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Abstract

Traffic congestion causes unnecessary delay, pollution and increased fuel con-
sumption. In this thesis we address this problem by proposing new algorithmic tech-
niques to reduce traffic congestion and we contribute to the development of a new
Intelligent Transportation System. We present a method to determine speed limits, in
which we combine a traffic flow model with reinforcement learning techniques. A
traffic flow optimization problem is formulated as a Markov Decision Process, and
subsequently solved using Q-learning enhanced with value function approximation.
This results in a single-agent and multi-agent approach to assign speed limits to high-
way sections. A difference between our work and existing approaches is that we also
take traffic predictions into account. The performance of our method is evaluated in
macroscopic simulations, in which we show that it is able to significantly reduce con-
gestion under high traffic demands. A case study has been performed to evaluate the
effectiveness of our method in microscopic simulations. The case study serves as a
proof of concept and shows that our method performs well on a real scenario.
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Chapter 1

Introduction

In modern society many people are faced with it every day: traffic congestion. When driving
home after work, people encounter congested highways during their trip, which causes an
increased travel time, but also more fuel consumption and pollution. A straightforward so-
lution would be expanding the infrastructure to increase its traffic capacity, but due to space
and budget limitations this is not always feasible in practice. Intelligent Transportation Sys-
tems (ITS) have emerged as a potential solution to improve highway efficiency. Designers
of such intelligent systems aim to make traffic flow safer and more coordinated by using
advanced technologies like floating car data, in-car information systems and mobile appli-
cations. These systems make it possible for Artificial Intelligence researchers to apply their
techniques to the domain of traffic flow control and transportation in general. In this thesis
project we contribute to Smoover, a new Intelligent Transportation System that is currently
under development in the Netherlands. In this chapter we will give examples of Intelligent
Transportation Systems, and we give more details about Smoover, which is part of a larger
research project. At the same time, we identify and motivate the research questions that we
attempt to answer. Eventually, this leads to our main contributions that will be presented in
the remainder of this thesis.

1.1 Regulating traffic flow

In the last few decades, several techniques have been applied to regulate traffic flow on road
networks. A technique that is well known in many countries consists of variable speed limits
displayed by variable message signs or so-called matrix signs. Variable speed limits are used
to reduce the speed on specific highway sections. In the seventies, the first matrix signs have
been installed in the Netherlands, which are able to show speed limitations, as well as other
symbols to indicate that it is not allowed to drive on a specific highway lane. Figure 1.1a
shows matrix signs above the A10 highway in the Netherlands, displaying a speed limit
of 80 kilometer per hour. These speed limits will be activated if the detected speed in
downstream sections is below a predefined boundary value. Even though these speed limits
may prevent the occurrence of traffic jams, the main purpose is accident prevention at the
tail of traffic jams. Approaching cars are warned and decrease their speed in an earlier stage,
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1. INTRODUCTION

(a) Variable speed limits. (b) Ramp metering.

Figure 1.1: Regulating traffic flow.

which reduces the possibility of accidents. Another type of message signs is the variable
message sign. This is a traffic sign that is able to give car drivers warnings about events,
congestion, alternative routes, expected travel times and other types of messages.

A second strategy to regulate traffic flow is ramp metering. In contrast to variable speed
limits, ramp meters reduce the traffic demand to increase the speed and flow near on-ramps.
Typically, a ramp meter consists of one or more traffic lights together with a controller.
The controller decides how many cars are allowed to enter the highway, depending on the
conditions of the road network. Figure 1.1b shows a ramp metering device near Delft in the
Netherlands.

Applying control actions, such as activating ramp metering devices and assigning speed
limits, does not always occur automatically. A decision support system can be used to
support a traffic operator when making decisions given the current traffic situation and mea-
surements. A traffic operator selects the control actions, but it is not obvious which control
action should be applied and where it should be applied. In general this is a difficult task
that requires expert knowledge and experience. A decision support system does not replace
the traffic operator, but it is a complementary tool for analysis and supports the decision
making procedure. A straightforward solution to determine the best possible control action
is running simulations of all possible future control scenarios, but this is not tractable for
online control due to the running time and the number of possible combinations.

An example of a decision support system is the multi-agent case based control system
discussed in [24]. This system presents a ranked list of control actions to the traffic operator,
based on the current traffic situation and an optimization criterion (e.g., minimizing travel
time). The system does not run simulations to determine the best possible control actions,
but uses a case base. Given the current traffic state, similar cases are selected from the case
base, and the effects of a control action can be determined by taking the similarity between
the selected cases and the current state into account. Eventually, the operator is able to
select appropriate control actions from the presented alternatives based on experience and
further assessment of the expected effects. New algorithms and control techniques may
be integrated in such support systems and can be presented as one of the alternatives the
operator can choose from.

2



Intelligent Transportation Systems

1.2 Intelligent Transportation Systems

Intelligent Transportation Systems are systems that apply advanced communication, infor-
mation and electronics technology in order to solve transportation problems [9]. They have
the intention to solve problems related to traffic congestion, safety, transport efficiency and
environmental conservation. A common property of ITS is that they try to embed several
forms of intelligence in roads, vehicles and the information presented to car drivers.

ITS can be categorized into six categories [9]. Advanced Traffic Management Systems
(ATMS) regulate traffic flow by responding to the currently measured traffic conditions.
This means that an AMTS is able to interact with the road network and intervenes in real
time, taking communication delays into account. Examples of technologies being used are
video detectors, induction loop detectors, variable message signs and ramp metering de-
vices. The main components of an AMTS are monitoring services, supported by devices
such as cameras and other types of sensors. Information gathered by these systems is even-
tually used to regulate the traffic flow using message signs and ramp meters. The variable
speed limits and ramp meters discussed in the previous section can be categorized as an
ATMS.

A second category of ITS consists of Advanced Travelers Information Systems (ATIS).
These systems aim to present information about the road network and traffic conditions to
the car drivers, such that this information influences the car drivers when making decisions
about their trip. For example, people may decide to choose an alternative route if their
current route is affected by congestion. Intelligent systems are able to present several al-
ternative routes to reach the destination. The information can be presented using message
signs, as well as navigation systems and in-vehicle displays.

Commercial Vehicles Operation (CVO) systems try to make commercial vehicles and
fleets safer and more efficient. For example, transportation companies and mail services
may want to see locations of all their vehicles in real time to optimize their transport or de-
livery process. Such systems rely on GPS positioning and communication through modern
communication networks like 4G. Typically, CVO systems are used by commercial com-
panies to control their fleet and, at the same time, making their business process more cost
efficient.

Advanced Public Transportation Systems (APTS) can be used to improve the efficiency
of public transportation. An APTS uses technologies from ATMS and ATIS to, for example,
present route information and real time information regarding changes. An example of a
APTS system in the Netherlands is the central monitoring system for bus services in public
transportation (e.g., Arriva, Connexxion). These systems can be used to locate vehicles,
communicate with bus drivers and provide information about their schedule and delays.
Information displays located at bus stops can be connected to the underlying database to
provide real time information about expected departure times and disruptions.

Increasing driving safety by assisting car drivers can be important to react faster and
more effectively in dangerous situations. Advanced Vehicles Control Systems (AVCS) use
in-car sensors to gather information about the traffic situation around the car and vehicle
conditions. Car manufacturers have already implemented technologies to keep the car in the
right lane and to activate the brakes in case of quickly decreasing speeds of other vehicles.

3



1. INTRODUCTION

In the near future people may be able to drive in autonomous cars. Google recently made
significant progress in autonomous car driving, by means of a futuristic Google driverless
car project. Their cars already have successfully shown to be able to drive autonomous in
the urban area, but currently there should be at least one passenger to intervene in case of
dangerous situations in which the car does not react appropriately. Early developments of
guide systems for autonomous cars already started in the eighties [23].

The last category consists of Advanced Rural Transports Systems (ARTS), which can
be used in rural zones to assist car drivers. This is relevant since such areas have a few
alternative routes and typically navigational signs are missing.

The examples of ITS discussed above show that there are many applications of intelli-
gent systems in transportation and road networks. The increasing bandwidth of communi-
cation networks and the ability to gather and process large amounts of information (i.e., big
data) make it possible to create new innovative systems to make transportation more effi-
cient. Researchers in the area of transportation have been investigating traffic phenomenons
for years, resulting in mathematical models and methods to improve road network efficiency
and transportation in general. Techniques from the domain of Artificial Intelligence have
a huge potential to further accelerate this process and to build intelligent systems. In this
thesis, we contribute to an innovative traffic management system that combines techniques
from ATMS and ATIS with methods from AI and Computer Science in general. This will
allow us to apply AI methods that have proven to be successful to a new application domain
and, in the process, we attempt to reduce the gap between traffic flow theory and Artificial
Intelligence. In the next section we introduce the newly proposed system and we identify
its relationships with the ITS categories we just described.

1.3 Smoover

Smoover is a new Intelligent Transportation System that is currently under active develop-
ment in the Netherlands. A consortium of five companies is working on this project until
the end of 2014, together with the Algorithmics group at Delft University of Technology.
The companies involved in this project are Locatienet-PTV BV, Adapticon BV, Cygnify BV,
Tom van de Ven ITS Consultancy and Tessa Bouw Communicatie.

The project contributes to the Brabant in-car III (BIC III) program, which has the inten-
tion to solve concrete traffic flow problems using in-car technologies. These technologies
should optimize the interactions between cars and trucks to further optimize traffic flow.
The pilot area of BIC III is the A67 highway, located in the provinces of Noord-Brabant
and Limburg in the Netherlands. This highway connects Belgium (A21) near Hapert with
Eindhoven and the German border (A40) near Venlo.

Traffic congestion on the A67

High traffic demands often lead to an increased traffic flow and, as a consequence, traffic
congestion arises. This is also the case on the A67 in the Netherlands. Transportation
in a congested area makes it less efficient in terms of costs and time. This is a potential
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problem, because trucks from the Port of Antwerp with destination Germany mostly use the
A67, resulting in cargo transport on this highway.

Traffic congestion arises if the flow exceeds the so-called critical flow. The critical flow
depends on the characteristics of the road network, such as the maximum speed, the number
of lanes and the behavior of individual car drivers. External factors that may affect this are
weather conditions and accidents. On the A67 the on-ramps are relatively short. This may
also trigger disruptions and irregular merging behavior. If the flow is below the critical flow,
then it is called free flow.

Traffic demands can be balanced and regulated by giving speed advices to car drivers,
with the intention to reduce or resolve traffic congestion. Another factor that may prevent
the flow from exceeding the critical flow is lane changing guidance, which gives an advice
regarding lane changing. A harmonized lane changing behavior may also decrease conges-
tion and the probability of car accidents.

Shortcomings of existing solutions

Induction loops and matrix signs can be used to reduce congestion and prevent the occur-
rence of accidents. However, such systems have several shortcomings and disadvantages in
practice. Induction loops and matrix signs are expensive to install and maintain, and in the
Netherlands there are several highways without such systems. Localized disruptions and
speed drops cannot be measured accurately by induction loops. This is caused by the fact
that they measure average speed and flow, which is only representative for larger highway
stretches. To resolve problems around on-ramps and off-ramps, induction loops and matrix
signs are therefore not appropriate. Induction loops are also affected by failures, which
in turn causes the data to be unreliable. Existing systems based on induction loops and
matrix signs issue speed limitations based on speed measurements. This means that these
systems are reactive, in the sense that they will only be activated if congestion is measured.
However, it may be possible to reduce traffic congestion more effectively by using traffic
predictions. Another shortcoming is that speed limitations and advices given by existing
systems are intended to be applicable to all the vehicles, and they do not depend on vehicle
type and their route. Personalized advices may be helpful to further reduce congestion.

We can conclude that a new ITS requires more information than the quantities measured
by induction loops and speed limitations using matrix signs. Other types of information, as
well as innovative technologies can be used to design a system that does not fully depend
on matrix signs and data that comes from induction loops. Below we discuss opportunities
and challenges for in-car solutions.

Opportunities and challenges for in-car technologies

Instead of focusing on centralized traffic flow control, in-car technologies can focus on the
individual car driver. In the last decade, innovative technologies became more accessible to
the general public. Most of the people have a smartphone with a GPS device to measure
location. The coverage of modern communication networks (e.g., GPRS, 3G and 4G) is
high and these networks are generally reliable enough to send and receive information in
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real time. This means that in-car technologies can be connected to a centralized system to
transmit data. There is potentially a huge amount of data from which more personalized
speed advices can be extracted, where the individual aspects and preferences of each car
driver are taken into account. From this perspective, big data technology and machine
learning techniques are relevant to come up with real time personalized speed advices that
can be presented to the car driver by using in-car technologies.

Features of Smoover

Smoover aims to use cooperative in-car technologies to optimize traffic flow. The most
important aspect of this system consists of personalized advices with respect to driving
speed, lane changing and distance to preceding vehicles. Advices can be presented to the
car driver on his or her smartphone or another display, which is attached to the dashboard.
This display can also be used to show warnings in case of accidents, expected congestion
or dangerous on-ramps.

The innovative aspect of Smoover is the integration of predictions of road conditions
into speed advices. As a consequence, the advices can be used to reduce congestion, but
may also prevent congestion. Data is gathered using in-car devices and detectors in the
infrastructure, and subsequently processed using big data technology. Predictions of traffic
conditions are based on techniques from the machine learning domain. Using this informa-
tion, speed advices can be computed and communicated to the car drivers. All the features
of Smoover are implemented in a smartphone application that will be publicly available for
Android devices.

1.4 Objective and research questions

The objective of this thesis is to propose new algorithmic techniques to optimize traffic flow
and reduce congestion, based on techniques from the Artificial Intelligence domain. These
algorithms will not directly be implemented in the resulting ITS, but serve as a theoretical
reference that can be demonstrated using simulations. The knowledge and concepts that
follow from this research can be used in the development of Smoover, in which a generalized
version of the presented algorithms will be integrated.

The research presented in this thesis is carried out in close cooperation with Cygnify BV,
one of the companies that is part of the consortium. They have been working on traffic flow
prediction for several years. This is the reason that the integration of traffic flow predictions
is one of the goals of the project. They also provide other traffic related services, such as
processing road maps and gathering historical traffic data. This data can be used to set up
simulations. Based on the objectives of the Smoover project presented in the previous sec-
tion, we aim to answer the main research question below.

Main Research Question. How can traffic congestion be reduced by algorithms to com-
pute dynamic speed limits combined with traffic predictions?

6



Objective and research questions

To answer the main research question, we identified three research questions. They will
be presented below and we discuss why they are relevant and how these questions can be
answered.

Research Question 1. How can we devise an algorithm to determine speed limitations
to reduce congestion?

To devise algorithms optimizing traffic flow, it is required to study which optimization
methods exist and which mathematical objective functions can be optimized, in such a way
that traffic congestion is reduced. Traffic predictions may be useful to control traffic flow
more efficiently, so we need to study how predictive data can be combined with algorithms
to determine speed limits. Before we can study optimization algorithms, we need a model
of traffic flow. This leads to our second research question.

Research Question 2. Which computational models can be used to simulate traffic flow,
taking speed limits into account, at low computational cost?

To create algorithms related to traffic flow, it is required to have models that can be im-
plemented to represent traffic characteristics. Therefore, it is important to know which cat-
egories of simulation models exist, and which aspects determine their running time. Since
we are interested in speed limits, it should be possible to integrate them in a traffic flow
model. From a practical point of view, it is interesting to know how accurate simulations of
traffic flow can be created and how such simulations correspond to real highways. This is
reflected by the third research question.

Research Question 3. To which extent are the proposed methods applicable in practice?

Given an algorithm that is able to compute speed limits, it is interesting to investigate
how speed limits would behave in practice and how they influence congestion. Therefore,
it is important to know which data sources are required to set up a realistic highway sim-
ulation, and how this data can be combined with an existing simulation framework. To
compare our work with existing methods, we need to study existing algorithms and control
rules to assign speed limits to highways. From the perspective of Smoover, it is important
to investigate how many participants are required to obtain the desired effects.

There are several things that make the topic relevant to study. In the traffic flow domain,
little attention has been paid to the application of Artificial Intelligence methods to solve
traffic related problems. Including predictive data into such methods is relatively new and
may enable us to show how predictions are able to enhance these methods. This is covered
by the research questions we described above.

7



1. INTRODUCTION

1.5 Main contributions

Our main contributions can be summarized as follows. We present a method to reduce
congestion, by generating policies using reinforcement learning algorithms. Reinforcement
learning is an area of machine learning focusing on agents and how they interact with an
environment. We show that our method can be enhanced with predictive data during the
learning stage of the algorithms. We consider the single-agent case, in which one agent
regulates the speed limits associated with a highway. We also present a generalization to
the multi-agent case, in which multiple agents are able to assign speed limits to highways.
We show that learned policies can be reused to enhance learning efficiency. The last part
of the thesis involves a simulation using real traffic data, in which we present a proof of
concept to show how policies can be applied in practical scenarios.

1.6 Outline

In this chapter we discussed the project this thesis contributes to, as well as the relevance
of combining methods from Artificial Intelligence with traffic flow concepts. In this section
we describe the topics of the remaining chapters, and their relationship with the research
questions we identified in Section 1.4.

Traffic flow theory is the topic of Chapter 2. We give a brief comparison of micro-
scopic and macroscopic traffic simulation models, and we present METANET. This is the
macroscopic model we use in our speed limit algorithms. This answers research question 2.

In Chapter 3 we discuss background information regarding reinforcement learning al-
gorithms. These algorithms will be used in Chapter 4, in which we present a reinforcement
learning algorithm to calculate speed limitations. We formulate the problem as an optimiza-
tion problem in terms of a Markov Decision Process. Furthermore, we show that we can
use Q-learning to find policies to resolve or reduce congestion. A further improvement that
we propose is the integration of model-based traffic predictions. Experiments show that the
algorithm enhanced with traffic predictions is able to produce better policies. This answers
research question 1 partially. Based on our initial experiments, we are able to improve the
speed limit algorithm significantly. An improved version of the algorithm is presented and
evaluated in Chapters 5 and 6.

In Chapter 7 we show that previously learned policies can be reused as a probabilistic
bias in the exploration phase of the reinforcement learning algorithm from Chapter 5. This
improves the learning capabilities of the algorithm and enables us to generate policies for
new traffic scenarios more efficiently. This also relates to the first research question.

Chapter 8 presents a case study, in which we demonstrate that the proposed algorithms
may reduce congestion in practical scenarios as well. This serves as a proof of concept
and answers research question 3. The policies generated by the algorithms from Chapter 6
are applied to a real road network in a microscopic simulation. For this purpose, a partial
map of the A67 is translated to the macroscopic model from Chapter 2. Then we use the
algorithms from Chapter 6 to learn policies, which can subsequently be tested in more
realistic scenarios.
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Chapter 2

Traffic Flow

In this chapter we provide the theoretical background of traffic flow modeling and related
approaches for traffic simulation. We briefly introduce traffic models in general and we
give a description of METANET, the macroscopic model we use in this thesis. We also
present microscopic simulation environments. In particular, we introduce SUMO, an open
source simulation package for traffic flow. This chapter answers research question 2 and is
important, since our algorithms will interact with a traffic flow model, and eventually our
algorithms can be evaluated through simulation. The background knowledge we present
is important to understand the basic idea of the algorithms we present in the remaining
chapters.

