

Delft University of Technology

SALoBa
Maximizing Data Locality and Workload Balance for Fast Sequence Alignment on GPUs
Park, Seongyeon ; Kim, Hajin ; Ahmad, Tanveer; Ahmed, Nauman ; Al-Ars, Zaid ; Hofstee, Peter; Kim,
Youngsok ; Lee, Jinho
DOI
10.1109/IPDPS53621.2022.00076
Publication date
2022
Document Version
Final published version
Published in
Proceedings of the 2022 IEEE International Parallel and Distributed Processing Symposium (IPDPS)

Citation (APA)
Park, S., Kim, H., Ahmad, T., Ahmed, N., Al-Ars, Z., Hofstee, P., Kim, Y., & Lee, J. (2022). SALoBa:
Maximizing Data Locality and Workload Balance for Fast Sequence Alignment on GPUs. In L. O'Conner
(Ed.), Proceedings of the 2022 IEEE International Parallel and Distributed Processing Symposium (IPDPS)
(pp. 728-738). Article 9820739 IEEE. https://doi.org/10.1109/IPDPS53621.2022.00076
Important note
To cite this publication, please use the final published version (if applicable).
Please check the document version above.

Copyright
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent
of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Takedown policy
Please contact us and provide details if you believe this document breaches copyrights.
We will remove access to the work immediately and investigate your claim.

This work is downloaded from Delft University of Technology.
For technical reasons the number of authors shown on this cover page is limited to a maximum of 10.

https://doi.org/10.1109/IPDPS53621.2022.00076
https://doi.org/10.1109/IPDPS53621.2022.00076

Green Open Access added to TU Delft Institutional Repository

'You share, we take care!' - Taverne project

https://www.openaccess.nl/en/you-share-we-take-care

Otherwise as indicated in the copyright section: the publisher
is the copyright holder of this work and the author uses the
Dutch legislation to make this work public.

SALoBa: Maximizing Data Locality and Workload
Balance for Fast Sequence Alignment on GPUs

Seongyeon Park†, Hajin Kim†, Tanveer Ahmad§, Nauman Ahmed§,
Zaid Al-Ars§, H. Peter Hofstee§‡, Youngsok Kim†, and Jinho Lee†*

†Yonsei University §TU Delft ‡IBM
{syeonp, kimhajin},@yonsei.ac.kr, {t.ahmad, n.ahmed, z.al-ars}@tudelft.nl,

hofstee@us.ibm.com, {youngsok, leejinho}@yonsei.ac.kr

Abstract—Sequence alignment forms an important backbone
in many sequencing applications. A commonly used strategy
for sequence alignment is an approximate string matching with
a two-dimensional dynamic programming approach. Although
some prior work has been conducted on GPU acceleration of
a sequence alignment, we identify several shortcomings that
limit exploiting the full computational capability of modern
GPUs. This paper presents SALoBa, a GPU-accelerated sequence
alignment library focused on seed extension. Based on the
analysis of previous work with real-world sequencing data, we
propose techniques to exploit the data locality and improve work-
load balancing. The experimental results reveal that SALoBa
significantly improves the seed extension kernel compared to
state-of-the-art GPU-based methods.

Index Terms—Genome sequencing, Sequence alignment,
Smith-Waterman, GPU acceleration

I. INTRODUCTION

With the fast advances in next-generation sequencing (NGS)

techniques, the monetary cost for DNA sequencing has been

declining at a rate that is outpacing Moore’s law [1]. How-

ever, on the other side of the coin, this rapid throughput in

sequencing means that data processing has become a more

severe bottleneck. For example, performing read mapping of

the human genome on an Intel Xeon processor now takes more

than 20× the sequencing time [24].

Read mapping, a process in sequence alignment, maps a

piece of query DNA (generated from sequencing) to matching

locations of a reference DNA. However, the reference and

query DNAs do not exactly match due to sequencing errors

and/or mutations. Therefore, the problem falls into the cate-

gory of approximate string matching.

One popular strategy to solve this problem is seed-and-
extend, where the seeding phase locates a few exact matches,

and the extension phase performs approximate matching based

on dynamic programming (DP) such as the Smith–Waterman

algorithm [57]. Unfortunately, the Smith–Waterman algorithm

has quadratic complexity with the input length, which contin-

ues to increase as NGS techniques evolve.

In this work, we focus on the extension, which consumes a

significant portion of the execution time for read mapping [12].

Many proposals have been made for dedicated hardware

accelerators with ASICs [22], [23], [58] or FPGAs [10], [25],

[26], [28], [62] to cope with the computational bottleneck

*Corresponding author

problem. However, such accelerators are yet to be widely

used in practice. The ASICs are expensive to produce and

would have difficulty appearing in the market unless mass

production was guaranteed. The FPGAs are less prone to

this issue because many FPGA accelerator cards are already

available on the market. However, FPGA accelerator cards are

not yet the dominant option because they are expensive and

hard to program.

Under such circumstances, GPU-based accelerations can

be viable options because they are cheaper, easier to find

on the market, and require less effort to develop software.

Therefore, many GPU-based libraries have been developed

for bioinformatics [3], [9], [48]. With the fast growth in the

computational capabilities of GPUs [17], GPUs will likely

continue to be the primary option for accelerating sequence

alignments.

However, by analyzing the state-of-the-art GPU-accelerated

seed extension, we identified several missing opportunities

for performance improvement that have become critical, es-

pecially with long string queries. Considering that the lengths

of sequence reads are rapidly growing with third-generation

sequencers [55], the performance gap between the ideal case

and the existing software will widen. Specifically, we found

that existing GPU kernels 1) inefficiently utilize memory and

2) suffer from load imbalance.

In this paper, we present SALoBa (Sequence Alignment

with Data Locality and Workload Balance), which addresses

the mentioned problems to achieve superior performance.

Taking lessons from several ASIC/FPGA accelerators [10],

[23], [62], SALoBa puts together a kernel that makes better

use of the computational capability of modern GPUs.

SALoBa utilizes intra-query parallelism by allocating multi-

ple CUDA threads to a query-reference pair. Even though this

option has been studied by some prior art [13], [35], these

suffer from inefficient memory access patterns and resource

underutilization, being outperformed by the current state-

of-the-art, which only uses inter-query parallelism. SALoBa

addresses those issues by introducing two novel techniques:

lazy spilling to global memory and subwarp scheduling. In

lazy spilling, the data are first accumulated to the CUDA

shared memory and later spilled to the global memory in

a coalesced manner. By utilizing the double-buffered shared

memory region in a rotating manner, the redundancy in global

728

2022 IEEE International Parallel and Distributed Processing Symposium (IPDPS)

1530-2075/22/$31.00 ©2022 IEEE
DOI 10.1109/IPDPS53621.2022.00076

20
22

 IE
EE

 In
te

rn
at

io
na

l P
ar

al
le

l a
nd

 D
ist

rib
ut

ed
 P

ro
ce

ss
in

g
Sy

m
po

siu
m

 (I
PD

PS
) |

 9
78

-1
-6

65
4-

81
06

-9
/2

2/
$3

1.
00

 ©
20

22
 IE

EE
 |

 D
O

I:
10

.1
10

9/
IP

DP
S5

36
21

.2
02

2.
00

07
6

Authorized licensed use limited to: TU Delft Library. Downloaded on February 06,2023 at 09:07:14 UTC from IEEE Xplore. Restrictions apply.

0 0 0 0 0 0
0
0
0
0
0

5 3 2
7
12

1 5
3 2 0 5

55 3 2
3 2 8 6 10
5 3 6 5 11

A G C A

A
C
A
T
A

T

(0,0)

(1,0) (1,1)

(0,1) (0,2)

(1,2)

(2,2)(2,1)(2,0)

Q
R

Fig. 1: An example seed extension algorithm.

memory is greatly reduced without much overhead to the

shared memory. In addition, subwarp scheduling divides a

warp into multiple subwarps to mitigate the underutilization

problem. While this slightly increases the workload imbalance,

the gain from better resource utilization often dominates the

overhead from workload imbalance.

