis but were not included in the NeurIPS submission.

I would like to thank my supervisors David M. J. Tax and Marco Loog for their guidance,
support, and exchange of ideas throughout the thesis project. I would also like to thank the
thesis committee members Marcel J. T. Reinders, Wendelin Böhmer, and David M. J. Tax.

Micha l Grzejdziak, 28 May 2023
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Abstract

Neural networks are commonly initialized to keep the theoretical variance of the
hidden pre-activations constant, in order to avoid the vanishing and exploding
gradient problem. Though this condition is necessary to train very deep networks,
numerous analyses showed that it is not sufficient. We explain this fact by analyzing
the behavior of the empirical variance which is more meaningful in practice of data
sets of finite size. We demonstrate its discrepancy with the theoretical variance
which grows with depth. We study the output distribution of neural networks at ini-
tialization in terms of its kurtosis which we find to grow to infinity with increasing
depth even if the theoretical variance stays constant. The result of this is that the
empirical variance vanishes: its asymptotic distribution converges in probability
to zero. Our analysis, which studies increased dependence of outputs, focuses on
fully-connected ReLU networks with He initialization, but we hypothesize that
many more random weight initialization methods suffer from either vanishing
or exploding empirical variance. We support this hypothesis experimentally and
demonstrate the failure of state-of-the-art random initialization methods in very
deep regimes.

1 Introduction

The main heuristic for deriving initialization methods for deep neural networks is to keep the
theoretical variance of the output or gradient distribution constant over all hidden layers. The idea is
that this ensures proper propagation of the input signal through the network and therefore mitigates
the vanishing gradient problem [Hochreiter, 1991, Bengio et al., 1994]. This approach has been used
to derive two initialization methods: so-called Glorot [Glorot and Bengio, 2010] and He initialization
[He et al., 2015]. However, these methods are still not sufficient to train arbitrarily deep networks.
Other statistical properties were and demonstrated to explode or vanish even when keeping variance
constant [Hanin, 2018, Hanin and Rolnick, 2018, Burkholz and Dubatovka, 2019, Vladimirova et al.,
2019], but still no initialization method has been demonstrated to work for very deep networks.

In this paper, we take another look at the consequences of keeping the theoretical variance constant
and analyze distributional properties beyond it. Specifically, we analyze the dynamics of kurtosis, the
fourth standardized moment, as a signal is propagated through a neural network that is He-initialized.
We prove that, under mild assumptions, kurtosis of the output distribution grows to infinity with
increasing depth. As we will show, the surprising effect of this is that the empirical variance has to go

Preprint. Under review.
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to zero (in probability), despite the constant theoretical variance. Consequently, almost all outputs
are mapped to zero by an arbitrarily deep network. Our analysis, which studies increased dependence
of outputs, suggests vanishing empirical variance may concern many more random initialization
schemes. We demonstrate this empirically for state-of-the-art random initialization methods for
fully-connected ReLU networks. We also show that ZerO [Zhao et al., 2022], which is a deterministic
method that keeps empirical variance constant, can train very deep and narrow networks. To our
knowledge, we are first to demonstrate the trainability of fully-connected ReLU networks of such
large depths and small widths.

In Section 2, we recall literature related to our paper. In Section 3, we define the setup which we
analyze in Section 4, which also contains our main theoretical result. In Section 5, we show its
practical consequences for the empirical variance of the output distribution at initialization. In Section
6, we present our experimental results. Finally, in Section 7, we discuss how our analysis extends to
other types of layers and other activation functions.

2 Related work

The idea to initialize the weights by sampling them i.i.d. from a zero-mean symmetric distribution
such that the variance is kept constant over all layers is known at least since the work by Bishop
[1995]. Later, it was popularized later as a "trick" by LeCun et al. [1998]. Glorot and Bengio [2010]
extended it to balance the need to keep the output variance and the gradient variance constant, while
He et al. [2015] analyzed the specific case of ReLU activation. Further extensions of this work to the
specific case of the highly popular ResNets [He et al., 2016] has been given by Zhang et al. [2019]
and Bachlechner et al. [2021]. Other approaches to random weight initialization include orthogonal
initialization [Saxe et al., 2014], delta-orthogonal initialization [Xiao et al., 2018], data-dependent
LSUV [Mishkin and Matas, 2016] or MetaInit initialization [Dauphin and Schoenholz, 2019], and
GSM initialization [Burkholz and Dubatovka, 2019]. Another approach is to initialize the weights
deterministically. Examples are identity initialization [Bartlett et al., 2018] and ZerO initialization
[Zhao et al., 2022]. In our paper we analyze the setup of random weight initialization, focusing on
the case of He initialization [He et al., 2015]. We hypothesize that our claims extend to other random
initialization methods and we demonstrate it in our experiments.

Various results indicate that controlling the variance is not sufficient to mitigate gradient problems.
Hanin [2018] showed that the empirical variance of gradients grows exponentially with increasing
depth, while Hanin and Rolnick [2018] and Burkholz and Dubatovka [2019] showed the same for the
empirical variance of the lengths of activations and pre-activations respectively. Vladimirova et al.
[2019] demonstrated that with increasing depth, the output distribution has increasingly heavy tails.
We add to this line of research by studying kurtosis of the output distribution, which directly relates
to its empirical variance. Our analysis shows that even if we keep the theoretical variance constant,
the empirical variance will tend to zero.

