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Accelerated Mean Shift for
static and streaming

environments

Abstract

Mean Shift is a well-known clustering algorithm that has attractive proper-
ties such as the ability to find non convex and local clusters even in high
dimensional spaces, while remaining relatively insensitive to outliers. How-
ever, due to its poor computational performance, real-world applications are
limited. In this thesis, we propose a novel acceleration strategy for the tra-
ditional Mean Shift algorithm, along with a two-layers strategy, resulting
in a considerable performance increase, while maintaining high cluster qual-
ity. We also show how to to find clusters in a streaming environment with
bounded memory, in which queries can be answered at interactive rates, and
for which no Mean Shift-based algorithm currently exists. Our online struc-
ture can be updated at very minimal cost and as infrequently as possible,
and we show how to detect the time at which this update needs to be per-
formed. Our technique is validated extensively in both static and streaming
environments.

Thesis Committee:
Prof. Dr. E. Eisemann Computer Graphics & Visualization, TU Delft
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Chapter 1

Introduction

Gaining insight into large, high-dimensional datasets is a very complex task
that has received more public attention recently with the rise of Big Data
in popular media and culture. The improved capabilities and technological
advancements in terms of data storage have resulted in enormous datasets
being stored, without any real idea of what may lie within these datasets.
The suspicion is, and has always been, that valuable insights may be gleaned
with smart analysis, which could help improve a system’s performance or
add value in some other way to a real-world system.

Because of these new developments and new demands for intelligent data
analysis, the data mining field has grown considerably over the past few
years. Initiatives like Delft Data Science [1] underline the importance of
data mining within academic environments as well. Solutions to data mining
vary from adaptations of existing clustering approaches (such as the one pro-
posed in this thesis), to radical innovations in terms of data management and
computations using systems like Hadoop. In particular, this thesis focuses
on exploratory data mining, where the user wishes to explore the dataset to
(hopefully) extract useful information. Because of the size and complexity
of many datasets, such data exploration is impossible without clever ways of
automated analysis. The work presented in this thesis is one form of such
automated analysis.

Apart from the challenges posed by the size of ’modern’ datasets, the
speed at which the data is often produced also pushes computational power
to the limit. Data streams place a number of additional requirements on

10



Chapter 1. Introduction 11

data management and analysis systems, resulting in the development of novel
methods of dealing with such data environments.

Apart from the management and computational and statistical analysis
of large datasets, another important aspect of any data mining system is
the interaction mechanism with the end user. In order for a user to be able
to quickly and easily interpret, understand, and respond to patterns and
structures found in large datasets, the presentation method is vital. For this
purpose, many forms of data visualization have been used.

This thesis deals with all three of these areas in some form: data mining
for large datasets; data mining for data streams; and visualizing the data
mining results. We present a modification of the Mean Shift algorithm for
use with very large, high-dimensional datasets in a traditional static context.
Furthermore, a smart trigger mechanism is developed that allows us to only
recluster when necessary in a data stream environment. The system devel-
oped will be presented in this thesis report. A prototype implementation in
Python was also developed during this thesis.

1.1 Mobile Professionals

The work in this thesis was partly funded by Mobile Professionals (MobPro).
MobPro operates within the online advertising domain, using Real Time Bid-
ding (RTB) to programmatically place advertisements in mobile applications
and websites. Here, a brief description is given of RTB, and how this thesis
relates to this domain.

1.1.1 Real Time Bidding

Over the past few years, programmatic advertising has increased steadily
in popularity. Real Time Bidding is a form of programmatic advertising that
connects advertisers with users through a system based on an auction. An
overview of the concept is given in Figure 1.1. Generally speaking, one can
describe the process of RTB as follows: when a user opens a website or app,
information about the page/app and available information about the user
is passed to an ad exchange. This ad exchange auctions the opportunity to
place an advertisement on the page/app to the highest bidder. The winning
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bidder is allowed to display his/her advertisement to the user. This process
takes place in a few hundred milliseconds, as it needs to be executed quickly
in order to get the user’s attention and not to miss this opportunity. There
are four main stakeholders that can be identified in this figure:

• DSP (Demand-Side Platform). DSP’s represent a number of clients,
on whose behalf they bid on particular advertisement opportunities.
This may mean, for instance, that a particular brand wants to appear
more often to a particular target group. MobPro’s RTB platform fits
into this category.

• Exchange/SSP (Supply-Side Platform). This stakeholder can be
seen as the marketplace where the exchange of goods takes place. The
Publisher makes an advertisement opportunity available on an Ex-
change, on which DSP’s can bid to get their client’s advertisements
shown.

• Website/Publisher. Publishers are the parties who, in the end, are
selling their screen space to advertisers when users go to their websites
or apps.

• Client (User). The end user is any person who opens an app or web-
site and is shown one or more advertisement that is served up through
the RTB chain described here.

Each time such an auction takes place, a data point is generated and stored.
This data includes features such as bid price, user location, user gender,
etc. This information is very valuable, and is often used to specifically target
certain users. With better analysis of patterns in this data, it may be possible
to further optimize this targeting.

1.1.2 Thesis-Domain relationship

The work in this thesis was done with MobPro’s RTB system in mind.
As MobPro’s RTB platform is a real-time, real-world system, it was not
possible to run our algorithm directly on real-time data without considerable
implementation effort in order to integrate the code correctly. Instead, this
thesis presents a method that can be applied to MobPro’s RTB system, and
could give valuable insights into interesting patterns in their data. Due to the
scale and speed of the dataset, it is impossible to see such patterns with the
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Figure 1.1: Schematic overview of RTB

naked eye, which presents a suitable scenario for an automated data mining
approach.

1.2 Research Questions

Combining the concepts of the Mean Shift algorithm, exploratory data
mining, and data stream clustering, we formulated two main research ques-
tions:

1. How can Mean Shift clustering be effectively applied to large, high-
dimensional datasets to be used for exploratory data mining?

2. How can Mean Shift clustering be modified to suit the needs of data
stream clustering?

1.3 Contributions

In this thesis, we present an acceleration for Mean Shift, that can be ap-
plied in both static and streaming environments. In the static environment,
execution time is reduced, while high cluster quality is maintained. Our main
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contribution, however, is its application in streaming environments. We de-
rive an efficient triggering mechanism, that determines when an update of
our online structure is necessary. Both of these contributions are discussed
in Chapter 2.2, and extensively validated in Chapter 2.3.

Our goal regarding a contribution to Mobile Professionals is not to de-
liver a working system. Rather, our aim is to develop a method in which
Mean shift can be applied in high-dimensional streaming environments. By
delivering such an academically motivated algorithm, we believe that Mobile
Professionals will be able to apply this algorithm and gain the insights they
seek.

1.4 Thesis Structure

This thesis is structured as follows. Chapter 2 presents our contributions.
This chapter is the core of an article submitted to IARIA Data Analytics
2015. Chapter 3 discusses some other research leads that were investigated
during the course of this thesis. In chapter 4 we discuss some limitations of
our method, and briefly describe possible avenues of future research. Finally,
chapter 5 concludes this work.



Chapter 2

Contributions

The content discussed in this chapter is the core part of our article, which
was submitted to IARIA Data Analytics 2015. It appears here in adapted
form.

2.1 Background

2.1.1 Preliminaries

Before discussing the details of our method, a number of preliminary con-
cepts should be described. A quick reference is available in the glossary in
Appendix A.

A kernel density estimate (KDE) of a dataset is an estimate of the density
of a dataset using a probabilistic kernel. There are many forms of kernels,
with different shapes and characteristics. A KDE is obtained by placing a
single kernel of each single data point. Following this, the sum of all kernels
for all points is summarized to obtain an estimate of the density for the entire
dataset. This construction process is illustrated in Figure 2.1.

Data stream clustering refers to the research field in which clusters are
found in a streaming environment. Stream clustering can take different forms,
depending on which type of window model is used. The aim is to find clusters
in the data, as it is streamed in at high speed.

15
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Figure 2.1: Schematic overview of KDE construction. Each black mark along
the horizontal axis has a kernel overlaid (dashed red lines). These kernels
are them summed to form the kernel density estimate (blue line).

The term window model refers to a concept unique to data stream cluster-
ing. A window model determines which data to consider when mining the
data stream. As data streams tend to be infinite, it is not always feasible
to execute a given algorithm over all data ever seen. Not only would this
require a massive amount of memory, the execution time would also increase
substantially. Various window models exist that are applied in data stream-
ing environments. In this thesis, we have used both landmark and sliding
windows. A landmark window includes all data points from a particular time
t0. This time can be defined to be at any point in time during the stream,
however, in this thesis a landmark window is always initialized with t0 = 0,
i. e., from the beginning of the stream. A sliding window limits the amount
of data to a fixed number. This number is predetermined and does not vary
during execution. The window ’slides’ over the data, streaming in new points
and, in order to make space for the new points, streaming out ’old’ points.

