Delft
e t University of
Technology

User Evaluation of InCoder Based on Statement
Completion
Marc Otten

Supervisors: Maliheh Izadi, Arie van Deursen
EEMCS, Delft University of Technology, The Netherlands

June 19, 2022

A Dissertation Submitted to EEMCS Faculty Delft University of Technology,
In Partial Fulfilment of the Requirements
For the Bachelor of Computer Science and Engineering

User Evaluation of InCoder Based on Statement
Completion

Marc Otten
Computer Science and Engineering
Technical University of Delft
Delft, The Netherlands

Abstract—A lot of models have been proposed to automatically
complete code with promising evaluation results when tested
in isolation on testing sets. This research aims to evaluate
the performance of these models when used by developers
when programming. Are these models still useful for actual
programming and do developers even want this functionality?
The model evaluated in this study is the InCoder model by
Facebook, specifically the ability to complete code statements
for the Python programming language. To evaluate this a plugin
called Code4Me was made for PyCharm and VSC that will show
code completion suggestions from the model when a keybind is
pressed or a trigger point is encountered. If the user is shown a
suggestion the plugin will send the actual line of code made by the
developer after a delay, this can also be the suggestion itself if the
user thought the suggestion was correct. When the user has used
the model sufficiently they will also be asked to fill in a survey
to gather opinions on the functionality that the model provides.
The results show that there is a 21.95% ExactMatch, 52,73%
edit similarity, and a BLEU-4 score of 36.05 for the statement
completion functionality of InCoder. All users that filled in the
survey preferred the automatic suggestions on trigger points but
some indicated the keybind functionality was also useful. If the
suggestion shown to the user was good they would use it instead
of typing it themselves. The users indicated that the suggestions
were a lot or a bit better than the default suggestions and using
the plugin did save time programming. Overall all users were
positive of the performance and thought the statement completion
functionality provided useful suggestions.

Index Terms—code completion, InCoder, statement completion,
machine learning, integrated development environment, software
tools

I. INTRODUCTION

Thinking of a solution to a problem takes time, but then pro-
gramming it will take even more time. Using current state of
the art natural language processing models specifically trained
on code instead of natural languages we can significantly re-
duce the time spent programming by automatically completing
tokens, statements, and even entire blocks of code. These
models already exist and perform quite well when tested using
testing sets but have not been tested by users in actual real life
programming environments. Similar studies have tested similar
functionality of models such as natural language prompts
to code which users thought provided useful functionality.
The architecture to collect data from the IDE’s and evaluate
has also been adapted from earlier studies. This project will
evaluate the InCoder model made by Facebook by doing a
user study and focus on if users use this kind of functionality
and if the performance is still good in real life programming

environments [1]]. The model is trained to do code infilling
but by simply taking the first statement of this infill we are
able to evaluate the statement completion functionality of the
model. Due to the model being bidirectional model it will use
the left and right context when making a completion, which
allows it to generate code at arbitrary places in the code. This
is ideal for developers since this does not limit the use of the
model if the model would only be unidirectional. The version
used in this research is the 1B version due to the technical
limitations of the server being unable to use the 6B version due
to memory constraints. The evaluation will be done only on the
Python programming language since it is one of the most used
programming languages but InCoder supports a wide range of
languages. The model will be used in combination with an
IDE plugin to show the user the suggestions from the model
when prompted or when a trigger point is typed. The plugin
works for VSC and all JetBrains IDE’s, but since the study
is limited to Python PyCharm and VSC are the main focuses.
These suggestions will be evaluated against the actual code
the user writes and the usefulness will be evaluated using a
survey. The results of this study show that the performance of
the InCoder model is still quite good when used for statement
completion and users indicated in the survey that it provides
useful suggestions and saves time programming. They also
indicated the functionality was useful and they would want to
keep using the plugin.

The main contributions of this study are:

e User evaluation of InCoder for statement completion

o User opinions on functionality of statement completion
for coding

o Trigger point evaluation to optimise statement completion
performance

e Open source repository for the VSC and JetBrains
Code4Me plugin for code suggestions

The study will look into the performance of automatic
code completion models when used by developers by firstly
discussing what has already been done in the field of automatic
code completion. Afterwards the layout of the experiment and
what design choices have been made to accurately evaluate
the model and user perception are mentioned. Finally we
will show and discuss the results of the research and what
conclusions can be concluded from these results.

