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Ontkoppelde berekeningen van veranderingen in waterbeweging en
morfologie hebben voor bergrivieren nauwelijks een efficienter computer
model tot gevolg.

Zonder zijdelingse toe- of afvoer van water en/of sediment, kan een
watersprong in een waterloop met een beweeglijke bodem niet stilstaan.

Voor het voorspellen van veranderingen in rivieren met een beweeglijke
bodem is niet alleen het benodigde aantal randvoorwaarden maar ook de
verdeling ervan over de randen gelijk voor alle stromingsregimes.

Uit de wiskundige analyse van de beweging van water en sediment blijkt
dat de beweeglijkheid van de rivierbodem moet resulteren in een
transkritisch overgangsgebied tussen subkritische en superkritische
stroming,

De stabiliteitsvoorwaarden van wiskundige modellen voor veranderingen
in rivierbeddingen met gegradeerd sediment zijn met name beperkend
voor bergrivieren.

Een mixing-layer ter bepaling van een representatieve korrelverdeling van
het rivierbed kan niet puur fysisch worden geinterpreteerd. Er kan
daarom beter van een reference-layer worden gesproken.

Door het gebruik van een transfer function volgens Toro-Escobar ef al.
(1996) voor de longitudinale verandering in bodemsamenstelling in een
rivier wordt het aantal wiskundige oplossingen te drastisch gereduceerd.

Toro-Escobar, C.M., G. Parker and C. Paola (1996), Transfer function for the

deposition of poorly sorted gravel in response to streambed aggradation, J. of Hydr.
Res., TAHR, Vol.34, No.1, pp.35-54.

De betrouwbaarheid van geomorfologische voorspellingen moet altijd op
de korrel genomen worden.

Het onderkennen van Acts-of-God getuigt van realiteitszin.

Het vernoemen van wiskundige modellen naar goden is de goden
verzoeken.

Ook de toepassing van het minderhedenbeleid faalt voor individuen.
Onder asielzoekers in Nederland schuilen uitzonderlijke capaciteiten.

Versnellingen op fietsen hebben vaak vertraging tot gevolg.
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Modellering van waterbeweging en morfologie in
bergrivieren

Samenvatting.

De hydraulische en morfologische kenmerken van bergrivieren verschillen met
die van rivieren in laagland. In het algemeen wordt de beperking van
overstromingen in bergachtige gebieden vaak gecompliceerd door een grillig
afvoerverloop en grote morfologische veranderingen. In combinatie met een
variérende  geometrie, gegradeerd sediment en veranderingen in
stromingsregime, stelt dit een hoge eis aan modellen die ingrepen in rivieren
ondersteunen. In deze studie zijn de invloeden van condities in bergrivieren op
één-dimensionale, wiskundige modellen geanalyseerd.

Deze analyse omvat de toepasbaarheid van vereenvoudigde modellen, de
stabiliteit van het wiskundig model in geval van gegradeerd sediment en het
gedrag van discontinue stroming. Het numeriek model dat hiertoe is ontwikkeld
is gebaseerd op de Godunov-methode, met een gelijktijdige oplossing van
veranderingen in de hydraulische en morfologische variabelen. Dit model is
toegepast op hypothetische gevallen en gootexperimenten.

Voor testgevallen met niet-stationaire en niet-uniforme stroming en waarden van
het Froude-getal dicht bij één, blijkt de aanname van quasi-stationaire stroming
mogelijk maar niet efficiént, terwijl de aanname van quasi-uniforme stroming
efficiént maar fout blijkt. Voor gevallen met Froude-getallen dichtbij één,
vermindert de fout in de laatste aanname echter snel voor meer uniforme
stroming.

In het geval van gegradeerd sediment en hogere waarden van het Froude-getal
vermindert de stabiliteit van het wiskundig model voor bepaalde condities.
Enkele methoden voor stabilisatie zijn geanalyseerd.

Het gedrag van discontinue stroming zoals watersprongen op een beweegbare
bodem is onderzocht met behulp van schokrelaties en entropievoorwaarde. Als
aan de laatste wordt voldaan, ontstaat geen conflict in informatieoverdracht en
kan de discontinue oplossing, binnen de beperkingen van het model als fysisch
realistisch worden beschouwd.



Modelling of hydraulics and morphology in
mountain rivers

Abstract,

Hydraulic and morphological features of mountain rivers differ from those of
low-land rivers. In general, flooding mitigation in mountainous areas is often
complicated due to an erratic character of hydrographs and large morphological
changes. In combination with a non-uniform geometry, graded sediment and
changes in flow regime, this puts high claims on models that support river
engineering in mountains. In this study, effects of mountain-river conditions on
one-dimensional mathematical models for river hydraulics and morphology are
analysed.

This analysis includes the applicability of simplified models, the mathematical
stability in case of graded sediment and the behaviour of discontinuous flows
at mobile beds. The numerical model that is developed hereto is based on the
Godunov method with simultaneous solution of changes in hydraulic and
morphological variables. This model is applied on hypothetical cases and flume
experiments.

For test cases with strongly unsteady and non-uniform conditions of flow and
values of the Froude number near unity, the quasi-steady flow assumption
appears to be possible but not efficient, whereas the quasi-uniform flow
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assumption appears to be appropriate for cases with Froude numbers near unity
and flows with more uniform conditions.

ic faumd ta he afficiant hit arransnnc Hawavar thic lattar
10 1ULIIU U UT CLHIVEVIIL VUL VLA VIICUUD,. 1AV YYD Y Ol AD 1dud

In case of graded sediment and for high values of the Froude number, the
mathematical stability of the model reduces for certain conditions. Some
stabilizing options have been analysed.

The behaviour of discontinuous flows such as hydraulic jumps at a mobile bed
can be analysed with shock relations and entropy condition. If the latter are
satisfied, no conflict of information-transfer develops and within the limitations
of the model, the discontinuous solution can be considered physically realistic.
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Chapter one.

Introduction.
1.1. General.

Mountainous regions have been fascinating mankind throughout history.
Inaccessible heights, harsh climates and threatening events with overwhelming
dimensions are combined with a variability and wealth of natural sources,
providing special habitat for flora and fauna. From this character of
mountainous areas, many reflections and reminders in human culture and
history can be found. Considering the remnants of ancient and, unfortunately,
present-day constructions, it is not surprising that ancient Greeks considered the
Olympus appropriate for unpredictable gods.

The increasing efforts to construct and operate means for exploration,
cultivation and development of rich and accessible parts of mountainous
regions, have also raised a need for developing protection measures and
warning systems against hazardous fluvial impacts. These impacts are caused
by the complex dynamics of supply and conveyance of water and sediment in
mountainous and piedmont areas. The urgency of this need is stressed by the
number of casualties and the amount of damage which often are involved
(Davies, 1989).

It can be stated that with the development of mountainous regions, flood
mitigation measures are needed in hazardous areas. In addition to that, higher
claims are put on the performance of future river engineering with increasing
concerns for conservation of ecological values and other environmental
qualities.

1.2. River engineering in mountainous areas.

Fluvial hazards usually concern flooding at lower regional gradients, for
example terraces, flood plains and alluvial fans. To protect flat areas from
sediment deposition and subsequent flooding, flood-mitigation measures in
mountain-river engineering often includes erosion-prevention in upper
catchments, sediment-transport reduction at instable river reaches (e.g. side-
slope erosion) or sediment transport enlargement at vulnerable flat areas (e.g.
Armanini et al., 1989).



Protection measures range from slope stabilization to river engineering works,
representing a long chain of processes from sediment production and rainfall in
upper parts of the catchment to alluvial transport and river discharge at the
base. Effects of landuse (cultivation, forestation, etc.) on river morphology
illustrate to a certain extend the manageability of erosion production (Renard
and Laurson, 1975). Hence, mitigation of flooding hazards implies combining
different disciplines, conventions and interests (Changnon, 1986). A review of
some research activity is given in Sieben (1993).

Effects of hydraulic structures on a highly non-linear system of mountain-river
morphology (e.g. Iwamoto, 1985; Willi, 1989; Basile, 1994) and vice versa
(e.g. Whittaker er al., 1985) can be significant. However, theoretical and
experimental studies for these complex conditions are relatively scarce.

1.3. Background of the study.

1.3.1. Modelling approach.

The basis for sound engineering in conditions of mountain rivers is formed by
understanding phenomena. To indicate the limited domain of present knowledge
with respect to hydraulics and morphology in mountainous rivers, reference is
made to a debate whether or not stable, supercritical flows can be observed in
mountain streams (Jarret, 1984 and 1987; Trieste, 1992; Wahl and Miller,
1996). This discussion reflects the difficulties engaged in predicting friction
losses of flows at varying discharges in an irregular geometry (e.g. Bathurst ef
al., 1981).

In research on mountain rivers, two main approaches can be distinguished that
can be described roughly as follows.

a) construct an empirical model based on analysing data sets with
statistical methods, assume consistency and continuity of represented
trends and extrapolate to extreme event scenarios.

b) formulate a mechanistic concept suitable for deterministic simulation
of the processes of interest, and impose boundary conditions to the
model, that correspond to an extreme event scenario.

At present (1996), both approaches alone are not sufficient to obtain a reliable
assessment of flooding risks. The major obstructions for application of both
methods include difficult measuring conditions, sparseness of events and up-




and downscaling problems, in both time and space domains (e.g. Crosato,
1995). A brief review is given.

statistical models.

Considering the level of complexity, present knowledge on fluvial hazards is
generally limited to statistical models, constructed with rough magnitudes of
past events. A typical feature of water and sediment supply to mountain rivers
is the extreme variability, both in time and space (Davies, 1989), with often
different frequency-populations (Jarret, 1990).

However, in practice, construction of event-frequency distributions is difficult;
historic data are scarce, and collection of actual data on major events is
difficult, both due to hard measuring conditions and sparsity of events. Due to
the often complicated (in many cases not well understood) correlation between
supply and transport of both water and sediment, synthetically generated data
should be handled with great care.

deterministic models.

With respect to application of theoretical simulation models for hydraulics and
morphology of mountain rivers, many difficulties consist, due to lacks of
knowledge and an extensive variability inherent to natural conditions. Davies
(1989) ably summarizes the complexity of boundary conditions, the importance
of extreme events and the possibility of fundamental changes of behaviour.
Hence, applications are generally limited to extremely simplified representations
of nature or isolated, local phenomena.

combination of statistical and deterministic models.

At present (1996), trends can be observed to combine both approaches in a
probabilistic manner. In FRIMAR (1995), flooding risks are determined by
using statistical and deterministic models to construct frequency distributions of
system responses with "independent”, stochastic input parameters. However, it
should be noted that in a combined approach, benefits as well as drawbacks of
statistical and deterministic methods are present.

A major handicap of such a chain of models is the accepted level of correlation
(are sub-model variables stochastical and independent ?), effects of sub-model
accuracy and the computation costs involved to construct different scenarios.



Sensitivity analyses of parameters in such a chain of models can be useful
(Tung, 1996) to determine the required level of sub-model performance,
priorities of research topics, format of information and reduction of computation
COSts.

1.3.2. Description of boundary conditions.

In this study, a deterministic model is used to study some isolated aspects of
mountain-river hydraulics and morphology. As indicated in the previous section,
application of deterministic models to predict mountain-river hydraulics and
morphology is remote but probable in probabilistic procedures.

Isolation of fluvial morphodynamics in a study of mountain rivers requires
introduction of artificial boundaries, where river-catchment interaction must be
prescribed. With the description of these interactions, hydrological and
sedimentological processes are involved. With respect to limitations of
deterministic descriptions due to boundary conditions, a brief review is given.

The river-catchment boundary interaction (volume, duration, frequency and
sequence of supply) controls both long-term and short-term changes in
morphology. An example is the occurrence of local, intense rain-burst events,
that can induce flash floods and debris flows which entirely change the river
(e.g. Whittaker, 1985; Naef et al. 1988, Turner and Schuster, 1996).
Nevertheless, prediction of fluvial hazards on a longer time-scale often requires
integration or neglecting of seasonal (and shorter) variations (Di Silvio and
Peviani, 1991).

In analogy with discharge, "base-flow related” and "sudden-event" types of
sediment supply can be distinguished (Takahashi, 1991), with subsequent small
and large scales. Modelling of the first type is often accomplished by regression
analyses, relating local sediment yields to rainfall, catchment area characteristics
and discharge. However, with the use of rather detailed geographic information

systems (GIS), also mechanistic approaches at basin scale are possible (Burton
and Bathurst, 1994).

The second type of sediment supply is even more complex; for a reliable
prediction of land slides (with subsequent rate and volume), extensive
monitoring and data analysis is required (e.g. Peviani ef al. 1995; Turner and
Schuster, 1996). To predict space-frequencies of landslide-induced flood waves,
Swanson er al. (1985) combines the analysis of regional geology, history of
slope movements and topography of the drainage system.




When river reaches are relatively short, boundary conditions concerning water
and sediment input almost entirely dominate the response of a river. An
example is the 1987 flooding of the Mallero at Sondrio in Northern Italy (Di
Silvio and Peviani, 1989), where the flooded city was located only 12 km
downstream of the nearest land-slide that overloaded the river. Here, also the
dynamics of a narrowing river, with subsequent development of backwater
curves, should be considered when predicting the propagation of an aggradation
front (Bezzola et al., 1990).

Apart from the conditions described above, geological constraints on slope and
width determine the river type (e.g. Galay, 1987). Another hazard concerns the
deposition of debris (e.g. trees etc.), which can induce the formation of natural
dams, that enlarge peak-flow discharges in case of breaking (Kellerhals, 1988;
Takahashi and Nakagawa, 1994).

1.4. Scope of the study.

This study concentrates on hydraulic and morphological behaviour of rivers in
typical mountain-river conditions. Objective is to contribute to the analysis of
flooding due to river-morphological activity. Results concern the analysis of
limited, one-dimensional formulations of fluvial morphodynamics. Numerical
procedures are applied to solve a mathematical model that represents hydraulic
and morphological aspects of simplified mountain-river conditions.

At present, models for river morphology have been tested and applied to low-
land rivers mainly (De Vries, 1993), whereas only recently, numerical models
are being applied to trans- and supercritical flows (e.g. Ghilardi and Menduni,
1989; Okabe, 1992; Sloff, 1993b; Okabe er al. 1994). Another trend concerns
expanding analyses on effects of variable river-bed composition (e.g. Parker,
1991c), with the majority of models applicable for low-land rivers only.

Hence, for conditions prevailing in mountain rivers (trans- and supercritical
flows, large gradation of sediment and flows with a strongly non-uniform
character), hiates consist in knowledge on the behaviour of solutions (both
continuous and discontinuous flows), type of boundary conditions, possibilities
for simplification and numerical solution procedures.

Because data are difficult to obtain, calibration and verification of modelling
concepts is poor.



1.5. Major limitations of the model.

The model used is a limited perception of processes in a non-uniform, unsteady,
multi-dimensional environment of fluid and sediment. The mathematical, and
numerical model studied, concerns a one-dimensional flow, with a hydrostatic
pressure-distribution over the depth. This formulation does certainly not
correspond to many mountain streams at low-flow conditions, with turbulent
fluctuations in free surface level and where flow patterns exhibit two-
dimensional patterns with complex bar systems and pool-riffle sequences.

This yields a restriction of the applicability of its results. Two major aspects are
reviewed.

one-dimensional hydraulics and morphology.

Morphological responses of a mountain river concern changes in plan form,
channel geometry and/or bed composition. Hence, one of the major restrictions
of this study with respect to morphology, is the assumption of fixed width and
a single-thread flow pattern. At zones of deposition, multiple channels in a
braided river system can be found, that can exhibit significant instable
behaviour. Often, the development of such plan forms is assumed to be related
to macro-scale bed forms including bars (either free or forced by external
conditions) that develop by instability mechanisms. For mathematical treatment
and review of this topic, reference is made to Seminara (1989).

For example Ryan and Grant (1991) report distinct width-responses (widening
in case of qggrodannn\ by means of areal nhnfnomnhc of canony changes
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(sequences of opening and revegetanon). Schoberl (1994) refers to bralded river
sections as important storage buffers in case of large sediment supply.

rheology of flow.

One of the effects not considered in this study concerns changes in rheology.
Accurate classification (Bradley and McCutcheon, 1985) and prediction of
rheological behaviour, for a wide range of sediment concentrations is difficult
(e.g. Rickenmann, 1991). Changes in viscous shear stresses (in laminar flow)
and turbulence dampening (in turbulent flows), induce changes in velocity
profiles and sediment concentrations. As a result, changes in rheology can
significantly affect the friction loss and transport capacity of a flow (Bradley
and McCutcheon, 1985).




An extreme situation consists in case of debris flows, where a fluidized mixture
of sediment sizes develops, with boulders accumulating and tumbling at the
front. In case of debris flow, an unsteady, pulsating mixture of water and fine
and coarse sediment can develop (Rickenmann, 1991), which can dramatically
change the destructive power of a flood (Davies, 1989). Initiation mechanisms
include landslides (Zimmerman, 1990), instable layers of bed material (e.g.
Smart and Jaeggi, 1983) or the collapse of temporary barriers, deposited in a
channel. With respect to the first mechanism, the triggering role of rainfall is
mentioned (Okunishi and Suwa, 1985; Chen, 1988; Cojean, 1994; Hirano ez al.
1994). For an extensive review on the matter, reference is made to Takahashi
(1991).

Similarly, air entrainment due to turbulence at free-surface level is neglected in
this study. According to Chanson (1992), air entrainment can induce a
significant drag reduction, with subsequent effects on friction loss and sediment
transport.

1.6. Outline of the report.

In Chapter two, the system of partial differential equations that represents a
cross-sectionally integrated flow with a mobile bed is analysed. This analysis
concerns the behaviour of solutions and the type and number of boundary
conditions for sub-, trans- and supercritical flow regimes.

The variability of river-bed and sediment-transport composition is considered
in Chapter three. Here, some aspects of mathematical formulations and
numerical solution procedures are considered. For example the interaction
between bed level and composition is analysed. Attention is paid to the
definition of model parameters such as the commonly used "mixing layer"
concept.

The theoretical analyses in Chapter three are used for application to
experimental analyses in Chapter four. This chapter includes analytical solutions
for armouring experiments, abrasion and longitudinal sorting, and numerical
solutions for degradation downstream of a dam, the propagation and
deformation of small-scale bed-level disturbances and scouring in a confined
section.

In Chapter five, the applicability of simplified mathematical models is analysed.
The simplifications concern the decoupled solution of changes in hydraulics and
morphology, and the assumption of quasi-steady and/or quasi-uniform flow



conditions. Numerical tests are added to verify results of the theoretical
analysis.

In Chapter six, the behaviour of discontinuous solutions, such as hydraulic
jumps, bores and aggradations fronts is analysed. Entropy conditions are
considered for a simplified situation, and predictive relations for stability and
propagation rate are described. Numerical solutions are added and compared
with experimental observations.

In Chapter seven, the numerical model, used for several applications throughout
the report, is described. A brief review of methods is given, and the application

of the Godunov method is motivated.

A summary and conclusions can be found in Chapter 8.




Chapter two

Analysis of mathematical model.

2.1. Introduction.

Obviously, mathematical descriptions of flows with mobile beds are similar for
low-land and mountain rivers. Due to the specific conditions, however;~
solutions can be very much different in both river types. This bears
consequences with respect of simplifications in mathematical models, its initial
and boundary conditions. In this chapter, some effects of conditions prevailing
in mountain and piedmont rivers are analysed.

In general, changes in flow mass due to changes in suspended load are
considered to be negligible in river hydraulics. At transcritical flows, however,
the order of magnitude of celerities, which indicate the dynamic behaviour of
solutions, is sensitive to second-order interactions between flow and sediment-
load (Sloff, 1993a; Sieben, 1996). Therefore, in the mathematical model
analysed in this study, flow is considered to be a mixture of water and sediment
(e.g., Holly and Rahuel, 1990a and 1990b; Correia ef al., 1992; Okabe, 1992;
Sloff, 1993a). As a result, changes in sediment transport interact with changes
in flow via density-differences. Rheological changes other than density
differences, which can be observed in sediment-laden and debris flows, are not
taken into account.

The mathematical model concerns a one-dimensional model with variables
averaged over the cross-section. Transversal exchanges of flow and sediment
are not accounted for and river widths represented by B are assumed fixed.

Sediment mixtures are described with discrete size fractions. In chapter three,
some consequences of implementing a variable river-bed composition are
discussed. First, in this chapter, mathematical models with a constant river-bed
composition are analysed.

2.2. Mathematical formulations

2.2.1. Continuity of flow and sediment mass.

To distinguish different types of sediment transport, a suspended load layer and
a bed-load layer is defined (Figure 2.1) with respective sediment concentrations
®,, and é,. The corresponding velocities of water in both layers are #, and u,.



To determine sediment-mass fluxes, velocities should be assigned to the
transported sediment in both layers.

suspended load layer

s

bed load layer

z
. Dy b

Fig.2.1 Sediment-transport layers.

Based on classical definitions of suspended load and bed load (e.g., Einstein,
1950), generally two hypotheses are applied;

- sediment particles in suspension move with the fluid (which yields a
turbulence-averaged velocity and a diffusive contribution due to
turbulent fluctuations in concentration and velocity)

- the concentration of sediment particles rolling and sliding in the bed
-load layer adapts "instantaneously” to local conditions of flow

Mt ~f tha r\r;n;nqll\l

nr oW
UL UL UIv viigiua

four variables {(concentration and velocity in both layers)
these hypotheses eliminate two. The remaining variables are sediment-
concentration in suspension and a bed-load mass flux. It is noted here that in
some cases, changes in bed load cannot be considered instantaneous with

respect to changes in river-bed composition (see Section 3.4.3).
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The fluxes of suspended and bed load, integrated over all size fractions, are
defined as ¢u(a-5,) and s, respectively. Then, the mass balance of a water-
sediment mixture is

8p[a+A(¢s(a—6b)+¢b6b)]B .\ op(1+Ad)ufa-6,)B
ot ox

. op(l-d,)u,b,+ps,)B
ox

+

2.1

- p2B -p2B =0

where ®; and ¢, are volumetric fluxes of sediment and water from river bed to
flow. The densities of water and sediment are represented by p and p_, the
relative density of sediment is defined as A = (p,-p)/p.

The sediment-mass balance of the river bed can be written as
dz,p(1+Acy)B

+p®B + pd B =0 2.2)
ot )
where the sediment fraction in the bed is defined as ¢, = 1-p (p is porosity).
The fraction of water in the total exchange with the bed is defined as
1-8,
@, -1-B) (@, +@,) -~ @, = 5 - @, 2.3)

With respect to density, differences can be distinguished in upward and
downward fluxes. In case of erosion it can be stated 3, = ¢,. In case of
deposition different options exist. Deposition without infiltration implies 8, =
1.

If, however, "frozen" packages of sediment-water mixture are deposited at the
bed, (. equals the depth-averaged concentration of sediment. Then, the

concentration of the mixture will not change due to fluxes between flow and
bed.

Although this is arbitrary in case of sediment mixtures with wide ranges in
grain size, changes in density of river bed are neglected (e.g. Schilchli, 1995).
Because the density of the bed is assumed constant, it is consistent to use 3, =
C().

11



If only sediment is considered, the mass balance is

Aba-8,)+4,0,)B  ddufa-8)+s,)B  0z,B
+ + CO
3 ox o

2.9

Now, combination of the mass balances for sediment (Eq.2.4) and the water-
sediment mixture (Eq.2.1) yields

daB . oufla-56,)B . dz,B . a(sb+(1—¢b)6bub)B
ot ox ot ox

2.5

The thickness of the bed-load layer is of the order of a few grain sizes (e.g.,
Van Rijn, 1984a). In general it can be stated that a > > 4, and u, > > u,.
Therefore, Eqs 2.4 and 2.5 are simplified as

op aB d B dz, B
d)sa + (¢sua+sb) +c Zb

ey 2.6)
ot ox ot

and

a(a+zb>B " duaB -0 (2'7)
ot ox

with # = u,, representing the depth-averaged velocity of fluid and sediment in
suspension. For the bed-load rate, instantaneous adaption to local conditions is

accrimad nnFnrm fhn hwnr\fhnono mentioned in the heainnina of thic caction
uduu‘ll\/u, \/U‘l‘ AAAA kl AAAAAAAAAAAAAAAAAAAAAAAAAAAAA b AAAAAAAAAAAAAAAAAAAAAA

2.2.2. Momentum equation.

In addition to the continuity equations for a water-sediment mixture, the
equation of momentum can be defined. As for the continuity equations for
sediment and flow, the contribution of bed load to density changes of the water-
sediment mixture is neglected.
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Then, the momentum equation is

dua(1+A¢)B ou’a(l +Ad)B g,B da 21 +Ad)
+ — —_— =
ot ox 2 ox

2.8)

dz,, T, B
= £ (1+A0)aB—2 + (1+Ad)g.aB -~
X p

To account for steep slopes, the system of space-coordinates is rotated relative
to a horizontal reference line. In Figure 2.2, the defined z- and x-axes are
shown.

Fig.2.2 Tilted system of coordinates.

Local bed levels z, are defined relative to Z,. The latter represents a spatially-
averaged, constant reference slope of the bed. The resulting components of
gravity forces are

g oz, 5z
i -g cosb | Ox | ; tanf = b i, 2.9
g, ! ox

Hence, in case of river reaches with different slopes, only one average value
for both reaches is used to determine the gradient in Z,. In that case, errors are
introduced with respect to the effects of gravity components in the direction of
flow and perpendicular to the bed. However, in general, the effect of this
correction on the solution will be minor (Appendix D).

The system of partial differential equations (PDE’s) (Eqgs 2.6, 2.7 and 2.8) is

13



applied in the corrector step in the numerical model as described in Chapter 7.

2.2.3. Divergent form.

The form of the mathematical model is of relevance in case of non-uniform or
even discontinuous solutions (Abbot, 1974). To guarantee conservation of mass
and momentum, mathematical and numerical models should be based on a
system as described in Eqs 2.6, 2.7 and 2.8. For analysis of the mathematical
model, however, the conservative form is not appropriate. Therefore, a
divergent form is derived.

The continuity equation for the mixture can be decomposed into a balance for
flow and for sediment in transport. The flow-continuity equation is

da , 0a ou 9 _uadB (2.10)

ot ox x o B dx

The sediment-continuity equation integrated over all size-fractions is

o o 0 o
B 29O o % % dB @.11)

ax o x ), B dx

With the help of the separated continuity equations for flow and sediment mass,
the flow-momentum equation can be written as follows

w o A u% %

a " Fa T aa %
(2.12)
0 a 0 T
+ U ®s —ocgi (2Fr2+1) 0, = gx——b
ot 2 ox p(1+Ad)a
The coefficient o is defined as
o = 8 2.13)
1+A ¢,

The approximate, first-order solution of the cross-sectionally integrated balance
of a concentration in suspension is

9, o,
A + L,
ot Ox

by - b)) = 0 (2.149)
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where ¢, is the suspended-load transport-capacity, 7, and L, are adaption
period and length respectively (e.g. Galappatti 1983, Galappatti and
Vreugdenhil, 1985). Armanini and Di Silvio (1988) suggested a similar PDE
for separate fractions in suspension.

2.3. Characteristic equations.

2.3.1. Introduction.

The system of PDE’s as described in Section 2.2 is of a hyperbolic type. This
enables a transformation into an equivalent set of characteristic equations. These
characteristic equations consist of celerities and ordinary differential equations
(ODE’s) valid along each celerity. The set of ODE’s are the compatibility
equations. Characteristic equations provide information on the dynamic
behaviour of the mathematical model. Characteristics or celerities represent the
propagation of information through the computation domain whereas
compatibility equations represent the type of information carrried along the
characteristics.

With respect to the application of compatibility equations, the Riemann problem
can be mentioned, which concerns the behaviour of discontinuous solutions of
flows (e.g., Stoker 1957, Whitham 1974; Abbott, 1974). For flows at fixed
beds, an illustrative example is the construction of analytical solutions for
dambreak waves by Stoker (1957).

Due to the strongly non-linear character, the application of compatibility
equations to analyse mobile-bed models is not very common. Here, derivation
is considered useful not only for analytical but also for numerical approaches.
For example, the initial behaviour (growth or decline) of disturbances in bed
level and composition can be analysed (Sieben, 1994).

2.3.2. Construction of characteristic equations.

Because the system of PDE’s for a one-dimensional, depth-averaged model is
hyperbolic, the original equations (with x- and 7- coordinates) can be combined
to a form containing ordinary differentials along characteristics, (Hirsch, 1990).
Hence, differences are considered in 7-direction (Figure 2.3).
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characteristic's\ %

At

v

Fig.2.3 Characteristics.

To obtain the compatibility equations, a transformation must be performed. A
three-step procedure as described by for example Lai (1986) or Lin and Shen
(1984) can be followed.

- combine all PDE’s into one PDE

- gradients in variables are stated to be along the characteristics

- solve the coefficients that are used to summon the original PDE’s

This procedure is applied to the one-dimensional model of Subsection 2.2.3. If
every PDE is multiplied with n;, the sum of PDE’s can be written as

T, 0T TT, 1T i, % _ 7,7
O a, n, u, ny ==y +(ey~dIng| |z,
+ + a +
un,-g n, \a, an +un,+yran,| (u, an, Z,
FA
(2.15)
n,d, + aun, + an, o 1
st
+ — =
gzaA 2
nlL, + a (2Fr*+1)n, + uan,| |®,,

The source term includes contributions due to friction, gradients in width and
relaxation of suspended load

ua dB ( T, ] S, dB (2.16)
T8 L

pama) " Bac ")
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Gradients in variables along a celerity are defined as

=2 oy o 2.17)

where ¢ is a celerity.

Application of this transformation to all terms at the left-hand side of Eq.2.15
requires that multiplification vectors are perpendicular to the characteristic path.
For example depth is considered.

n a

1 t

un, g n,

- PR T

ax

This yields 4 conditions to solve n,. When these values of n; are found, a
characteristic equation can be constructed for every celerity ¢,.

—+n,-—n,t(c ‘d) : dd) (219)
,l 5
( i a 2 (,0 ) 3)T:+(1147A+06unz+an3> ; = Ol

If explicit values for the celerities are known, Eq.2.19 can be integrated to
obtain the Riemann invariants of this model. In a linearized model, an
equivalent Riemann invariant W, can be defined for every celerity ¢,

2.20)

u
W, =na+nu+ (nl—;n2+(co—cl>)n3) z, + <n4TA+ocun2+an3) o}

which enables rewriting the characteristic equations as

aw, o, W,

v e, — =0 2.21)
dr ot ox

1
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The corresponding solution for the multiplification coefficients n, reads

n, = galc,~dJyc P n, = (cy-dbJca (u-c)y P ; n, = u(—g2a+c(u—c)) P

n, = a(u—c)(gzau—occ<co—d)s)( _gza(ZFr2+1)~ch+cu(c u))
2.22)
and
P=L -Tc (2.23)

Hence, for every value of ¢, a set of n,; consists. The celerities ¢ are roots of
3 2
(E) -2+ ¥s (E) + |1+ v__ 1 (E) + —‘l»’s =0
u o P, ) \u co~b, Fr?)\u (co=d)Fr? (2.24)

L
V ec=--4
T,

2.3.3. Analysis of characteristic surfaces.

In hydraulic and morphological research, the analysis of characteristics has been
applied extensively to one-dimensional models with and without mobile bed
{e.g. De Vries, 1965) and 2DH-models with fixed beds (Daubert and Graffe,
1967; Katopodes and Strelkoff, 1978; Abbott, 1979) and mobile beds (Lin and
Shen, 1984; Lai, 1986; De Vriend, 1987 and Sloff, 1992).

Celerities can be interpretated as propagation rates of infinitely small
disturbances in model variables. By comparing fixed-bed and mobile-bed
models, close correspondence of celerities can be observed for Fr < 0.8 and
Fr > 1.2 and small values of s,/q (De Vries, 1965). Hence, "instantaneous"
changes in water depth and velocity can be considered decoupled from the
relatively slow changes in bed level. This enables quasi-steady flow modelling
as described by De Vries (1965) and Vreugdenhil and De Vries (1973).

This analysis can be applied for a two-dimensional model as well. In a 2-DH

model with a hyperbolic set of PDE’s, a three-dimensional space constructed
by #-, x- and y-axes can be confined into a two-dimensional space constructed
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by 7, a curve parameter along a bicharacteristic ray and s, a parameter
perpendicular to the bicharacteristic ray (Figure 2.4).

To construct characteristic surfaces, it is stated that along characteristic
surfaces, partial differentials are undetermined. With this condition and the
Huyghens’ method, characteristic surfaces can be constructed (Sieben and Sloff,
1994). For mathematical backgrounds, reference is made to Courant and Hilbert
(1962), Fletcher (1988a, 1988b) or Hirsch (1988, 1990) among others.

S
Fig.2.4 Characteristic curves.

Obviously, celerities in one-dimensional models correspond to rays along
characteristic surfaces in two-dimensional models. To indicate some differences
between one- and two-dimensional models, characteristics are compared.
Therefore, a two-dimensional model is applied, consisting of continuity
equations for flow and sediment, and momentum equations in longitudinal and
transversal direction.