A Kd-tree is a data structure that creates partitions in order to organize
points in a k-dimensional data space. In essence, it keeps partitioning the
data space until each data points has its own node within the tree. It can be
seen as a form of binary space partitioning tree. We use Kd-trees to quickly
find the nearest neighbors for a given data point, as shall become apparent
in this chapter.
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In this work, we often refer to a triggering mechanism for streaming en-
vironments. By this, we mean the following. Often in stream clustering
systems, an online structure is maintained that summarizes the data as it is
streamed in. Then, when the user wishes to see a clustering result, a clus-
tering algorithm is executed over these summaries. A triggering mechanism
monitors the data stream, and determines whether a clustering is necessary
when a user requests a clustering. If the data has not changed substantially
since the previous clustering, there is no need to execute a new clustering. If
the data has changed, a clustering is ’triggered’.

2.1.2 Mean Shift

2.1.2.1 Overview

Mean Shift is a mode-seeking, density-based clustering technique, with as
main parameter a kernel bandwidth h describing the scale at which clusters
are expected. In this regard, Mean Shift can be seen as a natural multi-scale
clustering strategy.

Considering an input data set P = {pi} in dimension d and a kernel
density estimate K, a Mean Shift clustering of P is obtained as follows:
For every point pi, initialize p0i = pi and iteratively compute pk+1

i from
pki by performing a gradient ascent of the kernel density estimate. Upon
convergence of this process p∞i = p̄i, where p̄i is a local maximum of the
kernel density estimate. Points of P , which converge towards the same local
maximum are then clustered together. Fig. 2.2a gives a schematic overview
of this process.

It should be noted, that the underlying geometric structure of the clusters
is of course dependent on the kernel that is used. In particular, changing the
bandwidth of the kernel results in more or fewer local maxima of the resulting
kernel density estimate. Fig. 2.2 illustrates this fact.

A variety of kernels has been used in the literature, the most common of
which is the traditional Gaussian kernel (with bandwidth h ∈ R):

K(x, p) = π−d/2 exp(−||x−p||2/h2) (2.1)

Note, that this isotropic kernel is sometimes replaced by an anisotropic
Gaussian kernel described by a symmetric positive matrix H (i. e., exp(−||x−
p||2/h2) is replaced by exp(−(x−p)T ·H ·(x−p))). However, if the anistropy
of the kernel is uniform (i. e., H(x) = H regardless of the location x), then
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(a) Each point performs an adaptive,
iterative gradient ascent of the den-
sity towards a local maximum. The
local density is estimated by a fixed-
size kernel density estimator.

(b) Various bandwidth values result
in different local maxima in the es-
timated density (red, grey, black).
Blue points are distributed according
to the density in green.

Figure 2.2: Mean Shift overview process

these two approaches are completely equivalent, up to a global rigid trans-
formation of the data.

Indeed, because H is symmetric definite positive, it can be decomposed as
H = UT·Σ ·U , U being a rotation matrix and Σ being a diagonal matrix with
positive entries, which describe the different anisotropic scales of the kernel.

Then, by noting
√

Σ the diagonal matrix with squared scales (
√

Σ
T·
√

Σ = Σ),
it is easy to verify that (x−p)T·H ·(x−p) = ||(x′− p′)||2, with y′ :=

√
Σ ·U · y

for every point y.
It is therefore entirely equivalent to use a uniform anisotropic kernel on the

input data and use a uniform isotropic kernel on data that has been globally
transformed through the rigid transformation y′ :=

√
Σ · U · y. Note, that

traditionally, principal component analysis (PCA, [21]) is a common strategy
to first transform the input data before applying Mean Shift clustering.

In our work, we will thus only focus on the case of isotropic Gaussian
kernels.
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2.1.2.2 Bandwidth estimation

The user may not always have an idea of what bandwidth to use, in the
context of data which is difficult to explore, visualize and understand, such
as high-dimensional data.

There are a great number of bandwidth estimation techniques [9,10,18,23]
providing results commonly accepted by the scientific community as intrinsic
to the data. In this respect, Mean Shift can then be seen as a non-parametric
clustering method.

In our work, for datasets with non-provided bandwidth, we will use Silver-
man’s rule of thumb [18]. This rule of thumb is commonly used in real-world
applications. It is based on the asymptotic mean integrated squared error
(AMISE) of a kernel density estimate. Using this, we can obtain the following
expression for an estimate of the bandwidth:

hAMISE =

(
R(K)

nR(f ′′)(
∫
x2K)2

) 1
5

(2.2)

Silverman’s rule of thumb is obtained by assuming the data is normally dis-
tributed, thus enabling us to replace the unknown part in the above equation,
giving us:

h = (
4σ̂5

3n
)1/5 ≈ 1.06σ̂n−1/5 (2.3)

A full derivation of Silverman’s rule of thumb is available in Jones et al. ’s
survey [18]. Due to the assumption of normally distributed data, Silverman’s
rule of thumb’s accuracy varies depending on the true distribution of the
data. If the data is normally distributed, the bandwidth estimate will be
(near) optimal. However, if the data distribution is not normal, the accuracy
of the bandwidth estimate depends on how different the actual distribution
is compared to the normal

2.1.2.3 Performance

Although Mean Shift has many attractive properties, such as its ability to
find non-convex clusters and its multiscale nature, it also has some limitations
and issues. The most important of these is its performance. As Fashing et
al. [13] have shown, Mean Shift is a quadratic bound maximization algorithm
whose performance can be characterized as being O(kN2), where N is the
number of points, and k is the number of iterations per point.
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Many modifications to Mean Shift have been proposed [7, 12,14–16,24].
Carreira-Perpiñán [7] identify two ways in which Mean Shift can be mod-

ified to improve performance: 1) Reduce the number of iterations, k, used for
each point, 2) Reduce the cost per iteration. As Carreira-Perpiñán demon-
strates, both of these techniques have their own merits and issues. Another
class of Mean Shift modifications is that of data summarization, followed by
traditional Mean Shift on a summary of the original data. Our algorithm
falls into this category. This is an approach that other acceleration strategies
have also applied [14,16]. Further details on this will be given in Sec. 2.2.

2.1.3 Data Stream Clustering

A number of authors have assessed the complexity of mining data streams
[4, 5]. Barbara [5] focused on data stream clustering, listing a number of
requirements: 1) Compactness of representation, 2) Fast, incremental pro-
cessing of new data points, 3) Clear and fast identification of outliers. Due to
the nature of streams, time is very limited. Because of this, data stream clus-
tering algorithms need to be able to respond extremely quickly to the changes
that occur over time in the dataset, often called concept drift. Moreover, be-
cause of the often huge datasets, memory is also constrained. Our approach
has both attractive time and memory use characteristics, as will be discussed
in Sec. 2.2.

Many stream clustering algorithms use a two-phased approach. The
approach centers on an online phase, which summarizes the data as it is
streamed in, and an offline phase, which executes a given clustering algo-
rithm on the summaries produced. The summaries are generally referred
to as micro-clusters, and due to a number of attractive properties can be
updated as time progresses and new data is streamed in (and old data is
streamed out). CluStream [2] maintains q micro-clusters online, followed
by a modified k-means algorithm that is executed when a clustering query
arrives. DenStream [6] is similar, exchanging the k-means algorithm for DB-
SCAN, and distinguishing various quality levels of micro-clusters. Finally,
D-Stream [8] uses a sparse grid approach. These three algorithms all have
complex parameters. Moreover, when a clustering query arrives, a full clus-
tering algorithm execution always takes place.



Chapter 2. Contributions 21

2.2 Method

2.2.1 Static Clustering

As discussed in Sec. 2.1.2.3, there are several ways in which previous work
has improved Mean Shift. Our algorithm aims to reduce the number of input
points for the Mean Shift. This is achieved by first discretizing the data space
using a sparse d-dimensional regular grid, with a cell size of the order of the
bandwidth (coarser discretizations lead to artifacts, from our experience).
For each grid cell Ci, the number of points ni assigned to it is maintained,
along with the sum of these points. This enables the computation of an
average position of the points within the cell, denoted Ci. We then simply
cluster the cells {Ci} by applying the Mean Shift algorithm over them, using
KC(p, Ci) = niK(p, Ci) as the underlying kernel. This is exactly equivalent to
computing the Mean Shift over all input points, after having set each point to
the center of its cell. Although extremely simple, this strategy proved robust
and efficient during our experiments. Furthermore, it allows us to run Mean
Shift over infinitely growing datasets with bounded memory, as long as the
range of the data remains bounded, which is a property which is required in
streaming environments.