Proper initialization of neural networks is only a prerequisite to ensure fast convergence to a good
solution of the given optimization problem. Shamir [2019] showed that for standard random weight
initialization methods, the number of iterations required to convergence grows exponentially in depth.
Du and Hu [2019] reached a similar conclusion, while Hu et al. [2020] showed that the convergence
speed is independent of depth for the case of orthogonal initialization. However, our work questions
the possibility of convergence of very deep randomly initialized networks in practice even with
initialization schemes designed to overcome the problem of large depth like orthogonal initialization
[Saxe et al., 2014] or GSM initialization [Burkholz and Dubatovka, 2019].

3 Preliminaries

We consider fully-connected networks with leaky ReLU nonlinearities. For an input x ∈ Rw0 , and
a neural network with depth d ∈ N, widths (wl)

d
l=0 ⊂ N, and negative slope a ∈ R, the output
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y(l) ∈ Rwl of the lth layer is recursively defined as1

y(0) = x, y(l) = W(l)ϕa(y(l−1))

where for all l = 1, ..., d W(l) ∈ Rwl×wl−1 is a weight matrix and ϕa : R → R is leaky ReLU with
the negative slope parameter a ∈ R, applied entry-wise

ϕa(x) =

{
ax, if x < 0,

x, otherwise.

We treat x and (W(l))dl=1 as random variables and analyze distributional properties of y(d) with
increasing d. We study the initialization method by He et al. [2015] which takes the entries of each
weight matrix W(l) to be i.i.d. symmetric variables with variance 2

wl(a2+1) . This method preserves
several distributional properties of the input random vectors.
Definition 3.1 (He random vector). We say that a random vector x ∈ Rw is a He random vector if all
variables in x are zero-mean, symmetric2, uncorrelated, and homoscedastic with some variance σ2

x.

Proposition 3.2 (He initialization). If for all l = 1, ..., d weight matrices W(l) are i.i.d., zero-mean,
and symmetric with variance equal to 2

wl(a2+1) , then for an input He random vector x with variance

σ2
x the output random vector y(d) is a He random vector with variance σ2

x.

A proof for Proposition 3.2 has been given by He et al. [2015] under the stronger assumption of
preservation of independence of vector entries. We point out a mistake in the reasoning by He et al.
[2015], which does not change their main contribution in the form of variance-preserving initialization
method. He et al. [2015] assumed that independence is preserved through the network, but what
actually is preserved is uncorrelatedness. With this correction, we give our proof in the supplement.

One may ask how to make sure that the properties of He random vector are satisfied at the input. The
Proposition 3.3 below shows that, if we include an additional weight matrix before the first activation,
it transforms any input random vector to a He random vector.
Proposition 3.3 (Any random vector can be transformed to a He random vector). For any finite-
variance random vector x ∈ Rw, if W ∈ Rw×w is a random matrix of i.i.d. zero-mean, symmetric
variables with finite variance such that W and x are mutually independent, then z = Wx is a He
random vector with some variance σ2

z .

Proof. Consider a specific entry zi in z, zi =
w∑

k=1

Wikxk. For any i, k, Wik is symmetric and zero-

mean, and so must be Wikxk. Because zi is a sum of zero-mean and symmetric random variables, it
is zero-mean and symmetric. All entries of z have the same variance because it is expressed with the
same formula, so they are homoscedastic with some variance σ2

z . Lastly, we will show that zi, zj are
uncorrelated for any i, j, i ̸= j. Consider covariance of two entries zi, zj

Cov[zi, zj ] = E[zizj ]− E[zi]E[zj ].

Because E[zi] is equal to zero, it simplifies to

Cov[zi, zj ] = E[zizj ] = E[(
w∑

k=1

Wikxk)(
w∑

k=1

Wjkxk)]

= E[
w∑

k1=1

w∑

k2=1

Wik1xk1Wjk2xk2 ] =

w∑

k1=1

w∑

k2=1

E[Wik1 ]E[xk1Wjk2xk2 ] = 0.

We will assume that inputs are always He random vector and that networks are initialized according
to Proposition 3.2. Effectively, the outputs for each hidden layer will be He random vectors too.

1Throughout the paper, for vectors and matrices we use upper indices to indicate the layer, and lower indices
to refer to entries. For scalars we use the lower indices to indicate the layer. For the function ϕa we use the lower
index to indicate the negative slope parameter a.

2By a symmetric random variable we mean a random variable with a probability distribution symmetric
around its mean.
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4 Theory

In this section we present our main theoretical results. We derive the relation between the input
and the output kurtosis in a neural network (Proposition 4.3) and then prove that for bounded-width
networks it grows to infinity with increasing depth (Theorem 4.7).

Here, kurtosis of a random variable x is defined as Kurt[x] = E[ (x−E[x])4
V ar[x]2 ]. We will analyze the

case with E[x] = 0 which simplifies it to Kurt[x] = 1
V ar[x]2E[x

4].

First, we will prove Proposition 4.3 in which we will derive the exact recursive formula for dynamics
of kurtosis over consecutive layer. The derived formula tracks two statistical properties in a linear
matrix difference equation: kurtosis and covariance of squared outputs. We take the mild assumption
which is satisfied with Proposition 3.3 that covariance of squared outputs is equal for any two outputs.

In the proof of Proposition 4.3 we will use two lemmas 4.1 and 4.2 that are given first. Their proofs
are given in supplementary material.

Lemma 4.1. Let x be a zero-mean, symmetric random variable with V ar[x] = σ2
x and Kurt[x] = κx.

Then E[ϕ4
a(x)] =

(a4+1)
2 σ4

xκx.

