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Adaptive Master-Slave Cubature Kalman Filters subject to State

Inequality Constraints for Wind Turbine State Estimation

B. Ritter1,2, E. Mora1‡, A. Schild3, B.M. Doekemeijer4 and U. Konigorski1

Abstract— The cubature Kalman filter (CKF) is well-known
for a decade as a derivative-free nonlinear Kalman filter that is
well-suited for high-dimensional nonlinear estimation problems.
This paper further develops this classical CKF in order to
cope with time-varying noise statistics as well as inequality
constraints on the estimated states. The resulting adaptive
filter is suggested to provide more accurate state estimates
and to be more robust against filter divergence. Moreover,
this contribution proposes an automated filter design based on
numerical optimization which uses the normalized estimation
error squared (NEES) and the normalized innovation squared
(NIS) as part of the objective function. The novel adaptive
CKF is applied to wind turbines in order to assess the
potential improvement for state and parameter estimation. The
simulation results for an illustrative acid test scenario with
time-varying measurement noise show the superiority of the
novel adaptive CKF since it compensates the noise robustly
and thereby outperforms the classical filter.

I. INTRODUCTION

The cubature Kalman filter (CKF) is a derivative-free filter

for nonlinear systems [1]. It is the latest family member of

the so-called sigma-point Kalman filters (SPKF) which are

said to be superior to the widely used extended Kalman filter

(cf. [2]–[4]). Although the classical CKF deals readily with

nonlinear systems, it cannot cope with undetected changes

in noise statistics and state constraints which both constitute

relevant issues in practice. Previous studies have found

the master-slave adaptive approach, originally introduced by

Song et al. [5], to be advantageous for noise adaptation since

critical parameters are freely selectable and computational

costs increase only moderately [6]. Contrary to the linear

slave KF by Qi et al. [7], this paper proposes a novel version

which allows to adapt optionally both covariance matrices

and which does not require the pseudo inverse of the Kalman

gain to be computed. Additionally, this master-slave filter

is enhanced by a projection approach [8] to manage the

inequality constraints for the estimated states and parameters.

As an application example, multi-megawatt wind turbines

are investigated in this paper. The reason is that advanced
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model-based controllers like nonlinear model predictive con-

trol (NMPC) have shown a promising potential to mitigate

component loads and to increase energy yield (e.g. [9]–[12]).

Though, these controllers require the complete state vector

as measurements in order to outperform standard industrial

wind turbine control [13], [14]. The proposed adaptive filter

is employed in order to ensure the availability of accurate

state estimates under unknown noise statistics at any time.

The remainder of this paper is structured as follows: First,

the adaptive Kalman filter with state constraints is introduced

in Section II. Then, the automatic filter design is presented in

Sect. III and the simplified wind turbine model is established

in Sect. IV. After that, the test scenario and the illustrative

simulation results are discussed in Sect. V and the main

outcomes are summarized in Sect. VI.

II. ADAPTIVE CUBATURE KALMAN FILTER

WITH STATE CONSTRAINTS

The structure of the novel adaptive filter is shown in Fig. 1.

It consists of a classical CKF with constraints handling as

Cubature Kalman Filter

s.t. Inequality Constraints

(Master Filter)

Kalman Filter

(Slave Filter)

uk

yk

x̂+k

x̂−k

ŷk

x̂+0 P+
0 Ck ck

Q0 R0 P+
S,0 QS,0 RS,0

Q̂k R̂k x̃k P̃k P
yy
k

Fig. 1. Structure of the master-slave CKF for process and/or measurement
noise adaptation with state constraints (left: KF inputs, right: KF estimates,
dark gray: free filter parameters, light gray: constraint parameters)

master filter and a linear KF as slave filter. The different

parts are introduced hereafter.

