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Highlights: 

 Quantifying network transmission losses under planned capacity reductions

 Integrating capacity degradation results per link into network robustness assessment

 Formulating measures of link criticality and rapidity of network deterioration

 An application to the urban public transport network of Amsterdam

 Small and long capacity degradations should be preferred over large and short ones

Abstract 

Network robustness refers to as the capacity to absorb disturbances with a minimal impact on system 

performance. Notwithstanding, network robustness assessment has been mostly confined to the 

analysis of complete link breakdown based on topological metrics. We propose reliability indicators 

that encompass changes in network performance with respect to the entire range of possible capacity 

reductions. Link criticality and degradation rapidity are measured by constructing network 

degradation curve that describe the relation between local capacity reduction and global change in 

network performance. We develop a public transport robustness assessment model which computes 

passenger flow distribution and network performance metrics under planned capacity reductions. 

The model is applied to the urban rail-bound network of Amsterdam. Link criticality and degradation 

rapidity are studied by performing a full-scan impact analysis which demonstrates how the 

robustness indicators introduced in this paper contribute to a more complete assessment of network 

robustness. 
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1. Introduction 

Social-technical systems are subject to man-made, technical and natural disruptions. Systems are 

considered robust based on their capacity to absorb disruptions with a minimal impact on system 

performance. The performance can be measured in terms of the worst affected component, total 

transmission costs or the extent to which the system has disintegrated (e.g. size of the largest sub-

network that remains connected). Even though robustness of critical infrastructures such as mass 

public transport networks (PTN) is high on the planning and policy agenda (Homeland Security 

2010), there is lack of knowledge on how to assess and quantify network robustness towards a range 

of possible disruptions. While disruptions of critical infrastructure are often limited to a partial 

reduction in link transmission capacity, most research has focused on complete link breakdown (i.e. 

link removal) with few noticeable exceptions (Sullivan et al. 2010 and Cats and Jenelius 2016). The 

analysis performed in the latter does not allow for a network robustness analysis because it either did 

not propose a method to integrate information from various link-level capacity reduction scenarios or 

did not perform a full-scan network analysis. 

 

A system can be considered robust with respect to disruptions on a certain component if minor 

disturbances of its performance do not have severe consequences on the overall system performance, 

i.e., when overall travel time reliability remains constant under minor capacity reductions. Hence, 

robustness is not merely based on the magnitude of the ramifications of a complete breakdown but 

should also refer to the trajectory that describes how different disruption severity influence severity in 

network degradation. The latter provides information on the overall range of values and the 

sensitivity of network performance to alterations in the performance of individual network elements. 

The commonly asked question who is the weakest link becomes thus multi-dimensional and requires 

expanding our toolset for quantifying network robustness. 

 

The primary objective of the current study is to propose reliability indicators that encompass changes 

in network performance with respect to the entire range of possible capacity reductions and can be 

used in a wide range of domains. To this end, two robustness indicators are conceptualized and 

formulated by constructing performance curves to allow quantifying the absolute change and the first 

moment of the degradation in network performance as a function of link capacity reductions. This 

study contributes to the state-of-the-art of network robustness by enabling the quantification of 

network robustness in terms of network transmission losses for the range of possible capacity 

reductions. The analysis of these indicators allows identifying the extent and the relation between 

capacity reduction and performance reductions and thus support infrastructure management and 

capacity allocation. The indicators are demonstrates in the context of PTN, where network 

performance under disruptions is modelled using a passenger load (re-)distribution model. The 

impacts of disruptions on the robustness of PTN has long been an understudied topic, in particular in 

the context of partial degradations.  

 

Assessing the impact of different capacity reduction scenarios on the robustness of the PTN is not 

only important for efficiency reasons, but also for reliability and safety considerations. Various 

capacity-related definitions of network reliability were proposed in the literature for road networks 

(Chen et al. 1999, 2002, Al-Deek & Emam 2006, Scott  et al. 2006, Sullivan et al. 2010). Some of these 

definitions can be transferred to the public transport domain when measuring day-to-day travel time 

variations. For example, planners can monitor whether during planned maintenance periods the 

reliability of individual lines or indeed the whole PTN stays within a certain margin in relation to 

normal operations. Alternatively, a probabilistic notion of network reliability performance can refer to 



the probability that the network can accommodate a certain traffic demand at a pre-defined desired 

service level.  

 

Most related work on safety assessment of (public) transport systems focuses on system-level 

analysis (Evans 1994, Stoop & Thissen 1997,  Mohan & Tiwari 1999, Macchi et al. 2012). Only limited 

work has been done on the relation between (link) capacity reduction and safety. It is expected that 

different maintenance plans will have a different impact on the reliability, safety and associated costs 

for a public transport network. It is for example expected that a full closure of a link will be safer for 

maintenance crews, but will have a larger effect (per time unit) on the workings of the rest of the 

network. Another aspect that might be relevant in this context is that of vehicle operators: slower 

moving metros and trams, i.e., with reducing the capacity on a line, can be expected to lead to fewer 

errors (White 2002) as operators have more time to react to unexpected events. 

 

Even though public transport constitutes critical infrastructure in many urban and regional transport 

systems, only little is known about the determinants of its vulnerability and methods and techniques 

to analyse and mitigate the impacts of disruptions. The vast majority of previous studies focused on 

road networks (Reggiani 2013, Berdica 2012, Chen et al. 2002), the degradations of its physical 

infrastructure and its evaluation (Scott et al. 2006, Jenelius and Mattsson 2012, Taylor and Susilawatii 

2012). While these studies provide some relevant conceptual foundations, the vulnerability analysis 

techniques have only limited transferability to public transport. PTN are characterized by greater 

complexity due to the relation between the infrastructure and service layers. In the context of PTN, 

the nonlinear properties of network effects and probabilistic flow distribution may result in non-

trivial relations between the magnitude of the failure and its consequences.  

