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Abstract

Federated learning stands as an approach to train
machine learning models on data residing at mul-
tiple clients, but where data must remain private to
the client it belongs to. Despite its promise, feder-
ated learning faces significant challenges, particu-
larly when dealing with non-IID and non-stationary
data. A model trained on non-stationary data can
be subject to concept shift, where the data used for
training faces a sudden change of concept, leading
to a large performance degradation when classify-
ing data under the new concept. This research fo-
cuses on comparing the performance of federated
and centralized models under such conditions. Our
objective is to evaluate the extent to which feder-
ated models are more affected by concept shift than
their centralized counterparts. Through a series of
experiments involving image (CIFAR-10) and tabu-
lar data (2-dimensional, linearly separable, binary-
classification), we demonstrate that while federated
models can achieve performances close to central-
ized models, they exhibit greater sensitivity to data
complexity and distribution shifts. Our findings
suggest that, despite centralized models being bet-
ter than federated ones, the gain in performance
from gathering data in one place might not out-
weigh the privacy concerns. Furthermore, we also
find that the accuracy under concept shift is depen-
dent on the performance on original data.

1 Introduction to Federated Learning &
Concept Shift

Federated learning [1] is a machine learning framework in
which the data aimed to train on is distributed across mul-
tiple clients (devices). It has predominantly seen use in the
domains of IoT devices and edge computing, where the data
that is generated can be of great use, but must be kept de-
centralized due to privacy concerns. The development and
improvement of technology for such devices facilitates the
implementation of federated learning, with training done on
the device that is generating the data or very close to it. More
recently, it has also been used in other domains where the data
must also be kept private, such as the medical domain [2]. In
such domains where correctly classifying data is crucial or the
number of devices is high, federated learning models are pre-
sented with disadvantages comparing to centralized learning
techniques. The framework encounters problems like [3]1[4]:

* the communication cost is high;

* not all devices are available to train at the same time;
* the data is usually heterogeneous across clients;

* the data residing at the clients is non-stationary.

The last mentioned problem is often not considered in the de-
velopment of federated learning algorithms, but is commonly
encountered in practical applications. If the data a model is
trained on is non-stationary, a drift in concept over time in the

data distribution will degrade the performance of the model.
Research done in this area mostly considers the input as a
stream and tries to develop an algorithm that can adapt in time
to what is known as “concept drift” - the data a model was
trained on has a drift in its distribution, and thus the model’s
accuracy on this new data will be degraded, until it adapts to
the drift [5]. Concept drift refers to a change in the statisti-
cal properties of the input data distribution over time, often
necessitating continuous model adaptation to maintain accu-
racy. In the domain of federated learning, concept drift affects
the training process through clients receiving data belonging
to one or more new concepts.

In contrast, we introduce the notion of “concept shift”.
While concept drift is a problem that involves a gradual
change in the data distribution, concept shift refers to a sce-
nario where a model is trained on its available data and then
deployed in an environment where the data distribution sud-
denly shifts to a new, unseen concept. Whereas for concept
drift the model is tasked to adapt to the incoming concept,
with concept shift, the model is effectively frozen after the
training process and is tasked with predicting a set of data
belonging to a new concept.

This opens up the possibility to compare the performance
between federated models and centralized models under con-
cept shift. Federated models face two additional layers of
complexity on top of centralized ones, that of private, decen-
tralized data and that of non-IID data between the clients. The
issue of non-IID data in federated models manifests in two
ways: either data at different clients belong to different distri-
butions, or all client data follow the same distribution but are
heterogeneous in label distribution and client sample quantity
(including the amount of data points per label) and in our re-
search we will refer to non-1ID data as being the latter case.
These complexities motivate the need to compare federated
and centralized models under concept shift, as they may cause
federated models to perform worse than centralized models.

In this research, we aim to find out how much more than
centralized models are federated learning models affected by
concept shift. The research question tackled is the following:

Are federated models affected by concept shift more than
centralized models?

This question is worth answering as we may find out that
centralized models are better at learning than federated ones,
and if the discrepancy in performance is high, this might sig-
nal benefits in advocating for a centralized approach. We
aim to explore this question by experimenting with two types
of data, image and tabular, and two classification problems:
binary-classification for tabular data and multi-classification
for image data. We also compare the performances of the
models when training data belongs to a single concept, as op-
posed to having multiple concepts in the train set. To the best
of our knowledge, the question proposed has not been tackled
before. As such, we want to assess whether there are any con-
siderable discrepancies even in simpler settings, without the
added complexity of multiple existing concepts during train-
ing.