2.2.2 Stream Clustering

For stream clustering, the most common methodology is a two-phased ap-
proach, as discussed in Sec. 2.1.3. A major disadvantage of this approach is
that a when a user query arrives, the offline clustering algorithm is executed
over the data summaries, regardless of whether the dataset has changed sig-
nificantly since the previous execution of the offline phase. This leads to
unnecessary execution of expensive clustering algorithms.

Our algorithm aims to avoid such needless clustering algorithm execution
by accurately detecting when the data has changed sufficiently to warrant
a new clustering. This is achieved by fast, effective analysis of the data
currently being considered. It should be noted that this approach can be
used, regardless of the type of window used. In this thesis, we have applied
both landmark and sliding windows of various sizes.

First, when the stream clustering is initialized, a static clustering, as de-
scribed in Sec. 2.2.1 is performed. This clustering will serve as our initial
reference clustering. On each stream iteration, we evaluate whether the data
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a) b) c)

Figure 2.3: a): Two clusters in 2D, with their centers in red. b): Clusters
in each dimension (dot lines), whose products badly approximate the 2D
clusters. c): Consensus over additional axes helps to identify the 2D clusters
from the product of the 1D clusters of the projected data.

distribution has changed sufficiently compared to this reference clustering to
require a reclustering. If so, a clustering is executed and the result is con-
sidered the reference clustering for future iterations. By only executing the
clustering algorithm, Mean Shift in our case, when necessary, a great amount
of execution time is saved. Querying the cluster for a point is then done by
finding the closest cell average and retrieving its cluster index (this requires
an acceleration structure such as a Kd-Tree, which was already computed at
the Mean Shift step).

We base our trigger mechanism on the monotonicity lemma defined by
Agrawal et al. [3] as:

Lemma 2.2.1 (Agrawal). If a collection of points S is a cluster in a k-
dimensional space, then S is also part of a cluster in any (k−1)-dimensional
projections of this space.

Following this lemma, if any of the k-dimensional clusters change, the
(k − 1)-dimensional subclusters should also change.

We make use of this point and set up a collection of low-dimensional
data observers (in our case, 1−dimensional), which we can update efficiently
when adding or removing points from the structure, and which will trigger
a reclustering of the structure when the underlying data distribution has
changed in such a way that the clustering may also have changed. Our
algorithm is mainly parametrized by the chosen distribution of observers as
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well as by their sensitivity.
Each of the observers i is defined as a histogram Hi of the data projected

onto an axis ai. Because high-dimensional data is likely to overlap in separate
dimensions (see Fig. 2.3), we consider not only the original canonical axes
{ek}, but also randomly distributed axes in Rd, and we will overcome the
induced approximation by defining the final decision for the reclustering as
a consensus over the observers. Since we cannot make any assumptions over
the data that will be streamed-in (e. g., we cannot compute a PCA to define
axes), we simply create a random set of pairs of indices (k1, k2) ∈ [1, d]2 and
define the additional axes as (ek1 + ek2)/

√
2 and (ek1 − ek2)/

√
2 (we thus

intricate the canonical dimensions (k1, k2), see Fig. 2.3(c)).
When a clustering is performed, each histogram is saved as H̄i. On each

subsequent stream iteration, data points are added to the grid (or removed
from it if a time-dependent window is used), all histograms are updated,
and we determine if the stream iteration has significantly altered the data
distribution, in which case we need to update the clustering.

We define the measure between histograms H̄i and Hi as their Jensen-
Shannon divergence:

DJS(H̄i ‖ Hi) =
1

2
DKL(H̄i ‖M) +

1

2
DKL(Hi ‖M) (2.4)

where M = 1
2
(H̄i + Hi), and DKL(P ‖ Q) is the Kullback-Leibler divergence

between histograms P and Q:

DKL(P ‖ Q) =
∑
k

P (k) ln
P (k)

Q(k)
(2.5)

This measure is a distance, which is symmetric and always defined (the direct
use of the Kullback-Leibler divergence between H̄i and Hi would result in
+∞ in cases where points would be removed from a cell, i. e., Q(k) = 0 in
Eq. 2.5).

A histogram i votes for a reclustering if DJS(H̄i ‖ Hi) > ε (ε defines the
sensitivity of the observers, and is our main input parameter).

A reclustering is then performed if the proportion of histograms voting
for a reclustering is larger than a random variable which we take between 0
and 1. This procedure is a standard Montecarlo voting scheme, which will
never (resp. always) trigger a reclustering if no (resp. all) histograms vote
for it, and which will trigger a reclustering with probability defined by the
consensus among the observers.
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The procedure described above is easily maintainable in a streaming en-
vironment, as its maintenance only requires removal and addition of points
to histograms, which can take place very quickly. Moreover, the discretiza-
tion of the data space bounds the memory use in such a way that very large
datasets and data streams can succinctly, but accurately be stored and used.
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2.3 Empirical Results

2.3.1 Metrics

We have computed a number of cluster validation metrics, some of which
are discussed in the work of Meila et al. [19]. In our work, the following
metrics have been used: Jaccard Index, Rand Index, Fowlkes-Mallows Index,
Precision, Recall, F-Measure. These metrics are based on pair-wise compar-
ison of points of a reference clustering A and a comparison clustering A′.
All metrics assess whether A′ correctly classified the relation between the
points in each pair. We use these 6 metrics to quantify our results instead of
simply picking one, because there is no real consensus on what is the correct
metric between clusterings. A complete description of each of these metrics
(including equations) is given in Appendix B. Furthermore, the metrics we
chose are common in the data clustering scientific community and will hope-
fully provide a real insight into the behavior of our algorithm to the reader.
A value of 0 indicates completely different clusterings whereas a value of 1
indicates identical ones.

For the static clustering experiments, we compared the traditional Mean
Shift and our modified algorithms on the input data points (with the same
input bandwidth).

For the stream clustering experiments, the metrics show the deviation
between the clustering of the cell averages {Ci}, when using the triggering
mechanism or instead updating the clustering every time.

The reason for this choice (comparing clusterings of the averages instead
of the original points) is simply practical: we could not run the computation
of these metrics on huge datasets for every stream step in a reasonable amount
of time. Fortunately, the depicted errors are over-conservative: the true
errors are actually lower than the ones we show. Indeed, consider the case
of false classification of a new point in a clustering of 100k points: it will
have a minor impact on the metrics as it is an outlier in the data, however
it will create a new grid average in our coarse summarization grid and will
therefore result in computed errors (based on the averages) which are much
higher.
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Ours Mean Shift Ours Mean Shift Ours Mean Shift

Figure 2.4: Comparison of clusterings between Mean Shift and our approach
in 2D

2.3.2 Static Clustering

In order to evaluate our algorithm’s performance, a large number of datasets
were used. For each dataset, we compare our method with the traditional
Mean Shift. Fig. 2.4 shows a comparison between our approach and tradi-
tional Mean Shift. Most metric values have a value of the order of 0.99. While
there are some minor differences, these are cause by points which are at the
boundaries between visible clusters or outliers which are at equal distance to
several clusters. In general, higher errors occur for datasets presenting a high
variability of the range over its various dimensions (see the remark on the
equivalence between isotropic and anisotropic Mean Shift in Sec. 2.1.2.1).

We have conducted experiments in higher dimensions. Although visually
comparable, it is difficult to even assess the correctness of the Mean Shift
clustering by projecting the data on a 2D space, due to overlap in the visu-
alization. Table 2.1 summarizes our results on various datasets commonly
found in the scientific literature. These datasets challenge our approach in
various ways, with varying cluster numbers, cluster overlap, dimensionalities,
dataset sizes, and other characteristics.