 

The ability of PTN to maintain their function under circumstances which strongly deviate from plan 

is essential to their robustness.  PTN are prone to recurrent disruptions, ranging from mechanical and 

technical problems (e.g. vehicle breakdown, switch failure) to traffic accidents and suicide attempts 

(Cats et al. 2016). Many of these causes, in addition to planned construction and maintenance works, 

result with limited traffic capacity. The performance of the rail-bound Amsterdam network in the 

case of planned capacity reductions is thereof selected to demonstrate the proposed indicators and 

the insights gained by their measurement.  

 

Different kinds of planned capacity reductions are performed by system managers in urban public 

transport networks. These reductions can vary from a reduced speed or frequency on a link to a full 

link closure due to maintenance routines or in conjunction with construction works. In some cases, 

project manager can trade-off between the extent of capacity reduction and its duration. However, 

there is lack of knowledge on the impacts of such decisions on passengers’ travel costs, including the 

consideration of rerouting possibilities and disconnected passengers.  

 

The remaining of this paper is organized as follows. The following section reviews related work on 

alternative approaches to measuring network performance and distinguishing between four types of 

network robustness measures. Two robustness indicators, Link criticality and Degrading Rapidity, are 

proposed, formulated and illustrated in Section 3. A general network robustness assessment 

procedure and its specification for an application to public transport systems is presented in Section 

4 along with the passenger flow distribution and the calculation of network performance metrics. 

Section 5 details the application of this model to the urban rail network in Amsterdam including the 

experiment set-up and the statistical and spatial analysis of the proposed robustness indicators. The 

paper concludes with a discussion of study implications and directions for future research.  



 

2. Related Work 

There is a large body of related work on network robustness. This section provides an overview of the 

main approaches found in the literature, starting by considering network performance indicators 

followed by examining network robustness indicators.  

2.1 Measuring Network Performance 

Network performance indicators aim at quantifying the functioning of a network, allowing the 

comparison of different conditions or configurations of the same network, or different networks 

altogether. Network performance indicators can be categorized into three main groups of studies, 

with an increasing level of detail: infrastructures studies, service network studies and flow 

distribution studies.  

The network performance indicators used in infrastructure studies are, in general, topological 

indicators based on graph theory. The network performance in these studies is, for example, 

expressed in terms of global connectivity expressed as the minimum number of links that needs to be 

removed to disconnect the remaining nodes from each other (Berche et al. 2009, von Ferber et al. 

2012), the largest connected component of the network (Wang et al. 2015) or changes in accessibility 

(Kermanshah and Derrible 2016). These indicators are referred by Faturechi and Miller-Hooks 

(2014a) as topological measures of effectiveness (MOE). Such purely topological infrastructure 

studies and corresponding indicators neglect the state of the networks in terms of saturation and flow 

distribution. The advantage of such indicators is that they can be applied to a wide variety of 

networks. The main disadvantage is that they only consider topological indicators and thus cannot, 

for example, differentiate between a network with congestion and the same network without 

congestion. When considering PT networks, infrastructure indicators discard the notion of lines and 

corresponding service network characteristics for which the same disruptions can have different 

effects on the network performance. For example, using a topological approach, a link breakdown 

results with remaining links operating normally although in practice upstream and downstream links 

of the same line will be affected.  

When the state of the network is considered, more detailed analysis of the performance of the 

network is possible. Public transport studies that include the service network define different 

transport lines which are superimposed on top of the physical infrastructure. The representation of 

both topological and service layers allow to consider transfers, link travel times and line waiting 

times. The network performance can then be measured as the mean travel time between all the OD-

pairs or the mean number of transfers over all the OD-pairs. Berche et al. (2009) for example 

represented the largest metro networks in the world using both an infrastructure representation as 

well as a service network representation and examined the effect of random attacks on the 

performance of the network. They expressed the effect in terms of the change in the size of the largest 

cluster and the average inverse mean shortest path length. Another example by Ellens et al. (2011) 

considers the effective resistance between all pairs of vertices in a power grid, leading to the notion of 

effective graph resistance, which allows the analysis of robustness of a power grid without looking at 

the actual power flow.  

The most detailed network indicators also consider flow and link capacity (Simonsen 2008), making 

it possible, for example, to study flow distribution and congestion in networks. Such indicators 

always need to take the physical infrastructure into account, which makes them more detailed but 

also less widely applicable. Examples of networks, other than transport networks, that have been 



studied using more specific performance indicators include: power grids (Koç 2013), water 

distribution networks (Yazdani 2011a, 2011b),  gas distribution networks (Carvalho 2009) and virus 

spread (Youssef 2011). Studies that consider flow and capacity can reflect functional, topological and 

economic values. The latter are based on a monetization that is performed by taking the product of 

the functional MOE with values of time (VOT). Examples of studies in which the network 

performance is expressed in economic MOE are from Cats and Jenelius (2014). The effect of a 

disruption on the network performance can also be analysed using non-monetarized network 

performance indicators, for example, the share of cut-off, affected or delayed passengers and the 

corresponding delays (Cats 2016). 

2.2 Measuring Network Robustness 

Four types of network robustness measures can be distinguished in the literature: threshold values, 

local slopes, ratios and areas under curves. Most of these measures are thoroughly discusses by 

Hosseini et al. (2015) and Faturechi and Miller-Hooks (2014b).  

