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Abstract. This paper discusses the use of the Least-Squares Spectral Element Method in
solving the linear, 1-dimensional advection-reaction equation. Well-posedness of the Least-
Squares formulation will be derived. The formulation and its results will be compared to
the standard Galerkin Spectral Element Method.

1 INTRODUCTION

The Least-Squares formulation provides an interesting alternative to the conventional
Galerkin formulation in combination with spectral elements. The advantage of Least-
Squares (LS) is that the resulting system for well-posed problems is symmetric, positive
definite (SPD), which makes the resulting algebraic systems to be solved amenable to well
established direct and iterative solvers.1–3 Furthermore, the Least-Squares formulation
has proven to be inherently stable, thus avoiding the necessity to introduce stabilization
terms such as upwinding, artificial diffusion or limiting.4

The combination of the Least-Squares formulation with spectral elements was first
proposed by Proot en Gerritsma7 en Pontaza and Reddy.8 The method has been applied
to a variety of flow problem and structural analysis.5,6, 9 However, the mechanism by which
the Least-Squares formulation acts on the differential operator still requires attention.

It has been shown that the Galerkin and Least-Squares behave significantly different
for linear advection equations; Galerkin is sup-optimal depending on the fact whether
the polynomial degree employed is even or odd, whereas the Least-Squares formulation
always yields optimal convergence behavior.10

A similar analysis is discussed in this paper for the linear advection-reaction equation.
This equation plays an important role in hyperbolic systems and in the assessment of
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polynomial chaos12 and is sufficiently simple to analyze in closed form.
The outline of this paper is as follows: in Section 2, the basic principles of the Least-

Squares Spectral Element Method (LS-SEM) will be explained, as well as the inclusion
of boundary conditions. In Section 3, the well-posedness of the linear advection-reaction
equation will be demonstrated. In Section 4, a direct comparison between the behavior of
the Galerkin formulation and the Least-Squares formulation will be presented. Further-
more, some characteristics of strongly and weakly imposed boundary conditions will be
discussed.

2 THE LEAST-SQUARES SPECTRAL ELEMENT METHOD

As a starting point, the following linear boundary-value problem is considered:

Lu = f in Ω. (1)

Here, L is a linear differential operator acting on the unknown variable u, defined over
the domain Ω; the function f is a forcing function.

If the residual is denoted by R and the approximate solution by ũ, we have

R(ũ) ≡ Lũ− f. (2)

2.1 The Least-Squares formulation

The idea of Least-Squares (LS) is that the residual is minimized in a certain norm.
The norm of the residual associated with function space Y can be written as

‖R(ũ)‖Y , (3)

so that LS solves the following minimization problem:

min
ũ∈X

‖R(ũ)‖Y . (4)

We only allow elements ũ form a linear function space X, such that the associated Y -
norm exists. It is advantageous to choose this function space X as large as possible. The
function space should at least be large enough to contain the exact solution of the partial
differential equation.

It is common to demand that the residual is measured in the L2-norm: the residual
should be squared integrable. An even larger function space, such as H−1, is not desirable:
it is very complicated to perform calculations in the associated norms.

The residual norm of the partial differential equation given in (1) is defined by

‖R(ũ)‖2
0 =

∫
Ω

(Lũ− f)2 dΩ, (5)

where ‖.‖0 denotes the norm that belongs to L2.
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The partial differential equation, (1), can now be cast into a minimization problem. If
I(ũ) denotes the quadratic functional ‖R(ũ)‖2

0, the problem can be written as

min
ũ∈X

I(ũ) (6)

In order to solve this problem, it is necessary that the first variation of ũ should vanish1:

d

dt
I(ũ + vt) =

∫
Ω

Lv (Lũ− f) dΩ = 0 ∀v ∈ X . (7)

2.2 Equivalence of the norms

Least-Squares is based on the requirement that if the residual tends to zero in the
L2-norm, the error in the X-norm will go to zero, as well. The error measured in the
X-norm is given by

‖ũ− u‖2
X , u ∈ X, (8)

where u denotes the exact solution of the partial differential equation.
If it can be shown that two positive constants C1 and C2 exist, such that

C1 ‖w‖X ≤ ‖Lw‖L2 ≤ C2 ‖w‖ , ∀w ∈ X, (9)

then the two norm ‖·‖X and ‖L·‖L2 are equivalent, which means that convergence in one
norm implies convergence in the other norm.