While we experienced a reasonable gain in performance for small to rea-
sonably big datasets, this is of minor importance. Rather, we want to em-
phasize that our approach produces results which are consistent with the
traditional Mean Shift algorithm once the bandwidth has been set by the
user. This is the most important part of the validation, as it indicates that
our approach can be used for Mean Shift clustering in a streaming environ-
ment, with potentially infinitely growing data. Note that, by construction,
the error which is introduced by our approximation decreases with the size
of the datasets on which it is used, while its efficiency obviously increases
drastically.
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d N M1 M2 M3 M4 M5 M6

A1 2 3000 0.95 0.97 0.99 0.97 0.97 0.97
A2 2 5250 0.96 0.98 0.99 0.98 0.98 0.98
A3 2 7500 0.96 0.98 0.99 0.98 0.98 0.98
S1 2 5000 0.99 0.99 0.99 0.99 0.99 0.99
S2 2 5000 0.95 0.98 0.99 0.98 0.97 0.98
S3 2 5000 0.87 0.93 0.99 0.95 0.91 0.93
S4 2 5000 0.85 0.92 0.99 0.94 0.90 0.92
Birch 1 2 100000 0.91 0.95 0.99 0.95 0.95 0.95
Birch 2 2 100000 0.64 0.78 0.95 0.76 0.99 0.78
Birch 3 2 100000 0.95 0.97 0.99 0.97 0.97 0.97
Dim 3 3 2026 0.99 0.99 0.99 0.99 0.99 0.99
Dim 4 4 2701 0.99 0.99 0.99 0.99 0.99 0.99
Dim 5 5 3376 0.99 0.99 0.99 0.99 0.99 0.99
D5 5 100000 0.99 0.99 0.99 0.99 0.99 0.99
Abalone 8 4177 0.99 0.99 0.99 0.99 0.99 0.99
D10 10 30000 0.99 0.99 0.99 0.99 0.99 0.99
D15 15 30000 0.99 0.99 0.99 0.99 0.99 0.99

Table 2.1: Summary of static clustering results. d: dimension. N : total
number of points. M1: Jaccard Index. M2: Fowlkes-Mallows Index. M3:
Rand Index. M4: Precision. M5: Recall. M6: F-Measure

N (tot.) d ε n (init.) δn Window TC

a) Cov 581k 7 0.001 25k 1k 25k NO
b) Cov 581k 7 0.003 25k 1k 25k NO
c) Synth.1 1M 2 0.003 50k 1k 50k NO
d) Synth.2 1M 2 0.003 50k 1k 50k YES
e) Synth.3 1M 2 0.003 50k 1k NO YES

Table 2.2: Statistics of the experiments conducted in streaming environ-
ments. N : total number of points. d: dimension. n: number of points for
the initial clustering. δn: number of points added at each stream step. Win-
dow: number of points of the sliding window (if used). TC: time-coherency
of the data stream.
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Figure 2.5: Comparison between our triggered clustering and constantly up-
dated clustering on various datasets. For the timings, the red curve indicates
the computation time per stream iteration when no triggering is used, and
the blue curve indicates the one when our triggering mechanism is used.

2.3.3 Stream Clustering

For the stream clustering validation, we compare the results obtained when
running our approach with the reclustering trigger enabled and disabled (i. e.,
reclustering on every stream iteration, regardless of lack of changes in the
data distribution).

We show results on datasets of dimension 2 and 7, with a varying value
of ε, with a fixed time window (with removal of old points) or not (adding
points only), and with time-coherent or time-incoherent streaming of the
data (i. e., whether the data is streamed in a structured way). Please note
that “time-coherency” refers to the fact that points which are streamed in
successively are roughly expected to belong to the same cluster. Table 2.2
summarizes the statistics of the conducted experiments, and the metrics plots
for these test runs are presented in Fig. 2.5. The 2-dimensional dataset is a
synthetically generated set, with Gaussian blob clusters. The 7-dimensional
dataset is the CoverType dataset [11], which is used throughout literature
for empirical evaluation of stream clustering algorithms.

One interesting aspect with regards to our reclustering triggering is the
value of ε which is used to threshold the Jensen-Shannon divergence value.
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For the CoverType dataset (dimension 7, 581k points), two test runs with
identical configurations were performed, with ε = 0.001 (Fig. 2.5 (a)), and
with ε = 0.003 (Fig. 2.5 (b)). The initial clustering was both times performed
with 25k points, which is also the length of the sliding window that was used,
and data points were streamed by sets of 1k points.

A lower value for ε should result in more frequent reclustering triggers, in
an attempt to maintain a higher level of clustering quality. Although hard to
see due to the high number of reclusterings, it is clear from these images that
the lower ε affects the triggering mechanism. Reclusterings are more frequent
and generally cluster quality is kept at a higher level. It should be noted that
this dataset is also an example of a failure case of our algorithm, but also
of the Mean Shift algorithm and any bandwidth-dependent algorithm. From
the clustering results it is clear that the bandwidth estimate is completely
incorrect. The bandwidth for this dataset was computed to be approximately
105.39. However, the CoverType dataset is not normally distributed, and the
range of the data over the various dimensions varies from 1 to 109. Note that,
on this dataset, a standard grid approach similar to ours [22] provided results
with metric values of 0.2.

For other experiments, the value of ε was set to ε = 0.003.
Experiment Synth.1 (Fig. 2.5 (c)) was done with a dataset of 1M points

in dimension 2, with a sliding window of 25k points, with 1k points added
at each stream and for time-incoherent streamed data. We observe that no
reclustering is ever performed for this experiment. However, the metrics we
obtain over time consistently remain over 0.7, which indicates that the initial
clustering we had was good enough for the whole streaming session. Note
that 0.7 is roughly the metrics values for which a reclustering was decided in
previous experiments under similar conditions (ε = 0.003), which indicates
that the a-posteriori errors resulting from a given value of ε are consistent
over the experiments.

On the other hand, experiment Synth.2 (Fig. 2.5 (d)), which was con-
ducted under similar conditions than experiment Synth.1 with the sole differ-
ence of streaming time-coherent data, presents highly structured reclustering
events. The reclustering events correspond to the appearance and disappear-
ance of complete clusters, and it is obvious that our triggering mechanism
adapts in a non-trivial way to the structure of the underlying data.

Note that, for real-life datasets, the reality corresponds probably to a
mix of these two behaviors (i. e., there are several levels of consistency in
data, e. g., for visited websites during the day or in various places over the
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world, etc. ). The strength of our approach is that we make no assumption
on the structure of the data which is going to be streamed in, and that it
adapts automatically to its underlying structure.

Finally, experiment Synth.3 was performed on a dataset of 1M points,
without window (i. e., no points are removed from the structure over time). It
is visible that the time for updating the structure grows almost linearly over
time, while the frequence of the triggering events is actually inversely linear
over time, which is the behavior which is to be expected in order to provide
timely-bounded analysis of growing data. Of course, there is a limit to this,
and it is impossible to guarantee this behavior for arbitrarily distributed data
(over space and/or time).
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Additionally followed research
leads

Before settling on the approach that was discussed in chapter 2, a number
of other research leads were investigated. These attempts were ultimately
unsuccessful but are still of interest to discuss here. For each approach, we
discuss the initial intuition, the algorithm, and finally the results, and why
the approach did not produce the results we hoped for.

Our ambition on starting this project was to create a stream clustering al-
gorithm that applied similar concepts to Mean Shift, without requiring any of
the expensive iterative steps of the Mean Shift. Mean Shift has a complexity
of O(n2). Some acceleration methods have reduced this to O(n log n). The
goal for our approach for static situations was linear performance in the size
of our structure. Moreover, the goal for streaming situations was to have
constant performance at every stream step, i. e., O(1), and allow a user to
get feedback to a query as quickly as possible (preferably almost real-time).
The reason for these goals was that Mobile Professionals’ Real Time Bidding
(RTB) systems produce such high-speed data streams, and the goal was to
enable near real-time analysis of these streams.

31
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3.1 Full Dimensional Grid

Intuition

Our initial intuition was that, in order to be able to handle very large
datasets, some form of discretization would be necessary. We quickly opted
for a grid-style discretization. This would allow for much faster treatment and
handling of all data points, because all points in a cell would be aggregated
in some manner. If we used a Kernel Density Estimate (KDE) to estimate
the density, we could determine per cell which direction led to the fastest
gradient ascent. This would almost simulate the gradient ascent concept
upon which Mean Shift is based. Also, having such a direction per cell would
allow immediate determination of the final mode for each cell, and therefore
each point, by chaining the cells into a sequence of directions. Such a chaining
would not completely simulate a gradient ascent, but would produce a similar
path as points converge towards their mode. Furthermore, we thought that
such an approach would also be suited to streaming environments. When
new points arrived, we could add these points to the grid, and follow the
chain of directions to find its mode. This process would be very quick and
thus usable for data streams.

Algorithm

Initially, the data space was discretized into a full-dimensional, regular
grid. The number of cells was fixed to arbitrary numbers, but various values
were attempted to see how this affected results. Each cell was assigned a
direction, based on the direction of the steepest gradient of the KDE in each
cell. This resulted in a grid of directions, automatically pointing towards the
modes and allowing immediate determination of cluster centers, without any
iterative phase, such as required by Mean Shift. Moreover, adding new points
to the structure was very simple, and because the grid immediately indicated
a direction (and consequently the final mode) for each cell, clustering in a
streaming environment would indeed be O(1). An example of this idea is
shown in Figure 3.1.
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Figure 3.1: Full Dimensional Grid approach. Every populated cell has a
direction assigned to it, based on the KDE’s gradient. Places where two cells
’point towards each other’ are marked as cluster centers (red circles). It can
clearly be seen that a lot of cells are empty, but still are created and stored.