According to the experimental results, SALoBa performs

significantly faster than the state-of-the-art GPU aligner in the

seed extension kernel over several sequence lengths. When

tested on real-world datasets with various lengths, we obtained

superior results due to better workload balancing. Our contri-

butions can be summarized as follows:

• We identify several unexploited opportunities from the

current libraries for performance improvements.

• We propose SALoBa, which provides significant speedup

compared to the current state-of-the-art GPU-based align-

ment libraries.

• We perform an extensive amount of evaluation, including

synthetic and real-world data from a popular read align-

ment software to demonstrate the efficiency of SALoBa.

II. BACKGROUND

A. Seed Extension

The heart of the sequence alignment problem is approximate

string matching. Because there could be multiple possible

paths to take every time a mismatch occurs, its complexity

quickly increases along with the length of the input pair.

The seed-and-extend strategy is an approach to perform

alignment efficiently. Based on the observation that a good

alignment usually contains many matches, the strategy first

finds multiple exact matches, called seeds. Based on these,

approximate matching scores are calculated by extending to

both directions from the found seeds.

Seed extension is often performed using a DP algorithm

that fills a two-dimensional DP table with the complexity

of O(N2). Popular algorithms are Smith–Waterman [57] and

Needleman–Wunsch [51]. The score of each cell is calculated

based on predetermined scores for the type of differences

(i.e., insert, delete, and mismatch). With some adjustments for

considerations for frequent long gaps, the affine gap function

calculates the score of a DP cell H(i, j) as follows:

H(i, j) = max

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
0

E(i, j)

F (i, j)

H(i− 1, j − 1) + S(i, j)

, (1)

E(i, j) = max

{
H(i, j − 1)− α

E(i, j − 1)− β
, (2)

F (i, j) = max

{
H(i− 1, j)− α

F (i− 1, j)− β
, (3)

where S(i, j) is a score function that returns a positive value

when the reference at i and query at j match and returns a

negative value otherwise. In addition, E and F are auxiliary

variables that keep track of the continuing gaps. Last, α and

β account for different gap penalties according to new gaps

or continued gaps, respectively.

Fig. 1 presents an example DP table, where Q represents a

query string, and R represents a reference string. To calculate

a cell, the cells from three adjacent cells, the top, left, and top

left, are needed, represented by green arrows. The trace of the

highest score in the DP table represents the best match found

by the algorithm, denoted with red arrows and numbers.

B. Baseline GPU-based Seed Extension

There have been several attempts to accelerate seed ex-

tension using GPUs. In sequence read data, each base is

represented by a character data type of eight bits. However,

only five bases exist within the sequences: A, C, G, T/U,

and N, where T is used for DNA and U is used for RNA.

The N denotes unknown bases. Having five bases indicates

that at least three bits are needed to represent each. Because

three-bit representations are inefficient to deal with in modern

architectures, a four-bit packed representation is often used [3],

[9] and some work utilizes eight-bit representation [35].

Existing methods for GPU-based seed extension can be

roughly categorized by the parallelism they utilize: intra-
query parallelism and inter-query parallelism. Intra-query

parallelism refers to processing multiple cells in a DP table

concurrently. As shown in Fig. 1, parallelism exists in an

anti-diagonal form in the DP table. For example, after the

cell (0,0) has been processed, cells (0,1) and (1,0) can be

processed in parallel. Afterwards, cells (0,2), (1,1), and (2,0)

can be processed in parallel. Many ASIC/FPGA accelerators

successfully take advantage of this, commonly using one-

dimensional systolic array structures [10], [23], [62]. Some

GPU-based approaches utilize this type of parallelism [13],

[35]. However, they often fail to achieve sufficient speedup

due to resource under-utilization and inefficient memory ac-

cess [13]. On the other hand, inter-query parallelism refers to

simply processing multiple query-reference pairs in parallel.

Because the latter is easier to optimize resource utilization,

many successful libraries adopt this approach [3], [9], [39],

[45].

729

Authorized licensed use limited to: TU Delft Library. Downloaded on February 06,2023 at 09:07:14 UTC from IEEE Xplore. Restrictions apply.

25 50 75 100 125 150 175 200 225 250

0

2

4

6
·107

Seq. len. (bp)

C
o
u
n
t

(a) Query-250bp

50 100 150 200 250 300 350 400 450 500

0

2

4

6
·107

Seq. len. (bp)

C
o
u
n
t

+

(b) Reference-250bp

200 400 600 800 1k 1.2k 1.4k 1.6k 1.8k 2k+

0

1

·105

Seq. len. (bp)

C
o
u
n
t

(c) Query-2000bp

200 400 600 800 1k 1.2k 1.4k 1.6k 1.8k 2k+

0

1
·105

Seq. len. (bp)

C
o
u
n
t

(d) Reference-2000bp

Fig. 2: Distribution of the sequences as input to the seed

extension in BWA-MEM [37].

Among the libraries using inter-query parallelism,

GASAL2 [9] is known to show the current state-of-the-art

performance. In this section, we describe the details of its

strategy. The GPU registers are 32-bit wide; thus, eight bases

from each query and reference are fetched in a single step.

Therefore, it is natural to process 8×8 cells at once that

correspond to a single-word reference and a single-word

query. After processing the block of 8×8 cells, the thread

advances to the right. For this, a column of eight rightmost

cells must be stored for dependency. The dependency is

fulfilled by keeping the values of these DP cells within the

registers. When a thread reaches the rightmost end of the

table, it moves to the bottom part of the DP table. Then, the

cells from the top must be accessed for dependency, and the

thread stores the bottom eight cells of each 8×8 block in the

global memory. Thus, considering the matrix size of N ×N ,

the amount of global memory access becomes N × N/4 for

reading and writing dependent cell values.

III. MOTIVATION - DIAGNOSIS

In this section, we diagnose the state-of-the-art aligner

GASAL2 [9] and discuss potential opportunities for further

performance improvement. First, we reveal a significant load

imbalance between individual queries. Second, we identify that

the use of global memory is not coalesced, which requires a

significant amount of redundant memory access.

TABLE I: Amount of Data Stored and Accessed for the

Existing GPU Aligner

Data Quantity

Necessary 2N
Stored 2N +N2/4
Accessed (Until Pascal [4]) 128N + 16N2

Accessed (After Volta [5]) 32N + 4N2

A. Load Imbalance

As discussed in Section II-B, the main parallelization

scheme of GASAL2 is inter-query parallelism. In the strategy

of letting each CUDA thread handle a single query, the

main advantage is that there is no complicated inter-thread

synchronization or costly communication.

However, one drawback of this approach is that it ignores

the variance in the workload for the seed extension. The

seeding step provides the query and reference sizes as input

to the seed extension. Because of this, the lengths vary by

individual inputs, and a significant imbalance occurs.

Fig. 2 plots the distribution of the query and reference

sequences from two types of reads (see Section V for de-

tailed settings) from the popular alignment software BWA-

MEM [37]. As illustrated, both distributions range from zero

to several hundred or thousand and are not well clustered,

implying a substantial amount of warp divergence within

GPUs. As depicted in the figure, the difference of length

between the shortest and longest strings can be up to 10×
for both the query and reference string. Provided that the

computational complexity is proportional to the multiple of

the two string lengths, the workload imbalance could be very

large in practice.

B. Memory Inefficiency

With four-bit sequence packing, it is rational to process 8×8
DP cells at a time. When moving to the next cell,1 the current

cell content can be captured within the registers. However, the

dependency structure of the seed extension also requires long-

term storage of the cell information to process the next row

of 8× 8 cells. This intermediate data well exceed the size of

the register file and are usually stored in the global memory

(i.e., DRAM).

However, this scheme incurs two inefficiencies. First, the

intermediate data need not remain in the global memory at

the end of the kernel and are considered overhead. Therefore,

reducing this overhead contributes to better performance. Sec-

ond, the minimum access size of the GPU’s global memory

is 128 B (or 32 B from Volta [5] architecture, as identified

by [32]), whereas the individual cell data size is only 4 B.