Lemma 4.2. Let x, y be identically distributed, uncorrelated, zero-mean, symmetric random variables
with variances σ2

x, kurtoses κx and Cov[x2, y2] = c. Then E[ϕ2
a(x)ϕ

2
a(y)] =

(a2+1)2

4 (σ4
x + c).

Proposition 4.3. Consider a network that is He-initialized with a distribution that has kurtosis κw

and that has output random vectors y(l) at every layer l with variance σ2
x. Let

cl = Cov[(y
(l)
i )2, (y

(l)
j )2]

be the covariance between any two squared entries from y(l) and let κl = Kurt[y
(l)
i ] be the kurtosis

of every entry i in y(l). Then the kurtoses of consecutive layers are recursively related through the
linear matrix difference equation

k(l+1) = A(l)k(l)

where k(l) = [κl, cl, 1]
T and

A(l) =




2(a4+1)κw

wl(a2+1)2
3(wl−1)
wlσ4

x

3(wl−1)
wl

2(a4+1)σ4
x

wl(a2+1)2
wl−1
wl

−σ4
x

wl

0 0 1


 .

Consequently, the relation between the input kurtosis and the output kurtosis at depth d+ 1 is

k(d+1) =

(
d∏

l=0

A(d−l)

)
k(0).

Proof. We will derive the formula for κl+1, then for cl+1. We have E[y(l+1)
i ] = 0,

V ar[y
(l+1)
i ] = σ2

x, so κl+1 = Kurt[y
(l+1)
i ] = 1

σ4
x
E[(y(l+1)

i )4]. We can expand E[(y(l+1)
i )4] =

E[(
wl∑
j=1

W
(l+1)
ij ϕ4

a(y
(l)
j ))] using the multinomial theorem. Because the weight matrix entries are i.i.d.,

zero-mean and symmetric, the terms with the odd powers vanish. We get

E[(y(l+1)
i )4] =

wl∑

j=1

E[(W (l+1)
ij ϕ4

a(y
(l)
j ))] +

wl∑

j,k=1
j ̸=k

(
4

2, 2

)
E[(W (l+1)

ij ϕa(y
(l)
j ))2(W

(l+1)
ik ϕa(y

(l)
k ))2].

Using Lemma 4.1, we find that

E[(W (l+1)
ij ϕa(y

(l)
j ))4] =

4

w2
l (a

2 + 1)2
κw

(a4 + 1)

2
σ4
xκl =

2(a4 + 1)

w2
l (a

2 + 1)2
κwσ

4
xκl.
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We can get a closed-form formula for E[(W (l+1)
ij ϕa(y

(l)
j ))2(W

(l+1)
ik ϕa(y

(l)
k ))2] using Lemma 4.2

E[(W (l+1)
ij ϕa(y

(l)
j ))2(W

(l+1)
ik ϕa(y

(l)
k ))2] =

(
2

wl(a2 + 1)

)2
(a2 + 1)2

4
(σ4

x + cl) =
σ4
x + cl
w2

l

.

Putting the two above to the multinomial expansion of E[(y(l+1)
i )4] given in the beginning, we get

E[(y(l+1)
i )4] =

2(a4 + 1)

wl(a2 + 1)2
κwσ

4
xκl + 6

(
wl

2

)
σ4
x + cl
w2

l

=
2(a4 + 1)

wl(a2 + 1)2
κwσ

4
xκl + 3wl(wl − 1)

σ4
x + cl
w2

l

=
2(a4 + 1)

wl(a2 + 1)2
κwσ

4
xκl +

3(wl − 1)

wl
cl +

3(wl − 1)σ4
x

wl
.

Finally, we should divide E[(y(l+1)
i )4] by σ4

x to get

κl+1 =
2(a4 + 1)κw

wl(a2 + 1)2
κl +

3(wl − 1)

wlσ4
x

cl +
3(wl − 1)

wl
.

Next, consider cl+1 = Cov[(y
(l+1)
i )2, (y

(l+1)
j )2] for any i, j, i ̸= j

cl+1 = Cov[(y
(l+1)
i )2, (y

(l+1)
j )2] = E[(y(l+1)

i )2(y
(l+1)
j )2]− E[(y(l+1)

i )2]E[(y(l+1)
j )2]

= E[(
wl∑

k=1

W
(l+1)
ik ϕa(y

(l)
k ))2(

wl∑

k=1

W
(l+1)
jk ϕa(y

(l)
k ))2]− σ4

x

=
4

w2
l (a

2 + 1)2

wl∑

k1=1

wl∑

k2=1

E[ϕ2
a(y

(l)
k1
)ϕ2

a(y
(l)
k2
)]− σ4

x

where the sum
∑wl

k1=1

∑wl

k2=1 E[ϕ2
a(y

(l)
k1
)ϕ2

a(y
(l)
k2
)] is

wl∑

k1=1

wl∑

k2=1

E[ϕ2
a(y

(l)
k1
)ϕ2

a(y
(l)
k2
)] =

wl∑

k2=1
k2 ̸=k1

(a2 + 1)2

4
(σ4

x + cl) +

wl∑

k=1

a4 + 1

2
σ4
xκl

=
wl(wl − 1)(a2 + 1)2

4
(σ4

x + cl) +
wl(a

4 + 1)

2
σ4
xκl.

Putting it all together, we get

cl+1 =
2(a4 + 1)σ4

x

wl(a2 + 1)2
κl +

wl − 1

wl
cl −

σ4
x

wl
.

and k(l+1) = [κl+1, cl+1, 1]
T is of the desired form.