Taking for w = ũ− u, the norm equivalence reads

C1 ‖ũ− u‖X ≤ ‖L (ũ− u)‖L2 = ‖Lũ− f‖L2 ≤ C2 ‖ũ− u‖ , ∀ũ ∈ X, (10)

The left inequality – coercivity – implies that when the residual converges to zero in the
L2-norm, the approximate solution converges to the exact solution in the X-norm.

The right inequality – boundedness, continuity – ensures that when the approximate
solution converges to the exact solution in the X-norm, the residual converges to zero in
the L2-norm.

Once norm equivalence is established between the residuals and the error, it makes
sense to approximate the exact solution by minimizing the residuals

The numerical method based on the Least-Squares formulation restricts the function
space to a subspace Xh ⊂ X. This leads to the problem of finding ũh such that∫

Ω

Lvh
(
Lũh − f

)
dΩ = 0, ∀vh ∈ Xh. (11)

1For linear problems this requirement is sufficient, as well.
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2.3 Boundary conditions

When approximating one-dimensional functions with polynomials, there are as many
coefficients (degrees of freedom) as the polynomial degree plus one. Imposing a boundary
condition strongly means that one degree of freedom is necessary to satisfy each boundary
condition. Therefore, less degrees of freedom are available to approximate the differential
equation in the interior of the domain. Therefore, the total approximation could be worse
than when applying weak boundary conditions.

For weak boundary conditions, consider the following problem:

Ku = g in Ω,

Ru = h on Γ.
(12)

Here, K is a linear differential operator and R is a trace operator, both acting on the
variable u. The forcing function g is defined on domain Ω and h is a function on boundary
Γ. The problem can be written in a Least-Squares sense as a minimization problem:

min
ũ
‖Kũ− g‖2

0 + λ min
ũ
‖Rũ− h‖2

0 , (13)

where λ is an arbitrarily chosen, strictly positive constant: the weight factor of the bound-
ary condition. This formulation tries to find the minimum value of both the residual of
the differential equation and the residual of the boundary conditions simultaneously.

2.4 The Spectral Element Method

In the spectral element method, the computational domain is divided in K non-
overlapping sub-domains Ωk, k = 1, . . . , K and in each sub-domain the solution is ex-
panded in terms of orthogonal polynomials

uk(x) ≈
N∑

i=0

α̃k
i Pi(x). (14)

The set of basis functions Pi is called the expansion basis.
In this paper, Legendre polynomials are used to perform the calculations. These will

be denoted by Lk, where k denotes the degree of the polynomial. The polynomials are a
member of the well-known family of Jacobi polynomials and satisfy the following recursion
relation:

Lk+1(x) =
2k + 1

k + 1
xLk(x)− k

k + 1
Lk−1(x). (15)

Furthermore, the polynomials are orthogonal with weighing function w(x) ≡ 1

1∫
−1

LiLkdx =
2

2k + 1
δik. (16)
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Figure 1: The curves that belong to the first five Legendre polynomials.

The first few Legendre polynomials are given by

L0 = 1,
L1 = x,
L2 = 3

2
x2 − 1

2
,

L3 = 5
2
x3 − 3

2
x,

L4 = 35
8
x4 − 30

8
x2 + 3

8
.

(17)

The graphs of these polynomials are visualized in Figure 1.

3 WELL-POSEDNESS OF THE LINEAR ADVECTION-REACTION EQUA-
TION

The linear advection-reaction equation in its 1-dimensional form can be written as

du

dx
+ cu = f, x ∈ [−1, 1]. (18)

Here, c is a constant and f = f(x) is a forcing function. The solution is required to satisfy
the following boundary condition:

u(−1) = u0. (19)

For this boundary value problem, the following norm equivalence will be derived

1
2
e−2|c| ‖u‖2

H1(−1,1) ≤ ‖u′ + cu‖2
H0(−1,1) ≤ 2 max(1, |c|) ‖u‖2

H1(−1,1) . (20)

This is valid for all u ∈ H, where H is the function space that contains the solution and
the boundary condition:

H =
{
u ∈ H1 (−1, 1) | u (−1) = u0

}
. (21)

Furthermore, let’s assume that u0 = 0, without any loss of generality. In this case, H
becomes a linear function space.