We start by presenting background information and by for-
mally describing the problem in Section 2. The idea in in-



ducing concept shift for image and tabular data is described
in Section 3. The setup and results of the experiments are
shown in Section 4. In Section 5 we discuss choices for our
experiments, other approaches, and limitations. Section 6 is
comprised of the implications for responsible research. Fi-
nally, we conclude and provide guidance for future work in
Section 7.

2 Background and Problem Formulation

2.1 Formal Problem Description

Shift in data is caused by many factors that change over time.
Such factors can include rising trends, demographic biases,
or change in users’ behavior [3]. For example, the term
”blockchain” saw a significant increase in usage and differ-
ent search results before and after the rise of cryptocurrency
in mainstream media.

Formally, given a set of samples from an unknown proba-
bility distribution P(X, y), where X is a feature vector and y is
its label, a shift in the distribution corresponds to any change
in the joint probability P(x, y). The joint probability can be
factored in two ways: P(x, y) = P(x)P(y|x) = P(y)P(x|y).
By distinguishing from the cases where P(y|x) and P(x|y)
are invariant, a shift corresponds to a change in one of the
four probability distributions:

e P(x) - representing a change in the input distribution,
e.g. domain generalization problems;

* P(y) - representing a change in the label distribution,
e.g. class imbalance problems;

* P(y|x) - representing a change in the labels of data, al-
tering the true boundary of the model;

» P(x|y) - representing a change in the features of data
specific to the label.

In this research we focus only on shift in P(x) and in P(y|x).
A shift in the posterior probability P(y|x) is also termed as
real shift, as it alters the true boundary of the classification
problem. On the other hand, a shift in the marginal probabil-
ity P(x) is termed as virtual shift, as only the input features
are affected by the shift, but the underlying relation between
them and their labels stays the same.

Concept drift can be characterized by many features such
as predictability, recurrence, synchronism, as discussed in
[6]. However, most of them can only be applied in the case
of concept drift, and cannot be used as well for concept shift.
For concept shift, only 2 characteristics can always be ana-
lyzed: form and severity. The form feature is represented by
the probability distribution that is affected, for which we con-
sider P(x) and P(y|x). The severity feature describes how
different the new concept is from the previous one and is di-
rectly proportional to the degradation in accuracy.

2.2 Background

In the field of both centralized and federated machine learn-
ing, concept drift is a critical issue that impacts the perfor-
mance and reliability of models deployed in dynamic envi-
ronments. This phenomenon is well-studied in the context
of data streams, where algorithms are designed to detect and
adapt to these changes [71[8]1[9].

Research into federated learning has predominantly fo-
cused on addressing the problem of concept drift in streaming
data, where the model continuously receives new data, pos-
sibly under a different concept. Several studies have high-
lighted the adverse effects of concept drift on model per-
formance. For instance, Gama et al. (2014) [10] provide a
comprehensive review of concept drift detection and adapta-
tion techniques, emphasizing the need for models to be ro-
bust against such changes. Similarly, the work by Ditzler
et al. (2015) [11] explores various strategies for learning in
non-stationary environments, proposing methods to maintain
model accuracy over time.

However, the problem of concept shift is not much dis-
cussed in the domain of federated learning. Kohli et al.
(2021) perform a wide range of experimentation in a cen-
tralized environment regarding the significant performance
degradation caused by distribution shifts, “where the train-
ing distribution differs from the test distribution” [12]. In
their research, Kohli et al. present 2 branches of the prob-
lems caused by out-of-distribution data in the form of concept
shift: domain generalization, which affects the input distribu-
tion, and class imbalance, which affects the label distribu-
tion, and they also present hybrid settings. They experiment
on many datasets spanning the domains of imagery, text min-
ing, tabular data, and even code completion, alongside much
discussion of the problems mentioned above. Their results
have shown that tests on out-of-distribution data can cause
up to a 22% decrease in accuracy, compared to tests on in-
distribution data.

As much as the settings used for concept drift adaptation
may reflect the situation during training, there also comes
the time where a model must actually predict data and that
is where a sudden concept shift may take place. Federated
learning introduces unique challenges due to its decentralized
training process and the non-IID nature of client data, mak-
ing it disadvantaged to centralized learning, which does not
present these issues. Thus, we aim to find out how much these
disadvantages affect performance of federated models under
concept shift, by comparing them to a centralized model.

3 Concept Shift Simulation

To answer the question of performance comparison between
federated and centralized learning techniques, we propose the
following methodology. Firstly, the problem of concept drift
is explored. As there is not much research done into con-
cept shift, the different forms for this problem must be ex-
tracted from the problem of concept drift, and this was pre-
sented in our problem formalization. Secondly, research is
done to identify how a shift can be induced for image and
tabular data.