Now, we will show in Theorem 4.7, that with the dynamics derived in Proposition 4.3, for any valid
k(0), κd will grow to infinity. To this end, we will first prove three lemmas that describe the properties
of matrices A(l) and their products. In Lemma 4.4, we will show that any product of such matrices is
of a form parameterized with four positive parameters. Next, in Lemma 4.5, we will show that any
matrix A(l) has a positive eigenvalue that is strictly larger than 1. The proof of Lemma 4.5 uses the
Perron theorem which we provide with a reference to a proof in the supplementary material. We will
combine these two properties in Lemma 4.6 to show that for any A = A(l) raised to a power m, all
its positive parameters will tend to infinity with m → ∞ and so its norm will tend to infinity. We will
use this property in the proof of Theorem 4.7.

Lemma 4.4. Consider the product of matrices B =
∏d

l=0 A(d−l) as given in Proposition 4.3, with
w > 1. B is of the form

B =




α β
σ4
x

β

γσ4
x δ σ4

x(δ − 1)
0 0 1


 (1)

with γ > 0, α ≥ γ, δ > 0, β ≥ δ.
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Proof. We prove the lemma by induction on d. For d = 0 we have B = A(0) which is satisfied by
the definition of A(0). Assume that (1) is satisfied for some d ∈ N. Denote C =

∏d
l=0 A(d−l) and

B = A(d+1)C. We can write

A(d+1) =




α1
β1

σ4
x

β1

γ1σ
4
x δ1 σ4

x(δ1 − 1)
0 0 1


 ,C =




α2
β2

σ4
x

β2

γ2σ
4
x δ2 σ4

x(δ2 − 1)
0 0 1




with ∀i=1,2, γi > 0, αi ≥ γi, δi > 0, βi ≥ δi. A(d+1)C is equal to



α1α2 + β1γ2
α1β2+β1δ2

σ4
x

α1β2 + β1δ2
(γ1α2 + δ1γ2)σ

4
x γ1β2 + δ1δ2 σ4

x(γ1β2 + δ1δ2 − 1)
0 0 1


 .

If we set α = α1α2 + β1γ2, β = α1β2 + β1δ2, γ = γ1α2 + δ1γ2, δ = γ1β2 + δ1δ2, we get that
B = A(l+1)C is of the desired form with

γ = γ1α2 + δ1γ2 > 0, α = α1α2 + β1γ2 ≥ γ > 0,

δ = γ1β2 + δ1δ2 > 0, β = α1β2 + β1δ2 ≥ δ > 0.

Lemma 4.5. The largest eigenvalue of any matrix A(l) from Proposition 4.3 is larger than 1.

Proof. Consider the matrix A(l) for some l = 0, ..., d. Its characteristic polynomial is of the form

det(A(l) − λI) = (λ2 + bλ+ c)(1− λ)

where λ2 + bλ + c is the characteristic polynomial of a matrix A(l)
− equal to A(l) but with row 3

and column 3 removed. Matrix A(l)
− is positive and by the Perron theorem it has two distinct real

eigenvalues λmax and λmin such that λmax > 0 and λmax > |λmin|. We will now show that
λmax > 1.

Express λmax using trace and determinant of A(l)
− , λmax =

tr(A(l)
− )+

√
tr2(A(l)

− )−4det(A(l)
− )

2 , where
tr(A(l)

− ) and det(A(l)
− ) are

tr(A(l)
− ) =

2(a4 + 1)κw

wl(a2 + 1)2
− 1

wl
+ 1, det(A(l)

− ) =
2(a4 + 1)(wl − 1)(κw − 3)

w2
l (a

2 + 1)2
.

We consider two cases for tr(A(l)
− ) and show that in both of them λmax > 1. If tr(A(l)

− ) ≥ 2, then

λmax > 1 because λmax >
tr(A(l)

− )

2 . Otherwise, if 1 ≤ tr(A(l)
− ) < 2, then

λmax(A
(l)
− ) > 1 ⇔

√
tr2(A(l)

− )− 4det(A(l)
− ) > 2− tr(A(l)

− )

⇔ tr2(A(l)
− )− 4det(A(l)

− ) > 4− 4tr(A(l)
− ) + tr2(A(l)

− ) ⇔ tr(A(l)
− ) > det(A(l)

− ) + 1

which is always satisfied, because for κw < 3, we have det(A(l)
− )+1 < 1 ≤ tr(A(l)

− ), and for κw ≥ 3

det(A(l)
− ) =

2(a4 + 1)(wl − 1)(κw − 3)

w2
l (a

2 + 1)2
<

2(a4 + 1)(κw − 3)

wl(a2 + 1)2
<

2(a4 + 1)(κw − 1)

wl(a2 + 1)2
≤ tr(A(l)

− )− 1.

This proves that λmax > 1.

Lemma 4.6. Consider the matrix A = A(l) from Proposition 4.3 raised to the power m. If m → ∞,
then αm, βm, γm, δm from the representation of Am in the form from Lemma 4.4 go to infinity.

Proof. By Lemma 4.5 λmax(A) > 1 so lim
m→∞

||Am|| = ∞, so it must be that at least one of αm, βm,
γm, δm goes to infinity. Consider four cases:
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1. Assume αm tends to infinity. From the proof of Lemma 4.4, γm+1 = γ1αm+δ1γm > γ1αm,
so γm must tend to infinity. In the same way, δm+1 = γmβ1 + δmδ2 > γmβ1, so δm must
tend to infinity too. Because βm > δm, βm must tend to infinity as well.

2. Assume βm tends to infinity. From the proof of Lemma 4.4, αm+1 = αmα1 + βmγ1, so
αm must tend to infinity, and so γm and δm as shown above in 1.