II. PROBLEM DEFINITION

All the models look promising when used in a testing
environment but are they as accurate when used in real
programming environments? Most models work by masking a
single token in the code and then predicting what this token
should be, however this functionality is already built in most
IDE’s. Most models only use the context from the left side of
the mask to predict what the mask should be. However this
method can discard useful context on the other side of the
token which occurs quite often when actually programming.
The new state of the art model by Facebook called InCoder is
able to infill code in arbitrary positions by making use of the
right context as well[|1]]. Since this is a new approach it has
not been evaluated by users when programming but only on
testing data. This evaluation will give critical insight on the
performance of the model and if users find the functionality
provided when programming useful.

This paper will evaluate the performance of this model by
making a plugin that will suggest a statement completion using
the model when a keybind is pressed or a trigger point is
encountered. The plugin will keep track of how many times
a user used the autocomplete function and if the completion
was used by the developer. It will compare the suggestion of
the model to the actual line of code that the developer ended
up with. Surveys will also be used to collect additional data
to more accurately evaluate the performance of this new State
of The Art model.

III. BACKGROUND

Natural Language Processing models have been used for
a variety of things such as: chat bots, translating, text anal-
ysis, and more. With the increase of computing power and
available data some models have been designed to specifically
work on code instead of text. The structure of code is quite
different to languages with abstract syntax trees, inheritance,
and unlimited vocabulary. In contrast to languages that have a
non-infinite set of words variables and method names can be
named anything. By making use of these characteristics and
training NLP models using code examples these models have
been quite successful on different code completion tasks.

The InCoder model makes use of the left and right context
of data. Most state of the art models only use the left context
which limits their capabilities since some context can be
missing such as entire methods at the bottom of the file. By
using the right context aswell the InCoder model was able to
improve the accuracy of code infilling and code synthesis [[1]].
The right context can contain just as much information as the
left context so including it gives the model more information
to use for predicting.

There are 4 different actions a user can do when a sug-
gestion is shown: explicit select, typed select, explicit cancel,
typed cancel [2]. The data stores which prediction was chosen
and if a prediction even was chosen which allows us to
differentiate between explicit select and typed select. The
canceled action is not used in this study. If no suggestions
was selected we can still calculate the metrics by comparing

the typed code with the suggestion because the suggestion not
being chosen does not mean it was a bad suggestion, the user
might already know what they want to type.

IV. RELATED WORK

This section discusses other studies that have been used to
gather insight in the field of code completion, the different
metrics, strategies to represent data for model input, and simi-
lar works with regards to IDE’s and personalized suggestions.

A. Training Models

There has been a lot of development around pre-trained
language models but it is not that clear why these models
works so well and what features of the code structure they
are able to use [3]. This study by Wan et al. found that
these models were able to preserve the syntax structure in
intermediate layers and induce these syntaxes from the code.
The abstract syntax trees thus play a big role in these models
and can be very helpful when pre-training.

When training a model using non-IDE, non-autocompleted,
and different-language example code sequences the perfor-
mance is slightly increased not only when testing but also
in the real coding environments [4]. By training a model on
these different examples and not only Python code Zhou et
al. were able to show increased accuracy when compared to
standard pre-training.

These improved accuracies are nice on paper but not all
models perform quite as well when used by developers. By
training the model on real world data instead of artificial
autocompletion examples [S]]. Gareth et al. were also able to
show an increase in accuracy when the model was tested on
real programming environments by developers.

A study by Hadi et al. showed that when pre-trained models
were trained using specific annoted api requests these models
outperformed generating of api requests by models that treated
the data as words without annotation [|6]]. This shows that these
models are very versatile and when trained with the right data
can automatically complete statements or even generate correct
code blocks.

B. Designing Models

There are a lot of different techniques used for automatic
code completion. Such as a the use of abstract syntax trees of
the code to better understand the structure. The work of Wang
et al. have proposed an even more efficient method to use
AST’s [[7]. By flattening the AST and then transforming it into
a graph they were able to better utilize sequential and repetitive
patterns which allowed for better accuracy in predicting the
next token.

Different developers program with their own unique style
and design patterns. This can lead to a model suggesting a
good completion of the code but the developer not using this
suggestion since it does not fit their style. A new model called
PERSONA was made by Nguyen et al. to try and use personal
projects from developers as training data for the model [§].

The model is able to recommend the next identifier with top-
1 accuracy of 60-65%.

The accuracy of SOTA models is quite high when tested but
the compilability of the generated code can be significantly
increased as show by a study by Wang et al.[9]. By utilizing
compiler feedback and language model fine tuning the code
completion compilation rate went from 44% to 89%, this
however does not mean that there was also an increase in
accuracy for correct code completion.