A. The Cubature Kalman Filter Algorithm

The CKF propagates 2nx deterministically chosen sigma-

points (SP) through the process model f (·) and then through

the output model h(·) where nx is the number of states

(cf. [1]). The algorithm reads:
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1) Initialization Step:

x̂+0 = E{x0} (1a)

P+
0 = E

{
(x0 − x̂+0 )(x0 − x̂+0 )

T
}

(1b)

2) Prediction Step for k > 0:

X+
k−1 = X̂

+
k−1 +

(√
2nx

)−1
[√

P+
k−1,−

√
P+

k−1

]
(2a)

X ∗
k = f (X+

k−1,uk−1) (2b)

x̂−k = (2nx)
−1

2nx

∑
i=1

X ∗
k (:, i) (2c)

P−
k = (2nx)

−1
X ∗

k

(
X ∗

k

)T
− x̂−k

(
x̂−k

)T
+Qk−1 (2d)

X−
k = X̂

−
k +

(√
2nx

)−1
[√

P−
k ,−

√
P−

k

]
(2e)

Y∗
k = h

(
X−

k ,uk

)
(2f)

ŷk = (2nx)
−1

2nx

∑
i=1

Y∗
k (:, i) (2g)

3) Correction Step for k > 0:

P
xy
k = (2nx)

−1
X ∗

k (Y∗
k )

T − x̂−k (ŷk)
T (3a)

P
yy
k = (2nx)

−1
Y∗

k (Y
∗
k )

T − ŷk (ŷk)
T +Rk (3b)

Kk = P
xy
k

(
P

yy
k

)−1
(3c)

x̂+k = x̂−k +Kk

(
yk − ŷ−k

)
= x̂−k +Kkvk (3d)

P+
k = P−

k +KkP
yy
k KT

k (3e)

The Eq. (3d) is denoted as update equation where x̂−k and

the innovation vk are weighted according to the Kalman gain

Kk. The CKF’s only design parameters are the covariance

matrices Qk and Rk of the additive process and measurement

noises (both assumed diagonal). Remarks: x̂−k and x̂+k are

the a priori/posterior state estimates. P−
k and P+

k are the

a priori/posterior error covariances, P
yy
k and P

xy
k the inno-

vation/cross covariances, X+
k−1 and X−

k are the SP before

propagation, X ∗
k and Y∗

k after propagation. uk and yk are

the control inputs and outputs (cf. [14] for a more detailed

notation).

B. The slave Kalman filter

The slave filter is realized as a linear KF since both the

process and the output model are linear. The symbol S labels

the slave filter variables. The slave state vector is denoted as

xS,k which contains the diagonal elements of the process or

measurement noise (or both). The algorithm denotes:

1) Initialization Step:

x̂+
S,0 = E{xS,0} (4a)

P+
S,0 = E

{
(xS,0 − x̂+

S,0)(xS,0 − x̂+
S,0)

T
}

(4b)

2) Prediction Step for k > 0:

x̂−
S,k = x̂+

S,k−1 (5a)

P−
S,k = P+

S,k−1 +QS,0 (5b)

ŷS,k = x̂−
S,k +uS,k (5c)

3) Correction Step for k > 0:

P
xy
S,k = P−

S,k (6a)

P
yy
S,k = P−

S,k +RS,0 (6b)

KS,k = P
xy
S,k

(
P

yy
S,k

)−1
(6c)

x̂+
S,k = x̂−

S,k +KS,k(yS,k − ŷS,k) (6d)

P+
S,k = P−

S,k −KS,kP
yy
S,kK

T
S,k (6e)

Theoretically, Qk and Rk can be adapted simultaneously.

However, the resulting filter is not robust since it is hard to

distinguish between errors in both matrices [15] (p. 44). That

is why the state vector xS,k is proposed as either xS,k = qk(iQ)
or xS,k = rk(iR) where qk=diag{Qk} and rk=diag{Rk}. The

vectors iQ and iR select the entries to be adapted.