2.1 Traffic flow models

Two categories of traffic flow models can be distinguished: microscopic and macroscopic.
Microscopic models define the behavior of traffic flow for individual vehicles, in terms
of their speed, position and the characteristics of the vehicle itself (e.g., maximum speed,
acceleration). Such models make it possible to set up an accurate simulation of traffic
flow. Unfortunately, they have high computational cost, which makes it infeasible to use
them for several algorithmic applications. Macroscopic models, on the other hand, model
traffic flow using average speed, flow and density of highway sections. They are relatively
easy to implement and have a low time complexity, because the number of calculations
involved is fixed and does not depend on the number of vehicles on the highway. Moreover,
the analytical aspects of such models make them suitable for the design of traffic control
systems [16]. The most important differences between microscopic and macroscopic traffic
models are shown in Table 2.1.

2.2 Macroscopic simulation with METANET

In this thesis we use the METANET traffic flow model, proposed by Messner and Papageor-
giou [18, 16]. This model defines highway traffic in terms of flow, speed and density. Flow
is defined as the number of vehicles that pass per time unit. Flow can be measured with loop
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2. TRAFFIC FLOW

Microscopic Macroscopic
Quantities Position, speed and vehicle

characteristics (e.g., acceler-
ation, emission).

Flow, density and speed of
highway sections.

Computation time High, since several quantities
are calculated for individual
vehicles

Low. For instance, polyno-
mial in the number of simu-
lation time steps and number
of sections.

Accuracy At the level of individual ve-
hicles.

At the level of highway sec-
tions.

Table 2.1: Comparison of microscopic and macroscopic models.

detectors that count the number of vehicles in a time period of several minutes. The speed
is an average of the speed of the vehicles that pass a specific point of the highway. The
density is the number of vehicles per unit length. This value can be approximated using the
flow, the average speed and the number of lanes of a highway section. An alternative model
that could be used is the Cell Transmission Model [7]. This model is based on kinematic
wave equations, and is widely used as a numerical method for traffic simulations. However,
it assumes a fixed section length and has no support for multiple driving lanes. This was
one of the most important reasons to choose METANET, which can also be adapted to take
speed limitations into account.

Now we describe the METANET model in more detail. The formulas we present are
based on an extension, proposed by Karaaslan et al. [15]. Additional variables were in-
troduced in [32] to support multiple lanes. We consider the uni-directional highway of N
sections in Figure 2.1 below. The arrows indicate the direction of vehicle flow. Table 2.2
shows the variables of the model, where n denotes the number of the current simulation time
step. The meaning of the variables is important, since we will use them in the description
of our algorithms in the next chapters.

q1 qi qN

r1 s1 ri si rN sN

q0

Figure 2.1: Highway containing N sections.
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Macroscopic simulation with METANET

Variable Description
T time step size (hour)
Mi number of lanes in section i
Li length of section i (km)
ki(n) density in section i at time nT (veh/km/lane)
vi(n) mean speed of vehicles in section i at time nT (km/hour)
qi(n) traffic volume leaving section i and entering i+1 at time nT (veh/km/lane)
ri(n) on-ramp traffic volume of section i at time nT (veh/hour)
si(n) off-ramp traffic volume of section i at time nT (veh/hour)

Table 2.2: Variables of the METANET model.

The equations below describe the macroscopic traffic model for a uni-directional high-
way (i = 1, . . . ,N).

qi(n) = αki(n)vi(n)+(1−α)ki+1(n)vi+1(n), (2.1)

ki(n+1) = ki(n)+
T

MiLi
[Mi−1qi−1−Miqi(n)+ ri(n)− si(n)] , (2.2)

vi(n+1) = vi(n)+
T
τ
{Ve [ki(n)]− vi(n)}+

T
Li
· ki−1(n)

ki(n+1)+κ′
(2.3)

· vi−1(n)
[√

vi−1(n)vi(n)− vi(n)
]
− µ(n)T

τLi
· ki1(n)− ki(n)

ki(n)+κ
,

µ(n) =

{
µ1

ρ

k jam−ki+1(n)+σ
if ki+1(n)> ki(n)

µ2 otherwise
.

In these equations, α,ρ,σ,κ,κ′,τ,µ1 and µ2 are positive parameters and k jam is the jam traf-
fic density. For this density, the average speed approaches zero. The function Ve describes
the fundamental relationship between speed and density and is defined as:

Ve(k) = v f

[
1− (k/k jam)

l
]m

(2.4)

where l > 0, m > 1 are a constant and v f is the free flow speed. There will be two virtual
sections 0 and N +1 which are used to define the boundary conditions of the model:

v0(n) = v1(n) (2.5)

k0(n) = k1(n)

vN+1(n) = vN(n)

kN+1(n) = kN(n)

Section 0 represents a queue of vehicles that can be filled if vehicles are unable to enter
the highway. If there is no congestion, then the queue will be empty. Otherwise, the queue
will be filled with vehicles, depending on the demanding traffic volume and the remaining
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2. TRAFFIC FLOW

capacity of section 1. The queue length w0(n+1) is defined as:

w0(n+1) = w0(n)+M1T [qd(n)−q0(n)] (2.6)

where qd is the demanding traffic flow and q0 is the flow from section 0 to section 1, which
is defined below.

q0(n) = min
{

qd(n)+
w0(n)
MiT

,αk0(n)v0(n)+(1−α)k1(n)v1(n)
}

(2.7)

The on-ramp of section i is also modeled as a queue. This queue can be used as a buffer in
case of congestion, or if a ramp metering strategy is applied to regulate the incoming flow.
The definition of the on-ramp queue and the traffic volumes of the on-ramp and off-ramp
are given below.

wi(n+1) = wi(n)+Tbrd,i(n)− ri(n)c (2.8)

ri(n) = rd,i(n)+
wi(n)

T
si(n) = βiqi−1(n)

In these equations, βi is a non-negative constant, rd,i and ri are the demand flow and realized
flow of section i. The values wi, ri, rd,i are zero if section i does not contain an on-ramp.
Similarly, if section i has no off-ramp, then βi will be equal to zero.

There are a few additional boundary conditions that need to be imposed to ensure that
the quantities flow, density and speed will be calculated correctly. In most of the literature
they are not mentioned explicitly, but they are relevant for implementing the model. Firstly,
the condition Li > v f · T should hold for all sections i (i = 1, . . . ,N), because otherwise
vehicles can pass through a complete road section within one simulation time step, which
makes the macroscopic simulation inaccurate. The second problem we need to take care
of is limitation of incoming flow, to prevent the density from exceeding k jam. A simple
solution to this problem is calculating the flow values backwards (i.e., from section N to 1).
For each section i the outgoing flow can be determined, based on the number of vehicles
that is allowed to enter section i+1.

Note that the characteristics of traffic flow depend on several parameters. They can be
calibrated to fit real observations from a highway stretch. Unless stated otherwise, we will
use the parameters shown in Table 2.3. Most of the parameters have been derived from
[32] and correspond to a Californian highway. The only exception is the free flow speed v f ,
which is increased to ensure that higher speed values are possible within the macroscopic
simulation.

The relationship between the quantities flow, speed and density is illustrated in Fig-
ure 2.2. If the density is below the critical density, then small perturbations will resolve

v f k jam l m α κ′ κ µ1 µ2 τ σ ρ

130 110 1.86 4.05 0.95 4 40 12 6 20.4 35 120

Table 2.3: Parameters of the METANET model.
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Microscopic simulation with SUMO
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Figure 2.2: Fundamental flow-density diagram.

quickly. In this example, the critical density is slightly below 40 vehicles per kilometer per
lane. If the density is close to this critical density, then the highway reaches its maximum
flow capacity. A further increase of the density will cause congestion and the average flow
and average speed of the vehicles drop immediately. From Figure 2.2 we can conclude that
if we regulate the density of a highway segment, we can ensure that the highway efficiency
is preserved. For example, a control strategy may regulate the traffic such that the density
stays close to the critical density, in order to maximize the traffic flow.

2.3 Microscopic simulation with SUMO

SUMO is an open source software package for traffic simulation, originally developed by
the German Aerospace Center (DLR) [2]. The first open source version was released in
2002. The main reason to create an open source simulation environment is that it allows
everyone to implement their algorithms in an existing simulation environment. We use
SUMO in our work because other people working on the Smoover project use the same
simulation environment. For more details regarding SUMO and its relation to the Smoover
project we refer to [17].

The SUMO simulation suite consists of sumo, which actually performs the traffic sim-
ulation. It requires a road network and traffic demand pattern as the input, in a specific
format. These files can be generated using the applications netgen and netconvert, which
are also part of SUMO. It is also possible to import road networks from other simulators
(e.g., Vissim) and OpenStreetMap. Using these tools, real road networks can easily be
converted to the right format to be used in simulations.

SUMO is a microscopic simulation environment and therefore it maintains a represen-
tation of each individual vehicle. Vehicles have their own route through the network and
also have their own departure time, position and speed. Loop detectors and traffic lights can
be placed at specific places to mimic the equipment of real road networks. Figure 2.3 shows
a screenshot of road interchange De Hogt near Eindhoven, modeled in SUMO.

In Chapter 8 we will use SUMO to perform a microscopic simulation to evaluate the
algorithms presented in Chapter 4 to 6. Although SUMO is assumed to be a realistic simula-
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2. TRAFFIC FLOW

Figure 2.3: SUMO: Simulation of Urban MObility.

tion environment for traffic flow, it is worth noting that it cannot capture all the dynamics of
traffic flow and the behavior of car drivers exactly. Several car following models have been
implemented in SUMO, trying to mimic real car following behavior. For more information
regarding SUMO and its features we refer to the overview in [2].

2.4 Examples of control algorithms

There exist several control approaches and optimization algorithms based on the METANET
model. The objective of this thesis is to propose new techniques combining concepts of traf-
fic flow and Artificial Intelligence, but for the sake of completeness we briefly discuss a few
other control strategies in this section.

Model Predictive Control

Model Predictive Control (MPC) is a method to control complex dynamic processes and
has a wide range of applications. MPC algorithms use a model of the system under consid-
eration to find optimal control signals, taking the future behavior of the system into account.
MPC methods are suitable to control systems in which prediction is an essential aspect [11].
According to [11], there are two main advantages over non-predictive control. Firstly, MPC
can ensure that the output of a system will follow a trajectory to a certain goal. This is
useful for systems in which the goal is not the only important aspect, but also the trajectory
to reach the goal is relevant. The second advantage is that MPC methods inherently make
a trade-off between immediate performance and future performance. For some systems it
may be necessary to take decisions that decrease the current performance, but give a better
performance in the future. For example, when optimizing traffic flow, it is relevant to op-
timize with respect to a future traffic scenario or expected traffic scenario. We do not give
the formal details behind Model Predictive Control. Below we give a high level description
of the MPC scheme [11].
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Examples of control algorithms

1. Prediction. The current state of the system, expected external influences and a
planned control signal are used to predict the behavior of the considered system in
the future. For traffic flow, this involves the evaluation of a model to predict the
future road conditions.

2. Performance evaluation. An objective function is used to evaluate the performance
of the system under the planned control signal from the prediction phase. The number
of vehicle hours can be used as a performance metric when optimizing traffic flow.

3. Optimization. In an optimization step, the optimal control signal is found. This
control signal optimizes the objective function for the chosen time horizon of the
prediction phase.

4. Control action. Given the optimal control signal from the previous step, the next
control action is taken from the optimal control signal and subsequently applied to the
system. This means that the optimal control signal is calculated every control time
step, but only the first action is taken. Recalculating optimal control signals proceeds
using a rolling horizon scheme. Typically, the control time step size is smaller than
the time horizon of the prediction phase.

MPC can be used for optimal coordination of variable speed limits. Hegyi et al. present
an algorithm based on MPC to determine optimal speed limits for highway sections [12].
The prediction model they use is METANET and the objective function is defined in terms
of the total number of vehicle hours people spend on the highway. The reason behind
this decision is that the optimal control signal (i.e., the speed limitations issued) needs to
minimize the additional time people spend as a consequence of congestion. The objective
function also includes a penalty term for large variations of the speed limits. Optimizing the
objective function is performed through sequential quadratic programming, an algorithm
for constrained nonlinear optimization. Experiments have shown that the proposed MPC
approach achieves an improvement of about 20 percent for simple scenarios.

Ramp metering using ALINEA

ALINEA is a policy to locally control ramp metering devices [21]. It tries to maximize the
total throughput by controlling the density at a downstream section of the on-ramp. In order
to be applied to ramp metering control, ALINEA requires a loop detector at a downstream
section of the highway to measure the density. A ramp metering rate r(t) is determined for
the time interval from t to t +∆t, according to the following update rule:

r(t) = r̄(t−∆t)+KR · (O∗−O(t))

where O(t) is the measured density, O∗ is the desired density and r̄(t−∆t) is the measured
ramp metering rate and KR is a regulation parameter. The desired density should be less
than the critical density. In the example of Figure 2.2, the desired density would be slightly
below 40. Real world experiments have shown that 70 is a good choice for KR and a loop
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2. TRAFFIC FLOW

detector should be located downstream between 40 meters and 500 meters from the on-
ramp [5]. ALINEA can be combined with METANET to evaluate the performance of ramp
metering devices and its influence on the total throughput.

Rules for variable speed limits

Instead of explicitly optimizing an objective function using advanced algorithmic tech-
niques, there are also more simple intuitive rule based systems to determine speed limits.
Zhang et al. propose a control system for highway traffic flow, in which the speed limit of
a section is used as a virtual ramp meter for the next section [32]. The system is based on
the fundamental flow-density relationship, as shown in Figure 2.2, and implemented using
METANET. Experiments have shown that this system is able to reduce the number of ve-
hicle hours by 28 percent for simple scenarios. An advantage of this method over MPC,
is that it requires less computation time and there is a limited number of parameters to be
adjusted.

2.5 Summary

In this chapter we discussed the difference between microscopic and macroscopic traffic
flow models. The main difference is that microscopic models simulate traffic flow at the
level of individual cars, while macroscopic models define traffic flow using average speeds,
flows and densities of highway sections. An example of a microscopic simulation environ-
ment is SUMO, which is assumed to be able to perform realistic traffic simulations. For
macroscopic simulation, we presented the METANET formulas to calculate speeds, flows
and densities in discrete time steps. From the perspective of running time, microscopic
simulation is much more expensive. To optimize traffic flow there exist several control
strategies. We briefly discussed Model Predictive Control, ALINEA and a rule based al-
gorithm for speed limitations. The macroscopic model we discussed will be integrated in
the algorithms we present in the remaining chapters, and the microscopic simulation en-
vironment can be used to run simulations of a more realistic highway. The concepts and
models discussed in this chapter form an answer to research question 2, since we can use
METANET to run a traffic simulation at low computational cost. Speed limits can also be
integrated in this traffic flow model.
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Chapter 3

Reinforcement Learning

In this chapter we introduce reinforcement learning. This is a branch of machine learning
which studies systems that are able to learn from data. Arthur Samuel, a pioneer in AI,
defined machine learning as a “field of study that gives computers the ability to learn without
being explicitly programmed” [25]. A more formal definition of machine learning was given
by Tom M. Mitchell. He stated that “a computer program is said to learn from experience E
with respect to some class of tasks T and performance measure P, if its performance at tasks
in T, as measured by P, improves with experience E” [19].

Reinforcement learning deals with agents interacting with their environment to max-
imize a cumulative reward. In reinforcement learning, the agent learns how to execute
actions in the environment, when there is only limited feedback in terms of a single reward
that an agent receives after executing an action.

Typically, the environment is modeled as a Markov Decision Process (MDP), which
defines a set of states and the actions that can be executed to control the environment.
Practical problems, such as automated robot control and traffic light assignment problems,
have been successfully formulated as an MDP. Currently it is a popular framework for
modeling sequential decision making problems.

This chapter covers the background of modeling decision making problems as a Markov
Decision Process and shows how an agent is able to learn to act in an unknown environment.
Section 3.1 provides the theoretical background of the MDP framework and in Section 3.2
we discuss model-free learning techniques that can be applied if the model of the MDP is
unknown. The first part of this chapter follows roughly the same structure and notation as
the introduction to reinforcement learning in [31].

3.1 Framework

In this section we formalize the notion of a Markov Decision Process (MDP) [22]. We
only consider MDPs with a finite number of states and actions. These finite MDPs are
extensively used in reinforcement learning and therefore this section presents the required
background knowledge to understand the theory behind reinforcement learning algorithms.
We will discuss the formal definition of an MDP, policies, the optimality of policies and we
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3. REINFORCEMENT LEARNING

introduce several value functions. These value functions will be used to represent policies
and define the optimality of policies.

Markov Decision Processes

As mentioned in the introduction of this chapter, a Markov Decision Process can be used
to describe the environment of an agent. The environment is represented by a state s ∈ S,
where S is a finite set containing n states. Actions can be executed to change the state of the
environment. We define A as a finite set containing m actions and A(s) denotes the set of
actions that can be executed in state s ∈ S.

If the system is in a state s ∈ S, then an action can be executed to make a transition
to another state s′ ∈ S. There is a probability distribution that defines the probability to
make a transition from s to another state s′. This is represented by a transition function
T : S×A× S→ [0,1]. For this transition function it should hold that T (s,a,s′) ≥ 0 and
T (s,a,s′)≤ 1, for all s,s′ ∈ S and a∈ A. Furthermore, for all states s and actions a, the prob-
ability distribution defining the transitions to the next states should be proper, which means
that ∑s′∈S T (s,a,s′) = 1. The system is said to be Markovian if the outcome of an action
only depends on the previous state and action: P(st+1|st ,at ,st−1,at−1, . . .) = P(st+1|st ,at) =
T (st ,at ,st+1). This is also called the Markov property.

An agent executing actions in an environment receives rewards for transitioning to a
state after executing an action. This reward is specified by the reward function R : S×
A× S→ R. It is important to note that reward may be a bit misleading in this context,
since a negative reward can also be interpreted as a punishment received by the agent. In
general, the reward is a single scalar value that the agent receives as feedback from the
environment. In Section 3.2 we will see that the reward function can be used to guide the
agent in the direction of a predefined goal when solving an MDP. The concepts introduced
in this section are summarized in Definition 1 below.

Definition 1 (Markov Decision Process). A Markov Decision Process (MDP) is a tuple
〈S,A,T,R〉, where S = {s1, . . . ,sn} is a finite set of states and A = {a1, . . . ,am} a finite set of
actions. The function T : S×A×S→ [0,1] defines the transition function and the reward is
represented by the reward function R : S×A×S→ R.

A schematic representation of an agent interacting with an environment modeled using
the MDP formalism is shown in Figure 3.1. The agent executes action a in state s and
receives reward R(s,a,s′) after arriving in state s′.

environment agent
reward R(s, a, s′)

state s′

action a

Figure 3.1: Agent executing action a when environment is in state s.
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Policies and optimality

Agents use policies to determine which action is executed. Such a policy π is a mapping
from states to actions: π : S→ A. Executing actions proceeds in an iterative fashion. Given
an initial state s0, the first action a0 = π(s0) is executed and the transition from state s0 to
state s1 is made. The agent receives a reward r0 = R(s0,a0,s1). This process may continue
infinitely, or stops if a goal state has been reached. A natural question that arises is how
we can define the optimality of policies and which criterion should be optimized when
finding policies. In this thesis we consider infinite-horizon optimality, which means that all
rewards received by the agent are taken into account. Rewards received will be discounted
by a discount factor γ (with 0 ≤ γ < 1), such that rewards received in the near future are
more important than rewards received later. Therefore, optimal policies should maximize
the expected sum of discounted rewards, as shown below. In this equation, ri denotes the
reward received by the agent, and it does not relate to the METANET traffic volumes.

E
[
r0 + γr1 + γ

2r2 + . . .
]
= E

[
∞

∑
t=0

γ
trt

]
(3.1)

Alternative optimality criteria are the finite horizon model without discounting and the av-
erage reward model. More information regarding these models can be found in [31]. In the
section below we discuss the correspondence between policies and the discounted infinite-
horizon optimality model.