Function space H1 is defined as the set of functions, which satisfy

‖u‖2
H1 ≡ ‖u′‖2

H0 + ‖u‖2
H0 < ∞. (22)

For the following proofs, ‖·‖Hp is denoted as ‖·‖p.
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Proof of coercivity. In order to prove coercivity, note that every u ∈ H1(−1, 1) with
u(−1) = 0 can be written as u = e−cxv, where v ∈ H1(−1, 1) with v(−1) = 0. With this
change of variables, we have

‖u′ + cu‖2
0 =

∥∥e−cxv′
∥∥2

0
. (23)

Since x ∈ [−1, 1] we have e−cx ≥ e−|c|. Therefore, we have the inequality

‖u′ + cu‖2
0 ≥ e−2|c| ‖v′‖2

0 . (24)

Using the Poincaré inequality yields for the domain under consideration:

‖v′‖2
0 ≥ 1

2
‖v‖2

1 . (25)

Finally, using that ecx ≥ e−|c|, it can be seen that

‖u′ + cu‖2
0 ≥

1
2
e−2|c| ‖u‖2

1 . (26)

Thus, ∀u ∈ {v ∈ H1(−1, 1) | v(−1) = 0 }, it is valid that

1
2
e−2|c| ‖u‖2

H1(−1,1) ≤ ‖u′ + cu‖2
L2(−1,1) (27)

Proof of continuity. Continuity of the differential operator follows from the triangle
inequality:

‖u′ + cu‖2
L2(−1,1) ≤ 2 ‖u′‖2

L2(−1,1) + 2 |c| ‖u‖2
L2(−1,1) ≤ C2 ‖u‖H1(−1,1) . (28)

Here, constant C2 = 2 max(1, |c|).

4 RESULTS

Now that we have established a priori estimate that shows the norm equivalence be-
tween the L2-norm of the residual and the H1-norm of the error, it makes sense to apply
the Least-Squares formulation to approximate the solution of the linear advection-reaction
equation: u′ + cu = f . In this section, the results will be presented for the Least-Squares
and conventional Galerkin method in combination with Spectral Elements, both applied
to this equation. For Least-Squares, two cases will be discussed: application of a weakly
enforced boundary condition and the use of a strong boundary condition.

Let the approximate solution of either approximation scheme, Least-Squares or Galerkin,
be given by

ũ(x) =
P∑

i=0

α̃iPi(x) , (29)
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where the unknown coefficients α̃ are computed by Least-Squares or the Galerkin formu-
lation. Let the exact solution be given by

u(x) =
∞∑
i=0

αiPi(x) . (30)

Then the error in the L2-norm is given by

‖ũ− u‖L2 =
P∑

i=0

2 (αi − α̃i)
2

2i + 1
+

∞∑
i=P+1

2α2
i

2i + 1
. (31)

So the best approximation in the L2-norm is obtained when α̃i = αi, or equivalently, when
the error in the L2-norm equals the truncation error

∞∑
i=P+1

2α2
i

2i + 1
. (32)

We will therefore compare the L2-error of the solution obtained with Least-Squares and
Galerkin, with the error of the best possible solution with polynomials of of degree P
given by (32).

4.1 Comparison of Least-Squares and Galerkin

In Figure 2(a) an example is shown of the error convergence in the L2-norm for u′+2u =
0, when using the strong boundary condition. Please note the semi-logarithmical scale;
the error converges fast as a function of the polynomial degree. Although both Least-
Squares and Galerkin converge exponentially fast to the exact solution, Least-Squares is
more accurate and closer to the truncation error.

The next figure, Figure 2(b), globally shows the same characteristics as displayed in Fig-
ure 2(a). The error for Least-Squares is much smaller than Galerkin, although both meth-
ods display exponential convergence. However, in this figure, another effect is present.
For c < 0, the convergence of both methods is quite poor for low order approximations.
This phenomenon can be seen for all negative values of c. The more negative c is, the
longer it takes before exponential convergence sets in. Clearly, in Figure 2(b), it can be
seen that LS regains almost ideal convergence, where the error almost equals the trunca-
tion error at a polynomial of degree 7 and higher. There is hardly any difference between
the LS solution for c equal to 2 and for c equal to -2. Galerkin, on the other hand, does
converge exponentially fast to the exact solution, but does not seem to recover from the
approximation error in the lower order coefficients. The convergence of this method never
returns to the convergence that can be seen in Figure 2(a). This results in a less accurate
approximation for Galerkin, even for high orders.