To simulate real shift (P(y|x)), we use a binary-
classification, linearly separable problem, which has data in
the form of 2-dimensional data points, represented in a tabu-
lar manner. The hyperplane acting as boundary between the
two classes, in this case a line, can be rotated around its cen-
ter to induce real shift. To visualize this, Figure 1 shows data
points corresponding to the original dataset of such a prob-
lem. The line aiming to separate the two classes represents
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Figure 2: Rotated dataset and boundary by 10°

the boundary as was determined by a Support Vector Machine
(SVM). In Figure 2, the previously found boundary is rotated
around its center by 10° counterclockwise in order to induce
the shift. The severity of this shift can be described by the
degree of the rotation performed, with greater rotations in-
ducing more severe shifts.

Virtual domain shift (P(x)) is simulated through the ap-
plication of composition of transforms on image data. By
applying transforms, we can alter the features of the input
data without affecting the label. The severity feature here is
related to the divergence the shifted data distribution has to
the original data distribution, as well as through the cumu-
lative variance explained by the principal components of the
two distributions. The severity can also be observed through
the visualization of the effects of transforms on an image,
as shown in Figure 3. Figure 3a depicts the original image,
Figure 3b shows a shift through increased brightness, con-
trast, and through grayscaling of the image. Lastly, Figure 3¢
presents a more severe shift by also including the addition of
Gaussian noise in the composition of transforms used for the
shift in Figure 3b.

(b) Shift

(a) Original (c) More severe shift

Figure 3: An image before and after transforms

4 Experimental Setup and Results

For reproducibility purposes, each subsection discussing a
different experiment will contain a paragraph with the spe-
cific parameters used to obtain the results. As a general re-
mark, the core of the experiments was written making use of
the PyTorch framework [13]. The federated models are using
the Federated Averaging algorithm (FedAvg) [1] as it is suit-
able for the given tasks (further argued in Section 5). Data be-
ing distributed in a non-IID fashion is done through the usage
of a Dirichlet split, with a Beta factor of 0.5. The Beta fac-
tor controls the distribution spread amongst the clients, with
higher values (e.g. 1) making the spread of samples for each
class between clients more even, whereas lower values (e.g.
0.1) cause a higher class imbalance. On its own, the Dirich-
let split may be considered as inducing a shift in P(y), as it
causes class imbalance. Since we do not explore this type of
shift, we choose to introduce a moderate level of heterogene-
ity amongst clients’ class sample size to still take into account
the issue of non-IID data in federated learning.

4.1 Tabular Data

For the tabular data, an artificial 2-dimensional dataset is
generated using River!, a framework that produces linearly-
separable, binary-classification problems following the paper
of Hulten et. al (2001) [14]. However, River does not provide
the hyperplane acting as boundary between the two classes,
which is needed to induce real shift as explained in Section
3. Thus, an SVM is used that extracts the hyperplane sepa-
rating the two classes®. To induce real shift, the hyperplane
is rotated around its center incrementally by 10° until 90°,
where all models achieve an accuracy close to 50%. Lastly,
to increase problem difficulty, we add two and five additional
noisy features, with values sampled from a Gaussian distri-
bution (mean=0, std=1). The values are then normalized to
[0, 1], since the values of the two features that are relevant to
the class label are generated by River in this interval. These
noisy features are added only with the purpose of increas-
ing the complexity of the problem and do not affect the class
boundary of the generated problem.

The problem is explored with 30, 100, and 200 samples
in total. To compare performances we test the models on
2 x 10° samples. The choice for 30 samples is to simulate
a low-sample size environment for learning. This also show-

"Link to River framework.

Following this approach also implies that a number of data
points will be incorrectly classified by the SVM. Fortunately, this
number is significantly smaller than the total amount of data points
and barely affects the overall performance.


https://riverml.xyz/0.21.1/api/datasets/synth/Hyperplane/
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Figure 4: Accuracy with 30 training samples, 0, 2, and 5 noisy features

cases the differences between the models’ learning capabili-
ties. Secondly, we use 100 training samples to show their in-
creased performance with a more populated dataset, although
still allowing for some discrepancies in performance. Then,
we test the models when having 200 training samples and
five noisy features, to show how given enough samples, all
models can learn the classification problem well. The prob-
lem is not explored with any more samples: the performances
are related to the amount of training samples; the number
of training samples required to correctly learn the problem
grows as the number of features, be they redundant or not,
also increases. Empirically, it was also observed that espe-
cially the non-IID model needs more training data in order
to achieve a similar accuracy to the centralized and IID feder-
ated ones, meaning that the trend will be the same: increasing
the number of data points will improve the performance of the
models until they manage to have converge at a certain point,
and adding noisy features will degrade the performance ac-
cordingly, the first noticeably affected being the non-IID fed-
erated model. A proof of convergence is not provided, how-
ever convergence is assumed through the performance when
testing, having the three models trained on 10* samples. The
observed accuracy on all models was 96% =+ 2.