Results

This idea was implemented and functioned well in low dimensional (e.g., 2
and 3 dimensional), static situations. However, due to the fact that the grid
was not sparse and regular, the memory requirements grew exponentially
as the dimensionality increased. An out-of-core solution to this problem,
where data was stored on disk, was attempted, in an effort to resolve these
issues, but this was not feasible. The design of the algorithm at this time
was also such that a different type of grid (i.e., a sparse grid, or non-regular
grid) would not have worked, as the following of the directions to the modes
would not have been possible. Because the static environment presented such
problems already, no work was done for the streaming environment for this
method.

3.2 Accelerated Mean Shift

Once it was clear that a full-dimensional, regular grid would cause mem-
ory consumption problems, the focus shifted from completely simulating the
Mean Shift without any iterative phase to an accelerated Mean Shift with
fewer iterations. This would make the Mean Shift suitable for a streaming
environment. In terms of performance, our ambition was still to achieve O(1)
response time at each stream step in a streaming environment. However, for
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Figure 3.2: Schematic illustration of the incorrect clusters when 1-
dimensional clusters are used to construct d- dimensional clusters.

static environments, the goal of achieving O(n) performance was no longer
feasible.

Intuition

Instead of using a full-dimensional, fully formed regular grid, our intuition
was that combining clusters found in each separate dimension could avoid
the previously encountered memory problems. This was based on the mono-
tonicity lemma defined by Agrawal et al. [3]. This lemma is still used in our
final approach, and is mentioned in section 2.2, but is re-iterated here for
clarity:

Lemma 3.2.1. If a collection of points S is a cluster in a k-dimensional
space, then S is also part of a cluster in any (k− 1)-dimensional projections
of this space.

This lemma made it possible to ’construct’ d-dimensional clusters from 1-
dimensional clusters found in each dimension. These 1-dimensional clusters
were defined as the local maxima in the KDE. The algorithm developed with
this lemma is discussed in the following.

Algorithm

Agrawal et al. [3] used the monotonicity lemma to create the CLIQUE
clustering algorithm. The main issue was its creation of spurious clusters,
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which is inherent to this method of d-dimensional cluster finding. This can be
clearly seen in Figure 3.2, where four clusters are found if the 1-dimensional
clusters are used to construct the 2-dimensional clusters. Two of these four
clusters are in fact incorrect. These clusters can therefore only be treated
as candidate clusters. Agrawal et al. resolve this issue by thresholding each
candidate cluster using a pre-defined density threshold value. This threshold
value is very difficult to determine, as it is very dependent on the dataset
and on the grid cell size in use.

In our algorithm, cluster finding in each dimension was based on finding
the modes in the KDE for each dimension, where the KDE was evaluated for
each grid cell (i. e., for each grid cell compute the KDE value, use these values
to find the local maxima). This, therefore, involved estimating a bandwidth
value for each dimension (i. e., a bandwidth value is necessary to compute
a KDE). In this way, we believed, we could mitigate some of the problems
caused by bandwidth estimation in datasets where the range of data in the
dimensions varied greatly. Once the modes in each dimension’s KDE were
found, we initially wanted to compute the full-dimensional clusters from these
1-dimensional clusters, but quickly realised that this number would exceed
memory capacity. Moreover, the problem with the spurious clusters would
still be present.

In order to select the correct clusters from the initial set of candidates, a
filtering step was implemented. This step involved finding the closest cluster
in each dimension for each data point. For each data point, we can then
construct a d dimensional cluster because we know the closest 1-dimensional
cluster for each dimension. A pseudocode representation of this filtering al-
gorithm is shown in Algorithm 1. The reason for considering each dimension
separate was to avoid the computation of all full dimensional cluster candi-
dates, as this number may be extremely large. This is due to the fact that
the full dimensional clusters are formed by computing the cartesian product
of all 1-dimensional cluster candidates. This filtering step was reasonably
effective, as it removed a large portion of the unnecessary cluster candidates.

Once this filtering step had completed, the remaining cluster candidates
were used as seeds for the Mean Shift. Using seeds for the Mean Shift means
we don’t iteratively shift each data point based on the KDE. Rather, we
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Algorithm 1 Pseudocode for candidate filtering

1: procedure CandidateFiltering
2: X ← set of data points
3: D ← set of dimensions
4: for xi ∈ X do
5: for dj ∈ D do
6: Find nearest cluster ck in dj

7: Build full dimensional-cluster C from ck values

define a number of points (the seeds) that are to be shifted towards the
modes based on the overall KDE. In a sense, we provide Mean Shift with
an ’educated guess’ of where clusters may be located, resulting in fewer iter-
ations. Moreover, because the number of remaining cluster candidates was
considerably lower than the original number of datapoints, this approach also
reduced the number of points to be shifted. However, not all spurious candi-
dates were removed. Moreover, this filtering was computationally expensive,
as it required n ∗ d nearest neighbor computations (even though these were
only in 1 dimension). The most problematic aspect of this filtering was its
requirement of processing all data points again, resulting in multiple passes
over the data, which generally is not feasible in stream clustering algorithms.
Any cluster candidate for which at least 1 point was the closest candidate
was kept as possible cluster. This resulted in a large number of cluster candi-
dates. Moreover, these candidates were rigidly placed on grid, often causing
issues depending on the grid cell size used. Also, in some cases, single clusters
had multiple candidates, due to local maxima in the 1-dimensional density
estimates.

Following this realization we attempted to reduce the number of cluster
candidates, and perhaps even remove the need for the iterative phase of the
Mean Shift, by performing a merge of the cluster candidates. This merging
of initial cluster candidates took three forms. An overview of these strategies
is shown in Figure 3.3.

1. Within dimension merging As a Mean Shift clustering relies on the
bandwidth h to cluster data, a merge of any 1-dimensional candidates
within a distance of h was performed. Our intuition here was that by
performing such a merge before applying Mean Shift, we would remove
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many unnecessary candidates, for which the iterative Mean Shift then
would no longer take place. (Figure 3.3a)

2. Average Merging This attempt involved the merging of d-dimensional
candidates within a distance h of each other. This would, in a sense,
simulate the first step of the Mean Shift algorithm. By merging re-
maining candidates, the number of candidates that would be used as
seeds for Mean Shift would be reduced. For each candidate, the near-
est neighbors within a radius h were found. For all points within this
radius, an average position was computed, where each candidate was
weighted by the number of points attracted by that candidate. (Figure
3.3b)

3. Discard Merging Closely related to average merging. Instead of com-
puting the average position of all candidates within the radius and
weighting these candidates by their point counts, we took the position
of the candidate with the highest point count and discarded all other
candidates. Our intuition was that the average merging may compute
an average position that resides in a local minimum of the overall KDE,
thus making it a poor estimate of a cluster. (Figure 3.3c)

Some thresholding mechanisms were also attempted, in order to identify
at least the major clusters. These thresholds focused on removing cluster
candidates that attracted very few points (in addition to removing ones that
attracted no points at all). This approach showed some promise, but proved
to be very difficult to implement in a generic fashion so that acceptable
performance was achieved regardless of dataset characteristics or properties.
Attempts included incorporating dynamic thresholds, based on the datasets
quartiles, but this too was too rigid. The main reason for this, of course, is
that datasets differ in their cluster size, i. e., for one dataset a group of 10
points may be a very large cluster, whereas for another these points would
be considered outliers.

Results

As indicated, the initial set of candidates was huge (too big to fit into mem-
ory), so we applied a filtering step. Apart from the fact that this filtering was
expensive, it also did not reduce the number of candidates to the number of
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(a) Within dimension merging. The red lines indicate the merged candidate lines,
based on the neighboring grey lines. This causes a great number of candidates
to be merged, leading to problems with higher-dimensional clusters. Only the
applicable (grey) grid lines have been drawn, i. e., where candidates were found.

(b) Average merging. The three blue-edged circles within the pink circle (radius)
are merged into the green circle.

(c) Discard merging. We see that the final position of the green circle is very
similar to that of the average merging.

Figure 3.3: Comparison of the candidate merging techniques attempted.
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clusters, as many clusters had multiple candidates. In an attempt to resolve
this, we tried three merging strategies. For each of these, we briefly analyze
why they did not work.

1. Within dimension merging This did not work, due to the fact that
a merging of two 1-dimensional candidates influenced a great number
of D-dimensional candidates because of the use of the Monotonicity
Lemma (e. g., removing a candidate at x = 1 influenced all cluster
candidates with this x value).

2. Average Merging Unfortunately, this merging did not reduce the
number of candidates sufficiently to have only clusters remaining. More-
over, the candidates that did remain were not accurate approximations
of the cluster centers that would result from running Mean Shift on
the dataset. The main reason for the failure of this approach was the
fact that in some cases, peripheral cluster candidates from two different
clusters would be merged. This would thus result in joining these clus-
ters together, when they clearly should not be. Moreover, this method
assumed that there was relatively little overlap between the clusters. If
clusters do overlap, candidates could easily be within a bandwidth dis-
tance of each other, thus triggering a merge step. These problems are
illustrated in Figure 3.3b. Also, because candidates were incorrectly
merged across clusters, Mean Shift was unable to correct these mis-
takes. If inaccurate candidates were presented, the iterative shifting
would eventually resolve the issues. However, when candidates were
incorrectly merged, this was no longer possible.