If not captured by the L2 cache, this will incur a number

of redundant access instances for the same intermediate data,

leading to an inefficient kernel.

1Without loss of generality, we assume that cells are processed left to right
and top to bottom.

730

Authorized licensed use limited to: TU Delft Library. Downloaded on February 06,2023 at 09:07:14 UTC from IEEE Xplore. Restrictions apply.

Main loop
Chunk 1

Chunk 2
...

Query Sequence
R

ef
er

en
ce

 S
eq

ue
nc

e

t0

t1

t31

t2

t0 t0

t1

t0 t0

t31

t30

t31

Chunk 2

Step 1 Step 2 Step 3 Step
32

Step
33

Step
Q

Step
Q+30

Step
Q+31

Prologue Main Loop
Epilogue

Carried
in Reg.

Shared
Memory

t1 t1

Shm &
Reg

t0t0

(a)

(b) (d)

32

: cell

: block

: strip

: chunk

(c)

Fig. 3: Intra-query parallelism. (a) shows parallelization strategy using a warp, (b) illustrates the terms used in this figure. (c)

demonstrates how the dependency between cells are handled and (d) depicts the use of anti-diagonal structure.

TABLE I lists the data volume, input data necessary for

the extension (Necessary), data stored for intermediate data

(Stored), and data accessed due to the access granularity

(Accessed). The table reveals that the inefficiency is multifold

even with modern architectures, which provides another op-

portunity for improvements. In this work, we demonstrate that

SALoBa can remove much of this access, leading to superior

performance.

IV. SALOBA DESIGN

A. Intra-query Parallelism

Because each cell in the DP table has dependencies from

the top, left, and top-left cells, it is known that intra-query

parallelism exists in an anti-diagonal form, as depicted in

Fig. 3. Adopting the idea, we use multiple CUDA threads to

concurrently handle anti-diagonal elements. A slight difference

is that instead of individual threads computing a single cell at

a time, the cells are assigned to threads in 8×8 blocks because

of the 4-bit packing on the reference and query sequences.

In the first version of the library, we decided that 32 threads

at most—a warp—should collaborate in processing a query.

Because intra-warp synchronization is relatively cheap or free

(for GPUs before introduction of independent thread schedul-

ing [5]), this becomes an attractive design choice. While using

more than 32 threads is theoretically possible, it would require

threadblock level synchronizations (i.e., __syncthreads())

that cause non-negligible overhead.

For communication between the threads, we used the CUDA

shared memory. Using shared memory as a communication

channel and reusing it every iteration, only a fixed amount of

shared memory is needed, and all access to the shared memory

is conflict-free (see Section IV-B).

Fig. 3 (a) and (b) illustrate the procedure of SALoBa. The

largest units of computation are called chunks, which are

horizontal partitions of the DP table. The chunks have the

height of 32 blocks and the width of the entire query sequence.

As displayed in the figure, a thread processes a block in a

strip (i.e., a row of blocks) of the chunk per step. In the first

step, the first thread starts the processing by fetching a 32-bit

word from each of the query and reference sequences, which

is enough to process an 8×8 block of cells.

The number of ready-to-process cells increases by one per

step in the upcoming steps. Therefore, the number of threads

participating in the computation increases until the 32nd step,

forming a 31-step long prologue. In the main loop stage,2 all

threads in the warp simultaneously process blocks in an anti-

diagonal manner, advancing one block to the right per step.

This process continues for Q−31 steps, where Q is the number

of the blocks in the query sequence (i.e., �query length/8�).

When the first thread reaches the end of the row, the epilogue
starts, and the number of participating threads decreases by

one per step until the last thread reaches the end of the row.

At the end of the epilogue, the total number of steps taken for

processing the entire chunk is Q+ 31.

Each time the threads advance to the next step, they access

the dependency data from the cells on the top, left, and top-left

(Eq. 3). Fig. 3 (c) demonstrates how this is done. When a block

is calculated, the data from the eight cells to the left are what

the current thread computed in the previous step. Therefore,

2This pattern is also called the ‘kernel,’ but we decided to call it the main
loop stage because it would be confusing with the term GPU kernel.

731

Authorized licensed use limited to: TU Delft Library. Downloaded on February 06,2023 at 09:07:14 UTC from IEEE Xplore. Restrictions apply.

t0

t1 t0

t31 t1 t0

t31 t1 t0Block 0

t31 t1 t0Block 1Block 0

t31 t1 t0Block 1Block 0 Block 31

t31t1t0

To Global Memory

t31 t1t0 Block 32

Step 1

Step 2

Step 32

Step 33

Step 34

Step 64

Step 64+

Step 65

t0

t1 t0

t31 t1 t0

t31 t1 t0

t31 t1 t0
Block 1

Block 0

t31 t1 t0
Block 32

To Global Memory

Step 1

Step 2

Step 32

Step 33

Step 34

Step 64

Block 2

shared memoryshared memory

t31 t1 t0Step 35
Block 3

Fig. 4: Lazy spill optimization. (Left): Naive global memory access. (Right): Proposed optimized access. Each small rectangle

represents 8×1 cells stored for dependency. A colored rectangle labeled ‘t#’ denotes that it is being accessed by thread# and

a gray rectangle labeled ‘block #’ represent that it is from block id # and is ready to be spilled to the global memory.

the data can be stored in the register. The data from the eight

cells at the top were computed by the adjacent thread in the

previous step. At the end of processing a block, each thread

writes the bottom 8×1 cells in the shared memory. In the next

step, each thread reads the data in the next position of the

shared memory so that it can receive the 8×1 cells from the

above block. Last, one cell at the top left has dependency on

the current block, which is what the thread received from the

shared memory in the previous step. Fortunately, it can also

be passed using the register. Thus, the number of cells stored

in the register becomes nine instead of eight.

This scheme not only reduces the warp divergence but also

improves memory access. In the previous technique, all bottom

cells in each strip must be stored and read back to/from the

global memory. In contrast, with intra-query parallelism, only

the bottom cells of each chunk (not of the strip) are stored

and read to/from the global memory. For a 32-thread warp,

this reduces the amount of intermediate data access to 1/32.

B. Lazy Spill to Global Memory Access

For processing a chunk, the data from the bottom-most

cells must be stored for processing the top-most cells of the

next chunk. Usually, this easily exceeds the shared memory

capacity and must be stored in the global memory. In a naive

scheme, as in Fig. 4 (left), the last thread (t31) stores the

bottom-most cells of a block in the global memory, and the

first thread (t0) reads them from the global memory as the

next chunk is processed. However, as diagnosed in Section III,

this results in an abundant amount of non-coalesced access,

becoming a reason for inefficiency.

To address this problem, we used lazy spilling implemented

using double-buffered shared memory for each warp to reduce

the amount of global memory access. Fig. 4 (right) indicates

the shared memory location where the threads write at each

step. For each warp, a shared memory region is allocated

with the size of 2 · dim(block) · #threads. As explained

in Section IV-A, the first thread (t0) starts writing on the first

location of the shared memory, which is passed to the second

thread before the next step. In each step, the threads read data

from the shared memory, process a block, and overwrite the

bottom cells in the block to the shared memory. Then, all

threads shift one block location for the next step.

After the prologue, the threads leave a data trail, written by

the last (t31) thread. Luckily, these are the data to be stored

on the global memory. When the first thread (t0) reaches

the end of the buffer at step 64, the shared memory has a

consecutive region of data at the left side which are large

enough to be processed by a warp. The threads stop processing

and gather together to spill the data to the global memory in

a coalesced write. Afterward, the threads wrap around in the

shared memory, and the trail of block data starts forming on

the right half of the shared memory, which is later spilled to

the global memory.

The spilled data from the previous chunk must be read to

process the next chunk so that the first thread can use the data

to calculate the cell values. This process is also performed in

the same way using the double-buffered shared memory in the

opposite direction of the writes.

