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Abstract

We start our introduction to DNA matching with the direct match case: we find DNA at a
crime scene and find a direct match with a member of our database. To measure the strength
of our case against the match, we use likelihoodratios. We differentiate between two different
situations: the probable cause case, where we already suspect our match and DNA testing tells
us that the profile case and our suspect’s DNA matches, and the database match case, where
we find a match by comparing our case profile to the DNA profiles in our database. We pose
the question: which one of these situations is more incriminating for our match?

The controversy around answering this question is called the database controversy, which is
based on the fact that the chosen set of hypotheses, even when logically equivalent, changes
the answer of this question. We show that this controversy is not really a controversy by using
posterior odds instead of likelihood ratios.

Familial searching is not as straightforward: we discuss two methods for finding relatives of a case
profile in a database. One of those is the conditional method, where we look at the minimum
subset of members such that the sum of their prior probability times their likelihoodratio is
larger than that of the whole database times a factor. The other is called the profile-centred
method, where we look at the members in our database that have a likelihood ratio larger than
a certain treshold.

We discuss theoretical efficiency (the probability that a family member is included in the subset
when it is present in our database) and interpretation, but also model these methods in a
simulated database. We look at the probability of detection when a relative is present in our
database, and look at the typical size of our subsets for certain efficiencies. Both methods have
their advantages and disadvantages, and there is no clear answer on which method is better:
this should be decided on a case by case basis.
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1 Introduction

Although ideas and practices of the law have been around since the archaic period, developments
in science and society still provide new tools to solve crimes and look for justice. One of those
’new’ tools is DNA testing, which has led to many convictions ever since its first use in 1986 with
the conviction of Colin Pitchfork [1], who had raped and strangled two 15-year-old girls. Initially,
the prime suspect was Richard Buckland, a boy from the village. However, after comparing his
DNA with that found on the girls there was no match found and thus his innocence could be
proven. Coincidentally, Buckland was also the first to have his innocence established by the use
of DNA matching. It took an extensive investigation of about 500 DNA samples from the other
men from the village before Pitchfork was arrested and convicted.

Likewise, analysing DNA of old cases has led to some people being released from prison (some-
times after spending more than two decades behind bars), as the DNA evidence could establish
their innocence. DNA testing and DNA searching in databases are very powerful tools for law
enforcement, but there are certain risks when working with this kind of evidence in a case. In
this thesis we will be focusing on DNA searching in databases, and mainly on the notion of
familial searching.

There has been much debate and many papers written about DNA searching in databases,
although much of this research is done in the field of sociology and biology. However, there
has been some interesting mathematical research into DNA searching in databases and familial
searching. Papers by Meester and Sjerps [2] and Slooten and Meester [3] provide examples of
such research, upon which this thesis expands.

We will first take a look at the basic statistics behind DNA searching in databases, where we
look into the database controversy and why it is not really a controversy, before delving into
familial searching. The main focus of this thesis are the methods used to find relatives of a
case profile in a database: the conditional method and the profile-centred method. We first
analyse these two methods theoretically and afterwards simulate them in R to compare their
performance. And, as always when comparing two methods, we will try to answer the question
of which method is better.
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2 Some background for statistics

Before delving deeper into the mathematics of DNA searching, we first need to look at some
fundamental statistics that we will be using throughout this thesis. First and foremost, the
usage of the word odds.

Definition 2.1. For an event A, with P(A) the probability of A occuring, we define the odds
of A occuring as

odds(A) =
P(A)

1− P(A)

Example 2.2. When talking about odds, we mean to express the likelihood of a certain event
happening. For example, when rolling a fair six-sided die, one expects to roll a six about one
in six times and not six about five in six times; the odds of rolling a six are 1 to 5. We will be
using the term odds when talking about Bayesian statistics, usually when talking about prior
and posterior odds.

For example, if I were to roll with a fair die or a loaded die (loaded in favour of rolling six), the
odds of rolling six is higher for the loaded die than for the fair die. We now take one of the two
die and roll it twenty times, and get six about 7 times. Let’s say the probability of rolling a six
for the loaded dice is 1

2 and 1
10 for the other sides. Then the probability of rolling seven sixes is(

20
7

)
1
2

20
for the loaded die, whereas for the fair die the probability is

(
20
7

)
1
6

7 5
6

13
.

The odds of this result being produced by the loaded die is now 1
2

20 1
6

−7 5
6

−13
or roughly 3, which

means that the loaded die is three times more likely to produce this result. To phrase this more
formally, let HL be the hypothesis that we rolled with the loaded die, Hf that we rolled with a
fair die and X our data (i.e. we have rolled 7 sixes in 20 rolls). �

Definition 2.3. For any dataset X and any set of two relevant hypotheses (H0, H1) relating to
the data, we define the corresponding likelihood ratio as

LR =
P(X|H0)

P(X|H1)

Example 2.2. (Continued) In our case the likelihood ratio, or the odds, are calculated by
P(We throw 7 sixes|HL)
P(We throw 7 sixes|Hf ) , which is roughly 3 (as we have already calculated before). Now that we

have the likelihood ratio, we want to know with which die we just rolled: we want the odds of
having chosen the loaded die against having chosen the fair die. These also depend on how likely
we were to choose one die over the other. We can express these odds by dividing P(HL|X) by
P(Hf |X). We will need to use Bayes’ theorem �

Theorem 2.4 (Bayes’ Theorem). For any two events A, B with P(B) 6= 0 we can write

P(A|B) =
P(B|A)P(A)

P(B)

Proof. By definition of conditional probabilities, we have P(A|B) = P(A
⋂
B)

P(B) and P(B|A) =
P(A

⋂
B)

P(A) , so P(A
⋂
B) = P(A|B)P(B) = P(B|A)P(A). Thus P(A|B) = P(B|A)P(A)

P(B) .
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Definition 2.5. For any dataset X and any set of two relevant hypotheses (H0, H1) relating to
the data, we call P(Hi|X) the posterior probability for Hi. The posterior odds are calculated
by

P(H0|X)

P(H1|X)

The prior probability for Hi is simply P(Hi), giving us the prior odds

P(H0)

P(H1)

Example 2.2. (Continued) Using the Bayes’ theorem, we can rewrite the probabilities P(HL|X)
and P(Hf |X) to

P(HL|X) =
P(X|HL)P(HL)

P(X)
(1)

And vice versa for P(Hf |X). In this case, P(HL) is the probability that we took the loaded
die, without looking at the result of our rolls. If we choose one of the two dice arbitrarily, this
probability would be 1

2 since the prior distribution would be uniform over the dice. We now
divide the two probabilities, which gets us the following relation

P(HL|X)

P(Hf |X)
=

P(HL)

P(Hf )

P(X|HL)

P(X|Hf )
(2)

The first fraction, P(HL|X)
P(Hf |X) , is called the posterior odds. It expresses the odds in favour of HL,

given our data. The fraction P(HL)
P(Hf ) is called the prior odds, as they are the odds in favour of HL

prior to looking at the data. This relation holds in general, so for any dataset and two relevant
hypotheses we can compare and compute these odds. �

Theorem 2.6. For any dataset X and any set of two relevant hypotheses (H0, H1) relating to
the data for which we can compute the relevant prior odds, posterior odds and likelihoodratio,
we have:

Posterior odds = prior odds · likelihood ratio

Proof. As shown above, we can rewrite the posterior probabilities P(X|Hi) to

P(Hi|X) =
P(X|Hi)P(Hi)

P(X)

which gives us, by dividing the two probabilities, the relation we want

P(H0|X)

P(H1|X)
=

P(H0)

P(H1)
· P(X|H0)

P(X|H1)

we will be using this result later on. However, we will look at the application of likelihood ratios
when looking at DNA database searching first.
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3 Likelihood ratios in DNA matching

Because a DNA match doesn’t always mean that the person that matched is the same as the
person whom the DNA belongs to, one should be careful when analysing the results of a DNA
search in a certain database. This is why we use the concept of likelihood ratios to quantify how
likely a person is to actually be the donor of the DNA in question. As shown previously: given
two hypotheses H0 and Ha and certain data, we can calculate the likelihood of the appearance
of this data, given the two hypotheses, by

LR =
P(data|H0)

P(data|Ha)
(3)

If this likelihood ratio is high, it is an indication that the hypothesis H0 is more likely than Ha.
We can apply this likelihood ratio to the direct database searching case, where we have a DNA
sample found at the crime scene (we call the donor C) and found a single match in a database,
namely M . We want to know how likely it is that the donor and the match in the database are
the same people, and can construct a set of hypotheses to test the relevance of the match. For
example, we can use the hypotheses H0 : M = C and Ha : M 6= C, giving the likelihood ratio

LR =
P(M is the only match|H0)

P(M is the only match|Ha)
(4)

which we can calculate depending on the fraction of people that have the DNA profile C, the size
of the database and population and some prior probabilities. However, when law enforcement is
unable to find a direct match in a database, they sometimes get permission to search for family
of the DNA donor in the database. This is called familial searching, which is more complicated
than a direct-match case, both on a mathematical and judicial level. We will concern ourselves
with the mathematical difficulties and results.