Flow continuity

da  Oua  dva _ (2.25)

or ox oy

Without second-order terms, the balances of x-directed and y-directed
momentum in a depth-averaged flow are

0
@, + u_aﬁ + v% - g% - % =g.- b (2.26)

ot ox dy Zox gZE pa
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@w@w@!,g@_g%:g_h 2.27)

ot ox oy 29y £ oy

where u and v velocity component in x- and y-direction, and 7, bed shear-stress
in j-direction. The components of bed material load are deﬁned as

Spe = Sy 5 Sy = —-s, (2.28)

utol utor
(De Vriend, 1987). Then, the sediment mass balance is

% 3“+T2Q+T du vy _ (2.29)
ot ' ox dy dy o

with

2 2 2(,2
T, =a u—(qHV—dJ) ; T, =a u_(v_¢+¢] s I = au“;(‘l"d’)
ior (2.30)

For a two-dimensional model with a fixed bed, the family of characteristic
surfaces consist of one characteristic plane (streamlines along which vorticity

1 \ ivnla Car o Aicrnmaions
15 transpor wd, Vu,ugdCuuu, L(J‘U‘)/ and a circle. For a two-dimensional model

with mobile bed and constant composition, one characteristic plane (vortex
condition), a distorted "circle” and a small triangle can be found. The latter two
curves are coupled.

If x-axes are oriented in flow direction (which implies that v = 0 m/s and 4 =
U,,), characteristic rays of the "circle" and triangle are roots of

3 2
ER it
u u u
Ycos®0 +¢sin® 0
Fr?

(1+¢—Fr2)c LA 00
Fr? Fr?

(2.31)

+ cosf [

If the orientation 6 is zero (in downstream direction), celerities of the one-
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dimensional model are obtained.

In transversal direction, only two non-zero celerities are found (Sieben, 1994).
For low values of Fr, information along these characteristic rays concerns water
depth and bed level mainly (i.e. free surface level). With increasing values of
Fr, information on changes in the transversal velocity component v becomes
significant. At critical flow, the transfer of transversal information includes a
and v, and at a slightly lower order « and z,. Clearly, at values of Fr larger
than 0.8, information on transversal changes includes all variables.

The sensitivity of characteristic surfaces to the rate of sediment transport s, can
be analysed by computing characteristic curves for different values of s,. Both
curves are combined into one graph, and differences can be noted visually. In
the following analysis, sediment transport is predicted with a simple powerlaw
s, = mu" (with m = 10* s*/m’ ; n = 5). Huyghens’ constructions of
dimensionless bicharacteristic surfaces are presented for increasing values of Fr
in Figures 2.5-a to 2.5-f. Unfortunately, the scales of n and s are somewhat
distorted. Flow is directed from left to right along s.

subcritical flows

For low values of Fr (Figures 2.5-a and -b), the "circle" is insensitive to the
rate of sediment transport. The magnitude of the triangle is negligible. From
comparison with fixed-bed models, or by analysing the compatibility equations,
it can be concluded that the "circle" represents the propagation of changes in
hydraulic variables. Similarly, the small triangle can be related to morphological
changes.

n Fr=0.30 n Fr=0.60
S — —»S
Fig. 2.5-a Fr = 0.3. Fig.2.5-b Fr = 0.6.
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transcritical flows

For values of Fr near unity (Figure 2.5-c), sediment-transport rates affect
disturbances that propagate along the upstream-directed part of the "circle".
There, the coupling between both families of curves becomes significant. This
affected part expands with Fr (Figure 2.5-d).

n Fr=090 1N \E\rf 1:20

_
/ N

Fig.2.5-¢c Fr = 0.9. Fig.2.5-d Fr = 1.2.
supercritical flows

For supercritical flows (Figures 2.5-e¢ and-f), the effect of s, on characteristic
surfaces in transversal direction is shown. The parts of the characteristic
surfaces that are sensitive to s, are directed in upstream and downstream
directions. This marks an important difference with one-dimensional models.

4 OonN
1.0V

_Fr=150 =

Fig.2.5-e Fr = 1.5. Fig.2.5-f Fr = 1.8.

From analysing the compatibility equations (Sieben, 1994), it can be concluded
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that along parts of the curve that are sensitive to transport rate, again mainly
changes in bed level consist. Hence, for supercritical flow, transversal changes
in bed-level can be directed in both upstream and downstream directions. This
in contrast with one-dimensional models, where transversal propagation is
omitted and changes in bed level can be related to upstream-directed
characteristics mainty.

2.4, Analysis of a 1-D model.

2.4.1. Characteristic equations.

Analysis of characteristic equations provides insight into the mathematical
model. This insight is inevitable in the application of numerical schemes and
type and number of boundary conditions. In the following analysis, a one-
dimensional model with mobile bed and constant composition is used.

da da du _ 2.32)
ot ox ox

Ju du da 9z, Tp
T O S R (2.33)
o o STar Sa & @
o ds
Yadu K g oy o 1% 2.34)
c, Ox ot a du

The corresponding compatibility equations are

da du dz, Yy
o2 _ ctu-) 2 & —0)—2 = —cu- -2 (2.35)
8L, c(u—c) 0 g (u—c) m c(u C)[gx pma)
with
2)3 , (E)z L 1+y/c, c Ve, 0 2.36)
u u Fr* Ju  Fr?
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The change in for example U along a characteristic ¢; is defined as

v _ Ut - Ul 2.37)
dr At

Hence U/, which represents variables at three different locations, is required
to solve the characteristic equations (Figure 2.6).

/A yn
e

A g
ﬁ/ / characteristic
/ E At
2 C2 ;J C‘
Uy vl U, Uy

Fig.2.6 Integration along characteristics.

With the variables at the three locations, the new variables can be written as

0
a a, a, a,
T
Url = |ul = Rlu + S |uy| + Tlug| + At |8, —— (2.38)
m
< z z z
b 1 2 3 0

with R C and 7 matricee that can he conctriicte
' ang f r that can pe t

1Ll 2%y ar H vt gt vl v iaS e e ls

-

/ solving the characteristic

b
e

—

d

equations. The variables after a time step Af can be interpretated as "weighted-
averages" of the initial variables at locations i = 1,2 and 3. To analyse these
"weights", variables are made dimensionless by applying
araa’;u:uu/;zb:aoz; (2.39)
The matrix R corresponds to the upstream-directed celerity ¢, the matrices S
and T correspond to the small and large, downstream-directed celerities ¢, and
¢;. In other words, the contribution of downstream information is represented

by R, the contribution of upstream information by S and T. The dimensionless
coefficients of R, S and T are represented in the Figures 2.7, 2.8 and 2.9.
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Fig.2.7 Solution of depth. Fig.2.8 Solution of velocity.

0.1
0.01

0.001

0.0001

Fig.2.9 Solution of bed level.

The relative values of the coefficients in the matrices indicate the contribution
of a variable (located either up- or downstream) to the solution. Based on the
Figures 2.7, 2.8 and 2.9, three zones can be distinguished; subcritical flow (Fr
< 0.8), transcritical flow (0.8 < Fr < 1.2) and supercritical flow (Fr > 1.2).

Subcritical flow (Fr < 0.8).

With respect to velocity and depth, information along ¢, (matrix S) does not
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contribute to the solution for Fr < 0.8. With respect to bed level, however, the
solution is mainly determined by information along ¢,. Both aspects can be
combined when decoupling hydraulics from morphology. This corresponds with
the quasi-steady flow approach for analytical and numerical models for
morphology (De Vries, 1966).

Transcritical flow (0.8 < Fr < 1.2).

In transcritical flow (0.8 < Fr < 1.2), the solution is merely determined by
information along the up- and downstream directed ¢, and ¢, (matrices R and
T), which are now an order of magnitude smaller than ¢;. Velocity and depth
are significantly influenced by spatial gradients in bed level; the contribution of
both velocity and depth reduces. This favors the application of quasi-uniform
flow models, where convective terms are neglected.

Since changes in bed levels are determined more or less symmetrically by
contributions of up- and downstream bed levels, morphological changes will
have a diffusive character. This has been found as well in numerical
experiments (Chapter five). This corresponds with the application of parabolic
models for morphology in transcritical flows (e.g. Di Silvio, 1991).

The strong diffusion in up- and downstream directions in transcritical flow,
relative to one dominant direction of propagation in either sub- or supercritical
flow corresponds with the observed washout of bed forms ("plane bed", Simons
and Richardson, 1960 and 1961) in transitional flow regimes (e.g. Van Rijn,
1984c; Raudkivi 1990). It is noted here that the connection between F7 and bed
form type is of relevance only in case of significant coupling of bed level and
water surface profiles (such as standing waves or antidunes, Taylor and Brooks,
1961). For low values of Fr, when this coupling is negligible (ripples, dunes),
transport parameters are better indicators (Van Rijn, 1989).

Supercritical flows (Fr > 1.2).

In supercritical flows, the effect of information along the upstream-directed
celerity ¢, on the solution of velocity and depth diminishes. The effect of
upstream and downstream bed levels on the solution of depth and velocity is
comparable to subcritical flows. Bed levels, however, are mainly determined
by information on bed levels along ¢,. For morphology, this would resemble a
simple-wave model promoting again a quasi-steady flow approach.
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2.4.2. Harmonic solution.

Because the system of PDE’s has a hyperbolic character; solutions concern
disturbances or waves in variables, propagating in up- or downstream direction
through the computation domain until a steady state is obtained. Corresponding
to the type of solution, simplifications in the system of PDE’s for shallow-water
can be made (e.g. Jansen et al., 1979 or Hager and Droux, 1986). When
linearized models are used, harmonic solutions are convenient for theoretical
analysis (e.g, Vreugdenhil, 1994).

To study simplifications, solutions of the complete and simplified models must
be compared. First, a reference solution of the complete model is constructed.
In the following analysis, river-bed compositions are again assumed to be
constant. Hence, the mathematical model considered in this subsection is equal
to that in Subsection 2.4.1. Conform procedures described in for example
Vreugdenhil (1972, 1989), all zero-order terms in Eqgs.2.32, 2.33 and 2.34 are
assumed to be zero, which results in zero-order, uniform and steady flow. The
derivatives of first-order terms can be made dimensionless by introducing the
following transformations

/ a , u / 2y / X

t
a = ’ u = , Zb = — ’ X = ’ t/ = —
a, T T

(2.40)
u

(==}

The time period T represents a representative period of the solution. For short-
hand writing, primes are left out.

The resulting system of three first-order PDE’s, with three variables a, « and
Z, can be combined into one third-order PDE with variable z, (e.g. Barneveld,
1988)
3 3 3 3
'z, 0z, +Fr2—1—1|1 d’z, oy 9%,

+2

or3 oxar? Fr?  ox?ocr Fr? ox®

+

(2.41)

27



where

8, L
C? a

E =

(2.42)

The length-scale L can be based on hydraulic features by L = uT, with T a
characteristic period of a hydrograph, or on geometrical features, representing
a characteristic length of bed-level fluctuations.

For constant values of Fr and y, different types of wave solutions can be found,
identified by different values of E (relative contributions of inertia and friction)
(Vreugdenhil, 1972; Grijsen and Ogink, 1973; Grijsen and Vreugdenhil, 1976;
Ponce and Simons, 1977; Ponce et al., 1978). Examples of increasing E
(decreasing inertia and increasing friction contribution) are surges, tidal waves
and river-flood waves.

If a sinusoidal solution is used to represent a flood hydrograph, three non-trivial
wave-type solutions can be found. With increasing propagation rate, these
waves are identified as I (upstream), I and III (downstream). For £ = 0,
propagation rates of the three waves equal the celerities. With increasing value
of E, propagation rates decrease.

These harmonic solutions can be characterized by propagation rates and
damping lengths (Figures 2.10 and 2.11).

10‘. \ 1 - T / /\\
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Fig.2.10 Wave propagation rates. Fig.2.11 Wave attenuation-length.

For higher values of Fr and larger values of £, wave III approaches a kinematic
wave with propagation rate 3u/2 (e.g. Jansen et al., 1979). This is in
correspondence with Bren and Turner (1978), who successfully described wave
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propagation in a rough stream (with subsequent high values of E) with a
kinematic wave approximation.

The dimensionless attenuation length for wave III increases for longer waves
and higher values of Fr (less damping). This reduction of damping enables
development of instable wave-type solutions at Fr = 2, which corresponds with
the existence of roll waves (Mayer, 1959; Ishihara, 1960; Taylor and Kennedy,
1960; Escoffier and Boyd, 1962; Dracos and Glenne, 1967; Berlamont, 1976,
Berlamont and Vanderstappen, 1981; Kranenburg, 1990; Rosso, 1990).

Attenuation lengths of waves I and II are small compared to wave IIl. For
waves I and 11, a decrease in attenuation length is found with increasing value
of Fr (more damping). For Fr < 0.8, E has small effects on downstream-
propagating waves II, for Fr > 1.2, this is the case for upstream-propagating
waves I.

To indicate the contribution of bed mobility, relative amplitudes (and phase
shifts) in bed level can be constructed for each wave. The bed-level response
for the different wave-type solutions is represented in Figure 2.12. Arrows
indicate the effect of increasing E on the response. In a linearized model,
changes in bed level due to wave III are negligible. For £ = 0, changes in bed
level exist along wave II for subcritical flows, and along wave I for
supercritical flows. For E > 10°, changes along waves I and II are similar.
This is in correspondence with the conclusions drawn in Subsection 2.4.2.
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Fig.2.12 Bed-level response.
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2.5. Boundary conditions.

2.5.1. Introduction.

The number of boundary conditions is determined by the sign of characteristics;
one negative and two positive characteristics implies two conditions upstream
and one condition downstream. Because characteristics of mobile-bed models
are non-zero and do not change sign, the number of conditions at a boundary
is constant for all types of flow regime. This is in contrast with fixed-bed
models.

The type of boundary conditions is determined by the characteristic equations;
the boundary conditions substitute the "incoming" characteristic equations.
Therefore, one should be able to reconstruct the incoming characteristic
equations from the boundary conditions.

In river-engineering, stage-discharge relations are often applied to obtain
discharges from records of water levels. In case of flood waves, hysteresis
effects should be taken into account (e.g. Jansen et al., 1979). With respect to
the use of waterlevel records at higher values of Fr, the following is noted. In
mountain rivers with high roughness (high values of E), flood waves can be
approximated as diffusion waves. If the contribution of time changes to the
dynamics of the wave can be neglected (quasi-steady flow but not uniform),
discharges can be written as

2 -
_ (1-Fr? da Q, - aC.fai,B (2.43)

“w i, ox T

The role of the Fr number is evident. The hysteresis due to non-uniformity
diminishes in critical flow and reverses in supercritical flow. Hence, for
supercritical flows, Q is smaller than Q, at the rising stage, and larger than Q,
at the falling stage of the hydrograph.

2.5.2. Type of boundary conditions.

At the boundaries, additional conditions complete the set of equations together
with the outgoing characteristic equations. Hence, conditions prescribed at
boundaries must be consistent with the information carried by characteristic
equations that leave the domain of computation. This consistency comprises the
number and type of boundary conditions.
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Different combinations are possible as long as the problem is well-posed.

In this section, this well-posedness is analysed locally at one boundary, without
considering the conditions at the other boundary. According to Hirsch (1990),
a problem is well-posed if the full information on the ingoing and outgoing
characteristics can be recovered from the imposed condition.

If the problem is well-posed at the boundaries, the boundary conditions can be
substituted by equivalent ingoing characteristic equations. In the following
analysis, the latter format is the starting point. Objective is to prove the
equivalence with the boundary conditions.

Conform Hirsch (1990), a distinction between the imposed variables v and the
free variables V' is made. As a result, the set of valid characteristic equations
(outgoing information) at the boundary can be written as

Tﬂvop - s (2.44)

n n

rv -

Tp]v”:AtS+

Tn}v()n .

The equations resulting from the set of additional boundary conditions can be
written as

[T"]v" . [Tp]vp - gP (2.45)

P
Hence, the solution of the set of equations at the boundary can be written as

Tn" T: v S

S?

(2.46)

T T |7

p

The free variables v, can be recovered from the internal conditions 8" if

v [ s - mhve] - det | T | < 0 (2.47)

At the upstream boundary, a combination of two imposed variables is
represented by the vecfor V7, and the free variable is represented by the scalar
V.
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For the three different types of conditions at the upstream boundary, the
condition for local consistency (Eq.2.47) can be written as

vi=a - det|Tn" =&f0
Fr?

vt eu - det|T)| = ¢, (1-¢,) # 0 (2.48)
1_

vi=gz - det|Tn" =—¢;1¢0
Fr

with ¢, = c,/u, representing the non-dimensional, upstream-directed celerity.

At the downstream boundary, the imposed variable can be a, u or z, and is
represented by the scalar v¥. The free variables are a combination of two
variables represented by the vector v,. For the downstream boundary, the
combination of two free variables is represented by the vector V', and the
prescribed variable is represented by the scalar v°.

For the three different types of conditions at the downstream boundary, the
condition in Eq.2.47 can be written as

(1-F3)(1 -y~ b5)
Fr?

vF 0

a - det i T,

M AN

Ak
P, Py (e

Fr?

vP = # 0

w - det| T,

n
vl =z, - det'Tn

= ¢2¢3 <¢3_¢2) * 0

with ¢, and ¢, representing the non-dimensional, downstream-directed
celerities.

The dimensionless values of determinants that correspond with the different
options are constructed in Figure 2.13.
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Fig.2.13 Determinants of variable prescription.

With respect to boundary conditions, again three regimes are distinguished;
subcritical flow (Fr < 0.8), transcritical flow (0.8 < Fr < 1.2) and
supercritical flow Fr > 1.2.

For all regimes and all combinations, the value of the determinant is non-zero.
Hence, in principle, due to the mutual coupling of variables, prescription of any
variable at either boundary would be possible, as long as the conditions at the
up- and downstream boundary are consistent and the problem is well-defined.
However, not every combination is a good one. Based on the relative values of
the determinants, the performance of the combinations is qualified. If a value
that corresponds to a combination of conditions approaches zero relative to
other combinations, it can be expected to perform badly.

With respect to downstream boundaries in subcritical flows, prescription of bed
levels can be expected to result in inconsistent solutions, whereas prescription
of water depth or velocity performs well. For supercritical flows, description
of bed level is to be preferred over description of velocity or depth at the
downstream boundary. For transcritical flows, values of determinants are of
similar order, but prescription of velocity or depth still is to be preferred.

[f, with respect to the upstream boundary, values of determinants are compared,
depth or bed level (free surface level) as free variables are to be preferred for
very small values of Fr. With increasing value of Fr the situation changes in
favor of bed level as a free variable and at the cost of depth as a free variable.
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At transcritical and supercritical flows, prescription of velocity and depth at the
upstream boundary are to be preferred in mobile-bed models.

The analysis on local consistency is not sufficient for selecting combinations of
conditions at the boundaries up- and downstream of the computation domain.
For example, in correspondence with the symmetrical behaviour of solutions at
transcritical flows, symmetrical boundary conditions could be expected.
However, up- and downstream boundary conditions should be consistent as
well; prescription of depths at up- and downstream boundaries can induce
multiple steady-state solutions.

Some combinations of up- and downstream boundary conditions and a
qualitative indication of applicability have been presented in the table. The
remarks concern the general applicability of respectively the option for the
upstream and the option for the downstream boundary.

upstream downstream condition
condition
a Uu Zp
Fr < 1.2 Fr <12 Fr > 1.2

u, 7, Fr < 0.8
Fr < 0.8

a, z,

a, u 08 < Fr< 12 Fr>1.2
Fr > 0.8

Table 2.1. Type of boundary conditions.

Hence, prescription of waterlevels at the downstream boundary can be expected
to perform well in both subcritical and supercritical flow regimes. In the first
regime this will imply prescription of a or u, mainly, whereas in the latter
regime, this boundary condition mainly affects the bed level z,.

Prescription of discharge and sediment transport at the upstream boundary will
enable determination of u and z, in subcritical flows, whereas these boundary
conditions can be used to determine @ and u in trans- and supercritical flows.




Chapter three.

Concepts for models with sediment mixtures.

3.1. Introduction.

One of the main features of mountain rivers is a graded composition of alluvial
sediments. Apart from non-uniform and unsteady hydraulic conditions, this
gradation characterizes the river morphology. Size-selective entrainment,
transport and deposition results in paved or armoured bed surfaces and
longitudinal sorting of grain sizes. One of the effects of size-selective mobility
is a bimodal size-frequency distribution that can often be observed (Kellerhals
and Bray, 1971).

To account for variable compositions of a river bed, in general, a layer concept
conform Hirano (1971, 1972) is used, including layers of transport and storage.

In this chapter, some theoretical aspects with respect to the modelling of river
beds with a variable composition are reviewed. Changes in bed level and
composition appear to be coupled. Nevertheless, numerical models often apply
a non-simultaneous solution sequence. In Section 3.3, the effect of decoupling
changes in composition and bed level is analysed.

By analysis of a quasi-steady flow model, Ribberink (1987) detected a
mathematical instability of this model in case of erosion of a coarse bed surface
that covers finer material. Although Rahuel (1988) did not observe this
phenomenon when analysing the celerities, the instability forms a severe
limitation at values of Fr larger than 0.8 (Sieben and Sloff, 1994). The
mathematical stability is discussed and options for stabilization of the model are
summarized (Section 3.4).

To enable a proper selection of layer thickness, dynamic responses for different
conditions are analysed in Section 3.5. Different options such as the number of
layers, the type of sediment fluxes and the definition of thickness and its
relation with physical phenomena will be reviewed. Some remarks with respect
to the definition of layer thicknesses are added in Section 3.5.3.

Some analytical and numerical applications to armouring phenomena and
longitudinal sorting effects can be found in Chapter Four.
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3.2. Mathematical formulation.

3.2.1. Introduction.

With respect to mathematical modelling, it should be noted that alluvial
transport of sediment mixtures includes many processes that complicate
prediction and subsequently restrict the possibilities for modelling. Some aspects
are reviewed.

hiding and exposure.

An accurate prediction of individual particle movements in graded material is
out of scope. This would require a correct description of local particle-shear
stress and resistive forces by grain-grain contact forces. The resulting
movement of coarse fractions is often considered as being random and
infrequent (e.g. Einstein, 1972; Nakagawa and Tsujimoto, 1980; Nakagawa
1988; Shuyou et al., 1988; Bunte, 1992).

In this study, micro-scale effects such as dampening of turbulence and
subsequent shear stress by larger particles, hiding of smaller particles, irregular
grain-grain interactions and funneling of flow by grain patterns are all assumed
to be characterized by lumped coefficients. After Einstein (1950), many
empirical hiding-correction formulae have been developed, often only applicable
to a corresponding transport-rate predictor (e.g. Egiazaroff, 1965; White and
Day, 1982; Parker ef al. 1982; Proffit and Sutherland, 1983; Misri ef al. 1984;
Andrews and Parker, 1987; Diplas, 1987; Wilcock, 1988). A clear review can
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bed-form interaction.

In rivers with coarse bed material, small-scale ripple, dune and anti-dune
features are generally absent (Hey and Thorne, 1986), due to relatively small
particle shear-stresses (Parker er al. 1982; Pitlick, 1992). As a result,
theoretical and experimental analyses on for example armouring processes are
mainly limited to flat bed conditions. However, in case of sufficiently graded
material, bed forms at coarsening beds can increase the coarsening or
destabilize the bed surface (Klaassen ez al. 1986; Wilcock and Southard, 1989:
Dinehart, 1989; Klaassen, 1990; Chiew, 1991; Dinehart, 1992).

Laronne and Carson (1976) and Brayshaw e al. (1983) distinguished different
kinds of clustering of fine particles near large ones. This clustering induces
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local deposition and erosion (Kuhnle and Southard, 1988). Dinehart (1989)
measured the production of rapidly migrating gravel dunes.

With respect to sorting at the scale of bars, observations by for example
Bhowmik and Demissie (1982), Church and Jones (1982), Wesche er al.
(1987), Ho (1988), Carling (1990), Whiting and Dietrich (1991) and Diplas
(1994) can be mentioned that describe armouring of riffle sections or
segregation of coarse particles from fines in the lee areas. These two-
dimensional sorting effects can be significant in the stabilization of bars and
riffles (Jeaggi and Smart, 1982; Church and Jones, 1982; Parker, 1991¢) and
in case of river bends (Olesen and Kalkwijk, 1987; Bridge, 1992).

Longitudinal and transversal sorting effects due to gravity, which result in the
deposition of coarse material in deeper parts of the bed, are not considered in
this study. The contribution to longitudinal sorting can, however, be
incorporated by correcting sediment-transport rate predictors for local-slope
effects. For transversal sorting, information on the cross-section should be
incorporated (e.g. Crosato, 1995).

initiation of particle movement.

In case of sediments with bi-model size-distributions, distinct mobility of
fractions (e.g. Drake ef al. 1988) can result in abrupt changes in transport rates
and composition (Klingemann and Emmet, 1982; Church et al. 1991).
Exceedance of a shear-stress threshold can result into a sudden supply of fine
material (Jaeggi and Rickenmann, 1987; Petts er al. 1989; Simons and Simons,
1987). Hence, inaccurate prediction of critical shear stress (Richards, 1990)
directly result in difficulties in predicting morphological changes.

Nevertheless, much effort is spend to develop transport predictors for mountain-
river conditions. The dominant role of shear-stress exceedance over threshold,
as applied in sediment transport predictors such as Meyer-Peter and Miiller
(1948), is confirmed by many observations. At low levels of particle shear,
relative differences in mobility are pronounced, whereas this reduces with
increasing shear stress (e.g., Cegen and Bayazit, 1973; Bayazit, 1975; Parker
et al. 1982; Suzuki and Michiue, 1988; Kuhnle, 1988; Wathen 1995). Since at
higher discharges, differences in mobility diminish, annually-averaged transport
rates are biased to the bed surface composition (Kuhnle and Willis, 1992).
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3.2.2. Introduction of layer concept.

The implementation of variable bed-compositions into models for river
morphology requires an accurate description of sediment mixtures. To account
for grain-size distributions, size fractions are introduced. A size fraction p, is
defined as the portion of a specific grain size D, in a reference volume. This
reference volume per area river bed can be defined by a reference layer-
thickness 6, (Figure 3.1). The resulting layer concept is introduced by Hirano
(1971, 1972) and has been applied and developed widely since. Developments
are reflected by Bennet and Nordin (1977), Borah ef al. (1982a and b), Karim
and Holly (1986), Ribberink (1987), Rahuel (1988), Rahuel er al. (1989),
Armanini and Di Silvio (1989), Di Silvio (1991) and Niekerk ef al. (1992).

With respect to flow, the mathematical model used in this chapter consists of
the mass continuity for water and the momentum equation.

da da du

+u— +a— =20
ot ox ox
3.1
u du da 0z, gu’
o tUu— 8~ "8 T&*
ot ox ox ox C3a

3.2.3. Definition of a single-layer model.

As described in the introduction, reference storage-layers are defined to account
for changes in composition. Apart from storage layers in the bed, transport

layers in the flow are distinguished. Vertical fluxes are the mass exchange
between storage layers and layers with horizontal, alluvial transport.

For a single reference-layer at the surface of the bed, mass fluxes of sediment
and fractions in transport and storage layers are defined as shown in Figure 3.1.
It should be noted here that generally the differences between pavement and
substratum are subtle and affected by the sampling method (Klingemann and
Emmet, 1982; Church er al. 1987). The mass flux of a fraction { between
substratum and reference layer is defined as

%, (3.2)

® = - o
oi 0 [301 at

with 8,, = p,, in case of erosion and 3, = p,, in case of sedimentation.
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Fig.3.1 Single-layer model.

The mathematical model is constructed by defining size-specific mass balances
for sediment in the different layers. Sediment fluxes are as defined in Figure
3.1. Sediment-continuity for a fraction i in the bed-load layer reads

ou ap,; N-1 ap..
fug, Thisl S DDy 2 v @y - @y = 0 3.3)

j=1

The introduction of N size fractions requires the formulation of N-1 fraction-
specified sediment-mass balances such as Eq.3.3 in combination with

N

The coefficients fin Eq.3.3 refer to partial derivatives of a sediment-transport

3.4

predictor

. ) os,
os as, . S, 3.5)

fui_— ’];”‘—a_p; ’fDi—aDmp

Mass continuity in the reference layer with a constant layer thickness is

described by
Z ap..
&, +cp —L2 +cd P -0 3.6)
bi Opoz or 0~ 'p ot
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Egs 3.3 and 3.6, and the mass balance for sediment in suspension can be
combined to eliminate ¢
oz, P, by 7 ou

aad)Si + co[i — 4+ (;05 —Z +rua—— + f — +
ot ° ot Poo ox “ ox

bi

3.7
ap ) N-1 ap .
+f—E2 + VN (D-D)—Z =0

3.2.4. Definition of a multiple-layer model.

To account for vertical structures in the bed composition and to improve the
mathematical stability, Ribberink (1987) introduced a transition layer between

the reference layer at the surface and the sediment in the substratum (Figure
3.2).

N ’
suspended load layer

bed load layer

| —— sb i
paverment t

B,
subpavemem 45 ¢ J\ ps .

pi

substratum - ”¢ ‘ﬂ‘; 7 7p '

Fig.3.2 Double-layer model.

After Di Silvio (1991), the layers are referred to as pavement and subpavement
layer. Then, fluxes can be defined as

0z, dz43.8)
bpi _KCOBpiFI > ~(1-x) Oﬂsz a ) q)oi = COBoiE

0]

with « the probability of mass exchange between pavement and bed-load layer,
relative to the subpavement. Such a concept accounts for horizontal distributions

in composition ("patches”, e.g., Paola and Seal, 1995). The cross-sectionally
averaged median grain size of the river bed is defined as

d N
D, =xY pD +(1-xY p,D, 3.9)
i=1 i=1
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In case of erosion; 8, = py, B, = p, and 8, = p,;. In case of sedimentation;
B, = Pui» By = pyand B, = p,;. The dampening effect of an additional layer
on the dynamics of a bed composition is illustrated in Section 3.5.2.

To preserve mass continuity in case of large bed-level fluctuations and to extend
the flexibility of the model, a relatively inactive third layer can be distinguished
(Figure 3.3).

Fig.3.3 Triple-layer model.

Again, a mass balance with corresponding fluxes can be defined for each layer.
If a constant layer-thickness is applied, these balances can be written as

9%, py

COT + 0, -¥,-¥%,=0
9%, p,,;

05 Cy + ¥, - ¥, =0 3-10)
J% .

¢ 3p3l+¢3i+Tzi+T3i’T~:0

4i

o

The mass fluxes between the mutual layers are defined as

2, 0z,

¥y, = oy (17K, ﬁu‘g e Y U S RS BZ"_E;Q 11)
azb 0z

Py = G Ky B3i§ P B4i?:

The composition of mass fluxes equals that of the source layer: in case of
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deposition, fluxes are downward and 3; equals the composition of the upper
layer. In case of erosion, fluxes are upward and 3, equals the composition of
the underlying layer.

Vertical fluxes between bed load and river bed are defined with the help of a
probability of exchange. Hence, the exchange with the transport layer is
optional, which enables switching off different layers. Mass fluxes between bed
load and river bed are defined as

D, =% @ Dy =Ky Dy 5 By = (1K) D, @.12)

bpi

where the coefficients k;, k, and k; are distributions coefficients that determine
the probability of mass exchange with the different layers.

3.2.5. Analysis of characteristics.

The analysis of characteristics is carried out for a single-layer model with a
sediment mixture composed of two size fractions (N = 2). Then, 4 PDE’s are
obtained. The corresponding four celerities, are roots of

(2)4 - (2+—a—Yh1) (2)3 + ____Frz—l—ljl + 2%y )(E)z +
u 5, u

Fr 5 M

) u
(3.13)
. L(E) _a (FrPDY, V) (_) Cate
Fri\u 3, Fr? u d, Fr?
with
+ B, X, +B X X, X
w _ f;zl fu2 : th - Bol 2 B02 1 : Yh2 - f;zz ;f;l 2
Gy @ Co Ua coua®  (3.14)

X, =Sy v Ipy (DiDy) 5 Xy = Sy + S (DyDy)

Hence, with respect to mobile-bed models with uniform sediment, additional
characteristics are found (e.g., Rahuel, 1988). The additional celerity increases
almost linearly with 6,,’1; increasing the layer thickness §, implies reducing a
celerity. For infinite values of §,, celerities equivalent to mobile-bed models
with uniform sediment (De Vries, 1965) are found. In Figure 3.4, celerities are

constructed for different values of §,.
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Fig.3.4 Celerities of single-layer model.

3.3. Decoupled solution procedure.

3.3.1. Alternative formulation.

As reported by Ribberink (1987), analysis of characteristics shows that changes
in bed level and composition cannot be decoupled. This can be concluded as
well when analysing compatibility equations (Sieben, 1994). Nevertheless, to
omit application of large algorithms, in general decoupled, or sequential
solution procedures are applied; first changes in bed level are computed, then
compositions are updated (e.g., Ribberink, 1987; Di Silvio and Peviani, 1989;
Evans and Sieben, 1996). This procedure is also applied in the numerical model
described in Chapter seven. Therefore, some effects are discussed.