C. Evaluating Models

The work by Bibaev et al. proposed ways to use the IDE to
collect anonymous logs to train a model [2]]. A server was used
to collect the logs to have a centralised data storage. They also
explained the different types of actions a user can do when
a suggestion is shown. The study used these logs to train a
model but for this study the architecture and type of actions
are the key topics.

A similar study to this one is the work of Xu et al. [[10].
A user study was done by evaluation a code generation and
a code retrieval model based on a natural language prompt.
Similar to this work a plugin was also made to allow users
easy usability of the functions. To evaluate the models users
had to do specific tasks and fill in a survey. It was shown that
users liked the functionality but sometimes struggled writing
their conceptualized ideas into text that allowed for a good
suggestion. It also limited the tasks the users could use the
model for.

The evaluation of code using BLEU is widely used for
state of the art models. Some scenarios however require a
slightly altered version to more accurately evaluate which can
be achieved by using different smoothing functions. Chen et
al. proposed and evaluated 7 different smoothing techniques
to more accurately represent human judgement [|11]].

The work by Shi et al. showed how preprocessing affects
BLEU score and what smoothing functions are a good fit [12].
It also highlights some issues for some specific smoothing
functions. The differences for corpus level and sentence level
calculations are also highlighted and discussed.

A plugin like this one is one made by Svyatkovskiy et al.
called IntelliCode [13]]. Instead of trigger points they showed
a suggestion by the model on every keystroke and did not
evaluate the model using user data but a testing set. They
showed that the plugin was quite succesful when tested on
a testing set. The metrics they used were finetuned for this
specific task so provide valuable insight which metrics we
can use in this study.

This study will contribute evaluation on user provided data
when used in programming tasks that they normally encounter
when programming. Participation was voluntarily and there
was no limits on what tasks the users could perform with the
plugin. The strategy of using trigger points to show users a
suggestion will also provide valuable information on model
performance in different situations.

V. METHODOLOGY

To evaluate the performance of the InCoder model we need
to gather data from users. This data will be automatically
collected when the users make use of the plugin. After the
user has used the autocomplete function sufficient times to
have enough reference points they are asked to fill in a short
survey. The data collection for the paper will approximately
take 1 to 2 weeks and the survey will more accurately poll
their views of the model and plugin. The plugin and server
will keep operating after the research is fnished to collect even
more data which can be used for future studies.

The IDE’s that the plugin is made for is VSC and JetBrains,
specifically the Python version called PyCharm. This is be-
cause we have the most experience in these IDE’s, are the
most used IDE’s for Python, and support custom plugins or
extensions. The plugin makes a request to a server from TU
Delft that allows for faster completion results than running
locally on the users computer. This structure removes all the
load from user’s hardware and makes sure all users experience
similar inference time. The suggested completion of the model
and the final version of that statement which is what the user
meant to program is stored in the database and then evaluated
using different metrics. The metrics used are: Levenshtein
Distance to compute edit similarity, Exact Match, ROUGE-
L, BLEU-4, and METEOR, this is because these metrics are
widely accepted and used in the natural language processing
field which automatic code completion falls under.

The inference was drastically lowered before releasing the
plugin to the users. When first testing the model the inference
time was around Ss but after working on the plugin it took
a little bit more than 1 second. This was partly due to the
increase in computing power by using the server provided
by the TU Delft, but also due to some improvements in the
code. The model is very powerful and would actually generate
multiple lines at once so after adding a custom stopping
condition that would stop when one line was completed the
inference time went even lower to 80ms. This low inference
allows for almost no little waiting time for the user to be shown
the suggestion which improves user experience and allowed
for an the release of the plugin.

VI. EXPERIMENT DESIGN

This section will discuss the research questions and the
setup used in the research to answer these. Furthermore the
approach of these research question will be evaluated and what
metrics will be used. The last subsection will discuss the users
and how they are acquired and the distribution of the plugin.

A. Research Questions

The research questions aim to give insight in the usefulness
of statement completion which is the main topic.

RQq: What is the acceptance rate of suggestions from the
model when used by developers?

This question will give insight in how the functionality of
the plugin is used and if users even want it. The acceptance rate
can be calculated by checking if the user chose the suggestion

IDE

Completion Request‘

Server

Model

»

< Code Suggestion

E Completion Response
Y

Fig. 1. Diagram of communication between plugin and server.

or not. It is also interesting to look if there is a significant
difference in the accuracy of the model when a suggestion
is accepted or not to know if the quality of the suggestion
or something else is an important factor for acceptance rate.
Another interesting thing is if the acceptance rate is different
for different trigger points, some might be easier to complete
for the model than others.