C. Subwarp Scheduling: Trade-off Between Parallelism and
Workload Balancing

The proposed strategy—a warp per query—can eliminate

the workload imbalance between threads in a warp because

they work together. However, as demonstrated in Section IV-A,

a problem exists in the prologue and epilogue. The average

thread utilization over these phases is 50% (because it has a

triangular form), and their size is proportional to the warp size.

The DP table must be significantly larger than the number

of threads in a warp to amortize this overhead. However,

according to Fig. 2, the size of the table dimension is only

around several hundred, which is only a few times larger than

the size of 32, and sometimes even smaller.

732

Authorized licensed use limited to: TU Delft Library. Downloaded on February 06,2023 at 09:07:14 UTC from IEEE Xplore. Restrictions apply.

Query 1

No Subwarp Scheduling

2 Subwarps 4 Subwarps

Query 2

Query 3

Query 4

Warp 1 Chunk 1

Chunk 2

...
Warp 2 Chunk 1

Chunk 2

...
Warp 3 Chunk 1

Chunk 2

...
Warp 4 Chunk 1

Chunk 2

...

Warp 1 Subwarp 1/2 Chunk 1

Chunk 2

...
Chunk 2

Chunk 3

Chunk 4

Warp 1 Subwarp 1/4 Chunk 1
Chunk 2

...

Chunk 3
Chunk 4
Chunk 5
Chunk 6
Chunk 7
Chunk 8

Warp 1 Subwarp 2/2 Chunk 1

Chunk 2

...
Chunk 2

Chunk 3

Chunk 4

Warp 2 Subwarp 1/2 Chunk 1

Chunk 2

...
Chunk 2

Chunk 3

Chunk 4

Warp 2 Subwarp 2/2 Chunk 1

Chunk 2

...
Chunk 2

Chunk 3

Chunk 4

Warp 1 Subwarp 2/4 Chunk 1
Chunk 2

...

Chunk 3
Chunk 4
Chunk 5
Chunk 6
Chunk 7
Chunk 8

Warp 1 Subwarp 3/4 Chunk 1
Chunk 2

...

Chunk 3
Chunk 4
Chunk 5
Chunk 6
Chunk 7
Chunk 8

Warp 1 Subwarp 4/4 Chunk 1
Chunk 2

...

Chunk 3
Chunk 4
Chunk 5
Chunk 6
Chunk 7
Chunk 8

No Subwarp Scheduling

Fig. 5: Subwarp scheduling.

We chose to split the warp into multiple subwarps and let

them process a single query, as in Fig. 5, similar to the idea of

VWC [27] used in graph processing. Its effect is essentially a

trade-off between workload balancing and resource utilization.

When many subwarps are used (i.e., the subwarp size

is smaller), the sizes of the prologue and epilogue become

smaller; therefore, the average utilization increases. However,

multiple subwarps make the scheme suffer more often from

warp divergence due to workload imbalance. In contrast,

when fewer subwarps are used (i.e., the subwarp size is

larger), it is less likely to suffer from imbalance at the cost

of lower utilization from increased portions of the prologue

and epilogue. Empirically, we found that using two or four

subwarps yields the best results in our setting (see Section V).

One potential drawback is that using subwarps complicates

the memory access optimization. If the same double-buffered

technique is used, the number of threads accessing the con-

secutive memory address becomes less than 32. Subwarps

larger than eight threads do not incur a considerable problem

for architectures later than NVIDIA Volta [32]. For older

architectures, the problem can be solved by allocating N +32
slots of shared memory instead of 2N . By making the active

region rotate around and making all threads in the entire warp

write to 32 slots of data to the global memory together, a full

coalescing can be achieved at the expense of a slightly higher

shared memory capacity requirement.

V. EVALUATION

A. Experimental Setup

We evaluated SALoBa on two platforms. First, as an ‘af-

fordable’ system, we used a GTX1650 GPU card based on

the Turing [6] architecture. The server has a six-core Intel

i5-9600K CPU with 16 GB of RAM. We also conducted

experiments on a ‘high-end’ system with an RTX3090 GPU

card based on the Ampere [17] architecture. The server has a

single socket, 12-core AMD EPYC 7272 CPU and 128 GB

of RAM. Both machines run on Ubuntu 18.04 with CUDA

version 11.2 and NVIDIA driver 460.27.04.

For comparison, we used the seed extension kernels from

the following libraries as the baseline listed in TABLE II.

SOAP3-dp [50] is an early algorithm for GPU-assisted

short read alignment, which utilizes inter-query parallelism.

CUSHAW is a family of GPU-assisted short read alignment

algorithms. While most of its members [43], [44], [48] use

GPU only for seeding phase, CUSHAW2-GPU [45] accel-

erates the seed extension part with a GPU using a similar

strategy to SOAP3-dp. Better performance is obtained by

compacting the global memory storage format and using

CUDA texture memory. NVBIO [3] is a library of reusable

components designed by NVIDIA to accelerate bioinformatics

applications using CUDA. SW# [35] is an algorithm that

utilizes intra-query parallelism. It splits the DP table into

multiple anti-diagonal partitions and processes one partition

per each kernel launch. Because it launches the kernel multiple

times per query, it targets very long sequences. ADEPT [13]
is the most recent work among algorithms that use intra-

query parallelism. It uses shuffle instruction along with binary

masking to make use of the anti-diagonal parallelism. Lastly,

GASAL2 [9] is the state-of-the-art library. It achieves superior

performance by further executing the sequence packing on

GPU devices.

TABLE II: Baseline Kernels Under Comparison

Kernel Parallelism Bitwidth Mapping

SOAP3-dp [39] inter-query 2 bits one-to-one
CUSHAW2-GPU [45] inter-query 2 bits one-to-many
NVBIO [3] inter-query 2,4,8 bits one-to-many
GASAL2 [9] inter-query 4 bits one-to-one
SW# [35] INTRA-query 8 bits one-to-many
ADEPT [13] INTRA-query 8 bits one-to-one

*(All kernels have been modified to have at least four-bit

GPU-assisted packing and to support one-to-one mapping.)

733

Authorized licensed use limited to: TU Delft Library. Downloaded on February 06,2023 at 09:07:14 UTC from IEEE Xplore. Restrictions apply.

64 128 256 512

1

10

(> 100 ms)

Seq. len. (bp)

E
x
ec

u
ti

o
n

ti
m

e
(m

s)

(a) GTX1650 short sequences

1024 2048 4096

200

400

600

800

1K

1.2K
(> 2000 ms)

Seq. len. (bp)

E
x
ec

u
ti

o
n

ti
m

e
(m

s)

(b) GTX1650 long sequences

SOAP3-dp CUSHAW2-GPU NVBIO GASAL2 SW# ADEPT SALoBa (Proposed)

64 128 256 512

1

10

(> 100 ms)

Seq. len. (bp)

E
x
ec

u
ti

o
n

ti
m

e
(m

s)

(c) RTX3090 short sequences

1024 2048 4096

200

400

600

(> 2000 ms)

Seq. len. (bp)

E
x
ec

u
ti

o
n

ti
m

e
(m

s)

(d) RTX3090 long sequences

Fig. 6: Performance comparison between extension kernels. The y axes of the (a) and (c) are in log scale for better visibility.

For a fair comparison, we have put our best efforts into

optimizing the existing methods under the same environment.

Most importantly, we assume on-GPU sequence packing for

all methods. GASAL2 is known to achieve state-of-the-art

performance using a custom sequence packing kernel executed

on GPUs. While the strategy is successful, the packing is

orthogonal to the seed extension itself and the same method

can be applied to all other kernels. We have modified SOAP3-

dp, CUSHAW2-GPU, and ADEPT kernels to support five

possible types of literals by unifying the kernels to work

on four-bit packing. We left SW# to use its original eight-

bit packing, because modifying it to support packing would

complicate the memory access behavior. In addition, we have

modified some kernels (CUSHAW2-GPU, SW#, and NVBIO)

that only have one-to-many alignment modes to support one-

to-one alignment.

