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Abstract
The ability to accurately predict the reliability

and lifetime of electronics is of great importance
to the industry. The failure of the solder joint is of
particular interest for these predictions, because of
their susceptibility to failure under thermo-mechanical
stress. However, the experimental or even conventional
simulation techniques employed to estimate the lifetime of
a solder joint are often too expensive or time consuming
to be of practical use. Therefore, this work introduces a
physics-informed Long Short-Term Memory (LSTM) to
predict the plastic strain in the critical area of the solder
joint. The predicted values are in agreement with the
values gained from finite elements, thereby demonstrating
the advantage of applying the proposed methodology.

Keywords: Solder Joint Reliability, Plasticity, Finite Ele-
ments, PINN, LSTM

1. Introduction

Electronics are ever-present in industry and personal
use. Therefore, the reliability of the electronic packaging
is of utmost importance. A popular means of packing is
currently Wafer Level Packaging (WLP) due to it’s low
cost, small size and suitability for batch manufacturing.
Reliability issues in WLP arises mainly due to the differ-
ence in Coefficient of Thermal Expansion (CTE) of the
chip and the substrate. As the temperature increases and
the materials expand, the differences in CTE results in
stresses and strains. In the solder joint this can lead to
significant plastic deformation. When the thermal load is
cyclical the incremental plastic strain can lead to fatigue
failure in the solder joint.

A common method to evaluate the reliability of the
WLP is to conduct Accelerated Thermal Cycling Tests
(ATCT). These ATCT are expensive and time consuming
the perform, the Finite Element Method (FEM) has there-
fore seen widespread use for faster reliability predictions
at a reduced cost[1, 2, 3]. However, these FEM simulation
are not without problems of their own. The simulation
require a lot of computing power, a large amount of
memory, and the computational cost increases with model
complexity. The scale of this becomes unmanageable for
complex problems, or for which a large number of simula-
tions are necessary. In recent years, Artificial Intelligence

1These two authors contribute equally to the work.

(AI) has become a promising area of research to address
these issues. Various Machine Learning (ML) techniques
have been applied to the reliability of microelectronics,
for example Supported Vector Regression (SVR) [4, 5],
Random Forest (RF) [4, 6], and a range of different neural
networks[4, 7, 8]. The majority of these papers extend
the lifetime of equipment by focusing on optimizing the
geometry under specified thermal conditions. The methods
developed can be used during the design of the WLP, but
have little use after the design phase.

Within this study a Deep Neural Network (DNN) is
used. Deep neural networks are general models that can
be trained to solve scientific computing problems. In
a typical DNN each module computes nonlinear input-
output mappings and this transformation makes it suitable
as a universal functions approximator [9]. Long Short-
Term Memory (LSTM) networks have become a cor-
nerstone of deep learning for sequential data processing.
Unlike traditional Recurrent Neural Networks (RNNs) that
struggle with capturing long-range dependencies, LSTMs
boast a sophisticated architecture specifically designed to
overcome this limitation. At the core of an LSTM lies a
fundamental unit called a memory cell. This cell departs
from the simplistic activation functions of standard RNNs
and incorporates a complex gating mechanism. These
gates, namely the forget gate, input gate, and output gate,
act as intelligent data flow regulators within the cell. This
intricate gating mechanism empowers LSTMs to learn and
remember long-term dependencies within sequences. The
information persists across multiple time steps, enabling
the network to effectively analyze data with temporal
relationships.

Additionally, the new learning philosophy called
physics-informed neural networks (PINNs) [10] has been
introduced for the solution of nonlinear partial differential
equations which governs the physics of system [11]. While
training in DNN generally required a large amount of data,
physics embedding by incorporating governing equations
and initial or boundary conditions in the training stage
can enhance the robustness and dependability of learning
from physical data obtained via analytical or high-fidelity
numerical solutions.

In this work, the LSTM network is employed on a WLP
with a fixed geometry under variable thermal conditions.
By doing this the equivalent plastic strain εpeq in the solder
joint can be found as a function of time t.
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Simulation Results and model inputs

PDEs

Karush–Kuhn–
Tucker (KKT)

complementarity
conditions

Test Data

Strain

Predicted strain and stresses

Training the PINNs model

y1 y2

Thermo-elastoplasticity model

Tamb

Stress

Fig. 1: overview of the model combined with the FEM analysis.