The definitions of the outputs yS,k and the inputs uS,k in

Eqs. (5c) and (6d) depend on the chosen noise parameters:

yS,k = diag

{
1

N

k

∑
i=i0

vi vT
i

}
, uS,k = diag

{
P

yy
k − R̂k−1

}
(7)

yS,k = diag

{
1

N

k

∑
i=i0

x̃i x̃T
i

}
, uS,k = diag

{
P̃k − Q̂k−1

}
(8)

wherein P̃k = P−
k − P+

k and i0 = k −N + 1. Eq. (7) is used

for adaptation of Rk based on the innovation vk = yk − ŷ−k
and Eq. (8) for Qk based on the state residual x̃k = x̂+k − x̂−k .

The outputs yS,k correspond to the diagonal elements of the

sample innovation or residual covariance matrix. The free

design parameters are iQ, iR, N, QS,0 and RS,0.

C. State Inequality Constraints

The state of real-world systems is always confined to

an allowable region due to physical constraints. These are

determined by box constraints xmin ≤ xk ≤ xmax, which read

in a general form (denoted as state inequality constraints)

Ckxk ≤ ck . (9)

If these constraints are violated, this constitutes a problem

when applied to the feedback controller and thus an algo-

rithm to restrict the estimates is needed. In this paper, a

concept proposed by Kandepu et al. [8] is employed where

the SP are projected to a feasible region defined by Eq. (9).

Accordingly, Eqs. (2a) and (2b) are extended by

X
+,c
k−1 = P(X+

k−1) (10a)

X
∗,c
k = P(X ∗

k ) (10b)

where P represents the projection onto the region. Conclu-

ding, the main advantages of this approach are its simplicity,

its practicability for sigma-point filters and the fact that

both, the mean and the covariance, are affected by the state

constraints at the same time.

III. AUTOMATED FILTER DESIGN

Filter design is referred to as the process of selecting

the free filter parameters such that the estimation perfor-

mance is optimized with respect to an objective function

or performance criterion. This is sometimes denoted as
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tuning process when parameters are manually designed by

expert knowledge. Unfortunately, this process becomes very

cumbersome (and on a trial and error basis) with increasing

number of estimated states and free parameters. Therefore,

an automated filter design is desirable to ease the application

and also to optimize the filter performance. This is done by

defining and solving an optimization problem.

A. Performance Measures

In order to assess the filter performance, the estimation

error ek (EE) and the innovation vk are defined as follows:

ek = xk − x̂+k and vk = yk − ŷk . (11)

While the first is only available in simulation, the second

is also known in reality. Based on Eq. (11), the normalized

estimation error squared (NEES) εNS,k and the normalized

innovation squared (NIS) νNS,k are derived to assess the filter

consistency. The definitions read [16] (p. 165/p. 236):

εNS,k = eT
k M+

k ek ⇒ εNS,k ∼ χ2
nx

(12)

νNS,k = vT
k M

yy
k vk ⇒ νNS,k ∼ χ2

ny
(13)

The NEES and NIS are χ2-distributed with nx or ny degrees

of freedom. ny is the number of outputs. M+
k and M

yy
k are the

matrix inverses of P+
k and P

yy
k , respectively. It is well known

that filter consistency implies that

E
{

εNS,k

}
= nx and E

{
νNS,k

}
= ny (14)

must hold [16] (p. 59). Eqs. (14) can be statistically used as

ε̄NS =
1

nxM

M

∑
k=1

εNS,k and ν̄NS =
1

nyM

M

∑
k=1

νNS,k (15)

which are the normalized sample means (obtained for a suf-

ficiently large number of samples M to capture the statistics

correctly). Hence, the filter is said to be consistent when

ε̄NS ≈ 1 and ν̄NS ≈ 1 (16)

holds. To put it simple, consistency ensures that the filter is

always aware of how reliable its estimates actually are [17].

B. Objective Function and Optimization Problem

Based on the above, the objective function to assess the

filter’s performance is proposed as follows:

J(z) = w log
(
ε̄NS(z)

)2
+(1−w) log

(
ν̄NS(z)

)2
(17)

where z contains the free design parameters (defined in

Sect. III-C). The weighting factor w ∈ [0,1] allows to put

emphasis either on the NEES (if the true states are known

from advanced measurement configurations or in simulation)

or on the NIS (if true states are unknown).