Value functions

Now we introduce two types of value functions: a state value function and a state-action
value function. They represent how good it is for an agent to be in a state, or to execute an
action. This is expressed in terms of the discounted infinite-horizon optimality model we
described above. The value of a state s under policy π is denoted by V π(s) and represents
the expected return when the agent starts in state s and subsequently follows policy π. The
definition is given below, where Eπ denotes the expected value under policy π.

V π(s) = Eπ

[
∞

∑
k=0

γ
krt+k|st = s

]
= Eπ

[
rt + γrt+1 + γ

2rt+2 + . . . |st = s
]

= Eπ [rt + γV π(st+1)|st = s]

= ∑
s′∈S

T (s,π(s),s′)
(
R(s,a,s′)+ γV π(s′)

)
(3.2)

Equation 3.2 is known as the Bellman equation for V π(s) and describes the relationship
between the value of a state and the value of the successor states. An optimal policy π∗ is a
policy that satisfies the equation below.

V ∗(s) = max
a∈A

∑
s′∈S

T (s,a,s′)
(
R(s,a,s′)+ γV ∗(s′)

)
(3.3)
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For an optimal policy π∗ it holds that V π∗(s) ≥ V π(s) for all s ∈ S and all policies π. Now
we can define the optimal policy π∗ in terms of V ∗ as follows:

π
∗(s) = argmax

a∈A
∑
s′∈S

T (s,a,s′)
(
R(s,a,s′)+ γV ∗(s′)

)
(3.4)

The algorithms we discuss in Section 3.2 use another representation of the state value func-
tion: the state-action value function Qπ(s,a). It is the expected reward when the agent is in
state s, executes action a and follows policy π afterwards. Similar to the derivations of the
state value function, the optimal state-action value function is presented below.

Q∗(s,a) = ∑
s′∈S

T (s,a,s′)
(

R(s,a,s′)+ γmax
a′∈A

Q∗(s′,a′)
)

(3.5)

The optimal value function and policy can also be expressed in terms of the Q-function:
V ∗(s) = maxa∈A Q∗(s,a) and π∗(s) = argmaxa∈A Q∗(s,a). An important property is that if
we define the optimal policy in this way, we do not need to use the transition function T
and reward function R explicitly. The Q-function is sufficient to determine the next action
to execute. In the next section we discuss algorithms that learn a policy represented by a
Q-function, instead of learning the state value function V . These techniques do not need the
model of the MDP (i.e., the transition function and reward function) to learn a policy.

3.2 Model-Free Reinforcement Learning

In this section we give an overview of the most important model-free learning techniques
for Markov Decision Processes. They learn a policy based on the experiences, by repeatedly
observing rewards after applying actions. We make the distinction between two different
algorithms. We present the Q-learning algorithm, which is an off-policy algorithm to learn
the Q-function. Then we discuss SARSA, which is an on-policy learning algorithm.

Q-learning

The first algorithm we discuss is the Q-learning algorithm [28, 29]. This algorithm is able
to learn the Q-values, which represent a policy, without using the model of the MDP. It only
uses the rewards received from the environment to update the estimates of the Q-function.
Therefore, it is called model-free learning. The update rule used by Q-learning is shown in
Equation 3.6. Recall from Section 3.1 that the Q-function is sufficient to determine the next
action to execute. This means that learning Q-values also results in a policy.

Q(st ,at)← Q(st ,at)+α[rt + γmax
a∈A

Q(st+1,a)−Q(st ,at)] (3.6)

The Q-learning algorithm estimates the Q-function by executing actions and observing re-
wards. The algorithmic description is given in Algorithm 1 below.

The Q-learning algorithm is an off-policy algorithm and actions may be selected ac-
cording to a different policy than the policy being learned. If each state-action pair is en-
countered an infinite number of times, then Q-learning converges to an optimal policy [29].
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Model-Free Reinforcement Learning

Algorithm 1: Q-learning
input : initial state s, learning rate α, discount factor γ

output: Q-function, representing a policy

Q(s,a) = 0 ∀s ∈ S,∀a ∈ A
foreach episode do

foreach step of the episode do
choose action a based on policy derived from Q using an exploration strategy
execute a, observe reward r and new state s′

Q(s,a)← Q(s,a)+α[r+ γmaxa′∈A Q(s′,a′)−Q(s,a)]
s← s′

In reinforcement learning, it is a common problem to balance exploration and exploita-
tion. Exploration is useful to discover parts of the state space that have not been encountered
before, but existing knowledge can also be exploited to receive more reward. It is important
to balance exploration and exploitation, which we will illustrate with a simple example.
Consider a path finding problem in the direction of a certain goal. After finding a good
path in the direction of the goal, there may be better paths leading to the same goal but
giving more reward. The agent will never find these paths if it does not explore the envi-
ronment. On the other hand, the agent does not learn to exploit learned knowledge when
there is no exploitation involved. Balancing exploration and exploitation is an extensively
studied problem in the literature. In this thesis, we use the ε-greedy exploration strategy.
This strategy chooses the action with maximum Q-value (i.e., greedy) with probability ε,
and selects a random action otherwise. The algorithm executes several episodes, starting
from an initial state, and the probability to select random actions is decreased over time,
such that it starts to follow the policy that is currently learned. An episode ends if a final
state has been reached, or if a predefined number of actions has been executed.

SARSA

The SARSA algorithm is, in contrast to Q-learning, an on-policy algorithm and follows the
same policy as the policy that is used by the agent. The structure of the algorithm is the
same as Q-learning, but SARSA uses a different update rule:

Q(st ,at)← Q(st ,at)+α[rt + γQ(st+1,at+1)−Q(st ,at)]

The action at+1 is selected using the policy followed, starting from state st+1. If all state-
action pairs are visited an infinite number of times, then the policy will converge to an
optimal policy and eventually this policy will be the greedy policy [27, 26]. After that,
exploration does not occur anymore.
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3. REINFORCEMENT LEARNING

3.3 Function approximation

In Section 3.1 we introduced the notion of a value function and its role in the temporal dif-
ference learning algorithms. An intuitive representation of a value function is a table with
a value for each state, or for each state-action pair. This representation causes problems
once the state and action spaces become larger. Storing the data in memory is not the major
problem, but it takes much more learning effort to find all the values to fill the table. When
using the table representation, experiences of states, or state-action pairs, do not generalize
to similar states and state-action pairs. Generally, this is problematic if the state space is
large or continuous. In such cases it is unlikely that exactly the same states will be encoun-
tered several times. To solve this problem, previous experiences need to be generalized to
states and state-action pairs that have never been encountered before.

Function approximators can be used to make an approximation of a function. In this
case, it can be the state value function, or the state-action value function. By giving ex-
amples of the desired input and output behavior, a function approximator generalizes this
mapping to create an approximation of the function. Function approximators can be ef-
fectively combined with temporal difference learning algorithms, such as Q-learning. For
example, once the Q-value for state-action pair (s,a) has been learned, the function ap-
proximator generalizes this experience to state-action pairs similar to (s,a), even though
they have not been encountered explicitly during learning. If an appropriate approximation
technique is chosen, it is likely that Q-learning is able to learn more efficiently, because
an update of the Q-function (i.e., the approximator), also results in updated Q-values for
similar state-action pairs. In the remaining part of this section we discuss linear function
approximation techniques. They will be integrated in the algorithm we present in Chapter 4.
A more sophisticated function approximation technique is discussed in Chapter 5.

Gradient descent methods

Gradient descent methods are widely used in linear function approximators, and are suitable
to be combined with reinforcement learning [27]. Gradient descent is an optimization algo-
rithm to find the local minimum of a function. To find this minimum, the algorithm takes
steps proportional to the negative gradient. Consider an arbitrary function f that depends
on one variable x. If the algorithm is in point f (x), the gradient ∇ f (x) is determined. Now
the function will decrease the fastest when moving in the direction of the negative gradient.
When proceeding in this way, a local minimum can be found.

The method outlined above can be used to approximate value functions. A value func-
tion V (s) can be expressed as a linear combination of features derived from s, where each
feature is a binary value that represents whether a feature is present in state s or not. Fea-
tures can also be real valued, but for convenience we assume that features are either 0 or 1.
Equation 3.7 shows a value function V formulated as a linear combination of features, where
φs is an n-dimensional feature vector of state s, and θt is the n-dimensional parameter vec-
tor of the approximate function. The subscript t is used to distinguish approximators and
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parameters at consecutive time steps t and t +1.

Vt(s) = θ
>
t φs =

n

∑
i=1

θt(i)φs(i) (3.7)

If Vt(s) is a smooth differentiable function of the parameter vector θt for all states s, then the
gradient descent method can be applied to adjust the parameters such that V approximates
the desired function V π more closely. This will be formalized in Equation 3.8, which is
derived from [27]. The parameter α denotes the learning rate.

θt+1 = θt −
1
2

α∇θt [V
π(st)−Vt(st)]

2 (3.8)

= θt +α [V π(st)−Vt(st)]∇θtVt(st)

The parameter values are adjusted in the direction proportional to the negative gradient of
the mean squared error of the true value function V π and the approximation Vt . The motiva-
tion behind this is that is that an approximation should minimize the difference between the
desired function and the current approximation that depends on θt . Hence, the parameters
can be adjusted in the direction of the negative gradient of this error. The derivation above
yields a quite natural update rule for the parameters θt , because it holds that ∇θtVt(st) = φs.
Therefore, the update rule from Equation 3.8 reduces to:

θt+1 = θt +α [V π(st)−Vt(st)]φs (3.9)

In Example 1 below we will argue that ∇θtVt(st) is equal to φs, and we illustrate how a
function can be approximated using this recipe.

Example 1 (Linear function approximation). Consider a value function Vt(q) = θt(1) ·
φq(1)+ θt(2) · φq(2), where q is a state for which φq = (1,0)>. The desired function V π

is equal to 20 for state q: V π(q) = 20. We assume that all the parameters in the vec-
tor θt are initially zero, and that the learning rate α is equal to 0.8. This means that
Vt(q) = 0 ·1+0 ·0 = 0. Now it holds that:

∇θtVt(q) =
(

∂Vt(q)
∂θ(1)

,
∂Vt(q)
∂θ(2)

)>
= (1,0)> = φq

Now the update rule from Equation 3.9 can be applied to update the parameter vector:

θt+1 = θt +α [V π(q)−Vt(q)]φq =

[
0
0

]
+0.8 · [20−0]

[
1
0

]
=

[
0
0

]
+

[
16
0

]
=

[
16
0

]
The newly obtained approximator Vt+1 evaluates to 16 for state q: Vt+1(q) = 16 ·1+0 ·0 =
16, which is closer to the desired value 20. This procedure can be repeated several times to
obtain a better approximation of the desired function.

The approximation technique described above can be used to approximate value func-
tions, as shown in Example 1. Applying linear function approximation directly to approxi-
mate value functions would be a naive approach, since it is unlikely that all value functions
can be expressed as a linear combination of features. Typically, for large state spaces and
non-linear reward functions, a simple linear approximation is not sufficient. Next we de-
scribe a more sophisticated technique to deal with this issue.
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3. REINFORCEMENT LEARNING

Tile coding

As mentioned previously, generalization is required to be able to learn effectively if the
state space is large and continuous. Gradient descent linear function approximators can
be used to achieve this, but the accuracy of the approximation depends on the features
that can be extracted from the state description. In this section we present tile coding, a
method to discretize the state space and identify features [27]. The number of features can
be controlled explicitly and does not depend on the state description.

Consider a two dimensional state space, in which the state variables are real numbers
in the domain [0,1]. The state space can be visualized as a so-called tiling, as shown in
Figure 3.2a. The cells in this tiling partition the state space and are called tiles. The cross
symbol represents a state in the two dimensional space and lies in the shaded tile. A weight
is associated with each tile, and each tile corresponds to a feature. This means that for every
state in the state space, there is exactly one feature present in a tiling. Features are binary
values, indicating whether a state belongs to a tile or not. This interpretation of the state
space ensures generalization, because multiple states will be mapped onto the same tile.
The shape of the tiles can be changed to create other forms of generalization.

(a) Tiling. (b) Overlapping tilings.

Figure 3.2: Tile coding.

If there is one tiling to partition the state space, there will be only one feature present
in each state. To obtain a higher accuracy with linear function approximation techniques,
it is required to have multiple features for each state. Otherwise, the approximate function
value of a state would be exactly the weight of the corresponding tile. Figure 3.2b shows
two overlapping tilings, where the tilings have a different offset in each dimension. The
bold square represents the two dimensional state space. The states have two corresponding
features and the approximate function value equals the sum of the two weights.

The number of features present in each state can be controlled by changing the number
of tilings m. If there are m tilings, the approximation can be computed by taking the sum of
m weights, where the weights correspond to the feature tiles associated with the state. The
number of tilings and their respective offset also controls the resolution of the approxima-
tion. This scheme can also be generalized to state spaces with a higher dimensionality.

For gradient descent linear function approximation, the update rule in Equation 3.9
remains the same. Note that it is useful to define the learning rate in terms of the number of
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tilings m. For example, if the learning rate α is set to 1
m , a weight update will immediately

change the approximate function value to the desired value. This fraction can be adapted to
obtain the desired learning behavior.

Q-learning with function approximation

Function approximation techniques can be combined with reinforcement learning algo-
rithms, such as Q-learning. In Section 3.3 we have shown how a value function can be
approximated, but this recipe can easily be generalized to make approximations of state-
action value functions. Algorithm 2 below shows how Q-learning can be combined with
tile coding function approximation. It assumes that all state variables are real values in the
domain [0,1]. Earlier in this chapter we mentioned that Q-learning converges to an optimal
policy if each state-action pair is encountered an infinite number of times, but convergence
proofs are no longer valid when applying function approximation.

Algorithm 2: Q-learning with tile coding function approximation
input : initial state s, discount factor γ, tile width w, number of tilings m
output: approximate Q-function, representing a policy

d←number of dimensions of the state space
foreach action a do

let θa be a vector containing m ·
( 1

w +1
)d zeros

foreach tiling do
foreach state space dimension do

assign an offset o∼U(0,w)

foreach episode do
foreach step of the episode do

determine φs using tile coding scheme, taking offsets into account
calculate θ>a φs for each action a ∈ A
choose action a based on Q-values, using an exploration strategy
execute a, observe reward r and new state s′

determine φs′ using tile coding scheme, taking offsets into account
θa← θa +

1
m

(
r+ γmaxa′∈A

(
θ>a′φs′

)
−θ>a φs

)
φs

s← s′

Note that the algorithm maintains a tile coding function approximator for each action
a ∈ A, represented by a weight vector θa. If the agent is in state s, the next action can be
determined by calculating the Q approximation for each action a. First it should be deter-
mined which features are present in state s (i.e., determine φs using tile coding). Moreover,
there are m additions and multiplications for each action a to calculate the approximation.
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3. REINFORCEMENT LEARNING

3.4 Summary

In this chapter we discussed the most important concepts of reinforcement learning, which
deals with agents that act in an environment to optimize a notion of cumulative reward.
Typically, the environment is modeled as a Markov Decision Process (MDP), which in-
volves states, actions and rewards received after performing actions. A solution to an MDP
is a mapping from states to actions, such that the expected sum of rewards received by the
agent is optimized. If the transition probabilities of the MDP are unknown, model-free re-
inforcement learning algorithms can be used. The most important ones are Q-learning and
SARSA, which can be enhanced with function approximation. This is a technique to store
an approximation of the expected rewards in memory, rather than maintaining a complete
table containing all these values explicitly. One of the benefits is that learning becomes
more efficient, because the experiences of the agent generalize and thus it improves the
learning capabilities of the algorithm.

26



Chapter 4

Speed Limit Policies

In this chapter we present our first algorithm to compute speed limitations that aim to re-
duce congestion. The algorithm we propose is based on the reinforcement learning con-
cepts presented in Chapter 3 and uses the macroscopic traffic flow model from Chapter 2.
In Section 4.1 we give an informal introduction to the problem at hand, including the re-
quirements we impose on the solution. This problem is formulated as a Markov Decision
Process (MDP) in Section 4.2. This involves a translation of the problem to states, actions
and a reward function. It is possible to find solutions to the problem, represented by policies,
which is the topic of Section 4.3. An experimental evaluation of the algorithm is presented
in Section 4.4. In the discussion in Section 4.5 we describe shortcomings and possible im-
provements of the algorithm. This allows us to present an improved version of the algorithm
in the next chapter. The results presented in this chapter are related to research question 1.

4.1 Problem description

As mentioned in the introductory chapter, the objective of this thesis is to propose new al-
gorithmic techniques to compute speed limitations, which aim to reduce congestion. One
solution would be optimizing the traffic flow of the entire road network. However, it is
likely that increasing traffic demands cause congestion nearby, and do not affect the traffic
conditions of the complete road network. Another aspect is the scalability of the solution,
which tends to be problematic in case of very large road networks. Based on these consider-
ations we will propose techniques for localized control, at the level of individual highways.

Consider the example highway in Figure 4.1. The highway has been divided into eight
sections. Section 6 and 7 have an on-ramp, allowing car drivers to enter the highway. In

1 2 3 4 5 6 7 8

Figure 4.1: Example highway stretch.
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case of high traffic demands for both the origin and the on-ramps, congestion will arise
around section 6 and 7 and will propagate upstream. This means that after a while, sections
4 and 5 may become congested as well, as a consequence of the increased traffic demands.
Intuitively, this problem can be circumvented by assigning speed limitations to the upstream
sections, with the intention to harmonize traffic flow. However, initially it is unclear when
to assign speed limits, and to what extent the speed upstream should be decreased. More-
over, for algorithms computing these speed limitations, the following requirements can be
imposed:

1. Speed limits should not cause unnecessary delay. This means that intervention should
only take place if congestion does not resolve without speed limits. If there is no rea-
son to assign speed limitations, the algorithm should not trigger unnecessary changes.

2. Speed limits should be decreased and increased smoothly, at predefined control steps.
Large differences between consecutive speed limits and frequently changing speed
limits are inconvenient for car drivers and may eventually cause dangerous situations.
Additionally, it is desirable that the speed limitations are round numbers (e.g., multi-
ples of 10 km/h).

3. Speed limits should optimize the traffic conditions of all the highway sections, and
should not focus on the travel times of individual car drivers. A global optimization
strategy should optimize the number of vehicle hours, which represents the number
of hours people are spending on the highway within a time interval. In case of con-
gestion, the number of vehicle hours will be unnecessary high as a consequence of
the reduced speed and increased travel times. Hence, the number of vehicle hours can
be used as an objective function.

Returning to our example from Figure 4.1, it is reasonable to assign speed limitations to the
sections 2 to 6 in case of high origin and on-ramp demands. The idea behind this observation
is that if the speed is lower, it is easier to merge near the on-ramps. Secondly, lower speeds
cause the distances between vehicles to decrease, such that there can be more vehicles on
the highway. The informal description to the optimization problem will be formalized in
the next section.