A first category of measures which are applied in robustness studies (Berche et al. 2009) is the 

measurement of network performance at a certain threshold of the capacity reduction. An example of 

which is a measure that examines the effect on the network performance indicator in the event of a 

certain percentage-wise reduction in the total network capacity. Larger negative effects indicate a less 

robust network. This indicator conveys at what percentage of capacity reduction the decrease in 

network performance becomes unacceptable. 

The second category of measures is the measurement of the slopes of the relationships at some specific 

point. This was for example carried out in a study on freight resilience measures (Adams et al. 2012). 

While the application of this type of indicator can give an indication on the form of the curve and thus 

on the sensitivity of the link to different percentage of capacity reduction, it is not able to indicate the 

total effect of a link on the network robustness assessing a whole range of disruption scenarios.  

A third category of measures are ratios of performance values for different situations or scenarios. 

Example of the use of this category of measures can be found in studies on system resilience. 

Applications in these studies are performed by measuring the difference between system performance 

before and after disruption (Faturechi, R., & Miller‐Hooks 2014a, 2014b, Faturechi et al. 2014, Nair et 

al. 2010, Sullivan et al. 2010). Another variant of this measure is the ratio between the system 

performance after disruption and the worst-case degraded performance level (Orwin et al. 2004, Cox 

et al. 2011). 

Finally, the fourth category is able to capture the accumulated effect of the total range of capacity 

reduction on the network performance by measuring the area under the graph. In some reviewed 

studies this is done in a simple way by calculating the triangle between the network performance for a 

100% capacity reduction and the network performance for a base case scenario (Zhang et al. 2009, 

Zobel 2011) and in a more sophisticated way by taking the integral of the relationship (Faturechi and 

Miller-Hooks 2014a, Bruneau et al. 2003, Omer et al. 2011, Rose 2007, Vugrin et al. 2011, Cats and 

Jenelius 2016). By calculating the area as a triangle it is possible to measure the accumulated effect of 

the total range of capacity reductions but only under the assumption that the curve is linear. By 

taking the integral of the curves it is possible to measure the accumulated effect of the total range of 

capacity reductions without making an assumption on the form of the curve.  

 

The next section introduces two new robustness indicators. Both indicators require constructing a 

Network Degradation curve as explained in the following section. The Link Criticality indicator 



quantifies the accumulated effect of the whole range of capacity reduction on a given link on the 

network performance and the Degrading Rapidity indicator measures the relative change in link 

criticality by combining properties of the second and fourth abovementioned categories.  

 

3. Robustness Indicators 

A metric indicating link robustness should reflect the degradation in network performance induced 

by the entire range of possible capacity reductions.  

To this end, we propose an indicator of Link Criticality which quantifies the accumulated effect of the 

whole range of capacity reduction on a given link on the network performance. While this indicator 

captures the overall performance loss, it does not convey information on the relation between capacity 

reduction and network degradation. We therefore propose a second robustness indicator 

denominated Degrading Rapidity to indicate the relative criticality for low capacity reduction relative to 

high capacity reductions. Before turning into the formulation of these two novel indicators, we first 

present in the following sub-section how the network degradation curve, upon which both rely, is 

constructed. Unlike the network robustness indexes proposed by Sullivan et al (2010) to compare 

capacity reduction scenarios, the indicators proposed in this paper integrate information from the 

range of capacity reductions into a link-specific value that characterizes its impact and significance to 

network robustness.  

3.1 Network degradation curves 

A directed graph 𝐺(𝑆, 𝐸) represents the network with a set of nodes 𝑆 and the link set 𝐸 ⊆ 𝑆 × 𝑆 for 

direct connections between nodes. The capacity of each link 𝑒 ∈ 𝐸 under normal (i.e. undisrupted) 

conditions is denoted by 𝜅𝑒
0. Capacity is defined in terms of the number of units that can be 

transmitted within a given time unit (e.g. megabytes per seconds, kilowatts per minute, vehicles per 

hour). The (residual) capacity 𝜅𝑒(𝑥) on link 𝑒 during scenario 𝑥 can then be defined as: 

𝜅𝑒(𝑥) = 𝜅𝑒
0 ∙ (1 − 𝑥) ∀𝑒 ∈ 𝐸, ∀𝑥 ∈ [0,1] (1) 

Where 𝑥 is the percentage-wise reduction in capacity on link 𝑒. The range of capacity reduction is 

bounded by 𝑥 ∈ [0,1]. The lower bound of 𝑥 = 0 corresponds to the original full capacity situation 

whereas the upper bound value, 𝑥 = 1, implies a complete breakdown of the link, i.e. link closure. 

For each link, a curve is established by obtaining for each capacity reduction the corresponding 

network transmission costs. Every link capacity reduction case results in a certain network 

performance depending on network structure, demand and the mechanisms governing flow 

distribution. Let us denote by 𝑦(𝑥) the network transmission costs that are incurred under scenario 

𝑥. Depending on the context, costs can be expressed in terms of energy consumed or transmission 

times. The change in network transmission costs induced by a certain scenario, Δ𝑦(𝑥), are then 

calculated as the difference between the costs occurring under the disruption 𝑦(𝑥) and those in case 

of normal operations, 𝑦(0). 

Figure 1 illustrates possible network degradation curves for two links in a certain network by plotting 

the change in network transmission costs under various capacity reduction scenarios, ranging from 

normal operations to complete link failures. Under most circumstances, it is reasonable to assume 

that network transmission costs increase in the event of a capacity reduction on a network element 

since this implies a more binding constraint that is expected to result with an inferior solution. 