The objective function Eq. (17) has three advantages: First,

it ensures that pessimism and optimism in filter tuning

[17] are weighted equally (cf. Fig. 2). Secondly, there are

no tuning parameters since the weights are predefined by

the filter covariance matrices in Eqs. (12) and (13). This is

different compared to an alternative objective function in

[18] where weighting matrices are chosen manually. Thirdly,

ε̄NS(z)
10
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30

40

Fig. 2. J
(
ε̄NS(z)

)
as function of the normalized NEES (w = 1)

Eq. (17) provides a statistically consistent estimator when the

optimum J∗ is found.

Based on the above considerations, the generic optimi-

zation problem (OP) for an automated design is stated as

follows:

min
z

J(z) → Eq. (17)

s.t. [x̂+i , ŷi] = F(z,ui,yi) : ∀i ∈ [1,2, . . . ,M] (18)

z ≤ z ≤ z̄

Therein, F(·) represents the chosen filter algorithm (here the

CKF or MS-CKF). The optimization variables z are limited

by lower bounds z and upper bounds z̄.

C. Approach to Automated Filter Design

Automated design is conceived as finding the right filter

parameter configuration with little manual interference. For

this reason, the optimization is done with a set of training

data (simulation results) that is processed steadily through

the filter. After that, the filter outputs are evaluated using

Eq. (17). When the optimization is completed, the perfor-

mance is assessed with simulation data from different test

scenarios (cf. Sect. V-C).

A three-step approach is proposed to achieve an optimal

design:

1) Optimize the CKF initial parameters: The first opti-

mization problem serves to find suitable design parameters

for the standard CKF. Thus, F(·) = CKF(·) and z = [qT
0 rT

0]
T

are chosen which are the initial diagonal elements of the

covariance matrices.

2) Select the Noise Covariances: Once optimized cova-

riance matrices Q∗
0 and R∗

0 are found, a sensitivity study is

conducted to determine the noise parameters to be estimated

for adaptation. For instance, iQ = [ ]T and iR = [1,2, . . . ,ny]
T

are chosen for measurement noise adaptation. The number

of samples N must be chosen appropriately. It must be large

enough to assess the sample covariances in Eqs. (7) and (8)

correctly, but not too large in order to react quickly enough.

3) Optimize the Slave Parameters: Afterwards, the

second optimization problem aims to find the diagonal

entries for the slave filter’s covariance matrices. Thus,

F(·) = MS-CKF(·) and z = [qT
S,0 rT

S,0]
T

are chosen.

This procedure can happen in a highly automated fashion

and with only little expert input. Good starting values for

the OPs are obtained either from expert knowledge or from
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a genetic algorithm. This improves the manual tuning process

significantly and yields an optimally designed adaptive filter.

IV. CONTROL-ORIENTED MODELLING FOR

WIND TURBINE STATE ESTIMATION

Today’s modern wind turbines are large, resonating and

flexible structures with multiple components that harvest

together the energy from the alternating wind (cf. Fig. 3).

tower

foundation

nacellehub

blade 1

blade 2

blade 3

xT

yT

zT

ψ1

ψ2

ψ3

Fig. 3. Three-bladed wind turbine in a small wind farm within complex
terrain (left: main components, right: variables and coordinate system)

When the complete system is modelled in greater detail

(cf. high-fidelity simulators like FAST8 [19]), this involves

many degrees-of-freedom. Such simulation models are ac-

cordingly complex and too detailed for control purposes.