3.1 Familial searching

So let’s say we find DNA at the crime scene that we assume belongs to the offender. This
gives us a case profile, say C, that then doesn’t result into a direct match. Because DNA of
family members is more similar to C than that of an arbitrary stranger to C, we can try to
find a partial match in the DNA database D which will possibly give us a match with a family
member. Similar to the direct database searching case, we can construct likelihood ratios for
each person in the database, where we now try compute how likely a person is to be related to
the offender.

We do this by constructing two random variables, S and G, both a distribution over DNA
profiles, where S is distributed as the profile of a relative of the case profile, and G is distributed
as an arbitrary DNA profile. We can now interpret the entries of the database D as realisations of
either S or G, and by performing specific search strategies we hope to single out the realisations
of S. We say D = {e1, . . . , eN} where ei is a DNA profile of person i in D, and call R the index
of the person related to the offender. Then the likelihood ratio

LRi =
P(ei|R = i)

P(ei|R 6= i)
=

P(S = ei)

P(G = ei)
(5)
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tells us something about how likely person i is to be related to our case profile. If we’re searching
for a parent or a child, we often call it the paternity index PI; If we look for siblings, we often
refer to it as the sibling index SI. After calculating the respective likelihood ratios, we would
like to create a small enough subset of DNA profiles so that with a high degree of certainty it
contains a relative of C, but small enough to still be manageable to investigate further. We will
discuss this further in chapter 4.

3.2 The choice for likelihood ratios

Before we delve deeper into familial searching, we first need to pay some more attention to the
methods that were just described. The use of likelihood ratios can at first seem a bit arbitrary
and will certainly need some motivation. The most important part of using a tool to measure the
likelihood of the suspect being guilty, is that it is consistent and as little debatable as possible.
However, we cannot claim that likelihood ratios are just that, without taking a look at what is
called the database controversy. We will be following the approach of Meester en Sjerps [2].

3.2.1 Database controversy

To explain the controversy, we look at the case where we find a DNA stain of some sort at the
crime scene, which we assume belonged to the culprit. When we then compare the DNA profiles
in the database with the profile we found at the crime scene, we find only one match M . We
now pose the question: is the case against M stronger now that we have found him through
DNA profiling, or is the case where we would find him through other evidence - the so called
probable cause scenario - stronger?

As before, we use likelihood ratios to quantify how strong our case is. We define our set of
hypotheses as follows:

H0 : M is the donor of the crime stain

Ha : Someone else is the donor of the crime stain

And so our likelihood ratio becomes

LR =
P(M is the only match|H0)

P(M is the only match|Ha)
(6)

We define δ as P(M left the crime stain), π as P(someone else in the database left the crime
stain), n as the population size and N as the size of the database. We assume the DNA stain
has profile A that has a certain frequency pA in our population and also assume that the profiles
in our database are independent of each other. We then can calculate the probabilities in the
likelihood ratio: P(M is the only match|H0) is the probability that only M has DNA profile A
(which is 1 since M is the donor of the crime stain under H0) and the other people in the
database have another profile. Thus, as the database size is N , the probability of none of the
other profiles having profile A is (1− pA)N−1.

For P(M is the only match|Ha), we look at the probability that only our match M has profile
A but none of the others, (which results in pA(1− pA)N−1 since M is no longer the donor of the

6



stain and is not guaranteed to have profile A), and that no one in the database (including our
match M) has left the crime stain. Using the rules for conditional probabilities, we can rewrite
the probability to

P(M is the only match|Ha) =
P(M is the only match, Ha)

P(Ha)

=
P(M is the only match)P(Ha|M is the only match)

1− δ

= pA(1− pA)N−1
1− π
1− δ

Since if M is the only match in the database, none of the other people in the database can be
the donor of the crime stain: thus, the probability of someone other than M leaving the crime
stain is equal to the 1− π, the probability that someone outside of the database left the crime
stain. The resulting likelihood is

LR =
P(M is the only match|H0)

P(M is the only match|Ha)

=
(1− pA)N−1

pA(1− pA)N−1 1−π1−δ

=
1

pA

1− δ
1− π

The question remains whether this means the case is stronger than in the probable cause scenario.
To see whether it is we will have to compute the relevant likelihood ratios. So let’s say M is
identified using non-DNA based methods and after a check, his DNA matches the one of the
perpetrator. We now have the same two hypotheses as before, meaning that in H0 we assume
the suspect M is the same as the perpetrator, and in Ha we assume the DNA of M and the
perpetrator are stochastically independent. Calculating the likelihood ratio gives us:

LR =
P(M has profile A, the crime stain has profile A|H0)

P(M has profile A, the crime stain has profile A|Ha)

=
P(M has profile A)

P(M has profile A)P(the crime stain has profile A)

=
pA
p2A

=
1

pA

Compared to the likelihood ratio in the database searching case, they differ only a factor 1−δ
1−π .

If we assume uniform prior odds, i.e. δ = 1
n and π = N

n , we have that the likelihood ratios differ
a factor of n−1

n−N which is larger than 1 (but only slightly, especially when taking into account
that we have a very large population size compared to the database size). Thus it would seem
that the likelihood ratio in the database searching case is (slightly) larger than in the probable
cause scenario, which would make the case against our match M stronger if he were to be found
via DNA profiling.
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However, this result has been critized by Stockmarr [4] because the chosen set of hypotheses is
data-dependent and therefore, in his opinion, wrong: you can only choose these hypotheses if
you already know that M will be the person in the database that matches with our crime stain.
In fact, you cannot know that there will be only one match if you haven’t received the results
of the test yet. So he proposed the following set of hypotheses

H∗0 : Someone in the database is the donor of the crime stain

H∗a : Someone outside of the database is the donor of the crime stain

To calculate our new likelihood ratio, we first look at P(r profiles have profile A, the crime stain
has profile A|H∗0 ). Under H∗0 , one of the people in the database the donor of the crime stain, so
there are r− 1 people that match by accident. Because every person either has profile A or not,
we can consider the amount of people that match to be a binomial random variable distributed
like Bin(N, pA) with N the size of the database. However, under H∗0 we know one of the people
in the database is certainly the donor of the crime stain, meaning that for only N − 1 people it
is uncertain whether they will match or not. This means the number of accidental matches is
distributed like a binomial random variable with sample size N − 1.

Now we calculate: P(r profiles have profile A, the crime stain has profile A|H∗0 ) = P(r − 1 profiles
are accidental matches|H∗0 , the crime stain has profile A)P(The crime stain has profile A) =(
N−1
r−1
)
pr−1A (1− pA)N−r · pA =

(
N−1
r−1
)
prA(1− pA)N−r.