4.2 Formulation as Markov Decision Process

In this section the traffic flow optimization problem will be formulated as a Markov Deci-
sion Process (MDP), as introduced in Chapter 3. We will use the notational conventions
introduced in Chapter 2 and Chapter 3. Before we define the MDP, it is worth mentioning
that the simulation time step size T of METANET may be smaller than the control time
step size of the desired highway controller. For example, the simulation step size may be 15
seconds, while speed limits are changed every 5 minutes. We define the control time step
size Tc as an integer multiple of the simulation time step size: Tc = c ·T , where c∈N. In the
example, c would be equal to 20, such that Tc = 20 ·

(0.25
60

)
= 5

60 hour. Below we describe
the actions, the state description and the reward function of the MDP.
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Formulation as Markov Decision Process

Actions

The actions of the MDP correspond to the speed limits that can be assigned to section 2
to 6. The action space consists of four elements: A = {1,2,3,4}. An action a ∈ A can be
translated to a speed limitation using the following function:

lim(a) =


120 a = 1
100 a = 2
80 a = 3
60 a = 4

(4.1)

The speed limitations given by the function lim can be assigned directly to highway sections.
The function also relates to requirement 2 from the previous section, which states that speed
limits should be round numbers. We mentioned that speed limits are assigned to section 2
to 6, but in general speed limits can be assigned to any highway section.

State description

We define a six-dimensional state space, in terms of the average speeds of the highway and
previous speed limits. The initial state and a recursive formulation of the other states is
shown below.

s0 =

(
120
v f

,
120
v f

,
v4(0)

v f
,
v5(0)

v f
,
v6(0)

v f
,
v7(0)

v f

)
(4.2)

sn =

(
lim(an−1)

v f
,sn−1(1),

v4(cn)
v f

,
v5(cn)

v f
,
v6(cn)

v f
,
v7(cn)

v f

)
(4.3)

The first entry of the state space represents the chosen speed limit from time (n−1)c to nc.
This speed limit corresponds to the previously chosen action. The second entry is the speed
limit that was issued from time (n−2)c to (n−1)c. In the reward function this value will
be used to prevent the speed limits from alternating frequently. The remaining entries of
the state space are the average speed of section 4 to 7, as we have discussed in the previous
section. The value v f is a METANET parameter, representing the free flow speed. The
state description can be further extended with information regarding speeds and densities of
other sections, but in this chapter we decided to keep the dimensionality of the state space
limited. The reason is that learning is more difficult if the state space is large and function
approximation methods may not scale well enough.

In the state description above, we use the current speed values, represented by the last
four state variables. Instead of defining the state in terms of the current speed, model-based
predictions of future speeds can also be used in the state description. A model-based pre-
diction can be generated using METANET, starting from the current traffic state. Running
a traffic simulation for 5 minutes results in a perfect prediction of the traffic conditions after
5 minutes, which can be included in the states. This approach assumes that future traffic de-
mand profiles are known. In the experiments at the end of this chapter we will also evaluate
this variant of the algorithm.
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4. SPEED LIMIT POLICIES

Reward function

The reward function of the MDP can be used to implicitly define the objective function of
the traffic flow optimization problem. First we will present the reward function, and there-
after we motivate how the distinguished cases relate to the requirements from the previous
section. The rewards will be negative numbers, which can be interpreted as a punishment
when the agent has selected a bad action. Maximizing the received rewards yields a solution
that optimizes the objective function. The reward rn received by the agent after arriving in
state sn+1 is as follows:

rn =


−ϕ sn(2)v f = lim(an)∧ sn(1)v f 6= lim(an)
−ϕ |sn(1)v f − lim(an)|> 20
0 min{vi((n+1)c) | i = 1, . . . ,N}> 101
−V H(n) otherwise

(4.4)

where ϕ is a large constant and V H(n) is defined as:

V H(n) = T
(n+1)c

∑
p=nc

(
N

∑
i=1

[MiLiki(p)]+
N

∑
i=0

wi(p)

)

The variables Mi, Li and ki represent the number of lanes, length and density of section i,
respectively. The variable wi represents the length of the queue associated with section i.
The cases are evaluated in this order and the reward corresponding to the first valid condition
is taken. The first case ensures that the agent receives a punishment if the selected actions
result in alternating speed limits. This happens if the selected speed limit in state sn is
the same as the speed limit selected in state sn+2, but differs from the speed limit selected
in state sn+1. This is reflected by the first condition, and it explains why we included the
second entry of the state description. This case addresses requirement 2 from the previous
section.

The second case results in a punishment for the agent if the difference between two con-
secutive speed limits is too large. In our definition we decided to use the value 20, resulting
in smooth changes, but this value can be changed depending on the desired behavior. This
case also relates to requirement 2.

If the minimum speed of the highway sections is above 101, it can be assumed that
there is currently no congestion. Therefore, the agent does not receive a punishment in such
states. This is represented by the third case. Additionally, it is used to ensure that the agent
selects actions in such a way that congestion is prevented or eventually resolves. The value
101 is chosen such that the condition can only be true if the current speed limit is equal
to 120.

In all other cases, the agent receives a punishment that is proportional to the number of
vehicle hours people spent between the previous control time step and the current control
time step. In the calculation of this value there are two components: the number of vehicle
hours for vehicles that are actually on the highway, as well as the vehicle hours for vehicles
that are unable to enter the highway due to congestion (e.g., in front of on-ramps). The
punishment represented by this value will be large in case of congestion, and also depends
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on the speed limits that have been assigned to the sections. If the speed limits decrease too
much, the number of vehicle hours will be unnecessary high, resulting in a lower reward
value. This will ensure that speed limits are only decreased if strictly necessary. This case
relates to requirement 1 and 3. Note that the parameter ϕ should be chosen in such a way
that it is large compared to the values V H(n) can take. This means that it should be at least
as large as the maximum number of vehicle hours that may occur between two control time
steps.

Solution

A solution to the MDP is a policy π : S→ A, which maps traffic conditions to speed lim-
itations. These speed limitations can be assigned to section 2 to 6. The macroscopic
METANET model needs to be adapted to include speed limitations. Equation 2.4 from
Chapter 2 can be redefined as follows:

Ve(k,a) = min
{

lim(a),v f

[
1− (k/k jam)

l
]m}

(4.5)

where a is the selected action. This only applies to sections for which speed limits have
been activated. A similar adaptation can be found in [32]. Policies can be learned using the
Q-learning algorithm that runs interleaved with a METANET traffic simulation, as we will
discuss in the next section.

4.3 Learning policies using Q-learning

The Q-learning algorithm from the previous chapter can be applied to learn speed limit
policies. Algorithm 2 can be adapted in such a way that it simulates traffic flow using
METANET, and performs a Q-learning step at every control time step of the highway con-
troller. A high level description of the adapted algorithm is shown in Algorithm 3. Within
each episode, a regular METANET simulation is executed. This involves a calculation of
speed, flow, density and queue length values for each simulation time step. The time com-
plexity of this simulation is O(NK), where N is the number of sections and K is the number
of simulation time steps. Every c steps, a regular Q-learning step is performed to update the
Q-values and select a new action. The algorithm also includes tile coding function approx-
imation to represent the Q-function. For clarity, the indices of the consecutive states have
been discarded in the description of the algorithm, but this should be clear from the context.

Figure 4.2 shows a schematic representation of the speed limit policy algorithm. Using
the initial traffic conditions, the initial state of the MDP is defined and the first action is se-
lected. Then 5 minutes of traffic flow is simulated, which results in a new state. The reward
is calculated based on the simulation values of the past five minutes, which makes it possible
to update a Q-value. An optional step is to run a separate METANET simulation to generate
a traffic prediction. Basically, this is an extrapolation of the current traffic conditions and
gives information about the traffic conditions after five minutes. This information can be
included in the state description. If the simulation has not been completed yet, the algorithm
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Simulate 5 min traffic

Define new state
Select action

Update Q-value

simulation done

current sim step < 1 hour

Define initial state
Select action

Create 5 min prediction

Figure 4.2: Schematic representation of speed limit policy algorithm.

goes back to the simulation phase. In all other cases it starts a new learning episode, start-
ing from the initial traffic conditions. In this figure, it is assumed that the traffic simulation
involves 60 minutes, and that control actions are applied every five minutes.

4.4 Experiments

In this section we describe the experiments we performed to evaluate the proposed algorithm
and the policies it generates. Using these experiments we want to show that the speed limit
policies generated by Algorithm 3 can reduce the number of vehicle hours significantly.
The policy quality can be compared to the optimal number of vehicle hours and the number
of vehicle hours without speed control. We also want to show that Algorithm 3 generates
better policies if the states are defined in terms of model-based traffic predictions, instead
of the currently measured speeds. The policy quality can be compared to the quality of
the policies generated without predictions. In the remainder of this section we discuss the
experimental setup, the results of our experiments and we conclude with a discussion of the
capabilities and shortcomings of the proposed algorithm.

Experimental setup

For our experiments we have defined a unidirectional highway of 24 km, divided into 8 sec-
tions of 3 km each. All highway sections have two lanes. Sections 6 and 7 have an on-ramp,
allowing vehicles to enter the highway. Initially, the average speed of each section is 120
km/hr and the average density of each section is 17 veh/km/lane. A schematic representa-
tion of the highway we consider is shown in Figure 4.1. We define four traffic scenarios,
in which we simulate 60 minutes traffic flow. The demand profiles of the origin and the
on-ramps of section 7 and 8 are shown in Figure 4.3.

The algorithm we use is the speed limit policy learning algorithm shown in Algorithm 3.
Unless stated otherwise, we run 5000 episodes, in which the last 100 episodes are fully
greedy. This means that in the last 100 steps, the currently learned policy is followed without
any random exploration. The probability to select random actions is decreased over time
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Algorithm 3: Speed limit policy learning using Q-learning
input : initial speeds and densities of each section, METANET model parameters,

number of simulation time steps K, origin demands rd , on-ramp demands r,
off-ramp percentages β, control time step multiplier c, discount factor γ, tile
width w, number of tilings m

output: approximate Q-function, representing a policy

d←number of dimensions of the state space
foreach action a do

let θa be a vector containing m ·
( 1

w +1
)d zeros

foreach tiling do
foreach state space dimension do

assign an offset o∼U(0,w)

foreach episode do
calculate initial flows and origin queue length using Equation 2.1 and 2.6
define s as the initial state using Equation 4.2
determine φs using tile coding scheme, taking offsets into account
calculate θ>a φs for each action a ∈ A
choose action a based on Q-values, using an exploration strategy
assign limit lim(a) to section 2 to 6
foreach time step i ∈ {2, . . . ,K} of the traffic simulation do

calculate speed, density and flow using Equation 2.1, 2.2 and 2.3
calculate queue lengths using Equation 2.8
if i mod c = 0 then

define new state s′ using Equation 4.3
determine φs′ using tile coding scheme, taking offsets into account
calculate the reward r using Equation 4.4
θa← θa +

1
m

(
r+ γmaxa′∈A

(
θ>a′φs′

)
−θ>a φs

)
φs

calculate θ>a φs for each action a ∈ A
choose action a based on Q-values, using an exploration strategy
assign limit lim(a) to section 2 to 6
s← s′
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(a) Scenario 1.
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(b) Scenario 2.
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(c) Scenario 3.
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(d) Scenario 4.

Figure 4.3: Traffic demands of the scenarios.

and follows this formula: 1−((i−1)/4900), where i is the episode number. The tile coding
function approximator consists of 60 tilings and the width and height of each tiling is equal
to 1.32. In each dimension there are four tiles. The offsets assigned are drawn from the
U(0,0.3) distribution when initializing the tilings. Offsets are added to the state variables
when determining which tile of a tiling is activated. State variables are real valued between
0 and 1, so this probability distribution ensures that the state variables are less than 1.32
after adding the offset values. It is important that offsets associated to tilings are different,
to ensure that the tilings have a different offset relative to other overlapping tilings.

We distinguish two versions of the algorithm. The first version defines the states using
the current speed measures and the second version measures the current speed limits and
uses METANET to make a prediction of the future speeds. For this prediction, the time
horizon is set to 5 minutes. This prediction step is also visualized in Figure 4.2. Control
actions are applied every 5 minutes, so c is equal to 20. The constant ϕ in the reward
function is equal to 500 and the discount rate γ of the Q-learning algorithm is 0.8.

The METANET model is initialized using the model parameters from Chapter 2. The
simulation step size is 25 seconds, so to simulate 60 minutes we need to calculate 241 values
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for each section (including the initial traffic conditions at time zero).
The quality of a policy can be evaluated by applying the learned policy to a scenario,

following a fully greedy exploration strategy. We use the number of vehicle hours realized
during one hour of traffic flow as a performance metric. This is defined as follows:

T
241

∑
p=1

(
N

∑
i=1

[MiLiki(p)]+
N

∑
i=0

wi(p)

)
In the literature this value is known as the Total Time Spent (TTS) in a traffic network and
it is used to evaluate road network controllers [32].

Bounds on the policy quality

To place the quality of the resulting policies into perspective, we can impose weak bounds
on the number of vehicle hours realized by the generated policies. The situation in which
there is no speed control (i.e., the speed limits are always 120) is considered as the baseline
In practice it may be possible to exceed the baseline by setting speed limitations to very low
values, but in any case we want our policies to realize less vehicle hours than the number of
vehicle hours without control.

A lower bound can be computed by enumerating all sequences of actions, running a
METANET simulation and calculating the number of vehicle hours. However, not all
possible combinations of actions represent sequences of actions that can directly be ap-
plied. Recall from requirement 2 in Section 4.1 that speed limitations should be decreased
smoothly. Therefore, we enumerated all sequences of actions a1,a2, . . . ,a13, such that
|lim(ai)− lim(ai+1)| ≤ 20 for all i ∈ {1,2, . . . ,12}. There may be combinations that give a
lower number of vehicle hours, but these are not convenient to be used in practice. Note that
it is not always feasible to compute optimal sequences of actions. For large scenarios and a
small control time step size, the number of possible sequences to evaluate grows rapidly.

The computed baselines and lower bounds can be found in Table 4.1. Opt denotes
the lower bound which is assumed to be optimal, and no control represents the number of
vehicle hours without speed control.

Scenario Opt No control
1 491.6 740.8
2 511.2 954.5
3 543.5 933.8
4 514.5 768.6

Table 4.1: Baselines and lower bounds for each scenario.

Policies for individual scenarios

In the first experiment we investigate the policy quality for individual scenarios. There is
randomness involved in the exploration strategy of the learning algorithm, so we gener-
ate 20 policies for each scenario, giving us a distribution of the vehicle hours realized by
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(a) Scenario 1.
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(b) Scenario 2.
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(c) Scenario 3.
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(d) Scenario 4.

Figure 4.4: Policies for each individual scenario: comparison of policy quality.

the generated policies. This is repeated for the variant in which states are defined using
model-based traffic predictions. The results of the experiment are shown in Figure 4.4 and
Table 4.2. The horizontal lines represent the lower bound on the policy quality and the
baseline.

Based on the results we conclude that the speed limit policy algorithm is able to generate
useful policies to regulate traffic flow. We also observe that the predictive variant of the
algorithm produces slightly better policies, which shows that it makes sense to include
traffic predictions when determining speed limits.

The algorithm performs poorly on Scenario 3. An intuitive reason is that the traffic
demands in this scenario are too high, and that speed limitations have limited effects on
resolving congestion. As a consequence, the reward signal received by the learning agent
is not helpful enough to converge in the direction of good policies. An improved version of
our algorithm, presented in Chapter 5, generates better quality solutions for this scenario.

Policies for multiple scenarios

In practice it is desirable to have one single policy that can be used for multiple traffic sce-
narios. Therefore, we performed an experiment in which a policy was trained sequentially
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No control Opt Min Max Median Mean Std
Scenario 1 740.8 491.6 495.6 546.0 520.3 520.8 13.8
Scenario 2 954.5 511.2 523.0 598.5 550.4 553.9 17.8
Scenario 3 933.8 543.5 549.1 933.6 735.3 716.1 142.6
Scenario 4 768.6 514.5 525.1 589.0 538.5 542.2 17.2

(a) Vehicle hours without predictions.

No control Opt Min Max Median Mean Std
Scenario 1 740.8 491.6 491.6 676.4 512.2 519.2 40.1
Scenario 2 954.5 511.2 513.7 598.9 534.2 540.5 20.8
Scenario 3 933.8 543.5 548.6 775.3 565.5 580.4 50.3
Scenario 4 768.6 514.5 522.5 560.1 545.6 542.9 12.4

(b) Vehicle hours with 5 minute predictions.

Table 4.2: Policies for each individual scenario: vehicle hours.

on multiple scenarios, from scenario 1 to scenario 4. This was repeated 20 times, result-
ing in 20 policies without a predictive state description, and 20 policies with predictions
included.

The 20 policies were applied to each scenario, and the policy quality was measured in
terms of the number of vehicle hours. The results are shown in Figure 4.5 and Table 4.3. We
conclude that policies that have been generated for multiple scenarios are able to reduce the
number of vehicle hours significantly. An advantage is that this process gives policies that
can be applied to regulate traffic in multiple scenarios, instead of one single scenario. An
important result of this experiment is that the policies generated using the predictive state
description are consistently better, on the average.

Compared to the results in Table 4.2, the average policy quality decreased slightly. A
possible explanation for this observation is that the policies in this experiment should be
able to solve multiple scenarios, and represent a more general policy than the policies in the
previous experiment. Again we observe that the algorithm is unable to produce consistently
high quality policies for the third scenario. This can be an indication that the traffic flow in
this scenario cannot be efficiently regulated by assigning speed limitations.

Convergence of the algorithm

The Q-learning algorithm is proven to converge to an optimal solution if every state action
pair is encountered infinitely often. Convergence is not guaranteed if function approxima-
tion is used, though. The reason is that convergence proofs are no longer valid if the states
are discretized, and our tile coding scheme is a form of discretization. As can be seen in
Figure 4.4 and Figure 4.5, the algorithm does not always converge to the same solution, but
for Scenario 1, 2 and 4 the resulting policies are within a relatively small range and close to
the optimal policies we identified.

To understand which aspects influence the quality of the resulting policies, we per-
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(a) Scenario 1.
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(b) Scenario 2.
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(c) Scenario 3.
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(d) Scenario 4.

Figure 4.5: One policy for multiple scenarios: comparison of policy quality.

No control Opt Min Max Median Mean Std
Scenario 1 740.8 491.6 503.9 590.9 518.2 521.0 19.4
Scenario 2 954.5 511.2 529.2 752.4 555.2 591.5 77.1
Scenario 3 933.8 543.5 551.5 933.8 850.6 805.0 140.2
Scenario 4 768.6 514.5 525.1 625.0 537.1 541.4 22.9

(a) Vehicle hours without predictions.

No control Opt Min Max Median Mean Std
Scenario 1 740.8 491.6 491.6 587.1 518.9 518.8 19.8
Scenario 2 954.5 511.2 514.2 679.8 550.7 568.1 50.6
Scenario 3 933.8 543.5 561.3 928.7 612.2 679.0 131.6
Scenario 4 768.6 514.5 516.4 603.8 539.2 540.2 19.5

(b) Vehicle hours with 5 minute predictions.

Table 4.3: One policy for multiple scenarios: vehicle hours.
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formed an experiment. If we take a look at the Q-learning algorithm itself, the number of
episodes may be an important parameter that can be varied to obtain better policies. A larger
number of episodes ensures that the algorithm performs more learning steps and encounters
more, possibly unique, state action pairs. If this intuitive idea is true, we would observe a
better policy quality if we increase the number of episodes.

We performed an experiment on the first scenario, and we executed 5000, 10000, 15000
and 20000 episodes without predictions. For each configuration we generated 20 policies.
The resulting policy quality is visualized in Figure 4.6 and Table 4.4. We observe, as ex-
pected, that the distribution of the policy qualities improves if we increase the number of
episodes. However, the distribution for 15000 and 20000 episodes is similar if we do not
take the outliers into account. Interestingly, the minimum found is identical for 10000,
15000 and 20000 episodes, but when running 5000 for each run, the algorithm found a
better policy. This may be caused by overfitting, which occurs when a learning algorithm
runs too long and performance on unseen training examples decreases, while there is still
accurate performance on training samples encountered before. Based on our observations
we conclude that the number of episodes has influence on the resulting policy quality, but
probably it cannot be further increased to let the algorithm converge to the same policy ev-
ery run. If we take the baseline from Table 4.1 into account, we conclude that the resulting
policies are within a relatively small range, which is acceptable.
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Figure 4.6: Policy quality for different numbers of episodes.