3. Assume γm tends to infinity. Then αm must tend to infinity because αm ≥ γm for any m,
and so βm and δm must tend to infinity as shown above in 1.

4. Assume δm tends to infinity. Then βm must tend to infinity because βm ≥ δm for any m,
and so αm and γm must tend to infinity as shown above in 2.

Theorem 4.7. For any He-initialized network with widths bounded from below by 2 and from above
by some wmax, the output distribution kurtosis grows to infinity with increasing depth for any input
He random vector.

Proof. We can express the vector k(d+1) at depth d + 1 as k(d+1) = B(d)k(0) with B(d) =∏d
l=0 A(d−l) parameterized by αd, βd, γd, δd from Lemma 4.4. We can write that

κd+1 = αdκ0 +
βd

σ4
x

c0 + βd.

Note that it must be that c0 ≥ −σ4
x, because

c0 = Cov[(y
(0)
i )2(y

(0)
j )2] = E[(y(0)i )2(y

(0)
j )2]− E[y(0)i ]2E[y(0)j ]2 = E[(y(0)i )2(y

(0)
j )2]− σ4

x ≥ −σ4
x.

We can consider the output of the first layer as the actual input, so we can even say that c0 = σ4
x(−1+ϵ)

for some ϵ > 0, because c1 = γ1σ
4
xκ0 + δ1c0 + σ4

x(δ1 − 1) > γ1σ
4
xκ0 − σ4

x for some γ1 > 0 and
δ1 > 0.

We can write then that

κd+1 = αdκ0 +
βd

σ4
x

c0 + βd = αdκ0 + βdϵ.

To know that κd+1 goes to infinity with d → ∞ it is enough to show that lim
d→∞

||B(d)|| = ∞, because

it would imply that one of αd, βd, γd or δd goes to infinity, in which case κd+1 goes to infinity. We
will show that lim

d→∞
λmax(B(d)) = ∞ which implies that lim

d→∞
||B(d)|| = ∞. Because for any two

matrices M1 and M2 λmax(M1M2) = λmax(M2M1), we can consider λmax of a rearranged matrix
product

λmax(B(d)) = λmax

(
d∏

l=0

A(l)

)
= λmax

(
wmax∏

w=2

Amw
w

)

where Aw denotes a matrix A(l) from Proposition 4.3 for a specific width w, and mw the number
of occurrences of such matrices until depth d. With d → ∞ there will be at least one w for which
mw → ∞. For such widths w, Amw

w will behave according to Lemma 4.6. The product
∏wmax

w=2 Amw
w

will consist of a finite number of matrices of the form from Lemma 4.4 and at least one matrix with
all positive parameters from Lemma 4.4 going to infinity. In effect, the positive parameters from
Lemma 4.4 for this product will go to infinity, which implies that λmax (

∏wmax

w=2 Amw
w ) will go to

infinity. As a result, with d → ∞, λmax(B(d)) will go to infinity.

We set the width to satisfy w > 1, but the same can be proven allowing for w = 1. This requires
another assumption that either |a| ≠ 1 or κw ̸= 1.
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5 Exploding kurtosis and vanishing empirical variance

Theorem 4.7 has important consequences for He-initialized networks. Although the theoretical
variance is kept constant over all hidden layers, for deep enough networks we will typically observe
the empirical variance at the output to be close to zero. This stems from the relation between the
kurtosis κ and the empirical variance distribution S2

n. The variance of S2
n depends on kurtosis

as3 V ar[S2
n] =

(
κ− n−3

n−1

)
σ4

n where n is the sample size, κ is kurtosis and σ2 is the theoretical

variance. For a large n, we can approximate the ratio distribution of S2
n

σ2 as S2
n

σ2 ∼ χ2(DFn)
DFn

with

DFn = 2σ4

V ar[S2
n]

= 2n
κ−n−3

n−1

. This can be alternatively expressed in terms of the gamma distribution
S2
n

σ2 ∼ Γ(k = DFn

2 , θ = 2
DFn

). With kurtosis κ growing to infinity, DFn for any n ∈ N shrinks to
zero so the shape parameter k shrinks to zero and the scale parameter θ = 1

k grows to infinity. The
probability density function for this distribution is given as f(x; k, θ) = f(x; k, 1

k ) =
xk−1e−kxkk

Γ(k) .
For any x > 0, with k → 0, this converges to zero because the numerator converges to a constant and
the denominator grows to infinity. The speed of convergence is faster for large x.

Despite keeping the theoretical variance constant, the empirical variance distribution converges in
probability to zero, because as shown by Theorem 4.7 the output kurtosis grows to infinity with
increasing depth. In practice, all inputs will be mapped arbitrarily close to zero. This will make
training impossible as no gradient will be propagated through networks with outputs zeroed-out.

6 Experiments

We proved in Theorem 4.7 that He initialization suffers from the vanishing empirical variance problem.
We hypothesize that problems with empirical variance concern all fully random initialization methods
which initialize weight matrices with off-diagonal entries, because this induces increased dependence
of outputs. If the theoretical variance is kept constant or decreases, the empirical variance vanishes,
otherwise it explodes. In the next sections, we present empirical evidence that supports this hypothesis.
We verify it experimentally for five state-of-the-art random initialization methods: Glorot by Glorot
and Bengio [2010], He by He et al. [2015], orthogonal by Saxe et al. [2014], GSM by Burkholz and
Dubatovka [2019], and MetaInit by Dauphin and Schoenholz [2019]. We also demonstrate that ZerO
proposed by Zhao et al. [2022] is superior over all these methods in very deep regimes.