Hence, the network degradation curve is expected to increase monotonically with 𝑥 as the network 



performance remains unaffected or worsens for increasing capacity reductions. While the 

performance under normal conditions is the same for both links since it corresponds to the same 

scenario, the extent to which network performance deteriorates when each of the links breakdown 

may vary. Furthermore, the curve may take different forms (e.g. convex or concave as illustrated in 

Figure 1) depending on the extent to which the network deteriorates in response to the same capacity 

reduction when already subject to a partial disruption. Hence, the form of the curve contains 

information on how susceptible network performance is towards marginal increases in capacity 

reductions to different initial reductions (Cats and Jenelius 2016).   

 

Figure 1 Illustration of network degradation curves for two network links 

3.2 Link Criticality 

We propose a Link Criticality indicator that encompasses network degradation for any possible 

capacity reduction. The criticality of link 𝑒 is calculated as 

𝑐𝑒 = ∫ [𝑦𝑒(𝑥) − 𝑦𝑒(0)]
1

0
𝑑𝑥 = ∑ [𝑦𝑒(𝑥) − 𝑦𝑒(0)]𝑥∈𝑋  ∀𝑒 ∈ 𝐸  (2) 

This formulation corresponds graphically to the area under the network degradation curve for the 

respective link. The area is calculated as the integral over the function Δ𝑦(𝑥) or the summation of the 

those values observed for a given set of scenarios, 𝑋. Figure 2 illustrates how the link criticality 

indicator is obtained for the two links displayed in Figure 1. The area under the solid purple curve in 

Figure 1 is significantly larger than the one under the green stripped curve. If information concerning 

the probabilities concerning the exposure of different capacity reductions occurring on a certain link 

is available, the probabilities can be embedded into Eq. 2 by assigning weights for each corresponding 

scenario 𝑥. Network exposure to a certain disruption incorporates information on the failure 

probability as well as the duration of the disruption, see Cats et al. (2016). Link Criticality is defined 

within the context of a certain network as it measures the degradation of this network in the event of 

capacity reductions on a given link. The impact of the disruption depends on network structure and 

the availability of alternative routing.  
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Figure 2 Illustration of Link Criticality for two network links 

While the Link Criticality indicator provides an absolute measure of network robustness to capacity 

reductions, it does not capture the trend that the network degradation exercises. Different links may 

be equally critical but manifest strikingly different trends as was found by Cats and Jenelius (2016). 

For example, one link may be very vulnerable to even the slightest capacity reduction, inducing 

immediately adverse effects but then further reductions may not result in worsening consequences. 

Conversely, the network might be able to withstand capacity reductions on another link for low and 

medium capacity reductions but then beyond a certain tipping point result with severe implications. 

Decline in network performance may be proportional to the capacity reduction in other cases. We 

thus propose next an additional indicator that aims to distinguish these trends. 

3.3 Degrading Rapidity 

Degrading Rapidity measures the relative change in link criticality. In order to allow comparing different 

links when investigating the relative change, the network degradation curve is first scaled against the 

worse degradation: 

�̂�𝑒(𝑥) =
𝑦𝑒(𝑥)−𝑦𝑒(0)

𝑦𝑒(𝑥𝑒
𝑚𝑎𝑥)−𝑦𝑒(0)

    (3) 

𝑥𝑒
𝑚𝑎𝑥 = arg max𝑥{𝑦𝑒(𝑥) − 𝑦𝑒(0)}  (4) 

Under most circumstances 𝑥𝑒
𝑚𝑎𝑥 = 1. The Degrading Rapidity of link 𝑒 can now be calculated as 

follows: 

𝑟𝑒 = ∫ �̂�𝑒(𝑥)
1

0
𝑑𝑥 = ∑ �̂�𝑒(𝑥) ∀𝑒 ∈ 𝐸𝑥∈𝑋    (5) 

The indicator, 𝑟𝑒 ∈ [0,1], corresponds to the area under the scaled curve, or the summation over a 

discrete number of scenarios. The scaled curve for the same two links for which the curves were 

plotted in Figures 1 and 2 is presented in Figure 3. The area under the solid purple curve yield 𝑟𝑒 > 0.5 

implying a super-linear degradation trend where the same marginal decrease in link capacity leads to 

higher losses for low initial levels than for higher initial levels. In contrast, the link with the scaled 

curve displayed in striped green follows a sub-linear trend with 𝑟𝑒 < 0.5, implying that marginal 

increases in network transmission costs are greater when occurring under already reduced capacity 

conditions. 

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

N
et

w
o

rk
 t

ra
n

sm
is

si
o

n
 c

o
st

s,
 Δ
y 

Link capacity reduction, x  



 

Figure 3 Illustration of Link Degrading Rapidity for two network links 

4. Network Robustness Assessment Model 

We hereby describe the general process that is to be undertaken to perform the proposed robustness 

assessment (4.1), provide an introduction to the public transport network modelling context (4.2), 

after which we detail each of its steps for the case of analysing public transport systems (4.3-4.6).   

4.1 Assessment procedure and modelling approach 

The combination of Link Criticality and Degrading Rapidity allows quantifying the accumulated effect of 

capacity reductions as well as capturing the relative change in criticality (i.e. first momentum) of the 

scaled criticality to allow direct comparison among network links.  