3. Discard Merging This method had similar problems to those expe-
rienced for the average merging approach. The results were actually
almost identical to the average merging approach.

Another issue with this approach was its sensitivity to the bandwidth
value. Often, particularly in cases where clusters lay ’behind’ each other when
viewed from the perspective of a dimension, the bandwidth estimate was not
sensitive enough to discover these minor modes. In an attempt to resolve
these issues, multiple scalings and bandwidth estimations were attempted,
but we were unable to make this approach generically applicable. Moreover,
this dependence on the bandwidth made it difficult to allow for non-spherical
clusters, as it resulted in merging any candidates within a radius, thus often
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splitting elongated clusters. We also tried using histograms, as these are
essentially a very sensitive KDE (depending on their cell size). These gave
better results, but we still had issues with number of candidates and the
reduction of this number. The improvement in results did, however, lead us
to use histograms in all following approaches.

3.3 Connected Candidates Graph

Intuition

Upon analysis of the positions of the candidates initially found, we noted
that for many clusters, multiple candidates were defined. Moreover, because
the position of these candidates was often such that a merging operation
would not combine these candidates for a given cluster, we started searching
in different directions. Rather than trying to directly merge, and thus reduce
the number of candidates, our intuition was that perhaps we would be able
to somehow connect related candidates with each other. Connecting these
nodes in a clever way might lead us to create a skeleton-like structure for
each cluster. This intuition is worked out further in this section.

Algorithm

Given the positioning of the candidates in the previous approach, the in-
tuition for the next approach was that we might be able to connect these
candidates, based, in order to form a skeleton-like graph for each cluster.
Therefore, our approach was to build a number of graphs, with the can-
didates as nodes. By connecting all candidates that should be in the same
cluster, we believed we could accurately assess where clusters were in the data
space. The main challenge would of course be how to determine whether or
not to create an edge.

Our first step was to shift all candidates to the average position of the
points attracted by each candidate. This was similar to a first Mean Shift
iteration. This immediately made the candidate positions less rigid and grid-
like and offered a more natural representation of the data. These averages
are visible in Figure 3.3 as red edged circles. Moreover, it gave us valuable
information regarding the position of each cluster candidate relative to the
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Figure 3.4: Two original candidates, Ci and Cj, with their respective aver-
ages, Ai and Aj. We see that the distance between Aj and Cj is much larger
than that between Ci and Ai. Therefore, i is the more stable node. Thus,
the first approach creates the edge from Aj to Ai

points it attracts. In many cases, we noted that candidates located in very
dense areas of the data space hardly shifted at all, meaning its initial position
was a good approximation for the average position of its points. For more
peripheral candidates, we observed that this shift was far more pronounced.
Following this, we attempted to create a directed graph, with the candidates
as nodes. For each candidate, we considered its k nearest neighbors, and
evaluated whether or not we should create an edge between a candidate and
each neighbor. By varying the value of k, we could determine how large
the graphs should be, i. e., larger values for k would lead to more edges,
thus more nodes per graph, and therefore fewer graphs. Various methods for
determining when to create an edge were attempted.

• It was noted that for many original candidates, ci, the distance between
ci and its average ai differed, depending on the location of the original
candidates. Often, candidates that were on the edges of clusters shifted
a considerable distance, while ci values near a cluster center did not
shift very far to their average ai. We defined this as candidate stability,
where the instability of a point i is defined by the I(i) = d(ci, ai), or
in vector form: I(i) = ‖ci − ai‖ and initially used this to connect the
nodes. We applied the heuristic to only create a directed edge between
two candidates’ averages, if the origin node was less stable than the
target node. Figure 3.4 shows an example of a stability decided edge.
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• An extension to this approach was attempted, in which each node was
assigned a budget, Bi for creating edges. Each edge was therefore also
assigned a cost, si,j. For the budget of each candidate, we defined a for-
mula that punishes unstable candidates, by allowing them fewer edges.
This makes sense, as we expect stable candidates to be in densely pop-
ulated areas in the data space, probably near the center of the cluster.
Such stable candidates, therefore, should be allowed more edges, as
they function as a ’crossroads’.

Bi = exp(
−|ci − ai|

h
)T (3.1)

This formula weights a given threshold T based on a candidate’s sta-
bility. If a candidate is more stable, its B value will be higher and
vice versa. Now to define the cost per edge. Our goal was to connect
two averages ai and aj if we believe these candidates are in the same
cluster. One indication of this would be if the direction of the initial
shift from ci to ai was continued by the edge between ai and aj. Figure
3.5 illustrates this. The value of T is set to depend on the bandwidth,
h, and the number of neighbors considered, k: T = k ∗ h. This makes
sense, as a graph in which more neighbors are considered will automat-
ically also require more edges, and thus a higher budget B per node.
In order to capture this intuition, we make use of the dot product of
two vectors. By definition, the dot product of two opposite vectors is
negative. We define the following two vectors:

A = aj − ai and B = ai − ci (3.2)

It is known that the dot product of two Euclidean vectors can be defined
as:

A ·B = ‖A‖‖B‖ cos θ (3.3)

Using this equation, we can define the following to get an expression
for the angle θi between the two vector A and B:

cos(θi) =
AB

‖A‖‖B‖
=

(aj − ai)(ai − ci)
‖aj − ai‖‖ai − ci‖

(3.4)

Due to the inherent characteristics of the cosine, we now have an equa-
tion that is 1 when the two vectors are completely aligned, 0 when they
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Figure 3.5: Schematic overview of the use of dot products in edge weighting.
If we examine candidate i, we see that the edge between ai and ak (green
edge) lies in a similar direction as the original shift from ci to ai, i. e., it is
continuation of this shift almost. The edge between ai and aj (red edge)
travels partially in the opposite direction.

are orthogonal, and -1 when they are completely opposite. Beside the
direction, we also take the distance between two averages ai and aj into
account when assessing whether or not to create an edge. If an edge
would be relatively short, it is more likely to be a ’good’ edge. This is
because it more likely for candidates that are very close to each other
to be part of the same cluster. Thus, we define the following cost per
edge for each edge between candidates i and j:

si,j = (2− cos(θi))d(ai, aj) (3.5)

Using the definition of the cosine we now see the following:

– If the two vectors are fully opposite (i. e., the cosine terms evalu-
ates to -1), the first term will become 3

– If the two vectors are orthogonal (i. e., the cosine terms evaluates
to 0), the first term will become 2

– If the two vectors are fully aligned (i. e., the cosine terms evaluates
to 1), the first term will become 1

Moreover, we wish to weight each edge by its distance, where a smaller
distance should be considered ’better’. This equation thus evaluates
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to small values for attractive’ edges, and high values for ’unattractive’
edges. These equations were then used as budget and cost functions in
order to determine for each node which edges to create, if any, depend-
ing on its available budget.

Results

This method was promising initially, as it seemed to create graphs in such
a way that clusters were clearly identified. In general, for all approaches at-
tempted, one of the biggest problems was the unpredictability and instability
of the positioning of the original candidates ci. In Figure 3.6, an example
is shown of a situation that was optimal. Each cluster has one or two very
stable candidates in the center, and a number of peripheral, more unsta-
ble, candidates that will be connected to the two central, stable candidates.
Figure 3.7 shows an example of a more problematic dataset, in which the
candidate distribution was different. As is clear from the figure, this dataset
is considerably more dense, with a lot more overlap of clusters. The con-
nectivity of the graphs could be varied, by specifying how many neighboring
nodes to consider when determining which edges to create, but we were un-
able to stabilize this in such a way that it would function adequately for all
(types of) datasets. Further modifications of this approach were attempted,
taking candidate density, candidate point count, and other properties of the
candidates into account, but these suffered from similar issues.

Moreover, the configuration of the value of k was difficult. Our intuition led
us to believe, based on the visualizations of the candidates, that 3 or 4 may be
suitable values for k. However, for various datasets, these values gave very
different results, due to the very different distributions and characteristics
of these datasets. Figure 3.8 illustrates this. This image shows identical
clusterings, where only the k value was varied. This leads to very large
changes in connectivity.