Episodes Min Max Median Mean Std
5000 495.6 546.0 520.3 520.8 13.8

10000 502.7 546.1 514.5 517.8 13.9
15000 502.7 563.0 515.9 518.6 16.2
20000 502.7 532.6 516.7 513.6 8.6

Table 4.4: Policy quality for different numbers of episodes.
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4. SPEED LIMIT POLICIES

4.5 Discussion

Based on the exploratory experiments in this chapter, we can conclude that the proposed
formulation of the optimization problem as an MDP solves the problem at hand, and gen-
erates policies of reasonable quality. Including speed predictions in the state description
shows that there is a consistent improvement in the policy quality. However, there are a few
remarks to be made.

The problem formulation we introduced in Section 4.2 is not Markovian. This is inher-
ently the case when applying function approximation and discretization techniques, but it
may have influence on the quality of the resulting policies. Another reason that can be easily
observed is that the reward function we presented is not exclusively expressed in terms of the
state variables. The term responsible for the penalty proportional to the number of vehicle
hours also uses information about the traffic conditions that occurred between two consecu-
tive states. An alternative approach would be determining the transition probabilities of the
MDP and the reward function, such that standard dynamic programming techniques can be
applied to find policies (e.g., value iteration) [31]. Given the size and dimensionality of the
state space, however, it is not practical to determine the transition probabilities of the MDP.
Moreover, the reward function R(s,a,s′) is unknown beforehand, which makes it difficult
to apply dynamic programming to find policies.

Another limitation of the proposed algorithm is the approximation capability of tile cod-
ing. Even though the accuracy can be increased by changing the resolution of the tilings
(e.g., adding more tiles), the approximation method itself is still a linear approximation
technique and more powerful methods may exist to approximate the value function. An-
other disadvantage of the current approximation method is the fact that it does not scale
well. Increasing the dimensionality of the state space leads to a larger running time, and
the generalization capabilities are questionable. The scalability of tile coding will be fur-
ther examined in the next chapter. There we show that another method scales better, but
we cannot present the results of this comparison before introducing a more sophisticated
approximation technique, presented in Section 5.1.

We conclude that the proposed algorithm generates policies of acceptable quality, and
it eventually gave us useful insights, but there is some room for improvement. In particular,
other function approximation techniques and methods to formulate an MDP that preserves
the Markov property better than the current one may be helpful to devise an algorithm
that performs better. An improved policy learning algorithm will be discussed in the next
chapter.

4.6 Summary

In this chapter we defined a traffic flow optimization problem as a Markov Decision Pro-
cess (MDP). By combining a macroscopic model with Q-learning, we have been able to
construct an algorithm to find so-called speed limit policies. To learn a policy that optimizes
a traffic scenario, we ran the macroscopic traffic simulation interleaved with Q-learning,
such that the actions performed by the learning algorithm influence the traffic simulation.
Experiments have shown that the resulting policies are able to reduce congestion signifi-
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cantly under high demands. We also experimented with traffic predictions included in the
state description of the MDP and it turns out that policy quality improves. We identified
shortcomings of the proposed method, that will be addressed in the remaining parts of this
thesis.
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Chapter 5

Improved Policy Learning

In this chapter we introduce and evaluate an improved speed limit policy learning algorithm,
in which we build upon the techniques and insights from Chapter 4. In the previous chapter
we discussed some shortcomings of the algorithm and after our exploratory experiments we
observed that there is room for improvement. Based on this understanding, we will propose
possible improvements to address the shortcomings of the algorithm. Then we modify
the problem formulation as a Markov Decision Process and we show that the improved
algorithm performs well and generates better policies.

5.1 Function approximation with neural networks

As mentioned in the previous chapter, the scalability and linearity of the tile coding function
approximator is a bottleneck of the proposed algorithm, since it prevents us from extend-
ing the state space while preserving performance in terms of both running time and policy
quality. Non-linear function approximation techniques have shown to be successful in com-
bination with reinforcement learning [6]. For example, artificial neural networks can be used
to learn to approximate a value function. A disadvantage is that convergence guarantees of
the reinforcement learning algorithms no longer hold, but interesting empirical results exist
in the literature [31, 14, 1]. In this section we give an introduction to neural networks and
we explain how a Q-function can be approximated with such a network.

Neural networks

A neural network is a model based on the behavior of human brains and consists of a large
number of processing units, called neurons [10]. These neurons form an interconnected
network and propagate signals to other neurons by generating electronical reactions. Human
brains have nearly 10 billion neurons and 60 trillion connections between them that can be
used simultaneously, which makes them faster than any existing computer [20].

Artificial neural networks are a generalization of the neural network in the human brain.
It uses experiences to improve its performance and it can be used to generalize these ex-
periences to other experiences that have not been encountered before. An artificial neural
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5. IMPROVED POLICY LEARNING

Figure 5.1: Artificial neural network structure.

network consists of neurons connected by weighted links, resembling a directed weighted
graph. An example structure of an artificial neural network is shown in Figure 5.1.

The leftmost neurons (i.e., the input layer) receive a value as their input and propagate it
to the neurons in the middle layer (also known as hidden layer). Based on the input signals
received, the neurons in the middle layer compute a single output signal, which is propa-
gated to the neurons in the rightmost layer (i.e., the output layer). The weights associated
with the links are used to learn an input-output pattern. They represent the importance of an
input signal of a neuron and these weights can be changed in order to learn.

To explain the workings of an artificial neural network further, we consider the behavior
of one individual neuron shown in Figure 5.2.

Y...

x1

x2

xn

w1

wn

w2

Figure 5.2: Neuron of an artificial neural network.

A neuron receives input signals x1,x2, . . . ,xn through its weighted inputs. The weights
associated with these inputs are denoted by w1,w2, . . . ,wn, respectively. The inputs and
the weights are used to calculate the weighted sum of the neuron inputs: X = ∑

n
i=1 xiwi.

The weighted input X is translated to an output signal Y using an activation function. A
commonly used activation function is the sigmoid function, which accepts any numerical
input and returns a value between 0 and 1. The sigmoid function S(t) and the formula for
the neuron output Y are shown below.

S(t) =
1

1+ e−t

Y = S

(
n

∑
i=1

xiwi

)

Other activation functions are the sign activation function, which is 1 if X ≥ 0 and −1
otherwise, and the linear activation function Y = X . The artificial neural network that we
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Function approximation with neural networks

will use later in this chapter consists of neurons with a sigmoid activation function in the
middle layer and a linear activation function in the output layer.

An artificial neural network with one middle layer can learn any continuous function.
For discontinuous functions, more hidden layers are required [20]. The neurons in the mid-
dle layers identify the features that are present in the input and determine the expressiveness
of the network. It is common to use one input that is always equal to one. This input is called
a bias and is useful because the corresponding weights are always present in the calculation
of the weighted sum and the activation in the middle layer. It shifts the activation function
by introducing this bias.

Learning in multilayer neural networks

To learn a function using a neural network, we consider the artificial neural network in
Figure 5.3. There are n input neurons, m neurons in the middle layer and the output is the
function value. The neurons in the hidden layer use the sigmoid activation function and the
activation function of the output neuron is the linear activation function.

x1

x2

xn

Y
...

ki

j

Figure 5.3: Artificial neural network with multiple layers.

Suppose that we have the input vector (x1,x2, . . . ,xn) and a desired network output Yd . In
the first phase of a learning iteration, the output of the network is computed by propagating
the input values from left to right through the network, using the neuron activation scheme
discussed above. This gives an output value yp for each neuron p in the network.

In the second phase of a learning iteration, errors are propagated backwards from right
to left. Consider a neuron j in the middle layer and output neuron k, the weight correction
∆w jk of the link from j to k is computed as follows:

∆w jk = α · y j · (Yd− yk)

where α is the learning rate. Now we can calculate the error gradient δ j of neuron j:

δ j = y j · (1− y j) · (Yd− yk) ·w jk

This is repeated m times, resulting in m weight corrections and error gradients. The error
gradients are used to adjust the weights of the incoming links of the neurons in the middle
layer. The weight correction for a link from input neuron i to neuron j in the middle layer
is computed as follows:

∆wi j = α · xi ·δ j
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5. IMPROVED POLICY LEARNING

This step involves n ·m weight corrections, since all the input neurons are connected to all
the neurons in the middle layer. Note that the weight corrections are applied after com-
puting all the weight corrections. Otherwise, the weight corrections of the incoming links
of the output neuron would influence the corrections of the other links. The recipe above
is called back-propagation [4], and is a commonly used technique to train neural networks.
Another remark that has to be made is that the back-propagation rules we presented are only
applicable to the special case we considered. If there are multiple output neurons and if their
activation function is not linear, the back-propagation rules are different. For a more elab-
orate introduction to back-propagation and artificial neural networks in general, we refer
to [20]. The complete derivations of the back-propagation rules can also be found in [20].

Q-learning combined with neural networks

Neural networks can be used as a function approximator combined with Q-learning [1]. For
each action, a neural network can be created, where the number of inputs is equal to the
dimensionality of the state space. The output of the network is the Q-value. This means that
the neural network corresponding to action a approximates Q(s,a) for all possible states s.
An example function approximator for a policy π is shown in Figure 5.4 below. In this case
the action space is defined as A= {1,2,3}, so there are three neural networks to approximate
the Q-function. Given a state s, the policy can be evaluated by calculating Qπ(s,1), Qπ(s,2)
and Qπ(s,3), and taking the action corresponding to the maximum.

NN1

Qπ(s, 1)

s

NN2

Qπ(s, 2)

s

NN3

Qπ(s, 3)

s

Figure 5.4: Neural networks as function approximator.

If the Q-learning algorithm changes a Q-value, then one iteration of the back-propagation
algorithm is performed, such that the neural network gradually learns an approximation of
the real Q-function. Generalization is ensured because a neural network is able to general-
ize training samples to inputs it has not seen before. Note that we do not retrain the neural
network on a complete training set containing the desired input-output mapping. After each
step of an episode, just one Q-value error is propagated backwards through the network.

5.2 Modified formulation as Markov Decision Process

Building upon the problem formulation from the previous chapter, and the considerations in
the previous section, we present a modified MDP in this section. We start with a new state
description, then we discuss the modified actions and finally we describe the consequences
for the reward function.
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Modified formulation as Markov Decision Process

State description

We adopt the state description from the previous chapter, but we include four additional
variables corresponding to the density of section 4 to 7. The modified state description is
shown below.

s0 =

(
120
v f

,
120
v f

,
v4(0)

v f
,
v5(0)

v f
,
v6(0)

v f
,
v7(0)

v f
,
k4(0)
k jam

,
k5(0)
k jam

,
k6(0)
k jam

,
k7(0)
k jam

)
(5.1)

sn =

(
lim(an−1)

v f
,sn−1(1),

v4(cn)
v f

,
v5(cn)

v f
,
v6(cn)

v f
,
v7(cn)

v f
,
k4(cn)
k jam

,
k5(cn)
k jam

,
k6(cn)
k jam

,
k7(cn)
k jam

)
(5.2)

In order to guide the neural network during the process of learning an approximation of
the Q-function, it can be helpful to include redundant information in the state description.
Binary indicator variables are useful to indicate whether certain features are present in the
state or not. This will ensure that the neural network weights corresponding to the indicator
input nodes are only taken into account if the features are present in the state. We add twelve
indicator variables In, j to a state sn ( j = 1, . . . ,12), and their definition is given below. Note
that sn(1) denotes the first state variable, so we count from 1.

In,1 =

{
1 min{vi(cn) | i = 4, . . . ,7}< 100
0 otherwise

In,2 =

{
1 max{ki(cn) | i = 4, . . . ,7}> 50
0 otherwise

In,3 =

{
1 sn(1)v f < 120
0 otherwise

In,4 =

{
1 min{vi(cn) | i = 4, . . . ,7}> 110
0 otherwise

In,5 =

{
1 sn(1)v f = 60
0 otherwise

In,6 =

{
1 sn(1)v f = 80
0 otherwise

In,7 =

{
1 sn(1)v f = 100
0 otherwise
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5. IMPROVED POLICY LEARNING

In,8 =

{
1 sn(1)v f = 120
0 otherwise

In,9 =

{
1 sn(2)v f = 60
0 otherwise

In,10 =

{
1 sn(2)v f = 80
0 otherwise

In,11 =

{
1 sn(2)v f = 100
0 otherwise

In,12 =

{
1 sn(2)v f = 120
0 otherwise

The ten-dimensional state description, extended with the twelve indicator variables, gives a
state space consisting of 22 dimensions. The additional indicator variables do not provide
additional information, in the sense that the features they represent are already present in
the other state variables. However, it adds additional contextual information that is useful
to enrich the state space. The first two indicators represent whether there is lower speed
(i.e., congestion) and an increased density. Variable three and four represent whether speed
limits are active and whether there is free flow. The remaining eight variables encode which
speed limits were activated in the current and previous state.

Actions

The original action space A = {1,2,3,4} consisted of four actions, representing the speed
limits 60, 80, 100 and 120, respectively. The function lim(a) remains unchanged. The re-
ward function was responsible for preventing the speed limits from alternating and ensured
that speed limits were increased and decreased smoothly. In the new formulation we de-
cided to define this explicitly in the action space, by defining feasible actions for each state.
The conditions that need to be true to apply an action in state sn are shown in Table 5.1.

Reward function

The intuitive reason to change the actions is that the reward function becomes easier to learn
for a function approximator, since two penalty terms can be discarded. Thus, the remaining
cases of the reward function in which the agent receives a punishment will only be related
to the number of vehicle hours. The reward rn received by the agent after arriving in state
sn+1 is as follows:

rn =

{
0 min{vi((n+1)c) | i = 1, . . . ,N}> 101
−V H(n) otherwise

(5.3)
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Preserving the Markov property

Action Conditions
1 (sn(1)v f = 100∨ sn(1)v f = 120)∧¬(sn(2)v f = 120∧ sn(1)v f 6= 120)

2
(sn(1)v f = 80∨ sn(1)v f = 100∨ sn(1)v f = 120)
¬(sn(2)v f = 100∧ sn(1)v f 6= 100)

3
(sn(1)v f = 60∨ sn(1)v f = 80∨ sn(1)v f = 100)
¬(sn(2)v f = 80∧ sn(1)v f 6= 80)

4 (sn(1)v f = 60∨ sn(1)v f = 80)∧¬(sn(2)v f = 60∧ sn(1)v f 6= 80)

Table 5.1: Conditions that should to be true to apply an action.

where V H(n) is defined as:

V H(n) = T
(n+1)c

∑
p=nc

(
N

∑
i=1

[MiLiki(p)]+
N

∑
i=0

wi(p)

)

Again, the first case represents that no punishment will be given if there is currently no
significant congestion. In all other cases, the agent receives a punishment proportional to
the number of vehicle hours between the previous and the current control time steps.

5.3 Preserving the Markov property

We observed in the previous chapter that the original formulation as a Markov Decision
Process is not Markovian. There is hidden information that the agent cannot derive from
the state variables of the current state. Describing the problem in such a way that the state
is Markov is not obvious in this case, since we would need to include information regarding
flow and future traffic demand profiles, for example. It is unrealistic to assume that all
this information is available in practice to define the state of a highway or road network.
Therefore, we aim for a different solution to make the state representation ‘more Markov’.
Dealing with non-Markov decision tasks has been studied in the literature. We will use and
apply a method that is discussed in [30].

The method we will use allows the agent to keep previous states in memory. This
history of states can be useful to identify hidden information, since the combination of the
current state and n previous states may provide more information about the current state
than the current state itself. Instead of using the state variables as the input to a function
approximator, a history of states can be used as well. A schematic representation of this
architecture is shown below in Figure 5.5.

The parameter n we use here represents a variable number and does not relate to the
parameter n we used previously. The choice of the parameter n can be difficult, since it
is unknown how many previous states are required to create an extended state space that
is Markovian, and in general it is unknown whether this is possible to do. Additionally, if
a neural network is used as a function approximator, then a large number of input nodes
requires more training to learn the Q-function and thus more Q-learning episodes are re-
quired.
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function approximator

Q-value

current state n previous states

Figure 5.5: Q-value as a function of stored states.

5.4 Experiments

In this section we present the results of our experiments. The purpose of these experiments
is to show that the improved speed limit policy generates better policies than the algorithm
from Chapter 4. Our experimental setup is the same, except that we use artificial neural
networks as a function approximator, and we solve the problem using the modified formu-
lation as a Markov Decision Process. The artificial neural network is a multi layer neural
network with one hidden layer. The learning rate is set to 0.01 and there is one bias input
node. We use the stored state architecture shown in Figure 5.5, and we keep one previous
state in memory. This means that the neural network has 44 state input and one bias input
that is always equal to one. The number of hidden nodes is equal to 45.

Policies for individual scenarios

In our first experiment we generate policies for individual scenarios, in the same way as we
did in the previous chapter. We used the same scenarios and the same number of learning
episodes. The only difference is that we use the modified state description and neural net-
works as a function approximator. The results of the experiment are shown in Figure 5.6
and Table 5.2.

We observe that the improved algorithm performs consistently better and generates bet-
ter policies. Compared to the results in Table 4.2, we can see that the standard deviation,
mean and median have decreased in all the cases we considered. If we take predictions
into account, the best policies found (denoted by ‘min’) are optimal or very close to the
optimal policy. It is also interesting to observe that the policy quality of the third scenario
has improved and the variation of the solution quality is much smaller. This means that the
improved algorithm is also able to learn policies for scenarios with high traffic demands.

To investigate the influence of the number of episodes on the policy quality, we repeated
the experiment, but now we ran 20000 episodes. The results of the experiment are shown in
Figure 5.7 and Table 5.4. We observe that the standard deviation of the solution quality has
decreased, compared to the results discussed above. The only exception is scenario 2, for
which the standard deviation with traffic predictions has become slightly worse. However,
this may be caused by the outlier that is visualized in Figure 5.7. The median and best
solution found have improved after increasing the number of episodes, so we argue that this
is not problematic.

Based on the experiments we presented until now, we can conclude that the improved
policy algorithm performs better than the algorithm presented in Chapter 4. It does not leave
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(a) Scenario 1.
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(b) Scenario 2.
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(c) Scenario 3.
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(d) Scenario 4.

Figure 5.6: Policies for individual scenarios: policy quality (5000 episodes).

No control Opt Min Max Median Mean Std
Scenario 1 740.8 491.6 495.6 513.1 505.8 504.1 7.8
Scenario 2 954.5 511.2 514.1 567.1 523.2 525.6 12.9
Scenario 3 933.8 543.5 572.5 602.4 572.5 576.9 8.6
Scenario 4 768.6 514.5 521.0 534.6 532.2 528.0 5.9

(a) Vehicle hours without predictions.

No control Opt Min Max Median Mean Std
Scenario 1 740.8 491.6 491.6 548.2 494.7 501.9 15.2
Scenario 2 954.5 511.2 514.1 598.9 514.1 519.7 18.9
Scenario 3 933.8 543.5 544.1 707.8 551.1 569.3 48.1
Scenario 4 768.6 514.5 516.4 539.8 516.4 521.1 7.8

(b) Vehicle hours with 5 minute predictions.