B. Kernel Performance Measurements

In this subsection, we compare the performance of the seed

extension kernels without load imbalances using input reads of

equal lengths. To measure the performance under various input

lengths, we used an in-house sequence read simulator similar

to Wgsim [7] to generate synthetic reads for each length in

the range of 64 to 4096. Each kernel processed 5,000 reads

per call 200 times, and these results were averaged to output

the results in Fig. 6. The execution times were measured with

the cudaEventElapsedT ime() API.

Fig. 6 (a) and (b) present the performance comparison of

the methods on the GTX1650 card, and (c) and (d) present

that on the RTX3090 card. For lengths equal to or longer

than 128 bp, SALoBa outperforms all other methods. For a

very short length of 64 bp, the execution time of NVBIO

is slightly shorter than SALoBa (0.42 ms vs 0.51 ms in

GTX 1650 and 0.21 ms vs 0.24 ms in RTX 3090). This

is reasonable because with intra-query parallelism, the effect

of resource under-utilization from prologue and epilogue is

relatively significant. However, the break-even point is found

at 128 bp, where the reduced global memory access of

SALoBa becomes dominant. The methods other than SALoBa

that utilize intra-query parallelism (SW# and ADEPT) perform

poorly compared to the others. SW# is especially slow because

it divides a single DP table into multiple kernel calls where

one kernel call processes an anti-diagonal group, resulting in

very low resource utilization.

A rather surprising observation is that GASAL2 does not

always show superior performance over other baselines. While

GASAL2 reports multi-fold speedup compared to its previous

work, its speedup is mainly from the on-GPU packing, not the

extension strategy. Because we combined CUSHAW2-GPU

with the on-GPU packing module taken from GASAL2, it

shows comparable results on GTX1650 for all lengths and

slightly better performance on RTX3090 for long sequence

lengths.

The best speedup obtained at short lengths by SALoBa is

observed at 512 bp. The speedup is 27.7% on GTX1650 and

43.6% on RTX3090 against GASAL2. At longer sequence

lengths, some baseline kernels fail to run due to structural

limitation (ADEPT) or bounded device memory (NVBIO and

SOAP3-dp). The performance trend becomes more consistent

for longer lengths because the portion of the overhead of

global memory access in execution time diminishes. Another

cause for this trend would be the decrease of the relative

size of prologue/epilogue compared to the sequence length.

For inputs equal to or longer than 1,024 bp, the speedup of

SALoBa against GASAL2 is consistently around 30% on GTX

1650 and 50% on RTX 3090. Against CUSHAW2-GPU, the

734

Authorized licensed use limited to: TU Delft Library. Downloaded on February 06,2023 at 09:07:14 UTC from IEEE Xplore. Restrictions apply.

64 256 1024 2048 4096
0

1

2

Seq. len. (bp)

S
p
ee

d
u
p

(G
T

X
1
6
5
0
)

(a)

GASAL2 (Baseline) Intra-query Par.

+Lazy spill. +Subwarps (SALoBa)

4.55×

64 256 1024 2048 4096
0

1

2

Seq. len. (bp)

S
p
ee

d
u
p

(R
T

X
3
0
9
0
)

(b)

Fig. 7: Ablation study for (a) GTX1650 and (b) RTX3090.

speedup is around 40% on GTX1650 and 20% on RTX 3090.

C. Ablation Study

Fig. 7 breaks down the contributions of the three techniques

composing SALoBa. The speedups are normalized against

GASAL2, which performs reasonably well along all sequence

lengths we target. The most effective technique for shorter

lengths (≤1024) is subwarp scheduling, which is expected

because at shorter inputs, the portions of the prologue and the

epilogue are very large. Therefore, switching to intra-query

parallelism yields performance degradation. Using subwarp

scheduling directly reduces the overhead and provides a sub-

stantial speedup.

A seemingly large speedup is observed at 64 bp for both

GTX1650 and RTX3090, which is counter-intuitive because

there is less intra-query parallelism that SALoBa can exploit.

However, further analyzing Fig. 6 (a) and (c) reveals that

it is the inefficiency of GASAL2, not speedup of SALoBa.

GASAL2 has a relatively large memory initialization cost at

the beginning, and using a small sequence length fails to

amortize it. Compared to NVBIO instead of GASAL2 at 64

bp, it correctly reflects the intuition that inter-query parallelism

is better suited for very short queries.

As the input becomes longer, the gain from using subwarps

becomes marginal, and the effects of the other two techniques

become significant. Intra-query parallelism and lazy spilling

both contribute to less global memory access. The former

reduces the amount of data stored in the global memory,

whereas the latter reduces redundant access by coalescing

access better. Therefore, these become the main driver for

performance gains in longer input ranges. Interestingly, in

RTX3090, intra-query parallelism has more effect, whereas

lazy spilling is more effective for GTX1650. We believe

this is explainable by the fact that RTX3090 has a higher

computation/memory bandwidth ratio. RTX3090 has a peak

performance of 35.58 TFlops, and its memory bandwidth is

936.2 GB/s using GDDR6X. On the other hand, GTX has a

peak performance of 2.98 TFlops with 128.1 GB/s memory

bandwidth. The ratio is 38.91 Flops/B in RTX3090 and 23.82

Flops/B in GTX1650. This means that RTX3090 is generally

more bottlenecked at its memory. The major drawback of intra-

query parallelism is the low CUDA thread utilization. How-

ever, as RTX3090 is more bottlenecked in memory bandwidth,

it is likely that there are more computational resources to

process the data even when some are being idle. This partially

offsets the utilization problem in RTX3090.

D. Real-world Data Experiments

To test SALoBa under workload imbalance with the realistic

distribution of workload sizes, we generate seeds from BWA-

MEM [37] using real-world datasets. It takes a whole reference

genome sequence and many sequence reads to generate seeds

that are composed of multiple pairs that can be processed by

extension kernels.

For the reference genome sequence, we used the latest

release of the human genome assembly project, Build 38

patch release 13 (GRCh38.p13) [2] that has 3.1G base pairs

(bp). For the input sequence reads, we used two datasets

downloaded from the sequence read archive [36]. The dataset
A (SRR835433) is from a 2nd generation sequencer Illumina

MiSeq and represents short reads where each sequence has a

length of 250 bp. The dataset comprises 8.3M sequences which

are randomly read genome parts from a human. Each sequence

is read twice, resulting in the total number of base pairs to be

250×8.3M×2=4.1 Gbp. The dataset B (SRP091981) is from

a 3rd generation sequencer PacBio RS and represents long

reads. It also contains randomly read genome parts from a

human where there are 82K sequences with variable lengths

that averages around 2,000 bp to a total of 182.4 Mbp. The

distributions of the seeds processed by BWA-MEM [37] are

presented in Fig. 2.

The results are plotted in Fig. 8. Fig. 8 (a) shows the

performance for short read dataset A. The best speedup of

SALoBa over the baseline GASAL2 is 32.5% for GTX1650

and 20.2% for RTX3090. SOAP3-dp could not complete the

workload on GTX1650 as some of the inputs exceeded the

length it could process. The speedup values observed from

SALoBa are slightly larger than that of Fig. 6 (a) and (c) due

to the fact that SALoBa suffers less from workload imbalance.

While the performance of SOAP3-dp and NVBIO are inferior

to GASAL2, CUSHAW2-GPU exhibits some speedup over

GASAL2 (with the help of GASAL2’s on-GPU packing

kernel). However, its speedup is smaller than that of SALoBa.

ADEPT achieves a similar speedup compared to SALoBa only

on RTX3090, but the speedup comes from placing all the

intermediate values in the shared memory (no global memory

access), which fundamentally limits ADEPT up to 1024 bp.

An interesting difference between GTX1650 and RTX3090

is that the optimal subwarp size was 16 for GTX1650 and

eight for RTX3090 (see Fig. 8 (c)). This outcome is due to

735

Authorized licensed use limited to: TU Delft Library. Downloaded on February 06,2023 at 09:07:14 UTC from IEEE Xplore. Restrictions apply.