Each model is trained with an MLP with one hidden layer
of 1000 nodes. The Adam optimizer is used with a learning
rate of 1073, The centralized model is trained for 50 epochs.
The federated models are trained for 20 rounds, have data
split between 10 clients, and 2 randomly chosen clients are
trained each round. Each client trains its own copy of the
global model for 5 epochs. To run the experiments, each
model was trained 5 times, and an average of their perfor-
mances was recorded. This was done due to the inconsis-
tencies in accuracy for the non-IID federated model caused
by the Dirichlet split, as well as the model being inherently
stochastic in the initialization stage. Training is done solely
on non-rotated data. The original datasets are obtained by us-
ing seed two when running the hyperplane generator and by
providing the number of data points to generate.

Figure 4 shows how a small number of data points affects
the learning of the three models. As it is empirically ob-
served from the subplots, the non-IID federated model per-
forms worse than the other two. Although this is not by much
in the case of 0 and 2 noisy features, when 5 noisy features
are introduced, a significant difference in performances can
be seen, of 10% between the non-IID model and centralized
model. In this case, the IID federated model is also more af-

fected by the noise than the centralized model, although it still
achieves noticeably higher accuracies than its non-I1ID coun-
terpart. This large discrepancy between the models is due to
the small number of data points. Nevertheless, as they are
further tested on increasingly rotated data, the discrepancy
between the models decreases, until it converges for all close
to 50% accuracy.

In Figure 5, the number of data points is increased to 100.
For 0 and 2 noisy features, the difference between perfor-
mances shrinks. The accuracy of all three models is in-
creased compared to the previous settings, although the non-
IID model still underperforms in contrast to the other two
models. Adding 5 noisy features still affects the non-1ID
model very much. On the other hand, the IID model is now
also not at all affected by the noisy features, indicating that it
is more capable of differentiating the redundant features than
the non-IID model.

One aspect worth noting is presented in Figure 5b, where
the initial performance is almost the same for all three mod-
els, but the non-IID model performs slightly worse upon ro-
tating the boundary. The issue causing this performance dif-
ference is related to the boundary the model is predicting.
The boundary found may differ from the true one and can
lead either to increased accuracy upon first few rotations, or
to decreased accuracy overall. For example, considering the
true boundary is the one in Figure 1, the former case would
take place if the predicted boundary is closer to the boundary
in Figure 2, rather than the true one. The latter case would
take place if the boundary found is rotated in a clockwise di-
rection, relative to the true one.

With 200 samples, there are already enough data points
such that each model can easily learn the classification, even
with noise. Furthermore, the problem of finding a boundary
close to the true one is also much diminished now. Figure 6
shows the accuracy of all three models with 200 training sam-
ples and 5 noisy features. The discrepancy between the per-
formance of the non-1ID federated model and the other two is
lower now, only 5%. The IID federated and centralized mod-
els achieve an almost identical initial accuracy and continue
to have such a performance for the rotations as well. Even
though the non-IID model starts with a lower accuracy, the
performance over rotations quickly catches up to the other
two models’ accuracy.



Average Accuracy over Rotation Degrees with 100 Training Samples on 200k Test Samples Average Accuracy over Rotation Degrees with 100 Training Samples on 200k Test Samples, 2 Redundant Features Average Accura

Rotation Degrees

(a) 0 noisy features

(b) 2 noisy features

Rotation Degrees

(c) 5 noisy features

Figure 5: Accuracy with 100 training samples, 0, 2, and 5 noisy features

Average Accuracy over Rotation Degrees with 200 Training Samples on 200k Test Samples, 5 Redundant Features

- Centralized Model
1D Model
0o - Non-ID Model

a0 60 80
Rotation Degrees

Figure 6: Accuracy with 200 training samples, 5 noisy features

4.2 Image Data

To explore domain shift, we make use of the CIFAR-10
dataset [15], as it is provided by the PyTorch framework.
We evaluate performances under concept shift with both only
original training data and when 20% of the clients have trans-
formed, in-distribution data. In the latter approach, the cen-
tralized model will have the same transformed data as the
non-IID federated model had. The IID federated model will
also have 20% of the clients with transformed data, however
this data might be different than for the other two. We con-
sider this transformed data to be in-distribution, rather than
being out-of-distribution and representing a shift of concept
compared to the original data.