RQ2: How useful is the model from the users’ perspective?

The usefulness of the model will show how users used the
functionality and if desired functionality might be lacking.
The usefulness will be calculated using the different accuracy
metrics but also using the survey. The survey will give insight
into the perceived usefulness by the users. The accuracy might
be quite low but users can still think the few good suggestions
are very useful and outweigh the bad suggestions.

RQs: How can the acceptance rate of the model be im-
proved for everyday coding use?

This information will be useful for further research. Some
trigger points could be removed to increase user experience,
users might have very good suggestions for the use cases in
the survey, a model that works better on less context, sending
more context, the keybind might not be a useful addition in
the eye of of users, and other ideas can be explored here using
the available data. The more users participate the more data
the better the functionality of these models in the future.

B. Prediction Setup

Since this study focuses on statement completion and In-
Coder is able to do infilling of arbitrary length we added the
stopping condition to stop completing on a newline character
to improve inference time and make sure one line is completed.
The model can handle up to 2048 tokens and to make sure
there is room to infill tokens we limited the left and right
context to 1000 tokens each. The the average token length of
a python token is 3.8 characters ﬂ We used this to estimate
how much characters to send to the server and then server side
limited the tokens before feeding it to the model. Since left
and right context were both capped at 1000 tokens the model
was always able to fill in at least 48 tokens.

IThis can be shown by calculating the token frequencies on the raw files
used in the P1K-22 dataset

The trigger points used to automatically prompt a suggestion
are shown below, these were the most beneficial tokens to
complete on [14]. The plugin checks after every insertion
or deletion if the token before the cursor is a keyword and
shows a suggestion if that is the case. If a suggestion is shown
location in the file is tracked and the final line is send to the
server to compare against the suggestion.

DOT, AWAIT, ASSERT, RAISE, DEL, LAMBDA,
YIELD, RETURN, EXCEPT, WHILE, FOR, IF, ELIF,
ELSE, GLOBAL, IN, AND, NOT, OR, IS, BINOP,
WITH, ;, ., [({, " =

C. Evaluation Metrics

Since the suggestion made by the model and the ground
truth is stored we can easily evaluate the performance of the
model. To do this we make use of several widely used metrics
in the natural language processing field. For edit similarity
we make use of the Levenshtein distance. The Levenshtein
distance calculates the amount of single character insertions,
deletions, or modifications. The Exact Match metric is a binary
metric that checks if the things to compare are exactly the
same. For accuracy, precision, and f1 score we use the ROUGE
metric, specifically the ROUGE-L metric which takes the
Longest Common Subsequence to calculate the score[15]. By
using the LCS in the calculation it puts emphasis on the
biggest overlapping part which indicates a higher similarity.
This version is better for checking the similarity of code due
to the nature of tokens [13]]. The main metric that is used
for the comparison of code in similar papers is the BLEU-
4 metric, this metric makes use of tokens and calculates
the score based on overlapping n-grams, the weights for the
ratio of overlapping n-grams are uni formally distributed [16].
Another metric used is the METEOR score which makes use
of unigram precision and recall and puts extra weight on the
recall [[17]]. The last metric used is the inference time of the
model which can be used to track any anomalies that could
happen if the server is having issues. The inference time should
not be very different for users but will increase slightly the
more context is sent to the model.

D. Participants & Distribution

Participants of this study are acquired through our own
professional networks and through online communities. Since
the more data points the better conclusions can be drawn we
decided to also advertise on Reddit and Discord to gather
users. We also advertised on Instagram and Facebook using
advertisements but these did not really increase the amount
of users so this approach was stopped after a few days.
The users can download the plugin for free on the JetBrains
Marketplace and the VSC Marketplace. This simple process
allows for a low barrier of entry which allows for more users.
The participants will mostly consist of people interested in
helping with the study which will be people with at least some
programming experience and probably interested in machine
learning and language processing.

VII. RESULTS

The plugins for JetBrains and VSC have gotten over 450
downloads combined, with 200 of these users actually having
used the plugin. Since some people found the plugin through
the marketplaces of the IDE’s and not through our advertising
the amount of users that have used the plugin for Python and is
86. However since half of the users were assigned to another
model for another study half of these users generated data
for this study. There were 13 users that filled in the survey
this is due not all users reaching the required threshold to
have used the plugin enough to be able to accurately judge
the performance of the model. The data collection period for
this study ran from June 7 2022 till June 18 2022. The data
collection will keep going for a bit longer for future studies.
The rest of this chapter will show the results for the research
questions and compare them using different categories to give
clear insight in the usage of the plugin and capabilities of the
model.