Figure 4 presents the overall model framework. The base (i.e. undisrupted) network configuration 

and the flow to be assigned to the network are given as input to the model. The assessment procedure 

devised in this study consists of four components (highlighted in Figure 4), three of which compose 

the main loop which executes all the disruption scenarios as follows: 

(i) Network representation – the network used in each scenario is generated by modifying 

the basic network configuration based on the details of the disruption under 

consideration  

(ii) Flow distribution model – a model is used to distribute the flows over the network based 

on cost minimization principles  

(iii) Network performance indicator – the performance of the network is assessed by 

calculating network transmission costs 

This sequence of steps is repeated for each scenario. After all relevant scenarios – a full network-scan 

of capacity-reductions per link – have been performed, this loop terminates and the fourth post-

processing module takes place:  
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(iv) Robustness indicator – encompassing network performance under all capacity reductions 

into aggregate indicators which reflect the magnitude and trend of network robustness 

per link 

 

Figure 4 Robustness assessment modelling framework  

4.2 Modelling public transport networks 

The robustness assessment of link capacity reductions is applied to the analysis of public transport 

networks. Such an analysis can be performed as part of network design and project evaluation in the 

strategic planning phase or when considering capacity allocation and periodical timetables in the 

tactical planning stage. In contrast to many other networks, including car traffic networks, public 

transport operations involve a service network layer that is superimposed on the physical (typically 

road or rail) infrastructure layer. As an additional input, travel demand is given in the form of an 

origin-destination matrix with the corresponding number of trips per time interval. It is essential to 

model the notion of public transport lines in order to adequately capture the impact of capacity 

reductions on line performance and thereof on passengers flow distribution. The latter requires a 

behavioural model which consists of an initial step in which a choice-set comprising a limited number 

of attractive route alternatives is composed and thereafter choice probabilities are calculated. As 

passengers differ in their knowledge of the network and their travel preferences, a probabilistic route 

choice model is used to assign trips to the network based on trade-offs between path attributes. Since 

we are interested in a strategic network assessment, passengers are distribute over network the 

network in terms of lines and links without considering their time-dependency. Hence, the approach 

taken in this study is to perform a probabilistic frequency-based assignment model while explicitly 

modelling individual public transport lines. For more information on PTN representation and 

assignment model, the reader is referred to Gentile et al. (2016). Assignment outputs are then 

processed to calculate network performance indicators. This process is repeated for each capacity 

reduction scenario for a given link, after which the link robustness indicators can be derived. In the 

following, the sequence of steps undertaken in this process are detailed. 

4.3 Network Representation 

4.3.1 Public transport graph 
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The PTN is represented in two spaces commonly used in complex network theory. First, the physical 

PTN, i.e. road and rail infrastructure, is represented using L-space. Each station or stop is represented 

by a node and two nodes are connected if the corresponding stops are consecutive stops on at least 

one service line (Barthélemy, 2011), while removing duplicates caused by common corridors (Derrible 

& Kennedy, 2011). Link labels are the respective travel times. The L-space is used to calculate in-

vehicle travel times and model the consequences of disruptions and mitigation measures. Second, the 

PTN is represented in P-space which is instrumental in modelling service lines and their respective 

frequencies as well as passenger path choices and transfer possibilities. While nodes still correspond 

to stops, nodes are connected if there is at least one line serving both stops (Barthélemy, 2011). Link 

labels are the respective line frequencies. Note that in contrast to L-space,  the network represented in 

P-space is not spatial. The data on infrastructure and service networks are processed to generate an 

operational network representation that is then subject to a disruption scenario as described in the 

following sub-section.  

4.3.2 Disruption scenarios 

The effects of bi-directional link-based disruption scenarios are investigated in this study. Capacity 

reductions are conceived in this study in terms of speed reductions. Each link 𝑒 ∈ 𝐸 is assigned with a 

baseline mean speed 𝑣𝑒
0 under normal operations. Similarly to Eq. 2, the mean speed 𝑣𝑒 on link 𝑒 

during disruption scenario 𝑥 can then be described as 

𝑣𝑒(𝑥) = 𝑣𝑒
0 ∙ (1 − 𝑥)  (6) 

The lower bound of 𝑥 corresponds to normal operations (i.e. 𝑣𝑒(𝑥) = 𝑣𝑒
0) whereas the upper bound 

value implies a complete breakdown of the link (i.e. 𝑣𝑒(𝑥) = 0, the link is dysfunctional).  

4.4 Flow distribution model 

4.4.1 Route choice set generation 

A route choice set is generated in an initialization phase by performing a k-shortest path for each pair 

of nodes. The choice-set generation algorithm applies the following filtering rules: 

1. The number of transfers (i.e. number of links in P-space) may equal or exceed by one the 

minimum number of transfers  

2. Only paths without loops are retained in the route choice set 

3. Dominated paths i.e. paths that are not better than another alternative in the choice set in 

terms of the number of transfers, total in-vehicle time and total waiting time and are worse off 

with respect to at least one of these aspects, are removed from the choice-set 

This process results with a consideration choice-set 𝐾𝑖,𝑗 for passengers travelling between 𝑖 ∈ 𝑆 and 

𝑗 ∈ 𝑆 for each pair of stops in the network. Each path 𝑘 ∈ 𝐾𝑖,𝑗 is defined by a sequence of links 

𝑘 = (𝑒𝑘,1, 𝑒𝑘,2, … , 𝑒𝑘,|𝑘|). We let 𝑒 ∈ 𝑘 mean that link 𝑒 is part of the definition of path 𝑘. 