Under H∗a our sample size is the same as our database size, since the donor of the crime stain is no
longer in our database. This gives us P(r profiles have profile A, the crime stain has profile A|H∗a) =
P(r profiles have profile A|H∗a , the crime stain has profile A)P(the crime stain has profile A) =(
N
r

)
prA(1− pA)N−rpA =

(
N
r

)
pr+1
A (1− pA)N−r. The resulting likelihood ratio now becomes

LR∗ =
P(r profiles have profile A, the crime stain has profile A|H∗0 )

P(r profiles have profile A, the crime stain has profile A|H∗a)

=

(
N−1
r−1
)
prA(1− pA)N−r(

N
r

)
pr+1
A (1− pA)N−r

=
r

NpA

This results in a different likelihood ratio than before, since we now assume we have only one
match and thus r = 1. Thus the likelihood ratio is 1

NpA
, which is obviously smaller than the

previously mentioned likelihood ratio in the probable scenario case. This would mean that the
case against our match would be in fact weaker when compared to the other case. The last
likelihoodratio is in case of uniform priors, but for the general case we can use the following
calculation

P(M is the only match|H∗0 ) =
P(M is the only match, H∗0 )

P(H∗0 )

=
δ(1− pA)N−1

π

Since P(H∗0 ) = π per definition and if we know that the donor of the crime stain is in the
database, the chance of only M being matched is the chance of M being the donor and the
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other people in the database not having profile A. Now for P(M is the only match|H∗a) we have
that by accident M ’s profile matches with our perpetrators and the others do not have this
profile, so P(M is the only match|H∗a) = pA(1− pA)N−1. This gives us the likelihoodratio

LR∗ =
P(M is the only match|H∗0 )

P(M is the only match|H∗a)

=
δ(1−pA)N−1

π

pA(1− pA)N−1
=

δ

πpA

3.2.2 Why it is a false controversy

We have now found two mutually exclusive answers to our question, both of which seem valid,
resulting in our afore-mentioned controversy. However, we can show that this controversy is false
by using the posterior odds. As shown previously, by using Bayesian statistics we have posterior
odds = prior odds · likelihood ratio, and so we can look at the prior odds in both instances to
find out what the posterior odds are.

For the first set of hypotheses, we have the prior odds P(H0)
P(Ha) with P(H0) = P(M left the crime stain) =

δ versus P(Ha) = P(M did not leave the crime stain) = 1−δ, giving us the prior odds δ
1−δ . Mul-

tiplying this with the likelihood ratio associated to this set of hypotheses, we get the posterior
odds

δ

1− δ
1− δ

pA(1− π)
=

1

pA

δ

1− π
(7)

As for the second set of hypotheses, H∗0 versus H∗a , we have P(H∗0 ) = P(someone in the database
left the crime stain) = π and P(H∗a) = P(someone outside of the database left the crime stain) =
1−π, resulting in the prior odds of π

1−π . Multiplying with the likelihood ratio yields the following
posterior odds

π

1− π
δ

pAπ
=

1

pA

δ

1− π
(8)

which is equal to the previous posterior odds. Thus, contrary to what we have seen before, the
posterior odds actually are consistent across both sets of hypotheses, even though the likelihood
ratios are not. It is obvious now that there is no one set of hypotheses that is wrong (nor
exclusively right) and we can use both sets of hypotheses when trying to express the strength
of the case, as long as we also report the prior (and posterior) odds.

For example, consider the following: a person is murdered and DNA is recovered from under
the fingernails of the murderer. The match probability of this DNA profile is around 10−5 and
we have a database of around 1000 people. The result of our search in the database leaves us
with one match: M . The likelihood ratio as suggested by Stockmarr is 10 while the likelihood
ratio we suggested first is around 105. This is a huge difference, but computing the relevant
prior odds will, as discussed before, show that the posterior odds are equal.

9



One method to compute these prior odds, as suggested by Meester and Sjerps, is by using δ to
compute π by assuming that everyone in the population is equally likely to be the donor of the
crime stain. Thus

π = δ + (1− δ)N − 1

n− 1

with n the size of the population. In court, this population size can be discussed or the prior
and posterior odds can be calculated for multiple values of n. Meester and Sjerps also suggested
reporting a table with prior odds and their posterior odds for the case at hand, so the juror can
judge the strength of the other evidence and make a choice for the prior odds, which will give
him the posterior odds. For high prior odds, the posterior odds will be even higher and thus the
case is judged to be pretty strong. However, if the juror believed the other evidence is weak, he
can choose a low prior odds, causing the posterior odds to decrease and making the case weaker.

So, though the strength of the DNA evidence remained the same in the two scenarios, the
strength of the case was determined by the prior odds. It shows that the strength of the case
against our suspect, expressed by the posterior odds, can be high even though our DNA evidence,
the strength of which is expressed by the likelihood ratios, does not have to be strong - and our
case can be weak if we only have a strong DNA match but no other evidence.

And so, even though at first it seemed that likelihood ratios were not as reliable as we thought,
we see that the posterior odds are consistent across all cases and hypotheses. This is what we
want, seeing as we looked for a consistent and definite expression for the strength of our case.
When looking at the likelihood ratios, it is always wise to look at the relevant prior odds, as
they might show that a strong match but low prior odds (usually in a DNA searching case) can
be just as incriminating for the match as a low likelihood ratio and high prior odds (often in the
probable cause case).
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4 Search strategies for familial searching

We already discussed in section 3.1 how we use likelihood ratios when looking for relatives of
a specific profile. It is important for law enforcement to narrow down the suspect pool with
possible family members in order to make the investigation manageable, but if the conditions
are too strict this might possibly lead to an exclusion of an actual family member. We will
discuss two strategies for creating a subset of the database, where we try to make it as small
as possible but also want to include the relative with probability α. The latter is called the
efficiency of the method. We follow Slooten and Meester [3] in their approach to calculating the
relevant probabilities and defining the two methods we will discuss in section 4.2.

Like before, we introduce some terminology and definitions. In section 3.1 we introduced S and
G, both a distribution over DNA profiles, where S is distributed as the profile of a relative of
the case profile, and G distributed as an arbitrary DNA profile, both in our database D. We
now interpret the entries of the database D as independent realisations of either S or G, and
say D = {e1, . . . , eN} where ei is a DNA profile of person i in D, and call R the index of the
person related to the offender.

Furthermore, we define πi = P(R = i), the prior probability that person i is the true family
member of the donor of the crime stain, πD =

∑N
i=1 πi the prior probability that someone in the

databaseD is the true family member and π0 = 1−πD the probability that no one in the database
is the true family member. We also define the likelihood ratios ri = LRi = P(S=ei)

P(G=ei)
, r0 = 1 and

combine the likelihood ratios into one vector LRD, with LRD = r = (r1, . . . , rN ).

4.1 General probabilities for familial searching

In order to compute the efficiency of the methods, we first have to evaluate some probabilities.
Most importantly, we want to know the probability P(R = i|LRD = r), the probability that the
ith person is the family member of the donor of the crime stain, given the likelihood ratios of all
the people in the database. We will prove some probabilities and show a couple of interesting
results. We start off with the most important theorem:

Theorem 4.1. For i ∈ {1, . . . , N}, we have

P(R = i|LRD = r) =
riπi∑N
k=0 rkπk

P(R = i|LRD = r, R ∈ D) =
riπi∑N
k=1 rkπk

Before we prove this theorem, we will prove some Lemmas about our likelihood ratios in general.

Lemma 4.2. Let E be the collection of DNA profiles, LR(e) = P(S=e)
P(G=e) and assume for all e ∈ E

we have P(S = e) > 0⇒ P(G = e) > 0. Then for all x ≥ 0, we have

P(LR(S) = x) = xP(LR(G) = x) (9)

Proof. First we define Ex as the subset of E where LR(e) = x for some x ≥ 0, i.e. Ex = {e ∈
E : LR(e) = x}, so we can rewrite the probability P(LR(S) = x) to

∑
e∈Ex P(S = e). Keeping
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in mind that we defined LR(e) = P(S=e)
P(G=e) , we can replace P(S = e) by LR(e)P(G = e) because

we assumed P(S = e) > 0⇒ P(G = e) > 0. So, we can write

P(LR(S) = x) =
∑
e∈Ex

P(S = e)

=
∑
e∈Ex

LR(e)P(G = e)

Remember that we defined Ex = {e ∈ E : LR(e) = x} and so we can rewrite LR(e)P(G = e) =
xP(G = e) for e ∈ Ex. And so since x is constant, we can write

= x
∑
e∈Ex

P(G = e)

= xP(LR(G) = x)

And so we have proven P(LR(S) = x) = xP(LR(G) = x).