A. Acceptance Rate

The goal of the first research question is to evaluate the
acceptance rate and accuracy of the InCoder model. Table [[|
shows all the metrics for the all the data points combined, if the
shown suggestion was explicitly chosen by the user, if the user
decided to not click it and manually complete the statement,
when the manual keybind is used, and the results on automatic
trigger points suggestions. Using the Exact Match metric we
can conclude that 21,95% the model had a perfect prediction
and the line the user ended up with was the same as the model
suggested. The table shows that in 16% of all cases the user
chose the prediction of the model which on average had an edit
similarity of 83.03% which shows that if the prediction was
good users will in most cases use it. In some cases the tokens
needed to finish the statement are so simple or short that the
developer still prefers to type them instead of selecting the
completion. The keybind performance is lower than automatic
trigger points and also consists of less data points. The average
inference time during the data collection was 230ms.

Table |lI] shows the different performances of the model
when a trigger point occurs in the code and an automatic

suggestion is done by the plugin. The edit similarity metric
ranges from 39.21% all the way up to 68.91%. Different
trigger points tell the model more accurately what to do to
complete the statement. The “in” keyword for example has
high evaluation scores because the what comes after this
keyword is limited to check if a value is present in a list and
other classes or to loop over all elements like a for loop. This
limits the options for the models and increases accuracy. The
=" and ’. are by far the most used trigger points accounting
for almost half the data from all automatic suggestions.

B. Usefulness

Looking at Table [I] again shows that the average BLEU-4
score of the suggestions is 36.05 which is not that high when
also looking at the edit similarity of 52.73%, Exact Match of
21.95%, and F1 Score of 42.8. The BLEU score still indicates
that the model performs well and is not suggesting random
code. Now taking a look at the survey to see if users find the
performance of the model useful or annoying. One user rated
the the perceived accuracy of the model as 5 (very good), nine
users rated it as 4 (good) and the other three users rated it as
3 (neutral). Looking at the time saved we have a very similar
result, one user answered they saved a lot of time by using
the plugin, one user answered they saved no time but also no
extra time was needed, and all the other answers being little
time was saved. Half of the responses said the completions
were a bit better than the default completions and the other
half answered that they were a lot better.

C. Survey Results

All users that filled in the survey answered they would
like to keep using the plugin. All the users made use of the
automatic suggestion feature and some also used the keybind
in conjunction with automatic suggestions. For use cases most
users reported that the current way of showing suggestions
the same way and appending them to the default suggestion
window was the best way. Some however would also like
inline completions, showing the suggestion greyed out where
it would be inserted and either continue typing or pressing
tab to use that suggestion, like GitHub Copilot does. There
were quite some suggestions on how to improve the usefulness
of the plugin and model. Some code statements can span
multiple lines which the plugin would simply cut off due to
the functionality being aimed on statement completion. The
InCoder model does support this but due to the aim of the
study being statement completion this functionality was not
added. Other feedback was a bit more generic and consisted
of reducing inference time, which sometimes could get a bit
high due to the server also being used for other things, and
improving suggestions made by the model.

By taking a look at Table [lll we see the performance
of the model based on the length of tokens that were in
the prediction. According to the BLEU metric there is a
trend of the scores decreasing the more tokens are present
in the prediction but there are also some outliers. 63% of the