4.4.2 Passenger assignment 

Passenger demand is distributed over the network by applying a probabilistic route choice model. A 

static passenger assignment is performed by considering the generalized travel cost associated with 

each route. Since the robustness assessment performed in this study is concerned with planned 

capacity reductions, it is assumed that a-priori knowledge of network conditions is available. The 

generalized travel cost is composed of the in-vehicle time 𝑡𝑘
𝑡  , number of transfers 𝑛𝑘 and waiting time 



𝑡𝑘
𝑤. The generalized travel cost is conceived in terms of the utility 𝑣𝑘 of path 𝑘 with a random 

component 𝜀𝑘 and is calculated as follows: 

𝑣𝑘 = 𝑡𝑘
𝑡 + 𝛽𝑤 ∗ 𝑡𝑘

𝑤 + 𝛽𝑛 ∗ 𝑛𝑘 + 𝜀𝑘    ∀𝑘 ∈ 𝐾𝑖,𝑗;  ∀𝑖, 𝑗 ∈ 𝑆  (7) 

The passenger demand between origin 𝑖 and destination 𝑗 is distributed over the different routes in 

the route choice set by using a multinomial logit model, i.e. assuming that the random component is 

distributed Gumbel. The probability of choosing route 𝑘 when travelling between origin 𝑖 and 

destination 𝑗 is thus calculated as follows: 

𝑝𝑘 =
exp (𝑣𝑘)

∑ exp (𝑣𝑘)𝑘∈𝐾𝑖,𝑗

  ∀𝑘 ∈ 𝐾𝑖,𝑗;  ∀𝑖, 𝑗 ∈ 𝑆   (8) 

Finally, the passenger flow assigned to link 𝑒 is 

𝑞𝑒 = ∑ ∑ ∑ [𝜋𝑖𝑗 ∙ 𝑝𝑘 ∙ 𝛿𝑘,𝑒] 𝑘∈𝐾𝑖,𝑗𝑗∈𝑆𝑖∈𝑆  ∀𝑒 ∈ 𝐸   (9) 

Where 𝜋𝑖𝑗 is the passenger demand between origin 𝑖 and destination 𝑗 within the time period under 

consideration and 𝛿𝑘,𝑒 is a dummy that takes the value one if  𝑒 ∈ 𝑘 and zero otherwise. Correlations 

among route alternatives are not accounted for in the multinomial logit model, potentially leading to 

an overestimation of passenger flows on overlapping routes. This modelling drawback is partially 

counteracted by the consolidation of route alternatives with common lines or transfer stops in the 

route choice-set generation phase. 

4.5 Network performance 

Network performance is measured using Network Transmission Costs, 𝑦, defined as summation of 

experienced generalized travel costs, calculated as follows: 

𝑦 = ∑ ∑ ∑ [𝜋𝑖𝑗 ∙ 𝑝𝑘 ∙ 𝑣𝑘]𝑘∈𝐾𝑖,𝑗𝑗∈𝑆𝑖∈𝑆   (10) 

4.6 Robustness indicators 

The network performance value calculated by Eq. 10 can be obtained for each scenario to establish the 

network degrading curve. Eq. 2-5 can be then used for calculating Link Criticality and Degrading 

Rapidity indicators per link.  

 

5. Case Study: The Public Transport System of Amsterdam  

The assessment model described in the previous section and the two robustness measures proposed 

in Section 3 are applied to an urban public transport system: the metro and tram systems of 

Amsterdam, the Netherlands.  

 

5.1 Network description and experimental set-up 

The public transport system of the city of Amsterdam consists of tram, metro, bus and train services. 

The scope of the case study discussed in this section is limited to the urban rail-bound networks, 

metro and tram. The case study corresponds to the situation in 2020 when the North-South metro 

line is operational. The network consists of 4 metro lines and 14 tram lines. As shown in Figure 5, the 

case study network is dense in the city-centre characterized by the historical canal ring system with 

radial lines extending to the outer districts. The system includes 216 stops of which 195 are served by 



tramlines and 29 are served by metro lines. The total rail network length is 270 km, of which 190 km is 

used by the tram and 80 km is used by the metro. The average number of travellers on the urban rail-

bound public transport network during the afternoon peak period (16:00-18:00) is approximately 

107,000 passengers per hour.  

 

Figure 5 Metro (blue) and tram (red) lines in of the public transport system of the city of Amsterdam 

in 2020.   

The performance of the network was tested under capacity reductions on each single link in the 

public transport system of Amsterdam. Incremental steps of 10%, i.e. 𝑥 = {0.1,0.2, … ,1.0}, were 

applied. This scenario design resulted with 10 capacity reduction scenarios for each of the 246 bi-

directional network links, hence, a total of 2460 disruption scenarios. These scenarios were translated 

into modifications in the network representation step of the assessment procedure described in the 

previous section. Speed reductions were applied in partial capacity reduction scenarios, whereas 

partial lines were assumed to operate on the remaining functional sections in the scenarios that 

correspond to complete breakdowns (𝑥 = 1). In the event of the latter, parts of the network may be 

disconnected. The transmission cost associated with unsatisfied demand is assumed in this study to 

be equivalent to the longest delay experienced across the network (i.e. maximum delay over all origin-

destination pairs). Note that a disruption on a link is applied to both directions. In addition, a base 

case scenario of normal operations (𝑥 = 0) is used as a benchmark.  

The network with its 216 nodes (i.e. stops) was represented in two forms: (a) a physical 

infrastructure representation in L-space, and; (b) a service network representation in P-space. The 

nodes are linked by 492 directed links in L-space, whereas these nodes and linked by 6746 directed 

links in P-space. The initial step of the route choice-set generation, the network-specific initialization 

phase of the flow distribution model (see section 4.4.1 and Figure 4) is implemented in JAVA while all 

subsequent modelling steps – passenger assignment (4.4.2), network performance (4.5) and 

robustness indicators (4.6) - are executed in MATLAB. 