The first step of this procedure resembles that in models with uniform sediment.
In this step, the fraction-integrated bed-load mass balance is solved

N-1

S Sy o X0y T -0 319
COE 2 Wi g i ];N Z;D/(i N)E =

i=1

where gradients in p,, are assumed to be constant during one time step. For
conditions near the critical shear-stress threshold, this assumption can induce
errors and iteration should be applied (e.g. Evans and Sieben, 1996) or time
steps should be reduced.

To compute the corresponding changes in composition, ®,;, the vertical mass-
exchange between sediment-transport layers and river bed must be determined.

43



Only if bed levels change, the composition of sediment fluxes between bed and
transport layers (bed load and suspended load) can be defined as

obaB (s, +dua)B

. o,

ﬁi - bi - ot ox (3.16)
N ® dpaB | a(sb+d)ua)B
Z bi ot ox

From a numerical point of view, the form of Eq.3.16 is not accurate for low
gradients in sediment transport. In case of bed load, this is

* ap Ti/ a‘x
.= .+ S
Bi =Pt sy 8s,/ox

3.17)

with py; = s,/s,. The effect of the second term at the right-hand side of Eq.3.17
can be illustrated as follows.

Consider a mixture with two size fractions. In case of longitudinal coarsening
(decreasing fine fraction p,, Figure 3.5) with uniform flow, the total sediment-
transport rate will decrease. For values of 7.,/7., close to unity, the fraction of
fine material in transport will increase in longitudinal direction, which results
in 8," < p;. Due to the low value of s,, this negative contribution of the
second term can become small relative to p; (see also Subsection 4.2.2).
However, for 7.,/7., = oo, when hiding effects are negligible, the fraction of
fine material will decrease as well, which results in 8," > p,;.

longitudinal coarsening longitudinal fining
fraction fraction
\/ %l T'CKJD
91¥/ Tl Ty J' ~_ T _p
B i
X » X »

Fig.3.5 Bed-load response to bed composition.

Hence, the downward flux will be coarser than the bed load for 7.,/7., = 1,
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and finer in case of 7.,/7.., = . A similar effect for longitudinal fining can be
found. If the second term at the right-hand side in Eq.3.17 is neglected, the
error in the rate of changes in composition varies with the level of shear stress.

Now, with the mass balance for the river bed, the total vertical sediment flux
can be written as

N 0z oz
b, = -c _— 5 d . = -c * b (3.18)
; bi 0 ot bi 0 Bl ot

Note that this formulation is only valid if changes in bed level exist. This
implies that as long as gradients in total, fraction-integrated sediment transport
rate are zero, no change in bed level and composition is predicted (Eq.3.15),
irrespective of composition changes in the transported sediment. However, the
validity of this formulation can be extended by considering additional fluxes due
to short-term fluctuations in bed level (Armanini, 1995).

*aZb *8zb/ (319
. =-c, p,— - ¢ ;—— -19)
bi Oﬁt ot O(Bt at)

The effect of this additional flux will be analysed in Subsection 3.4.4. To
determine the changes in composition, the vertical flux &, is substituted in the
mass balance per fraction i for the reference layer.

ap,, dz,
i _ * _ 2
9, a[p * Gy (Bpi 5[)7% =0 (3.20)

In case of a constant 3,", Eq.3.20 is a common, ordinary-differential equation
(ODE). Then, if N size fractions are considered, a single-layer model with bed
load and suspended load would yield a total of 3N+1 equations, with N+3
PDE’s and N-1 ODE’s. Additionally, N-1 equations of the type of Eq.3.16 are
required to determine (3;. The characteristic equation of the corresponding

model is
3 2
(E) - 2Ly | [£] + 1—1+w_2_a_ya £)+
u ép u Fr? 6p u
3.21)
Y-y o v v oo
Fr? Fr? 5p
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with

With respect to the number of characteristics, the following is noted. In the
complete formulation of a single-layer model as described in Subsection 3.3.4,
a total of 2N+2 PDE’s is used, yielding a set of N+2 coupled celerities and N
decoupled celerities that correspond to changes in suspended fractions.

For the sequential solution of changes in bed level and composition to be
equivalent to that of the original model, the information carried along the
eliminated N-1 characteristics must now be contained in 8;". This implies that
for example information on the composition of sediment transport at the
upstream boundary should be substituted in Eq.3.16 to determine §3,". Some
additional remarks on this can be found in Subsection 3.5.5.

With respect to the celerities (Eq.3.21), the direct effect of grain-size
distribution can be represented by a single parameter Y,, that combines effects
due to the sediment-transport predictor and the composition of vertical sediment
fluxes in and out the reference layer. Some approximative values of Y, for
typical size frequency-distributions have been determined in Appendix B.

3.3.2. Effect of decoupling bed level and composition,

The analysis of the mathematical model with coupled PDE’s for bed level and
composition is complicated; for N size fractions, N+2 solutions result. As
described in the previous section, decoupling bed level and composition
simplifies the solution of the model. It has been observed that due to this
decoupled solution, differences may occur with the original formulation. Here,
the effect of the coupling between changes in bed level and composition is
considered.

To a certain extent, the effects of decoupling bed level and composition can be
studied analytically. Key role in the simplification is the mass exchange between
bed and flow; the fraction 8" consists of two contributions

. Osyfox B op/ox

. =p s, (3.23)
P Gsgox FmT 3s,ox
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The second term at the right-hand side represent the coupling between vertical
sediment flux and longitudinal gradients. This regards information that is
carried along N-1 characteristics in the complete model. In numerical models,
both contributions can be determined easily (Chapter 7).

For this analytical study a complete decoupling is performed by assuming 3,
= pr. Hence, the composition of vertical sediment fluxes between flow and bed
is assumed to be controlled by the local sediment-transport composition. Such
a relation, or transfer function, has also been proposed by Toro-Escobar et al.
(1996). They fit for flume experiments with deposition conditions

B: =07 p,; + 03 p, 3.24)

pi

In this section, the complete, original formulation (concept I from Subsection
3.2.3) is compared with the decoupled model that results from assuming 3,” =
pr- To simplify the analysis, flow is assumed to be steady. Now, two extremes
can be considered; small length-scales with negligible friction (yielding a
simple-wave model) and large length-scales (yielding a parabolic model).

For the first case, the steady-state continuity and momentum equation for water
can be combined into

0 P O (3.25)
Fr? ox “ ox
For the second case it can be found
%, 3 SH ou (3.26)

2

ox? C%a Oox

Application of small length-scale conditions to the original model results into
a telegraph equation

@ ML (1+(1—Fr2>£ﬁl] ik *

ot? 1-Fr? 5, W

2
u'Y, Gzzb

a -0 (3.27
oxor 8, 1-Fr? ox?

where the parameters Y, and Y, are defined in Eq.3.14.
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For the alternative, decoupled formulation, a simple-wave equation is found

0z Y \oz
Py, u vy 17(1_Fr2>ﬂ4‘1 b - fx) (3.28)
ot 1-Fr? (‘BP V| ox

where f(x) is an integration constant that represents longitudinal changes in bed
composition. If a constant bed composition is considered with an equivalent
"uniform sediment”, a simple-wave model results

% uww B

b 3.29)
ot 1-Fr? ox

Hence, with respect to simple-wave models for uniform sediment, the
propagation rate is reduced.

The propagation rates for both concepts and the equivalent "uniform sediment”
model are compared in Figure 3.6. It can be concluded that significant
differences in both models are found. Obviously, the second contribution at the
right-hand side in Eq.3.23 cannot be neglected for short length-scales. This is
in correspondence with the strong coupling of celerities.

.34 o equivalent celerity 4 p/a =0.05
10 — concept |

| C/U| ........ concept Il

16* A

0.0 0.4 [ 0.8
Fig.3.6 Comparison of models for short length-scale.

Application of large length-scale conditions to the Hirano model yields

¥z a, T WP T P ay, &z, 0330

atz 611 M oxot ) 3u waxzat 3 8 h2 ax3

p

48




For the alternative formulation, the resulting differential equation is

0z,

% ayd CW?n o (3.31)
ot 8, ¢ ox 3u Ox?

where f(x) is again an integration constant that represents longitudinal changes
in bed composition, and Y, is defined in Eq.3.22. For a river bed with constant
composition, a parabolic model is found
2
Byl T (3.32)
ot 3u ox?
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Fig.3.7-a Propagation rates. Fig.3.7-b Attenuation lengths.

In Figures 3.7-a and 3.7-b, the propagation rates and attenuation lengths of
wave type solutions are constructed. Now, similarity between both concepts
exists. The additional wave in the complete formulation that is neglected in the
simplified approach, has a low propagation and deformation rate. Considering
the large differences in propagation and deformation rates, this slow, stable
wave can be decoupled from the fast, diffusive waves.

The presence of the slow wave can be explained when rewriting Eq.3.30.

3 3 2,2 3 Y, o
9%, ayy Tl yCal 0 (Te, a, ) o (3.33)
ot| ot 6p ox 3u x|l ot & ¢ ox

V4

If ¥Y,, = Y,/¢¥ (Figure 3.8), concept I indeed contains a simple wave and
parabolic model (compare Eq.3.32).
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Due to decoupling of bed level and composition, the number of solutions is
reduced. The assumption of 8, = p,, can be considered erroneous in case of
small length-scales.

For large length-scales (quasi-uniform flow), the total solution consists of a
combination of a slow simple-wave type and a parabolic type solution. The
latter part of the solution is not affected by the assumption 3;" = p;;. The slow
and relatively stable, downstream-propagating wave is, however, neglected.
From Eq.3.33 it can be concluded that only if é,/a is large and/or Y, and Y,
are small (values of r.,/7., near unity, see Figure 3.7), this parabolic
contribution is dominant and the contribution of the simple-wave type solution
diminishes.

2 A4 N s o .
3.4. Mathematical stability.

3.4.1. Introduction.

As described in Subsection 3.2.5, some celerities that can be related to changes
in bed level and composition vary with different values of §,; reducing the layer
thickness will enlarge the celerity (Figure 3.4). Obviously, limits exist; it does
not seem realistic in rivers with alluvial transport that changes in morphological
variables propagate faster than changes in hydraulic variables. Increasing the
layer thickness will reduce the celerity and in some cases enable larger
modelling time steps.

However, another limit concerns large values of 6,, when celerities intersect.

Because then, the number of celerities has reduced to that of uniform-sediment
models again, Suzuki (1976) defined the corresponding value for 6, as a
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dynamic layer thickness.

However, if celerities intersect due to large values of §,, two cases exist. In
case of deposition, celerities coincide and the local contribution of grain-size
distribution disappears (Sieben, 1994). In case of erosion of a coarse layer at
a finer substratum, complex characteristics result. Then, the mathematical
model has an elliptic character and becomes instable (Ribberink, 1987). Figure
3.9 indicate the two transitions for real and complex celerities. It is noted that
6,/a values larger than 0.5 do not seem realistic in case of significantly varying
bed compositions. Hence, only the lower limit for §,/a is considered of interest.

The introduction of a second reference layer does not entirely exclude
mathematical instability at higher values of Fr (Sieben, 1994).

c/u 8,/a
] real celerities

19" 0.4

-2 m
10

0.2 .

3 — complex celerities

10 uniform sediment
’ 0.0
, 04 06 0.8 02 ' o4 L oe T o8
0.2 Fr Fr 0.6

Fig.3.9 range of real celerities

Such a critical value of §, has been constructed with a dashed line in Figure 3.4
It is noted that for transcritical and supercritical flows, the critical layer
thickness has decreased significantly. In Figure 3.9, this instable behaviour has
been illustrated for the quasi-steady model with N = 2.

If a fraction / is immobile, then ®,, = 0 and the sediment-mass balance of the
reference layer (Eq.3.6 in Subsection 3.2.3) reduces to an ordinary differential

equation. In that case, no elliptic character can be found.

3.4.2. Stabilizing options.

Instabilities can arise for conditions prevailing in mountain rivers (paved bed-
surfaces and higher values of Fr). To obtain a more stable model, different
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options exist. First, reference is made to Eq.3.21 in Subsection 3.3.1. It is
noted that by solution of changes in composition and level with the help of a
vertical flux, direct intersection of characteristics can be omitted; the number
of coupled characteristics to be solved amounts three. However, because the
model solved is equivalent to the conventional model, the problem of instability
has not been eliminated. This corresponds with observations of numerical
experiments by Evans and Sieben (1996).

One option is to manipulate celerities by limiting layer thicknesses to a critical
value (Sieben, 1994; Sieben and Sloff, 1994). However, this can result in rather
thin layers at trans- and supercritical flows with, subsequently, small numerical
time steps.

A stabilizing effect can also be obtained by adjusting the layer thickness to
changing flow conditions. This can be explained as follows. The critical layer-
thickness &, decreases if the surface layer becomes coarser relative to the
underlying material. Due to a higher shear-stress level, the extend of mixing
increases in the accelerating flow and relatively fine material from underlying
layers is transferred to the coarser surface layer. As a result, the surface will
be less coarse and the critical value of the layer thickness will increase. Hence,
if for example 6, = &, at a certain time level, both values increase and stability
in the next time step will be guaranteed if during this step
@Il < ﬂ 3.39)
ot ot

It ig nr\farl thnf thio oqu|]|'7|nn pF‘Fpr‘f mav not he o

LAGL  LIMLD OUAU L4054 H Wiivel i ay e e

1t nt 1 for eva
uiicient It cXxa

c1an
supercritical flows, where the increase in §, due to a finer composition is ery
small.

Another option to stabilize the set of PDE’s, is to change characteristics by
introducing a short adaption of bed-load composition. This option will be

described briefly in the next section.

3.4.3. Changes in bed load.

In models for morphology with uniform sediment, bed load is generally
assumed to adapt instantaneously to local hydraulic conditions (Subsection
2.2.2). However, in case of mixtures, changes in transport rates due to changes
in composition have a larger time scale. Therefore, the effect of adaption of
bed-load rate and composition to changes in bed composition are considered.
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Some concepts to include this adaption are described briefly.

In the following, ¢, represents the total sediment concentration in the bed-load
layer with thickness 6,. The mass fraction with size D, present in this layer is
pyi- The fraction velocity is represented with U,. Now, a sediment mass flux
s,; of fraction i can be defined as

N
Sy = Dpitbg ©p0, = Py ¢b6bug ;o U, = ZPb,-ug,- (3.35)
in1

The sediment-mass balance for a fraction / in the bed-load layer is (Figure 3.1)

P T (3.36)
ot p ox

Hence, if relaxation effects of bed load are to be included, either fraction
velocity u,; or concentrat.on of bed-load mass ¢, should be specified. Because
additional variables require the introduction of new equations, first some
simplified concepts are considered.

One option would be to assume p,, = p,; the composition of the bed load layer
equals the composition of the bed surface. Although physical distinction
between compositions of a transporting bed-load layer and a storage layer at the
bed surface is arbitrary, conceptually, this assumption is not correct. This can
be illustrated as follows. If two layers (bed load and bed surface) have equal
composition, mass fluxes between the layers must have a similar composition.
This implies

Oy, 3.37)

dp.  Os,. N
d® =p. & - § —pto b
pi = Ppi T P50, ot ox Py 21: ox

Then, with the help of mass balances of reference and bed-load layer it can be
found

8}9 i azb
61)7: * (Bpi_ppi>§ =0 (3.38)

Hence, the character of size-selective pickup is neglected; in the resulting
model, changes in composition are only due to vertical structures in bed
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composition when 3, # p,. This conclusion is confirmed by numerical
experiments.

A second possibility would be to assume

By Py (3.39)

ot ot

which implies that time scales of changes in fractions correspond. Substitution
into the mass balance of bed-load and reference layer yields

ob, s, b, 8,\p,, o,
O, — + 2+ e |[1+22 2|22 4 B —2=0 (3.40)

If the contribution of changes in ¢, is neglected, the resulting model
corresponds with the conventional one. Then, the problem of ellipticity is not
eliminated. The dampening effect of changes in bed-load composition is
accounted for by an effectively larger layer thickness. Because in general §, >
6, and ¢, = ¢,, this effect will be very small.

Therefore, another possibility is considered.If it is defined
N
=B’ 34
¢pi l}f 2:1: (Dpi ( )

then, the mass balances of the bed-load and reference layer can be written as

9z, a<pbi -p Ti)d)b(S b

. Py S, Pg
(Bi ‘PTi)co_ et ébd)b(AT S

ot ¢,6, ox

) -0 (3.42)
ot ot

It is noted that if 3" = p;;, as used in Subsection 3.3.2, size-selective pickup
will still be included. Then, Eq.3.42 can be reduced to

D P, 0 ; -
S LT i P A R
ot ot $,8, ox

To reduce the number of variables, it can further be assumed p,, = p,;; the
composition in the bed-load layer equals that of the horizontal bed-load mass
flux. The assumption p,; = py, implies that u,;, = @, (Eq.3.35). Substitution of
Pu = P 1in EQ.3.43, results in
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% . S, 0Py,
o ¢, ax

=0 (3.44)

This yields N-1 equations that describe changes in bed-load composition with
a propagation rate #,. Hence, in contrast with the total decoupling as described
in Subsection 3.3.1 and 3.3.2, the introduction of a "kinematic model" for
particles traveling as bed load enables conservation of the total number of
celerities and hence, the total number of wave-type solutions.

If u,, = a,, differences in particle mobility (and hence transport rates per size
fraction) are accounted for by differences in bed-load composition. This
assumption of u, = #, one travel rate for all fractions, corresponds to the
concept mtroduced by Einstein (1950), but is rather hypothetical because
consistent, and explicit data on both bed-load concentration and particle velocity
are scarce (see Church and Hassan (1992) for a brief review).

Motion-picture observations by Drake et al. (1988) of bed-load particles at low-
flow conditions seem to correspond with u,, = #@,. Tracking of tracer grains of
a sand-gravel mixture through a flume, showed gravel fractions to have the
largest mean travel-velocity (Iseya and Ikeda, 1987), analysis of tagged surface
grains indicated a decreasing travel-distance with particle size (Church and
Hassan, 1992). Although mechanisms such as bed undulations, grain-grain
interactions, inertia and turbulence can be expected to diffuse particle motion
and reduce differences in fraction velocity (e.g. Rakoczi, 1991), more
observations on the kinematics of bed-load particles are required.

Considering the uncertainties on the validity of the simplification u,; = #,, some
numerical tests are carried out in Subsection 3.4.4 to analyse the effect on the
model.

The resulting mass balance of the reference layer is

dz,, app,
- L. 4
(Boi = Py) 5 + 8 =0 (3.45)

With this option, the number of coupled celerities would reduce to three;
intersection of celerities, and subsequent instability of the model is prevented.
The total number of celerities, and hence the number of wave type solutions,
and the number of upstream boundary conditions is similar to that in the
conventional model. Hence, equivalent boundary conditions to both
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formulations can be imposed.

3.4.4. Numerical comparison.

Some numerical experiments are added to compare solutions of the stabilized
model described in Subsection 3.4.3, relative to the conventional formulation
as described in Subsections 3.2.2, 3.2.3 and 3.2.4. These experiments concern
the deformation of a disturbance of the bed-level profile.

To account for changes in bed load, a fraction-averaged particle velocity u,
must be introduced. Einstein (1950) suggests u,/u. = 11.6, Van Rijn (1984a)
mentions a range of u/u. from 3 to 11 that increases with shear stress. In the
following experiments, it is used u,/u. = 7 (Van Rijn, 1989), to analyse the
effect of the formulation. A widely graded mixture is considered. Non-
dimensional particle shear-stresses are 7.,/7., = 18.00, 7.,/7., = 1.80 and
Tuy/Tue, = 0.18

(D;y = 0.0003 m, D, = 0.003 m and D; = 0.03 m). The first and second
reference layers are equal (8, = 6,).

The original model as described in Subsection 3.2.3 is referred to as concept
I, concept Il is the stabilized model as described in Subsection 3.4.3.
Coarsening occurs at the eroding part of the hump, fining at the deposition part
(Figure 3.10 and 3.11).

0.2 06
concept [ /\.‘ ------- concept |
D -00 A — cancant 1l o4 A\ —concent I
DO, / -, D - D(0) RN
: 7 Do) o2 2
\7‘ m
0.0— < 0.0
-0.2
-0.1
0.4
-0.2
om 16m -0'%m 16m
Fig 3.10 6,/D,=10; single layer. Fig. 3.11 6,/D;=2; single layer.

Changes in layer composition are larger for the stabilized concept II. The
differences increase for smaller layer thickness. For higher values of Fr,
similarity remains but differences between both models increase. Apparently,
to obtain equivalent solutions in the conventional and stabilized model,
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relatively larger layer thicknesses must be applied in the latter model.

s e concept | = — — =700,
0 \Oncem ” D(h-D0) e
D(-D(0) w0 - O \
o0) D(0) e
0.2 ~~ mT 02
0.0 A ARV 0.0 - —= _
subpavement subpavement J
0.2 L pavement 0.2 pavement .y
om " 16 m om 16 m
Fig. 3.12 §,/D,=2; double layer. Fig.3.13 6,/D,=2; effect of u,.

In case of morphological changes due to bed-level disturbances, both models
yield comparable solutions. Therefore, some test cases of morphological
changes driven by gradients in composition are considered. In the following
example, a flat bed of fine sediment (D,, = 3.7 mm) with a coarse section (D,,
= 10.0 mm) at subcritical flow conditions is considered. The gradients in
composition induce deposition at the upstream part of the coarse section, and
erosion downstream. Fluxes are arranged to represent a single-layer model,
6, = 3D; (D, = 0.1 mm, D, = 1 mm and D; = 10 mm).

Zp
[m] Zp
» [m]
0.04 Q3 0.02
0.02 0.00;
. -0.02
0.00:~ a0 om 6m

Fig.3.14 Conventional model. Fig.3.15 Stabilized model.

Again, solutions are similar (Figures 3.14 and 3.15). In the stabilized model,
wiggles in the solution are reduced.

In case of a similar bed configuration in supercritical flow, responses of the
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stabilized model are slower than the conventional model. Again, the
conventional model (concept 1) shows large wiggles near the transitions. Hence,
for these larger values of particle shear-stress, now a relatively smaller layer
thickness must be applied in the stabilized model, to obtain results similar the
the conventional model.

Fr=12 - concept | 120
— . . — concept Il

0.01
Zp
[m]

0.00

-0.01
0

Fig.3.16 Conventional model.

3.5. Definition of reference layers.

3.5.1. Introduction.

As described in the previous sections, a reference volume (or layer) must be
introduced to define size fractions. Because fractions should be representative
for the entire reference volume, the extend of the layer is limited to a zone of
homogeneous composition. Therefore, a reference layer is often defined as the
cxicnt of mixing of sediment at the surface of a river bed. The type and
subsequently extent of this mixing is related to the scale of the phenomena of
interest.

However, the physical interpretation of such a layer is not clear. With respect
to defining layer thicknesses, representation of physical mixing processes
(causal orientated) as well as composition changes in the corresponding model
(result orientated, considering the applied transport predictor) should be taken
into account. At present state, discrepancies between both categories can be
observed (Belleudy, 1994).

Before considering the definition of a layer thickness in Subsection 3.5.3, the
relation with fraction dynamics is considered in Subsection 3.5.2. For
armouring processes, different layer thicknesses are reviewed in Subsection
4.2.4.

58




3.5.2. Dynamics of fractions.

The relation between changes in bed level and composition can be written as an
ODE (Subsection 3.3.1). In terms of mean grain-sizes, the relation of
composition and bed level change is

aDmp _ (D r; -D mu) %

ot 6p ot

(3.46)

with D, ,, D,,, and D,’, mean grain sizes of substratum, bed surface and vertical

H10?

sediment flux.

Due to differences in particle mobility, the mixture in transport is finer than the
mixture at the bed surface. Hence, in general, it can be expected for values of
T,/ T+, larger than unity, that the composition of the vertical flux is finer than
the bed (D, < D,,, e.g. Toro-Escobar et al. 1996). Then, coarsening is
predicted in case of degradation, fining in case of deposition. This effect can
be illustrated by flume observations as reported by Ribberink (1983) (Figure
3.17).

However, it should be considered that at the scale of particle movements, or if
Tuul Ts, = 1, contributions of particle interaction and gravity to vertical fluxes
and horizontal transport can result in D,;” > D, .. An example is the collection

of coarse particles at the aggradation front of bed features (e.g. Klaassen et al.
1986).

erosion deposition
20
Zp |
[em] |
10}
[ — average bed level
i [ I finer
i 8 coarser
O SN S S I | I..

o 10 xim 20
Fig.3.17 Vertical structure of bed composition (Ribberink, 1983).

Another illustrative example with D, > D, is due to Iseya and Ikeda (1987).

nmo
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In their experiments with longitudinal sorting in a sand-gravel mixture, the flow
regime was supercritical upstream in the flume and subcritical at the reach of
deposition. The hydraulic jump that marked the upstream border of the
deposition was observed to successively move up- and downward.

Significant longitudinal sorting and corresponding transport fluctuations were
observed. Apart from the interaction between sediment transport and local bed
configuration, as indicated by Iseya and lkeda (1987), the fluctuating jump at
the upstream boundary of the deposition zone can be a source of fluctuations.
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bed slope stoep Intermediate gentle shoep
sedimenta
Stuchure of work half i -
supettiolal iayer oper metrix-filled matrix-filled open-work

Fig.3.18 Interaction level and composition (Iseya and Ikeda, 1987).

With respect to Eq.3.46, observations (Figure 3.18) indicate that at the
upstream (erosion) side of the bed-level wave, a fine surface was found, at the
downstream (deposition) side, a coarse surface was observed. Iseya and lkeda
(1987 explained this effect by considering the fluctuation in grain ronghness
and the state of the bed, and its effect on the fraction mobility; at fine beds,
gravel is relatively mobile due to exposure, colliding grains subsequently initiate
motion of sand.

To analyse the influence of pavement and subpavement layer on fraction
response, sediment-mass balances are linearized by prescribing a continuous
change in bed level with a rate w,. A similar exercise can be found in Ribberink
(1987). This enables the construction of analytical solutions that give
information about response rates and equilibrium conditions. To account for
hiding effects, size fractions in the vertical mass flux are defined as pp, = f; p;
(in case of equal mobility £ = 1). Situations of erosion and sedimentation
should be considered separately.
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In case of erosion, the sediment mass balance of the pavement and subpavement
can be written as

P o My v p
ot 61, ( i pi si)
(3.47)
apsr' Wz

In case of two size fractions and constant f;, combination of both ODE’s yields

2 2
5219;1 KW [Jq+§) P 0K, VKL 349)
ot 5, ' s a 8,8, 5.8,
and
2 2
azpspl KWy 1+EIZ Py N fi wox P, - Wszlpl (3.49)
a2 8, ' 8] a 88 TN 8p, C

The equilibrium compositions of the pavement are affected by the mobility
correction f;. Conform observations by Belleudy (1994), the effects of hiding
corrections and layer thickness on the solution correspond; for a single-layer
model, both can even be combined into one parameter. Apparently, a layer
thickness in a model is related to the type of sediment-transport predictor
applied.

Due to the definition of the vertical flux composition, the equilibrium
composition in the pavement will be p,, = p,/f, and p;, = p,. Hence, a
decrease in mobility of the fine fraction will result in a finer surface. At higher
levels of particle shear-stress, where hiding corrections are less effective,
surfaces of eroding beds will be coarser.

The homogeneous part of the solution for pavement and subpavement can be
written as C e™ with

L f1+5P+J[f1+§£T4f—§£ (3.50)

TS_ 0 x

p s N
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A representative time scale for fraction changes is

T=_2 (3.51)

which indicates the period needed to degrade a bed over the layer thickness.
This relation of layer thickness and time scale of fraction responses will be used
in Subsection 3.5.3, to review different types of layer definitions.

The character of N (complex or real) indicates the type of solution. If two
complex roots are found, a type 1 solution exists, if two real roots are found

a type 3 solution results and if both roots coincide, a type 2 solution can be
found.

20
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0.1
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Fig.3.19-a Type of solution. Fig.3.19-b Type of solution.

In Figures 3.19-a and b, two definitions of vertical flux composition are
compared. Some common values are §,/8, = 2, and k = 0.84 (e.g. Di Silvio,
1991; Ribberink, 1987). Hence, in general, for double-layer models, a type 1
solution is obtained.

For single-layer models (6, = o and x = 1), a type 3 solution is found. Borah
et al. (1982a) separate functions of the reference layer by defining a thin
contact layer at the surface that affects sediment transport, and a mixing layer
underneath, to record changes in bed composition. This would yield a type 3
solution. An example of all types is presented in Figure 3.20.
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Fig.3.20 Type of fraction-response. Fig.3.21 Effect of subpavement layer.

The fraction response of a single-layer model will be faster than a double-layer
model (Figure 3.21); distinction of a transition layer clearly dampens the
response of the pavement.

For illustration, field observations by Gomez (1983) are mentioned. At peak
discharges in a small channel, when all particles moved, a thorough mixing
resulted in a homogeneous composition of bed and surface. After the peak,
when observations started, a coarsening of the bed surface occurred during
several minor discharges.
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Fig.3.22 River-bed coarsening (Gomez, 1983).

Although the assumption of constant degradation is in conflict with reality,
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observed changes are comparable with the exponential solutions of the analytical
model. In Figure 3.23, all curves representing different sites are combined into
one graph.

2
months months
event 1 event 2

Fig.3.23 Comparison linearized model and observations.

Fat curves represent the linearized model, thin lines represent observations at
different locations. Sediment is described with a sand (D, = 2 mm) and a
gravel (D, = 8 mm) fraction. The response time of the bed composition appears
to be two months, but this includes periods of low flow where all fractions are
stable. Note that changes in the subpavement are minor (for the thick lines, the
ratio of subpavement and pavement thickness is 6,/8, = 5).

3.5.3. Selection of layer thickness.

Reference, or mixing layers have been coupled to sediment features such ac

A eyEl e S STt Sl

grain-size (e.g., Di Silvio and Peviani, 1991), and combinations of sediment
features and hydraulic conditions such as particle shear-stress (Niekerk et al,
1992) or bed-form height (e.g. Ribberink, 1987). Obviously, the application of
different concepts should be carried out with care.

The selection of layer thickness with respect to bed-level change determines the
response of fractions. Application of a small thickness relative to bed level
change (such as the "contact layer" as applied by Borah et al., 1982a) results
in "instantaneous" adaption of size fractions at the surface of the river bed. The
selection of a relatively large thickness value eliminates the effect of short-term
fluctuations. This can be illustrated by applying the linear model as described
in Subsection 3.5.2 to alternating sequences of deposition and erosion. The
effect of the time-scale ratio of active fluctuation and response is illustrated in
Figure 3.24.
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If T,,, approaches 7,, ,, no dampening in response is present, if 7,,, < < T,
changes are negligible.
1.0
Tact ep ™ 0.05
08 _— = 050
. act resp
fraction = 200
act 7 “resp
0.6 N -
« ,\;‘x - .
i P
0.4 =
7
0.2/ ~pavement
0.00 - " 3 —
- wit/ 9

Fig.3.24 Effect of short-term fluctuations.

The effect of additional mass flux in case of bed forms can be illustrated with
the case of a degrading bed (Figure 3.25-a). For slow fluctuations (7,./T,,,
large), compositions range between G,/f (during erosion) and p; (during
deposition). Not only the period, but also the amplitude affects the adaption
period and equilibrium composition of the bed. If Az,/5, < < 1, the magnitude
of fluctuations in composition disappear; minor fluctuations can be dampened
by selecting a larger layer thickness (Figure 3.25-b).

1.0
subpavement oo

0.8
fraction

o8| S

L A without fluctuations /
_ — A4z, [ =10
0.2k 7;Ict /7r-esp_ 20 1 S 4 b/6p=00
pavement T = 05 i ZplCp =T
L fict / fresp — O ‘‘pavement . , 2,16,= 05
0.0 . 0.2f g
0 4 -sz/5p 8 0 4 -szt/'jp 8
Fig.3.25-a Effect of period. Fig.3.25-b Effect of amplitude.
Hence, two extreme situations can be distinguished:
T4 /T, = 0; no change in composition during the "fluctuation”

14T, = o; instantaneous change in composition, relative to change in

resp

bed level during the "fluctuation”
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Hence, with respect to the selection of a layer thickness, time-scales of
morphological changes are of relevance. Now, two extremal conditions are
considered; for large scales of length, a parabolic model approximates the
solution (Subsection 3.3.2). If, for small length-scales, changes in composition
can be neglected, a simple-wave model results. An indication of corresponding
T, values is added in Table 3.1. Here, L, and AZ, represent a characteristic

length and height of a bed-level disturbance. A representative period 7,, is found
with T,, = L, /u.

length-scale model T, AZ,
T, 8,
small (no friction) Az, uy 0z, [1-FrY
(Fr<O08orFr> | % "Tmiax °| ¢ |0010)
1.2)
small (no friction) &z, 2y &z, Fr
(08 < Fr<1.2) Y] ‘m; =0 2 O(10)
. . . 2
large; L,, > 3a/i, %, Cla’y @ ol 3 i, L, | > 10
ot 3u ax2 all!