TABLE I
EVALUATION OF INCODER WITH CHOSEN & WRITTEN AND AUTOMATIC & MANUAL CATEGORIES

Total Explicit Select ~ Not Selected Keybind Trigger Point
Occurrences 4164 663 3501 468 3696
Exact Match 21.95 62.14 14.34 14.32 22.92
Edit Similarity 52.73 83.03 47.00 30.78 55.51
BLEU-4 36.05 65.76 30.43 21.04 37.96
METEOR 42.33 72.63 36.59 22.90 44.79
: Precision 45.03 82.66 37.90 17.73 48.48
8 Recall 44,98 80.69 38.22 18.86 48.29
€ F1 Score 42.87 80.14 35.81 17.86 46.04
TABLE 1T
EVALUATION OF INCODER WITH TOP 10 OCCURRING TRIGGER POINTS
= (s if return in + [-
Occurrences 889 710 468 218 172 111 104 84 79 62
Exact Match 22.16 26776 21.37 3211 2442 4505 47.12 1548 5.06 3.23
Edit Similarity 52.73 59.88 51.85 60.52 6198 63.58 6891 5497 3921 45.70
BLEU-4 36.27 41.72 39.64 3992 4228 4295 4875 4089 28.36 27.64
METEOR 42.16 4997 4795 4298 5129 4683 59.74 48.80 3570 36.06
: Precision 46.58 5371 42,01 5331 6103 60.11 60.60 58.74 22.63 29.76
g Recall 4587 5192 4298 52.68 58772 6826 5994 6228 25.68 33.52
€ Fl Score 4431 50.08 4046 50.75 5591 6093 5844 56.01 2278 30.17
TABLE III
EVALUATION OF INCODER PREDICTIONS OF DIFFERENT TOKEN LENGTH
1 2 3 4 5 6 7 8 9 10 >10
Occurrences 638 614 502 590 369 285 285 201 107 107 466
Exact Match 29.62 2752 3446 19.66 1870 17.89 1333 1443 13.08 24.30 8.58
Edit Similarity 45.22 56.18 62.83 55.82 5534 5372 5092 4935 4829 56.29 4381
BLEU-4 1897 37.28 4520 4441 4279 39.13 40.12 35.14 3422 4198 27.14
METEOR 1772 4273 5245 46.62 4870 4598 50.23 46.19 4559 52.84 4221
S Precision 4543 4356 5645 4742 48.18 48.00 4042 38.74 38.92 46.03 3345
g Recall 3997 37.81 52.63 46.14 47.09 4583 4527 41.67 46.16 56.19 47.79
€ Fl Score 41.22 38.87 52.89 4544 4547 4476 40.85 3827 39.80 48.02 35.89

predictions were 4 tokens or less and 87% were 10 tokens or
less to finish the line.

VIII. DISCUSSION

The results for the most part are in line with the expectations
are there are not huge anomalies that are immediately obvious.
In the it was claimed the inference time was
around 80ms but the average inference time was almost 3 times
as high. This is a significant slowdown and can influence the
result due to users already skipping the completion. Unfortu-
nately this is due the server also being used for other projects
when the data collection was running. The data is still valid
and does not contain errors if this happened but a data point
that could have been selected by the user could be classified
as not selected due to it not appearing in time.

Due to the limited amount of time the data collection ran
the amount of data is less then hoped for but still enough to
accurately calculate most metrics, some categories that do not

have a high enough amount of data points are the trigger points
below the top 10 and predictions with a token length higher
than 10. The group of token length 10 also has a significantly
higher score then expected which is also due to the limited
number of data points for that category.

Some users contributed a significant amount of data points
more than other users. All these data points are treated equally
which can allow some users to skew the scores. However
enough users contributed enough data so this effect is minimal
in this study. Another aspect with regards to the users is
that some code faster than others. The evaluation was done
by comparing the suggestion of the model and how the
user actually programmed that line. This line by the user is
collected 30 seconds after the suggestion is shown to the user.
In some edge cases this might not be enough time but looking
at our data these 30 seconds were enough for almost all data
points.

Since we do not choose who uses the plugin there is a slight

risk of people participating in the study that have malicious
intentions but these are the very minority if they even occur
and the server handled this. There were no abnormal data
points from users or any noticeable intent to skew or dilute
the data.

The metrics used for this study are natural language process-
ing metrics. Since code completion is a sub category of this
and similar studies also used these metrics we also decided
to use these. There does exist a variant of BLEU for code
evaluation called CodeBLEU but this metric does not work for
non compiling code due to it comparing the different abstract
syntax trees of the code snippets. To tokenize the code, which
is what these metrics use to calculate the scores, we made a
custom tokenizer. It behaves exactly the same as the built in
Python tokenizer but does not error on non compiling code. If
another tokenizer was used the scores for the metrics would
have changed.

The context given to the model is quite limited and not
optimised. Since both the left and right context are limited to
1000 tokens if one context has a short length the other context
could have been longer since there is space. The context also
does not include code from imports so the model is unable
to always correctly predict what methods can be used on an
object. This issue is also apparent when trying to read data
from a JSON file or a map and the context not including the
keys that can be used.

Due to some users testing out the functionality of the plugin
and model by using a new file and pressing the keybind to
check it the scores for the keybind category are a bit lower.
This is due the limited context in this scenario and the limited
amount of data points. If there were more data points the
impact of users testing the plugin out would be limited but
this is not the case and has some influence on the results.