Lemma 4.3. If we assume for all e ∈ E we have P(S = e) > 0⇒ P(G = e) > 0, then we have

P(LR(S) ≥ x) = E(LR(G)|LR(G) ≥ x)P(LR(G) ≥ x) (10)

Proof. Using lemma 4.2, we can rewrite the probability P(LR(S) ≥ x) in the following way

P(LR(S) ≥ x) =
∑
y≥x

P(LR(S) = y)

=
∑
y≥x

yP(LR(G) = y)

=
∑
y≥x

yP(LR(G) = y|LR(G) ≥ x)P(LR(G) ≥ x)

= E(LR(G)|LR(G) ≥ x)P(LR(G) ≥ x)

Where we need the assumption to use Lemma 4.2 in our second step.

A consequence of this Lemma is that we have

P(LR(G) ≥ x) =
P(LR(S) ≥ x)

E(LR(G)|LR(G) ≥ x)
≤ P(LR(S) ≥ x)

x
≤ 1

x
(11)

Lemma 4.4. If we assume for all e ∈ E we have P(S = e) > 0⇒ P(G = e) > 0, then we have
E(LR(G)) = 1

Proof. We can write E(LR(G)) =
∑

e∈E LR(e)P(G = e) =
∑

e∈E P(S = e) = 1, where we
assume that the family member is a member of the database.

Now that we have proved these three lemmas, we can start with out proof of Theorem 4.1, which
we will repeat once more before we start the proof.
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Theorem 4.1. For i ∈ {1, . . . , N}, we have

P(R = i|LRD = r) =
riπi∑N
k=0 rkπk

(12)

P(R = i|LRD = r, R ∈ D) =
riπi∑N
k=1 rkπk

(13)

Proof. We start with a proof of equation (12). We first rewrite the left-hand side using the rules
for conditional probabilities

P(R = i|LRD = r) =
P(LRD = r|R = i)P(R = i)

P(LRD = r)

=
P(LRD = r|R = i)P(R = i)∑N

k=1 P(LRD = r|R = k)P(R = k) + P(LRD = r|R 6∈ D)P(R 6∈ D)

The summation in the denominator is hard to work with, so we will take the inverse at both
sides. This gets us the equation

1

P(R = i|LRD = r)
=

N∑
k=1

P(LRD = r|R = k)

P(LRD = r|R = i)

P(R = k)

P(R = i)
+

P(LRD = r|R 6∈ D)

P(LRD = r|R = i)

P(R 6∈ D)

P(R = i)
(14)

We assume all profiles in our database are independent, and thus we can rewrite the probability
P(LRD = r|R = i) to

∏N
j=1 P(LRj = rj |R = i) where P(LRj = rj |R = i) = P(LRj = j) for

j 6= i; likewise for P(LRD = r|R = k). Thus, dividing the two gives us

P(LRD = r|R = k)

P(LRD = r|R = i)
=

∏N
j=1 P(LRj = rj |R = k)∏N
j=1 P(LRj = rj |R = i)

=

∏
j 6=i,k P(LRj = rj)P(LRi = ri|R = k)P(LRk = rk|R = k)∏
j 6=i,k P(LRj = rj)P(LRi = ri|R = i)P(LRk = rk|R = i)

=
P(LRi = ri|R = k)

P(LRi = ri|R = i)

P(LRk = rk|R = k)

P(LRk = rk|R = i)

We can rewrite the ratio P(LRD=r|R 6∈D)
P(LRD=r|R=i) in the same way, with the only difference being that only

the ith term does not cancel out. Together, this yields us the new expression for the right-hand
side

N∑
k=1

P(LRi = ri|R = k)

P(LRi = ri|R = i)

P(LRk = rk|R = k)

P(LRk = rk|R = i)

P(R = k)

P(R = i)
+

P(LRi = ri|R 6∈ D)

P(LRi = ri|R = i)

P(R 6∈ D)

P(R = i)
(15)

We now can use Lemma 4.2 to determine P(LRi=ri|R=k)
P(LRi=ri|R=i) , P(LRk=rk|R=k)

P(LRk=rk|R=i) and P(LRi=ri|R 6∈D)
P(LRi=ri|R=i) ; if

R = k then the profile of i is distributed like G and thus P(LRi = ri|R = k) = P(LR(G) = ri) =
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1
ri
P(LR(S) = ri) by Lemma 4.2. If we have R = i then the profile of i is distributed like S and

thus P(LRi = ri|R = i) = P(LR(S) = ri). So

P(LRi = ri|R = k)

P(LRi = ri|R = i)
=

P(LR(G) = ri)

P(LR(S) = ri)
=

1

ri

In the same manner, we can say

P(LRk = rk|R = k)

P(LRk = rk|R = i)
=

P(LR(S) = rk)

P(LR(G) = rk)
= rk

Now for R 6∈ D versus R = i: for R = i the scenario is equal to the one we discussed first, so
P(LRi = ri|R = i) = P(LR(S) = ri). If R 6∈ D then every profile in D is distributed like G and
so P(LRi = ri|R 6∈ D) = P(LR(G) = ri). So, in a similar way, we have

P(LRi = ri|R 6∈ D)

P(LRi = ri|R = i)
=

P(LR(G) = ri)

P(LR(S) = ri)
=

1

ri

Summarizing these results, we can rewrite expression (15) into

N∑
k=1

rk
ri

P(R = k)

P(R = i)
+

1

ri

P(R 6∈ D)

P(R = i)

Remember that this expression was equal to 1
P(R=i|LRD=r) and we defined at the start of this

chapter notation for the remaining expressions, and so rewriting expression (14) gives us

P(R = i|LRD = r) =
1∑N

k=1
rk
ri

πk
πri

+ 1
ri
π0
πi

=
1∑N

k=0
rkπk
riπi

=
riπi∑N
k=0 rkπk

As required. Now with equation 13 the computation is nearly the same; we can rewrite the
probability P(R = i|LRD = r, R ∈ D) into

P(R = i|LRD = r, R ∈ D) =
P(LRD = r|R = i)P(R = i)

P(LRD = r, R ∈ D)

=
P(LRD = r|R = i)P(R = i)∑N
k=1 P(LRD = r|R = k)P(R = k)

(where we don’t have the extra P(LRD = r|R 6∈ D)P(R 6∈ D) term because we already assume
that we have a family member in D)
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In a similar fashion, we can derive the expression

1

P(R = i|LRD = r, R ∈ D)
=

N∑
k=1

rk
ri

P(R = k)

P(R = i)
=

N∑
k=1

rkπk
riπi

And thus we have proved equation 13:

P(R = i|LRD = r, R ∈ D) =
riπi∑N
k=1 rkπk

Note that we only needed Lemma 4.2 to prove this theorem.

4.2 Different methods

As mentioned before, we will discuss two methods: the conditional method and the profile-
centered method. We will first explain how their approach to finding a subset works, and will
discuss some important differences in section 4.3 afterwards.

4.2.1 Conditional method

For the first subset method, we look at the subset Dk corresponding to the k profiles that have
the highest products riπi. We then look at the minimal k, say kα, for which

∑
j∈Dk

rjπj ≥ α(r1π1 + · · ·+ rNπN )

holds for 0 ≤ α ≤ 1, and write Dc
α for Dkα . This Dc

α will be our group of possible family
members and will contain an actual family member with a certain probability. We now want to
determine the efficiency of this method, the probability P(R ∈ Dc

α|R ∈ D). We can calculate
P(R = i|R ∈ D) first by using the law of total probability and theorem 4.1

P(R = i|R ∈ D) =
∑
r

P(LRD = r|R ∈ D)P(R = i|R ∈ D,LRD = r)

=
∑
r

P(LRD = r|R ∈ D)
riπi∑N
k=1 rkπk

So for P(R ∈ Dc
α|R ∈ D) we will simply need to sum over all the i ∈ Dc

α:

P(R ∈ Dc
α|R ∈ D) =

∑
r

P(LRD = r|R ∈ D)P(R ∈ Dc
α|R ∈ D,LRD = r)

=
∑
r

P(LRD = r|R ∈ D)
∑
i∈Dcα

riπi∑N
k=1 rkπk
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By definition of Dc
α, we have

∑
i∈Dcα riπi ≥ α

∑N
k=1 rkπk and

∑
r P(LRD = r|R ∈ D) = 1, so we

have

P(R ∈ Dc
α|R ∈ D) =

∑
r

P(LRD = r|R ∈ D)
∑
i∈Dcα

riπi∑N
k=1 rkπk

≥ α

And so we have shown that the efficiency of this method is at least α.