Table 3.1 Estimation of response time-scale.

T,,.,, and T,, more or less correspond if approximately §,/AZ, =~ 0.1. To obtain
a homogeneous distribution of fractions in the reference layer, an instantaneous
mixing with respect to changes in bed level is required. This implies that

T,/T,,, = o, or §,/AZ, < < 1is necessary. Hence, in order to define a layer
thickness, relevant changes in bed level must be known. This explains the
amount of layer definitions that can be reviewed for different phenomena such

as armouring processes or large-scale longitudinal sorting (Laguzzi, 1994).

Another example of the considerations as described above concerns changes in
roughness due to changes in surface composition. Local compositions of river
beds respond relatively quickly. Observations from flume experiments (Suzuki
and Michiue, 1988) and prototype measurements (Foley, 1975; Klingemann and
Emmet, 1982; De Jong and Ergenzinger, 1992; Dinehart, 1992) showed
significant coarsening during rising stages of floods.
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These changes in composition (and subsequent roughness) can be predicted if
time scales are of the order of or larger than response time scales;

) )
- % L1y (3.52)
P w,| a n¢ |oufox| “
For diffusive flood waves, this criterion can be approximated with
)
O 1 . Auw 2 (3.53)
a no c 3

or approximately 6,/a = ¢.

3.5.4. Comparison of layer definitions.

In the previous section it has been concluded that the layer thickness should be
selected relative to the time scale of relevant composition changes.
Furthermore, the mixing mechanism responsible for transferring composition
changes through the reference layer must be "instantaneous" relative to regular
changes in bed level and composition. In this subsection, some layer predictors
are compared.

In low-land rivers, propagating bed-forms are generally considered to be the
main cause of mixing. In that case, the extent of mixing, or layer thickness, is
related to bed-form height Az, (Ribberink, 1987), which enables predicting 6,
(and 6,) with existing bed-form predictors. The bed-form period is defined as
Ty = Ly/c,, where L, is the bed-form length and c, is the propagation rate,
that can be estimated by applying a rigid-lid approach (e.g. Jansen, 1979). For
0 < 6 < 10 (0 is a transport parameter) the steepness can be approximated

roughly with (Van Rijn, 1984b)

03
A%, (a) (3.54)
L, Dy,
In case of gravel-bed rivers with large differences in particle mobility,
significant changes in composition are accompanied with minor changes in bed
level. Then, mixing at the scale of particle movements should be considered.
However, individual movements of particles in gravel-bed rivers are rather
obscure; apart from wide scatter which reveals the stochastic character, burial
depths of approximately 5 ~ 10 times Dy, can be observed (Hassan and
Church, 1992).
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The particle-movement period can be defined as
L s,

S

Tpart = d)b (3'55)

b

where §, is the thickness of the bed-load layer, ¢, is the sediment concentration
in the bed-load layer and L, the step or saltation length of a particle. This step
length L, can be defined as £ Dy, but experiments (e.g. Fernandez-Luque and
Van Beek, 1976; Van Rijn, 1984a; Nino et al., 1994) reveal a wide range of
scatter, inherent to the stochastic character of particle motion. The extend of
mixing 6, can be related to §,. Van Rijn (1984a) suggests k values that range
from 10 to 100, with 7.,/7.,, values ranging from 1 to 11.

The mixing mechanism must be instantaneous relative to regular changes in
composition. This implies that 7, < < T,,.,. For layer predictors based on a
bed-form scale and particle-motion scale, this condition is considered in Table
3.2. Here, n is from the powerlaw s, =mu". Note that the expressions in Table

3.2 are indicative only.

mixing-layer definition
length-scale bed-form height particle movement
. o L, . o L,
applicable if iz, > > applicable if Az, > >
small (no friction) L ( a ]0.3 b, Dy 1
(Fr < 0.8 or Fr > w3 a k=
1.2) Zp \ Ys0) 0 [L=F77
small (no friction) &, Dy n 1
0.8 < Fr < 1.2) no bed forms C_OTEE
large (O-order uniform) 03 &, D
L, > 3ali, [1-Fr i) T ke a "L
50 b~m 0 b~m

Table 3.2 Applicability of layer definitions.

In general, mixing layers scaled on particle-movement seem to be applicable for
"steeper” (larger values of AZ,/L,) bed-level disturbances. Mixing layers scaled
on mechanisms with larger mixing-lengths (bed forms or other periodic
fluctuations) are applicable at more uniform disturbances (lower values of
AZ,/L,) and longer length-scales.
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3.5.5 Short-term fluctuations.

Because vertical fluxes in case of deposition and erosion are different, short-
term fluctuations with alternating erosion and sedimentation affect the bed
compositions. When referring to Eq.3.19 in Subsection 3.3.1, the mass fluxes
between river bed and flow can be written as

J— *azb */az,f (356
@ = B2 - B —2 -56)
oPigy ~ obs or

Dt

In flume experiments in the bed-form regime, Ribberink (1987) observed
subpavements, coarser than the underlying substratum. This could be explained
by considering fluxes due to short-term fluctuations in bed level. To account for
the net effect of such short-term fluctuations, Ribberink (1987) suggested a
gradient-type, diffusive flux. Analogously, Armanini (1995) applies diffusive
mass fluxes to explain vertical structures in bed composition.

If an additional flux due to vertical structures in bed composition is introduced,
the mass balances of pavement and subpavement read

ap,. oz
6£E+K®,+Kﬁ.—b+K®/-:0
pi plal pt

Pooor
3.57)
5 P50 @ bk L (19 b -0
+ (1-x Nt kB ) — + (1-x o=
s 81.‘ pi ( ol pl) at St
This flux can be of the form
/ / (3.58)

Q, =€, (ppi - EipTi> 3 Oy =€y (py - EipTi>

with €, and €; exchange rates ([¢,] = m/s), often related to sediment transport
rates (e.g., Di Silvio, 1991) and &, a coefficient to account for size-preferences
in vertical mixing between the transport and storage layer. To indicate the
limited stability of Eqs 3.57 and 3.58, the solution for a first-order perturbation
is analysed. If a zero-order, equilibrium composition is assumed, and gradients
in fraction-integrated transport rates are absent, first-order changes in fraction
i can be described as

op . dp..
_pp_f = - K€, p. 1 - E ) Pr (3.59)
o I Py
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Substitution of an exponential solution yields a stable solution of Eq.3.58 if

dpyg
de,-

3 <1 (3.60)

This concept (Eq.3.57 and 3.58) can be stabilized by stating that diffusive
fluxes occur if the actual composition in the transport layer deviates from
equilibrium compositions.

Obviously, distinction of additional fluxes affect the type of fraction response.
If degradation is considered, combination yields a second-order ODE for
fractions in pavement and subpavement. Again, different types of solution
(Subsection 3.5.2) can be found.

10

0

0 K
Fig.3.27 Type of solution.

With respect to the definition of the flux due to short-term fluctuations conform
Armanini (1995), the following remarks can be made. Additional sediment
fluxes are found due to integration of bed-level changes (and subsequent mass
fluxes) over a time interval. It should be noted, however, that correlation with
slower changes can only be neglected if time-scales of changes are an order of
magnitude lower than response scales of composition.

T L
[ 7 3.61)
Tresp 6p cb

where L, and ¢, are the length and propagation rate of the zero-average
fluctuations. In case of bed forms, length and height are related (H, = ol,).
Hence, to distinguish an additional flux due to bed forms, either bed levels
should be close to equilibrium ( | w, | < < ¢,) and/or changes in composition
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should be very small (§, > > L, = H,/a).

Mainly, for conditions close to equilibrium, the additional flux in Eq.3.56
becomes of interest. This can be illustrated with the following example. At
equilibrium conditions for bed level and composition in a flume, Ribberink
(1983) changed the composition of input sediment at the upstream boundary of
a flume, while keeping the total volume of sediment-feed constant. During this
experiment where bed forms developed, significant changes in composition and
subsequent changes in bed level were induced.

In the conventional model (Section 3.2), transport gradients per size fraction are
used explicitly to determine changes in composition; no additional flux is
required to simulate the observed changes (Figure 3.28-a). However, in
mathematical models such as the stabilized concept (Subsection 3.4.3) without
additional fluxes as defined in Eq.3.56, this condition of zero-gradients in
sediment transport at the upstream boundary would result in constant bed levels
and composition.

The relevance of the additional flux in Eq.3.56 for the stabilized model can be
demonstrated numerically as follows. Conditions similar to the transition
experiment of Ribberink (1983) are applied. In absence of these fluxes, indeed
no changes were observed in the stabilized model, whereas if additional fluxes
are included, changes in composition and bed level were initiated (Figure 3.28-
b). The additional fluxes are caused by zero-average bed-level fluctuations (bed
forms) and differences in actual and equilibrium composition in the transport
layer.

Differences in propagation rates in both models can be observed similar to
examples in Subsection 3.4.4. The predicted equilibrium conditions in both
models are equal.

0.03
z,(x.0 N Z, (%0
00l Ny .
T oot ) T oo N
B 0.001— >
‘ N /
! Lo
DOnlx8 Dx1
Dx.0) D0 02y S S
10 m 20 30 0% 10 [m] 20 3¢
Fig.3.28-a Conventional model. Fig.3.28-b Stabilized mode].
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Hence, with respect to the stabilized model (Subsection 3.4.3), the following
can be concluded. In case of equilibrium bed levels, information on sediment
composition at the upstream boundary is properly transferred with the help of
additional fluxes that represent short-term bed-level fluctuations. Due to this
flux, the strong coupling between bed-level changes and composition is reduced.
An application of a similar experiment can be found in Subsection 4.4.4.
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Chapter four.

Some effects of sediment mixtures on morphology.

4.1. Introduction.

As concluded in Chapter three, changes in bed level and composition are
coupled. In this chapter, analytical and numerical methods are used to analyse
some effects of graded sediment. The analytical models concern armouring
processes (Section 4.2) and longitudinal sorting effects (Section 4.3). The
numerical model is described in Chapter seven. Numerical solutions are
compared with experiments on degradation downstream of dams, the
deformation of bed-level disturbances and bed levels in narrowed sections, and
the responses to changes in upstream sediment supply. (Section 4.4).

4.2. Streambed armouring.

4.2.1. Introduction,

One of the most distinct morphological features in rivers with graded sediment
is the appearance of armoured bed surfaces; a thin layer of stable coarse grains
on top of finer material. This can often be considered an equilibrium condition,
either static (no motion) or dynamic (bed-load composition equals substratum)
(Andrews and Parker, 1987; Jain, 1990).

Armouring processes can significantly affect morphological changes in a river;
coarsening of the bed surface results in an increase of critical shear stress
(Egiazaroff, 1965), and a subsequent reduction or dampening of bed
degradation (Karim and Holly, 1986). An example of low-flow bed stabilization
due to armouring was studied in flume experiments by Whittaker and Jaeggi
(1982) or Grant and Mizuyama (1991). Here, armoured anti-dunes were
considered to be responsible for the typical step-pool systems, that can be found
in steeper mountain streams.

Different studies on armouring in flumes have been carried out (e.g., Gessler,
1970; Little and Mayer, 1976 and Chin, 1985). To describe the size-selective
stability, entrainment and movement of particles in armouring processes, often
concepts based on critical shear-stress have been applied. Theoretical models
vary from one-step models, predicting equilibrium compositions and scouring
depths, to multiple-step models, describing different stages of coarsening
processes (Sutherland, 1987).
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With different levels of excess shear-stress, Raudkivi and Ettema (1982)
distinguish stages in a coarsening process, that range from no particle
movement, overpassing of large particles at high exposure, entrainment of
smaller particles and finally motion of all grains. As described by Chin (1985)
in the initial phase of the armouring process, the transport of fine material
results in bed features propagating downstream. With a reducing availability of
finer fractions, the surface of the bed is rearranged: finer particles cluster up-
and downstream of stable coarser fractions. This phase of the armouring
process is accompanied by a rapid decrease of degradation and sediment
transport rate.

Due to particle-interaction, surface coarsening consists of two-dimensional
patterns of mobile and immobile particle populations (Drake et al. 1988). Then,
stabilized parts at the river thalweg can be combined with finer margins near
the banks (Klingeman and Emmet, 1982). Shifting of flow patterns, or
disintegration of a local, armoured surface can induce transport fluctuations of
fine sediment (Jaeggi and Rickenmann, 1987).

To analyse the coarsening process, a situation with zero sediment feed as shown
in Figure 4.1 is studied. In this section, mathematical models based on the layer
concept as described in Chapter three are used to explain the general pattern of
coarsening, without modelling particle movements in detail. The models are
derived for the case of armouring, where velocity and depth can be assumed
constant. The construction of analytical solutions enables analysing the effect
of model parameters and comparing different models. These solutions are
constructed and applied in Subsections 4.2.2 and 4.2.3.

Fig.4.1 Model configuration for armouring.
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4.2.2. Analytical models.

First, the concept proposed by Hirano (1972) (Subsection 3.2.2.) is used to
construct an analytical solution. The number of fractions amounts 2. The total
mass balance for sediment, integrated over a length L is

N
d Z[Sbi<t’ L) - sy, Oﬂ 4.1)
i-1

0
i+ :O

ot Ox

If the input of sediment at the upstream boundary (x=0) is zero, the time
derivative of sediment transport at x=L can be written as

s, (1) _ @
ot or?

4.2)

The mass balance for a fraction i contains the time gradient in composition

N O

o 5, a L,

4.3)

Assuming that s,, = flu, p,, D,, D,), gradients in transport of a fraction are

asl - % + (D1'D2)% _a_pﬁl, = X, %
ot P, oD, | ot ot
4.4
asi . — (D,-D,) 9o % - X, %
ot P2 oD | ot ot
This enables writing
os ds Fs Fs
X, 2 -x -2=-0,x, 2 -x —2-9 4.5)
ot or ar? or?

75



Using the mass balances for both fractions, it can be found

3 -
oz, (A-B,) X, - B, X,) 9 % 0 @.6)
or’ 3, L or?

After substitution of the boundary conditions, the solution is
5,(0) B X, - B,X
_ b Aty . _ P21 p1o2
z e ;A= - = - P
W0 = —— (1 ) ™

p

In absence of non-uniform conditions of flow, the degradation process in case
of armouring can be characterized as essentially uniform in longitudinal
direction (e.g., Ashida and Michiue, 1971). This implies that if sediment fluxes
between flow and bed are written as

D . op,/ox

P = R P —
v P ™ 25 jox @.8)

Yo
i=1

the contribution of the second-term at the right-hand side is small (see also
Parker and Sutherland, 1990). This enables application of a simplified model
(see also Subsection 3.2.5), which will be used in the following.

The number of fractions is N. The derivative of sediment transport is defined
as

N
5550 4.9)
PO R S m & %y p_p,y| L
at i=1 au at i=1 app[ appN j=1 aDm\ 1 N at
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Now, sediment-mass continuity in pavement and subpavement is described by

ap,. 0z,
) Py .- p.)— =0
o Psi = Pn) ot
4.10)
ap. . oz
8 —2 +p ~ (1-K)p, —kp)—2 =0
s ot (pm ( )pTl pM) ot
After combining Eqs 4.2, 4.9 and 4.10 it can be obtained
CATRNED N 0 @.11)
or? Lf)p ot
with
N | sy, Os N Os,.
X = DY _”ﬁj”(DFDN> (Pri P @.12)

i-1 app,- aPpN i1 oD,

After substitution of boundary conditions, a solution for the bed level can be
found.

Sb(O) (1 ~ek‘> . )‘, - KX
AL ’ Ld

r

z(t) =

S & Yo 413
5, L

Hence, the general form of solutions (Eqs 4.7 and 4.13) in both concepts
correspond. For high values of 7.,/7,, the transport-composition!approaches the
composition of the bed surface and X approaches zero. Then, degradation rates
(and subsequently sediment-transport rates) become constant. A similar result
is found if 6, > .

The linearized models (Eqs 4.7 and 4.13) contain information on changes and
equilibrium conditions of bed level, sediment transport and surface grain size.
Obviously, Eq.4.13 is convenient in case of a large number of size fractions.
In the following sections, Eq.4.13 is applied to predict degradation of bed level,
decline of sediment transport and coarsening of the bed surface.

4.2.3. Armouring process.

Chin er al. (1994) recorded bed-level changes in conditions as described in
Figure 4.1. Except for minor roughness changes due to coarsening, hydraulic
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conditions were kept constant by correcting the bed level for eroded volumes.
Degradation rates were analysed with different mixtures at various levels of
shear stress. In the following, analytical solutions are applied to these
measurements.

In Section 3.5, it is shown that magnitudes of layer thickness are related to the
scale of relevant composition changes. Here, the effect of 6, on the armouring
process is analysed as well.

For the prediction of bed-level changes, Eq.4.13 is used. Sediment transport
related values for s,(0) and X are based on the Meyer-Peter and Miiller (1948)
formula corrected for horizontal-hiding effects.

32

D. Y
Y TP [BL) T*Cr) @.19)

m

3
Spi = Ppi k \gAD;

From reported erosion rates, the total transport s,(0) can be used to calibrate
Eq.4.14 (Figure 4.2). Note that the transport rate per size fraction is not
calibrated, which increases the level of inaccuracy in the results.

0.10 -
-z, [m] 1,':
. — oo
1x10 /
s, / k=0.4 0.06
s p=0.1 i
[m7s] 7 r=0.8 0.04f |/
o = 0.047 /
1x10 cr
o.02ff/ .
I e 11
o6 o8 10 . /n. 20 3o 0.003 2 ¢[min 8 12

Fig.4.2 Calibration of transport rate. Fig.4.3 Bed levels (analytical).

The layer thickness is taken as 6,/D, = 0.23 for all levels of shear stress. Initial
erosion rates are underpredicted (Figure 4.3). In experiment 1-6, the
equilibrium armour layer is not obtained in the test facility. Some remarks on
A, or, since the sediment transport rate has been calibrated, values of & /Dy will
be added in Section 4.2.4. To analyse the effect of linearization, Eq 4.11 is
solved numerically.
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Fig.4.4. Bed levels (numerical). Fig.4.5 Coarsening (numerical).

Predicted changes in bed level and mean grain size are presented in Figure 4.4
and 4.5. Changes in mean grain size are larger with increasing shear stress, as
will be show in Section 4.2.4. Calibrated values of the layer thickness are
shown in Figure 4.6.

4,
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6!’ 7m0 3
o
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: oy
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Fig.4.6 Calibrated layer thickness.

It is noted that the trend of decreasing layer thickness with increasing shear-
stress can be due to calibration inaccuracies. In the experiments with higher
shear stress (1-4 and 1-5), the armouring process is overpredicted.

Due to the fluctuating character of particle motions, the process of armouring
is a discontinuous sequence of coarsening steps. As a result, linearization of the
entire coarsening process is erroneous. This can be illustrated by analysing the
decline in sediment transport rate. The predicted decline in the linearized model
is

Sb(t) At
=€
Sb(o)

4.15)
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To illustrate the applicability of Eq.4.15, armouring experiments by Little and
Mayer (1972) are memorized. Reference can be made to Bettes (1982) and
Paris (1991), who also observed an exponential decrease of transport rates in
armouring experiments.

In the following, sediment transport rates observed by Tait et al. (1992) in
armouring experiments with different mixtures are shown. The mixtures in
Experiments 2 and 3 are similar, but shear stresses differ. At low particle-shear
stresses (Exp.2, Figure 4.7-a), the stochastic fluctuations by individual particle
motions dominate. Then, sequences of armouring processes can be recognized
with different X values (increasing adjustment time).

1.0

10
0.8 0.8 3
S(t)/5(0) -
06 s(t/s@)
i1 750 min
04 1= 25000 min 0.4
0.2 02
2L 1500 min
0.0 Y 0.0
0 10 , 30 0% 5 s .4 1
t [10 min] t [10 min]
Fig.4.7-a Experiment No.2. Fig.4.7-b Experiment No.3.

At higher particle-shear stresses (Figure 4.7-b and 4.7-c), the relative
contrilnitiane Af chart tarm flustnatinng donranca an Ao mara Aar laga Ananfinnana
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armouring process develops corresponding to the linearized model. The
sediment used in experiment 4 consists of coarser grain sizes.

3.0
exp. 4
25
2.0

S(t)/S(?)5

1.0

0.5 4
A = 450 min

0,0o

2t (10°min) ¢

Fig.4.7-c Experiment No.4.
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After longer periods, limits of the linearization are encountered.

Apart from degradation rate and transport decline, coarsening of the surface can
be considered. With the linearized model, mean grain sizes in the reference
layer are predicted as

D, _ | _ 5O (Pur - D
D X D

m m

m) (1 - et 4.16)

with D,., D,,, and D, as mean grain diameters of sediment transport, surface

layer and subsurface layer.
Garde et al. (1977) defined a coarsening parameter

D, @® - D,(0)
D, (=) - D,(0)

F@ = 4.17)

Based on recorded coarsening processes in flumes, a power law function for
coarsening rates was fitted. Substitution of the analytical solution (Eq.4.16)
yields

to7s

L - e d T @19

The fitted power laws and the analytical solution of the linear model are
presented in Figure 4.8. As can be concluded, general trends correspond.
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Fig.4.8 Coarscning of bed surface (Garde ef al. 1977),
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After a sufficiently long period. The mean grain-size of the armour layer
according to the linearized model is

2’& -1 + s(0) (1 - &T) 4.19)
D, X D,

In Figure 4.9, predicted mean armour-diameters are compared with the Dy, of
the armour layer in the measurements of Chin ez a/. (1994). Maybe due to poor
calibration of the sediment-transport predictor, there is an overestimation of the
coarsening.
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Fig.4.9 Composition of armour-layer.

4.2.4 Reference-layer thickness for armouring conditions.

3
2
=
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In layer medels as described in Subsection 2.2, the thickness of the predicted

armour layer follows from the predefined reference layer thicknesses. Conform
concepts introduced by Ashida and Michiue (1971), Borah et al. (1982a and
1982b) state that armour layers have a thickness of D,, the smallest immobile
grain size in the mixture. According to Figure 4.6, a reference layer is of the
order of 2 or 3 times D,,. Lamberti and Paris (1992) measured changes in size
fraction and derived corresponding values of layer thickness equal to Dy, of the
armour layer. During breakup of the armour layer they calibrated with A, =2
Dy,.

It can be concluded from Eq.4.13 that the thickness 6, of the reference layer
determines the rate and equilibrium state of the armourmg process. A larger
thickness results in slower coarsening and larger erosion depths. This relates
(but not equals) the reference layer-thickness to the scouring depth defined as
d, = - z,(t—>).
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5 d x X
_ %X (4.20)

pr
D, s,0) D,

Different options for the definition of §, exist. Some are calibrated for the Chin
et al. (1994) experiments, reviewed in Table 4.1 and constructed in Figure

4.10.

option definition trend

particle shear-stress 5 b = constant
(Niekerk ef al. 1992) AR -l

1 1

active layer a1yl constant
(Borah er al., 1982) 5, = D, [1 —Epl]
i=1

(a = smallest stable fraction)

sediment-transport rate 5 decreasing
2 =Y s, (wD)!
) 2 s (D)
mean grain-size 5 D increasing
i —2 _25 .10 "
(e.g. L:'ambertl and D, D,
Paris, 1992)
grain-size 5 constant
(e.g. Di Silvio, 1991) o 0B

Table 4.1. Layer definitions for armouring processes.

In Figure 4.10, these types of predictors are represented together with values
calibrated from the experiments by Chin er al. (1994).
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Fig.4.10 Layer predictors.

It is noted that using sediment-transport rates for layer prediction results in zero
values for equilibrium conditions, and can therefore be considered not
appropriate for armouring processes. Application of Eq.4.20 to measured
scouring depths enables deriving values for §,/D, for different levels of shear
stress.

With respect to the predictor of Borah et al. (1982), the following can be noted.
The scouring depth is assumed to be equal to the volume of mobile material in
a predefined active layer. It is noted that in contrast with the linearized model
(Eq.4.20), the predicted scouring depth is smaller than this active layer.

a-1 a-1 -1
i-1

i=1

Because this contradicts with observations where all original fractions are found
to be present in armour layers, Eq.4.21 yields a conservative prediction (Borah,
1989). However, comparison with observed values (Chin ez al., 1994) yields

relatively good results (Figure 4.11).

a,/D,

/ — Borah et al. (1982)
- Chin et al. (1992)

0.4 0.8

12 16 20 24
T /r,c,

Fig.4.11 Prediction of scour-depth.
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Critical shear-stresses are computed with empirical formulae (Van Rijn, 1989).
The discretization of the size-frequency distribution significantly affects the
predictor. Apparently, the predictor suggested by Borah er al. (1982a and
1982b), should be used for equilibrium conditions only.

4.3. Longitudinal sorting: abrasion or selective transport.

4.3.1 Introduction.

Another aspect of graded material in river beds is a downstream fining of
sediment. The study of this phenomenon started in the 19" century (e.g.
Sternberg, 1875; Schoklitsch, 1914), as reviewed by Miko$ (1993). Some
recent examples are due to Deigaard (1982) and Seal and Paola (1995). Apart
from size-selective entrainment, transport and deposition, fluvial sorting in
longitudinal direction can result from abrasion of moving grains (Sinha and
Parker, 1996).

Initially, fluvial abrasion was thought to be the main cause of the fining.
Sternberg (1875) introduced for the relative weight loss AW/W of a grain
travelling a distance As

AW _ o As 4.22)
w

where o represents the empirical weight-reduction coefficient a ([a]=[m™]).
This can be rewritten as

AD _ e, 4.23)
As 3

L '(‘\ \\\\\\\‘\\~\\ e

pam -+ s[m] 7

Fig.4.12 Weight-reduction law (Sternberg, 1875).

Traditionally, the combined effects of selective transport and fluvial abrasion
have been lumped into «. As a result, especially in rivers at steeper slopes with
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coarse sediment, high and varying values of « were found.

In the last decade, more effort is put into describing size-selective entrainment
and transport of particles, which enables integrated modelling of size-selectivity
and abrasion effects. Parker (1991a; 1991b) demonstrated numerically the
contribution of abrasion to longitudinal sorting effects for hard and soft material
(quartzite and limestone). It was concluded that the relevance of fluvial abrasion
largely depends on sedimentological properties and the length-scale of the
reaches of interest.

As a result, downstream fining can in general be subscribed to longitudinal
sorting. For example, Hoey and Ferguson (1994) simulated downstream fining
in the Allt Dubhaig, Scotland, by considering size-selective transport.

In the following sections, an attempt is made to generalize this result
analytically by including different hydraulic conditions. Therefore, a simple
abrasion model is derived in Subsection 4.3.2, and implemented into a model
for quasi-steady and -uniform flow (Subsection 4.3.3) to determine a sorting
relaxation-length.

4.3.2. Abrasion model.

In general, a mixture is described with a grain-size frequency distribution ,
represented with discrete fraction values. Hence, the mass, or volume of a
fraction i can be described by grain size D; and fraction p,.. In morphological
models, changes in composition (or mass distribution over the grain sizes) are
changes in fraction p . with a constant "label" D,.
Abrasion losses in fractions of large grain sizes are assumed to transfer to
fractions of smaller grains. Strictly, abrasion is a reduction of a grain mass due
to mechanical action. Now, the following hypothesis is used. Abrasion can be
interpretated as a grain-mass changing into a reduced grain by production of an
abrasion residue. Hence, a fraction / in a mixture has two sources; one based
on production of residue material (with original size D)) and a one based on
reduction of grains (with original size D,). This can be written with the
Sternberg law as

-1
W, =W, +W, ; D = > D, ; D, - (1—‘%8) D, 4.24)

I wAs

If for As -0, D, > D, then the contribution of the abrasion residue is zero.
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Such a model is valid only if grain sizes of production and reduction are within
or near the original range of diameters. Abrasion experiments (Mikos, 1993),
indicate, however, the production of an "abrasion" fraction with relatively small
grain size. In that case, a separate size fraction i, for abrasion residue can be
considered. The original mixture should be corrected with a weight reduction
factor (Mikos, 1993).

Hence, all fractions with D, < D, (or according to the definition used i < i,)
are considered as separate and constant abrasion residue material. To determine
the original fractions of the reduced grains, the grain-size distribution F must
be introduced.

Py = F(DJD,) 5 Py = F (DyD,) 4.25)

Then, changes in size fraction with i > i, are

D.
p(as+als) = p (as) - aAs D’FDi 4.26)
For aAs - 0, this yields
dp . D. dF,
P oo B0 €0 @.27)
ds 3 D, d D/D,

This simple "diffusion” model produces a composition with a reducing range
of grain sizes (not a constant grain size). A hypothetical example of changing
composition is given in Figure 4.13 (xAx=0.2). Due to abrasion, also
maximum and minimum grain sizes reduce.

0.03 @ As=1.2

pi
0.02

0.01

0.00
0.0 04 p [cm] 08
i

Fig.4.13 Abrasion model.
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With respect to the abrasion residue, changes in fraction (i < i,) can be written
as

DN
p,(as+als) = p (as) + Y oa,As F(D) 4.28)
Dj:Dia*l
For aAs — 0, this yields
dp . On
P a. F(D. 4.29)
& sz: ; F(D)

The abrasion model as described by Eqs 4.26 and 4.28 is applied to abrasion
experiments by Miko§ (1993) (Fig.4.14-b to f). Broken lines represent the
changes predicted by the model. The grain-size frequency distributions of the
original mixtures are represented in Figure 4.14-a. Grain sizes range from 2 to
128 mm, 10 fractions are distinguished. The abrasion residue is represented by
fractioni = 1 (D, < 1.0 mm).

Assuming that fluvial abrasion can be simulated with a tumbling mill, the
abrasion of Alpine Rhine sediment (limestone predominantly) was studied.
Mean weight-reduction rates (or abrasion residue production rates) observed in
the laboratory are of the order of 10 km.

5 Mixture | .
mixture |
0.2 oo /| 03 &= 001 kni'
o p o as = 0.00
P v PR v as= 019
pi 0.2y ) o as= 039
0.1
0
10 100 10 100
D; [mm] D, [mm]
Fig.4.14-a Review of mixtures. Fig.4.14-b Mixture 1.

88




mixture Il mixture [l|
0.3}, @ = 0.005 km' 0.3} « = 0.005 km'’
| nas= 0.00 -
R, + s = 007 Bi A 0o _g'?g
¢ as = 0.15 0.2 + &8 =U
0.2¢ o gs= 028 ) o a8 =041
~ s = 046 R
0k 011
0.0 - -
0.0 = —— 1 10 100
1 D [mm] 10 100 D, [mm]
Fig.4.14-c Mixture II. Fig.4.14-d Mixture III.
mixture IV mixture VII
, a =0.005 km' a= 0015 km''
0.2f) v a s =000
) D a s =0.00 + s =018
P +a s =008 o as=035
- o a8 =027 o a s =046
0.1
0.0 e
0.0 1 10 100
1 D [mm] 10 100 D, [mm]
Fig.4.14-e Mixture IV. Fig.4.14-f Mixture VIIL.

Based on the small as values it can be concluded that the duration of these
experiments is relatively short.

4.3.3. Sorting relaxation-length.

Using Sternberg’s law, the abrasion rate of a fraction p, in layer 6, can be
written as

Ap 0 As
A = PP h 8\ . 4.30)
! At Pri o At
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If the average grain-velocity in a bed load layer is substituted, the abrasion
volume of a fraction can be written as

Appl P Sbl .6[)
T = (I)pi 6P> o, = OLl. Sbi 6_b (4'31)

In the following, it is assumed that abrasion occurs in the bed load layer only
(8, = 0,). Hence, time changes in bed-load composition due to abrasion are
considered. Changes in volume of fraction / due to abrasion are defined as

8 70 "
Appl b Ppi% " ags, (pph b_ahsth _
At At At @.32)
n n 6[7
= (pph - ppi)Xt TSy T Sy,
or, using Eq.4.27
Ap & D,
PZI " a”ﬁ”D_l% dDde TSy T Sy 4.33)
t m 4 i m
Now, the mass balance for a fraction i in the bed load layer is
op.8, Os,. dz D, dr, X
el L LS S Y + (o —wp.,. s, =0
o ox T o "D dD/Dm; w (PP 21: o
4.34)

Stating that « is constant for different grains, Eq.4.34 can be integrated over
all size fractions yielding

N

Y

-1 ox

s 0z N
bi ab -« Z

i-1 m

Z Sy = 4.35)

mi=1

¢ /D

Because large-scale changes are considered (basin scale), the momentum
equation can be reduced to that of uniform flow. If flow conditions are also
assumed to be steady, this yields

P U 4.36)

90




Clad. . Oz, N Gzppi 'z, .

Coy gy x

B3u i ox? i-1 ox? otox
YD, dp, ( cld Fz, N op
: pt b pi
- T : + X. +
Xl: D,dD/D, | 3u Elf ox? 21: " ox 4.37)
ap,;
A
- o N — =0
’Zl: bl; Dm th/Dm

Now, an exponential solution for an equilibrium state is defined

I T P B 4.38)
Ppi Ppi 0 Ppi = Ppi
Without abrasion, non-trivial exponential solutions exist if
N
Z X (Ppi o Py oo)
-0V oa - Ok 4.39)

C%a N
Az, quz
i1

If abrasion is accounted for, the sediment-mass balance is as derived in the
previous section.