A. The Design Model

Hence, the simplified design model incorporates only the

relevant dynamics like the axial nacelle motion xT and the

drive-train rotation ϕ̇g, and is derived from first principle

approach (cf. [6], [20]). The dynamic model reads as follows:

ẍT = m−1
T

(
FT(·)+ζMn(·)

)
−2ζTxω0ẋT −ω2

0 xT (19a)

ϕ̈g = Θ−1
(
Ma(·)+ i−1

gb Mg

)
(19b)

wherein the rotor thrust FT(·), the rotor torque Ma(·) and the

nodding moment Mn(·) are defined according to

FT =
ρ
2

πR2

3

3

∑
b=1

CT

(
λb,βb

)
v2

b (20a)

Ma =
ρ
2

πR3

3

3

∑
b=1

CM

(
λb,βb

)
v2

b (20b)

Mn =
ρ
2

πR2

3

3

∑
b=1

rn(vb)cosψb CT

(
λb,βb

)
v2

b . (20c)

The nonlinearity is induced by the so-called aero-elastic

coupling. It describes the interaction between the rotor

blades and the inflow wind, causing nacelle and blades to

oscillate which in turn affects the aerodynamic forces again.

Moreover, the azimuth angle ψb, the tip-speed-ratio λb and

the relative wind speed vb for the blades b ∈ [1,2,3] read

vb =
(
1+H−1rB cosψb

)κ
vw −

(
1+ζrB cosψb

)
ẋT (21a)

ψb = ϕg +2π/3
(
b−1

)
(21b)

λb = ϕ̇gRvb
−1 . (21c)

In Eqs. (20), the aerodynamic coefficients for thrust CT(·)
and torque CM(·) describe the simplified aerodynamics at

the blades. Note that, mT is the first modal mass, ζTx the

modal damping, ω0 the first eigenfrequency, ζ the beam-

coupling coefficient, ρ the air density, Θ the rotational drive-

train inertia, igb the gear-box ratio, R the blade tip-radius, rn

the normal effective and rB the power effective radii, H the

hub height, vw(t) the rotor-effective wind speed and κ(t) the

exponential shear coefficient (both unknown disturbances).

The model is multiple-input multiple-output and has the

control inputs u = [Mg β1 β2 β3]
T, being the generator torque

Mg and the blade pitch angles βb. The sensor outputs are

y = [ng ẍT ϕg]
T, the generator speed ng = 60/(2π)igbϕ̇g, the

nacelle acceleration ẍT, and the azimuth angle ϕg.

B. Model Validation

Since model mismatches between the design model and

real system may impair the estimator’s performance, it

must be verified in advance that the model parameters and

model structure are correct. This has been done with FAST8

showing a very good agreement, cf. [18]. Additionally, field

data from different 2 MW to 5 MW wind turbines was used

to confirm the model’s suitability.

V. SIMULATION RESULTS

For this simulation study the widely-used 5 MW reference

turbine is considered as state-of-the-art wind turbine design.

The model parameters were taken from [21]. The automated

design approach with w = 1, as presented in Sect. III, has

been applied to obtain the optimal filter parameters. In the

following, this optimal design for the noise-free case is tested

in a noisy measurement environment.

A. Test Scenario Description

The turbulent wind field in Fig. 4 with an average wind

speed of vm = 9m/s and vertical shear of κ = 0.2 has

been applied to the 5 MW wind turbine implemented in

FAST8. The obtained simulation data is used to test the non-

t in s
0 150 300 450 600 750 900

v
w
in

m
/
s

6

7

8

9

10

11

12

Fig. 4. Turbulent wind field in the wind turbine’s partial load regime with
an average wind speed vm = 9m/s and a turbulence intensity TI = 11%

adaptive CKF and adaptive filter MS-CKF extensively. The

scenario investigates data for TSIM = 900s where the filter

sample times are set to TS = 0.1s. The length of the moving

window for averaging the noise statistics is TN = 50s and

thus N = 500. For this problem, a range of 300 ≤ N ≤ 700

is well suited to adapt Rk.

The noise adaptation of the MS-CKF is activated at t = TN .

Both filters are tested against the time-varying noisy signals,

as shown in Fig. 5, where two critical measurements ng and
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Fig. 5. Comparison of selected measurements with and w/o sensor noise

ẍT are corrupted by zero-mean white Gaussian noise (with

step changes in noise covariances).