5.2 Results and analysis 

The application of the robustness measures introduced in the previous section results in a 

quantitative indication per link for criticality and degrading rapidity. Systems that operate close to 



capacity and have very limited redundancy as is the case for urban public transport systems are 

especially vulnerable to capacity reductions of links in the network as is illustrated in the following 

sections. 

 
5.3.1 Link Criticality 

Link Criticality expresses the accumulated effect of the whole range of capacity reductions on a link. 

The network degradation curves were first constructed for each link and then summarized to obtain 

information on link criticality. The Link Criticality indicator can thus be used to study in which 

geographical region in the network the consequences of link capacity reduction are worst, as 

displayed on the network map in Figure 6. The most critical links are clearly found on the high-

capacity branches stretching beyond the network core. These links are served by the metro system 

with the most critical link can be found in the South-East part of the metro network. Large passenger 

flows traverse these links and no alternative routes are available. In contrast, the network is robust to 

disruptions in the central high density parts of the network which have low consequences.  

 

Figure 6 Link Criticality indicator (10-100%) for the links in the Amsterdam urban rail bound public 
transport network (thicker and more saturated red links indicate higher values) 

As can be observed in Figure 6, Link Criticality values vary significantly among network links since 

the impact of disruptions depend on the number of passengers directly affected as well as the 



availability of alternative routes that passengers can use in case of disruptions. The average Link 

Criticality is 146 332 minutes of weighted total passenger travel time, or approximately 1.36 additional 

minutes per traveller (an increase of 5.6% compared to the undisrupted case) . The distribution of the 

Link Criticality indicator for the Amsterdam PT network can be seen in Figure 7. While most Link 

Criticality values do not exceed 5 minutes of extra generalized travel time per traveller, the value of 

the most critical link exceeds 1 million minutes, or 17 minutes per traveller.     

 

Figure 7 Link criticality histogram 

The results of the application of the Link Criticality indicator on the Amsterdam public transport 

network shows that the indicator is able to express the accumulated effect of the whole range of 

capacity reductions on a link rather than merely a full breakdown. An evaluation of link criticality 

based on full breakdown only was found to result with distinctively different results because of the 

abrupt effect associated with a full breakdown as opposed to partial capacity reductions (more on 

this in the next section). Furthermore, the indicator is not purely based on total traversing passenger 

flows, but also the number and quality of the alternative routes. The passenger flows in the centre of 

the network are quite high but the consequences are mitigated by the high quality alternatives. These 

results are in line with the analysis of network preparedness to disruptions for a wide range of generic 

network structures (Zhang et al. 2015). The real-world case study of Amsterdam offers a significantly 

larger and more complex network which includes a combination of elements from diverse network 

structure prototypes: grid (within the core), radial (leading to the core), diverging tails (in the 

outskirts) and random features. Arguably, real-world networks cannot be represented as direct 

extrapolation of generic elements and exhibit idiosyncratic demand distribution patterns. The latter 

were often neglected in previous studies which were limited to a topological perspective (e.g. Derrible 

and Kennedy 2010, Zhang et al. 2015). Consequently,  the spatial distribution of link criticality is a 

signature of network utilization whereas the overall link criticality distribution exercises general 

patterns characterized by a long right tail.   

5.3.2 Degradation Rapidity   



The Degrading Rapidity expresses the relative change in link criticality, i.e., it expresses the form of 

the curves and thus the relative criticality for minor capacity reductions relative to major capacity 

reductions. The results of the application of the Degrading Rapidity measure for the Amsterdam 

public transport network are visualized in Figure 8. As can be clearly observed, network degradation 

measured in terms of change in network transmission costs, worsens comparably rapidly for the most 

central high density parts of the network. This is especially noticeable for links for which the new 

North-South metro line offers an attractive alternative. In contrast, links outside of these areas are 

characterized by limited or no alternative routes which cause a severe degradation in network 

performance in case of a full breakdown and thus comparably low degradation rate when compared 

against the corresponding worst scenario. When determining the most important links for network 

robustness, strikingly different results are attained when using the Link Criticality and Degradation 

Rapidity indicators (contrast Figures 6 and 8). Previous research found that the most detrimental 

links for network robustness vary depending on which performance indicator – average travel time, 

share of disconnected demand or share of delayed passengers – was used (Cats 2016). The findings of 

this study provide therefore further support to the need to develop a multifaceted and multi-criteria 

approach in robustness assessment.  

 



Figure 8 Degrading Rapidity indicator (10-100%) for  the links in the Amsterdam urban rail bound 
public transport network (Thicker and more saturated green links indicate a higher score) 

The average Degradation Rapidity is 0.26 and the standard deviation is 0.18, resulting with most links 

following a sub-linear relation (𝑟𝑒 < 0.5) where marginal increased in network transmission costs are 

greater when occurring under already reduced capacity conditions. As can be seen in Figure 9, most 

links have a low degrading rapidity score between 0.1 and 0.25 indicating that the degrading 

rapidness to full link breakdown network performance is relatively low.  

 

Figure 9 Degrading Rapidity histogram 

Figure 10 shows capacity reduction vs. normalized change in generalized travel cost curves for each 

link in the case study network. It can be observed that the low Degradation Rapidity values reported 

are partially due to the drastic and abrupt degradation in network performance in the transition from 

a 90% reduction in link capacity to a full breakdown. This 10% reduction results with a qualitatively 

different scenario which leads to a disproportional increase in network transmission costs which 

amounts to 10 times greater consequences than induced by the previous increment. The vast majority 

of the curves exercise a convex-like shape, again indicating that the degrading rapidness to full link 

breakdown network performance is relatively low. One noticeable exception is a central link which in 

the event of a small reduction in capacity becomes obsolete due to superior travel alternatives, 

resulting with a degradation rapidity value close to one. 