N N N N

ou ap,, 0z, D, dF,

' + E : X. o — § : ! E s,. =0 (4.40)
Zizlf‘”ax " ox o “~ D _dD/D S "

i=1

Again, the solution Eq.4.38 can be substituted. Now, N, the relaxation length
of the exponential bed level and the weight reduction length ' are compared.
However, the contribution of abrasion to A’ cannot even be distinguished in
Figure 4.15, which is constructed with a Meyer-Peter and Miiller (1948)
transport formula corrected for hiding effects.
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1 /6,2 3 4 5 6
Fig.4.15 Sorting relaxation-length.

The Roman numbers refer to the sediment mixtures described in Appendix B.
It can be concluded that the length scale of abrasion is significantly larger than
the relaxation length of the bed level. Hence, the contribution of size-selectivity
in entrainment, transport and deposition is dominant. This effect decreases with
shear stress. Longitudinal sorting can be expected to be most significant (and
sensitive to hydraulic conditions) at lower values of shear stress.

4.4. Numerical tests.

4.4.1. Degradation downstream of a dam.

One of the classical experiments on armouring processes is presented by Ashida
and Michiue (1971), concerning degradation downstream of a dam. The series
of flume experiments included one with a steep slope, where conditions of flow
initially are critical (Fr = 1), and change into subcritical during the
degradation. For the numerical simulation, the following parameters are used.
The mixture is described with grain sizes D, = 0.0004 m, D, = 0.0018 m and
D, = 0.0065 m. The numerical grid is Ax = 1.00 m and At = 0.25 s. The
average bed slope is 0.01, discharge and roughness coefficient are ¢ = 0.03925
m?/s and C = 30.9 m'?/s. The single-layer concept in the stabilized model is
used with 8, = D,/2.
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Fig.4.16-a Bed levels. Fig.4.16-b Free-surface levels.
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Fig.4.16-c Process of coarsening.

In the Figures 4.16-a and -b, the predicted and observed bed levels z, and free
surface levels z, during the degradation are compared. In Figure 4.16-c, the
predicted and measured coarsening is shown. The degradation process is rather
gradual. This can be explained by the absence of significant non-uniformity in
flow; the solution approaches the quasi-uniform flow model (Eq.3.33).

4.4.2. Propagation and deformation of a bed-level disturbance.

Detailed observations of changes in bed level and composition in case of
sediment mixtures are rare. An early analysis of propagating disturbances in bed
level and composition has been carried out by Suzuki (1976). More recently,
Suzuki and Michiue (1991) observed the deformation of a triangle-shaped
profile (height Az, = 0.02 m, length L = 2.00 m). It is noted that the scale of
the disturbance is very small and of the order of a dune (AH,/a = 0.2, AH,/L
= 0.01).
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The trends observed were a coarsening at the upstream-facing slope of the
disturbance, and a fining at the downstream-facing slope. As a result, upstream
parts of the hump tend to stabilize due to coarsening (or even armouring),
whereas the propagating part of the hump becomes finer. The latter results in
a reduction of the disturbance height and an increase in propagation rate. This
mechanism corresponds with observations on bedforms of finer material that
propagate over coarser beds (e.g. Klaassen, 1990).

For the computation, the following data are used; ¢ = 0.050 m%/s; i = 2-107;
a =0.108 m; C = 31.5m'%s and A = 1.65. The mixture is described with
the grain sizes D, = 0.73 mm, D, = 1.88 mm and D; = 3.10 mm (D, = 1.90
mm and ¢° = D,/D, = 4.24). The layer thickness is assumed to be constant in
time and space by stating 6,/D, = 1.0. Sediment-transport rates are predicted
by

3/2

D \o7
_ _ 3 - m .41
s, = S P, \-gAD] |1, - 0047 (FJ )

i

Observed data are represented in broken lines, continuous lines refer to model
predictions.

1.0
observed
- =115s
0.8 t=115s g t
t=221s
4z(xD o~ t=757s
Az, x t=1457s
<

Om 6m
Fig.4.17-a Deformation of hump (stabilized model).
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t=2160s
— predicted

t=2160s

6m

Fig.4.17-b Changes in composition (stabilized model).

First, the formulation as

described in Subsection 3.4.3 is applied (Figures 4.17-

a and 4.17-b). Comparison indicates discrepancies due to differences in initial
and boundary conditions. The propagation of the hump is significantly

overestimated. However

, considering the small scale (where individual particle

movements are dominant), a general correspondence between prediction and

observations exist.

The results of the conve

ntional model are shown in figures 4.18-a and 4.18-b.

served
t=115s
t=221s
t=757s
t=1457s
t= 2160s

— predicted

0

4 xpP ¢+

t=2160s

Fig.4.18-a D

6m
eformation of hump (conventional model).
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Fig.4.18-b Changes in composition (conventional model).

Now, propagation rates correspond, but coarsening is underestimated. Unstable
wiggles in composition develop.

4.4.3. Scouring in a confined section.

Wang et al. (1993) (or Wang et al. 1994) analysed the effect of sediment
composition on scour development in confining flow conditions. Two sediment
mixtures, identified as A (uniform) and B (non-uniform) are compared. The
material consists of crushed coal, with a specific weight of 1480 kg/m® (A =
0.48). The grain sizes are represented as indicated in Table 4.2.

grain size | mixture A | mixture B

[m]

D, 0.0011 0.0007
D, 0.0030 0.0030
D, 0.0048 0.0080

Table 4.2 Composition of mixtures.

Slopes are kept constant on a value of 0.00245. Widths reduce from 0.50 m to
0.20 m. Here, equilibrium conditions with both mixtures for low and high
discharge are compared. The values of discharge are @ = 0.01 m*/s (with C
= 36.1 m'?/s) and Q = 0.04 m*/s (with C = 26.6 m'/?/s). It is noted that due
to the reduction in width, two-dimensional effects are introduced that are not
accounted for in the model.
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In general, erosion was reduced due to coarsening of the bed surface. However,
for both discharges, the effect of gradation on erosion depth was minor, both
in the physical and numerical model. In the numerical model, the coarsening in
the eroded section was larger in case of the lower discharge (with particle shear
stress closer to the threshold of motion).

05— - 05

width
04 0.4
03 x mixture A
03 o mixture A mj ~mixture B
[m] x mixture B 0.2
0.2 e L free surface level
01T T e
0.1 free surface level 0.0 o~ B . :
S — ) ) ’ - . bed level
0.0 . \
: -0.1 4
="+ bed level B
-0.1 : -0.2 .
-0. -0.3 .-
025 i 2 m 3 4 5 0 1 2 [m 3 4 5
Fig.4.19 O = 0.01 m’/s. Fig.4.20 Q = 0.04 m¥/s.

Some additional remarks on these experiments are added in Appendix A.3.

4.4.4. Changes in sediment supply.

To analyse changes in bed level and composition, Ribberink (1983) carried out
flume experiments with sediment composed of two fractions; D, = 0.78 mm
and D, = 1.29 mm. A few of the experiments concern effects of overload and
underload of sediment at the upstream boundary. Here, two single-layer models
are applied to predict the recorded bed levels in the transition experiments. The
conventional model is described in Section 3.2, the stabilized model in
Subsection 3.4.3. In contrast with the experiment mentioned in Subsection
3.5.5, the composition of the sediment supply remains constant.

initial state equilibrium state
type of
experiment | Ppi Pri Sp Ppi Pri Sy
[-] [-] [10° m’/s] | [-] [-] [10°mY/s]
overload | 0.17 | 0.20 2.95 0.20 0.20 4.89
underload | 0.20 | 0.20 4.89 0.18 0.20 1.11

Table 4.3 Transition experiments (Ribberink, 1983).
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It is noted that with respect to the bed composition p,1 in Table 4.3 refers to a
size fraction that is averaged over the reference and the bed-load layer.
Thicknesses of the reference layer were stated to be constant at 0.0365 m in the
overload experiment, and 0.028 m in the underload experiment. First, observed
and predicted bed levels in the overload experiment are compared. The resulting
aggradation is shown in Figures 4.21 and 4.22.

0.08 0.08
...... observed
0.06 - observed 0.06 —— predicted
bed level —— predicted bed level
[m] [m]
0.04 0.04
t=61.0 hrs B
t=0.0hrs 46.0 t= fz16.02hrs
0.02 30.5 0.02 305
158 15.3
7.3 73
47 - 47
0.005 10 [m) 20 30 0.00 10 [m] 20 30

Fig.4.21 Stabilized model. Fig.4.22 Conventional model.

The degradation in the underload experiment is represented in Figures 4.23 and

4.24.

0.08

0.06/

bed level

. observed
—— predicted

t= 0.

hrs

0.08

006

bed level
m

0.04

observed
— predicted

0.02F

0.00}

-0.020 10

20 30

[m]

Fig.4.23 Stabilized model.

Fig.4.24 Conventional model.

Because bed compositions remain almost constant, negligible differences in both
models can be observed. In both experiments changes are forced by gradients
in sediment transport. Therefore, significant velocity gradients are absent,
which explains the gradual change in bed level that approximates the diffusive
solution of the parabolic model.
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i However, differences in both modelling concepts can be observed in case of a
changing sediment composition. The following experiment of Ribberink (1987),
is also mentioned in Subsection 3.5.5. Here, the total sediment feed is constant,
but the fine fraction in the supplied sediment decreases linearly from ¢ = 0 hrs

’ to r = 30 hrs. As a result, the bed becomes coarser and steeper by aggradation.

0.6

0.015,
1 p ]
| P11 Ohrs ) . bed[rI:VEIj
0.4 10— —— .010;
= - 15/"// —— ]
o - e . 4
20— : 1
,,,,,,,,, o e - 0.005]
02 T ]
T 30 . ]
,,,,,,, SRR [ 0.000]
T s -
0.0F it L2 50 ]
; ) -0.005————
0 10 m 2 30 0 20 ¢inrs) 40 60

Fig.4.26 Changes in bed-level
(conventional model).

Fig.4.25 Changes in composition
(conventional model).

The predictions of bed level and composition changes of the conventional model
correspond qualitatively with the measurements. For p,; — 0, wiggles develop,
which eventually induce instabilities.

0.6 0.015,
P, bed level ]
P11 t=0nrs G (m]
0.4 ‘ . T, 0.01
e | Oj
T _ 20 B
| 30 0.005]
02 " ]
o Iy ]
P
T L 0.000
0.0 = = : .
— - -0.005} s —
0 10 20 30 0% 20 [hrs] 40 60

Fig.4.27 Changes in composition
(stabilized model).

Fig.4.28 Changes in bed-level
(stabilized model).

This qualitative correspondence of predictions with measurements can also be
observed for the stabilized model. The propagation of composition changes is
underestimated. The mutual parameters in both models are equal. The layer
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thicknesses used in the conventional and stabilized model are 0.02 m and 0.01
m for the pavement and subpavement layers respectively, based on Ribberink
(1987). For the stabilized model, a smaller thickness improves the prediction
of composition changes.
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Chapter five

Numerical concepts for mobile-bed models.

5.1. Introduction.

In mountain rivers, flooding hazards are often determined by single, extreme
events. Hence, to indicate future flooding-probabilities for different areas, many
extreme-event scenarios must be analysed to construct a representative
distribution of flooding probability (Davies, 1989; FRIMAR, 1995).

At transcritical flows and higher levels of bed mobility, changes in bed level,
depth and velocity are of comparable order (Chapter two). Hence, the system
of PDE’s should be solved simultaneously for all variables. Due to relatively
fast rates of changes in velocity and depth, this seriously restricts the time step
and limits the prediction of long term morphological changes.

To reduce computational efforts, often simplified modelling concepts are
applied. As a result, there often is a major gap between prototype rivers and
one-dimensional representations in mathematical models (Crosato, 1995). At
present (1997), the applicability of simplified modelling concepts have been
tested for low-land rivers mainly (e.g. De Vries, 1993). Therefore, assumptions
with respect to steadiness or uniformity of flow should be tested for conditions
present in mountain rivers (e.g. non-uniform geometry, transcritical flows).

The simplifications that are studied theoretically and numerically in this chapter
concern

neglecting the non-linear interaction between changes in flow and
morphology

use of quasi-steady flow for computation of morphological changes

use of quasi-steady and quasi-uniform flow for computation of
morphological changes

The nonlinear interaction between hydraulics and morphology is analysed in
Subsection 5.2.2. The quasi-steady flow model is analysed in Subsection 5.2.3,
and the quasi-steady and quasi-uniform flow model is analysed in Subsection
5.2.4.
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In Section 5.3., the applicability of the different concepts is tested numerically.
The test cases concern the application of a complete dynamic-flow model (1),
a decoupled dynamic-flow model (II), a quasi-steady flow model (III), and a
quasi-steady and -uniform flow model (IV).

5.2. Theoretical analysis.

5.2.1. Introduction.

If, in hyperbolic models, extreme scale differences occur, some "wave-type"
solutions can be approximated with steady or uniform flow-type solutions. This
is used when introducing the quasi-steady flow assumption (De Vries, 1966;
Vreugdenhil and De Vries, 1973), which implies an "instantaneous” adaption
of flow variables with respect to "slow" changes in bed level. Now, fast
"hydraulic” waves are eliminated, and models can be adjusted to large
morphological time steps.

This concept very well suits subcritical flows (Fr < 0.8) where the interaction
between hydraulics and bed mobility is weak. However, in flows with higher
values of Fr, the increasing non-linear interaction becomes more significant,
which limits the applicability of decoupled solution techniques.

These concepts have been applied, analysed (Barneveld, 1988) and verified
(e.g., Ribberink and Van der Sande, 1985) for different cases with subcritical
flow. In this study, some remarks are made with respect to the applicability in
sub-, trans- and supercritical flows.

5.2.2. Nonlinear interaction of flow and morphology.

The difference between fixed-bed and mobile-bed models includes the
introduction of an additional wave-type solution and the interaction between
hydraulics and morphology. If the interaction between flow and morphology is
low, the resemblance between fixed-bed and mobile-bed models enables
decoupling changes in hydraulics and morphological variables.

In a decoupled, or non-simultaneous solution technique two steps are made;

changes in depth and velocity are determined with a fixed bed; changes in bed
level (and composition) are determined with the new depth and velocity.
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This decoupling implies neglecting:
a). the non-linear feedback of changing morphology on flow

b). the effect of flow-unsteadiness on changes in morphology (see
Subsection 5.2.3, and Appendix A.3)

ad a). To a certain extend, the non-linear feedback of changing morphology on
flow can be analysed by comparing fixed-bed and mobile-bed models. The
effect of bed-level changes on flow is expressed by bed-level gradients in the
flow-momentum equation. If this term in the momentum equation is assumed
to be constant, the resulting, quasi-fixed bed or quasi-coupled model is

dz, s d’z, . Fri-i &z, 6;2:f

T + K
o3 dxdr? Fr? ax%ot Fr? ax?

Iy E&J _o 6.1
or? 2 oxot

Compared to Eq.2.41, this model yields good approximations if

v <« |1 - Fr?| (5.2)

This explains differences in celerities of fixed-bed and mobile-bed models for
the approximate range 0.8 < Fr < 1.2,

Obviously, for solutions with larger values of E and/or smaller values of y, the
contribution of the neglected nonlinearity decreases. For linearized
morphological models, solutions of velocity and depth are not affected if river
beds are assumed to be fixed during a time step. This similarity between
linearized quasi-fixed bed or quasi-coupled and complete models can be shown
as follows. If solutions are substituted into linearized versions of the complete
and the quasi-fixed bed or quasi-coupled model, the following conditions for
similarity can be found (Sieben, 1996)

B 1
(1-6) (1-6) (1-0) = ~—
6, +6,+0,-2 (5.3)
.
0,0,0, = Fr?

with §, = ¢/u a non-dimensional celerity. Substitution proves that 6, equals
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roots of the characteristic equation (De Vries, 1966).

00 -20 4+ [1-LW g ¥ G4
Fr? Fr?

Hence, similarity is satisfied; solutions of quasi-fixed bed or quasi-coupled
models converge to exact solutions for all values of Fr if non-linearity decreases
(e.g. Holly and Rahuel, 1990a and 1990b). The three conditions for similarity
(Eq.5.3) provide equations to analyse ,, additional to Eq.5.4. Some examples
are added in Sieben (1996).

Hence, errors due to decoupling reduce with steadiness and uniformity of flow,
or if time steps are sufficiently small (e.g. Lyn, 1987; Cui er al., 1996).

5.2.3. Quasi-steady flow.

The quasi-steady flow approach in models for river morphology consists of
neglecting time changes in ¢ and # in the mathematical model, and is applicable
if the contribution of flow unsteadiness to the solution is negligible. The
resulting, linearized model of non-dimensional, first-order derivatives is

3p% | 1-Fr0n, g Py (5.5)
2 ot Fr? Otox Fr? ax?

The fast, downstream-propagating wave III is eliminated. The applicability can

be analysed by considering harmonic solutions of the simplified and complete
model with varying values of E (Barneveld, 1988).

1% 1. 10 —wave |
"1 -— complete model —---wave |l
100 \ \E=102 .. quasi-steady flow model e,
el ul AN
1 —
10 T 10
- 5 e - s
3 - T
10 B
0 1 Fr 2 0 3
Fig.5.1-a Wave propagation rate. Fig.5.1-b Relative difference.
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For constant values of ¥ = 107, the absolute values of wave propagation rates
in both models are shown in Figure 5.1-a, relative differences are constructed
in Figure 5.1-b.

The error in the quasi-steady flow model changes with wave type and flow
regime. For subcritical flows, the error is present in upstream-propagating
waves I, and for supercritical flows, the largest error can be found in the
downstream-propagating wave II. The error, and the wave-type discriminating
effect of Fr, decreases with larger values of E. For E > 10% the relative
difference in propagation rate is can be approximated as ¢, = 10 E.

This enables the construction of a qualitative figure for applicability of the
quasi-steady flow assumption. In Figure 5.2, areas of applicability for waves
I and II are indicated. For the conditions represented by the double-shaded area,
both waves are represented by the quasi-steady flow model. For transcritical
flow and E < 10°, errors in the quasi-steady flow model are significant.

2.0
1.6
Fr wave | g
< -wave'land ||
wave |l
0.4
102 E 108 10*

Fig.5.2 Applicability of quasi-steady flow assumption.

5.2.4. Quasi-steady and quasi-uniform flow.

The quasi-steady flow assumption (De Vries, 1966) enables deriving models
with a mixed hyperbolic / parabolic character (Vreugdenhil and De Vries,
1973), that can be illustrated by means of a Péclet number (Vreugdenhil, 1982):
quasi-steady models approximate a pure "convection" (or simple-wave) equation
for short waves, and a pure "diffusion" equation for long waves.

The latter situation leads to a parabolic model that combines assumptions of
quasi-steady and quasi-uniform flow. This model is analysed here, again by
comparing propagation rates and attenuation lengths of the simplified and
complete mode].
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For transcritical flows, the complete model develops a symmetrical behaviour
of waves I and II. As a result, solutions in the complete and parabolic model
show an analogous behaviour. This resemblance can be explained when
considering the celerities.

1d 10°

— complete model!
- parabolic model

. —— complete model
10 |4~

parabolic model
leful
10 {4 T — _
3 A _— %\Nﬁ
10 T -
¢ TT—
0 1 A 2 2
Fig.5.3 Wave propagation-rate. Fig.5.4 Wave attenuation-length.

An exact solution of the similarity conditions in Eq.5.3, and consequently of the
characteristic equation Eq.5.4 is

Fr=JIeylZ ; 6, =+ i’z L0, =2 (5.6)
i r
Because 0, = -0,, a symmetric behavour with respect to waves I and II can be

expected. If friction is neglected (E — 0), the mathematical model can be
reduced to

0| %% w Fu|,,00%% v Tu|_o )
o\ or? 2Fr? ox? ox\ gr? 2Fr? ox?

This diffusive behaviour of waves I and Il expands to other values of Fr (sub-
and supercritical flows) for £ — oo. Differences in damping are present for low
values of E; and diminish for large values of E.

5.3. Numerical analysis.

5.3.1. Introduction.

The verify the theoretical results of Subsections 5.2.3 and 5.2.4, numerical test
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cases are carried out with three models.

decoupled model with different time steps for hydraulics and morphology
quasi-steady flow model
quasi-steady and quasi-uniform flow model

The tests concern the deformation of a hump (height and length of 0.50 m and
60.00 m) for different conditions of flow (Table 5.1) and sediment (grain size
and gradation) are considered. Sediment mixtures were described with three
grain sizes. The median grain sizes considered are 0.01 m, 0.05 and 0.25 m.
The gradation, defined as o® = D,/D,, includes 2, 5 and 10. For a complete
description, reference is made to Evans and Sieben (1996).

i, Fr E
T=10min | T = 20 min | T = 40 min
0.013 | 0.7 27 54 109
0.033 | 1.1 51 101 203
0.055) 1.5 71 143 285

Table 5.1 Summary of experiments.

The corresponding parameters of the experiments are shown in Figure 5.8, in
combination with representative values of some typical rivers (Sieben, 1996).

15 numerical tests
+ o+ 4+
K.Termas -
1.2 R ) v = (Laterna)
+ o+ 4+ .
1.0 o Mallero
0.8 R ° (Sondrio)
+ o+ o+ )
Fr Johila
Oued Sebou Rio Apure
0.0 7 3
1 100 10? E® 10 10°

Fig.5.5 Parameters numerical tests.

The Oued Sebou (Morocco) combines a smooth bed with tidal waves at flat
slopes. The resulting low values of E indicate the significant dynamic character
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of flow (Vreugdenhil, 1977). The Rio Apure (Venezuela) represents a typical
low-land river with negligible effects of flow unsteadiness (Delft Hydraulics,
1971). The Johila river (India) is an ephemeral river with steep hydrographs
and a relatively steep slope of 0.0022 (De Vries, 1994). The Mallero river
(Italy) combines steep slopes of the order of 0.02, and short flood waves with
rough beds (FRIMAR, 1996). The Kali Termas Lama (Indonesia) has a
relatively steep slope, and drains the Kelud Volcano. The supply of fine
sediments results in a smooth bed, and subsequent high velocities (Sloff,
1993b).

Due to the relatively high sediment-transport rates, the deformation of the hump
in the numerical experiments appeared to be very fast; in the following figures,
bed level profiles are compared after a period of 10 min. A constant layer
thickness of 0.50 m has been used. Space steps are Ax = 10.00 m, time steps
are At = 1.0 s.

5.3.2. Application of simplified models.

In the next figures, the following solutions are presented:

I reference solution (A7, = At))

II decoupled solution with
At,/At, = 25 for Fr = 0.7
At /At = 10 for Fr = 1.
At,/At, = 6 for Fr = 1.

II quasi- steady flow solution

IV ~nvnas atandy nd miaci nniform flaw onliitian
v ‘.iuuo OL\(MU] I-ll i \1““&" u‘AJlUL lllllllllllllllll

1
5

The effect of sediment transport rate on the applicability of different
simplifications can be considered by changing D,,. The next three figures at the
left-hand side represent solutions for D,, = 0.01 m, at the right-hand side, D,,
= 0.05 m. For all figures, gradation is 5 and T = 20 min.
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5.3.3. Quasi-steady flow.

The effect of flow unsteadiness on the simplifications is compared explicitly in
the following figures. In the three figures at the left-hand side, 7 = 20 min, at
the right-hand side, 7 = 40 min. In all figures, the median grain size is D, =
0.05 m and gradation is o* = D,/D, = 5.

0.25 —— - 0.25
/ ','\‘\"'\'
VEETRY.
2, o e 2,
[m] . [m]
R — .
s ‘:\ ‘_:\-‘ seeiis St
0.00/+ S ial 0,00/ Dt
om 500m Om 500 m

Fig.5.7-a Fr = 0.7 ; T = 20 min. Fig.5.7-b Fr = 0.7 ; T = 40 min.

0.25 25
v,/ o,
/ g i A 2
[Zb] /e, \ z, .
m et sttty
S ‘&“\‘-ﬁ\\ i e “\“\\.
d 5/ e, e i ‘\S‘&“l
T \\‘\ e \*hiﬁ‘
saan sad /.4 \‘: +
ey N r
0.00|_- el 000127 Ty
om ' ' ' ' 500m Om 500 m

Fig.5.7-c. Fr = 1.1 ; T = 20 min.  Fig.5.7-d Fr = 1.1 ; T = 40 min.
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Fig.5.7-e Fr = 1.5 ; T = 20 min. Fig.5.7-f Fr - 1.5 ; T = 40 min.

As can be expected, the error of the quasi-steady flow approach reduces for
waves with longer periods. Considering the relatively small values of E used
here, it is noted that the contribution of flow unsteadiness on the solution will
be small in steeper rivers with larger values of Fr.

Apart from boundary effects that are present in the different models, the effect
of the quasi-steady flow assumption (solution III) is small for downstream
propagating waves, and large for upstream propagating waves in subcritical
flows. For transcritical and supercritical flows, the contribution of flow-
unsteadiness decreases relative to flow-nonuniformity. As a result, the quasi-
steady flow approach performs well.

This can be explained by analysing sinusoidal solutions of the dynamic
equations; for higher values of Fr (and E), a wave solution indeed approaches
a quasi-steady character (Sieben, 1996). Hence, for trans- and supercritical
flows, representative values of L (Eq.2.44) should be based on geometrical
length-scales rather than characteristic periods of hydrographs. This can have
significant consequences with respect to the application of simplified models.

For example, in the Mallero river in Northern Italy, E-values based on flood
hydrographs range from 10° to 10* (Figure 5.5). This implies length-scales of
L = u,T = 50 km. If longitudinal profiles of width and bed level (relative to
an average slope of 0.068) are considered (Figure 5.8), the ratio of length-
scales of flood wave and geometry (L,) is approximately A = #,7/L, = 5 to 10.
Hence, flow non-uniformity will be caused by geometrical variations mainly.

Consequently, if a geometrical length-scale is considered, corresponding values
of E = 10? are found. At values of E of this order, flow unsteadiness can be
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expected to affect morphological changes, which implies the use of complete
models.

100
width \

(m]

\/

local bed level

-100
0 tkm] 20

Fig.5.8. Longitudinal geometry of the Mallero river.

Backwater effects in the Mallero river due to width-fluctuations can be
neglected in case of larger length-scales L, only (approximately L,, > -g,/C’A
~ 500 m, Appendix A.3).

min

5.3.4. Quasi-uniform flow.

With respect to the reference solution I, the deformation of the hump is
underestimated by the quasi-steady and quasi-uniform flow model (solution IV).
The underestimation of transport gradients is due to neglection of convective
terms. Apparently, the values of E in the numerical tests are too small for this
simplification; if a more uniform geometry is considered, the combination of
assuming quasi-steady and quasi-uniform flow becomes less erroneous (Evans
and Sieben, 1996).

To analyse the effect of flow non-uniformity on the applicability of the quasi-
uniform flow assumption, two cases are compared with different space steps.
The following three figures at the left-hand side refer to the test cases with
Ax = 10 m, as described in Subsection 5.3.1. The three figures at the right-
hand side refer to similar cases, but with Ax = 100 m. The broken lines
represent solutions for simplified models based on quasi-steady and quasi-
uniform flow, the continuous lines represent the reference solution.

112




om ‘ ' ~ 500m om - ~ 5000m
Fig.5.9-a. Fr = 0.7 ; Ax = 10 m.  Fig.5.9-b. Fr = 0.7 ; Ax = 100 m.
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Fig.5.9-c. Fr = 1.1 ; Ax = 10 m.  Fig.5.9-d Fr = 1.1 ; Ax = 100 m.
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Fig.5.9-e Fr = 1.5 ; Ax = 10 m. Fig.5.9-f Fr = 1.5 ; Ax = 100 m.

With reduction of the non-uniformity in geometry and flow, the deformation of
the hump in both models correspond, as can be expected. Due to neglecting
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convective terms, still a difference can be observed in the rate of deformation.
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Chapter six

Analysis of discontinuous solutions.

6.1. Introduction.

In upper parts of rivers, features are often dominated by a non-uniform
character of slope, width, discharge and sediment transport, sediment size and
composition. Due to these non-uniform conditions, various wave-type
phenomena are introduced (propagation of hydrographs or aggradation fronts)
that can develop into discontinuous profiles. And if this is the case, water and
bed levels in a river during a flood can be fundamentally affected.

The occurrence of discontinuous flows in rivers is rare, nevertheless, under
special conditions, it has significant physical relevance. Some examples can be
given. In lowland reaches of rivers, bores can travel upstream due to tidal
effects (e.g. Dronkers, 1964). The propagation of bores upstream a river can
have significant implications in terms of navigation, flooding risks and the
stability of structures. The breaking of a dam can cause a destructive shock-
wave, propagating through downstream river reaches (e.g. Ogink and De Jong,
1989).

Another type of discontinuous river flow can be found at confluences and
bifurcations, where mass and momentum fluxes in a river occur. These type of
stable discontinuities, which are rather prominent in mountain rivers, will not
be reviewed here.

In rivers in mountainous regions, also hydraulic jumps can be observed at
transitions in flow regime. If, at transcritical and supercritical flows, the bed
material is mobile, bed levels immediately respond; a sudden decrease of
velocity due to a hydraulic jump results in an "instantaneous" deposition of
sediment.

With respect to morphology, the occurrence of local humps, trenches, distinct
regressive-erosion zones and deposition fronts (delta’s in lakes or reservoirs,
alluvial fans) can be mentioned. Large-scale mass movements can result in
discontinuous bed-level profiles. A reported example is the Mallero river in the
Italian part of the Alps where large-scale landslides overloaded the conveyance
system of the river. The aggradation volume propagated downstream and
resulted in flooding (Di Silvio and Peviani, 1989).
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It should be noted that the term "discontinuity" refers to double-valued
parameters at a single point in a mathematical model, in an attempt to describe
physical phenomena with an extremely short length-scale. Hence, the definition
of a discontinuity is relative to a length-scale.

However, discontinuous solutions of a mathematical model are a simplified,
mathematical representation of a physical phenomenon. Discontinuous flows as
defined above cannot be observed in nature; changes in conditions of state will
always have dimensions in time or space. Instead, relatively thin regions with
relatively steep gradients in variables can be distinguished. With respect to the
larger length scale of the computation domain, these thin regions can be
assumed concentrated into a unique location.

In this study, emphasize will be put on effects of discontinuities on continuous
states of river hydraulics and morphology, rather than a detailed description of
flow within the transition state. Examples of these neglected effects are local
energy dissipation by increased turbulence, development of vertical velocity,
local changes in mechanisms responsible for sediment-transport.

Hence, although the importance is recognized, a proper and detailed description
of additional effects that are present in transition zones is not included. This
implies that one set of PDE’s is applied for both continuous and discontinuous
solutions.

Within a fair range of accuracy with respect to hydrodynamics, this assumption
is supported by observations of Basco (1989) and Gharangik and Chaudhry

1001y Tha lattar manadallad ranmidly varving flaw woith tha ochallag arafas-
VL2710 ., duv adubl aivuoutld tapgiuay  Varying uoOw Wiul ull siduadw-wailcy

equations, extended with the Boussinesq term to account for changes in pressure
distribution due to vertical velocities. The contribution of vertical velocities to
numerical solutions that included hydraulic jumps was found to be negligible.

This small effect on the numerical solution does not imply negligible vertical
velocities in hydraulic jumps. At strong shocks, bed-pressure measurements by
Hager and Bretz (1986) in hydraulic jumps at positive and negative steps show
deviations from hydrostatical pressure-distributions.

6.2. Mathematical aspects.

6.2.1. Generalized or non-differentiable solutions.

Mathematical models for flows with mobile beds consist of PDE’s based on
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mass and momentum conservation laws. Discontinuous flows can develop due
to the non-linear character of the PDE’s that describe the hydrodynamics of
river flows and the corresponding morphological changes. If conditions are
sufficiently non-uniform, characteristics from the same family, originating from
neighbouring points, intersect. Information carried by the characteristics
collapses into a single point and a discontinuity is formed.

Although differential equations using continuous variables fail at points of
discontinuities, the physical concept of mass and momentum conservation still
applies. Therefore, at a discontinuity, conservation laws can be defined and
applied additional to the mathematical model that is valid in the zones of
continuous flow.

Due to this concept of separating continuous and discontinuous flows, additional
relations, the Rankine-Hugionot, or shock relations can be derived. These
relations describe mass and momentum conservation at the discontinuity, and
can be considered valid at the zone of discontinuous flow only.

With the Rankine-Hugoniot relations, a solution can be constructed that satisfies
the mass and momentum conservation relations in integrated form. Such a non
differentiable solution is defined as a generalized (or weak) solution (Lax, 1954,
or Abbot, 1975).