We induce domain shift by applying transforms on the test
data, such as color jitter, full image grayscaling, horizontal
flips, Gaussian blur, and Gaussian noise. We perform five
different experiments regarding the transforms applied, and
we present them in Table 1. In our first experiment ("None”),
no transforms are applied to the training set. In our second
experiment, “Train”, we present transforms we consider to
generate in-distribution data and are comprised of random im-
age grayscaling, taking place with a 50% chance, and color
jitter, with a brightness parameter of 0.5 and a contrast pa-
rameter of 0.4. A brightness/contrast parameter of n repre-
sents a change in the brightness/contrast of the image by a
factor chosen uniformly in [max(0,1 — n),1 + n]. For ex-
ample, a brightness factor of 0.5 yields an image that is half
as bright as the original, and the same goes for contrast. The
third experiment ("Aggressive”) is comprised of full image
grayscaling (100% chance), more aggressive color jitter, with
a brightness parameter of 1 and a contrast parameter of 0.9,
and random horizontal flips taking place with a 50% chance.
In experiment four, we add the Gaussian blur transform to the

composition of ”Aggressive” transforms, with the kernel be-
ing 3 pixels wide and high, and the standard deviation being
chosen uniformly in [0.1,2]. Lastly, in experiment five we
add a Gaussian noise transform (mean = 0, std = 0.1) to the
composition of ”Aggressive” transforms.

Such transforms are commonly used in data augmentation
techniques [16] to create data coming from a distribution sim-
ilar to the original one. There is no precise measure to deter-
mine whether transformed data represents an augment or a
concept shift from the original. However, some transforms
produce distributions closer to the original, while more ag-
gressive transforms create distributions that diverge more sig-
nificantly. For our purposes, we consider the composition of
transforms that minimally diverges from the original distribu-
tion as generating in-distribution data. Conversely, composi-
tions of more aggressive transforms are assumed to cause a
concept shift, resulting in out-of-distribution data.

However, rather than discussing the benefits of data aug-
mentation, we are trying to find out how well the models can
also learn the features from their two clients’ augmented data,
as we expect the centralized model to do better. We do this
to simulate a situation where the new concept has features
in common with parts of the training data, and the models
actually benefit from having clients with the “Train” trans-
formed data, even though the train and test sets differ. For
example, when testing on the new concept represented by
the ”Aggressive” transform, common features are provided
by the images that are grayscaled during the Train” trans-
form. Furthermore, the chosen intervals for the brightness
([0.5,1.5]) and contrast ([0.6, 1.4]) factors are both subsets of
the intervals used for the ”Aggressive” transforms ([0, 2] for
brightness and [0.1, 1.9] for contrast).

To back up our previous assumptions, in Table 1 we present
the Jensen-Shannon (JS) divergence [17] between the feature
distributions of the transformed and original data. To ex-
tract the features, we use a ResNet-50 [18] with pre-trained
weights, as is provided by PyTorch. As stated before, the
”Train” transform is used in the case of 20% clients with al-
tered data. It produces data closest to the original distribution,
with a JS divergence of 0.06, and its purpose is to prepare the
models for the concept shift. The "Aggressive” transforms
and its blur and noise counterparts are used to test the perfor-
mance of the models under concept shift. The ”Aggressive”
transform has a larger divergence to the original data, with
a JS divergence of 0.14. The addition of the Gaussian blur
transform further increases this divergence to 0.17, while the



addition of the Gaussian noise transform shows a 0.19 diver-
gence.

Another measure we look at is the dissimilarity in the cu-
mulative variance explained of the principal components of
the original and transformed data. In Table 1 we denote ”C
m’” as the cumulative variance explained for the first m com-
ponents, and we calculate this value for each of the first three,
10%, and 100" components. We do this by applying Principal
Component Analysis on the training dataset (after applying
transforms on it), and then we calculate the cumulative sum
for each of these component sets. The most notable change
is observed in the first principal component. While there is
a 0.13 increase in the captured variance of the first compo-
nent in the “Train” transformed data compared to the origi-
nal data, the first component of the ”Aggressive” transformed
data already accounts for 0.36 more variance than that of the
original data. An increase in the first component means that
now a larger part of the variance can be explained by a single
component. We also base our assumptions on this increase
that the “Train” transform does not present a new concept,
whereas the ”Aggressive” transforms do.

Continuing, adding Gaussian blur to the transforms, the
first component accounts for 0.05 more variance than that of
the ”Aggressive” transform did. When adding Gaussian noise
to the transforms, the variance becomes more distributed
throughout the components, although there still is a single
component accounting for a large part of the variance. This
variance distribution can be seen as for the “Train” trans-
form, the variance starts at 0.42 for the first component and
reaches 0.92 with 100 components, while for the ”Aggressive
& Noise” transform, it starts higher at 0.60 but only reaches
0.91 with 100 components. However, with the ”Aggressive &
Noise” transform, the JS divergence is again increased. We
expect this to lead to an even lower performance when test-
ing on this transform, compared to the other two aggressive
transforms.