Table 5.2: Policies for individual scenarios: vehicle hours (5000 episodes).
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Scenario 1 Scenario 2 Scenario 3 Scenario 4
No predictions

Min SL 495.6 523.0 549.1 525.1
Min SLI 495.6 514.1 572.5 521.0

−0.0% −1.7% +4.3% −0.8%
Max SL 546.0 598.5 933.6 589.0
Max SLI 513.1 567.1 602.4 534.6

−6.0% −5.2% −35.5% −9.2%
Median SL 520.3 550.4 735.3 538.5
Median SLI 505.8 523.2 572.5 532.2

−2.8% −4.9% −22.1% −1.2%
Mean SL 520.8 553.9 716.1 542.2
Mean SLI 504.1 525.6 576.9 528.0

−3.2% −5.1% −19.4% −2.6%
Std SL 13.8 17.8 142.6 17.2
Std SLI 7.8 12.9 8.6 5.9

−43.5% −27.5% −94.0% −65.7%
5 minute predictions

Min SL 491.6 513.7 548.6 522.5
Min SLI 491.6 514.1 544.1 516.4

−0.0% +0.1% −0.8% −1.2%
Max SL 676.4 598.9 775.3 560.1
Max SLI 548.2 598.9 707.8 539.8

−19.0% −0.0% −8.7% −3.6%
Median SL 512.2 534.2 565.5 545.6
Median SLI 494.7 514.1 551.1 516.4

−3.4% −3.8% −2.5% −5.4%
Mean SL 519.2 540.5 580.4 542.9
Mean SLI 501.9 519.7 569.3 521.1

−3.3% −3.8% −1.9% −4.0%
Std SL 40.1 20.8 50.3 12.4
Std SLI 15.2 18.9 48.1 7.8

−62.1% −9.1% −4.4% −37.1%

Table 5.3: Comparison results Chapter 4 and Chapter 5 (5000 episodes).

much room for further improvement, though, because the resulting policies are very close
to the lower bounds we computed. To summarize, we will present a detailed comparison of
the results from Chapter 4 and the experiments in this section. The comparison is shown in
Table 5.3. In this table, SL denotes the speed limit policy algorithm from the previous chap-
ter, and SLI denotes the improved version we described in this chapter. We only compare
the experiments in which we executed 5000 episodes.
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(a) Scenario 1.
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(b) Scenario 2.
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(c) Scenario 3.
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(d) Scenario 4.

Figure 5.7: Policies for individual scenarios: policy quality (20000 episodes).

No control Opt Min Max Median Mean Std
Scenario 1 740.8 491.6 496.9 501.5 496.9 498.5 2.2
Scenario 2 954.5 511.2 514.1 549.4 519.2 520.6 8.6
Scenario 3 933.8 543.5 564.6 578.1 564.6 565.3 3.0
Scenario 4 768.6 514.5 521.0 521.0 521.0 521.0 0.0

(a) Vehicle hours without predictions.

No control Opt Min Max Median Mean Std
Scenario 1 740.8 491.6 491.6 496.8 496.8 494.9 2.5
Scenario 2 954.5 511.2 513.7 612.9 514.1 525.2 23.2
Scenario 3 933.8 543.5 544.1 707.8 553.8 569.1 44.7
Scenario 4 768.6 514.5 516.4 516.4 516.4 516.4 0.0

(b) Vehicle hours with 5 minute predictions.

Table 5.4: Policies for individual scenarios: vehicle hours (20000 episodes).
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Comparison with initial algorithm

To investigate whether function approximation with neural networks scales better than tile
coding, we measured the running time of the policy learning algorithm with tile coding and
neural networks. The reward function was exactly the same, and we repeated the experiment
for an increasing state space dimensionality. Figure 5.8 shows how the running time grows
if the dimensionality is increased. Note that a log scale is used for the y-axis of the graph.
To generate this graph, we took the average of five runs for each number of state variables.
Due to the large running time of tile coding for states with more than six dimensions, we
were unable to obtain more results for this approximation technique. However, it is clear
that neural networks scale better than tile coding, allowing us to extend the state space with
additional information.

In our experiments, we observed that the improved algorithm performs better than the
algorithm from the previous chapter. There may be multiple reasons for this, since we
changed the approximation technique and state representation. To find out whether the
approximation technique is responsible for this improvement, or the extended state descrip-
tion, we did an experiment in which we use the MDP formulation from the previous chapter,
combined with neural networks as a function approximator. We applied this algorithm to
each scenario and we set the number of episodes equal to 5000. The results are shown in
Table 5.5. We can conclude that the policies become worse if we only replace the function
approximator with neural networks, and thus the approximation technique itself is not the
main reason that the policy quality improved. We extended the state space with additional
information, and this resulted in better policies. Using the larger state space would not be
possible without neural networks as approximation technique, so both the approximation
technique and improved MDP formulation contributed to the improvements.
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Figure 5.8: Running time comparison tile coding and neural networks.
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No control Opt Min Max Median Mean Std
Scenario 1 740.8 491.6 515.9 768.8 725.8 698.6 79.8
Scenario 2 954.5 511.2 751.5 976.2 751.5 799.0 85.0
Scenario 3 933.8 543.5 777.9 777.9 777.9 777.9 0.0
Scenario 4 768.6 514.5 541.0 798.8 760.6 731.5 82.9

(a) Vehicle hours without predictions.

No control Opt Min Max Median Mean Std
Scenario 1 740.8 491.6 768.8 768.8 768.8 768.8 0.0
Scenario 2 954.5 511.2 598.9 976.2 976.2 908.4 142.4
Scenario 3 933.8 543.5 777.9 777.9 777.9 777.9 0.0
Scenario 4 768.6 514.5 798.8 798.8 798.8 798.8 0.0

(b) Vehicle hours with 5 minute predictions.

Table 5.5: Improved algorithm with initial MDP formulation: vehicle hours (5000
episodes).

Robustness study

In practice, it is unrealistic to assume that speed and density can be measured with 100 per-
cent accuracy. Therefore, we performed a robustness study in which we introduced noise.
We generated four policies to solve the first traffic scenario, using the improved algorithm
that executed 5000 episodes. In the learning algorithm we did not introduce noise, because
generally these policies will be learned offline and the algorithm will never be using real
time data. To investigate the robustness of the policies, we ran 50 simulations of scenario 1,
for different noise percentages. The noise is drawn from a uniform distribution and added
to the speed and density values in the state description during simulation. The parameters of
this distribution can be derived from the noise percentage, reported in Figure 5.9 and 5.10.

The results for the simulations without predictions are shown in Figure 5.9. We observe
that for an error percentage up to 10 percent, the policies perform well. We can also con-
clude that if the measurement data is erroneous, the actions suggested by the policies are
not useful and make it worse, compared to the situation in which there is no control at all.
This can be concluded from Figure 5.9, because there are some cases in which the number
of vehicle hours exceeded the baseline representing the no control case.

Figure 5.10 shows the results for the same experiment with 5 minute predictions. In-
terestingly, the policies with a predictive state description are more robust, in the sense that
they still have reasonable performance for error percentages higher than 10 percent. For
example, considering policy 1 with error percentage 0.35, the mean and standard deviation
are 613.3 and 132.1 without predictions. If we take predictions into account then the mean
and standard deviation are 513.6 and 13.6, which is clearly better. The differences between
the distributions of vehicle hours can also be compared in Figure 5.9 and 5.10.
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(a) Policy 1.
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(b) Policy 2.
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(c) Policy 3.
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(d) Policy 4.

Figure 5.9: Robustness for increasing noise rate on scenario 1, without predictions.
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(a) Policy 1.

450

500

550

600

650

700

750

800

850

900

950

1000

0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45 0.50 0.55 0.60 0.65 0.70 0.75 0.80 0.85 0.90 0.95 1.00
Noise percentage

V
eh

ic
le

 h
ou

rs

(b) Policy 2.
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(c) Policy 3.
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(d) Policy 4.

Figure 5.10: Robustness for increasing noise rate on scenario 1, with 5 minute predictions.
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Example policy execution

Until now we only discussed policy quality in terms of vehicle hours, but we did not in-
vestigate how the traffic flow changed over time, as a consequence of policy intervention.
Therefore, we generated a policy for each scenario and visualized the results. Figure 5.11
depicts how the average speed of the sections changes over time. The leftmost color map
shows the situation without speed control. Clearly, in all scenarios traffic slows down com-
pletely. If we use the improved policy learning algorithm and apply the resulting policy to
the same scenario, we obtain the second color map.

The rightmost color map shows the corresponding speed limits that were assigned to
section 2 to 6. Here we can observe that the assigned speed limits to the sections are
constant at every time step, as expected. We can also observe that there is a correspondence
between the middle color maps and the rightmost color maps, since the speed of section 2
to 6 decreases to the speed limit value if speed limits are activated.

In the third scenario, the traffic demand is too high to let congestion resolve completely
within one hour, but we conclude that the policy cannot do much better in this case, since it
is impossible to assign speed limits lower than 60.

Another remark that has to be made is that the policies we used to generate Figure 5.11
are the result of one run of the policy learning algorithm. A second run of the algorithm
may give us slightly different policies, which would also give us different results in the color
maps. Figure 5.11 illustrates the concept, though, and shows that it is able to control the
traffic flow such that it is better than the baseline scenario without control.

5.5 Discussion

The improved algorithm has shown that it is able to perform consistently better than the
algorithm presented in the previous chapter. The combination of neural networks, storing
states in memory and including more information in states has shown that it was possible to
obtain better results than in the previous chapter.

The robustness experiment has shown that policies can also be useful if the measure-
ments of the state variables is not accurate. In the experiment we did not study other distri-
butions, such as a Gaussian distribution or normal distribution. This can be studied in future
work. Currently, it is unclear to which extent the policies would be useful in real life sce-
narios. The reason is that the macroscopic model should be calibrated using real traffic data
to accurately simulate the flow of the highway. In our case, it would be interesting to know
the accuracy of the model with respect to the A67 highway in the Netherlands. The results
presented in this chapter can be considered as theoretical results, proving the concept, but
cannot directly be applied in practice.

5.6 Summary

In this chapter we presented an improved version of the speed limit policy algorithm. The
main difference between the improved algorithm and the basic algorithm from the previous
chapter is that we included a different type of function approximation and we keep states in
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(d) Scenario 4.

Figure 5.11: Speed progress without control and with assigned speed limits.
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5. IMPROVED POLICY LEARNING

the memory of the agent. Experiments have shown that the performance is better and that
the quality of the resulting policies is consistently better than the policies from the same
experiments in the previous chapter. A robustness study has shown that the policies without
predictions in the state description perform well if there is at most 10 percent noise in the
speed and density measurements. Policies including traffic predictions have also shown to
be robust, and may also perform well if the noise percentage is higher than 10 percent.
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Chapter 6

Multi-Agent Traffic Control

In the previous chapters we considered the traffic flow optimization problem from the per-
spective of the entire highway. An advantage of such an approach is that only one Markov
Decision Process (MDP) and associated policy is sufficient to regulate flow, but the pro-
posed approach did not include speed limit patterns that can be assigned to sections. In
this chapter we present a similar formulation of the traffic flow optimization problem as an
MDP, but now from the perspective of individual highway sections. This gives a multi-agent
traffic optimization approach. The aim of this formulation is to create a more simple state
representation that can be implemented in real scenarios as well. In the first two sections of
this chapter we present the new problem description and the MDP formulation, followed by
experiments and a discussion of the results.

6.1 Problem description

In this section we describe the problem we attempt to solve using multi-agent policy learn-
ing. We consider the optimization problem from the perspective of an individual highway
section i, as shown in Figure 6.1. We assume that information about highway sections i−1,
i+1 and i+2 is also present. Now the problem becomes how we should set the speed limit
of section i, and when it should be activated.

The additional constraints we impose are the same as in Chapter 4, but we also need to
ensure that consecutive speed limits of section i and i+1 do not lead to dangerous situations.
This means that we perform multi-agent optimization, but after determining the speed limits

i i+ 1i− 1 i+ 2

Figure 6.1: Highway section i and its neighbors.
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Vi(n) of the individual sections i at control time step n, the following constraints should hold:

Vi(n)≥Vi(n−1)−20

Vi(n)≤Vi+1(n)+20

These constraints have been derived from [32]. The first one ensures that the speed limit of
a section is not decreased too much, while the second constraint ensures that speed limits
are smoothly reduced along the highway. The value 20 can be changed to obtain the desired
behavior.

The most important reason to create a multi-agent formulation is that it is easier to map
onto highway sections in a microscopic simulation environment. Therefore, the aim of this
approach is to learn policies that can be tested in a microscopic simulation. We are unable
to generate traffic predictions in such a simulation environment, and our current predictions
are relatively simple. We are unable to obtain more predictions than the simple predictions
we generate using METANET, so this prevents us from studying other interesting direc-
tions, such as including probabilistic predictions. This is the reason that we will not study
predictions in this chapter.

6.2 Formulation as Markov Decision Process

The formulation as a Markov Decision Process for the multi-agent approach at section level
consists of a five dimensional state space. Below we discuss the new state description
and the reward function. The action space is not discussed in this section, because it did
not change compared to the previous chapters. The aim of the modified definition is that
we enable individual sections to change their maximum speed after observing the traffic
conditions of neighboring sections.

State description

The state description is shown below. The speed values used in the state description cor-
respond to the average speeds of section i itself, and its neighbors i− 1 and i+ 1. The
subscript i refers to the numbers of the sections. Thus, state si,n is the state of section i
defined at simulation time step cn and ai,n−1 is the action that was selected for section i at
simulation time step c(n−1).

si,0 =

(
120
v f

,
120
v f

,
vi−1(0)

v f
,
vi(0)

v f
,
vi+1(0)

v f

)
si,n =

(
lim(ai,n−1)

v f
,si,n−1(1),

vi−1(cn)
v f

,
vi(cn)

v f
,
vi+1(cn)

v f

)
Note that we make the assumption that the agent associated with a section has access to the
speed values of adjacent sections and that decisions are made at the same time steps.
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Formulation as Markov Decision Process

Reward function

The reward function is able to give a penalty that is proportional to the number of vehicle
hours that has been realized on highway section i, i+ 1 and i+ 2. We also take section
i+2 into account, because it is desirable that speed limits are activated if congestion occurs
downstream, and the information about section i+1 may not be sufficient. The reward ri,n

received by the agent i after arriving in state si,n+1 is as follows:

rn =

{
0 min

{
v j((n+1)c) | j ∈ {i, i+1, i+2}

}
> 101

−V H(n) otherwise

where V H(n) is defined as:

V H(n) = T
(n+1)c

∑
p=nc

(
i+2

∑
j=i

[M jL jk j(p)]

)
This approach gives a policy that can be generally applied to highway sections, and

changes the speed of a section, without considering information other than the speed values
of the adjacent sections. In the term V H(n) we ignore the queue lengths w, because we
only optimize the vehicle hours on the main lanes. The queue lengths can be included in
the reward function, but in our implementation the policy quality became worse, which we
did not study further.

As we observed previously, the states do not contain all the information that is required
to calculate the rewards. In our implementation this is not an issue since all the variables
of the METANET model can be used, but in general this is considered inconvenient. The
reason to use the current state description is that we want to create policies that can be
applied in a microscopic simulation, where is it more difficult to obtain accurate information
regarding densities. To demonstrate that it is also possible to define an MDP in which all
the required information is included in the states, we will perform an experiment later in
this chapter.

Safety rules

As we mentioned previously, we need to ensure that the speed limits that have been selected
for individual sections give a speed limit pattern that can be safely used in practice. This is
not really relevant during policy learning, but in practice this matters. Note that the safety
rules are not required in the single-agent case, because a speed limit consisting of one single
value is inherently safe to apply.

Suppose we are given a sequence of speed limits V1(n),V2(n), . . .Vk(n) at simulation
time step cn, determined by the agents associated with highway section 1, . . . ,k. We can
apply the following function for i = 1, . . . ,k−1 to make sure that the two constraints from
Section 6.1 hold [32]:

Vi(n) =


Vi(n−1)−20 Vi(n)≤Vi(n−1)−20
Vi+1(n)+20 Vi(n)≥Vi+1(n)+20
Vi(n) otherwise

63



6. MULTI-AGENT TRAFFIC CONTROL

The resulting speed limits V1(n),V2(n), . . . ,Vk(n) can be safely applied to regulate traffic
flow. The safety rule does not strictly relate to the definition as MDP, but is required during
the execution of the resulting policies.

6.3 Experiments

To evaluate the performance of multi-agent traffic flow control, we performed experiments
similar to the experiments from the previous chapters. We use the scenarios presented in
Chapter 4, but we allow the agents to change their speed limit every minute. This means
that the control time step multiplier c is equal to 4 instead of 20.

As a Q-function approximator we use artificial neural networks, and the agents do not
keep previous states in memory. For learning we use the regular Q-learning algorithm for
every agent, running 20000 episodes, but they update a joint Q-function. The reason behind
this choice is that we want to learn a general policy that characterizes the speed control
behavior of the sections, rather than learning policies for specialized control of individual
sections. However, each section is using this policy to select his own speed limit value.

During learning we do not apply the safety rule, but it is used when applying a policy
to calculate the number of vehicle hours. The lower bounds we obtained in the previous
chapters are no longer valid, since they were based on the assumption that the speed limits
are the same for each section. Due to the number of combinations that form a valid speed
limit sequence, we have not been able to enumerate all solutions to compute lower bounds
for multi-agent traffic control.

Policies for multiple scenarios

In the first experiment we learned 20 policies, and each policy was sequentially trained
on the four scenarios. This results in 20 policies that should be capable of solving every
scenario, instead of being a specialized policy that solves just one scenario. The reason
to learn joint policies rather than policies for individual scenarios is that it is desirable in
practice to have policies that can be used under several different circumstances. By training
the policies on multiple scenarios, the learning algorithm encounters more state-action pairs,
and it is expected that the resulting policies can be applied more generally. The quality of
the policies is shown in Figure 6.2 and Table 6.1 below. The horizontal lines represent
the baselines corresponding to the scenarios. As mentioned before, we did not compute
optimal solutions for the multi-agent case. Recall that the boxplots visualize the distribution
of policy quality for the same policies, applied to different scenarios.

From the results we can conclude that the multi-agent policy learning algorithm is able
to generate policies that can be applied to multiple scenarios, and the deviation of their
quality is quite small. The best policies found are still close to the lower bounds we used in
the previous chapters, so based on that we can argue that multi-agent control performs well,
compared to single-agent speed control.
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Figure 6.2: One policy for multiple scenarios: vehicle hours.

No control Min Max Median Mean Std
Scenario 1 740.8 492.2 496.7 494.6 494.4 1.5
Scenario 2 954.5 517.9 530.9 529.8 528.5 3.7
Scenario 3 933.8 551.9 620.8 561.5 569.4 20.5
Scenario 4 968.6 509.8 514.9 512.2 512.2 1.7

Table 6.1: One policy for multiple scenarios: vehicle hours.

Enhanced state description

In the previous chapters we observed that the state description does not contain all the
information that is required to calculate the reward values. We learn policies by interacting
with the METANET model, so the agent has access to all the calculated variables, but in
general this is considered to be inconvenient. The reward function in our MDP formulation
is defined in such a way that it uses density values that occur in between control steps. To
demonstrate that we can also learn policies when the state contains this information, we did
an experiment. Instead of defining a state si,n in terms of the speed values at time cn only,
we included the speed and density values of section i to i+2 for time steps c(n−1) to cn in
the state associated with agent i. In this case, a state does not represent the traffic conditions
at one specific time step, but it also includes information about previous simulation time
steps that have led to the new state. This means that the reward value can be expressed as a
function of the state variables.