Another convergence graph is Figure 3. Here, c is set equal to zero, so that the solution
to u′ = f is approximated. The phenomenon described by Gerritsma10 is clearly visible:
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Figure 2: An example of the convergence of the error in the L2-norm for both LS and Galerkin. Both
methods are used to approximate the solution to u′ + 2u = 0 (a) and u′ − 2u = 0 (b) with a strong
boundary condition.
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Figure 3: An example of the convergence of the error in the L2-norm for both LS and Galerkin. Both
methods are used to approximate the solution to u′ = −π cos(πx) with a strong boundary condition.

for odd orders, the approximate solution of Galerkin and LS is exactly the same. However,
for even orders, the convergence of Galerkin is much worse. LS still converges well for
these orders.

4.2 Comparison of weak and strong boundary conditions

Apart from a negative value of c, a very weak boundary condition (λ � 1, where λ is as
defined in (13)), has an influence on the convergence of the lowest order approximations.
In Figure 4(a), this phenomenon can be seen. Here, the LS solution is shown for a value
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Figure 4: An example of the convergence of the error in the L2-norm for LS-SEM. The boundary condition
is both weakly and strongly imposed. The results are the approximations of the solution to u′ + 3u = 0
with λ = 0.1 (a) and u′ + 8u = 0 with λ = 0.5 (b).

of λ of 0.1; c is equal to 3. The result is comparable to the outcomes for negative values
of c, as shown before. Initially there is hardly any convergence. Then, for a particular
polynomial degree, convergence suddenly sets in and the method converges almost ideal.
This behavior can only be seen when λ is much smaller that c (given that c > 0).

A strong boundary condition is the same as a weakly imposed boundary condition with
λ →∞. Therefore, such a boundary condition does never result in this kind of behavior,
as long as c ≥ 0. However, it is possible that a weakly imposed boundary condition results
in a smaller error at low orders. This depends on the form of the solution. For instance,
look at Figure 4(b). The weak boundary is imposed with a value of λ = 0.5, and c is set to
8. The error of the approximation with the weak boundary condition shows very limited
convergence in the lowest orders. However, this is still better than the approximation
with the boundary condition strongly imposed. At a polynomial degree equal to 3, the
strong boundary condition gives better results. Around a polynomial degree of 9, the
weak boundary condition approximation and the strong one give comparable results.

The reason why the weakly imposed boundary condition performs better at the lower
orders is as follows: the exact solution to the problem is Ce−8x. On the computational
domain, this function has a maximum at x = −1. At that location, it decays fast towards
zero. The function is almost constant on the rest of the domain. An example of such a
solution and the approximation with weak boundary condition can be found in Figure 5(a).
The equivalent graph with strong boundary conditions can be found in Figure 5(b). It
is clear that due to the large gradient at the leftmost part of the solution, the strong
boundary condition yields a much worse approximation on the rest of the domain. The
approximation with weakly imposed boundary conditions does not suffer from this effect.
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Figure 5: The influence of a weakly or strongly imposed boundary condition on a 2nd order LS-SEM
approximation.

Therefore, in this case, a weak boundary condition yields better results.

5 CONCLUSIONS

It can be concluded that the 1-dimensional, linear advection-reaction equation given
by (18) and (19) is well-posed. Furthermore, if the residual converges to zero in the H0-
norm, the error will converge in the H1-norm. Therefore, the Least-Squares formulation
is proven to be able to get the desired convergence behavior of the approximate solution.

The LS-SEM approximation is generally more accurate than the conventional Galerkin
SEM approximation. For both methods, the model equation is hard to solve for negative
values of c. However, at higher polynomial degrees, LS returns to a convergence close to
that of the truncation error, which is ideal. Galerkin performs much worse in this respect.

In combination with a weakly imposed boundary condition, LS performs worse at low
polynomial degrees than with a strong boundary condition. However, at high polynomial
degrees, the convergence of both methods is comparable. This might indicate that the
boundary weighting factor should be a function of the polynomial degree P .
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