 

Figure 10 Scaled network degradation curve 

The results of the application of the Degrading Rapidity indicator for the Amsterdam public network 

shows that the indicator is able to express the relative criticality when encountering minor capacity 

reductions as compared to major capacity reductions on the same link. It clearly shows that it is able 

to express the mitigating effect of quality and number of route alternatives. The indicator can thus be 

instrumental in scheduling of planned local capacity reductions and prioritize mitigation measures to 

reduce the effect of unplanned local capacity reductions. While previous research has investigated the 

optimal scheduling of maintenance works, especially in the context of railway operations (e.g. Budai 

et al. 2006), to the best of the authors knowledge, this is the first research to examine potential trade-

offs between the duration and extent of planned capacity reductions. For example, the convex 

relation indicates that it is advisable to plan for long and small rather than short and large capacity 

reductions.  

6. Conclusion 

Network robustness depends on its ability to withstand a range of disruptions ranging from small 

disturbances to the complete failure of some of its elements. The results of this study point to the 

importance of considering link criticality based on the network-wide flow distribution resulting from 

local reductions in link transmission capacity. As demonstrated in the case study of the urban rail-

bound network of Amsterdam, link critically can be used to identify for which geographical region in 

the network the consequences of link capacity reduction are most severe, i.e., indicating for which 

geographical regions the robustness with respect to capacity reduction is lowest.  

 

As a complementary to link criticality, the degradation rapidity indicator is used to quantify the 

relative sensitivity of minor capacity reductions on a link relative to major capacity reductions, where 

a higher degradation rapidity indicates that a small capacity reduction can quickly escalate into a full 

link breakdown. Thus parts of the network with a high degradation rapidity can be considered as less 

robust with respect to small capacity reductions. Certain disturbances which might be considered 

minor in terms of the link capacity reduction they entail, induce a disproportionally severe reductions 

in network performance. One can thus not speak about the 'robustness' of the metro and tram public 

transport systems of the city of Amsterdam as a whole, but rather that multiple robustness indicators, 



studying different properties, need to be used to get a more complete understanding of the relatively 

vulnerable parts of the network. The robustness indicators introduced in this paper contribute to 

conceptualizing, measuring and mapping a more complete overview of the robustness of networks. 

 

PTNs are subject to many temporary changes due to large-scale events, maintenance and construction 

works. The results for the Amsterdam case study suggest that the impacts of local capacity reductions 

on global network performance varies greatly among network links. The distribution of link 

criticality indicates that while many links have a relatively limited consequences and the average time 

loss per passenger is 1.36 min, few highly critical links inflict a severe loss of up to 17 min per 

passenger which implies a significant economic loss. While the high-capacity branches stretching 

beyond the network core were found to be the most critical links in the network, links situated in the 

central and dense part of the network degrade most rapidly in response to partial capacity reductions. 

This analysis can thus support the prioritization of measures aimed at improved network robustness 

as well as infrastructure and capacity management.  

 

The results of this study can support network planners in strategic, tactical and real-time operation 

decisions. At the strategic level, planners can identify the most critical links in their network and 

consider potential investments in increasing the capacity of these links or of links that offer 

alternative routing possibilities (Cats and Jenelius 2015). Decisions made by network managers at the 

tactical level such as planning construction and maintenance works can be based on the vulnerability 

curve. Our findings suggest that from network performance perspective, small capacity reductions 

that last a long period of time should be preferred over larger reductions over a short period of time. 

Network managers can also prioritize where to install switches that allow for rerouting by examining 

their benefits to network robustness. Real-time resource allocation in response to disruptions should 

prioritize services where the marginal contribution of these measures will be the largest. Case study 

results indicate that this is not only link-dependent but also depends on the capacity reduction level 

where for most links network performance degrades more rapidly at higher levels of link capacity 

reductions. The extent to which the findings of this study depend on network structure and demand 

distribution remain unknown. By applying the proposed method for various network and demand 

patterns, future research may examine the extent to which the results can be transferred to other 

contexts.  

 

The robustness indicators proposed in this study can be applied in a range of contexts. These includes 

transport networks such as shipping lines and road traffic, as well as power grid, water supply and 

telecommunication networks. More generally, the indicators can be applied to any labelled graph. 

Both indicators require information on the values of a certain metric of network performance under a 

range of capacity reduction in link transmission capabilities. These values can be either attained by 

means of analysing empirical data or model outputs. The latter requires a network model that 

describes how flow is distributed over the network in the event of a disruption.    

The analysis performed in this study is limited to single-link disruptions. The method as well as the 

tool used in the application can be directly used to analyse disruptions that imply node capacity 

reductions. In the context of rail transport this could be caused by platform blockage. Furthermore, 

the impacts of disruptions on multiple network links can be modelled and analysed using the 

proposed indicators. This can be especially relevant for connected links that are prone to be disrupted 

simultaneously, such as in the case of a sequence of rail tracks subject to maintenance works. Another 

direction for further research is the inclusion of the disruption duration. The relation between 

disruption duration and its impact may vary among network elements and could be established by 

adding it as a third dimension to the network degradation curve presented in this paper. Finally, 



another direction for future work is a structured and detailed analysis on the relation between 

capacity reduction in public transport networks and reliability and safety aspects thereof.  
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