The derivation of the shock relations is illustrated by an example due to Lax
(1973). Consider a PDE

au oF B K (6.1)

Now, a solution u(x,t) can be found at each side of a smooth curve x = y(t)
(Figure 6.1). An interval x, < x < x, is chosen that includes the curve y.

r S

t /y(t)

left .right
e

»
T T 14

X, X, X
Fig.6.1 Definition of two continuous solutions.
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Then, a quantity /(z) is defined as

xr

y
10 = [u@ode - [uCrodc + [utendx (6.2)

y

*r

X

Derivation to ¢ yields

y X,

dI() [ oulxp ou(xt) . o qy6.3)
“ dex + ulx,nec + {—ade ux,tyc; c = A
fl

At either side of the discontinuity, Eq.6.1 is applicable. This results in

& 64

= F(x,t) - Fy.0) + ulxp,t) ¢ + F (1) - F(x,t) - u(x,0) ¢

where F(y,r) and F,(y,r) represent the fluxes directly left and right of the

discontinuity at y(#). The PDE Eq.6.1 in conservative form is

9{% - (e, - F(x,0) (6.5)
t

This is satisfied for the interval x, < x < x, if the following shock relation is
valid
F.0) - F30 = ¢ [ux,t) - u(x,b)] (6.6)

Analogously, shock relations can be derived for one- and two-dimensional
models for flow with mobile beds (Sieben, 1995). The conservation equations
for the discontinuity include all fluxes, diffusive and source terms. Because the
length of the zone of discontinuous flow is relatively short, in general only
fluxes are considered.

6.2.2. Entropy conditions.

Consider a one-dimensional, depth-averaged model for flow with a mobile bed.
The system of PDE’s consists of a fluid mass and a sediment mass balance and
a momentum equations. The number of variables is three; velocity, depth and
bed level. At a point of discontinuity, the number of variables is doubled and
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amounts six. In addition, the rate of the shock is unknown, which totals a
number of seven unknown variables.

The Rankine-Hugoniot conditions are again three non-linear equations with the
seven variables mentioned. Now, the rate of the discontinuity and two variables
can be calculated with the Rankine-Hugionot relations. The remaining four
variables must be determined with information- carried by incoming
characteristics.

In principle, the total number of characteristics that can be calculated in the
neighbouring zones of continuous flow equals the number of variables at the
shock: 2 x 3. However, because characteristics cannot be calculated through
discontinuities; a limited number of characteristics (and consequently
characteristic equations) is valid. In order to solve the system, at least four
characteristics should not intersect with the time path of the shock. This
criterion limits the interval of propagation rates and can be visualized in a x-¢
diagram (Figure 6.2).

To generalize this line of reasoning, a system of N variables is considered. A
shock is propagating with a rate w. The number of unknowns at the shock is
2N+1, the number of Rankine-Hugoniot relations is N. This implies that N+1
characteristics should arrive at the discontinuity to close the system of

equations.
—— shock time path

—— characteristic

Fig.6.2 Intersection of valid characteristics.

The characteristics are marked with index i, with i = 1..Nand ¢; < ¢;,,. From
the left, (upstream) side of the shock, k characteristics arrive, whereas from the
right (downstream) side, N-k+1 are valid. This implies that N shock types are
possible. Hence, for a one-dimensional model of flow with mobile bed, three
shocks can develop.
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The shock is called a k-type shock if the propagation rate w, satisfies
6.7

w < c

Ck ~ downstr k

k — upstr
Obviously, the higher the shock type, the more information is transferred from
upstream.

In case of convex coefficients for flux terms in the PDE’s, satisfying Eq.6.7
implies satisfying the so-called entropy condition as well, that states that over
a discontinuity, entropy must increase (e.g., Lax, 1973). Therefore, Eq.6.7 can
be called the entropy condition. Now, a shock wave is defined as a discontinuity
that satisfies the shock relation (Eq.6.6) and the entropy condition (Eq.6.7).

The entropy condition determines the stability of the shock. This can be
illustrated as follows. If characteristics ¢, up- and downstream of the
discontinuity converge, a shock is stable. If characteristics ¢, diverge, Eq.6.7
is not satisfied. Then, the discontinuous solution develops into a rarefaction or
expansion wave, and the discontinuity will disappear. Although variables will
be continuous, derivatives can be discontinuous.

6.2.3. Analysis of shock relations.

To analyse the behaviour of discontinuous solutions, the theory in the previous
subsection is applied to a one-dimensional, depth-averaged model with mobile
bed. First the corresponding shock relations are analysed. A distinction is made
in variables upstream (x™) and downstream (x) of the discontinuity

nnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnn

a sediment-mass balance can be defined. The propagation rate of the shock
wave is defined as w. Flow-mass balance

w@-a)-u'a -ua (6.8)
Momentum balance

ww'a-ua)=wYa" - w)a %((a P - (ay) +
6.9)
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Sediment-mass balance
w(c*a‘ +z, ~ca - z,{) =ucta” ~uca +s, -s, .10

Suspended load is neglected (¢ = 0, ¢ = 0). The bed-load transport is
predicted with a power-law s, = mu", where m and n are coefficients.

Now, differences in variables over the shock are introducing by using

a:a*+Aa;u:u*+Au;zh’:Z};+Azb 6.11)

In the following, the subscript + is left out for convenience. The result is a
non-linear system of 3 equations with 7 unknowns. For simplicity’s sake, it is
stated that n = 3. A general analysis with varying values of n can be found in
Appendix E. For n = 3, it can be found
w 3
o

¢(ﬂ)2(2+ﬂ) - 2R (1A%
w 2
)

a a a
2 w
—| +
) u

[ 2
. 3¢Aa(2+Aa) . 4Fr2(1+Aa)
| a a a

(6.12)

=
} a
ot g2
a a a

For Aa/a — 0, infinitely small disturbances are found that should propagate with
the characteristic celerities. Indeed, in that case Eq.6.12 can be reduced to

)=

which equals the corresponding equation for celerities (De Vries, 1966).

(1 +AC_ZJ3+3(])

- 2R 1+ 24
a

a

1+3¢
Fr?

| - (W) L 30y (6.13)

u Fr?

If a, u, s, and Aa are prescribed, three solutions for the propagation rate w can
be found; if initial conditions in the model as described are discontinuous, three
different type of waves can develop.
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In the following, the Rankine-Hugoniot relations are solved. To analyse the
behaviour of the shock, values of w are compared with characteristics up- and
downstream. If a positive discontinuity in depth is considered (Aa/a = 0.3),
propagation rates and surrounding characteristics are (Figure 6.3)

Az/a
; Auyu
1(
0.1 The—
o/l I —
001 R
0.001
0.0001 —
0.2 1.0 Fr 1.4 1.8
Fig.6.3 Propagation rates for Aa/a = Fig.6.4 Differences for Aa/a =
0.3. 0.3.

The characteristics marked with + and - refer to up- and downstream
conditions. The differences in variables over a corresponding discontinuity are
represented in Figure 6.4.

Now, a decrease in water depth over the shock is substituted in the shock
relations (Aa/a = - 0.3). Propagation rates and surrounding characteristics are

(Figure 6.5). Differences are presented in Figure 6.6,

— Auyu
. AZ/A
1
2\‘ a
0.1 T
l¢/ul N
0.01 -
A
0.001
0.2 0.6 1.0 F,- 14 1.8
Fig.6.5 Propagation rates for Aa/a = - Fig.6.6 Differences for Aa/a = -
0.3. 0.3.
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6.3. Behaviour of discontinuous solutions.

With the results from Subsection 6.2.3, the behaviour of discontinuous solutions
can be analysed. The analysis can be simplified by the following observation.
For Fr < 0.8 and Fr> 1.2, the deformation of a profile is due to one wave-
type solution mainly. This enables the identification of distinct surface and bed
level waves, in accordance with the decoupling criteria found in Subsection
5.2.3 Hence, for Fr < 0.8 and Fr > 1.2, a simplified treatment of
discontinuous solutions is possible.

First morphology is considered. Morphological changes are related to type 1
and 2 waves mainly. Type 3 shocks are relatively fast hydraulic phenomena that
can be analysed decoupled from morphological effects. For low values of Fr,
significant changes in bed level are associated with type 2 shocks only. In
supercritical flows at high values of Fr, changes in bed level propagate
upstream with type 1 shock predominantly. In the following figures, positive
and negative differences in depth are combined.

Fr<0.8 Fr>1.2
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Fig.6.7 Shock and expansion waves in bed level.

In Figure 6.7, a qualitative deformation of a discontinuous bed level (shoal and
trench) is presented. At subcritical flow and supercritical flow, the direction of
propagation and the location of expansion wave and shock wave reverses.

Despite differences in rheological properties, some interesting similarity consists
with discontinuous behaviour of free surface mud flows and debris flows. An
extraordinary example of a positive, upstream-propagating shock wave can be
found in Takahashi (1991), who reviews the upstream propagation of a stable
deposition front (Figure 6.8), due to a flattening of the bed slope. The number
of Fr for the incoming debris flow amounts 1.8. This would correspond with
a type I shock wave in a supercritical flow regime.
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Fig.6.8 Deposition profile of debris flow (Takahasi, 1991).

In flume experiments, Armanini and Scotton (1992) observed two types of
impacts of debris flows hitting a check dam; a reflected bore at milder slopes
and a vertical, jet-like bulge at steeper slopes. The different phenomena were
explained by considering an accelerating (jet) and decelerating (bore) flow
(Armanini, 1993), but it is tempting to speculate that the different impacts
represent different flow regimes. In subcritical flows, fast type I shock waves
propagate upstream, whereas in supercritical flows, upstream propagation rates
are much smaller, inducing a large vertical velocity in front of the structure.

If discontinuous surface levels are considered, the following situations can
develop if Fr < 0.8 or Fr > 1.2.
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Fig.6.9 Shock and expansion waves in free-surface level.

At transcritical flow (Fr near unity), changes in bed level clearly propagate up-
and downstream along both type 1 and 2 shock waves. Then, the deformation
of a discontinuity is cannot be assigned to one single wave anymore, but is
dominated by two waves.
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The surface wave profiles are either shock type 1 or 2. The wave type, and
direction of propagation is a related to the flow regime, type | upstream in
subcritical flows, and type 2 downstream in supercritical flows. Another
solution can be identified as a type 3 shock, which is always directed
downstream.

Fig.6.10 Type 3 shock and expansion waves.

6.4. Numerical aspects.

6.4.1. Introduction.

Because discontinuous conditions in rivers are rare, research on discontinuous
solutions in numerical models mainly originate from gas dynamics. For
extensive treatments, interested readers are referred to Fletcher (1988a and
1988b), Hirsch (1988 and 1990), LeVeque (1990), Anderson er al. (1984).
Here, only some aspects on application of the numerical model to discontinuous
solutions are discussed.

6.4.2. Review of solution techniques.

For solution of discontinuous solutions in numerical models, two methods are
reviewed briefly.

Shock-fitting method.

Mathematically, discontinuities in solutions are defined as instantaneous
transitions in two continuous states. This is valid if time or space dimensions
of the transition can be assumed negligible with respect to the scale of the
continuous states. This concept of separate scales for continuous and
discontinuous flows in numerical models is used in shock-fitting procedures.

The method concerns the application of two different models; one for changes
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at the "instantaneous" scale of the discontinuity (shock relations), and one for
changes at the scale of the continuous states (e.g. characteristic equations).

The application of different models (a conventional PDE-model for continuous
solutions and shock-relations for local discontinuous solutions) enables an easy
description of local effects regarding e.g., energy dissipation or sediment
transport.

Merit of shock-fitting methods is the use of a relatively large grid (A and Ax),
that can be adjusted to the state of continuous flow. This can be explained as
follows. The length-scale of a discontinuity in a numerical solution is of the
order of the grid size. Therefore, unless the discontinuity is treated in an
isolated manner (as it is the case in shock-fitting procedures), the grid in the
model should correspond with the length scale of the physical transition zone.

However, tracking of (multiple) shocks requires significant additional effort.
For mobile-bed models, shock relations are strongly non-linear; the additional
iterative solution procedure for the discontinuity will increase significantly the
total computation costs.

Shock-capturing method.

In case of shock-capturing methods, the mathematically defined discontinuity
(double-valued variables at a single location) is interpretated somewhat
differently. Based on the work by Lax (1954) (Subsection 6.2.2), discretized
equations of mass continuity and momentum conservation are integrated over
continuous as well as discontinuous reaches. The solutions obtained are weak

solutions.

This omits the use of additional relations and shock tracking. However, some
remarks should be made. In contrast with shock fitting methods where different
models are applied, descriptions of local effects such as energy dissipation or
sediment transport should be valid in discontinuous and continuous flows. In
shock-capturing methods, scales in zones of discontinuous and continuous states
should be of comparable magnitude. This forces the usage of high-resolution
grids for the entire computation domain. An alternative option is introducing
additional dissipation terms, to be switched on at zones of extremely large
gradients (Subsection 2.6.3).

However, the computation effort for complex flow conditions can expected to
be lower for shock capturing methods, relative to models based on a shock-
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fitting approach. Therefore, this concept will be applied in the numerical model.
Some consequences will be discussed in the next section.

6.4.3. Integration of discontinuous solutions.

Finite-difference equations can be solved if intergrid distributions both along A¢
and Ax can be solved (Subsection 7.3.2). The predictor step that uses
characteristic equations (Subsection 7.3.3) is applied both to continuous and
discontinuous solutions. However, characteristic equations defined along
celerities that cross the shock time-path (Subsection 6.2.2) are not valid. Hence,
implicitly, invalid information is used. In theory, two options are available to
overcome this error.

The first option would be to replace invalid characteristic equations with shock
relations (Rankine-Hugoniot relations), introduce double-valued variables and
shock-propagation rates (e.g. Savic, 1991). In fact, this procedure has been
applied by Stoker (1957) to construct analytical solutions for dambreak waves.
The implementation of shock-tracking procedures is optional. For models of
flows at mobile beds, however, this procedure results in a considerable
extension of computational effort.

A second option would be to modify the formulation of the characteristic
equations, in order to include higher-order effects. This effect can be illustrated
with the following example. If a linear distribution of variables between grids
(space and time) is assumed (Figure 6.11)., values of for example depth can be
written as

da
a, =a ;, a, =a + Ax—
A B ox
6.14)
aC:a+Ax§q+At%+AxAt& ; aD:a+At@
ox ot Ooxot ot
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Fig.6.11 Linear intergrid distribution.
The corresponding continuity equation for flow would be
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Analogously, a momentum equation and a sediment continuity equation can be

derived. For Ar - 0 and Ax — 0, the conventional set of PDE’s would be

obtained However due to a linear intergrid distribution higher order terms
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA

source terms. As a result, celerities and characteristic equations that correspond

to the difference equations in the numerical model will change in case of

significantly non-uniform flow.

Because spatial gradients have finite values, both in reality and in numerical
solutions, the contribution of these higher-order terms can be reduced by using
smaller values of Ar and Ax. Therefore, if a grid is applied with a sufficiently
high resolution, a similar set of characteristic equations can be used for both
continuous flows, and flows with steep gradients.

For acceptable time and space steps, this simplification does, however, affect
the solution. The information loss on exact front propagation can result in
artificial oscillations, if opposite propagating waves meet. A numerical
stabilization can be obtained by adding monotonicity procedures (Van Leer,
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1979; Collella and Woodward, 1984), that eliminate over and undershoots near
discontinuities.

The effect of a simple monotonicity procedure is shown in Figure 6.12. If a
depth in the corrector is larger or smaller than both neighbouring intergrid-
depths from the predictor, it is stated to be equal to the nearest value of depth.
Note that the uncertainty in shock-wave position equals at least one grid size.
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fm]

0.0
oOm 12m

Fig.6.12 Effect of monotonicity correction.

6.4.4. Numerical dissipation.

FFor continuous flow, the error in the numerical solution will be related to the
order of the intergrid distribution, which can be illustrated by approximating a
solution with a Taylor series expansion, and substitution into the finite-
difference equation (e.g. Vreugdenhil, 1994). For discontinuous flows, with
mathematically undetermined gradients, a Taylor series expansion is not
convenient. However, the order of the truncation error significantly determines
the behaviour of a discontinuous solution.

Truncation errors in first-order accurate finite-difference equations act as
artificial viscosity coefficients (dissipation) that reduce steep transitions in a
discontinuous solution (e.g. Anderson et al., 1984). Truncation errors in
second-order accurate finite-difference equations cause a phase shift of wave
components in the solution (dispersion), which can result in high-frequency
parasitic waves near steep gradients (e.g., MacCormack and Baldwin, 1975;
Anderson ef al., 1984).

The numerical model as applied here is of first-order accuracy (Chapter 7). In
general, the contribution of numerical dissipation should be of a higher order
than that due to physical dissipation. Only if numerical side-effects are
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understood, the stabilizing effect can be considered favourable in a limited
number of cases (Lax and Wendroff, 1960; Ames, 1977; Abbott, 1979).
Neumann and Richtmeyer were the first to introduce an artificial viscosity
consisting of quadratic terms of such form and strength, that the shock
transition would be a smooth one, extending over a few space intervals
(Richtmyer, 1972). The effect of numerical dissipation for different intergrid
distribution assumptions is illustrated in Section 7.4.3.

6.5. Numerical solutions.

6.5.1. Introduction,

For subcritical flows (Fr < 0.8) and supercritical flows (Fr > 1.2), shock
waves and expansion waves in hydraulic and morphological variables can be
distinguished. As a result, discontinuous initial conditions develop into one
dominating shock or expansion wave. In the previous figures, these situations
have been analysed.

However, at a point of discontinuity, the number of waves that develop (either
of a shock or expansion type) is equal to the number of variables. For
transcritical flows (0.8 < Fr < 1.2), interaction between hydraulic and
morphological variables is significant, which implies that discontinuities in
initial conditions develop into multiple shock and expansion waves. To account
for multiple waves, the solution must be obtained numerically. Therefore,
examples of numerical experiments are added. The numerical model is
described in Chapter Seven.

6.5.2. Deformation of humps and trenches.

The discontinuities concern a hump (trench), with heights (depths) equal to a/5.

05 0.5

Fr=0.35 [m] Fr=0.35
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Om 12m 0'8 m 12m

Fig.6.13 Hump (Fr = 0.35). Fig.6.14 Trench (Fr = 0.35).
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For subcritical flows, the discontinuous profile predominantly develops into a
shock and expansion wave, in correspondence with the analysis in Section 6.3.

For transcritical flows, discontinuities in bed level clearly develop into multiple
waves. From the upstream side of the hump, a slow shock wave (hydraulic
jump) propagates in upstream direction and an expansion wave diffuses the
hump profile in downstream direction. At the downstream side of the hump, a
small shock wave propagates downstream, and an upstream propagating
expansion wave diffuses the hump. A corresponding solution is found for the
trench. Here, the upstream propagation of the hydraulic jump is hindered by a
downstream propagating shock wave of the bed level. This results in a decrease
of jump intensity by deposition in the middle of the trench.
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Fig.6.15 Hump (Fr = 0.95).
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Fig.6.16 Trench (Fr = 0.95).

In supercritical flows, again correspondence with the analysis of Section 6.3 is
found.
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Fig.6.17 Hump (Fr = 1.58).
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Fig.6.18 Trench (Fr = 1.58).
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6.5.3. Backward-facing step.

Laboratory experiments on the behaviour of discontinuities with respect to
morphology either concern discontinuous boundary conditions, or discontinuous
initial conditions. With respect to studies on discontinuous boundary conditions,
the case of overload at the upstream boundary can be mentioned (e.g. Sony ef
al., 1980; Cui et al., 1996). Basile (1994) studied the effects of downstream
boundaries by analysing sedimentation of sand and gravel due to check dams.
An experimental study on the deformation of a backward-facing step in the
longitudinal bed level profile has been reported extensively by Brush and
Wolman (1960).

One of the recent studies on the deformation of backward-facing steps is due to
Lee and Hwang, 1994). However, the conditions in the experiments are rather
extreme, with step heights of the order of flow depth. This inevitably induces
contributions of vertical velocities to flow and sediment that are not included
in the mathematical model. A second phenomenon not included in the model is
separation of flow. Hence, changes in flow conditions due to the step in bed
level will not be smoothened over a separation length. As a result, the non-
uniform behaviour of flow will be overpredicted. Some examples are given.

No. q iy C Az, Ayoron
[m?/s] (-] [m'?/s] [m] [m]

1 10.0173 | 0.002 39 0.08 0.07
2 10.0063 | 0.002 36 0.10 0.63
3 10.0127 | 0.002 38 0.08 0.05

Table 6.1. Backward-facing step experiments (Lee and Hwang, 1994)

In Figure 6.19, test No.1 is considered; symbols refer to the experiment, line
refer to the numerical model. It is noted that relatively large space steps have
been applied (Ax = 0.50 m = 6 Az, ). In Figure 6.20, the numerical model as
described in Chapter seven has been applied to test No.3.
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Fig.6.19 Test No.1. Fig.6.20 Test No.3.

Sediment transport rates are predicted with the formula proposed by Meyer-
Peter and Miiller (1948), calibrated for the experiments. Numerical grid: Ar =
0.005 s, Ax = 0.50 m.The observed deformation of the step profile
demonstrates the contributions of an expansion wave and a shock wave that
causes a hydraulic jump. While propagating downstream, the strength of this
jump is decreasing.

6.5.4. Discontinuous geometry.

An extension to the previous experiments is the analysis of Okabe er al. (1994),
which combines non-uniform bed levels and changes in width. The resulting
non-uniformity in flow causes changes in flow regime, marked by the presence
of hydraulic jumps. Both water and bed levels were recorded and presented.
The numerical model described in Chapter seven is used to simulate the
morphological changes. Uniform sediments were used (D,, = 0.00085 m).
Discharge rates were kept constant (3.5-10° m*/s), and downstream waterlevels
were fixed. Flume widths are presented in Figure 6.21; widths range from 0.4
to 0.1 m. The length of the flume is 16.0 m, space steps in the model are 0.2

m. B,
[(m]
0.4
0.2—mM— \\ /
4 \\_/
0 P 4 6 8 10 T2 14 16
distance [m}

Fig.6.21 Flume width (Okabe er al. 1994).
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In the flume, a non-erodible section is included at 6 m < x < 7 m. In the
numerical simulation, this is accounted for by introducing locally a large, stable
grain size. Sediment transport rates are predicted with the help of the Meyer-
Peter and Miiller (1948) formula. Predictions of the numerical model are
compared with the measurements at # = 15 min and 7 = 60 min. Except for the
propagation rate of the deposition front, resuits correspond.
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width [0.1 m] 5
%% 4 [m] 8 12 16

Fig.6.22 Flume experiment with non-uniform geometry.
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Chapter seven.

Description of numerical model.

7.1. Introduction.

For solution of a non-linear mathematical model such as described in Chapter
two, numerical procedures must be applied. Different techniques are available,
based on characteristics methods, finite-difference or finite elements methods.
For a general review, reference can be made to numerous authors such as
Anderson ef al. (1984), Fletcher (1988a and 1988b), Hirsch (1988 and 1990),
Tan (1992) and Vreugdenhil (1994) among others.

In this chapter a method is selected to solve a set of PDE’s for one-dimensional
changes in hydraulics and morphology in sub-, trans- and supercritical flows.
The objective is to solve numerically a set of PDE’s that represents highly non-
uniform (or even discontinuous) flows with changing flow regimes. The
hyperbolic character of the mathematical model and the type of computations
to be performed, determine the selection of the solution method.

One of the merits of finite-elements methods is an accurate description of
topography. However, in this study one-dimensional models are considered
only, hence, a finite-difference method will be applied.

Although simultaneous solution of all variables brings forward high computation
costs, conditions prevailing in mountain rivers (non-uniform flow with different
flow regimes, relatively fast morphological changes), reduce the benefits of
simplified, non-simultaneous solution procedures (Chapter five).

For the solution procedure, the Godunov method (Godunov, 1959) is used in
a modified form (e.g. Savic, 1991). The application of this method will be
motivated in Section 7.2 by giving a brief review of numerical methods for
flows with mixed regimes. In Section 7.3, the structure of the numerical model
is described. Some details on interpolation procedures are presented in Section
7.4, the treatment of boundaries are added in Section 7.5.

Applications of the model can be found in Chapters three, four and six.
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7.2. Selection of numerical solution method.

7.2.1. Method of characteristics.

In rivers with non-uniform slopes and widths, alternating sub- and supercritical
flows can be observed. As described in Chapter two, in the range of subcritical,
transcritical and supercritical flow, solutions change significantly. To simulate
all these conditions of flow, a high claim is made on the numerical modelling
procedures.

A solution of the complete set of characteristic equations (celerities and
compatibility equations) represents the highest level of mathematics (and hence
the represented physics) to be introduced in numerics. Then, both the direction
and type of information flow through a computation domain is accounted for
properly, and the resulting model performs with equal quality in different flows
regimes.

For discontinuous flows, the method of characteristics can be used in
combination with shock-fitting algorithms (e.g. Terzides and Strelkoff, 1970;
Sakkas and Strelkoff, 1973; Katopodes and Strelkoff, 1978). In the shock-fitting
method (Subsection 6.4.2), shocks are isolated from the continuous flow
domain, and treated by a local-integral approach.

One of the consequences of this exact solution is adjustment of the grid to the
type of flow; at multiple discontinuities (which can be expected when including
multiple variables), the result will be a complicated grid. The frame changes
into an irrcgular topography with changing densities at variable and unknown

locations. The resulting computation costs will be high.

An alternative method is to solve characteristic equations in a fixed grid (e.g.,
Courant et al., 1952; Lister, 1967; Jolly and Yevjevich, 1974; Yevjevich,
1975; Lai, 1976). Points along a characteristic are interpolated from
neighbouring grid points. The advantage of a convenient grid in complicated
conditions of flow is reduced by the introduction of errors relative to the
method of characteristics, due to the intergrid-interpolation. These errors can
be examined by comparing numerical and analytical solutions (Subsection 7.3).

However, when using characteristic equations, a mathematical model in
divergent form is used. As described for example by Abbott (1974), this
induces errors with respect to mathematical models in conservative form
(Subsection 6.4.3). Hence, a numerical model based on PDE’s in divergent
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form alone will not be strictly conservative. Because one of the objectives is
modelling of discontinuous flows, a conservative numerical method must be
used. Therefore, finite-difference methods are considered.

7.2.2. Finite-difference methods.

Finite-difference methods have been applied widely with numerous types of
difference schemes, either explicit or implicit. The merit of the latter class of
methods is the application of larger time steps. However, because non-uniform
and discontinuous flows will be considered, the applied time steps are limited
by accuracy, which reduces the advantage of implicit methods (e.g. Finlayson,
1992).

A review of some numerical methods for hydrodynamic models can be found
in Fennema and Chaudhry (1986, 1987, 1990). Two categories can be
distinguished: central-based schemes (no distinction of up- and downstream
influences) and upwind schemes that distinguishes the direction of propagating
waves through the model.

In transcritical and supercritical flows, changes in celerities and changes in
information that is transferred along characteristics (Subsection 2.4.1) are
significant. Therefore, the direction of information-transfer through a
mathematical model should correspond with the orientation of the difference
scheme. Because the type of information that is transferred along a
characteristic changes with flow regime, finite-difference methods are often
limited to a specified range of Fr values.

upwind schemes

Because positive and negative celerities can be found in mobile-bed models,
application of pure upwind schemes, that consider information from upstream
locations only, is not possible. An alternative would be to use alternating
difference directions for predictor and corrector steps, as suggested by
MacCormack (1969). To obtain a good representation of non-uniform or
discontinuous solutions, sequences of difference-direction in this method should
be in correspondence with the direction of wave-propagation (e.g., Kutler,
1975; Garcia and Kahawita, 1986; Jiménez and Chaudry, 1988). This can
induce difficulties when describing flows with mixed regimes (Garcia-Navarro
and Saviron, 1992).
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central-based schemes

In that respect, central-based difference schemes do seem more appropriate,
since contributions from both up- and downstream locations are accounted for.
However, these schemes do not explicitly account for changes in characteristic
equations that can be observed in transcritical flow (Subsection 2.4.1). In non-
uniform or discontinuous solutions, central-based schemes will generally be
more dissipative (LeVeque, 1990).

Since both types of differencing have disadvantages that can affect the
numerical solution, other techniques should be considered.

flux-splitting methods

For models of flows with fixed-beds, a change of sign in celerity at critical flow
can be observed. In that case, a very valuable and effective extension to the
"common" finite-difference schemes is to relate the direction of difference to
the sign of the characteristics (flux-splitting methods, e.g. Steger, 1978;
Moretti, 1979, Gabutti, 1983). However, because no change in sign of celerity
consists in mobile-bed models, this method cannot be applied.

flux-difference methods

An alternative technique classified as flux-difference splitting methods concerns
the use of both celerities and compatibility equations in the difference
algorlthm An example is the Goa’unov method (Godunov 1959), where the
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determination of mass and momentum fluxes in the conservative corrector step.
Because this method takes into account changes in the type of information that
is transferred along a celerity, it can be applied to mobile-bed models with
mixed flow regimes. It is noted that for mobile-bed models, the elegance of the
method is paid for with computation costs.

The Godunov method as applied in this study is described in Section 7.3.
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7.3. Application of the Godunov method.

7.3.1. Introduction.

Probably due to computation costs and the analogy between gasdynamics and
fixed-bed hydraulics, the application of the Godunov method has been restricted
to fixed-bed models only (e.g. Botev, 1991; Savic and Holly, 1991; Savic,
1991; Alcrudo and Garcia-Navarro, 1993).

For application to discontinuous phenomena in gas dynamics, Godunov (1959)
suggested to transform the time-integration problem of fluxes at cell boundaries
to a spatial-integration problem with the help of the theory of characteristics.
This implies that changes in time are determined from spatial gradients by
solving the compatibility equations.

The use of spatial gradients requires knowledge on intergrid distributions. In the
method proposed by Godunov (1959) a piecewise uniform distribution of
variables over an interval Ax around a grid point was assumed. This results in
a sequence of small discontinuous states, with a Riemann problem to be solved
at the cell boundary. The resulting numerical scheme is of first-order accuracy
(Richtmyer and Morton, 1967) and has dissipative properties (Colella et al.,
1983; Savic, 1991).

The implementation of the Riemann problem in the Godunov method yields a
relatively high accuracy but complicates the algorithm. In the original Godunov
scheme, the solution of the compatibility equations (or Riemann variants) was
exact, using an iteration procedure. The speed up the algorithm, approximate
Riemann solvers have been developed since (e.g., Roe, 1981; Vila, 1986 and
1987; Glaister, 1988).

The mathematical model in conservative and divergent form, that is used to
describe sub-, trans- and supercritical flows with mobile bed and sediment
mixtures has been described in Chapter two. The conservative form is used in
the corrector step. The corresponding difference equations are given in
Appendix B. The divergent form (or characteristic equations) is solved in the
predictor step.

7.3.2. Structure of the model.

The method consists of a predictor and corrector step, as will be described
briefly.
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A system of PDE’s in conservative form can be represented as

W, F 5.9 7.1
ot ox

To obtain a difference equation, Eq.7.1 must be integrated over a time interval
Ar and a space step Ax. This yields

t+At x+Ax
ffif+ﬁ_s drdz = 0 (7.2)
. o Lot ox
For convenience, it is used (Figure 7.1)
t=t" 5 t+At=1t" ; x = Xp 5 X+ AX =x, 7.3)
Eq.7.2 can be rewritten as
x+Ax t+At t+At x+Ax
- . 7.4)
[t~ v ax v [[F, - Fplde- [ [Sdwr=0
X t t X

Now, time-averaged values of fluxes F, space-averaged values of storage terms
U and time- and space-averaged values of source § must be introduced. This,
however, requires information on the intergrid distribution. Hence, to determine
the time-averaged values of F, intergrid variables P" are used at a new time
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Fig.7.1 Grid points for predictor and corrector.
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For a good determination of these intergrid variables P',,, and P, at x,,,
and x,,,,, a predictor step is applied. This predictor step is described in the
following subsection. Now, with the help of these predictor variables, time-
integrated fluxes can be approximated. It is assumed that the flux at r =
'+ At/2 represents the time-averaged flux for the interval Ar (Fryxell er al.,
1986; Vila, 1987; Savic, 1991).

t+A?

f[Fk+l/2 - Fyyp) dt = Az (Fk*u/z - F;:_]/z) (7.5)

4

Solution of the subsequent difference equation (Appendix B) completes the
corrector step.

7.3.3. Predictor step.

The predictor step consists of solving the characteristic equations with a fixed
grid. Originally, Godunov (1959) assumed a constant, piecewise distribution in
a zone around a grid point. Then, by solving a Riemann problem for each zone,
changes in variables (and subsequent fluxes) at the zone-boundary can be
determined. This can be illustrated as follows.

As described in Section 2.3., the linearized mathematical model can be
transformed into characteristic equations represented as

oWw. ow.
! + C. _I = O (706)
ot "oox !

where W, are equivalent Riemann invariants defined for celerity ¢, In

discretized form, this results in

+
*

AW,
W ian = Wiap - At g Axl + At O, if ¢, <0

7.7

. . AW, .
Wikap = Wikap - At g P At O; if ¢, >0

Hence, with gradients in W, along x at t = ', changes in W, at x = x,,,, along
t can be determined. To obtain the spatial gradients in W,, intergrid-distribution
functions must be assumed (Section 7.4). For the solution of W,, compatibility
equations in difference form must be used. Since these are formulated in
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implicit form, the solution can be obtained iteratively with a Newton-Raphson
procedure (e.g. Press et al., 1992).