Modifications to the node budget B and cost per edge s(i, j) were also
attempted, but these provided inconclusive results. Our initial equations
were most intuitive and provided the best results. The effect of the value
for k was even more pronounced here, as it also affected the budget of each
node.
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Figure 3.6: Example of a candidates graph result. The red-edged circles
represent the shifted candidates (i.e. after step 1). The blue-edged circles
are the original candidates.
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Figure 3.7: Example of a poor candidates graph result. The red-edged circles
represent the shifted candidates (i.e. after step 1). The blue-edged circles
are the original candidates.
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(a) Candidate graph clustering with k = 4

(b) Candidate graph clustering with k = 5

(c) Candidate graph clustering with k = 6

Figure 3.8: Overview of various k settings. We see that the k value has a
significant effect on results
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Discussion

The research questions formulated in chapter 1 provided a clear description
for the goals of this project. In this chapter, we discuss the results of the
thesis as a whole, some known limitations, and possible directions for future
work.

In this thesis, we have presented a novel way of applying Mean Shift in
a very challenging data stream environment. The challenges posed by such
environments, the most significant of which are the limited time and limited
memory, led to a modification of the Mean Shift algorithm and the develop-
ment of a triggering mechanism that allows us to avoid clustering too often.
Both of these contributions have been extensively empirically evaluated in
section 2.3. These results show good performance in both static and stream-
ing environments, thus enabling the use of the computationally intensive
Mean Shift on very large, streaming datasets.

For clarity, we re-iterate our main research questions here, and discuss how
these have been answered.

1. How can Mean Shift clustering be effectively applied to large, high-
dimensional datasets to be used for exploratory data mining?

2. How can Mean Shift clustering be modified to suit the needs of data
stream clustering?

48
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We have shown a modification of Mean Shift, that uses a discretization
step to allow execution over very large, high-dimensional datasets. By con-
struction, our method scales very well in both dimensionality and dataset
size, as the number of populated grid cells will not increase significantly for
large datasets. Moreover, the use of a triggering mechanism in a two-phased
stream clustering approach allows the use of our modified Mean Shift in a
streaming environment. Our online structure can be maintained and up-
dated very quickly, and when a cluster query arrives, we assess whether a
re-clustering is needed compared to the reference clustering. Because of this,
in many cases, our approach can give a user an instant response when a
clustering is requested.

Because of the nature of our triggering mechanism, we believe it may be
possible to apply similar logic for other stream clustering algorithms. Al-
gorithms such as CluStream [2], DenStream [6], and D-Stream [8] all are
two-phased approaches, where a clustering is always executed when a user
cluster query arrives, regardless of whether this clustering is necessary to
maintain cluster quality. Although our approach uses Mean Shift as cluster-
ing algorithm and no other algorithms have been examined, our triggering
mechanism can be easily applied using other clustering algorithms. Some mi-
nor modifications may be needed in order to efficiently apply our reasoning,
but we believe this is an interesting avenue for future research.

Although no real-world prototype of a stream clustering-based, exploratory
data mining system was developed for the RTB system of MobPro, we believe
that our method is suitable for such an environment. Due to time and scope
constraints of this thesis, such a prototype was not developed. However, we
have developed our own GUI system, that can be used for other datasets
than that of MobPro. We therefore believe that an adaptation of our algo-
rithm is a distinct possiblity and may give MobPro valuable insight into the
patterns in their dataset. Such an implementation would be best done by
the development team at MobPro, given their expertise and experience with
development in the RTB domain and their RTB system.

In chapter 3, a number of research leads were discussed, which were ul-
timately unsuccessful during the course of this thesis. However, based on
results obtained, which were presented in chapter 3, these research leads still
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hold some promise. Particularly the construction of the connected candi-
date graph approach is interesting, despite the fact that we were unable to
tune the edge weighting functions to function adequately on various types
of datasets. One of our recommendations is therefore that further work be
done in this direction, as such directed graphs would provide a nice, intuitive
representation of clusters that could be updated in a streaming environment.

Despite the high cluster quality and the low execution times reported in
section 2.3, a number of limitations of our approach should be discussed.
One of these limitations is its sensitivity to the bandwidth. Such issues are
not unique to our method, however. All density estimate based clustering
approaches suffer from similar issues. Further investigation into better band-
width estimation techniques may result in a mitigation of this issue. Another
possible avenue of research would be the maintenance of multiple grids, using
different bandwidth values. These multiple grids could then be used to assess
the data distribution using very different perspectives.

Another limitation of our approach, which applies in particular to static
environments, is its inability to deal with data sparseness. In very sparse
datasets, the acceleration is nullified, because the distance between two points
i and j, d(xi, xj) is too large, thus resulting in each point being assigned to
a separate grid cell. As our grid is dependent on the bandwidth value, this
issue is closely related to the problem of incorrect bandwidth values, discussed
inthe above. If each data point is assigned to its own grid cell, our method is
equivalent to running the Mean Shift on the original set of data points. We
do note, however, that the phenomenon of data sparseness mainly appears
in relatively small datasets. For larger datasets, such sparseness becomes
increasingly improbable.

Hinneburg et al. [17] proposed a clustering algorithm based on cutting
hyperplanes, which split the data space into disjunct spaces. This splitting
of spaces allowed the authors to create an irregular grid, which was then
used for clustering. Such cutting hyperplanes may be useful in separating
the clusters in our approach too. By splitting the data space into disjunct
subspaces, it may be possible to apply our triggering mechanism on each
separate subspace. In such a way, the entire data space would not be reclus-
tered if a single subspace changed. Moreover, it would allow for greater
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parallelism, as subspaces could be clustered simultaneously. Currently, our
approach is single-threaded, which means we do not take advantage of a lot
of the capabilities and features of modern, multi-core processors.

Overall, we have seen that in general a discretization step is necessary when
dealing with large, high-dimensional datasets. Without such discretizations
steps, the amount of data values possible becomes immensely large, partic-
ularly as the dimensionality increases (also known as the curse of dimen-
sionality). The grid approach that was applied throughout all attempts in
this thesis (i. e., regular), however, is somewhat limited. Alternative types
of discretization have been performed in the past successfully by a number
of authors [17, 20]. However, these approaches often create a dynamic grid,
that is determined by the data distribution. In streaming environments, this
data distribution inherently changes considerably over time, meaning the
discretization structure would also have to be adapted. To our knowledge,
no dynamic discretization structure for the acceleration of the Mean Shift
algorithm has been updated in such a manner in a streaming environment.
Moreover, a regular, fixed grid is conceptually simpler to deal with.

Based on our experiences with the construction of d-dimensional clusters
from 1-dimensional ones, we can conclude that although some indication of
cluster locations can be gleaned from these results, there is a considerable
amount of noise. Methods developed in the past, that use this concept, [3,20]
always applied some filtering step after this construction. Particularly in
higher-dimensional datasets, the number of candidates generated becomes
problematic. From our experience, simple filtering steps, such as thresholding
or merging of these candidates, have proven inadequate in dealing with the
variety of datasets, both in terms of size and dimensionality as in terms of
distribution. Even after filtering the initial set of candidates, many spurious
candidates remained in the data space, causing problems when trying to
assign points to clusters.

Our approach, discussed in chapter 2, uses a sparse, regular grid. Such a
structure is relatively memory efficient. Moreover, it allows easy modification
of the desired accuracy via the cell size. Other sparse grid-based approaches,
such as the one implemented in the Scikit-Learn library [22], also show good
performance. Because of the way our structure is defined, however, our grid
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is suitable for streaming environments, which require fast, efficient updating
of the online structure. Given the empirical results, presented in section
2.3, we see that this approach works, on various types, shapes, and sizes of
datasets.
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Conclusion

In this thesis, we present an acceleration for the Mean Shift, and a trig-
gering mechanism that can detect when to re-cluster in a streaming environ-
ment. The experiments performed have shown that our algorithm produces
accurate clusterings, at reduced cost, and only when absolutely necessary to
maintain cluster quality. Moreover, our triggering mechanism allows Mean
Shift to be applied in a streaming environment, which, to our knowledge, has
not been achieved before.

We achieve the acceleration in static environments by discretizing the data
space using a sparse grid, and applying Mean Shift only on the average
positions in each grid cell. Details of this are presented in section 2.2.1. The
empirical results (section 2.3) obtained confirmed the acceleration achieved,
and also confirmed that cluster quality was maintained at a very high level.

For streaming environments, we developed a two-phased approach, similar
to other work in the field of data stream clustering. Our online structure
is easily maintained, flexible, and offers high cluster quality. Moreover, our
approach includes a method to detect when a re-clustering is necessary, based
on changed in the data distribution. This too is extensively validated in
section 2.3.

Section 2.3 thoroughly evaluates our method, using well-known cluster
quality metrics to assess performance. Various datasets, with different char-
acteristics, are used to evaluate the static clustering performance. We also
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show that the triggering mechanism correctly determines when a re-clustering
is necessary, and that it can be configured to suit a user’s needs in terms of
cluster quality.