4.2.2 Profile-centred method

The construction of the profile-centred method requires less information than the conditional
method: we don’t look at the prior probabilities, but solely at the likelihood ratios. Recall that
we interpret the profiles in D as realisations of either S (a family member of the crime stain
donor) or G (a random member of the population). For this method, we look at P(LR(S) ≥ t)
for some t, which is the probability that the likelihoodratio for a family member is at least t.
Let tα be the largest t for which

P(LR(S) ≥ t) ≥ α

for 0 ≤ α ≤ 1, where α is our efficiency. This tα is our treshold for the new subset of possible
family members; we define

DP
α = {i ∈ D : LRi ≥ tα} (16)

We can check the efficiency P(R ∈ DP
α |R ∈ D) by a very quick calculation: if R ∈ DP

α then
LR(R) ≥ tα, and thus

P(R ∈ DP
α |R ∈ D) = P(LR(R) ≥ tα) = P(LR(S) ≥ tα) ≥ α

And so the efficiency indeed is at least α. We can even calculate the probability of D containing
family member when we do not find a relative in our subset DP

α by using the law of total
probability and Bayes’ theorem:

P(R ∈ D|R 6∈ DP
α ) =

P(R 6∈ DP
α |R ∈ D)P(R ∈ D)

P(R 6∈ DP
α )

=
(1− α)πD

P(R 6∈ DP
α |R ∈ D)P(R ∈ D) + P(R 6∈ DP

α |R 6∈ D)P(R 6∈ D)

=
(1− α)πD

(1− α)πD + (1− πD)
= (1− α)

πD
1− απD

Since P(R ∈ D) = πD as defined at the start of this chapter and P(R 6∈ DP
α |R 6∈ D) = 1, because

DP
α cannot contain a relative if it is not present in the database in the first place.
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Remark 4.5. Another way to construct our subset is to look at members whose profiles have an
exceptionally high likelihood ratio if they were unrelated, as proposed by Sjerps and Kloosterman
[5]. As with DP

α we define a treshold sβ such that

β = P(LR(G) ≥ sβ)

for some β ∈ (0, 1), giving us a new subset {i ∈ D : LRi ≥ sβ}. We define this β and sβ such
that we hope to include a fraction β of our database in our subset. We can relate this to our
subdatabase DP

α in the following way

α ≤ P(LR(S) ≥ tα) = E(LR(G)|LR(G) ≥ tα)P(LR(G) ≥ tα)

By applying Lemma 4.3. If we choose β such that tα = sβ, then we can rewrite

α ≤ β · E(LR(G)|LR(G) ≥ sβ)

Meaning that we cannot express α in β alone but it also depends on the case profile in question.
This means that we also cannot give a good lower bound for the efficiency, in contrast to DP

α

which has a uniform lower bound α.

4.3 Comparison of the two methods

We have shown that both subsets have an efficiency of at least α, but there are some important
differences that we will need to discuss. First of all, we require a lot more information to
construct Dc

α, since we need to know the prior probabilities πi for all i. We do not need this
information for DP

α , so it would seem that since Dc
α requires more information it is the better

method to use.

However, interpretation wise, it is maybe more appealing to use DP
α . A common interpretation

in statistics and probability theory is the frequentist interpretation, where we interpret the
probability of an event as its relative frequency when conducting a large amount of trails. If we
look at the (random) treshold for the two subsets, the distribution of Dc

α’s treshold depends on
both S and G. A frequentist interpretation requires resampling of our database: if we would
create a large amount of sets of one copy of S versus N − 1 copies of G, then about P(R ∈ DP

α )
times we will have included the copy of S.

If we compare this with DP
α , its treshold only depends on S. We also don’t have to resample

the database for our interpretation of DP
α : we can interpret it as one realisation of N − 1 copies

of G and can repeatedly add one copy of a realisation of S. In this case again a fraction of
P(R ∈ DP

α ) this realisation of S is included in our subset. This interpretation is especially
important because we are not dealing with a theoretical application: the results of our analysis
will be used by inspectors and possibly in court, and will have to be used to make decisions
about the remainder of the investigation. From this viewpoint, the usage of DP

α is more helpful
for law enforcement.

Besides theoretical anlysis, we can apply these models in a simulated database to compare their
performance. We will do so in chapter 5.
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5 Modeling in R

Now that we have examined two methods to look for relatives of a case profile in a database,
we can apply these techniques in a simulated database with simulated case profiles. We use
the package DNAprofiles, written by Maarten Kruijver [6] for R. This package gives us a way
to sample a database according to allelic frequencies in the Netherlands, and has a pre-built
function to determine the likelihood ratios we discussed in previous chapters.

Since it is (quite a bit) harder to find siblings in a database than to find parents or siblings,
we will be focussing on the results when looking for siblings rather than other types of rela-
tives. Furthermore, we cannot compute the prior probabilities πi in our simulation, since these
probabilities are case dependent. Therefore, we assume a uniform prior on the whole database,
meaning πi = 1

n for all i ∈ D, where n is the size of the population.

5.1 Probability of detection

First and foremost, we will be looking at the probability of detection when using the two meth-
ods. We sampled a large database D (N = 105, about the size of the actual DNA database
that is managed by the Dutch Forensic Institute [7]) and then sampled about 100 profile cases
Ci for which we determined the probability that we would detect a relative in the database.
This method differed slightly for the two methods, so we will discuss them seperately. These
simulation strategies are based on the simulations by Slooten and Meester [3]. See Appendix
8.1 for the R code.

5.1.1 Conditional method

For the conditional method, we sampled 1000 siblings Si,j (i ∈ {1, . . . , 100}, j ∈ {1, . . . , 1000})
for every case profile we sampled and determined for every sibling if they would be included
in D̄c

α for a certain efficiency α, where D̄ is the database D with the sampled sibling added.
For all those profiles, we calculated the likelihood ratio ri for being a sibling of the profile for
all members of the database and all simulated siblings. We will refer to this likelihoodratio as
their Sibling Index (SI) from now on. We first define the rank of every sibling by the number of
database members that have a higher SI, where a sibling has rank k if there are k− 1 members
of the database with a higher SI.

If the rank of the sibling is 1, it will always be included in D̄c
α since the priors are uniform and

thus we only look at the kα largest SI. If the rank of the sibling is higher than 1, this means that
for some α’s the sibling might not be included in D̄c

α: the smaller the efficiency, the smaller the
size of our selection. In section 5.2.1 we will discuss this in greater detail. We define ti,j as the
largest t ≥ 0 such that Si,j 6∈ D̄c

t (and 0 if its rank is 1). This means that Si,j is only included
in our subset if α > ti,j , and thus we can estimate the probability of detection for a given α.

For α ∈ {0.01, . . . , 1} we calculated βi,α, the fraction of ti,j that are smaller than α, for every
case sample. We then took the average over all case samples, which gave us the estimate βα for
our probability of detection, the probability that if we add a relative of a random case profile to
our simulated database D, then the relative would be included in D̄c

α.

One thing to note is that this estimate is database dependent, meaning that the probability of
detection can only be defined in relation to our simulated database. For every case profile the
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probability of detection is not only affected by the exact profiles in the database but also by the
database size, which we will discuss in section 5.1.3.

Our simulation in R gave us the result shown in the following Figure
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Figure 1

We see that the probability of detection is bigger than the efficiency for every α, although the
difference between the two gets smaller as the efficiency gets higher. This is due to the way
we defined the subset D̄c

α and the fact that we assumed a uniform prior: we only look at the
kα largest SI’s, which will contain on average a higher percentage of actual siblings when kα is
small. The higher α, the more we add members with a lower SI score and thus on average more
non-related profiles.