2. Methodology

A. Dimensions and Materials

A two-dimensional slice of the WLP is used in this
work to reduce the computational cost of the simulation.
This is possible because the failure happens furthest away
from the center of the WLP[5]. All simulations in this
work are performed on single geometric design, the width
and height of which has been given in Table 1 for each
of the different components.

TABLE 1: The dimensions of the WLP.

Component Dimensions [µm]
Si Chip 2000 x 330
Cu Pad 220 x 25
SBL 1 2000 x 8
SBL 2 2000 x 7.5
UBM 190 x 8.6
PCB 3900 x 1000

Ball Diameter 250

As mentioned before, the cause of failures in the
WLP are primarily caused by the difference is material
properties of different components. The properties of the
materials used in the WLP are shown in Table 2. A few
assumptions were made about the materials to simplify
the simulations. The materials are assumed to be homo-
geneous and isotropic, and the material properties are
independent of temperature, with the notable exception of
the Young’s Modulus of solder ball material. The material
used for the solder ball is SAC305, the properties of which
are shown in Figure 2.

TABLE 2: The Material properties for the WLP.

Material Youngs Modulus [GPa] Poisson Ratio CTE [ppm/◦C]
Si Chip 129 0.28 2.62

Cu 68.9 0.34 16.7
SBL 2 0.33 55
PCB 18.2 0.30 23.9

Solder Ball Non-Linear 0.35 25

B. Thermal Cycling Conditions

The thermal cycling conditions employed in this work
are based upon the well know JEDEC standards. The tem-
perature cycle consists of a ramp rate, i.e. the rate at which
the temperature increases and decreases, a maximum

Fig. 2: Non-linear material properties of SAC305 for
different temperatures[6].
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temperature, a minimum temperature and a dwell time to
ensure a uniform temperature distribution. An example of
a temperature cycle is shown in Figure 3 is for the JEDEC
standard JESD22-A104D Condition G, with temperature
ranges from -40◦C to 125◦C.

The plastic strain that occurs due to the thermal strain
in the solder joint is dependent on the parameters of the
cycles. Of those the ramp rate has the most effect on the
failure in the solder joint. Therefore, different ramp rates,
ranging between 10◦C/min and 15◦C/min are simulated
in order to be used as training, validation and testing data
for the machine learning section of this work.
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Fig. 3: Example of a JEDEC temperature cycle

C. Fundamentals of Plasticity

The solder ball material SAC305 is modeled using
elastoplastic behaviour. A material behaves elastic as long
as the yield stress σy is not exceeded, and plastic when
the stress is larger. Mathematically this can be expressed
as

f(σij , h, T ) + df ≤ 0 Elastic, (1)
f(σij , h, T ) + df > 0 Plastic, (2)

where f is the yield function, σij the relevant stress,
h determines the hardening in the material, and T the
temperature. When the stress is equal the the yield stress,
i.e. f = 0, and the increment is larger than zero, plasticity
occurs. The increments of plastic strain can be calculated
from the flow rule given as

dεpij = dλ
∂f

∂σij
, (3)

where λ is the plastic plastic multiplier subject to λ ≥ 0
and fdλ = 0. The concept of hardening plasticity is
employed for this work. The yield function f is than
expressed as

f(σij , h, T ) = σv(σij)− σ0
ys(T )− h(εpeq), (4)

where σ0
ys(T ) is the initial yield stress as a function of

temperature, h(εeqp ) the hardening function dependent on
the equivalent plastic strain εeqp , and σv is the von Mises
stress given for general plane stress as

σv =
√

σ2
xx − σxxσyy + σ2

yy + σ2
zz + 3σ2

xy. (5)

D. Lifetime predictions of the solder joint

The plastic strain caused by the temperature and differ-
ent CTE of the materials used in the WLP, will eventually
result in failure of the solder joint. To predict the number
of temperature cycles a solder joint made with SAC305
can survive before it fails, the Coffin-Manson strain model
for fatigue[12] is used. The number of life cycles to failure
is calculated as

Nf = C(∆εpeq)
−η, (6)

where Nf is the number of of cycles to failure, ∆εpeq is
the difference in equivalent plastic strain, and C and η are
0.235 and 1.75 respectively[13].