All experiments are performed on constant-width ReLU networks on CIFAR10 [Krizhevsky, 2009].
The inputs are preprocessed so that the means of all channels are zero and the variances are one.

The experiments were run on a machine with a single Intel i7-11850H CPU. The anonymized code is
available at https://drive.google.com/file/d/1GIH4WOgJCCjreLW6v0MPyRMb9xGKarqv/
view?usp=share_link.

6.1 Empirical evidence for the problems with empirical variance

We estimate quantiles of the output empirical variance distribution for different initialization methods
over 10,000 neural networks (1,000 for MetaInit) of constant width w = 10 and depth d = 100,
given the whole CIFAR10 training set as input. The quantile plots for probabilities 0.9, 0.99 and
0.999 over layer depth are given in Figure 1. For all considered random initialization methods except
MetaInit, we observe that 90% randomly initialized networks will have empirical variance lower
than 10−3 after 80 layers and all quantiles monotonously decrease after 40 layers. For MetaInit,
empirical variances explode. On the other hand, ZerO, which initializes most layers to identities,
keeps empirical variance constant after the first layer.

6.2 Practical significance of the problems with empirical variance

We trained neural networks at varying depths to verify that random initialization methods suffer from
the problems with empirical variance in practice. We evaluated their test accuracy after 500 gradient
steps. As an optimizer we used Adam [Kingma and Ba, 2015] with β1 = 0.9, and β2 = 0.999 with

3We refer to [O’Neill, 2014] for a detailed treatment and proofs.
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Figure 1: Estimated quantiles of the output empirical variance distribution over depth given the whole
CIFAR10. The plots use logarithmic scale. ZerO is deterministic, so all its quantiles are equal.

no weight decay. We trained networks for two widths: 1) width 10 and depths from 0 to 100 with a
step of 10 and learning rate of 10−4, 2) width 200 and depths from 0 to 500 with a step of 50 and
learning rate of 10−5. The results are given in Figure 2. We can see that all random initialization
methods fail to train in very deep regimes and are inferior to ZerO which does not suffer from the
problems with empirical variance.

0 20 40 60 80 100
0.1

0.2

0.3

0.4 w=10

0 100 200 300 400 500
0.1

0.2

0.3

0.4 w=200

Glorot (normal dist.)
orthogonal
He (normal dist.)
gsm
metainit
ZerO

Figure 2: Test accuracy after 500 gradient steps over network depth for fully-connected constant-
width ReLU networks trained on CIFAR10. The curves indicate the means and the bars indicate the
minima and maxima over 5 repetitions.

7 Discussion

By analysing the dynamics of kurtosis in He-initialized networks, we identified two new problems in
very deep neural networks: the exploding kurtosis and the vanishing empirical variance problems. Our
experiments show that problems with either exploding or vanishing empirical variance concern not
only He initialization but also other state-of-the-art random initialization methods like Glorot [Glorot
and Bengio, 2010], GSM [Burkholz and Dubatovka, 2019], or MetaInit [Dauphin and Schoenholz,
2019]. All these methods fail to train very deep networks. Our experiments show that it is possible to
train very deep networks with deterministic initialization methods like ZerO [Zhao et al., 2022].

We analyzed fully-connected ReLU networks, but we hypothesize that our main result about exploding
kurtosis extends to many other setups. Addition of skip connections cannot stop the growth of kurtosis,
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because kurtosis explodes even for the networks with no activation function, which is equivalent
to setting the negative slope parameter a to 1 in our analysis. Convolutional layers induce even
more dependence of layer outputs due to parameter sharing, so we expect the output kurtosis to
grow at even faster pace. It is unclear whether using activation functions other than leaky ReLU
could mitigate the issue. Bounded activation functions like tanh or sigmoid reduce the theoretical
variance of their inputs. The impact of these activations on kurtosis is unclear. Whether there exist an
architecture which by its design would prevent the growth of kurtosis requires further research.
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Vanishing Empirical Variance in Randomly Initialized
Networks: Supplementary Material

A Proof of Proposition 3.2

We first prove the following lemma.

Lemma. Let x be a zero-mean, symmetric random variable with V ar[x] = σ2
x. Then E[ϕ2

a(x)] =
(a2+1)

2 σ2
x.

Proof.

E[ϕ2
a(x)] =

∞∫

−∞

ϕ2
a(x)p(x)dx =

0∫

−∞

a2x2p(x)dx+

∞∫

0

x2p(x)dx

= a2
0∫

−∞

x2p(x)dx+

∞∫

0

x2p(x)dx =
1

2
a2

∞∫

−∞

x2p(x)dx+
1

2

∞∫

−∞

x2p(x)dx

=
a2 + 1

2
σ2
x

Below, we prove Proposition 3.2.

Proposition (He initialization). If for all l = 1, ..., d weight matrices W(l) are i.i.d., zero-mean, and
symmetric with variance equal to 2

wl(a2+1) , then for an input He random vector x with variance σ2
x

the output random vector y(d) is a He random vector with variance σ2
x.