5.1.2 Profile-centred method

As discussed in the last chapter, the interpretation of the efficiency is a bit easier for the profile-
centred method than for the conditional method. The same holds for the computation of the
probability of detection: because the distribution of the treshold depends only on the case profile,
simulating the probability of detection requires only finding the treshold for the case profile in
question and calculating the percentage of siblings that have a SI higher than the calculated tα.

In the simulation, we computed the treshold by using one of the functions in the package that
determined the cumulative distribution function for the distribution of the SI for a relative of
the case profile. We computed this treshold for every α and sampled a large amount siblings
for every one of the 100 case profiles. The estimate βα of the probability of detection is found
by taking the average of the percentage of siblings that have a higher SI. As mentioned before,
this method does not depend on the database size nor on the exact profiles in the database.
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Our simulation, with in this case 50.000 siblings per case profile, gave us the following result:
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Figure 2

This figure is less exciting than that of the conditional method, but also quite easy to explain:
we defined tα as the maximum t for which P(LR(S) ≥ t) ≥ α held. This means that, because
we have a large amount of siblings, on average about α of the siblings are included in the set
D̄P
α . Thus, our estimate βα is close or equal to our efficiency for all α’s.

5.1.3 Influence of database size

We already remarked that the probability of detection for the conditional method was database
dependent, contrary to the profile-centred method. For different sizes of databases, we can
compute the average probability of detection to see how big the influence really is.
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Figure 3: N = 100.000
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Figure 4: N=10.000
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Figure 5: N=1.000

We can easilly see that if the database is smaller, the probability of detection is higher. This is
of course no surprise: remember that the probability of detection is determined by the fraction
of relatives that would be included in our set D̄c

α, the selected subset of the database D with
a relative added. Therefore if the database is smaller, there are less members in the database
that can accidentally favourably match with our profile case and, in general, less members that
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can compete for highest SI with our relative. As a result, high SI values stand out more and get
included in D̄c

α moreoften, and therefore relatives of a case profile are easier to detect.

5.2 Size of selected subset

In reality, we often will not have a relative of our case profile in our database. According to a
spokesperson at the NFI, out of the 33 cases where the Dutch Forensic Institute used familial
searching to look for suspects, 5 instances led to a suspect for the police to investigate [8].
Therefore, it is useful to know what the typical size of Dc

α or DP
α is when there are no relatives

present in the database D. This size depends both on the chosen efficiency and the frequency
of the case profile, and we will discuss these two factors seperately.

We again sample a database D with N = 105 and sample 100 case profiles. However, this time
we do not sample any family members, because we are no longer working under the assumption
that a relative is present. This will not only affect the size of the selection but is also a better
representation of the reality: we have no way of knowing whether there is a relative present in
our database before we run some tests. See Appendix 8.2 for the relevant R codes.

5.2.1 Efficiency

We first look at the influence of the efficiency on the size of the database. We ran both
methods for our database D and 100 case profiles and averaged the size of the selection for
α ∈ {0.01, . . . , 1}. Taking the natural log of this size gives us the following Figures
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Figure 6: Size of Dc
α
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Figure 7: Size of DP
α

One thing to note is that the conditional method will, by construction, always include at least
one member of the database in Dc

α. The profile-centred method will not: this method finds a
treshold tα which will be very high for low values of α, meaning that in many cases there are no
members with a high enough SI. We can see that the average size of DP

α starts to exceed 1 for
α bigger than 0.2, whereas the size of Dc

α is already around 6 for the same efficiency.

For both methods there seems to be an almost exponential relation between the size of the subset
and the efficiency. We also see that the function is monotone increasing for both methods, which
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makes sense: for the profile-centred method, the treshold tα is strictly decreasing for α, meaning
that more members will be included in DP

α as our efficiency gets higher. As for the conditional
method, remember that we chose a uniform prior on our database. This means that Dc

α consists
only of those with the highest SI, with no more members included than strictly necessary to
have

∑
i∈Dcα πi ≥ απD. Naturally, the higher our α, the more members we will need to include

in Dc
α.

5.2.2 Profile frequencies

Secondly, we wrote a function in R to find the frequency of a given profile and used this to plot
the size of the subset against the profile frequency. For the function in R we found the frequency
by computing the frequency per locus, which is papb(2− δa,b) for a locus with alleles (a, b) with
δa,b = 1{a=b}. We used the allelic frequencies from the R package at 10 SGMplus loci, which
are the loci documented for the SGM Plus DNA profiling system. The profile frequencies p we
found were between 10−12 and 10−20, so we plotted − log10(p) against the size of DP

α or Dc
α for

α ∈ {0.7, 0.8, 0.9}, with p the frequency of the profile. The results were as follows
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Figure 8: Conditional method, α = 0.7
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Figure 9: Profile-centred method, α = 0.7
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Figure 10: Conditional method, α = 0.8
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Figure 11: Profile-centred method, α = 0.8
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Figure 12: Conditional method, α = 0.9
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Figure 13: Profile-centred method, α = 0.9

We see again that as α increases, the selection size increases. However, we also see that the rarer
the profile, the lower the selection size - this is visible in the conditional method, but even more
so in the profile-centred method. This is also a result of the way we defined our subsets: if the
frequency of our profile is low, the SI are lower on average, meaning that for the profile-centred
method there are less members whose SI will exceed our tα. For the conditional method our πD
is low, which means we will need fewer members with a high SI in our subset Dc

α.

5.3 Comparison

Now that we simulated both methods and looked at some interesting properties, we can analyse
the methods. We start with the probability of detection: we’ve seen that for every α, the
conditional method is on average better in including the relative than the profile-centred method.
However, when looking at the standard deviation of the probability of detection, we find the
following
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Figure 14: σ for βα, conditional method
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Figure 15: σ for βα, profile-centred method

We see that the standard deviation for the conditional method is between 0.10 and 0.15 for
most values for α, which is a large standard deviation for a probability. However for the profile-
centred method the standard deviation is at most 0.0025, which is quite low. If we look at three
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different profiles with different frequencies, we can see how the standard deviation translates
into a difference in probability of detection:
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Figure 16: p = 1.05 · 10−12
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Figure 17: p = 1.06 · 10−15
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Figure 18: p = 5.47 · 10−17

If the profile has a low frequency, then the conditional method has some difficulty finding the
relative among the other relatives in the database. In contrast to what we have seen before, our
estimate βα is even lower than α for almost all α. However for lower frequencies the conditional
method seems to perform even better than average. Compare this to the profile-centred method,
where we see the following:
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Figure 19: p = 4.898 · 10−12

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Probability of detection for different efficiencies

Efficiency

P
ro

ba
bi

lit
y 

of
 d

et
ec

tio
n

Figure 20: p = 5.86 · 10−15
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Figure 21: p = 7.67 · 10−17

As expected, the profile-centred method seems to be consistent over all profiles. It seems that for
profiles with a high frequency, the profile-centred method is a better choice since it is consistent
for lower α and performs better than the conditional method in this case. For a low-frequency
profile, the conditional method seems to be a better choice. One thing to note is that in practice,
we will often go for a higher efficiency. When testing in a lab, we will want to know that we
include our relative with a relatively high probability; we also see that the for higher efficiencies,
our two methods do not seem to differ much.

Aside from the probability of detection, the size of the selection is important for the future
of the investigation too. Police and other investigators are dealing with limited resources and
when looking for a relative, having to investigate over 3000 database members takes a long
time. We see in section 5.2.2 that on average the size of the selection is a fair amount smaller
for the profile-centred method than for the conditional method, especially for profiles with a
lower frequency. Therefore, the profile-centred method has a clear advantage over using the
conditional method, as it reduces the average amount of people we will need to investigate.

Both methods have their advantages and disadvantages. For the profile-centred method, the
predictability of its performance is one of its advantages. When we know the frequency of
the case profile, we can use this to predict DP

α like previous simulations in this chapter. In
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addition, we can use equation (11) to look at the amount of unrelated members included in
DP
α . This tells us that the probability that an unrelated members has a KI higher than tα is

at most α
tα

, so we expect to include at most N α
tα

unrelated members in our subset DP
α . If the

subset turns out not to contain any relative of the case profile, we can say something about the
probability that D contains a relative. If πD was small, we can approximate the probability
P(R ∈ D|R 6∈ DP

α ) discussed in section 4.2.2 by (1 − α)πD. So, if our method did not detect a
relative, the probability that D still contains a relative has decreased by a factor 1 − α. This
is useful to know for the investigators that need to decide whether to test additional database
members after no new suspect has been found.