B. Illustrative Estimation Problem

The CKF and MS-CKF receive the control inputs u and

the noisy outputs y as information. The disturbances vw(t)
and κ are completely unknown (since no wind measurements

are available). The estimation problem is split as follows:

• The master filter estimates the states x = [ẋT xT ϕ̇g ϕg]
T,

the eigenfrequency ω0 and the wind speed vw using a

monolithic CKF. Hence, an augmented system with the

parameter models ω̇0 = 0 and v̇w = 0 is included.

• The linear slave filter estimates the measurement noise

covariances r = [r11 r22 r33]
T (diagonal elements of Rk).

The process noise Qk is assumed to be correct.

Thus, nx = 6 and ny = 3. Additionally, Eqs. (20) are used to

compute estimates for the rotor thrust FT and torque Ma.

C. Estimation Results

Due to limited space, only the most relevant quantities are

shown in the following. First, Fig. 6 shows the measurement

noise estimates for two noisy sensor signals. The MS-CKF

follows quickly the changing noise covariances what the

CKF cannot do. It takes only 50 s after each step to adapt

to the new level which corresponds to the choice of TN . The

slave estimates r̂ii are passed on to the master filter in case

of the MS-CKF (cf. Fig. 1).

Fig. 7 shows illustratively the effect of the adaptation on

the quality of the state estimates. It is observed that the

CKF estimates are impaired by the increased sensor noise

while the estimates of the adaptive filter remain almost

unaffected. The CKF cannot react to the varying noise

environment which leads at worst to divergence (e.g. for the

0 150 300 450 600 750 900

r̂
11

in
(r
p
m
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Fig. 6. Comparison of static and estimated sensor noise parameters
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Fig. 7. Comparison of selected true and estimated quantities

wind speed estimate). The state constraints prevent the CKF

from diverging to a non-physical region (the lower bounds

are 4 m/s for vw and 1.8 rad/s for ω0). These constraints are

the reason why the CKF is able to recover when the noise

subsides to an acceptable level at t=350s and t=650s. Fig. 8

provides a quantitative comparison of the estimation errors.

In order to evaluate the success of the adaptation, Fig. 9

compares the diagonal elements of the innovation covariance

matrices. It can be seen that the discrepancies between the

sample and filter covariances for the CKF are completely

eliminated by the adaptation (both are identical for the MS-

CKF). Thus, the goal to match the covariance matrices has

been perfectly achieved. These simulation results highlight

the superiority of the MS-CKF over the standard CKF.
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In a nutshell, noise adaptation and constraints handling

make a significant difference in filter performance when it

comes to dealing with uncertainties in practice. The designed

MS-CKF tackles even step changes in noise statistics and

adapts quickly. Thereby, it outperforms the standard CKF

considerably.

VI. CONCLUSIONS

This contribution has introduced a novel, adaptive CKF

that addresses filter adaptation and state constraints in nonli-

near state estimation problems at the same time. Compared to

earlier publications ([7], [18], [22]), this approach allows to

adapt theoretically both covariance matrices for process and

measurement noise at the same time. Moreover, this approach

also ensures that state estimates do not leave their allowable

region which as a by-product facilitates the recovery of a

poorly designed filter when the temporary noise conditions

subside to an acceptable level.

The paper has also proposed a promising design metho-

dology that pursues the goal to facilitate a highly automated

filter design. This automated design is based on the numerical

solution of an optimization problem. The proposed filter

specific objective function has the advantage that no tuning

parameters have to be chosen (compared to [18]) as well as

that, if and when the optimal design is found, this yields a

consistent estimator by nature.

Finally, this contribution has assessed the non-adaptive and

the novel adaptive CKF using an acid test scenario for wind

turbine state estimation. The illustrative simulation results

confirm that the novel adaptive filter has important properties

which are required for an industry-ready application in wind

turbine control and monitoring schemes.

Future work will investigate the identifiability problem of

certain filter parameters and the effect on the filter perfor-

mance. Additionally, the presented methodology extends to

wind farm state estimation and is also applicable as part of

advanced wind farm control schemes.
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