Proof. Consider a He random vector x with variance σ2
x as input. We prove the proposition by

induction on d starting from the base case of d = 0 which is satisfied by assumptions on the input
vector. Assume that it holds for some l. For l + 1, we have y(l+1) = W(l+1)ϕa(y(l)). Consider a
specific entry y

(l+1)
k =

∑wl

i=1 W
(l+1)
ki ϕa(y

(l)
i ). It is symmetric as it is a sum of symmetric random

variables. As it is a sum of uncorrelated variables, its variance is sum of variances of the summands

V ar[y
(l+1)
k ] =

wl∑

i=1

V ar[W
(l+1)
ki ϕa(y

(l)
i )] =

wl∑

i=1

E[(W (l+1)
ki )2]E[ϕ2

a(y
(l)
i )]− E[W (l+1)

ki ]2E[ϕa(y
(l)
i )]2

=

wl∑

i=1

V ar[W
(l+1)
ki ]

(a2 + 1)

2
σ2
x =

wl∑

i=1

2

(a2 + 1)wl

(a2 + 1)

2
σ2
x =

wl∑

i=1

σ2
x

wl
= σ2

x.

Preprint. Under review.
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Lastly, consider Cov[y
(l+1)
k , y

(l+1)
j ] for k ̸= j

Cov[y
(l+1)
k , y

(l+1)
j ] = E[y(l+1)

k y
(l+1)
j ]− E[y(l+1)

k ]E[y(l+1)
j ] = E[(

wl∑

i=1

W
(l+1)
ki ϕa(y

(l)
i ))(

wl∑

i=1

W
(l+1)
ji ϕa(y

(l)
i ))]

= E[
wl∑

i0=1

wl∑

i1=1

W
(l+1)
ki0

ϕa(y
(l)
i0
)W

(l+1)
ji1

ϕa(y
(l)
i1
)] =

wl∑

i0=1

wl∑

i1=1

E[W (l+1)
ki0

ϕa(y
(l)
i0
)W

(l+1)
ji1

ϕa(y
(l)
i1
)]

=

wl∑

i0=1

wl∑

i1=1

E[W (l+1)
ki0

]E[ϕa(y
(l)
i0
)W

(l+1)
ji1

ϕa(y
(l)
i1
)] = 0.

So all entries in yl+1 are uncorrelated.

B Proof of Lemma 4.1

Lemma. Let x be a zero-mean, symmetric random variable with V ar[x] = σ2
x and Kurt[x] = κx.

Then E[ϕ4
a(x)] =

(a4+1)
2 σ4

xκx.

Proof.

E[ϕ4
a(x)] =

∞∫

−∞

ϕ4
a(x)p(x)dx =

0∫

−∞

a4x4p(x)dx+

∞∫

0

x4p(x)dx

=
1

2
a4

∞∫

−∞

x4p(x)dx+
1

2

∞∫

−∞

x4p(x)dx =
a4 + 1

2
E[x4] =

a4 + 1

2
σ4
xκx.

C Proof of Lemma 4.2

Lemma. Let x, y be identically distributed, uncorrelated, zero-mean, symmetric random variables
with variances σ2

x, kurtoses κx and Cov[x2, y2] = c. Then E[ϕ2
a(x)ϕ

2
a(y)] =

(a2+1)2

4 (σ4
x + c).

Proof.

E[ϕ2
a(x)ϕ

2
a(y)] =

∫

R2
+

x2y2p(x, y)dxdy + 2a2
∫

R+×R−

x2y2p(x, y)dxdy + a4
∫

R2
−

x2y2p(x, y)dxdy

=
1

4
(a2 + 1)2E[x2y2]

Recall that Cov[x2, y2] = E[x2y2] − E[x2]E[y2] so E[x2y2] = Cov[x2, y2] + E[x2]E[y2]. We get
as a result

E[ϕ2
a(x)ϕ

2
a(y)] =

(a2 + 1)2

4
(σ4

x + c).

D Perron theorem

We provide the Perron theorem as given in Horn and Johnson [2013]. We refer to this book for further
details and proofs.

Theorem (Perron). Let A be a n× n matrix which is irreducible and nonnegative and n ≥ 2. Let
ρ(A) denote the spectral radius of A. Then:
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1. ρ(A) > 0,

2. ρ(A) is an algebraically simple eigenvalue of A,

3. there is a unique real vector x such that Ax = ρ(A)x and x1 + x2 + ... + xn = 1; this
vector is positive,

4. there is a unique real vector y such that yT A = yT ρ(A) and y1 + y2 + ... + yn = 1; this
vector is positive,

5. |λ| < ρ(A) for every eigenvalue λ of A such that λ ̸= ρ(A),

6. (ρ(A)−1A)m → xyT as m → ∞.

E Negative correlation between kurtosis at initialization and test performance

We performed additional experiments on MNIST [LeCun et al., 1998] and CIFAR10 [Krizhevsky,
2009] to illustrate the negative impact of high output kurtosis at initialization on training. In the case
of He initialization, it is possible to calculate the theoretical output kurtosis recursively applying
the formula from Proposition 4.3, given κ0 and c0 for the input He random vector. We estimated
the values for MNIST and CIFAR10 using 107 random samples. For MNIST we got c0 = 0.71,
κ0 = 3.95 and for CIFAR10 we got c0 = 0.10, κ0 = 3.28. We trained networks of various
depths and widths to observe relation between different values of kurtosis at initialization and test
accuracy. We trained constant-width He-initialized networks twice for each of all tuples (width,
depth, initialization distribution) for widths and depths from 5 to 50 with step of 5, and the weight
initialization distributions Bernoulli (κw = 1), uniform (κw = 1.8), normal (κw = 3). We used
Adam optimizer [Kingma and Ba, 2015] with learning rate of 10−4, β1 = 0.9, β2 = 0.999 and no
weight decay. We plotted test accuracy after 500 gradient steps over output kurtosis at initialization.
The results are given in Figure 1. From the plots we can see that networks with large output kurtosis
at initialization cannot be effectively trained.