0

0.5

1

1.5

2

S
p

ee
d

u
p

(a) Dataset A for short reads.

SOAP3-dp ADEPT NVBIO

SW# CUSHAW2-GPU GASAL2

SALoBa

0
0.5
1

1.5
2

S
p

ee
d

u
p

(b) Dataset B for long reads.

8 16 32 8 16 32 8 16 32 8 16 32
0

0.5
1

1.5
2

2.5
3

Subwarp size

S
p

ee
d

u
p

(c) Sensitivity to the number of threads in a subwarp.

GTX1650 RTX3090

Dataset A Dataset B

GTX1650 RTX3090

GTX1650 RTX3090

Fig. 8: Performance of SALoBa on a real-world data. The

speedup is normalized to that of GASAL2.

the different effectiveness of each technique. According to

Fig. 7, the benefit of applying subwarp scheduling for shorter

sequences was 2.26× for GTX1650 and 2.85× for RTX3090

in geomean. In GTX1650, the benefit of using subwarps is

partially offset by the overhead from workload imbalance,

shifting the optimal configuration to 16 threads per subwarp.

Fig. 8 (b) reveals the performance for dataset B with longer

reads. On this dataset, SOAP3-dp, ADEPT, and NVBIO fail

to run due to their input length limitations. The speedup of

SALoBa greatly improves compared to that of Fig. 6 (b)

and (d) because the amount of workload imbalance increases

which works in favor of SALoBa. The best speedup is around

2.1× for both GTX1650 and RTX3090. Subwarps with 16

threads per subwarps gained the best performance, which is

the sweet spot between exploiting intra-query parallelism and

reducing the workload imbalance.

VI. RELATED WORK

A. GPU-based Smith–Waterman Algorithm Implementations

Accelerating Smith–Waterman algorithm [57] with GPUs

has been studied for many years. Some earlier work based

on OpenGL library [40], [41] addressed issues for map-

ping the algorithm on graphics pipeline. A popular CUDA

implementation can be found from the CUDASW++ fam-

ily [42], [47], [49]. They suggest utilizing both the intra- and

inter-query parallelism based on a pre-determined sequence

length threshold [42]. Similar approaches can be found from

GSWABE [46] and gpu-pairalign [14]. In addition, focused on

all-to-all patterns for protein DB alignments, query profiling

optimization [47] and CPU-GPU hybrid parallelism [49] have

been suggested. However, such optimizations are often too

specific to protein alignments, and cannot be easily generalized

to other domains such as DNAs.

In such regard, the CUDAlign family [20], [21], [52], [54]

focus on a general Smith–Waterman algorithm using intra-

query parallelism. CUDAlign [54] splits the DP table into

multiple blocks and distributes them to threadblocks. Then,

the communication between the threadblocks are done using

a dedicated region in the global memory called the ‘horizontal

bus’ and ‘vertical bus’. The algorithm is later extended to sup-

port linear space algorithm to reduce the memory size [52]. Its

recent versions support multi-GPU alignment with execution

time prediction [21] and traceback [20]. When the DP table

is too large, approaches such as MultiBP [18], MASA [19],

and SW# [35] suggest block pruning [53] that removes some

blocks that can never achieve the optimal score.

However, these algorithms are optimized for huge sequences

that sometimes do not even fit into a single GPU card [33].

For DNA alignment softwares with seed-and-extend strategies,

the input sequence length for the extension ranges around

several hundreds even with the long DNA reads. Because of

this, libraries that rely on inter-query parallelism [3], [9] often

perform much better for DNA alignments as demonstrated in

[13]. On the other hand, SALoBa outperforms the previous

approaches on DNA alignment scenarios by adopting several

careful optimizations.

B. GPU-accelerated Sequence Alignment Softwares

Some approaches design an end-to-end DNA alignment

software that are friendly to GPU architectures. SARU-

MAN [15] and GPU-RMAP [11] are some early methods that

implement hashtable lookups on GPUs to perform short read

mappings. With the increased use of the Burrows–Wheeler

transform (BWT) [38] based on suffix-trees, BarraCUDA [34],

SOAP3 [39] and CUSHAW1 [48] were introduced with

GPU implementations of BWT. SOAP3-dp [50], CUSHAW2-

GPU [45], and LOGAN [60] are later methods that adopt

seed-and-extend strategy, and Arioc [59] further expands the

strategy to multiple GPUs. However, these methods often

sacrifice alignment quality for the sake of throughput. For

example, SOAP3 and LOGAN only supports limited number

of mismatches, and CUSHAW2-GPU packs the sequences to

two bits by converting the fifth ‘N’ bases to random bases.

Although the approaches above show good throughput with

only a small amount of quality degradation, the industry has

grown to value quality over speed. As high-quality algorithms

such as BWA-MEM [37] became a de facto standard, the

usability of the GPU-aware alignment softwares were limited.

Some approaches [13], [29]–[31] tackle this problem and

design a seed extension kernel general enough to be used

for BWA-MEM using intra-query performance. However, later

approaches based on inter-query parallelism outperformed

these kernels, which is the strategy adopted by the current

state-of-the-art methods such as NVBIO [3] or GASAL2 [9].

Finally, it is worth mentioning cuBLASTP [61], a GPU ac-

celerated protein search algorithm that uses a variant of seed-

and-extend strategy. However, cuBLASTP only accelerates the

736

Authorized licensed use limited to: TU Delft Library. Downloaded on February 06,2023 at 09:07:14 UTC from IEEE Xplore. Restrictions apply.

seeding part using GPU, and leaves the extension part to CPU

for utilizing CPU-GPU hybrid parallelism.

C. FPGA/ASIC Acceleration

As interest in the genomics pipeline has increased, more

researchers have considered designing dedicated accelerators

using FPGAs or ASICs. [62] provided a implementation of

the Smith–Waterman algorithm on an Altera FPGA, followed

by a few other studies using banded algorithms [16], [26] or

flexible systolic arrays [10], [28]. Moreover, DRAGEN [56]

is an FPGA-based platform from Illumina that implements

a full end-to-end analysis into an FPGA. Darwin [58] is an

ASIC accelerator that speeds up the whole genome sequencing

through the co-design of both the software and hardware,

powered by gapped filtering. GenAx [22] is an automata-based

accelerator for both seeding and extension.

Although these approaches provide significant speedup,

FPGAs or ASICs are much harder to design and it requires a

long time to reach the market. Compared to them, GPU-based

alignment software could be a quick solution easily adopted

by any system that has GPUs attached.

VII. DISCUSSION

A. CUDA Shuffle Instructions

The CUDA shuffle instruction is an alternative to shared

memory by allowing a direct register-to-register data exchange

for inter–thread communication. However, using shuffle-based

communication did not add any additional speedup on top of

SALoBa. This outcome aligns with the CUDA specification

that the throughput of the shuffle instructions is almost the

same as the nonconflicting shared memory reads [8].

One potential gain from shuffle instructions is reducing

shared memory usage. However, the portion of data cached

in the shared memory was negligible in the current scenario

and did not provide noticeable speedup.

B. Banded Algorithms

Many seed extension methods use the banded algorithm to

reduce the computational burden. Taking advantage of the fact

that the best matching path of the DP table is usually near the

diagonal, processing cells within some predetermined width

(the band) often yields solutions of sufficient quality. However,

most GPU-based extension libraries do not exploit this.

One problem is that the band sizes for each query are often

different, which worsens load balancing. However, we envision

that banded algorithms would have more benefits and could

be adopted for better performance with longer reads.

C. Multiple GPUs

It is often beneficial to use multiple GPUs, especially when

equipped on a single machine. We believe that extending

this work by splitting the queries into equal numbers and

assigning them to multiple GPUs would be straightforward.

One possible drawback of such a strategy would be the load

imbalance between the GPUs. However, the penalty would be

small compared to the thread-level imbalance problem. If this

becomes significant, it could be solved by dynamic assignment

or preprocessing with approximate sorting.