IX. CONCLUSIONS & FUTURE WORK

The overall results of the performance of the model are
quite promising. With an Exact Match of 21.95%, an edit
similarity of 52.73%, and a BLEU-4 score of 36.05 show that
the suggestions from InCoder are quite accurate and contain
a lot of correct tokens. The users also indicated that the
functionality is desired and helps them save time due to useful
completions or part of the completion. If the completion is
good users will select it from the list unless it is a small simple
completion that is easier to type then select. The automatic
suggestions on trigger points are the most desired functionality
for the users, this also increases the accuracy of the model
since the model has more context to complete that line. Some
users would like the keybind as well but removing it would
not harm them.

For future work an important aspect to check is how the
performance of the model changes if more context, such
as filename and other files, or smarter context is sent. The
smarter context could be filtering out some parts that do not
seem useful for the model. Some user suggestions also seem
promising such as evaluating code block completion and more
suggestions to choose from. More data will also allow to draw

better conclusions on less used trigger points to adjust the list
of trigger points and increase performance via this approach.

X. RESPONSIBLE RESEARCH

This study adheres to the GDPR regulations, every user has
a random id which does not correspond to anything and can
not be traced to an individual. This id is solely used to know
which data points belong to which user so that we can track
the amount of completions a user is shown to send the survey.
Taking part in this study was voluntarily and users were clearly
informed which minimal part of data collection is stored and
how it is used. Since all the code used for this study is open
source, both the plugins and the server, users can check that
the data collection and storage is as how it was described.
The data is stored on TU Delft servers and not shared with
any third parties.

Since the study involved users and was affiliated with the
TU Delft we had to request permission from the Human
Resource Ethics Committee. This request contained the details
of the data collection process, the targeted users, and risks
involved. The user space was limited to the EU and people
over 18 years old to minimise the risks. To minimise user
bias the study was advertised as much as possible to get a
diverse set of users.

XI. ACKNOWLEDGEMENTS

I would like to start of by thanking Maliheh Izadi for
guiding me through the process of this study and providing
valuable feedback. I would also like to thank Georgios Gousios
for providing a powerful server where the models could be
hosted and advising me. Lastly I want to thank my fellow
students. Frank van der Heijden for working on the JetBrains
plugin and server. Jorit de Weerdt for making the VSC plugin
and helping wherever he could. Tim van Dam and Mika Turk
for providing feedback and other helpful tips.

REFERENCES

[1] D. Fried et al, Incoder: A generative model for
code infilling and synthesis, 2022. arXiv: 2204.05999
[cs.SE].

[2] V. Bibaev et al., All you need is logs: Improving code
completion by learning from anonymous ide usage logs,
2022. por: [10.48550/ARXIV.2205.10692. [Online].
Available: https://arxiv.org/abs/2205.10692.

[3] Y. Wan, W. Zhao, H. Zhang, Y. Sui, G. Xu, and H. Jin,
What do they capture? — a structural analysis of pre-
trained language models for source code, 2022. DOI: 10.
48550/ARXIV.2202.06840. [Online]. Available: https:
/larxiv.org/abs/2202.06840.

[4] W.Zhou, S. Kim, V. Murali, and G. A. Aye, “Improving
code autocompletion with transfer learning,” ArXiv,
vol. abs/2105.05991, 2021. [Online]. Available: https:
/larxiv.org/pdf/2105.05991.pdf.

[5] G. Aye, S. Kim, and H. Li, “Learning autocompletion
from real-world datasets,” Nov. 2020. [Online]. Avail-
able: https://arxiv.org/pdf/2011.04542.pdf.

https://arxiv.org/abs/2204.05999
https://arxiv.org/abs/2204.05999
https://doi.org/10.48550/ARXIV.2205.10692
https://arxiv.org/abs/2205.10692
https://doi.org/10.48550/ARXIV.2202.06840
https://doi.org/10.48550/ARXIV.2202.06840
https://arxiv.org/abs/2202.06840
https://arxiv.org/abs/2202.06840
https://arxiv.org/pdf/2105.05991.pdf
https://arxiv.org/pdf/2105.05991.pdf
https://arxiv.org/pdf/2011.04542.pdf

(6]

(7]

(8]

(9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

M. A. Hadi et al, “On the effectiveness of pre-
trained models for api learning,” arXiv preprint
arXiv:2204.03498, 2022.

Y. Wang and H. Li, “Code completion by modeling
flattened abstract syntax trees as graphs,” Feb. 2021.
[Online]. Available: https://arxiv.org/pdf/2103.09499.
pdf.

T. Nguyen and T. Nguyen, “Persona: A personalized
model for code recommendation,” PLOS ONE, vol. 16,
e0259834, Nov. 2021. por: |10.1371/journal . pone .
0259834.