In chapter 4, we propose a number of improvements for our method, based
on the limitations encountered. Two of these are related to aspects that
were outside of the scope of this thesis, namely bandwidth estimation and
data sparseness. Our other recommendation for future work is to use cutting
hyperplanes in order to allow for parallel computations within the data space.

In terms of real-world application to the domain of RTB for Mobile Pro-
fessionals, a working prototype was not developed. This was also not one of
the main goals of this thesis. Rather, the research presented in this study
can serve as a basis for integration with their systems. The reason for this
lack of a prototype is mainly due to the complexity of the systems in ques-
tion, as it would have required a considerable amount of time to integrate
our algorithm correctly and efficiently. We leave this to the development
team at Mobile Professionals, whose expertise lies in such integration. We
believe that an application of our algorithm would allow fast, almost real-
time, insight into emerging patterns, and may alert MobPro to problems or
issues as they arise, instead of after the fact. Moreover, analysis of their
data may aid MobPro find interesting patterns in their data, that may allow
them to optimize their targeting algorithms, or optimize the amounts paid
for advertisement placements.



Appendix A

Glossary

Kernel Density Estimate (KDE) An estimate of the density of a dataset
using a probabilistic kernel. A KDE is obtained by placing a single kernel of
each single data point. Following this, the sum of all kernels for all points is
summarized to obtain an estimate of the density for the entire dataset.

Data stream clustering refers to the research field in which clusters are
found in a streaming environment. The aim is to find clusters in the data,
as it is streamed in at high speed.

Landmark Window Includes all data points from a particular time t0.
This time can be defined to be at any point in time during the stream,
however, in this thesis a landmark window is always initialized with t0 = 0,
i. e., from the beginning of the stream.

Sliding Window Limits the amount of data to a fixed number. This
number is predetermined and does not vary during execution. The window
’slides’ over the data, streaming in new points and, in order to make space
for the new points, streaming out ’old’ points.

Kd-tree Data structure that creates partitions in order to organize points
in a k-dimensional data space. It can be seen as a form of binary space
partitioning tree.
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Triggering mechanism Often in stream clustering systems, an online
structure is maintained that summarizes the data as it is streamed in. Then,
when the user wishes to see a clustering result, a clustering algorithm is
executed over these summaries. A triggering mechanism monitors the data
stream, and determines whether a clustering is necessary when a user requests
a clustering. If the data has not changed substantially since the previous clus-
tering, there is no need to execute a new clustering. If the data has changed,
a clustering is ’triggered’.

Silverman’s Rule of Thumb Bandwidth estimation technique used in
this thesis.

h = (
4σ̂5

3n
)1/5 ≈ 1.06σ̂n−1/5 (A.1)
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Clustering Evaluation Metrics

All of the clustering evaluation metrics used are based on the pair-wise
comparison of points between a reference clustering A and a comparison
clustering A′. For each pair of points (xi, xj), we assess whether the two
clusterings agreed on whether the points should be in the same cluster or
not. The possible outcomes of this are defined as follows:

1. True Positive (TP). Both clusterings agree that the points xi and xj
should be in the same cluster.

2. False Positive (TP). Comparison clustering A′ indicates points xi and
xj are in the same cluster, whereas reference clustering indicates this
is not the case, i. e., xi and xj are in different clusters.

3. True Negative (TP). Both clusterings agree that the points xi and xj
should be in different clusters.

4. False Negative (TP). Comparison clustering A′ indicates points xi and
xj are in different clusters, whereas reference clustering indicates this
is not the case, i. e., xi and xj are in the same cluster.

These relations are used to compute various metrics. Each of these metrics’
values range from 0 to 1, where 0 indicates completely different clusterings,
and 1 indicates identical clusterings. The metrics used were chosen based on
the survey presented by Meila et al. [19]. We believe these analyze the clus-
tering results from multiple perspectives, and thus provide a good overview
of clustering performance. The equations for each metric are presented in
the following.
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Jaccard Index

Jaccard =
TP

TP + FP + FN
(B.1)

Rand Index

Rand =
TP + TN

TP + FP + FN + TN
(B.2)

Fowlkes-Mallows Index

Fowlkes-Mallows =

√
TP

FP + TP
∗ TP

TP + FN
(B.3)

Precision

Precision =
TP

TP + FP
(B.4)

Recall

Recall =
TP

TP + FN
(B.5)

F-Measure

F-Measure =
2 ∗ Precision ∗Recall
Precision+Recall

(B.6)
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Implementation

This appendix discusses some details on the implementation of the algo-
rithm discussed in this thesis. The source code for this project is available
on GitHub 1. The algorithm was implemented from scratch in Python, with-
out any existing infrastructure. A number of libraries were used during the
development, which are also dependencies for the source code:

• Python 2.7.5

• NumPy 1.9.1

• SciPy 0.14.0

• SciKit Learn 0.15.2

• PyMongo 2.7.2

The choice for Python was mostly due to its excellent data mining and
data exploration reputation and the number of mature libraries that facili-
tate such activities. Moreover, MobPro’s RTB platform is built in Python.
Therefore, by developing our algorithm in Python, we allow for easier integra-
tion into this system. We used the implementation of Mean Shift provided by
Scikit-Learn as reference implementation. However, the implementation of
Mean Shift was not completely correct, resulting in quite some work having
to be done to correct this library code to execute the real Mean Shift. These
errors in the library implementation were mainly related to the way points

1https://github.com/danielvdende/Medusa
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were assigned cluster labels. The Mean Shift algorithm iteratively shifts a
point towards a peak in the density, and marks all points whose iterative
ascent ends close to each other with the same label. In this way, a cluster
is intuitively defined based on the data density. However, the Scikit-Learn
implementation labels each data point based on the Euclidean distance to
the final cluster centers. This means that the actual iterative shifting of the
point along the steepest gradient only is used to find the cluster centers, and
not to label the data points.

Beside the core algorithm, a GUI was developed to display the clustering
results, both in terms of scatterplots and metrics, and in order to allow
easy, on-the-fly configuration and setup of the algorithm. This GUI was
developed with Python’s default TkInter library, which allows it to function
cross-platform without any modifications. A screenshot of this GUI running
under Ubuntu 14.04 can be seen in Figure C.1.

Although all three Mean Shift related algorithms that can be executed
through the GUI are Mean Shift related and based, each has its own distinct
implementation, which is optimized and modified to suit the unique aspects
of these algorithms.
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Figure C.1: Screenshot of our GUI for a static clustering



Appendix D

Personal Reflection

Having discussed all technical and academic details of my master thesis, in
this section I will give a brief personal reflection on the project.

During any project, decisions are made that seem to be the right decision
at the time, but should have been different when examined in hindsight. I
think it is useful and important to evaluate these decisions, and examine
how to improve on these in the future. During this thesis, I kept a journal
detailing all my thoughts and decisions along the way. Looking back at these
records, I noticed a number of things:

• During the initial months I was very focused on the execution time of
the algorithm. Within Mobile Professionals, there is a huge drive to
improve performance and within the development team there is strong
competition to find the best speed up. Unfortunately, despite my
project being separate from the work being done by the rest of the
development team, my thinking was influenced by this, and I spent a
lot of time optimizing code for which the academic basis was not sound
yet.

• Another aspect of this thesis where I believe I made a mistake was my
initial focus on the Mobile Professionals business case. Reading through
my old journal entries, I found a large emphasis on their datasets and
practical applications, which should have been of later concern.

• It only came to my attention relatively late in the project that the
reference implementation I had been using, implemented in the Scikit-
Learn library, was in fact incorrect and did not represent a proper Mean
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Shift implementation. I should have examined their source code sooner
to find this out, and I placed too much trust in the quality of the library
implementation.

• During the project I quickly realised the need for some graphical rep-
resentation of the clustering results. I decided to stick with what I was
familiar with, which involved a basic web application. This architec-
ture decision, however, made the visualization extremely complex, as
it meant the Python application had to write data to the database,
which then had to be read by the web application to visualize. It
meant I spent a lot of time ensuring data validity, which was very hard
to guarantee.

The field of big data, and big data visualization in particular, still fasci-
nates me. I have learned a lot in terms of state-of-the-art academic research
in this field, and I believe there is still a lot of work to be done. I hope this
master thesis somehow contributes to this. I have also learned a lot from my
supervisors, who made excellent points at numerous stages in the process.

While I regret the mistakes I have made during this project, I have def-
initely learned from them. As a whole, this master thesis project presented
me with very different and new challenges compared to other projects during
my time at TU Delft. Particularly the academic research aspect and the fact
that I had no project group meant a lot of responsibility was placed with me.

Overall, I believe that this master thesis project has taught me a lot,
and I hope that the resulting work has contributed (if in a very minor way)
towards furthering big data research.
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