VIII. CONCLUSION

We proposed SALoBa, a new GPU-based seed extension li-

brary, exhibiting state-of-the-art performance over the existing

work. The experiments reveal that the software performs well

on modern devices, and the performance gain increases with

recent GPUs. We believe this software will be useful in fields

where sequence alignment times are critical for diagnosing

fatal diseases.

ACKNOWLEDGEMENTS

This work has been supported by the National Research Foun-
dation of Korea (NRF) grant funded by the Korea government
(MSIT) (2022R1C1C1008131, 2022R1C1C1011307) and Institute of
Information & communications Technology Planning & Evaluation
(IITP) grant funded by the Korea government (MSIT) (2020-0-01361,
Artificial Intelligence Graduate School Program (Yonsei University),
2021-0-00853, Developing Software Platform for Programming of
PIM).

REFERENCES

[1] “DNA sequencing costs: Data.” [Online]. Available: https://www.
genome.gov/about-genomics/fact-sheets/DNA-Sequencing-Costs-Data

[2] “GRCh38.p13.” [Online]. Available: https://www.ncbi.nlm.nih.gov/
assembly/GCF 000001405.39/

[3] “NVBIO.” [Online]. Available: https://developer.nvidia.com/nvbio
[4] “NVIDIA Tesla P100.” [Online]. Available: https://images.nvidia.com/

content/pdf/tesla/whitepaper/pascal-architecture-whitepaper.pdf
[5] “NVIDIA TESLA V100 GPU ARCHITECTURE.” [On-

line]. Available: https://images.nvidia.com/content/volta-architecture/
pdf/volta-architecture-whitepaper.pdf

[6] “NVIDIA TURING GPU ARCHITECTURE.” [On-
line]. Available: https://images.nvidia.com/aem-dam/en-zz/
Solutions/design-visualization/technologies/turing-architecture/
NVIDIA-Turing-Architecture-Whitepaper.pdf

[7] “Reads simulator.” [Online]. Available: https://github.com/lh3/wgsim
[8] “Throughput of Native Arithmetic Instructions.” [Online]. Avail-

able: https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.
html#arithmetic-instructions throughput-native-arithmetic-instructions

[9] N. Ahmed, J. Lévy, S. Ren, H. Mushtaq, K. Bertels, and Z. Al-Ars,
“GASAL2: A GPU accelerated sequence alignment library for high-
throughput NGS data,” BMC bioinformatics, vol. 20, no. 1, pp. 1–20,
2019.

[10] N. Ahmed, V.-M. Sima, E. Houtgast, K. Bertels, and Z. Al-Ars,
“Heterogeneous hardware/software acceleration of the BWA-MEM DNA
alignment algorithm,” in ICCAD. IEEE, 2015.

[11] A. M. Aji, L. Zhang, and W.-c. Feng, “GPU-RMAP: Accelerating short-
read mapping on graphics processors,” in CSE. IEEE, 2010.

[12] M. Alser, Z. Bingöl, D. S. Cali, J. Kim, S. Ghose, C. Alkan, and
O. Mutlu, “Accelerating genome analysis: A primer on an ongoing
journey,” IEEE Micro, vol. 40, no. 5, pp. 65–75, 2020.

[13] M. G. Awan, J. Deslippe, A. Buluc, O. Selvitopi, S. Hofmeyr, L. Oliker,
and K. Yelick, “ADEPT: A domain independent sequence alignment
strategy for GPU architectures,” BMC bioinformatics, vol. 21, no. 1, pp.
1–29, 2020.

[14] J. Blazewicz, W. Frohmberg, M. Kierzynka, E. Pesch, and P. Woj-
ciechowski, “Protein alignment algorithms with an efficient backtracking
routine on multiple GPUs,” BMC bioinformatics, vol. 12, no. 1, pp. 1–
17, 2011.

[15] J. Blom, T. Jakobi, D. Doppmeier, S. Jaenicke, J. Kalinowski, J. Stoye,
and A. Goesmann, “Exact and complete short-read alignment to micro-
bial genomes using graphics processing unit programming,” Bioinfor-
matics, vol. 27, no. 10, pp. 1351–1358, 2011.

[16] P. Chen, C. Wang, X. Li, and X. Zhou, “Hardware acceleration for the
banded Smith-Waterman algorithm with the cycled systolic array,” in
FPT. IEEE, 2013.

737

Authorized licensed use limited to: TU Delft Library. Downloaded on February 06,2023 at 09:07:14 UTC from IEEE Xplore. Restrictions apply.

[17] J. Choquette, E. Lee, R. Krashinsky, V. Balan, and B. Khailany, “The
A100 datacenter GPU and ampere architecture,” in ISSCC, vol. 64.
IEEE, 2021, pp. 48–50.

[18] M. A. C. de Figueiredojr, J. P. Navarro, E. F. de Oliveira Sandes,
G. Teodoro, and A. C. M. Melo, “Parallel fine-grained comparison of
long DNA sequences in homogeneous and heterogeneous GPU platforms
with pruning,” IEEE Transactions on Parallel and Distributed Systems,
2021.

[19] E. F. De O. Sandes, G. Miranda, X. Martorell, E. Ayguade, G. Teodoro,
and A. C. De Melo, “MASA: A multiplatform architecture for sequence
aligners with block pruning,” ACM Transactions on Parallel Computing,
vol. 2, no. 4, pp. 1–31, 2016.

[20] E. F. de Oliveira Sandes, G. Miranda, X. Martorell, E. Ayguade,
G. Teodoro, and A. C. M. Melo, “CUDAlign 4.0: Incremental specula-
tive traceback for exact chromosome-wide alignment in GPU clusters,”
IEEE Transactions on Parallel and Distributed Systems, vol. 27, no. 10,
pp. 2838–2850, 2016.

[21] F. d. O. Edans, G. Miranda, A. C. de Melo, X. Martorell, and
E. Ayguadé, “CUDAlign 3.0: Parallel biological sequence comparison
in large GPU clusters,” in CCGrid. IEEE, 2014.

[22] D. Fujiki, A. Subramaniyan, T. Zhang, Y. Zeng, R. Das, D. Blaauw,
and S. Narayanasamy, “GenAx: A genome sequencing accelerator,” in
ISCA. IEEE, 2018.

[23] D. Fujiki, S. Wu, N. Ozog, K. Goliya, D. Blaauw, S. Narayanasamy,
and R. Das, “SeedEx: A genome sequencing accelerator for optimal
alignments in subminimal space,” in MICRO. IEEE, 2020.

[24] A. Goyal, H. J. Kwon, K. Lee, R. Garg, S. Y. Yun, Y. H. Kim, S. Lee, and
M. S. Lee, “Ultra-fast next generation human genome sequencing data
processing using DRAGEN™ bio-IT processor for precision medicine,”
Open Journal of Genetics, vol. 7, no. 1, pp. 9–19, 2017.

[25] T. J. Ham, D. Bruns-Smith, B. Sweeney, Y. Lee, S. H. Seo, U. G.
Song, Y. H. Oh, K. Asanovic, J. W. Lee, and L. W. Wills, “Genesis: A
hardware acceleration framework for genomic data analysis,” in ISCA.
IEEE, 2020.

[26] B. Harris, A. C. Jacob, J. M. Lancaster, J. Buhler, and R. D. Cham-
berlain, “A banded Smith-Waterman FPGA accelerator for mercury
BLASTP,” in FPL. IEEE, 2007.

[27] S. Hong, S. K. Kim, T. Oguntebi, and K. Olukotun, “Accelerating CUDA
graph algorithms at maximum warp,” in PPoPP, 2011.

[28] E. J. Houtgast, V.-M. Sima, K. Bertels, and Z. Al-Ars, “An FPGA-
based systolic array to accelerate the BWA-MEM genomic mapping
algorithm,” in SAMOS. IEEE, 2015.