7.4. Interpolation procedure.

7.4.1. Introduction.

Because the characteristic equations are applied to a fixed grid, this requires the
assumption of an intergrid distribution for P(o) at time level ¢ = " (Figure 7.2).
Different options are analysed for P(o), where o represents the Courant-
Friedrichs-Lewis stability number defined as o, = c,At/Ax.

*

P

k+1/2
t+442
i Py
P(JS)EP(UZ) “P(o,)
/I:(>-1 12 Pk+1 12 e(+3/2
} 1 1 t
Xt X Xiert X ju2

Fig.7.2 Solution of characteristic equations.

With respect to the Godunov method, the interpolation procedure has become

nt £, A
more and more cnnhlchr‘ﬂfpr‘ A rpvn:nr of thig AD"Dlemelu can he found in

Savic (1991). Godunov (1959) used a piecewise constant distribution, yielding
a first-order difference scheme. Van Leer (1979) introduced a linear
interpolation yielding a second-order accurate difference scheme, and
Woodward and Colella (1984) used a piecewise-parabolic interpolation which
yielded a third-order accurate difference scheme in case of continuous solutions.
Obviously, solution algorithms expand with increasing accuracy.

The type of interpolation affects the solution differently at varying flow
regimes; in a linearized set of characteristic equations, contributions of first and
second-order gradients to solutions were found to vary with Fr (Sieben, 1996).
The effect of the order of interpolation on accuracy can be illustrated as
follows. For continuous flows, the variable P can be written with a Taylor
series expansion,
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(1-0) , 0P , (1-0P AP PP (1-0)’ Ax’ 3*P(7.8)

P(o) = P, +
2 ox 4 2 oyl 8 6 ox?

For ¢ = 1.0, assuming a constant distribution would be sufficient. However,
in mobile-bed models, multiple ¢ values occur with a wide range of magnitude.
With large differences in o, large differences in accuracy are introduced.

If, for linear interpolations, the gradient in P can be approximated as

P_. - P 2 3
oP _ T kel Ax”o'P + . 7.9)

ox 2Ax 3 9y’

Substitution into Eq.7.8 yields

— _ )2 2 32
Pay - P, - Wb p - (-0)" AX FP (7.10)
4 4 2 ax?

However, in case of non-uniform or discontinuous solutions, artificial averaging
(or flux limiting) should be applied to this "central-based differencing”. An
alternative is to distinguish different distributions of variables in up- and
downstream zones. If gradients are approximated as
_ ~2 ~3
oP Pk Pk*l 4 Mﬂ Ax &P . (7.11)

ox Ax 2 ax? 6 on?

then, the interpolated value of P is

Plo) - Li9p . U=0)p (@-DALFP (749
2 2 4 2 ox?

For the different options ("central averaging” Eq.7.10 and "up- and downstream
separation" Eq.7.12), second-order terms appear with different signs and order.

However, the order of approximation of the intergrid distribution alone, is not
representative for the total accuracy of the method (predictor and corrector).
Therefore, another analysis must be performed. The alternatives for variable
distribution for x, < x < x,,, studied in this report are illustrated in the
following figures.
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Fig.7.3-a Uniform-separate. Fig.7.3-b Linear-central.
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Fig.7.3-c Linear-separate. Fig.7.3-d Uniform-central.

7.4.2. YVon Neumann analysis.

To analyse the stability and accuracy of different intergrid interpolation-
functions in the Godunov method, exact and numerical solutions should be
compared. For this purpose, a simplified model is used to indicate the effect of
different interpolations. It is noted that discrepancies exist between the simple
model analysed here, and the mobile-bed model.

Consider an advective transport process of a quantity ¢ in a medium with

uniform velocity «. The corresponding PDE for the continuity can be written
as

g, , 9% _4 (7.13)

5 ox

With the proper initial conditions, this model can be solved analytically. With
the Von Neumann analysis, this analytical solution can be compared with the
solution of a finite-difference model (Vreugdenhil, 1989). This gives
information on stability and diffusion of the numerical scheme. The solution of
a finite-difference model is given as

ct=t"", x=x) = p ¢, & "PA e RAY _ g p(p=gn xox)  (7.14)
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The multiplification factor is a complex number that introduces growth or
decline of amplitudes (stability) and differences in propagation rate (diffusion).
For different interpolation procedures, stability and diffusion can be compared;
different intergrid distributions are used to solve ¢,” (atx=x,, ,,, and t=¢"+At/2)
and ¢, (at x=x,,, and t=7"+ Az/2) from the characteristic equations.

In the corrector step, changes in ¢ are found with

n+l n

o=l -0l —e) s 0= (7.15)

Method I: uniform-separate.

The first option is to assume a constant distribution conform the original
Godunov (1959). This yields an upwind-based difference scheme for the
predictor step. The predicted variables ¢, and ¢, are defined as

¢ =¢ 5 o =¢ly (7.16)

Hence, the multiplification factor is

p = 1-o[l-cos(aAx)] - iosin(aAx) (7.17)

Method II: uniform-central.

An alternative option is a central-based difference scheme

n + n n + n
o = Cre1 ¥ Gk o = Ck Cr-1 (7.18)
oL AL S A
' 2 2

Then, p is
p = 1 - iosin{eAx) (7.19)

Because the amplitude of p is larger than unity, this method is instable.
Method III: linear-separate.

The second class of interpolation methods result when a linear distribution is
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assumed, as suggested by Van Leer (1979). This yields for the predictor step

. 3¢/ ¢/ . on . 3¢, ¢, (720
o Belely) S el s e - [ati-aly) L

2 2

After application of the corrector step, p can be found

p = 1—@—0 (o—2)cos(qu)—%cos(2och) +

(7.21)
. io[(o2)sm<an)f%sin(2an)}

Method IV: linear-central.

An alternative formulation is obtained when applying a central-based
interpolation.

- n(1-0) . a(l+o)

C, = Cp + Cp (7.22)
’ 2 2
The corresponding amplification factor is
p = 1-0%1-cos(aAx)] - oisin(aAx) (7.23)
From the amplitude of p it can be concluded that thig interpolation form vields

instable results.

A third class of interpolation procedures results when a second-order or
parabolic distribution is applied (Colella and Woodward, 1984). For continuous
flows, this raises the order of accuracy. However, for short waves (such as
discontinuous solutions) monotonicity algorithms to avoid artificial over- and
undershoots must be introduced that reduce again the order of accuracy of this
method. Therefore, this relatively complicated interpolation procedure is not
considered here.

An indication of accuracy can be given by comparing propagation rates in
numerical and analytical solutions. The ratio of propagation rates for methods
I 'and III are presented in Figure 7.4, the amplification factor is shown in Figure
7.5.
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The accuracy of linear interpolation (method III) and the uniform distribution
(method I) are comparable, with a slightly better performance for the linear
distribution. To enable a proper selection, some numerical tests of both methods
are added in Subsection 7.4.3.

1.4

© o
FRN
r " ‘\9\;, ——uniform separated
C o N .
10 - N linear separated
— uniform separated
... linear separated
1.0
0.8
2 ' 10(an)'1 10 (adx)’ 50
Fig.7.4 Ratio of propagation rates. Fig.7.5 Amplification factor.

7.4.3. Discontinuous solutions at fixed beds.

As can be concluded from the Von Neumann analysis in the previous section,
the effect of different interpolations is most significant at waves with short
lengths. Therefore, discontinuous solutions for different intergrid-distributions
are compared. In the following examples, referred to as Case I and Case II,
friction and slope effects are neglected, which implies that no physical
dissipation is present. Analytical solutions, if present, are added with broken
lines.

The propagation rate w of the shock can be found with

o e
‘a 2

(7.24)

H+

where the subscripts 1 and 2 refer to the states, up- and downstream of the
shock (e.g. Chow, 1959).

Case 1. positive surge

Due to an increase in discharge from 1 m's to 2 m?s, a downstream-
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propagating shock develops. Depths changes from 0.91 m to 1.31 m. The space
step 18 Ax = 0.20 m, which can be considered relatively large. Now, three
interpolation functions are tested to obtain P.

method I: uniform-separate.
The first is a piecewise constant distribution.

7.25
c<O~P(o):Uk+l;c>0»P(g):Uk;ozﬂ )

Ax
method II: linear-central

The second option is a linear distribution, with gradients determined by a
"central-based” approximation

o \
¢c<0 - Plo) =U,, - B (Ura~Uy)
(7.26)
o
¢>0 - Po) =U, - ) (Uea=Upy)
method III: linear-separate
The third option is again a linear distribution, with a complete separation of
upstream and downstream parts of the domain of dependance.
c<0 - Plo)=U, -0 (U,-U
+1 k2" Yl
( ) (7.27)

c>0 - P(o)

U -o (Uk—Ukrl)
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Fig.7.6-c Linear-separate. Fig.7.6-d Central and separate.

From these figures, some conclusions can be drawn. If a piecewise-uniform
distribution (option I) is used, the numerical diffusion is more or less constant
for varying Ar. Hence with an increasing number of time steps, the total
diffusion increases.

If a linear distribution is assumed, the numerical diffusion will reduce almost
linearly for smaller times steps. As a result, the solution after N time steps of
Ar resembles the solution after 2N time steps of A7/2. Hence, applying a linear
distribution improves the performance.

Case III dambreak wave

A combination of a positive shock wave and a negative expansion wave occurs
in the similarity solutions for dam-break waves. Analytical solutions concerning
linearized models are due to Ritter (1892) or Stoker (1957). These solutions
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refer to an initial state with zero velocity. Because this condition is not
implemented in the numerical model, a proper comparison with analytical
solutions is not possible. :

Again, the different interpolation methods are compared. In the initial situation,
a discharge of 1 m*/s flows through two zones with depths of 1.91 m and
0.91 m. The space step is 0.20 m for all examples. The shock-wave part of the
solution, with the corresponding depth and velocity are conform Eq.7.24.

2.0 2.0
. At=001s
— At=0.02s
am] am]
1.0 ~ 1.0
om - 6m Om T 6m
Fig.7.7-a Uniform-separate. Fig.7.7-b Linear-central.
2.0 2.0

3

\ ....... At=0.01s — option |
— At=002s ) N ] e option Ill
a AN

om 6m Om ' Bm

Fig.7.7-¢ Linear-separate. Fig.7.7-d Linear and uniform.

Again, the sensitivity to At is minimal in method III. Because the total diffusion
is constant for varying Af in case of interpolation according to method III, this
will be selected for application.
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7.4.4. Discontinuous solutions at mobile beds.

An important aspect with respect to interpolation procedures, concerns the
difference between models for fixed and mobile beds. The effect of morphology
on flow acts via the bed pressure that is introduced as a boundary condition
when the three-dimensional PDE’s are integrated over the depth.

In characteristic equations of fixed-bed models, this term acts as a source
similar to friction, which is usually integrated over up- and downstream parts
of the domain of dependance. In characteristics equations of mobile-bed models,
this term is interpretated as a flux, that should be integrated based on either up-
or downstream parts of the domain of dependance. The latter requires an
explicit separation of up- and downstream bed levels, with possibly a
discontinuous distribution of variables over the domain of dependance. The
former implies a continuous distribution over the entire domain of dependance.

If a river bed with stable parts is considered, both fixed- and mobile-bed
conditions occur. Then, one of the celerities can become zero, and the bed level
is undetermined. This induces instable numerical solution procedures.
Therefore, if a bed level is (locally) stable, intergrid distributions of bed level
are assumed to be continuous and linear over the domain of dependance.

The stable interpolation options I (uniform distribution) and III (linear
distribution) are compared for a mobile-bed case and different values of Fr.

02f TTTV™

[m] .
Fr=043 uniform

— linear
0.1

Om 6m

Fig.7.8 Subcritical flow.

151



0.2

\\\\\ uniform

*\\\ ~linear
[m) N
0.1 Fr=096 .

Y
§\\\ _\\\ -
Y :\N
T
0.0 =
Om

Fig.3.9 Transcritical flow.
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Fig.7.10 Supercritical flow.

At all flow regimes, the difference between both distributions becomes effective
at discontinuous flows. Then, the uniform distribution introduces significant
diffusion. In case of a strong shock wave, the linear distribution appears to
stabilize the discontinuous solution by suppressing secondary, parasitic waves.
This can be observed in Figure 7.11, where the deformation of a trench in

transcritical flow is represented.
02y
)

0.1

0.0

——uniform distribution
linear distribution

Om

Fig.7.11 Transcritical flow.

7.5. Boundary conditions.

7.5.1. Introduction.

The solution of the system of PDE’s is carried out in two steps (Section 4.5).
For both steps, additional information at the boundaries of the computation
domain is required in the form of boundary conditions. These conditions can be
of a Dirichlet or Neumann type, and must be formulated with the variables used
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in the model.

For the predictor step, where primitive variables are used, this information
should concern values of a, u, z, etc. In general, however, conservative
quantities such as discharge and sediment transport are used. The transformation
of conservative quantities to primitive variables is often enabled with
linearization procedures.

In the corrector step, fluxes are used at cell boundaries. At the boundaries, the
problem is to determine variables P*, outside the computation domain (Figure
7.12). Hence, to enable the use of a double grid (one for the predictor and one
for the corrector), fictitious points with variables U,, and U, are introduced
(Figure 7.12). This enables solution of characteristic equations at the
boundaries, and subsequent determination of P" and the time-averaged fluxes
for the corrector step.

upstream boundary downstream boundary
Un+1
K
* At *i
P { P
| :
at ‘L :
ur P ur up ke Utz)
Axf2
4
Ax
_'__—_—F

Fig.7.12 Fictitious points at boundaries.

The required boundary conditions can be prescribed at the additional grid
points. The information originating from these points is transferred by
characteristic equations into the computation domain.

In Subsection 7.5.2, the numerical procedure is described to perform the
predictor and corrector step at the boundaries of the computation domain.

7.5.2. Characteristics-extrapolation method.

The introduction of fictitious points enables the determination of time-averaged
mass and momentum fluxes, as described in the previous section. In this
section, the procedure applied to solve U, and U, is described.

ub
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At the upstream boundary, the characteristic equation that corresponds with the
upstream-directed characteristic (¢, < 0) is used to determine variables U", at
an intergrid point (Figure 7.13).

In difference form, this characteristic equation can be written as

7' (U] - U} = Ars, (7.28)

with 7 a vector containing the coefficients and S the source term of the
compatibility equations. The boundary conditions are described with U,

ub-

n * n n
Ui u Uy- Ue-2
t=1t"
»~ - -
s t=¢"1
Un-1 n- n-1
ub U= Uk=2

Fig.7.13 Extrapolation at upstream boundary.

The variables U", and U, can be related to other variables at #* by extrapolation

techniques. Therefore, the method can be called a characteristic-extrapolation

tanhaniaiia TTiwoAl 100M AV YT T a1 1 ' ' |
weCniiqud s, 177u). wili a 13)101‘—}'}01}’1‘101}‘1131 apprcach, grad:ents in

variables at the boundary can be approximated as

oU | - U," - U, (7.29)
OX k-1 2Ax

Linear interpolation yields for the intergrid point

* n aU ClAt n n
u' =U", +c At == | =U", + u', - U (7.30)
1 k=1 1 P k_|1 k=1 2Ax ( k=2 ub)

This linearization can cause instable conditions if steep waves propagate through

the boundaries. In that case, a uniform distribution for the intergrid point will
be more robust.
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After elimination of U, at the intergrid point, the variables U, at the fictitious
boundary can be written explicitly as

clAt
2Ax

c, At
i L A (%3 )

T n T n n-1
T UL = ArS - T (U - Ul -

Now, one equation is formulated for the upstream boundary. In case of
suspended load with N fractions, 2N+1 complementary boundary conditions
must be supplied.

A similar procedure can be carried out for the downstream boundary. With
suspended load consisting of N fractions, 2N+1 outgoing characteristic
equations exist, and only one boundary condition must be supplied. Solution of

the 2N+ 1 characteristic equations yields the variables U,".
J

T (U7 - Ul - Ars, (7.32)

withj = 2,...,2N+1. In Figure 7.14, only two outgoing characteristic equations
are indicated (N=1).

n+1 n+1 n+1
Ui k-1 U=« U* U* U
[ 2 n+i
=t
-
» A |
=1
n n n
Uk-K-1 Uk=K Udb

Fig.7.14 Extrapolation at downstream boundary.

With the help of extrapolation, the intergrid points can be related to the
variables at the neighbouring grid points.
cht

U= url e

n+l n+l
J e L Ui g ) (7.33)
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Substitution in the characteristic equations yields
T ;o0 T (7ol n CAL _r  ni
TV Uy = A1 S - T (Ul - Uiy + 2fo7} Ule |

cht
2Ax
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Chapter eight

Summary and conclusions.

8.1. Distinction of flow regimes.

Based on the behaviour of the celerities, three different types of flow regime
can be distinguished for one-dimensional models with mobile bed. The
categories mentioned can also be distinguished in analytical solutions of the
mathematical model in linearized form, and in numerical solutions.

subcritical flow:
For Fr numbers smaller than 0.8 approximately, bed disturbances
propagate along one, downstream directed celerity mainly.

supercritical flow:
For Fr numbers larger than 1.2 approximately (supercritical flow), bed
disturbances again propagate along one celerity mainly, but now in
upstream direction.

transcritical flow:
In the transition regime of approximately 0.8 < Fr < 1.2 (transcritical
flow), bed disturbances propagate both in up- and downstream directions,
along celerities with comparable magnitude. The latter results in solutions
with a diffusive behaviour.

The general correspondence with downstream-propagating dunes in subcritical
flows, upstream-propagating antidunes in supercritical flows and a washout of
bed forms in transitional regimes is noted.

It is noted that the rather straightforward distinction of categories refers to one-
dimensional models. The characteristic equations of a two-dimensional, depth-
averaged model have been studied briefly. For values of Fr, larger than
approximately 0.6, a significant part of the characteristic surfaces becomes
sensitive to the mobility of the bed. This indicates a strong coupling between
changes in flow and morphology. In critical and supercritical flow,
bicharacteristics related to bed-level changes can be found, that are directed in
both upstream and downstream directions. Apparently, at these flow regimes,
transversal morphological changes, which are strongly coupled to changes in
flow, can contribute to changes in longitudinal directions.
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This effect is omitted in one-dimensional models, which indicates that solutions
of one-dimensional and two-dimensional morphological models can deviate at
supercritical flows, in case of conditions with distinct effects of two-
dimensionality. This discrepancy of one- and two-dimensional models can be
recommended for further research. As a start, an harmonic analysis of a two-
dimensional model in linearized form is suggested.

8.2. Boundary conditions.

In mobile-bed models, celerities have non-zero values for all values of Fr. This
implies that in contrast with fixed-bed models, the number of conditions at
upstream and at downstream boundaries is constant for all regimes of flow. The
number of conditions for different models are indicated in the table.

boundary bed composition (with N size fractions)
constant variable
total load suspended total load suspended
+ +
bed load bed load
downstream 1 1 1 1
upstream 2 3 N+1 2N+1

Table 8.1. number of boundary conditions

The selection of the type of boundary conditions is determined by the prototype
boundary conditions and limited by conditions of global and local consistency.
The first requires consistent conditions at up- and downstream boundaries, the
second refers to consistency of boundary conditions and neighbouring grid
points. An indication of the latter can be made by analysing the characteristic
equations that transfer in- and ourgoing information. Based on this analysis,
Table 2.1 has been composed.

downstream boundary

In general, prescription of depth of flow, directly or indirectly via a stage-
discharge curve, can be expected to perform well for subcritical flows.
Prescription of bed level is appropriate in supercritical flows, and to a certain
extend in transcritical flows. Hence, a combination of both, prescription of free
surface level, can expected to be consistent at all flow regimes.
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upstream boundary

At the upstream boundary, discharge and sediment transport should be specified
in any case. Sediment transport (either a single quantity for total load of bed
material, or distincted values for suspended and bed load), includes both
composition and rate. However, with respect to model variables, (depth,
velocity and bed level) some options consist. For subcritical flow regimes,
prescription of bed level and velocity is appropriate. For transcritical and
supercritical flows, the depth of flow and velocity should be combined.

8.3. Sediment mixtures.

Via differences in particle mobility, the gradation of grain sizes affects the
solution of mathematical models. For example, for problems with short length-
scales, morphological models with uniform sediment approach a simple-wave
model, models with mixtures approach a telegraph model. For problems with
large length-scales, a parabolic model is found for uniform-sediment models,
whereas for sediment mixtures, a mixed parabolic / simple wave type model
results.

The scale of the contribution of sediment mixtures in mathematical models for
river morphology is determined by different variables, which can be combined
into two, indicative parameters.

N

N
Zki_f;:N—FZl:ij(Di—DN) B8] (8.1)
Yy = i=1 Jj= /\ e

“ ua )
p

grain-size frequency distribution
The parameter Y, includes effects of the

a) difference in grain-size frequency distribution of vertical fluxes, into
and out of the reference layer at the surface of the river bed

b) sensitivity of sediment-transport rate predictors to the composition of
the reference-layer

Note that the variable 3, includes effects of longitudinal gradients in sediment
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transport composition. The magnitude of Y,, and subsequently the contribution
of sediment gradation, decreases with increasing shear-stress level. In case of
symmetric hiding corrections, the effect of gradation in normal size-frequency
distributions is smaller than in case of bi-modal size-frequency distributions.

thickness of reference layer

The parameter a/é, is the ratio between depth of flow and the thickness of the
reference layer that represents changes in composition of the river bed. For
small values of this ratio, size-frequency distributions will have a minor effect
on morphological changes.

The definition of a homogeneous distribution of size fractions over the reference
layer implies that the period of "mixing" should be "instantaneous" relative to
the regular morphological changes. This limits the applicability of layer
predictors to §,/Az, < < 1, where Az, is the amplitude of a representative bed
level change.

No general, physically based concept for the definition of the reference layer
thickness exist; the magnitude of a reference layer is related to a representative
length-scale L, and amplitude Az, of a problem. In general, small layer
thicknesses scaled with particle travel-distance are also applicable for conditions
with higher values of Az,/L,, whereas layer thicknesses scaled with bed-form
height are only applicable for conditions with lower values of Az,/L,.

With the help of a linearized model, it can be found that compositiom can be

o A S faav | Ten mnmn AF ool
considered adapted for time scales larger than 4 | §,/w, | . In case of quasi-

steady flow models larger thicknesses, with subsequent slower changes enable
using larger modelling time steps. On the other hand, if, for example, changes
in composition, and subsequently roughness, during a diffusive flood wave are
taken into account, values of §,/a smaller than or of the order of ¢ = s,/ua
have to be used.

8.4. Mathematical instability.

In case of erosion of a river bed with a coarse surface at a finer substratum, this
coupled behaviour can cause a mathematical instability for both single- and
double-layer models (Ribberink, 1987). This problem of instability is due to the
elliptic character of the set of PDE’s, and increases at higher values of Fr.
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Stabilizing measures either concern the prevention of the conditions that allow
ellipticity or elimination of the cause of ellipticity. The first category includes

- reduction of layer thickness
- reduction of vertical gradients in bed composition by definition of

- a transitional, intermediate storage layer (Ribberink, 1987)

- additional, diffusive sediment fluxes between transport and
storage layer

- a variable thickness of the storage layer

In this report, an alternative formulation is tested and compared with the
conventional model. In this alternative concept, the composition of fluxes
between bed-load layer and river bed is controlled by the composition in the
bed-load layer. This enables elimination of complex celerities, which stabilizes
the model. An additional variable used in the model is the velocity of grain
fractions in the bed-load layer. Solutions of the conventional and stabilized
model are equivalent, but quantitative differences exist. These differences
concern propagation rates of changes in bed-level and composition, and are a
function of particle shear-stress.

8.5. Surface coarsening.

An analytical model is derived for describing coarsening surfaces in case of a
zero supply of sediment upstream. This model is based on the assumption of
constant and uniform flow conditions. The solution enables prediction of time
scales and equilibrium conditions. The applicability of this analytical model is
restricted by the linearizations and the assumption of uniform flow.

Application to armouring experiments in flumes confirm general trends of bed-
level degradation, surface coarsening and decline of transport. Fitting of
solutions to experimental observations indicates that layer thicknesses in case
of armouring are of the order of the largest grain size.

8.6. Simplified models.

For lowland rivers, simplified concepts for one-dimensional mathematical
models of river morphology have been tested and applied extensively. Software
packages for manipulations with symbolic algebra (e.g., Wolfram, 1991), and
the development of computational capacity enables extension of classic analyses
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to study morphological models in the highly non-linear domain of mountain
river conditions.

The main aspects that are analysed in this study concern the applicability of
quasi-steady and quasi-uniform flow models and the non-linear interaction
between flow and morphology.

interaction of flow and morphology.

Morphological models include a mobile boundary, and a subsequent interaction
between flow and river bed. The contribution of this interaction is not constant,
which can be illustrated by comparing celerities of fixed-bed and mobile-bed
models. The interaction appears to be negligible for

1 -Frl| » y (8.2)

Because changes in flow during a time step in linearized fixed-bed and
linearized mobile-bed models are equivalent, the interaction between flow and
morphology is nonlinear. Hence, quasi-coupled models converge to the exact
solution for decreasing non-linearity. Especially if Eq.8.2 is not satisfied, this
claim significantly reduces the modelling time step.

level of unsteadiness or non-uniformity of flow.

If Eq.8.2 is satisfied, changes in flow and morphology can be determined in a

decoupled manner irrespective of its wave length or period. However, this

condition may be too strict when solutions with a larger length scale or timc

scale, and hence a lower nonlinearity are involved.

Hence, to simplify a morphological model for a mountain river, both length
scale and time scale of the problem should be considered. These time- and
length-scales result from initial or boundary conditions and can be expressed
with the parameter E, defined as

.|
C2

E =2 8.3)

Q |~

where L is a representative length-scale, that can be based on hydrograph
periods or geometrical features. Obv1ously quasi-steady, or quasi-uniform flow
assumptions are appropriate for increasing values of E.
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With respect to the definition of a representative length scale the following is
noted. To indicate the presence of flow-dynamic effects in a river, the length
of the hydrograph should be related to the river length, in order to estimate
whether dynamic effects of flow are relevant. Relatively short hydrograph
periods that can be observed in small and steep catchment areas, can induce
rather steady discharges with negligible effects of flow dynamics if the draining
river is short.

The contribution of flow-unsteadiness to the morphological model tends to
decrease with respect to flow-non-uniformity, with increasing values of Fr. This
implies that for transcritical and supecritical flows, time and length scales of the
solution are controlled by geometrical features mainly.

Based on the analysis of the linearized model, the following indications can be
made. Numerical tests correspond with the theoretical results.

quasi-steady flow

For quasi-steady flow models, the error decreases with increasing value of E,
decreasing value of v, and changes with Fr and wave type. For E > 10°, the
quasi-steady flow model can be applied for all values of Fr. For lower values
of E and transcritical flows, the quasi-steady flow model cannot be applied. For
E < 10? and subcritical flow, the error is made in upstream-propagating waves.
For E < 10 and supercritical flow, the error is made in wave-type solutions
propagating downstream.

The merit of the quasi-steady flow assumption is the elimination of fast,
hydraulic wave-type solutions. This yields a significant reduction in computation
costs for subcritical flows. However, for transcritical and supercritical flows,
rapid changes in morphology can be observed. The resulting small modelling
time steps again reduce the benefit of quasi-steady flow modelling.

Additionally, the computation of backwater curves in reaches with different
flow regimes may require application of relatively slow relaxation techniques,
based on sets of PDE’s that partially include flow dynamics. Therefore, it can
be concluded that quasi-steady flow models can be applied in transcritical flow
regimes, but the benefit with respect to the complete model is very small.

quasi-steady and quasi-uniform flow

The combination of quasi-steady and quasi-uniform flow assumptions yields a
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simple model with low computation costs. Again, the performance of this
simplified model varies significantly with Fr and E. For a small range of Fr
values near unity, this model is applicable for E > 10°. However, for
subcritical and supercritical flows, E values should be larger than 10°.

The performance of the quasi-uniform flow model in transcritical flows can be
explained by "diffusive behaviour" of solutions in this regime. As a result,
solutions of this simplified model correspond qualitatively with solutions of the
complete model. However, for values of E that are too small, morphological
changes are underestimated.

8.7. Discontinuous flows.

The response of flow to changes in width or bed level at higher values of Fr
can be significant; most often sudden geometrical variations can be detected in
short transitions of free surface level. Corresponding changes in shear stress can
induce changes in sediment transport and subsequently in bed level. With
respect to discontinuous flows at fixed beds, an impressive line of developments
in history can be distinguished, whereas the effects of the mobility of the bed
at these conditions are considered only recently.

For analysis of discontinuous solutions, shock relations and entropy conditions
must be used. With respect to the latter it is concluded that the occurrence of
for example hydraulic jumps at mobile beds in mathematical models are
physically realistic if conditions of entropy-increase are satisfied. This implies
that the time-path of the jump is limited by celerities. Because these celerities
have nen-zero values, a hydraulic jump cannot be steady at a mobilc bed,

without transversal exchange of mass and momentum at the boundaries.

A discontinuity in variables is stable (shock wave) if celerities neighbouring the
time path of the discontinuity converge. Similarly, a discontinuity is unstable
(expansion wave) if celerities neighbouring the time path of the discontinuity
diverge. Because the propagation rate of a discontinuity is related to celerities,
the behaviour of discontinuous solutions can also be classified with the three
flow regimes that are distinguished; subcritical, transcritical and supercritical
flows.

For all flow regimes, fast, downstream propagating discontinuities in flow
variables can be distinguished that can be associated with wave III type
solutions. Although morphological changes can be the cause (e.g., sudden
narrowing or raise of a river section due to a land slide overload), the
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discontinuities can be considered decoupled from the morphological variables.

For the remaining types of discontinuities (type 1 directed upstream and Il
directed downstream), distinction of "hydraulic” and "morphological” shock
waves is possible in subcritical or supercritical flows only. With respect to the
first category, the classic analyses of rapidly varying flow can be mentioned
(e.g. Chow, 1959). With respect to the morphological discontinuities,
illustrations of deformating humps and trenches have been given.

For transcritical flows, which can also develop for discontinuities of sufficient
intensity, such a distinction is not possible. As a result, analyses can only be
carried out numerically. In correspondence with the relevant celerities, wave
types I and II have become equally import; shock waves and expansion waves
can travel in up- and downstream direction. The resulting deformation tends to
be symmetrical in the direction of flow, which corresponds with a diffusion-
dominated solution.

The contribution of the different shock and expansion waves to the deformation
of bed levels correspond with experimental observations of for example
deposition fronts and backward-facing steps. However, detailed prediction of
both water and bed levels near intense shocks still appears to be rather difficult.

8.8. Application of the Godunov method.

Due to different mathematical structures, as reflected by differences in
celerities, the behaviour of fixed-bed and mobile-bed models is fundamentally
different. These differences are very pronounced in transcritical flow. In fixed-
bed models, the domain of dependance changes from partially up- and
downstream at subcritical flows to entirely upstream in supercritical flows. In
mobile-bed models, this domain of dependance is located up- and downstream
for all flow regimes. However, the type of information that originates from the
different parts of this domain changes significantly.

As a result, the applicability of numerical solution methods for fixed-bed and
mobile-bed models differ as well. An explicit, numerical model has been
developed based on a concept proposed by Godunov (1959). The model fully
accounts for the structure of the mathematical model as represented by the
characteristic equations. This method can also be applied to two-dimensional
models.
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Due to consequent separation of information originating from up- and
downstream zones, numerical diffusion has been reduced as much as possible.
However, because fixed grid points are used, intergrid distributions have to be
assumed. The order of this distribution controls the accuracy of the numerical
solution. Here a linear distribution is used which results in a second-order
accuracy of continuous solutions.

It is noted that the separation of up- and downstream information changes in
case of sections with a non-uniform fixed-bed. Then, linearization of intergrid
bed levels over up- and downstream parts of the domain of dependance
stabilizes the solution.

To represent discontinuous solutions, no additional flux-limiter device has been
applied. At large discontinuities that develop due to the encounter of
"conflicting” information carried by up- and downstream waves, this can lead
to artificial fluctuations. An example is the development of a hydraulic jump in
a deforming trench (Chapter six). These numerical effects can be suppressed by
reducing the numerical grid.

Boundaries of the computation domain are treated with characteristic
extrapolation technique, which results in non-reflective boundaries. The
extrapolation can cause local instabilities in case of extremely non-uniform
conditions at the boundary. The performance of the different types of boundary
conditions is conform the theoretical analysis in Chapter two.