103 107 1011 1015
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

MNIST

103 107 1011 1015
0.1

0.2

0.3

0.4 CIFAR10

Figure 1: Test accuracy after 500 gradient steps vs output distribution kurtosis at initialization for
networks of varying widths, depths and initialization distributions trained on MNIST and CIFAR10.
Results for 330 experiments per dataset.
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Vanishing Empirical Variance in Randomly Initialized Networks:
Supplementary Material Beyond the NeurIPS submission

A ZerO*
We performed the same experiments as in Figure 2 in the NeurIPS paper, but on the MNIST [LeCun et al.,
1998] dataset instead of CIFAR10 [Krizhevsky, 2009]. The results are given in Figure 1. We can see that
ZerO fails in this case for very deep networks. We hypothesize that the reason for is that ZerO initializes
dimension-decreasing layers to truncated identities, so it does not propagate all meaningful information from
the MNIST input at initialization.
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Figure 1: Test accuracy after 500 gradient steps over network depth for fully-connected constant-width ReLU
networks trained on MNIST. The curves indicate the means and the bars indicate the minima and maxima
over 5 repetitions.

To mitigate this issue, we propose a slight modification to ZerO, which we call ZerO*. In ZerO*, we
initialize the first layer randomly by sampling weights i.i.d. from a zero-mean symmetric distribution with
the variance of 1

w0
. All other layers are initialized as in ZerO. ZerO* is not purely deterministic, but its

random part changes empirical variance and kurtosis over a single layer only, so ZerO* does not suffer from
neither exploding nor vanishing empirical variance problem.

We repeated experiments from Figure 1 to compare ZerO and ZerO*. The results are given in Figure 2 for
MNIST. We can see that ZerO* is superior to ZerO and random initialization methods considered in Figure 1.

We also repeated experiments for ZerO and ZerO* from Figure 2 from the paper on CIFAR10. The results
are given in Figure 3. We can see that ZerO* has more randomness, but its performance is not degraded
compared to ZerO.

B ReLU networks converge to Dirac-delta function
For the special case of ReLU networks with negative slope a = 0, we can prove that they converge to Dirac-
delta function in probability with increasing depth. This is an independent result from the one concerning
the dynamics of kurtosis which was discussed in the paper, but its consequence for very deep networks is
practically the same: they cannot be trained because their output is zero for almost all outputs.
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Figure 2: Test accuracy after 500 gradient steps over network depth for fully-connected constant-width ReLU
networks trained on MNIST. The curves indicate the means and the bars indicate the minima and maxima
over 5 repetitions.
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Figure 3: Test accuracy after 500 gradient steps over network depth for fully-connected constant-width ReLU
networks trained on CIFAR10. The curves indicate the means and the bars indicate the minima and maxima
over 5 repetitions.

Consider the simplest case of a deep feedforward network with one input dimension and one output
dimension with all linear layers containing a single parameter. If we initialize the parameters according to He
initialization, the variance of the output is kept constant across the layers as expected. But at the same time,
the probability that the output is non-zero decreases with increasing number of layers. With the number of
layers approaching infinity, the output distribution of such a network converges in probability to the Dirac
delta function, which is expressed formally below.

Proposition B.1 (ReLU networks of width 1 converge to Dirac-delta distribution). Consider a neural
network of depth d with constant width w = 1 and negative slope a = 0 that is He-initialized. Then for input
symmetric random variable x the output y(d) satisfies p(y(d) ̸= 0) = ( 12 )

d and lim
d→∞

p(y(d) ̸= 0) = 0.

Proof. We prove the observation by induction on d. The base case for y(0) is satisfied by definition of x. Now
if the observation holds for an l, we have p(y(l) ≠ 0) = ( 12 )

l. Take y(l+1) = w(l+1)ϕ0(y
(l)). y(l) is non-zero

with probability ( 12 )
l, and because of symmetry, it is positive with probability 1

2 (
1
2 )

l = ( 12 )
l+1, and so ϕ0(y

(l))

is non-zero with probability ( 12 )
l+1. Because w(l+1) is He-initialized, y(l+1) = w(l+1)ϕ0(y

(l)) is non-zero if
and only if ϕ0(y

(l)) is non-zero.

The above observation is a special case of a more general result which holds for neural networks with
ReLU activations with arbitrary width.

Proposition B.2 (ReLU networks converge to Dirac-delta distribution). Consider a He-initialized network
of layer widths {wl}dl=1, negative slope of 0 and depth d. Then for input He random vector x the output y(d)

satisfies p(y(d) ̸= 0) =
∏d−1

i=0
2wi−1
2wi

and so lim
d→∞

p(y(d) ̸= 0) = 0.
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Proof. We prove the observation by induction on d. The base case for y0 is satisfied by definition of input as
He random vector. If the observation holds for an l we have p(y(l) ̸= 0) =

∏l−1
i=0

2wi−1
2wi

. Note that it must hold
that either all elements of y(l) are non-zero or all are zero so p(y(l+1) ̸= 0) = p(ϕ0(y(l)) ̸= 0). ϕ0(y(l)) ̸= 0 if
two conditions are met - y(l) is non-zero and at least one its element is positive. The probability that all
elements of y(l) are negative given that it is non-zero is ( 12 )

wl because they are symmetric and uncorrelated.
So the probability that at least one element of yl is positive given that yl is non-zero is (1− 1

2wl
). By law of

total probability we have p(y(l+1) ̸= 0) = (1− 1
2wl

)
∏l−1

i=0
2wi−1
2wi

= ( 2
wl−1
2wl

)
∏l−1

i=0
2wi−1
2wi

=
∏l

i=0
2wi−1
2wi

.
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