We used Q-learning combined with the neural network function approximation tech-
nique to learn 20 policies for each scenario. The results are shown in Figure 6.3 and Ta-
ble 6.3. Compared to the previous results, the policy quality decreased. A possible explana-
tion for this observation is that the dimensionality of the states increased, since we included
more state variables, and that it becomes more difficult for a neural network to identify the
Q-function that it should approximate. However, compared to the baselines we calculated
earlier, there is still a significant improvement.
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Figure 6.3: Learned policies with extended state description: vehicle hours.

No control Min Max Median Mean Std
Scenario 1 740.8 499.2 594.2 519.9 522.1 20.2
Scenario 2 954.5 514.1 548.1 533.4 531.1 13.6
Scenario 3 933.8 574.6 654.1 634.6 627.6 21.3
Scenario 4 968.6 524.0 646.2 538.5 544.0 26.0

Table 6.2: Learned policies with extended state description: vehicle hours.

The fact that our state description does not provide sufficient information to calculate
the rewards was identified as one of the shortcomings of our method, but in this experiment
we addressed this issue by adding more information to the states. In general, we aim to
learn policies that can be tested in a microscopic simulation environment by mapping it
onto highway sections. Due to running time issues, it is problematic to sample the density
and speed values at every simulation time step, so we did not study this in more detail.

Example policy execution

For each scenario we selected the best policy from the previous experiment, and evaluated
the policies through macroscopic simulation. The results are shown in Figure 6.4. It is clear
that the assigned speed limits at a control time step may differ, in the sense that adjacent
sections may have different speed limits. The speed limits close to the congested area
are activated first, and they propagate backwards. Compared to the results in Figure 5.11,
we observe that the speed limits are deactivated earlier. In the second scenario there are
two demand peaks, and after the first peak congestion resolves almost completely, but in
the single-agent case it does not. In between the two demand peaks, the speed limits are
deactivated when using multi-agent control and congestion resolved.
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(a) Scenario 1.
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(b) Scenario 2.
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(c) Scenario 3.
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(d) Scenario 4.

Figure 6.4: Speed progress without control and with assigned speed limits.
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Robustness study

We performed a robustness study similar to the experiment from the previous chapter. We
generated four policies that solve scenario 1, using 20000 learning episodes. To investigate
the robustness of the policies, we ran 50 simulations of scenario 1, for different noise per-
centages. The noise is drawn from a uniform distribution and added to the speed values
in the state description during simulation. The results are shown in Figure 6.5. We can
conclude that the generated policies in the multi-agent case also perform well. For noise
percentages up to 20 percent the deviation of policy quality is relatively small. If there is
more noise, the policies perform worse, and sometimes they may regulate traffic in such a
way that it becomes worse compared to the baseline.

6.4 Discussion

The policies that were generated in the experimental section of this chapter have shown to
be capable of solving multiple traffic scenarios. Another advantage is that they operate at
the level of individual sections. As can be seen in Figure 6.4, this may result in smoother
speed patterns, rather than assigning the same value to all upstream sections. We did not
show that the policies are close to the optimal solution. However, there is strong evidence
that multi-agent policy learning delivers policies of sufficient quality, since the number of
vehicle hours is close to the optimal solutions we found in the previous chapters, and some-
times it is even less. Based on the color maps that were created, one may argue that the
assigned speed limits are less stable, in the sense that they change more frequently. An
improved version of the safety rule may ensure more safety in practice, if desired. The most
important improvement that we presented in this chapter is that the generated policies are
more general, since they describe the behavior of individual sections, and do not depend on
the layout of the highway (e.g., number of sections).

One of the disadvantages of the current approach is that it does not learn different in-
dividual policies for sections. During the learning episodes, the same Q-function approx-
imator is updated for every section. This means that the outcome of the algorithm is one
single policy, even if there are multiple highway sections involved. Alternative solutions
may define an MDP in which the state is composed by joining the individual states together,
and the action space may be defined as the Cartesian product of the individual action spaces.
Another issue may be that the actions performed at section i do not only influence the traf-
fic behavior of section i− 1 and i+ 1, but also influence the conditions of other sections.
Furthermore, learning for section i may be influenced by the action selection behavior of
its neighbors. One might argue that the reward should be defined exclusively in terms of
state variables, which is not the case in our solution. During learning there is full access to
all variables associated with the sections, and since the learning methods will never interact
will real traffic systems, we do not consider this as a problem. An experiment has shown
that policies can still be learned if all information to calculate the reward signal is available
in the state description.
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(a) Policy 1.
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(b) Policy 2.
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(c) Policy 3.
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(d) Policy 4.

Figure 6.5: Robustness for increasing noise rate on scenario 1.
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6.5 Summary

In this chapter we presented a different traffic regulation method, based on multi-agent
control. We have shown that we can define an MDP for each individual section of the
highway, to learn how it should select its speed limits, based on the information about
neighboring sections. Experiments have shown that the multi-agent control method is able
to reduce congestion, and in some cases it performs even better than the learning algorithms
we presented in previous chapters. There is still room for improvement, though, because
we now learn one single policy and maintain one function approximator representing the
Q-function. Instead, we may be able to devise a method that learns specialized policies for
each section.
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Chapter 7

Probabilistic Policy Reuse

The algorithms we discussed previously are able to learn speed limit policies from scratch.
This may not always be the most efficient way of learning, since previously learned policies
implicitly contain valuable information about how to solve traffic congestion in different
road networks and different scenarios. In this chapter we present a probabilistic policy
reuse strategy, in which previously learned policies can be efficiently reused to bias the
action selection procedure in the early stages of learning a new policy. In the first section
of this chapter we argue why it can be useful to reuse existing policies. Then we present a
modified action selection procedure based on existing literature, which we will evaluate in
the remaining parts of the chapter.

7.1 Motivation

As demonstrated in the previous chapters, a speed limit policy algorithm can be used to
learn policies from scratch. In practice, however, there may be situations in which this is
not the most efficient approach to learn policies, and in such cases it may be desirable to
reuse knowledge present in existing policies. For example, there can be road controllers
applied to specific highways. In such cases, the layout of this specific highway is taken into
account by the learning algorithm. The policies are likely to work for this highway, but
may be useless to accurately reduce congestion on other highways. The desired policy for
another highway may be similar, though, so then it is desirable to transfer knowledge from
a previously learned policy to a new policy. There can also be multiple policies to handle
different traffic scenarios. For example, specific policies may have been learned to handle
a peak hour during typical Monday mornings. A policy for typical peak hours on Thursday
can be learned from scratch, but probably the desired policy is similar to the policy for
Monday morning. In such cases, transferring knowledge may be useful.

In Chapter 4, we have shown that general policies can be learned to handle multiple
scenarios, but as explained above, there can still be situations in which it is useful to learn
separate policies. To learn new policies more efficiently in such situations, we show in the
remainder of this chapter that policies can be reused to accelerate the learning techniques
from Chapter 5.
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7. PROBABILISTIC POLICY REUSE

7.2 Biased action selection

In this section we will describe an action selection strategy to reuse existing policies. It is
an adapted version of a general policy reuse technique proposed by Fernández et al. [8].
There are two important differences. The authors argue that policies can be reused to solve
new tasks in a domain. In this thesis we are always dealing with the same task: resolving
congestion. Our domain, the road network or highway we attempt to optimize, is not always
the same, though. Therefore, we will show that knowledge can be transferred across differ-
ent traffic networks and scenarios. The second difference is that the strategy presented in
[8] depends on a parameter that turns out to be hard to determine. For our specific problem,
we will propose a modified version that does not depend on this parameter.

The idea of reusing policies is as follows. A set L = {π1, . . . ,πn} of policies is given,
generated by the algorithm from Chapter 5. If the traffic flow is in a certain state, actions
proposed by these policies can be used to explore the state space, rather than exploring
the state space randomly. This means that the exploration action selection can be biased
by the policies in L. Now the question becomes how the algorithm knows which policy
proposes useful actions to guide the exploration. This can be done by defining a probability
distribution over the policies in L, depending on the average reward received when using
the policies in L. We will formalize this conceptual idea below. First we define a reuse
exploration strategy that can be used by the Q-learning algorithm.

Definition 2 (Reuse exploration strategy). The reuse exploration strategy starts with a given
policy πk and a value 0≤ ψ≤ 1. In each step of the Q-learning algorithm, with probability
ψ, πk is used to select an action. In all other cases, a random action is taken with probability
ψ, otherwise the policy that is currently learned will be followed. After each step, ψ will be
decreased by factor ψ′.

If there are multiple policies to be reused, it is not immediately clear which one intro-
duces the best bias in the exploration phase of the learning algorithm. Suppose that we
have n policies π1, . . . ,πn, and suppose that Wj denotes the average reward obtained when
reusing π j according to the exploration strategy above. The probability of reusing π j can be
defined as follows:

P(π j) =
eWj

∑
n
p=1 eWp

(7.1)

The probability distribution is known as the Boltzmann distribution. The version used in [8]
includes a temperature parameter τ, but exploratory tests have shown that it is difficult to
find a value τ that works to learn in multiple scenarios. Therefore, we propose to scale the
values Wi to values W ′i (i = 1, . . . ,n) as follows:

W ′i =
θ ·Wi

−1 ·min{Wi | i = 1, . . . ,n} (7.2)

where the parameter θ can be varied. The scaled values W ′i can be used to define the prob-
ability distribution in exactly the same way as described in Equation 7.1. The probabil-
ity distribution is defined in such a way that policies that give a large gain, in terms of
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the total reward, are more likely to be reused than policies that do not propose useful ac-
tions to solve a new scenario. It is important that the probability of choosing the most
useful existing policies increases, but not too fast. Otherwise, it would not be possible
to recover from changes made to the probability distribution in the first steps. The frac-
tion (Wi/− 1 ·min{Wi | i = 1, . . . ,n}) is a value between −1 and 0, so a good choice for
the parameter θ is a value in the interval (0,2], since the exponential function ex quickly
approaches zero for values x lower than −2. Other values may cause the probability distri-
bution in Equation 7.1 to converge too fast, which would prevent some policies from being
reused.

7.3 Reusing policies in Q-learning

Algorithm 4 below shows how the probability distribution and the reuse exploration strategy
can be combined with Q-learning. This algorithm is similar to the algorithm presented
in [8], but we propose a two phase algorithm. In the first R episodes, either existing policies
are reused in an episode, or a fully greedy episode is performed using the new policy. In
this process, the existing policies bias the action selection during learning to create a policy
to start with in the remaining episodes. In the remaining episodes, the standard learning
techniques are performed. The motivation behind this two phase approach is that in the first
few episodes, learning is accelerated by exploiting existing knowledge, instead of starting
from scratch. Once a good starting policy has been learned in the first phase, the regular
algorithm can be used to learn a policy for a new scenario or road network.

7.4 Experiments

To evaluate whether the policy reuse algorithm is able to propose useful actions, based on
existing policies, we conducted an experiment. We generated regular policies for scenario
2, 3 and 4, and we created a random policy by initializing the internal weights of the neural
network function approximator randomly. Then we applied the reuse algorithm to generate
a policy for scenario 1, by reusing two existing policies in the first 2000 learning episodes.
The parameters we used are R = 2000, θ = 0.1 and ψ′ = 0.95. The results are shown in
Figure 7.1. It depicts the rewards received by the agent during learning, and the vertical
intervals indicate the standard deviation of the received rewards in 20 runs. This is impor-
tant since there is randomness involved, and multiple runs of the algorithm may produce
different results. The figures also include the received rewards for 20 runs of the regular
learning algorithm without reuse.

Based on the graphs we can conclude that the biased action selection heuristic suggests
useful actions to accelerate the learning process. The reuse rule was applied in the first 2000
episodes, but rewards received during the remaining episodes are also consistently higher.

In Figure 7.2 we visualize how the probability distribution over policies changes during
the first 2000 episodes of the learning algorithm. When reusing a random policy, we can
see that the probability of reusing the random policy decreases over time, and after a while
the new policy has the highest probability of being chosen. When reusing policies for
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Algorithm 4: Q-learning with policy reuse
input : initial state s, learning rate α, discount factor γ, tile width w, number of

tilings m, set L containing n policies, number of reuse episodes R, reuse
strategy parameter ψ′

output: approximate Q-function, representing a policy

d←number of dimensions of the state space
initialize Wi and Ui to 0 for i = 1, . . . , |L|+1
foreach action a do

create a neural network na with d inputs, d +1 hidden nodes and 1 output
for first R episodes do

rescale the values Wi according to Equation 7.2
define the probability P(πi) according to Equation 7.1 for i = 1, . . . , |L|+1
select a policy πk using the probability distribution
ψ← 1
foreach step of the episode do

if k < |L|+1 then
use reuse strategy with policy πk and probability ψ to select action a
ψ← ψ′ ·ψ

else
choose action a according the currently learned policy πk

execute a, observe reward r and new state s′

e← na(s)+α(r+ γmaxa′∈A na′(s′)−na(s))
propagate error e backwards through na

s← s′
let rw be the reward received in the last episode
Wk =

WkUk+rw
Uk+1

Uk =Uk +1
for all other episodes do

foreach step of the episode do
calculate na(s) for each action a ∈ A
choose action a based on Q-values, using an exploration strategy
execute a, observe reward r and new state s′

e← na(s)+α(r+ γmaxa′∈A na′(s′)−na(s))
propagate error e backwards through na

s← s′
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(a) Reuse policies scenario 2 and 3.
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(b) Reuse random policy and policy scenario 2.
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(c) Reuse policies scenario 3 and 4.
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(d) Reuse random policy and policy scenario 3.

Figure 7.1: Received rewards when learning a policy for scenario 1 by reusing existing
policies that have been learned for other scenarios.

scenarios 2 and 3, the probability of selecting the policy corresponding to scenario 3 is also
decreasing, which could be an indication that the actions proposed by this policy are less
useful than the actions derived from the policy for scenario 2. The probabilities change
relatively slowly, because otherwise a large decrease in the first few episodes may cause
that one of the policies cannot be selected anymore, and then its probability can never be
increased again. The parameter θ can be changed to obtain the desired behavior.

7.5 Discussion

The policy reuse scheme has shown that it can be used as a better action selection heuris-
tic than random action selection in ε-greedy. Given a set of existing policies, it identifies
the policies that turn out to be useful, and the probability distribution is changed in such a
way that useful policies have a higher probability to be chosen. For our speed limit policy
learning techniques this may not be useful in the first place, since the solutions we find with
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(a) Reuse policies scenario 2 and 3.
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(b) Reuse random policy and policy scenario 2.

Figure 7.2: Probability distributions during first 2000 episodes.

Q-learning are already close to optimal in terms of vehicle hours. However, in the con-
text of multi-agent policy learning there may be some opportunities to generalize the reuse
idea. If separate policies are learned for individual highway sections, an agent may reuse
knowledge learned by agents associated with neighboring sections to improve the learning
efficiency. The basic idea could be that neighboring agents share knowledge by maintain-
ing a probability distribution over their policies. The results presented in this chapter can be
considered as a first step in a future work direction.

7.6 Summary

In this chapter we presented a strategy to reuse existing policies as a bias in the exploration
process of Q-learning. We presented a probability distribution over existing policies, which
is used to select a policy, instead of selecting exploration actions completely random. Orig-
inally, this idea was proposed in [8], but we made some small modifications and we have
shown that their reuse strategy also works well when combining it with our speed limit
policy algorithm.
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Chapter 8

Case study: Simulation A67

In this chapter we present the results of a case study we performed to evaluate the pro-
posed algorithms in real life scenarios, related to the third research question. We set up a
simulation of the A67 highway in SUMO, and applied our generated policies to communi-
cate speed limits to participants of Smoover. We also implemented the Automatic Incident
Detection (AID) system that controls the speed limits shown on matrix signs in the Nether-
lands, and we compare this system to our new control approach. In the first part of this
chapter we discuss the translation of flow data and the A67 map to SUMO, and how we can
obtain realistic traffic flows. This part of the work has been done in collaboration with Pieter
Loof [17]. In the remaining sections we describe AID and the Smoover control approach,
and we present the results of the experiments we performed.

8.1 A67 simulation in SUMO

We use SUMO as a microscopic simulation environment. More details about this simulation
software package can be found in Section 2.3 of this thesis. SUMO contains a feature that
makes it possible to import a road network from OpenStreetMap (OSM)1. This enables us
to make a simulation using a realistic A67 road network. An example is given in Figure 8.1
below. It shows an overview of Knooppunt De Hogt, derived from OpenStreetMap, and the
corresponding road network after importing the map in SUMO. Note that not all the roads
of Figure 8.1a are present in Figure 8.1b, since we only import a highway map.

To obtain realistic vehicle flows, we use data from the Nationale Databank Wegverkeers-
gegevens (NDW), a Dutch national database containing traffic data. This database contains
data collected from detectors and induction loops that have been installed in the pavement.
Based on this data simulations can be performed. For instance, after retrieving the data that
was collected during a typical morning rush hour in the past, we can run a simulation of a
real traffic scenario that occurred in the past. Furthermore, a probability distribution over
different types of cars can be defined to make the simulation more realistic. If a vehicle en-
ters the road network in the simulation, its type can be selected according to this probability
distribution. More information regarding the simulation setup can be found in [17].

1For more information, consult http://www.openstreetmap.org.
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(a) OpenStreetMap. (b) SUMO.

Figure 8.1: Knooppunt De Hogt in OSM and SUMO.

8.2 Automatic Incident Detection

Matrix signs have been installed in the Netherlands to communicate speed limits to car
drivers. The most important reason to use these matrix signs is safety, because it warns car
drivers to reduce their speed gradually if downstream congestion is detected. Traffic flow
regulation and reducing congestion is just one of the side effects of such a system, but it is
still interesting to investigate how traffic flow behaves in a simulation when using matrix
signs in a similar way as in practice.

The algorithm that determines the speed limits shown on matrix signs is called Auto-
matic Incident Detection (AID) [3]. It assumes that a detector is associated with each matrix
sign above the highway, and that there is a detector that measures speed for each lane. If the
speed drops below a threshold value (typically, 35 km/hr), the AID system is activated. The
system is deactivated if congestion has resolved and the speed exceeds another threshold
value (typically, 50 km/hr).

A detector maintains a so-called smoothed driving time value Pj for each lane j, which
is updated according to the following formula upon detection of a vehicle:

Pj =

{
αacc ·Pmeasured +(1−αacc) ·Pj Pmeasured ≤ Pj

αdec ·Pmeasured +(1−αdec) ·Pj otherwise

where αacc = 0.15, αdec = 0.40 and Pmeasured is the measured driving time at lane j. Speed
can be translated to driving time by calculating the amount of time that is required to cover
a distance of 2.5 meters, and vice versa. The reason to use driving time instead of speed in
this formula is that it is more sensitive for speed changes, because driving time is a relatively
large number compared to speed if the measured speed is low [3].

If the minimum speed measured at detector i drops below 35 km/hr, the AID system is
activated by assigning the speed limits 50 and 70 to the matrix sign at detector i− 1 and
i− 2, respectively. An example is shown in Figure 8.2, where congestion is measured by
detector i, and speed limits have been assigned to upstream matrix signs. Note that two
consecutive matrix signs may display the same speed limit if multiple consecutive detectors
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Figure 8.2: Assignment of speed limits to matrix signs.

measure congestion. Speed limits are deactivated if the minimum measured speed at a
detector exceeds 50 km/hr. AID can be implemented in SUMO by measuring the speeds at
the locations of real detectors, and assigning the resulting speed limits to specific parts of
the road network.