Each model is trained with a ResNet-50° [18] with pre-
trained weights, as provided by the PyTorch framework. The
fully-connected layers are replaced with a new classifier with
two other fully-connected layers with 1024, respectively 512
nodes. The Adam optimizer is used with a learning rate of
2 x 1075, The centralized model is trained for 40 epochs.
The federated models are trained for 20 rounds, have data
split between 10 clients, and all clients are selected for train-
ing each round, as the classification task is difficult. Training
with all clients at once also stabilizes very much the training
process, ensuring that different runs only have insignificant
variations. Each client trains its local model for five epochs.
These numbers of epochs and rounds were chosen because
around these training iterations, test accuracy gains became
more erratic, and train accuracy hardly saw an increase any-
more. The models are then tested in the case of only original
data and of eight clients with original data, two clients with
“Train” transformed data.

3By using a ResNet, after applying transforms and converting
images to tensors for training, we also normalize values to the Ima-
geNet mean and standard deviation values and scale the train and test
images to 224 x 224, in order to increase classification performance.

We now discuss the accuracy of the models in each of these
settings. In Table 2 it can be seen that the centralized model
with altered data performs better than all other models in all
settings except in the case of original test data, although the
difference is only 0.2%. There is a clear difference in the
performance achieved by the centralized model and the ones
achieved by the federated models. As expected, the feder-
ated models are disadvantaged comparing to the centralized
model, with the non-IID model being somewhat weaker than
its IID counterpart but still achieving almost the same ac-
curacy. We can also observe that when testing against the
”Aggressive” transformed data, the gap between the central-
ized model with transformed clients and any of the 2 feder-
ated models is largest. This goes to show that the centralized
model can better make use of the altered data than the fed-
erated models, which backs our previous motif for using the
“Train” transform on parts of the training data.

When testing on ”Aggressive & Blur” or "Aggressive &
Noise”, even though the blur and noise transforms do not pro-
vide a much larger increase in divergence, the impact on accu-
racy can clearly be seen. As these shifts increase in severity,
we also observe that the benefits of the transforms on the two
clients’ data is much smaller now.

However, when looking at the full picture, the centralized
model is not better by much. With ”Train” transforms in the
initial data, the maximum observed increase in any setting
between the centralized model and any of the two federated
ones was of 5% accuracy, whereas without the transforms,
the maximum gap was of 3.2%. This goes to show how well
the federated approach can work compared to the centralized
one, given its multiple disadvantages.

5 Discussion

In this section, we present an analysis of our current ap-
proach, how other approaches might yield different results,
and the limitations of our experiments.

5.1 Training with all clients at once

While for the tabular data experiment we used 20% of clients
to train in a round, for image data we used all clients. We
do this as the the classification task for CIFAR-10 is more
difficult than the one with tabular data.

Initially, experiments for CIFAR-10 were run as well using
only 20% clients per round. However, we observed a large
performance decrease with the non-IID model compared to
the 1ID one. We show the performance of both federated
models, with and without 20% clients having “Train” trans-
formed data in Table 3, and we test their accuracy on the orig-
inal and “Train” transformed test set. The decrease in accu-
racy of the non-IID federated model is further observed under
concept shift in Table 4, where we denote ”0_NIID” as the
model with original train data, and "20_NIID” as the model
with 20% “Train” transformed clients. Given these results,
we wanted to find out whether the possibility to train with all
clients at once improves the non-IID model’s performance.
We did the same with the IID model to see if it could match
the accuracy of the centralized model. However, as shown
in Table 2, only the non-IID model managed to have a sig-
nificant increase in performance, very close to the one of the



Transforms JS Divergence | C1 | C2 | C3 | C10 | C100
None 0 029 1 040 | 047 | 0.65 | 0.90

Train 0.06 04210521058 ] 073 | 092
Aggressive 0.14 0.65 1071 | 0.75 | 0.84 | 0.95
Aggressive & Blur 0.17 0.70 | 0.76 | 0.80 | 0.88 | 0.98
Aggressive & Noise 0.19 0.60 | 0.66 | 0.70 | 0.78 | 0.91

Table 1: Differences in the transforms used compared to original data

Model, Transformed Clients | No Tr. | Train Tr. | Aggressive Tr. | Aggressive & Blur Tr. | Aggressive & Noise Tr.
Centralized, 0% 84.02% | 69.94% 44.57% 28.58% 18.94%
Centralized, 20% 83.80% | 72.79% 51.00% 30.16% 19.40%
IID Federated, 0% 82.20% | 67.49% 42.89% 26.47% 17.16%
IID Federated, 20% 82.05% | 69.61% 46.74% 29.09% 16.94%
n-1ID Federated, 0% 79.81% | 66.05% 43.18% 26.51% 16.30%
n-IID Federated, 20% 81.33% | 69.02% 45.31% 28.39% 16.76%