[29] ——, “GPU-accelerated BWA-MEM genomic mapping algorithm using
adaptive load balancing,” in ARCS. Springer, 2016.

[30] ——, “Hardware acceleration of BWA-MEM genomic short read map-
ping for longer read lengths,” Computational biology and chemistry,
vol. 75, pp. 54–64, 2018.

[31] E. J. Houtgast, V. Sima, K. Bertels, and Z. Al-Ars, “An efficient
GPU accelerated implementation of genomic short read mapping with
bwamem,” ACM SIGARCH Computer Architecture News, vol. 44, no. 4,
pp. 38–43, 2017.

[32] M. Khairy, J. Akshay, T. Aamodt, and T. G. Rogers, “Exploring modern
GPU memory system design challenges through accurate modeling,”
arXiv preprint arXiv:1810.07269, 2018.

[33] A. Khajeh-Saeed, S. Poole, and J. B. Perot, “Acceleration of the Smith–
Waterman algorithm using single and multiple graphics processors,”
Journal of Computational Physics, vol. 229, no. 11, pp. 4247–4258,
2010.

[34] P. Klus, S. Lam, D. Lyberg, M. S. Cheung, G. Pullan, I. McFarlane,
G. S. Yeo, and B. Y. Lam, “BarraCUDA-a fast short read sequence
aligner using graphics processing units,” BMC research notes, vol. 5,
no. 1, pp. 1–7, 2012.

[35] M. Korpar and M. Šikić, “SW#–GPU-enabled exact alignments on
genome scale,” Bioinformatics, vol. 29, no. 19, pp. 2494–2495, 2013.

[36] R. Leinonen, H. Sugawara, M. Shumway, and I. N. S. D. Collaboration,
“The sequence read archive,” Nucleic acids research, vol. 39, no.
suppl 1, pp. D19–D21, 2010.

[37] H. Li, “Aligning sequence reads, clone sequences and assembly contigs
with BWA-MEM,” arXiv preprint arXiv:1303.3997, 2013.

[38] H. Li and R. Durbin, “Fast and accurate short read alignment with
Burrows–Wheeler transform,” bioinformatics, vol. 25, no. 14, pp. 1754–
1760, 2009.

[39] C.-M. Liu, T. Wong, E. Wu, R. Luo, S.-M. Yiu, Y. Li, B. Wang,
C. Yu, X. Chu, K. Zhao et al., “SOAP3: Ultra-fast GPU-based parallel

alignment tool for short reads,” Bioinformatics, vol. 28, no. 6, pp. 878–
879, 2012.

[40] W. Liu, B. Schmidt, G. Voss, A. Schroder, and W. Muller-Wittig, “Bio-
sequence database scanning on a GPU,” in IPDPS. IEEE, 2006.

[41] Y. Liu, W. Huang, J. Johnson, and S. Vaidya, “GPU accelerated Smith-
Waterman,” in ICCS. Springer, 2006.

[42] Y. Liu, D. L. Maskell, and B. Schmidt, “CUDASW++: Optimizing
Smith-Waterman sequence database searches for CUDA-enabled graph-
ics processing units,” BMC research notes, vol. 2, no. 1, pp. 1–10, 2009.

[43] Y. Liu, B. Popp, and B. Schmidt, “High-speed and accurate color-space
short-read alignment with CUSHAW2,” arXiv preprint arXiv:1304.4766,
2013.

[44] ——, “CUSHAW3: Sensitive and accurate base-space and color-space
short-read alignment with hybrid seeding,” PloS one, vol. 9, no. 1, p.
e86869, 2014.

[45] Y. Liu and B. Schmidt, “CUSHAW2-GPU: Empowering faster gapped
short-read alignment using GPU computing,” IEEE Design & Test,
vol. 31, no. 1, pp. 31–39, 2013.

[46] ——, “GSWABE: Faster GPU-accelerated sequence alignment with
optimal alignment retrieval for short DNA sequences,” Concurrency and
Computation: Practice and Experience, vol. 27, no. 4, pp. 958–972,
2015.

[47] Y. Liu, B. Schmidt, and D. L. Maskell, “CUDASW++ 2.0: Enhanced
smith-waterman protein database search on CUDA-enabled GPUs based
on SIMT and virtualized SIMD abstractions,” BMC research notes,
vol. 3, no. 1, pp. 1–12, 2010.

[48] ——, “CUSHAW: A CUDA compatible short read aligner to large
genomes based on the Burrows–Wheeler transform,” Bioinformatics,
vol. 28, no. 14, pp. 1830–1837, 2012.

[49] Y. Liu, A. Wirawan, and B. Schmidt, “CUDASW++ 3.0: Accelerating
Smith-Waterman protein database search by coupling CPU and GPU
SIMD instructions,” BMC bioinformatics, vol. 14, no. 1, pp. 1–10, 2013.

[50] R. Luo, T. Wong, J. Zhu, C.-M. Liu, X. Zhu, E. Wu, L.-K. Lee, H. Lin,
W. Zhu, D. W. Cheung et al., “SOAP3-dp: Fast, accurate and sensitive
GPU-based short read aligner,” PloS one, vol. 8, no. 5, p. e65632, 2013.

[51] S. B. Needleman and C. D. Wunsch, “A general method applicable to
the search for similarities in the amino acid sequence of two proteins,”
Journal of molecular biology, vol. 48, no. 3, pp. 443–453, 1970.

[52] E. F. d. O. Sandes and A. C. M. de Melo, “Smith-Waterman alignment
of huge sequences with GPU in linear space,” in IPDPS. IEEE, 2011.

[53] ——, “Retrieving Smith-Waterman alignments with optimizations for
megabase biological sequences using GPU,” IEEE Transactions on
Parallel and Distributed Systems, vol. 24, no. 5, pp. 1009–1021, 2012.

[54] E. F. O. Sandes and A. C. M. de Melo, “CUDAlign: Using GPU to
accelerate the comparison of megabase genomic sequences,” in PPoPP,
2010.

[55] E. E. Schadt, S. Turner, and A. Kasarskis, “A window into third-
generation sequencing,” Human molecular genetics, vol. 19, no. R2,
pp. R227–R240, 2010.

[56] K. Scheffler, S. Kim, V. Jain, J. Yuan, W. Sherman, T. O’Connell,
E. Ojard, L. Murray, R. Mehio, and S. Catreux, “Accuracy improvements
in somatic whole-genome small-variant calling with the DRAGEN
platform,” 2020.

[57] T. F. Smith, M. S. Waterman et al., “Identification of common molecular
subsequences,” Journal of molecular biology, vol. 147, no. 1, pp. 195–
197, 1981.

[58] Y. Turakhia, G. Bejerano, and W. J. Dally, “Darwin: A genomics co-
processor provides up to 15,000x acceleration on long read assembly,”
in ASPLOS. ACM, 2018.

[59] R. Wilton and A. S. Szalay, “Arioc: High-concurrency short-read align-
ment on multiple GPUs,” PLoS computational biology, vol. 16, no. 11,
p. e1008383, 2020.

[60] A. Zeni, G. Guidi, M. Ellis, N. Ding, M. D. Santambrogio, S. Hofmeyr,
A. Buluç, L. Oliker, and K. Yelick, “LOGAN: High-performance GPU-
based x-drop long-read alignment,” in IPDPS. IEEE, 2020.

[61] J. Zhang, H. Wang, and W.-c. Feng, “cuBLASTP: Fine-grained par-
allelization of protein sequence search on CPU+GPU,” IEEE/ACM
transactions on computational biology and bioinformatics, vol. 14, no. 4,
pp. 830–843, 2015.

[62] P. Zhang, G. Tan, and G. R. Gao, “Implementation of the Smith-
Waterman algorithm on a reconfigurable supercomputing platform,” in
International Workshop on High-performance Reconfigurable Comput-
ing Technology and Applications, 2007.

738

Authorized licensed use limited to: TU Delft Library. Downloaded on February 06,2023 at 09:07:14 UTC from IEEE Xplore. Restrictions apply.