In the model, three grain-size fractions are distinguished, and bed-material load
is divided intc bed load and suspended load. Obvicusly, in case of mixtures
with a wide range in diameter (coarse in the mainstream, fine in the flood
plains), different modes of transport can occur. However, in case of large
morphological activity during extreme events, the relevance of the distinction
between bed load and suspended load is not clear. The total number of variables
is 12 and includes flow depth and velocity, the concentration of sediment
fractions in suspension and the composition of three storage layers in the river
bed. The large number of variables and the rather complicated numerical
algorithm cause relatively high computation costs.

Throughout the report, different applications can be found of the numerical
model. No case study of a morphological event in a mountain river is included.
Instead, some isolated morphological phenomena such as bed-level deformation
and changes in composition in laboratory conditions can be described to a
certain level of accuracy.
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8.9. Recommendations.

The conditions posed by hydraulic and morphological features of mountain
rivers put high claims on mathematical and numerical modelling approaches.
Based on the analyses in this study, that focus on some details only, some
remarks with respect to modelling can be made.

mountain rivers

Rivers in mountainous regions include rough, unsteady streams at steeper
sections as well as tranquil flow at wider sections in flatter regions. Therefore,
in general, the qualification "mountain river" can be considered to be
topographical only, without indication of hydraulics and morphology. In the
following, a limited definition is used; alluvial mountain rivers are specified as
rivers with steep hydrographs, where different flow regimes can develop, with
mobile beds and graded sediment.

coupled models

Evidently, a restricted availability and quality of input data, either measured or
predicted, controls the accuracy-level of any model output. However, this
aspect is not addressed here. To construct mathematical and numerical tools for
support of engineering in mountain rivers, the distinct interaction between
hydraulics and morphology must be accounted for. Because benefits of
decoupled models based on the quasi-steady flow assumption are small, coupled
models, with a simultaneous solution of both hydraulic and morphological
changes are to be preferred.

discontinuous flows

At larger values of Froude, non-uniform conditions of flow can easily develop
into stable shock waves. These can significantly affect morphological changes
in the river in cases of hydraulic structures or natural dam formation. Hence,
numerical models should include shock-fitting algorithms or have shock-
capturing properties. If accurate representation of such discontinuous solutions
has to be ensured, no benefits of implicit methods over explicit methods exist.
For the cases considered in this study, the modified-Godunov method performed
well.
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simplified models

If, at the length-scale of interest, non-uniformity in flow conditions is
negligible, values of Froude are near unity and lower accuracy levels are
permitted, application of simplified models based on quasi-uniform flow
assumptions enable a significant lowering of computation costs.

sediment mixtures

Distinction of size fractions is indispensable for modelling of mountain rivers
where grain sizes of the alluvial material range from cobbles to silt.
Considering the large speed of morphological processes, the reference layer for
the river-bed surface must be small, of the order of a representative grain size.
To prevent mathematical instabilities in cases of erosion with coarse surface
layers, stabilization is recommended for conditions of mountain rivers. In this
respect, an improvement was obtained with the options described in this report.

The number of size fractions varies with the level of particle shear stress. For
applications with high levels of particle-shear stress, 3 size fractions provided
sufficient accuracy in this study. For accurate prediction of morphological
changes at lower values of particle-shear stress (e.g. degradation downstream
structures or flushing of trout-breeding reaches) a larger number of size
fractions may be required.
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symbol

SoAAS S ™R

mp

List of main symbols.

definition units
depth [m]
width [m]
celerity [m/s]
volumetric sediment fraction in the river bed [-]
Chézy roughness parameter [m'?/s}
scour depth [m]
particle diameter of sediment in the fraction / [m]
mean (%neter of pavement, defined as
D, = Zp,D, withi = 1to N [m]
flow unsteadiness or non-uniformity parameter

defined as E = -2g./C" uT/a [-]

derivative of transport formula of fraction 7 to velocity ~ [m*/m]
derivative of transport formula of fraction / to fraction p,[m*/ms]
derivative of transport formula of fraction i to

mean grain size D, [m?/ms]
Froude number, defined as Fr = uV/-g.a [-]
height of bed form [m}
bed slope [-]
adaption length of equilibrium concentration profile in z-
direction [m]
length of bed form [m]
representative geometrical length-scale [m]
representative length of width variation [m]
representative period for hydrograph [s]
adaption period of equilibrium concentration profile in z-
direction [s]
period of bed-level fluctuation [s]
response period of composition changes [s]
gravitation constant [m/s?]
component of gravitation constant in j-direction [m/s?]
total number of fractions in the sediment mixture [-]
fraction i in the bed load layer [-]
equilibrium concentration of fraction / in suspension [-]
actual concentration of fraction / in suspension [-]
fraction 7 in the transported sediment [-
discharge per meter width in x-direction defined as ¢ = wua[m®/s)
discharge [m?/s]
component in x- or y-direction of bed-material load [m?/s]
horizontal mass flux of size fraction / in the bed-load [m?/s]
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time coordinate [s]

velocity component in x-direction [m/s]
velocity of grains with D, in the bed load layer [m/s]
fraction-averaged velocity of grains in the bed load layer  [m/s]
shear velocity defined as u. = uv-g, / C [m/s]
velocity component in y-direction [m/s]
shock wave propagation rate [m/s]
degradation or aggradation rate [m/s]
space coordinate {m]
bed level [m]
representative height of bed-level fluctuation [m]
reference level [m]
weight-reduction coefficient for abrasion of grains [m]
coefficient for the transversal distribution of w’a [-]
fraction i in the vertical sediment flux between flow and river bed

[-]
bed-load layer thickness [m]
critical reference-layer thickness [m}
relative sediment density defined as A = p/p, - 1 [-]
time step [s]
space step [m]

orientation of bicharacteristic ray

particle shear-stress correction-coefficient for
horizontal-hiding effects at fraction ¢ [-]
dimensionless celerity defined as 6 = c/u [-]
direction of bicharacteristic ray

component of bed shear-stress in j-direction {kg/ms~
particle shear-stress defined as 7., = «* / AC*D, -
critical particle shear-stress describing initiation of motion [-
volumetric bed-material load concentration defined as ¢ = s,/q[-
volumetric sediment concentration in the suspended load layer [-
volumetric sediment concentration of size fraction { in the

‘]
|
]
]
]

suspended load layer [-]
volumetric sediment concentration in the bed-load layer [-1
volumetric flux of sediment between the river bed and

the water-sediment mixture [m*/m?s)
volumetric flux of water between the river bed and

the water-sediment mixture [m®/m?s]
bed mobility parameter defined as ¢ = qui/coa [-]
density of water [kg/m?|
density of sediment |kg/m?]




Single-layver model.

ppi
pm’
Bni

size fraction / in the reference layer -]
size fraction i in the substratum [-]
size fraction i of flux @, at level z = z, - §, [-]
thickness of the bed-load layer [m]
thickness of the mixing layer [m]
vertical sediment flux of fraction / at level z = z, + §,

between the suspended load and bed-load layer [m?/m?s]
vertical sediment flux of fraction / at level z = g,

between the reference and bed-load layer [m*/m’s]
vertical sediment flux of fraction i at level z = z, - 6,

between the substratum and the reference layer [m*/m?s]

Double-layer model

ppr
p‘\'/)i
Poi
B

size fraction i in the pavement layer [-]
size fraction { in the subpavement layer [-1
size fraction i in the substratum [-]
[-]
(-]

size fraction  of flux ¢, at level z = z, - 9, -
size fraction i of flux &, at level z = z, -6, - §,, -
thickness of the pavement layer [m]
thickness of the subpavement layer [m]
probability of exposure of the pavement layer [-]

sediment exchange rate for bed-load layer and pavement  [m/s]
sediment exchange rate for bed-load layer and subpavement [m/s]
vertical sediment flux of fraction  at level z = z, + ¢,

between the suspended load and bed-load layer [m?/m?s]
vertical sediment flux of fraction i at level z = z,

between the pavement layer and bed-load layer [m’/m?s]
vertical sediment flux of fraction 7 at level z = z, - 9,

between the subpavement layer and bed-load layer [m*/m?s]
vertical sediment flux of fraction i at level z = z, - §,

between the pavement layer and subpavement layer [m?/m?s]
vertical sediment flux of fraction i at level z = z, - §, - 0,
between the substratum and subpavement layer [m*/m’s]
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triple-layer model

P
Pai
8,
5
K1

Ky

1-k,-K,
$

st

¢

bpi

(I)hxi

pi

o
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size fraction / in layer j {-]
size fraction i in the substratum [-1
size fraction / of flux ¥, at level z = z, - ¥ §, with [ = 1 toJ [-]
thickness of layer j [m]
probability of mass exchange between bed load and layer j = 1-]
probability of mass exchange between bed load and layer j = J-]
probability mass exchange between bed load and layer j = 3 [-]
vertical sediment flux of fraction i at level z = z, + §,

between the suspended load and bed-load layer [m?/m?s]
vertical sediment flux of fraction i at level z = gz,

between the pavement layer and bed-load layer [m*/m?s]
vertical sediment flux of fraction / at level z = z, - ¢,

between the subpavement layer and bed-load layer [m*/m?s]
vertical sediment flux of fraction i at level z = gz, - 6,

between the pavement layer and subpavement layer [m?/m?s]
vertical sediment flux of fraction i at level z = z, - 6, - 9,
between the substratum and subpavement layer [m?/m3s]
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Appendix A

Some effects of a non-uniform geometry.

A.l1. Introduction.

As reviewed by Crosato (1995), hydraulics and morphology in rivers with non-
uniform width, slope and roughness patterns are often determined by processes
with two- or even three characteristic dimensions. Only if contributions of these
vertically and transversely oriented phenomena can be considered constant,
cross-sectional integration of a river is an efficient approximation. Here, some
concepts are discussed to incorporate multi-dimensional, hydraulic effects into
a one-dimensional model with a fixed bed.

Geometrical non-uniformities (width variations, alternate bars etc), generate
secondary flow phenomena that induce transversal fluxes of momentum by
velocity and depth profiles and subsequent local energy losses by turbulent
dissipation. In general, complex flow patterns will induce two effects in one-
dimensional models: energy dissipation and hydraulic dispersion in wave-type
solutions (e.g. Jansen ez al., 1979). Reference is made to observations by
Kellerhals (1970), which showed dispersion of wave fronts due to non-
uniformities in geometries.

For high values of Fr, flow patterns as a response to two-dimensional
geometrical perturbations can be expected to change with Fr (Furbish, 1993).
Then, unless proper correction is applied, accurate prediction of contributions
of 2DH-flow patterns to solutions of one-dimensional models is limited.

A.2. Local energy losses.

A significant part of research on hydraulics in non-uniform geometry has been
devoted to description of local energy dissipation. Based on spatial density
(Chow, 1959) and relative height of irregularities (e.g. Bathurst et al. 1981),
different hypotheses have been suggested to describe effects of geometry on
flow. These concepts vary from lumped friction-loss coefficients (e.g. Bathurst,
1978) or separate contributions of reach friction loss and point form loss (e.g.
Parker and Peterson, 1980; Jaeggi, 1983; Hey, 1988; Egashira and Ashida,
1989) to sectional equivalent roughness stripes (e.g. Fuentes and Aguirre-Pe,
1991) or different kinds of roughness szatistics (Furbish, 1987; De Jong and
Ergenzinger, 1992; Li et al. 1992).
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To illustrate the contribution of geometrical non-uniformity to energy
dissipation, a uniform-flow resistance predictor (Hey, 1979) is compared in
Figure A.1 with measurements in pool-riffle sequences by Hey and Thorne
(1986).

0.8

T redicted
) p
0.6/ 'm measured
T -T
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Fig.A.1 Geometry- mduced friction losses (Hey and Thorne 1986).

To illustrate the effect of dissipation due to shock-wave induced turbulence, an
additional dissipation term has been added to the numerical model as described
in Chapter seven. This additional dissipation in expanding flow is defined as

g Aa y o (A.1)

Ax

The intensity of the transition is included by stating that no dissipation is
present if Aa < «aAx, with o of the order of 10!. Hence, to simulate
discontinuous flows, the resolution of the numerical grid should correspond with
physical length-scales. Numerical examples of expansion losses in different flow
regimes are given in the following figures, representing water- and bed levels
in sub- and transcritical flow.

0.4, 0.4
\\\\\\/4” \
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~ - with expansion loss ——No expansion loss
—no expansion loss \\
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_— N —
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Fig.A.2 Fixed bed. Fig.A.3 Mobile bed.
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Hence, the intensity of the jump, and subsequently the location of the jump is
affected by lowering sequent depths. In the following figures, the effect of
expansion losses for fixed and mobile beds are compared. Expansion losses as
defined by Eq.A.1 are not included in the experiments concerning discontinuous
flow in Chapter six.

A.3. Effect of width-variations.

Effects of geometry in one-dimensional models appear in width, bed level, and
possibly, transversal distributions of velocity and depth. To illustrate the
morphological response to width-variations, a harmonic solution of the
linearized set of PDE’s is performed. Because widths are assumed fixed, the
effects of width variation on flow and morphology can be described with source
terms.

The system of PDE’s can be written as

daB dauB
- 4+

-0
ot ox
2 oz u’B
ouaB  du‘aB _ gaB% - gaB—" - gaB + 84T (A2
o ox “ox TP ox c?
a_z_b_B_ + @ =0
ot ox

The solution is assumed to be composed of steady, uniform zero-order terms
and a first-order perturbation. Variables are made dimensionless (Eq.2.40), and
the dimensional width B is scaled with the length W.

The set of PDE’s can be combined into (see Eq. 2.41)

Pz, .5 Pz, Fri-1-y) 92, ¢ 0%, N @ X é@zzb _
o> ot*ox Fr? otox*  Fr? ox? T ax2 2 otox
w 1) d3 Erw d’B
LA T T el A T
B | Fr® Fr? 3 2 B dx?
(A.3)

where hyphens are left out for convenience. The concentration ¢ is defined as
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¢ = s,/ua. Hence, for a steady, first-order width-excitation, the following ODE
must be solved.

O’z &z w 1 4B Erw
_ll'_éJrT_b;__ y+d|1 _7(¢3¢>
Fr? ox? dx? B dx? 2 B dx2
(A.9)
The width-excitation can be defined as
B = AB &*™ : ) = ‘z—T (A.5)

where L,, is the wave-length of the perturbation. The dimensional amplitude Az,
of the bed-level response to a dimensional perturbation AB is

i,\{ 20(1-Fr¥)+(y 23¢>] CA 30 W e )
Az, B Fr*

2 2
_ 2Fr (A.6)
a AB 2
A+ | Y
Fr?
with A a dimensionless flow-adaptation length defined as
E -g, L
PR g A7)
A C? q,
In case of flow adaption to secondary-flow effects, a more or lesg corresponding

parameter results (e g. Struiksma er al. 1985).
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The amplitude and phase shift of this response are constructed in the following
figures, where the sediment-transport rate is predicted with s = m u’.
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\ -
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Fig.A.4 Amplitude. Fig.A.5 Phase shift.

For A < 0.1, bed level responses are sensitive to Fr, for values of Fr > 0.6.
Then, width-variations with short wave-lengths (L,/a < -C*/g,) induce bed-level
responses of the order of aAB/B. The magnitude of the response is of the order

2 o1 v Qe (A.8)
"

For A = 0 or A - oo, the phase shift in bed-level response approaches zero;
for A > 10° ‘instantaneous" adaption of flow to local geometry can be
assumed. For values of A = 1, the phase shift is at maximum and of the order
-7r/2 for critical and supercritical flows. For A — oo, the magnitude of response
is of the order

Az, B d
a AB 2

(L3) (A.9)

To illustrate the effect of flow unsteadiness and non-uniformity, reference is
made to experiments of Wang er al. (1993). These experiments include the
scouring of a bed in a narrowed flume section, in steady and unsteady flows.
The conditions of the experiments are shown in Figure A.6. The large values
of \ indicate that the narrowed section can be considered short with respect to
the length-scale of the wave.
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Fig.A.6 Experimental conditions (Wang et al., 1993).

Because values of AB/B were 0.2, 0.4 and 0.6, Eq.A.8, which is valid for
relatively small, first-order deviations, is not valid. In addition, vortex-induced
erosion effects were observed that increased the erosion rates.

In Figure A.7, maximum erosion depths in case of constant discharge are
shown. Values of Fr in the experiments were of the order of 0.6. In
correspondence with Figure A.7, the effect of varying A is not significant. As
also concluded in Subsection 4.4.3, secondary flows (eddy structures) increase
the local erosion.

In Figure A.8, the maximum erosion depth during the hydrograph is shown; for
infinitely long waves (£, = o), an equilibrium scour depth can be expected.
The lines in Figure A.8 connect experiments with similar peak and base flow

A
Alschargpc hnf rhf‘f:pronf pnrunr‘c Qnr\qnnn the length Scn!a nf the narrowed

section is short relative to the length-scale of the wave (Figure A.6), obviously,
for values of £, < 10°, wave-unsteadiness affects the morphology.

5 5
'4z,B14 ) |4z,B81 4
laaBl | ¢ s a2 48!

3 N 3

%
2 2
T 02 4 04 06 08
Fig.A.7 Equilibrium scour. Fig.A.8 Scour during flood wave.
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Appendix B

Effects of grain-size distribution,

The effect of grain-size distribution of sediment on morphological changes is
related to the shape of the size-frequency distribution and the level of bed shear-
stress relative to the threshold value for particle motion. The effects of a
sediment mixture in morphological models additional to uniform sediment can
be combined in the following two parameters (Eqs 3.21 and 3.22 in Subsection
3.3.1)

N N
Zl:kf"ﬁ)fzfuj(DFDN) (Bi~Pr) (B.1)
y - i j=1 A 4

ua

P

The ratio a/é, is related to the scale of the phenomena considered and will vary
for different types of morphological computations (Section 3.5). Therefore, only

. will be considered here. To analyse Y, a predictor of transport rate per size
fraction / is used, based on the formula proposed by Meyer-Peter and Miiller
(1948).

N
Si - f(”’ ppi’ Di’ Dmp’ C) > Dmp = priDi (B.Z)
i=1
The partial-derivatives of this rate are referred to as
ds, os, 0s.
B T d (B.3)
f;u du ‘f;ll appi sz aDmp
The general form will be
P — 2 D -r n
S, =D, k \ﬁAgZDf ~—LO— -p || t., (B.4)
-Ag.CoD, D,,,,,

For this analysis, itisused A = 1.65; u = 1; p = 1;r = 0.8; 7., = 0.047,
n=1.5.
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The definition of symbols is as follows.
s transport rate of fraction [
fraction 7 in river bed
Chézy roughness coefficient
grain size of fraction i
' mean grain size
total transport-rate coefficient
relative density difference between water and sediment
ribbel-factor correction for bed shear-stress
critical shear-stress coefficient
hiding-correction coefficient
critical shear-stress

aF

o)

YW E o>
:E

Furthermore, to analyse the effect of different sediment compositions, grain-size
frequency distributions are assumed. To obtain a bi-modal mixture, two simple,
triangle-shaped distributions are combined. These distributions can be
characterized with a peak-frequency grain-size D, or D,, and a maximum and
minimum grain size D, . and D,,. Both will be mixed with a volumetric
fraction o of mixture 4 and (l1-o) of mixture B. The compositions of the
hypothetical mixtures considered are presented in Figure B.1.

mixture | p mixture ||
. D, }
. N
‘ /’/ \\\
| S
D, /D, D,/D,
p mixture Il P mixture vV
pi N pi
2N P A
/ A //’ \
D,/D, D, /D,

Fig.B.1 Sediment mixtures.

In Figures B.2,3.4 and 5 the composition of sediment transport, as predicted by
Eq.B.4 is constructed for the different sediment mixtures. The cumulative size-
frequency distributions of the original mixture are represented in broken lines.
The relative volume in transport of fraction i is p,;.
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-

fraction finer

o
—_
N

0, /D, , Db, /D,
mixture |

Fig.B.2 Transport composition mixture 1.

-y

fraction finer

OO

mixture It
Fig.B.3 Transport composition mixture II.

1 Ti pi

9] / '
£

5 .
k3]

s

% )

mixture |11

Fig.B.4 Transport composition mixture III.

0 T
) <
6 0 2 4 6
D,/D
mixture IV

Fig.B.5 Transport composition mixture IV.
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Regardless of the distribution curve, the composition of sediment transport is
finer than the river bed. This difference decreases with increasing shear stress.
The composition of sediment transport, however, will be strongly related to the
river bed size-frequency distribution. Analogously, derivatives of sediment
transport rates to size-fraction, velocity and mean grain-size can be determined
for the mixtures.

0.010 0.010
0008/ \_f, mixture | 0.008| g, miduell
X Jo
TR T,/
0.006 0.006 \\ e
0.004\, 0 TTe——
) 0.004 \\\\ T 25
0 0 - '
- 0.002. - 0.002
1 2 3
° D, /Dy, 0 D, /0y, 2
Fig.B.6 Transport derivatives Fig.B.7 Transport derivatives
mixture [. mixture 11
} f mixture 1V
0.003 mixture ~0
Y 0.001 S np/reo g
N T, R 25 —
i 3.0 \ — .25
0.002\ —_ e s — 20 1 —
\

-0.001
0 1 2 Di /D, 3 4 2 D, /D, 4 5
Fig.B.8 Transport derivatives Fig.B.9 Transport derivatives
mixture IIL. mixture I'V.




To construct values of Y,, values of . must be substituted. Note that variable
B, includes effects of longitudinal gradients in sediment transport composition
(Eq.3.16 and 3.17). In Subsection 3.3.2, necessarily a simplification is

introduced by assuming 3, = py.

This implies neglecting the contribution of longitudinal gradients in sediment-
transport composition. This approximation is only valid for uniform distribution
of composition, or for low values of sediment transport. With this assumption,
Y, can be constructed for the different mixtures, and for different levels of shear

stress.

100

10
Y/y

0.1

0.01

0.001

1 2, /fr, 48
Fig.B.10 Effect of size-frequency distribution.

If symmetric hiding functions are applied, the effect of different grain-sizes is
minimal for a mixture with a normal-distribution. For strongly bimodal
mixtures, the effect can be significant. For values of 7.,/7.. > 5, the effect of
size-selective entrainment, deposition and transport diminishes.

209



210




Appendix C

Difference equations.

C.1 Corrector.

In the corrector step, the set of PDE’s as described in Subsections 2.2.1 and
2.2.2 are solved in difference form. Time-integrated fluxes are specified with
a superscript *, and are determined with the predictor step at cell boundaries
(x = Xqpand X = Xy yp).

1
U
: ; ™ 4
. i
i i
&* ] o 0
Ferp | ,/?k”/?-} { At
i |
i i
; : At] 2i
i i -
n | n : n t L
Ua Pz Y P Ui
| Ax 4
1 } Il
1 T T
Xk Xk Xiert

Fig.C.1 Grid points for predictor and corrector.

The depth at r=¢""! is solved from the flow-mass balance
n+l 1/, « * n n
a4 (Co_§(¢k—1/2 +¢k+1/2))Wk T4 (Co‘¢k)Wk *
(C.1)

t * * * *
+ —(Up, 1Cps (c -¢,. )+s W, +
Ax( k+1/2%k+1/2\~0 d)k 12 bk+1/2) k+1/2

At * * * *
- A*x(uk—uzak—l/z(%‘¢k-1/2)*sbk_m)Wk—lfz =0
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The new bed level is determined with the sediment-mass balance

n+l

At « «
— I *
A e L S W LA

(C.2)
Aty «
x(uk 1/2ak 1/2¢k 12t bk71/2)Wk—1/2 =0

Now, the velocity at 7=¢""' can be solved with the momentum equation

u;a "*1(1+—(¢>k 1/?+¢k+1/2))W - uyag (1eAG)W, -

At * 2 9« * * 2 % *
* ——[uk+1/2 ak+1/2(1*A¢k+1/2)Wk.1/z T Ueap ak‘1/2(1+A¢k—l/2)Wk—1/z] -

Ax
W * * * *
. 8. k{ak”/;(l+A¢k+1/2)_ak’1/22(1+A¢k"1/2)] B
(C.3)
W ) . n+l n . . Z "*1+Z .
+ %82 ¢ ak,,l,z(l *A¢k-1/2)+<ak—2+ad[l+%(¢k 1/2+¢k*1/2>)_ (bk_zbk) )
W n+l n . . . Z n+1 +Z
' /i;g ak+1/2(1+A¢k+1/2) M(H%@kuf@”ﬂ))_ G (lzhbk) i
AW, R . . + g :
2 k;(gxak1/2+uk1/22§;’](1+A¢k-1/2)+‘g-‘ak*1/2+uk+1/22§22 (Lr8dip)| + LD =0

where LD represents a local dissipation term to account for expansion losses.
This term is defined as

LD = W, k %‘H (“kil/z*u[_l,z)z (C.49)

and is only included if

ak’il - akn_l > 2'Y Ax (C'S)

with v = 0.1, and £ = 0.01.
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Changes in fractions in suspended load are determined with the first-order
approximation of the 2-DV model (Eq.2.14 in Subsection 2.2.3).

n+l n At Al * * * * * n "
. - —_— : u a - . u a; = - .
(blk d)lk Ax 7114"l d)lk’l/z k+172%k+1/2 d)lk* 112 k-1/2%k-1/2 A ( e]k q)lk)
lk I

(C.6)

To determine changes in river-bed composition, first the vertical flux is
determined from the bed-load mass balance

_ At

P AW (4),,0llzuku/zakq/z*Sbik”/z)wkf1/2‘(‘1),-,(,]/2”1\ 11t Shiy 1/2)Wk—1/2J *
k

d)"l ‘b" n

Now, changes in composition of the different storage layers can be determined
(Egs 3.10 and 3.11 in Subsection 3.2.4).

5 (ph’;+1 pli:) fK AR+ oK, [(1”K3)ﬁ1i+‘<3p3i] (szﬂ_zb:) =0
+ n n n (C'S)
8, (pzl.';c l—pZik) S AR, + [fiy i, (1K) By (1K) B (zbk‘ “Z) = 0

5, (p,,’;”*m, ) (L AL B (i (1K) By K sy (2 -2,7) = O

C.2 Predictor.

In the predictor step, this mathematical model in divergent form is used. This
implies that the continuity equations for fluid and sediment are written as
da da ou 9z, 05,  (uarsy) 9B (C.9)

+ = + g— + —= + —— =

ot ox ox ot ox B ox

s - N
Y gadt . 6 00 uadb ¢%+2Xapp, (C.10)
oo 1-¢ ot 1-¢ ox 1-¢ or = 'ox
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The fluid-momentum equation in divergent form is

N X dp,.
al + u(l—\h)@ - g@ - _l_plﬁ +
ot ax Zax i=1 4 ax
a
au@ + o uza—-g @ — gﬁ - E% = (C‘ll)
ot 2 )ox ‘ox a ot
_ b, "»0B

8x~ p(1+Ad)a  aB ox

with o = A/(1+A¢). As described in Chapter one, characteristic equations can
be constructed for every celerity c,.
N
da u b d¢,
n— + n,— + |h, ~—n,+c,~d\n, |— + n T, +aun,+an,)— = O
1 2 (1a2(0¢)3d IZ:;(““, 2 3)dl l

(C.12)

To reduce the number of characteristic equations to 3 coupled and N decoupled
ones, changes in composition are solved separately (Subsection 3.3.1).
The multiplification coefficients n, read

N N
n =gec P, n, = c(u-c) NP,

=1 =l (C.13)
g (e )
I - uw J.Lli s It - u\b_u)’l TW u({'r—\ TLLT }[L —
3 ab-c) i S J?) P,
with / = 4 to N+3 and
P, =L, - Ty (C.14)

The celerities ¢ are roots of

(£)3 i 2+lI11_CO (2)2 X _1+¢+1+w1—c0 (c) . v 1-¢ 0
u C0‘¢ u Fr? Cg‘d) u Fr2co“¢ (C.15)
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Appendix D

Steep-slope correction

In the mathematical model as described in Chapter two, the longitudinal
direction of flow is assumed to be orientated along a constant reference slope.
As described in Subsection 2.2.2, this induces errors in case of a river with
distinct changes in longitudinal slope. To analyse the contribution of such
errors, the following analysis is carried out. Here, flow is assumed to be
parallel to a varying reference level Z,. For convenience, the depth a is defined
perpendicular to the direction of flow conform Subsection 2.2.2, and a” is
defined in a constant, vertical direction. Local variations in bed level around Z,
are accounted for by distinction of z,.

—P N

Z,0

— X
Fig.D.1 Definition of non-uniform reference level.

The velocity is assumed to be parallel to the spatial derivative of Z,, with
oz,

tan(a) = - . D.1)
X

This induces velocity components in x- and z-directions. The difference equation
for the mass balance is

cos(oc +Ax~aﬁ u+Ax§li a*+Axaa- - cos(a)ua” (D.2)
Aa” . ox ox ox _ 0

At Ax
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For At — 0 and Ax — 0, the corresponding difference equation is obtained.

*

+ cos(a) a*% +uai - ua” sin(oc)a—a =0 (D.3)
ox ox

Similarly, the difference equation for x-directed momentum is

cos a+At@— u+At@ a*+Ataa -cos{a)ua *
ot ot

ot
At

+

2 .
cos(oc +Ax%)(u+AxQE) (a “+ax 8 )cos(oc)uza * (D.4)
N ox ox ox

Ax

+

2
oa

9 ] ~(a”’ 0, oz T
x + 2P h tan(a)| + cos(a)
Ax p

[a*+Ax

b

+
[ R[e)

=0
ox

p

Again, the differential equation is obtained for Ar - 0 and Ax = 0

. oo . ou oa”
~ua sln(oc)F +cos(a)a’™— + u +
t

- w2asin(@) 2% + cos(e)|2uat 2 + w29 | . (D.5)
ox ox Ox

208" Prea

ox p

oz "
ox

T
+ ga ~tan(a)| + cos(a)—2 = 0
p
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The difference equation for z-directed momentum is

sin(oc +At%0; )(u +At%)(a T+ At da )sin(a)ua *

ot ot
-+
At
sin a+Axl (u+Ax% IPEN ~sin(a)u’a " (D.6)
ox ox ox .

Ax

T

4 ga* bed sin{oc)—h -0
P P

with the corresponding differential equation

. du . da” . ou
- ua cos(a)— - sin(fe)lu— + a +

or ot E
~ wacos(@) % - sin(e)|2ua" P+ 29| . (D.7)
ox ox ox
T
+ga’ Pred sin(a)—2 = 0
P P

Combination of Eqs D.5 and D.7 yields for the equation of x-directed
momentum

* . da*+Z
dua + du”a + cos(oc)ga*—(—b> + cos(a)
ot ox ax p ox p

Pbed% . Ty :(10)'8)

The bed pressure p,,, on the local bed-level can be determined from Eq.D.7,
or approximated with the hydrostatic part of the pressure. For gradients in
reference level smaller than 0.1, the correction of momentum transfer is
negligible. The additional terms appear to be of second-order.
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To be consistent with the definitions used in Subsection 2.2.2, a transformation
can be performed from a” into a with @ = a* cos(x). Substitution into D.3
yields

atan(oc)g—c£ . o0a cos(oc)a—uq =0 (D.9)
ot ot ox

The momentum balance can be written as

oo o Cau du’a
autan(o) — +u—| + —= +

oa 5 da.
+ 2a— + ga“tan(o)— +
a o 845 *getan(e)

ot ox X ox (D ] 10)

ﬁ’e_"%:o

T, 9z,
+ cos(a)l — + ga—2| + cos¥(a)
P ox p Ox

To indicate the small contribution of these corrections, local bed-level gradients
of the Mallero (Northern Italy) are shown (FRIMAR, 1995). Hence, in this
case, corrections for a non-uniform reference slope would be negligible.

/M N
AT )

-01

0 10 [km] 20

Fig.D.2 Gradients in reference level.
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Appendix E

Analysis of generalized shock relations.

In Subsection 6.2.3, shock relations are analysed with a limiting assumption of
n = 3 in the sediment transport predictor s, = mu". Here, an analogous
analysis is added for different types of sediment transport predictors.

In case of a one-dimensional model of flow with hydrostatic pressure
distribution, bed-material load and a mobile bed, three shock relations can be
derived.

ulAa+a+rAayAu
Aa
w |uha+(a+Aa)Au| - |Auu+Aufa+Aa) + u*Aa + g(a+%)(Aa+Azh>
A
% As,

(E.1)

where A denotes the difference in a variable over a discontinuity, and w the
propagation rate of this discontinuity. These shock relations can be combined
to obtain

2 2
g _ g2 L [2FT 7273y7y2£_ As, 2 43y +y _ o (E.2)
2 Fr? uba 2 fr?

where £ = w/u, and y = Aa/a. Because differences in s, are related to
variables up- and downstream of the discontinuity, Eq.E.2 is an implicit
equation which is solved with a Picard-iteration method.

Now, two sediment predictors are applied, one equal to the formula proposed
by Meyer-Peter and Miiller (1948), and one equal to the formula proposed by
Engelund and Hansen (1967). In the following, Eq.E.2 is solved for v = 0.3
and v = -0.3, and for both sediment-transport predictors.

The three solutions are identified as in Chapter five as I (upstream-directed), 11

and IIT (downstream-directed) with increasing value of the propagation rate.
In the following figures, c¢/u represents a dimensionless celerity.
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