X. Wang et al., Compilable neural code generation with
compiler feedback, 2022. DOI: 10.48550/ARXIV.2203.
05132, [Online]. Available: https://arxiv.org/abs/2203.
05132.

F. F. Xu, B. Vasilescu, and G. Neubig, In-ide code gen-
eration from natural language: Promise and challenges,
2021. pot: [10.48550/ARXIV.2101.11149. [Online].
Available: https://arxiv.org/abs/2101.11149.

B. Chen and C. Cherry, “A systematic comparison of
smoothing techniques for sentence-level BLEU,” in Pro-
ceedings of the Ninth Workshop on Statistical Machine
Translation, Baltimore, Maryland, USA: Association
for Computational Linguistics, Jun. 2014, pp. 362-367.
DOI: [10.3115/v1/W14-3346. [Online]. Available: https:
/laclanthology.org/W14-3346.

E. Shi et al., “On the evaluation of neural code sum-
marization,” in International Conference on Software
Engineering (ICSE’22), Feb. 2022. [Online]. Available:
https://www.microsoft.com/en-us/research/publication/
on-the-evaluation-of-neural-code-summarization/.

A. Svyatkovskiy, S. K. Deng, S. Fu, and N. Sun-
daresan, Intellicode compose: Code generation using
transformer, 2020. DOTI: 10.48550/ARXIV.2005.08025.
[Online]. Available: https://arxiv.org/abs/2005.08025.
M. Izadi, R. Gismondi, and G. Gousios, “Codefill:
Multi-token code completion by jointly learning from
structure and naming sequences,” Feb. 2022.

C.-Y. Lin, “ROUGE: A package for automatic evalu-
ation of summaries,” in Text Summarization Branches
Out, Barcelona, Spain: Association for Computational
Linguistics, Jul. 2004, pp. 74-81. [Online]. Available:
https://aclanthology.org/W04-1013.

K. Papineni, S. Roukos, T. Ward, and W.-J. Zhu,
“BLEU: A method for automatic evaluation of machine
translation,” in Proceedings of the 40th Annual Meet-
ing of the Association for Computational Linguistics,
Philadelphia, Pennsylvania, USA: Association for Com-
putational Linguistics, Jul. 2002, pp. 311-318. por: 10.
3115/1073083.1073135, [Online]. Available: https://
aclanthology.org/P02-1040.

S. Banerjee and A. Lavie, “METEOR: An automatic
metric for MT evaluation with improved correlation
with human judgments,” in Proceedings of the ACL
Workshop on Intrinsic and Extrinsic Evaluation Mea-
sures for Machine Translation and/or Summarization,

Ann Arbor, Michigan: Association for Computational
Linguistics, Jun. 2005, pp. 65-72. [Online]. Available:
https://aclanthology.org/W05-0909.

https://arxiv.org/pdf/2103.09499.pdf
https://arxiv.org/pdf/2103.09499.pdf
https://doi.org/10.1371/journal.pone.0259834
https://doi.org/10.1371/journal.pone.0259834
https://doi.org/10.48550/ARXIV.2203.05132
https://doi.org/10.48550/ARXIV.2203.05132
https://arxiv.org/abs/2203.05132
https://arxiv.org/abs/2203.05132
https://doi.org/10.48550/ARXIV.2101.11149
https://arxiv.org/abs/2101.11149
https://doi.org/10.3115/v1/W14-3346
https://aclanthology.org/W14-3346
https://aclanthology.org/W14-3346
https://www.microsoft.com/en-us/research/publication/on-the-evaluation-of-neural-code-summarization/
https://www.microsoft.com/en-us/research/publication/on-the-evaluation-of-neural-code-summarization/
https://doi.org/10.48550/ARXIV.2005.08025
https://arxiv.org/abs/2005.08025
https://aclanthology.org/W04-1013
https://doi.org/10.3115/1073083.1073135
https://doi.org/10.3115/1073083.1073135
https://aclanthology.org/P02-1040
https://aclanthology.org/P02-1040
https://aclanthology.org/W05-0909

	Introduction
	Problem Definition
	Background
	Related Work
	Training Models
	Designing Models
	Evaluating Models

	Methodology
	Experiment Design
	Research Questions
	Prediction Setup
	Evaluation Metrics
	Participants & Distribution

	Results
	Acceptance Rate
	Usefulness
	Survey Results

	Discussion
	Conclusions & Future Work
	Responsible Research
	Acknowledgements