The conditional method, however, is more powerful because it takes into account more infor-
mation related to the case. This is only helpful when we can use information from the case
to determine priors - when we can only use uniform priors, this method does not seem to per-
form much better than the profile-centred method, which is more attractive to use because of
its interpretation and consistency. However, often we can use properties like age, ethnicity or
geography (if there are eye-witnesses, for example) to determine some kind of prior distribution.

When working with the conditional method, it is useful to look at the KI of the members in Dc
α.

Lemma 4.4 tells us that E(LR(G)) = 1, so if the sum of all likelihood ratios is smaller than N
this might be an indication that D does not contain a relative, whereas if the sum is larger than
N this might indicate the presence of a relative in our database. So, if all likelihood ratios are
small, this could lead to a fairly big subset Dc

α which is not likely to contain a relative and not
always worthy of investigation.

All in all, there is no clear answer to which method is better: making a choice between the
two methods should be done on a case by case basis. If there is no way to define better prior
probabilities than a uniform distribution, it might be better to use the profile-centred method.
However, when a suitable prior distribution can be calculated, it seems to be worthwhile to use
the conditional method. Nevertheless, since the profile has a big impact on the probability of
detection and the size of the selection, it is advisable to run some simulations before choosing
either one of the methods. This way, the probability of finding a relative and the workload can
be estimated before making a choice between the methods.
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6 Conclusions

In the last chapters, we have examined the statistics behind DNA searching in databases and
familial searching, and looked at two methods for finding relatives in a database.

We have explained why we use likelihood ratios when working with DNA in criminal cases: even
though they might seem to be inconsistent because of the database controversy, using posterior
odds shows that they are not. However, when stating the strength of the evidence, which is
calculated by likelihood ratios, the prior and posterior probabilities should be stated as well:
without them, we cannot say anything about the strength of the case itself. The case against
our match can have high prior odds but a weak match, which often happens in the probable
cause case, or can have a strong match but low prior odds, as in the DNA searching case, and
be equally incriminating.

We examined two methods for searching for relatives: the conditional method and the profile-
centred method. During the theoretical analysis we noted that the first requires more information
and thus is more powerful, but the latter is easier to interpret. Especially when looking at the
frequentist interpretation, the conditional method requires resampling of the database while the
profile-centred method does not.

When simulating the two methods, we found that the profile-centred method is more consistent
and is more selective, giving us a smaller subset to investigate while not being that much worse
at detecting relatives. It also is able to tell us that the probability of a relative being present in
the database, if it’s not found in DP

α , will decrease by a factor 1−α if πD is low. The conditional
method is indeed more powerful when we can choose a useful prior distribution. We can use
properties like age, ethnicity and geography to influence the selection made by this method,
which often positively influences the probability of detection. However when there is no way
to determine a prior distribution, it does not seem worthwhile to choose this method over the
profile-centred method.

When looking at our simulations, we also see that for different profile frequencies, the two
methods seem to perform differently. For profiles with a high frequency, the conditional method
seems to perform quite poorly in comparison with the profile-centred method, where profiles with
a low frequency lead to a high overall probability of detection. In general, the profile-centred
method seems to include less members on average for every profile, making future investigation
easier.

All things considered, both methods have their up- and downsides and therefore choosing one
of the two methods should be done on a case by case basis. If it is possible to determine a prior
distribution aside from a uniform distribution, it seems that the conditional method is often a
better pick. Otherwise, the profile-centred method is advised. However, aspects such as the
profile frequency should be considered as well, and before choosing either one of the methods
it is advised to run some simulations with the case profile to try to predict the workload and
probability of finding a relative.

For future research it might be interesting to look for new methods that try to combine the
strengths of the two methods and balance out the flaws. Ideally, this new method would be
powerful, predictable in its outcome and have both an easy interpretation as a high average
probability of detection. Familial searching is a tool that has already proven its right to exist,
but methods can always be altered or invented in hopes of improving the workload or probability
of detection.
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7 Discussion

Familial searching, like most tools used in the judicial system, is not perfect and its implemen-
tation will cause some problems. One of those problems is that it can - and will - increase the
racial bias that already exists in our system. The Dutch Bureau for Statistics showed [9] that
in 2002, in total 0.9% of the native Dutch population were ever registered as a suspect in a
case, in contrast to 2.2% of the immigrant population. To put that into perspective: this means
61.000 of the total 163.000 suspects were first or second generation immigrants, which made
their representation in the suspect pool twice as large as in the general Dutch population.

If we use familial searching more often, this will cause the gap between representation of the
immigrant and autochthonous population in the suspect pool to widen even more. During
research for this thesis, I found this aspect of familial searching to be very interesting and
worthy of some attention, but when trying to model this gap and the increase that familial
searching would cause, I repeatedly found myself having trouble with the lack of data needed
to model this trend. Much of the research in this field is of a sociological nature, but not much
research is done in the biological and mathematical field, making it hard to model this in any
way close to the real world. However I would still like to research this one day, as I think it is an
interesting subject worthy of more research. It is not only mathematically interesting, but could
provide a sound mathematical foundation for the political debate around familial searching.

Last but not least I would like to point out that the codes I wrote for the simulations are in no
way fully optimized. Right now, the conditional method is fairly slow compared to the profile-
centred method. Although I am not new to R, I have no doubt that these methods can be
written better to speed up the simulations.
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8 Appendix

8.1 Section 5.1

§5.1.1

1 data(freqsNLsgmplus)

2

3 # set db sample size

4 N = 1e5

5 # set relative sample size

6 M = 1000

7

8 set.seed(100)

9

10 # sample a reference db

11 db <- sample.profiles(N,freqsNLsgmplus)

12 b <-matrix(,nrow=100,ncol=100)

13

14 # run for 100 profile cases

15 for(i in 1:100){

16 x <- sample.profiles(1, freqsNLsgmplus)

17 rs <- sample.relatives(x,M,type="FS")

18

19 # compute SI for all database members

20 SI <- ki.db(x,db,"FS")

21 SIvector <- as.vector(SI)

22 SI_r <- ki.db(x,rs,"FS")

23

24 #compute rank for siblings

25 ranks <- c()

26 for(j in 1:M){

27 ranks[j]<-sum(SI>SI_r[j,1]) + 1

28 }

29

30 # CONDITIONAL METHOD, compute t_i,j

31 # we take uniform priors

32 tp<-c()

33 for(n in 1:M){

34 high<-c()

35 if(ranks[n]>1)

36 {

37 high<-sort(SIvector,decreasing=TRUE)[1:ranks[n]-1]

38 for (q in seq(from=0.01,to=1,by=0.01)){

39 if (sum(high) < q*(sum(SI)+SI_r[n])) break

40 tp[n]<-q

41 }

42 }
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43 else{

44 tp[n]=0

45 }

46 }

47

48 k=1

49 # compute b_alpha

50 for(a in seq(from=0.01, to=1, by=0.01)){

51 b[i,k]<-sum(tp<a)/M

52 k=k+1

53 }

54 }

55

56 ba<-colMeans(b)

57 plot(seq(from=0.01, to=1, by=0.01),ba,ylim=c(0,1),main="Average probability of detection (SI)

58 for different efficiencies",xlab="Efficiency",ylab="Probability of detection",pch=19)

§5.1.2

1 data(freqsNLsgmplus)

2

3 # set db sample size

4 N = 1e5

5 M = 50000

6 set.seed(100)

7

8 # sample a small reference db

9 db <- sample.profiles(N,freqsNLsgmplus)

10 prob<-matrix(,nrow=100,ncol=100)

11

12 # compute for all case profiles

13 for(i in 1:100){

14 x <- sample.profiles(1, freqsNLsgmplus)

15 rs <- sample.relatives(x,M,type="FS")