8.3 Smoover control

As mentioned in the introductory chapter of this thesis, Smoover aims to regulate traffic
flow by using in-car technologies. For example, speed limits can be shown on a display
integrated in the dashboard of a car, and such a control approach is not dependent on the
infrastructure itself. Where the regulation capabilities of AID depend on the locations of
matrix signs, Smoover is able to assign speed limits depending on the current positions
of cars, measured with GPS. This means that a virtual partitioning of the road network in
sections can be created, such that the speed limit policies from Chapter 6 can be applied to
determine the speed limits that should be communicated to cars participating in Smoover.

The Smoover concept can be simulated in SUMO by virtually partitioning the road
network into sections, and applying the multi-agent control method to each virtual section.
The resulting speed limits can be assigned to vehicles participating in Smoover by changing
their individual maximum speed. Note that the number of participants can be varied, such
that only a limited amount of vehicles complies to the speed limits that have been issued.

8.4 Experiments

We performed several experiments in the microscopic simulation environment SUMO, with
the aim to investigate how effective our methods can be, and to make a comparison with
AID. In these experiments, we varied the number of participants of Smoover, and the com-
pliance rate of the vehicles in case of AID.

We focus on the last eight kilometers of the A2 near Eindhoven, in the direction of
Eindhoven, before it merges with the A67 at the road interchange De Hogt. We derived
real traffic patterns from the NDW database to simulate a realistic morning traffic scenario
that occurred on October 21 in 2013 from 7am to 8am. This defines the traffic flow on
the A2 within a time window of several hours. The flow has been increased by a factor
of 1.7 to generate more vehicles, but the flow pattern remained the same. The vehicles
in the simulation have different types (e.g., truck, car, fast car) with different dimensions,
acceleration parameters and maximum speed values. We used the NDW data to find the
locations of detectors and matrix signs on the A2, and defined them in SUMO accordingly.
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This enabled us to run a traffic simulation in which we determine speed limits using the
same algorithm as in practice. Furthermore, it allows us to run a simulation of the Smoover
concept, where a limited number of car drivers receives a speed limit that is shown on the
dashboard.

The purpose of the experiments is not to argue that the same congestion reductions
would be possible in practice, since we did not calibrate the macroscopic model and the
microscopic simulation may not be accurate enough. However, the experiments should give
evidence that policies can be applied in real systems and that they propose useful actions if
congestion arises.

Smoover participants

For the development of Smoover, it is relevant to know how many cars should comply with
the speed limits to reduce congestion. It is likely that congestion can be reduced signifi-
cantly when the number of participants is high, but initially this will be very low, so through
simulation we need to investigate how many participants are required. In the simulation,
speed limits are determined using a policy that has been generated with the algorithm from
Chapter 6, and we consider the last eight kilometers of the A2 as two sections of about
equal length. We simulate one hour traffic flow, and after about eight minutes we mimic
an accident at the road interchange De Hogt, which causes the traffic to slow down for
fifteen minutes. Performance is measured using the vehicle hours metric, similar to the
macroscopic simulations in the previous chapters. The experiment is repeated for several
participation rates, where every vehicle that enters the highway becomes Smoover partici-
pant with a predefined probability. For each participation rate, we repeated the simulation
20 times. The results are shown in Figure 8.3.
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Figure 8.3: Smoover: vehicle hours for several participant percentages.
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Experiments

From the graph we conclude that small participation rates may have significant influence
on traffic flow. The case in which there are no Smoover participants at all can be considered
as a baseline, since there are no cars that comply to the speed limits that have been assigned.
For low participation rates, the gain is relatively large if the number of participants is further
increased, but for a higher number of participants this improvement is much smaller. This
seems plausible, because if the number of participants is high, cars that do not participate
in Smoover also need to comply to the speed limits, as a consequence of the chosen speed
by nearby cars.

AID

We applied the AID algorithm to run a simulation with matrix sign speed limitations. In
Section 8.2 we explained that the speed limits 50 and 70 are assigned to section i− 1 and
i− 2, respectively. In our experiment we assigned speed limitations to p preceding matrix
signs, and only the first one displayed 50. The reason is that we want to investigate the
influence of the length of the speed limited area on vehicle hours. We assumed a compliance
rate of 90 percent. Figure 8.4 shows the results for different values of p, from which we
can conclude that a larger speed limited area reduces vehicle hours more. We expect that
it should be possible to find a value of p that minimizes the number of vehicle hours for
this scenario, because p cannot be increased infinitely to let the number of vehicle hours
decrease further. Due to the limited size of the road network we used, we are unable to
go further than 12 preceding matrix signs. Compared to the results from the Smoover
experiment, we observe that AID performs better for p = 11 and p = 12. In such cases,
almost all parts of the highway have a speed limit assigned if speed limits are activated.
Smoover, however, used a partitioning into two sections, so it may initially assign speed
limits to a smaller part of the highway. Although Smoover performed slightly worse in
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Figure 8.4: AID: vehicle hours.
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our experiment, it is still a significant improvement compared to the baseline, and another
partitioning of the highway into sections may reduce the number of vehicle hours more.
From this point of view, it is relevant to study how the highway can be partitioned into
sections, and which partitionings perform well. Another important issue is how far an agent
should look ahead in its state description. Now we only considered downstream section
i+1 for agent i, but it may be useful to include other downstream sections as well. This is
not studied in this thesis.

8.5 Discussion

Although the results in this chapter look promising, there are a few remarks that have to be
made. Since we did not calibrate the macroscopic model using real data, we were unable
to learn policies using parameters that represent the characteristics of the highway that is
modeled in SUMO. Furthermore, we do not know how accurate the underlying models
of SUMO are and how it corresponds to the characteristics of the A2 and A67 that we
considered. This means that we cannot claim that it would achieve the same congestion
reduction in practice as well. The results presented in this chapter can be considered as a
proof of concept, showing that learned policies propose useful speed limits if congestion
occurs, and that congestion can be reduced by assigning speed limits. When deploying the
proposed techniques in a real system, the macroscopic model should be calibrated to ensure
that policies are learned specifically for the highway that is considered.

Another shortcoming of our analysis is that we do not know how multiple congested
areas influence each other, and how the applied policies behave under these circumstances.
In particular it is interesting to know to which extent the Smoover idea generalizes to larger
road networks. Due to the limited scenario data and time restrictions, we have not been able
to investigate this further.

The AID experiment shows that determining speed limitations using AID may give a
similar improvement as the Smoover concept, but it relies on the locations of matrix signs.
Since not all the highways have matrix signs installed, this method cannot always be applied
in practice. Smoover relies on floating car data and detector measurements, and does not
need matrix signs to communicate speed limits to vehicles. From a practical point of view,
it is unlikely that such systems operate completely autonomously without a human traffic
operator. This aspect was ignored in the simulation experiments.

To make a better comparison with existing techniques, we may want to implement more
algorithms. It is particularly interesting to compare our work with techniques like SPE-
CIALIST [13], which is an algorithm to suppress shock waves by assigning speed limits,
but this is beyond the scope of this thesis.

8.6 Summary

In this chapter we presented a case study involving microscopic simulations of the A2 and
A67 in the Netherlands. We used a real traffic demand pattern to set up a more realistic
simulation of this highway, and we applied one of the policies that was learned using the
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Summary

methods from the previous chapters. We ran simulations of the proposed Smoover concept,
in which only the participating vehicles comply to the speed limits that have been issued.
We also implemented Automatic Incident Detection (AID), which is an existing algorithm
to activate speed limits shown on matrix signs if congestion occurs. Using simulations we
have shown that the Smoover system is able to reduce congestion, even if there is only a
small number of participants. It may achieve a similar congestion reduction as AID, but
one of the benefits is that it does not require matrix signs or other enhancements of the
infrastructure. The results presented in this chapter can be considered as a proof of concept,
to demonstrate how policies can be applied in practical scenarios.
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Chapter 9

Conclusions and Future Work

The objective of this thesis is the development of new algorithmic techniques to optimize
traffic flow, closing the gap between traffic flow theoretical concepts and artificial intelli-
gence. In this final chapter we list our most important contributions, related to the research
questions we identified in Chapter 1. Moreover, we discuss potential directions to extend
this research in future work.

9.1 Main contributions

In this section we list the main contributions of this thesis. We discuss how this contributes
to the traffic flow optimization field and how this may be used in practical applications.

Reinforcement learning algorithm to optimize traffic flow

Previous work in the field of traffic flow optimization mostly relied on computationally
expensive calculations or rule-based control techniques, but we approached this problem
from a rather different perspective. We have shown that the problem of finding speed limits
can be solved using reinforcement learning. Existing traffic flow models can be combined
with reinforcement learning techniques to devise a new traffic flow optimization algorithm.
As far as we know, it has not been shown before that reinforcement learning and planning
techniques can be applied to determine speed limits combined with METANET.

Matrix signs have been used for years to communicate speed limits to car drivers, but
given the huge potential of in-car technologies, it is expected that a transition will be made
to more decentralized control. Moreover, the emergence of big data analysis techniques
may help to use new data sources that potentially contain useful information that has not
been used before. Our work can play an important role in this context. We have shown
that predictions of traffic flow can be combined with our techniques to regulate flow more
efficiently. Given the scalability of the reinforcement learning algorithms, it is also possible
to include other information about traffic conditions or road characteristics in the future.

Our algorithm is using the METANET traffic flow model and performs Q-learning to
find single-agent as well as multi-agent policies that optimize traffic flow. The traffic flow
model we selected can be used as a representation of the environment, and the actions
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selected by the agent can be instantly taken into account in the traffic simulation. The
same model can be used to evaluate the performance of the learned policies. This relates to
research question 1 and 2 we posed in the first chapter. We have also shown that solutions
to an MDP, representing the speed limits to be assigned, can be reused to improve learning
efficiency. In our work we only considered a few similar demand profiles, so there may
be more difficult scenarios that our algorithm cannot handle. We did not study scenario
difficulty, so it may be required to enhance our approach to be able to solve more scenarios
and learn better policies.

Traffic predictions

Our second contribution relates to traffic flow prediction. We have shown that traffic predic-
tions can be used to regulate traffic flow more efficiently, and that the resulting policies are
more robust in case of inaccurate measurements of speed, density and flow. In our experi-
ments, predictions are just an extrapolation of the current traffic conditions, but in practice
this can be replaced by predictions that follow from traffic data analysis techniques. How-
ever, in this case it is important to use a calibrated traffic flow model, so predictions cannot
be directly integrated in practice. Additionally, other prediction horizons may be taken into
account. This part of our work relates to research question 1 from Chapter 1. We only
studied traffic predictions in the first method we presented, using a 5 minute control step
size, so there is still room for improvement and further research.

Traffic simulation environment

We implemented a microscopic simulation environment on top of SUMO, to evaluate the
Smoover concept in more realistic scenarios. Additionally, we implemented Automatic In-
cident Detection (AID) that is used by Rijkswaterstaat to make a comparison with Smoover.
The simulation environment is implemented in such a way that different regulation strate-
gies can be tested, and multiple traffic scenarios derived from NDW can be executed. We
have shown how generated policies can be used in the Smoover concept, and we have shown
that generated policies may be able to reduce congestion in practice. Depending on the par-
titioning of the highway into sections, it can be a competitive alternative to AID. This part
of our work answers research question 3, but we have not been able to prove how it will
work in practice. The reason is that we do not know how realistic our simulation environ-
ment is, and we do not know its correspondence to practical scenarios. We did not study in
which scenarios our method can be useful, since we tested our approach on a small number
of scenarios of limited length. Our results are still valuable and can be considered as a proof
of concept that can be extended in the future.

9.2 Future work

An extension of our work that we can propose as future work is the integration of stochastic
traffic predictions. We made the assumption that traffic predictions are a single value, but
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such a prediction may involve a probability distribution over possible future traffic condi-
tions. In particular, it is interesting to figure out how traffic predictions with a bimodal or
multimodal probability distribution can be exploited to find speed limit policies. Such a
probability distribution may occur if traffic either slows down completely or is not affected
by congestion at all.

Another extension of our work can be found in the area of multi-objective optimization.
In our work we used the total travel time as the objective function to optimize, but other
objective functions can be taken into account as well, such as total throughput of the road
network. Objectives related to vehicle characteristics (e.g., emission) cannot be expressed
using the macroscopic model. Another aspect that can be studied further is how multiple
objectives can be balanced in this context.

The multi-agent coordination approach for variable speed limits can be further im-
proved. Currently we define an MDP for every road section, and we let them independently
train the same policy. However, action selection behavior of adjacent sections may influ-
ence the rewards received by the agents as well. A more sophisticated learning technique
can be tested, taking into account the dependencies between the actions selected by the
agents. Another thing that may be tested is a different formulation of the multi-agent ap-
proach, in which the state space is the concatenation of the individual states, and the global
action space is defined as the Cartesian product of the individual action sets. As mentioned
previously, it can also be studied which information about neighboring sections should be
included in states, and which scenarios can be considered difficult to solve. The policy
learning algorithm may be improved after studying this.

The policy reuse idea from [8] has been tested, but perhaps it is possible to general-
ize this idea to the multi-agent case, where agents can reuse knowledge learned by other
agents. In case of multi-agent coordination of speed limits, a section may reuse knowledge
from neighbors because it is likely that their resulting policies are similar. This requires an
algorithm that learns different policies for different sections.

87





Bibliography

[1] I. Arel, C. Liu, T. Urbanik, and A. Kohls. “Reinforcement learning-based multi-agent
system for network traffic signal control”. In: Intelligent Transport Systems, IET 4.2
(2010), pp. 128–135.

[2] M. Behrisch, L. Bieker, J. Erdmann, and D. Krajzewicz. “SUMO - Simulation of Ur-
ban MObility - An Overview”. In: SIMUL 2011, The Third International Conference
on Advances in System Simulation. 2011, pp. 55–60.

[3] N. van den Bosch. “Blik op het Wegennet”. MSc thesis. Delft University of Technol-
ogy, 2007.

[4] E. Bryson and Y. C. Ho. “Applied Optimal Control: Optimization, Estimation, and
Control”. In: Blaisdell Publishing Company, 1969.

[5] L. Chu and X. Yang. “Optimization of the ALINEA Ramp-metering Control Using
Genetic Algorithm with Micro-simulation”. In: Transportation Research Board 82nd
Annual Meeting. Washington, DC, 2003.

[6] R. Coulom. “Reinforcement Learning Using Neural Networks, with Applications to
Motor Control”. PhD thesis. Institut National Polytechnique de Grenoble, 2002.

[7] C. F. Daganzo. “The cell transmission model: A dynamic representation of highway
traffic consistent with the hydrodynamic theory”. In: Transportation Research Part
B: Methodological 28.4 (1994), pp. 269–287.

[8] F. Fernández and M. M. Veloso. “Probabilistic policy reuse in a reinforcement learn-
ing agent”. In: Proceedings of the International Conference on Autonomous Agents
and Multiagent Systems. 2006, pp. 720–727.

[9] L. Figueiredo, I. Jesus, J. Machado, J. Ferreira, and J. Martins de Carvalho. “Towards
the Development of Intelligent Transportation Systems”. In: Intelligent Transporta-
tion Systems. Vol. 88. 2001, pp. 1206–1211.

[10] S. Haykin. Neural Networks: A Comprehensive Foundation. 2nd. Upper Saddle River,
NJ, USA: Prentice Hall PTR, 1998.

[11] A. Hegyi. “Model Predictive Control for Integrating Traffic Control Measures”. PhD
thesis. Delft University of Technology, 2004.

89



BIBLIOGRAPHY

[12] A. Hegyi, B. De Schutter, and J. Hellendoorn. “MPC-based optimal coordination of
variable speed limits to suppress shock waves in freeway traffic”. In: Proceedings of
the 2003 American Control Conference. Denver, Colorado, 2003, pp. 4083–4088.

[13] A. Hegyi, S. Hoogendoorn, M. Schreuder, H. Stoelhorst, and F. Viti. “SPECIALIST:
A dynamic speed limit control algorithm based on shock wave theory”. In: 11th In-
ternational IEEE Conference on Intelligent Transportation Systems. 2008, pp. 827–
832.

[14] B. Huang, G. Cao, and M. Guo. “Reinforcement Learning Neural Network to the
Problem of Autonomous Mobile Robot Obstacle Avoidance”. In: Proceedings of
the International Conference on Machine Learning and Cybernetics. Vol. 1. 2005,
pp. 85–89.

[15] U. Karaaslan, P. Varaiya, and J. Walrand. Two Proposals To Improve Freeway Traffic
Flow. Tech. rep. Institute of Transportation Studies, UC Berkeley, 1990.

[16] A. Kotsialos, M. Papageorgiou, C. Diakaki, Y. Pavlis, and F. Middelham. “Traffic
Flow Modeling of Large-Scale Motorway Networks Using the Macroscopic Model-
ing Tool METANET”. In: IEEE Transactions on Intelligent Transportation Systems
3.4 (2002), pp. 282–292.

[17] P. Loof. MSc thesis. Delft University of Technology, 2014, to appear.

[18] A. Messner and M. Papageorgiou. “METANET: A macroscopic simulation program
for motorway networks”. In: Traffic Engineering & Control 31.8-9 (1990), pp. 466–
470.

[19] T. M. Mitchell. Machine Learning. 1st ed. New York, NY, USA: McGraw-Hill, Inc.,
1997.

[20] M. Negnevitsky. Artificial Intelligence: A Guide to Intelligent Systems. 1st. Boston,
MA, USA: Addison-Wesley Longman Publishing Co., Inc., 2001.

[21] M. Papageorgiou, H. Hadj-Salem, and J.-M. Blosseville. “ALINEA: a local feedback
control law for on-ramp metering”. In: Transportation Research Record 1320 (1991),
pp. 58–64.

[22] M. L. Puterman. Markov Decision Processes: Discrete Stochastic Dynamic Program-
ming. 1st. New York, NY, USA: John Wiley & Sons, Inc., 1994.

[23] Y. Saitoh, M. Kondoh, and Y. Komatsu. Driverless car travelling guide system. US
Patent 4,855,656. 1989.

[24] B. de Schutter, S. Hoogendoorn, H. Schuurman, and S. Stramigioli. “A Multi-Agent
Case-Based Traffic Control Scenario Evaluation System”. In: Proceedings of the
IEEE 6th International Conference on Intelligent Transportation Systems (ITSC’03).
Shanghai, China, 2003, pp. 678–683.

[25] P. Simon. Too Big to Ignore: The Business Case for Big Data. Wiley & SAS Business
Series. New Delhi: Wiley, 2013.

90



BIBLIOGRAPHY

[26] S. P. Singh, T. Jaakkola, M. L. Littman, and C. Szepesvri. “Convergence Results for
Single-Step On-Policy Reinforcement-Learning Algorithms”. In: Machine Learning
38.3 (2000), pp. 287–308.

[27] R. S. Sutton. “Learning to Predict by the Methods of Temporal Differences”. In:
Machine Learning 3.1 (1988), pp. 9–44.

[28] C. J. C. H. Watkins. “Learning from Delayed Rewards”. PhD thesis. Cambridge, UK:
King’s College, 1989.

[29] C. J. C. H. Watkins and P. Dayan. “Q-Learning”. In: Machine Learning 8.3-4 (1992),
pp. 279–292.

[30] S. D. Whitehead and L. J. Lin. “Reinforcement learning of non-Markov decision
processes”. In: Artificial Intelligence 73.1-2 (1995), pp. 271–306.

[31] M. Wiering and M. van Otterlo. Reinforcement Learning: State-of-the-Art. Adapta-
tion, Learning, and Optimization. Springer, 2012.

[32] J. Zhang, H. Chang, and P. Ioannou. “A Simple Roadway Control System for Free-
way Traffic”. In: American Control Conference. 2006, pp. 4900–4905.

91