Table 2: Classification performance of each model on test data under different transforms

Model, Transformed Clients | No Tr. | Train Tr.
IID Federated, 0% 81.70% | 66.50%

IID Federated, 20% 81.59% | 67.43%
non-IID Federated, 0% 74.24% | 57.83%
non-IID Federated, 20% 73.81% | 58.91%

Table 3: Federated models’ classification performance on CIFAR-
10 when training with only 2 clients per round

Model | Aggressive | Ag.& Blur | Ag. & Noise
0_NIID 34.51% 21.85% 15.14%
20_NIID 37.88% 22.61% 15.38%

Table 4: Classification performance of non-IID model on CIFAR-10
under concept shift with only 2 clients per round

IID model. A gap still remained between the accuracy of the
centralized and federated models. This is due to the issue of
decentralized data, as the averaging done by FedAvg is less
precise than the calculations of the centralized model.

5.2 On the usage of only FedAvg

Federated Averaging [1] is probably the most basic federated
algorithm, and was a pillar in the following development of
other algorithms. However, in the case of concept drift, many
papers describe it as being obsolete, usually achieving very
bad performance in comparison to their approaches, which
detect and adapt to the concept drift.

Research into concept drift usually also takes into account
issues such as allowing the model to train only once on the
data, as it is received, as well as training with data comprised
of multiple concepts at once. Moreover, as the problem of
concept drift implies continuous client data updates, training
is also done while a new concept is emerging throughout the
clients’ data, and adaptation to the concept is of paramount
importance. However, there is no issue in our settings that
puts the FedAvg algorithm at disadvantage, as we only train
on in-distribution data, with clients’ data being unchanged
throughout the training stage, and test on data belonging to a

new concept.

If our experiments were to also include such considera-
tions, then FedAvg would most certainly fail. For example,
training a model under multiple concepts requires a more
sophisticated approach than simply averaging local model
weights, such as maintaining a different global model for
each existing concept [19]. Nevertheless, with this approach
comes one matter to take into consideration: if a drift-specific
algorithm is used by the federated models, then the same
drift-specific algorithm must be adapted and utilised by the
centralized model, in order to achieve comparable perfor-
mances.

5.3 Limitations

Limitations were encountered in the way shift was induced
for image data and in the performance of the classifier on the
CIFAR-10 test set.

Domain shift can be induced through transforms, domain
generalization, or purely through existing data that can be di-
vided into drifted and non-drifted. However, for the last two
approaches, we had no such information from the CIFAR-10
dataset. As such, we experimented only with transforms.

The ability of a classifier to learn and correctly predict
data also has a large impact on the overall performance of
amodel. For example, the centralized model was only able to
achieve 84% accuracy on the original test set, as was pre-
sented in Table 2. From this we can expect the federated
models to achieve an accuracy no higher than this one. State-
of-the-art models for CIFAR-10 could provide better perfor-
mances, both in centralized and federated settings and might
even lower the gap between them. However, such models are
very complex, and their reproduction is hard, and we deemed
this approach out of scope.

6 Responsible Research

Upon performing research, responsibility is a key aspect
to take into consideration. Reproducibility of experiments,
transparency of presented results, as well as their credibility,



are all part of a responsibly conducted research. In this study,
we have taken account of these matters through careful plan-
ning and execution of experiments. Moreover, this research
has gone through two stages of peer review, with valuable
feedback having been incorporated in this work.

To further enhance reproducibility and ensure trans-
parency, for both experiments we provide the exact config-
urations used that lead to our results. Moreover, the code
for the experiments has been uploaded to a public GitHub
repository*, and instructions to run the experiments are in the
"README.md” file. For the tabular experiments, we also
provide the original artificially generated datasets, as well as
the rotated datasets for easier use. As such, exact reproduc-
tion of both experiments is either available by running the
code in the repository, or by following the steps in the Ex-
perimental Setup and Results section. We note however that,
while rather insignificantly, results might still slightly vary:
the initialization of machine learning models is stochastic and
federated clients receive different data upon a different run.
The transforms performed in the image data experiment also
differ in choice of parameters from run to run (e.g. the same
image’s brightness might be modified differently upon a new
run than it was previously), however this is out of control as it
is internally performed by the PyTorch framework, and mul-
tiple runs were performed to ensure results did not present a
significant difference.