E. Finite Element Modeling

To simulate the thermal expansion and the subsequent
stresses and strains in the solder joint, the Finite Element
Method (FEM) is used. To ensure a proper result from the
FEM simulations, the mesh and the boundary conditions
must be properly defined.

The size of the mesh elements has a significant effect
on the results of the simulations. Tsou et al.[13] found
that the critical mesh size suitable for use in the Coffin-
Manson strain method is to have an element with a length
of 12.5µm and a height of 6.4µm, where the critical
mesh is located in the top right of the solder ball. In
accordance with these findings, the critical mesh size for
the simulations performed here were set to the above
mentioned dimensions for the two solder balls on the right.
As the failures tend to occur furthest from the neutral
point, i.e. on the right side of our model, the solder balls
closer to the neutral point have been given a courser mesh
to reduce the computational cost.

To obtain proper boundary conditions the symmetry
on the left side (x = 0) of the model is taken into
account. The movement in x-direction is fixed on the
entire symmetry axis. Additionally, the y-direction for the
bottom left side of the PCB is set to zero.

To collect the equivalent plastic strain required for
machine learning part of this work, the equivalent plastic
strain is determined for each time step at a predefined
point. This predefined point is located in the top right
of the solder ball, as that is generally where the highest
plastic strain occurs in the WLP. This is in the same
location as the critical mesh, emphasizing the importance
of choosing the critical mesh. The FEM simulations were
performed using the COMSOL Multiphysics® program.
Unfortunately, due to time constrains the FEM model
described in this section was not validated by any exper-
iments. Nevertheless, the goal of this work is to prove
results from FEM can be used for training an LSTM
network.

The variables exported from the FEM simulations for
use in the training of the PINNs are the equivalent plastic
strain εpeq as the value to predict, the stress components
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Fig. 4: The mesh used for the FEM simulation.

σxx, σyy , σzz and σxy to be able to calculate the von
Mises stress σv in Equation 5 and the yield function f
from Equation 4 to use the condition that f ≤ 0 when
training the model. Additionally, the current yield stress,
i.e. σ0

ys + h(εpeq), and the von Mises stress σv are also
collected from the simulations. How the data obtained
from FEM is used in training the PINN is explained in
the next section.

F. Model Training

This work leverages a Physics-informed Long Short-
Term Memory (LSTM) network to predict the perfor-
mance of solder joints in electronic components. The
model is trained on data generated by high-fidelity FEM
simulations as described in Section 2-E. To ensure com-
patibility with experimental settings and minimize re-
quired information, the model’s inputs are restricted to
ambient temperature along with its sinusoidal and cosinu-
soidal transformations. This choice enables the model to
capture the influence of temperature variations on solder
joint behavior while remaining computationally efficient.

A total of 66 simulations were conducted in COMSOL,
each exploring different ramp rates and consequently re-
sulting in varying strain and stress responses. For training
purposes, 73,000 time steps were extracted from each
simulation, ensuring that each captured at least three
complete temperature cycles. To improve computational
efficiency, the data underwent dimensionality reduction.
Recognizing the repetitive nature of temperature, strain,
and stress cycles, every 100th time step was selected,
resulting in a significant reduction in data points.

The preprocessed data with the aforementioned trans-
formations is fed into the model with an input shape
of (730, 3). The model employs a single LSTM layer
to process the sequential data. This layer transforms the
input data into a higher dimensional representation with
a size of 150. A tanh activation function is applied to the
LSTM output, followed by a linear layer to generate the
final output with a shape of (730, 5). The output values
correspond to various stress components and the current
yield stress Equation 4. Leveraging PyTorch’s capabilities,

the model automatically calculates the gradients required
within the flow rule equations. This enables the computa-
tion of crucial parameters like plastic strain and equivalent
plastic strain. The value of ‘lambda’ is incorporated into
the model as a trainable parameter, allowing it to be
optimized alongside other model parameters.

3. Results and Discussion

The equivalent plastic strain as determined by the FEM
simulations is shown for the solder joint in Figure 5. As
expected the highest εpeq occurs in the top right corner
of the solder joint, in accordance with other FEM and
experimental results[6, 13].