16

17 # compute SI for all database members

18 SI <- ki.db(x,db,"FS")

19 SIr <- ki.db(x,rs,"FS")

20

21 # compute cdf for SI of true sibling

22 cdf.fs <- ki.cdf(x,hyp.1="FS",hyp.true="FS")

23 cdfinv <- inverse(cdf.fs)

24

25 m<-1

26 # set efficiency and find t_alpha

27 for(a in seq(from=0.01,to=1,by=0.01)){

28 t <- cdfinv(1-a)

29 prob[i,m]<-sum(SIr>=t)

30 m<-m+1

30



31 }

32 }

33

34 p<-colMeans(prob)/M

35

36 plot(seq(from=0.01,to=1,by=0.01),p,main="Average probability of detection (SI)

37 for different efficiencies, profile-centred method",xlab="Efficiency",

38 ylab="Probability of detection",pch=19)

1 #function for finding the inverse of the cdf function

2 inverse = function (f, lower = 0, upper = 1e12) {

3 function (y) uniroot((function (x) f(x) - y), lower = lower, upper = upper)[1]

4 }
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8.2 Section 5.2

§5.2.1

1 #function for finding the frequency of a certain profile

2 #compared to freqsNLsgmplus

3

4 profile.freq<-function(x){

5 data(freqsNLsgmplus)

6

7 lijst1 <-unlist(freqsNLsgmplus[1],use.names=FALSE)

8 lijst2 <-unlist(freqsNLsgmplus[2],use.names=FALSE)

9 lijst3 <-unlist(freqsNLsgmplus[3],use.names=FALSE)

10 lijst4 <-unlist(freqsNLsgmplus[4],use.names=FALSE)

11 lijst5 <-unlist(freqsNLsgmplus[5],use.names=FALSE)

12 lijst6 <-unlist(freqsNLsgmplus[6],use.names=FALSE)

13 lijst7 <-unlist(freqsNLsgmplus[7],use.names=FALSE)

14 lijst8 <-unlist(freqsNLsgmplus[8],use.names=FALSE)

15 lijst9 <-unlist(freqsNLsgmplus[9],use.names=FALSE)

16 lijst10 <-unlist(freqsNLsgmplus[10],use.names=FALSE)

17

18 p <- lijst1[x[1]]*lijst1[x[2]]*(2-diracD(x[1],x[2]))*lijst2[x[3]]*lijst2[x[4]]*

19 (2-diracD(x[3],x[4]))*lijst3[x[5]]*lijst3[x[6]]*(2-diracD(x[5],x[6]))*

20 lijst4[x[7]]*lijst4[x[8]]*(2-diracD(x[7],x[8]))*lijst5[x[9]]*lijst5[x[10]]*

21 (2-diracD(x[9],x[10]))*lijst6[x[11]]*lijst6[x[12]]*(2-diracD(x[11],x[12]))*

22 lijst7[x[13]]*lijst7[x[14]]*(2-diracD(x[13],x[14]))*lijst8[x[15]]*lijst8[x[16]]*

23 (2-diracD(x[15],x[16]))*lijst9[x[17]]*lijst9[x[18]]*(2-diracD(x[17],x[18]))*

24 lijst10[x[19]]*lijst10[x[20]]*(2-diracD(x[19],x[20]))

25

26 return(p)

27 }

1 #dirac delta function

2

3 diracD<-function(a,b){

4 if(a==b){

5 return(1)

6 }

7 else{

8 return(0)

9 }

10 }

Conditional method

1 data(freqsNLsgmplus)

2

3 # set db sample size

4 N = 1e5

5
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6 set.seed(100)

7

8 # sample a small reference db

9 db <- sample.profiles(N,freqsNLsgmplus)

10

11 ksize<-matrix(,nrow=100,ncol=2)

12 for(j in 1:100)

13 {

14 x <- sample.profiles(1, freqsNLsgmplus)

15

16 # compute SI for all database members

17 SI <- ki.db(x,db,"FS")

18

19 m<-1

20 # set minimum efficiency

21 a = 0.9

22

23 # CONDITIONAL METHOD

24 # we take uniform priors

25 i <- 0

26 high <- c()

27

28 # find size of subset

29 for (k in 1:N)

30 {

31 i <- i + 1

32 l <- find.kth.element(SI,k)

33 high <- c(high,l)

34 if (sum(high)/N >= a*sum(SI)/N) break

35 }

36

37 ksize[j,1]<-i

38 ksize[j,2]<-profile.freq(x)

39 }

40

41 plot(-log10(ksize[,2]),ksize[,1],main="Size of subset (SI) for alpha = 0.9",

42 xlab="-log10(p)",ylab="Size of subset")

Profile-centred method

1 data(freqsNLsgmplus)

2

3 # set db sample size

4 N = 1e5

5 set.seed(100)

6

7 # sample a small reference db

8 db <- sample.profiles(N,freqsNLsgmplus)

9 ksize<-matrix(,nrow=100,ncol=2)
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10

11 for(i in 1:100){

12 x <- sample.profiles(1, freqsNLsgmplus)

13

14 # compute SI for all database members

15 SI <- ki.db(x,db,"FS")

16

17 # compute cdf for SI of true sibling

18 cdf.fs <- ki.cdf(x,hyp.1="FS",hyp.true="FS")

19 cdfinv <- inverse(cdf.fs)

20

21 # set efficiency and find t_alpha

22 a <- 0.9

23 t <- cdfinv(1-a)

24

25 ksize[i,1]<-sum(SI>=t)

26 ksize[i,2]<-profile.freq(x)

27 }

28

29 plot(-log10(ksize[,2]),ksize[,1],main="Size of subset (SI) for different profile

30 frequencies, alpha = 0.9", xlab="-log10(p)",ylab="Size of database")

§5.2.2

Conditional method

1 data(freqsNLsgmplus)

2

3 # set db sample size

4 N = 1e5

5 set.seed(100)

6

7 # sample a small reference db

8 db <- sample.profiles(N,freqsNLsgmplus)

9

10 ksize<-matrix(,nrow=100,ncol=100)

11 for(j in 1:100)

12 {

13 x <- sample.profiles(1, freqsNLsgmplus)

14

15 # compute SI for all database members

16 SI <- ki.db(x,db,"FS")

17

18 m<-1

19 # set minimum efficiency

20 for(a in seq(from=0.01,to=1,by=0.01)){

21 # CONDITIONAL METHOD

22 # we take uniform priors

23 i <- 0
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24 high <- c()

25

26 for (k in 1:N)

27 {

28 i = i + 1

29 l <- find.kth.element(SI,k)

30 high <- c(high,l)

31 if (sum(high)/N >= a*sum(SI)/N) break

32 }

33

34 ksize[j,m]<-i

35 m<-m+1

36 }

37 }

38

39 k<-colMeans(ksize)

40 plot(seq(from=0.01,to=1,by=0.01),log(k),main="Log size of subset (SI) for different

41 values for alpha", xlab="Efficiency alpha",ylab="Log(Size of subset)")

Profile-centred method

1 data(freqsNLsgmplus)

2

3 # set db sample size

4 N = 1e5

5 set.seed(100)

6

7 # sample a small reference db

8 db <- sample.profiles(N,freqsNLsgmplus)

9 ksize<-matrix(,nrow=100,ncol=100)

10

11 for(i in 1:100){

12 x <- sample.profiles(1, freqsNLsgmplus)

13

14 # compute SI for all database members

15 SI <- ki.db(x,db,"FS")

16

17 # compute cdf for SI of true sibling

18 cdf.fs <- ki.cdf(x,hyp.1="FS",hyp.true="FS")

19 cdfinv <- inverse(cdf.fs)

20

21 m<-1

22 # set efficiency and find t_alpha

23 for(a in seq(from=0.01,to=1,by=0.01)){

24 t <- cdfinv(1-a)

25 ksize[i,m]<-sum(SI>=t)

26 m<-m+1

27 }

28 }
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29

30 k<-colMeans(ksize)

31 plot(seq(from=0.01,to=1,by=0.01),log(k),main="Average size of subset (SI) for different

32 efficiencies",xlab="Efficiency",ylab="Log(Size of subset)")
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