### Flooding Noordereiland

A systematic approach to alter the performance of the urban block responding to the extreme circumstances of flooding

**Building Technology Report** 

#### Flooding Noordereiland

A Systematic Approach to alter the Performance of the Urban Block responding to the Extreme Circumstances of Flooding

**Building Technology Report** 

Philipp Wenzl

Transitional Territories Graduation Studio North Sea Landscapes of Coexistence Altered Natures and the Architecture of Extremes

09/07/2019

Under Supervision of:

dr. ir. Nicola Marzot ir. Sjap Holst ir. Stefano Milani



**Index** The Concept

Plans Structure

Construction Details

Climate Materialisation



Noordereiland



The Concept

### "Weak Spots"

The mapped locations map the point of intervention of the project. They build the interface between the ground level and the new circulation system.



Nooordereiland Site Plan

Elevations of the indentified "Weak Spots"



## The experimental Block

I chose this particular block to develop my strategy for my structural and technical system



# The Sequence of Transformation

- 1. The existing Block weak spots identified
- 2. The compromised accessibility
- 3. The lost ground floor
- 4. The interface the initiation of a centralised circulation system
- 5. The grafting of a circumscribed structural portal system
- Building a framework for structures on top. Compromising for the lost Ground floor.
- 7. The grafted structures
- 8. The connection between the blocks

















Elevation of the System arising out of different Weak Spot scenarios



#### Plans

Axonometrics
Floor Plans
Sections
Apartment Conversion
Module Floor Plans
Views

The Grafted Structural System



Impression of the Superimposition





Typical Floor Before



Typical Floor After



## Rooftop Before



Grafted Floors on Top After



Section through Weak Spot Before



Section through Weak Spot After: The Interface



Typical Section Before



Typical Section After





# The Sequence of Transformation of the Existing Buildings

- 1. The existing situation
- 2. Removal of Stairs and existing separation walls
- 3. Adding of exoskeleton for a centralised circulation and a vertical shaft for technical amenities
- 4. Filling of the Exoskeleton to individual needs of the inhabitants: One side used for circulation, one for balconies, loggias, wintergardens.. Aiding the spatial alteration of the existing







Module 1: Duplex Variation 1





Module 2: Duplex Variation 2





Module 3: Single Unit Variation 1





## Module 4: Single Unit Variation 2





Module 5: Double Unit Variation 1

### Structure

Lateral Force Bracing
Prefabricated Elements Assembly
The Portal Structure

### The Structural System

The Exoskeleton and the additional structures on top are supported by steel portal frames, founded on concrete pile foundations. Laterally the repeated sections are cross-braced by the concrete slabs on top, which are shear-force connected. On the bottom they rest on the structural walls of the existing and are connected by stiff connections between the steel beams in the other direction.



Explosion Axonometric of Pre-Fabricated Steel Elements



## **Construction Details**

Facade Section 1-20 Sections and Elevations 1-5 Details

Facade Section 1:100





Facade Section 1:50



Facade Cross - Section 1:50



Roof Detail Facade 1:10



Ceiling Detail Facade 1:10



Bottom Floor Detail Facade 1:10



Roof Detail Facade Cross-Section 1:10



Roof Detail Facade Horizontal-Section 1:10



Separation Wall Cross-Section 1:10



# Climate

Drainage Climate Diagrams

Drainage Diagram



## Climate and HVAC Digram

natural Ventilation; every unit possesses an individual heating unit. The water of the Maas will be used in the summer months for cooling, if necessary.



## Climate Diagram of the Units

1. Winter Scenario
Floor heating is used to heat up the unit. The installed frames have the ability to ventilate automatically through the frames.

2. Summer Scenario
Cool water circulating in capillary
tubes in the ceiling regulate the room
temperature.





Use

#### Use Scenario

The exoskeleton towards the street provides for individual use and endless possibilities to alter the spatial quality. The structure furthermore breaks conventional hierarchies in the traditional block, as the public layer can be in any floor.