We also provide for both experiments the necessary time to
train the three models. For the image data experiment, train-
ing the centralized model takes 02:30 hours, whereas training
the federated models takes 03:30 hours. For the tabular data
experiment, training takes 10-15 seconds for all three models.
However, the hardware used for the experiments significantly
influences training times. All experiments were conducted on
a laptop with an RTX 4060 and 24GB of RAM, with compu-
tations done on the GPU. Variations in hardware configura-
tions, especially performing computations on a CPU rather
than on the GPU, may lead to differences in execution times.

7 Conclusions and Future Work

7.1 Conclusions

In conclusion, our initial question can be answered affirma-
tively: federated models can indeed be more affected than
centralized models. However, the extent of this difference in
performance depends on the complexity of the problem, the
classifier’s ability to learn, as well as the performance of the
model on the original test data.

Our current results show that federated learning’s disad-
vantages are evident even in simpler experiments with tabu-
lar data. Nevertheless, with a sufficient number of data points,
federated models can catch up to centralized models, achiev-
ing similar performance levels. In the context of our tabular
data experiments, federated models can perform as well as
centralized ones under real concept shift, although they are
more prone to accuracy drops as the problem becomes harder
to learn through the introduction of noisy features.

For more complex problems, such as image classifica-
tion with CIFAR-10, training with all clients simultaneously

*Link to concept shift GitHub repository.

significantly enhanced federated models’ performance. Al-
though federated models appeared to be less powerful than
centralized models, they could still learn effectively, with
only a slight performance gap. In this experiment, the cen-
tralized model better utilized the 20% of clients with trans-
formed, in-distribution data when the new concept shared fea-
tures with this data, but the improvement was minor (2.5%)
and quickly outweighed by the addition of blur and noise
transforms.

Another conclusion is that non-IID data poses a greater
challenge than data decentralization. In our tabular data ex-
periments, the IID model achieved performance levels com-
parable to the centralized model, while the non-IID model
required more data points to better match their accuracy. Fur-
thermore, as discussed in Section 5.1, this issue becomes
more pronounced as the classification task increases in dif-
ficulty, such as in our image data experiments. Although we
improved the performance of the non-IID model by training
with all clients simultaneously, almost matching the perfor-
mance of the IID model, there was little to no improvement
for the IID model. It is important to note that despite training
with all clients, a performance gap remained between the cen-
tralized and federated models. This gap reflects the impact of
decentralized data, as FedAvg struggles to match the central-
ized model’s computations. However, the performance de-
crease due to decentralization is significantly less severe than
that caused by non-IID data.

Moreover, we also note that the performance under con-
cept shift is also dependent on the performance on the origi-
nal data, as was shown in Table 3 and Table 4. This was also
seen in the tabular data experiment, where the model with
non-IID data would have a lower initial accuracy than the IID
and centralized model. It would continue to have a lower
performance overall, even if the gap in accuracy between the
non-IID model and other two decreased, as the rotation de-
gree increased.

Finally, we found that, as the severity of the shift increases,
the accuracy gap between the three models decreases, which
was observed in both image and tabular data experiments.

Overall, while federated models can achieve accuracy lev-
els close to centralized models, their performance is more
susceptible to being affected. They do not significantly lag
behind but struggle to generalize as well as centralized mod-
els and are more sensitive to problem complexity and learning
environment. Furthermore, increased problem complexity
(such as CIFAR-10 classification) highlights the benefits of
training with all clients simultaneously, most observed when
the federated model has clients with non-IID data. However,
despite the centralized model’s higher accuracy in both ex-
periments, the overall gap did not exceed 10%, which might
not justify the privacy trade-offs of centralizing data.

7.2 Future Work

Further work is comprised of experimentation with different
types of problems, other types of data to work with, and other
datasets to use. For example, one can make use of textual
data, which on its own brings new problems (e.g. text classi-
fication). Image segmentation, node and graph classification,
when tabular data can be represented in the form of graphs,


https://github.com/mateimone/concept_shift_rp

are also different problems to be explored with image and tab-
ular data. In [12], Kohli et. al present a number of datasets
already having distribution shifts that do not cause any perfor-
mance drops, however, as noted previously, they only discuss
experiments in a centralized manner, and this is not yet known
for federated models as well. Lastly, class overlap would be
an interesting issue to experiment with, as it makes the prob-
lem of learning fundamentally harder.

In the context of our experiments on tabular data, there is
also future work to be done. Specifically, the problem should
be explored when the boundary between classes is non-linear,
as such problems are somewhat harder to learn than linear
ones. Additionally, it would also be necessary to explore
the problem in multi-classification, rather than just binary-
classification. For both of these problems, we refer the reader
to the THU Concept Drift Datasets® [20], a framework ca-
pable of generating linear and multiple types of non-linear
problems of concept drift, with many ways of simulating real
shift. However, the framework is made for data streams, so
there will be the need of some adaptability to the problem of
concept shift.
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