Fig. 5: Equivalent plastic strain εpeq in the solder joint

The value of εpeq is taken from a point in the top right
of the solder joint for each timestep in the simulation. The
result of which is used to train the model, as described in
Section 2-F. An example of the equivalent plastic strain
from the FEM simulation and its associated prediction,
is shown in Figure 6. The predicted value follows the
FEM results closely. The temperature cycles can even be
observed for the early cycles. After which the model is
able to follow the general upward trend of the plastic
strain, leading to a very accurate predictions of the final
εpeq value. Furthermore, the individual stress components
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Fig. 6: The equivalent plastic strain εpeq over time in a
point.

σxx, σyy, σzz and σxy have been plotted in Figures 7, 8,
9 and 10 respectively. The predicted stress components
show good agreement with the FEM results. Thereby
showcasing the capability of the proposed model to not
only to predict the plastic strain, but also to generate
accurate stress predictions for the solder joint.
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Fig. 7: The stress in x-direction σxx.

Additionally, the plastic strain multiplier dλ is predicted
by the network, the result of which is shown in Figure 11.
The value of dλ is mostly zero, which is to be expected
as plasticity does not always occur. Another thing to
notice is that the value is sometimes negative, violating
the condition dλ ≥ 0. However, it can be seen in Figure
6 that this does not lead to a negative trend in the plastic
strain. The MSE loss function is shown in Figure 12. The
drop at a 1000 epoch is due to a smaller in learning rate
at from that epoch onwards. Figure 13 shows difference
in the predicted and simulated values for the equivalent
plastic strain. The error does not have a general upward
trend, indicating the stability of the proposed model over
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Fig. 8: The stress in y-direction σyy .

0 100 200 300 400 500 600 700
steps

−1.0

−0.8

−0.6

−0.4

−0.2

0.0
σ z

z [
Pa

]
1e8

Predicted
Simulation

Fig. 9: The stress in z-direction σzz .
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Fig. 10: The stress in xy-direction σxy .
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time. The size of the error itself does not lead to significant
inaccuracies when used for reliability predictions. Using
the Coffin-Manson Equation 6 results in 699 and 716
cycles to failure for the simulated and predicted values
respectively. This means the proposed method can also be
used for lifetime predictions of the solder joint.

0 100 200 300 400 500 600 700
steps

−1.0

−0.5

0.0

0.5

dλ

1e−6
Predicted

Fig. 11: Predicted value of dλ.

A. Discussion

This work demonstrated the use of physics-constrained
neural network for qualifying solder joint reliability in
WLP. The model was trained using data collected from
a FEM simulation of the solder joint, to obtain the
equivalent plastic strain in a point of interest. It was
shown that the proposed model is capable of making
accurate predictions. Nevertheless, some problems were
encountered during the making of this work.

Firstly, as was already mentioned in Section 2-E, the
finite element model was not validated by experimental
results. This was not done due to time constrains. It
is important to state that using the method proposed in
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Fig. 12: Predicted value of MSE loss.
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Fig. 13: The absolute value of the difference between the
simulated and the predicted value of εpeq .

this work will require experimentally validated training
data to create accurate predictions usable for real world
applications.

Another issue was encountered when trying to acquire
the necessary data for use in the PINN equations. For
example, when trying to calculate the equivalent plastic
strain from the individual plastic strain components, it
was found are equal only when the specified point is
on an integration point. A possible explanation for this
is that Comsol applies the interpolation differently for
different variables. Further understanding of the program,
or possibly using a different program could remove this
problem in the future. This would allow for using more
advanced equations in PINNs, which would lead to a more
efficient network and improved predictions.

Lastly, the plastic strain is predicted in a single point.
It is well established the greatest plasticity occurs furthest
away from the center, i.e. in the top right in this case.
However, as the plastic strain is predicted only in a single
point, this could cause slight under prediction of the
plasticity. The maximum plasticity might not occur at the
exact position of the point. Nevertheless, the difference
between the predicted value and the actual maximum will
not be significant if proper care is placed in deciding the
location of the prediction point.

4. Conclusion

The goal of this work was to exhibit the benefits of
using machine learning for predicting the lifetime of a
solder joint in a WLP. The conventional use of FEM
simulations for these predictions are highly demanding
in equipment as well as in expertise. To reduce the
computational power and time required to obtain the
equivalent plastic strain in the solder joint, a predictive
model was trained using data obtained from FEM. The
model employed a physics informed LSTM to increase
accuracy and decrease training time. The proposed model
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showed good agreement with the FEM results and was
able to predict the accurately predict the equivalent plastic
strain as well as the stress components in the solder joint.
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