
Adapting the EDSM Algorithm for Ensemble
Learning

A Machine Learning Approach to DFA Inference

Radu-Cosmin Dumitru1

Supervisor(s): Sicco Verwer1, Simon Dieck1

1EEMCS, Delft University of Technology, The Netherlands

A Thesis Submitted to EEMCS Faculty Delft University of Technology,
In Partial Fulfilment of the Requirements

For the Bachelor of Computer Science and Engineering
June 22, 2025

Name of the student: Radu-Cosmin Dumitru
Final project course: CSE3000 Research Project
Thesis committee: Sicco Verwer, Simon Dieck, Merve Gürel

An electronic version of this thesis is available at http://repository.tudelft.nl/.



Abstract

Learning Deterministic Finite Automata (DFA) from given input data has been a
central task in the field of Grammatical Inference, and progress in this area is of great
interest from both theoretical and practical points of view. To address this challenge,
several algorithms have been proposed and evaluated using established benchmarks.
One such competition-winning algorithm, Evidence Driven State Merging (EDSM),
uses a heuristic to learn a DFA from given data. However, improvements leveraging
ensemble techniques from machine learning have yet to be explored. In this paper, we
investigate ways to adapt the EDSM algorithm to fit into the ensemble learning frame-
work and analyze the performance of such obtained models when applied to unseen
data. To this end, we compare the performance of the ensembles to that of a standard
EDSM-learned model, evaluating both their output quality and the diversity within
each ensemble. The results indicate significant improvements in scenarios where the
data is sparse.

1 Introduction
Analyzing abstract models of computation is essential in order to determine what is feasible
using computers and other types of machines, the extent of their computational power, and
theoretical limitations. The Deterministic Finite Automaton (DFA) is one such type of
formalism, often considered to be the simplest one. It serves as the foundation for abstract
computational models, and its study provides useful insight into the workings of all others
that build upon it. From a practical perspective, DFA inference algorithms aim to construct
models that capture and generalize the patterns observed in labeled data, making them
valuable for understanding complex or previously unknown systems. Inferred automata
provide compact and explainable representations that have applications in domains such as
cybersecurity, compiler design, software analysis, and information retrieval [1, 2, 3, 4].

The topic of learning or inferring languages has been introduced with Gold’s seminal
paper [5] and has since evolved into its own subfield of Grammatical Inference. DFA learning
has been studied in various forms, such as active [6] and passive [7] learning. The main idea
of passive learning is that an algorithm receives as input a set of strings, or traces, that
the target automaton should accept or reject, and outputs an automaton that is consistent
with the given data. There is no general consensus on which algorithm is the best, as the
inputs and goals vary depending on the application, but there have been attempts to find the
winner in some categories, such as the Abbadingo One DFA learning competition [8], which
sought to promote highly scalable algorithms, with a focus on sparse data. The winning
algorithm of this competition, EDSM, or evidence-driven state merging, is the one that will
be the focus of this paper.

As a machine learning technique, ensemble learning has been introduced as a way to
use existing models to obtain a result better than all other individual ones [9]. Ensem-
bles generally work by combining individually strong yet distinct models so that they can
capture as much information as possible. Therefore, diversity across models is encouraged,
as it is thought to lead to more generalizable results. This technique has proven to be
highly effective in the case of decision trees, an interpretable model of machine learning [10].
However, ensembles have not been implemented in conjunction with DFA learning so far.
While providing interpretable models for sequential data, learning algorithms often struggle
with limited generalizability when confronted with sparse data. DFAs learned from sparse
datasets are prone to overfitting, making them less effective at classifying new inputs. Using

1



ensemble techniques, there is reason to believe that we will obtain models that are more
accurate and robust in real-world applications, where data may be sparse or incomplete.

This work aims to investigate the effectiveness of applying ensemble techniques on the
competition-winning EDSM algorithm for DFA learning, by modifying its state merging
heuristic and creating multiple candidate automata. The main contributions of this paper
are the adaptation of the EDSM algorithm for use within ensemble learning frameworks, the
analysis of diversity among models produced by the ensemble, and performance comparisons
of different types of ensembles against a single DFA learned using state-of-the-art methods.

To address these research questions, the paper is structured as follows. In Section 2,
the necessary background for the EDSM algorithm is given, along with an overview of
the ensemble techniques. Next, in Section 3, the modifications made to the algorithm
are presented, as well as the implementation of the ensemble and its evaluation. Section 4
details the experimental results, and their corresponding discussion is presented in Section 5.
Finally, Section 6 addresses responsible research practices, and Section 7 provides concluding
remarks and an outlook for the future directions of this research.

2 Background
This section presents the preliminary concepts required for the remainder of the paper by
detailing the EDSM algorithm for learning a DFA, as well as common ensemble techniques.

2.1 DFA Learning
It has been proven that the general task of inferring a minimal DFA consistent with a given
dataset S is NP-complete [11]. Nevertheless, algorithms that identify DFAs under certain
conditions have been developed, such as RPNI (Regular Positive and Negative Inference), a
polynomial time algorithm which is based on characteristic sets [7].

In the context of passive learning, the EDSM algorithm operates on two finite sets: S+

and S−, containing positive and negative traces extracted from a target formal language,
respectively.

2.1.1 Initial Hypothesis

The Prefix Tree Acceptor is the starting point of most inference algorithms. It accepts all
positive traces and rejects all negative ones in the dataset by organizing them into a rooted
tree based on their shared prefixes. As such, it recognizes the input data perfectly, and the
paths from the root to any state are unique. Each path from the root to a leaf corresponds
to a trace, with accepting or rejecting states marking the ends of the recognized strings.
The Augmented Prefix Tree Acceptor (APTA) serves as the initial hypothesis and includes
intermediate or ’free’ states that are neither accepting nor rejecting, therefore enabling the
possibility of state merges during the inference process. An example of such an automaton
is given in Figure 1.

2



Figure 1: Augmented Prefix Tree Acceptor for S+ = {a, ba, baa}, S− = {ϵ, aba, bab}, where
ϵ denotes the empty string. The initial state is marked by the transition with no source.
Accepting states are marked by a double circle, rejecting states by a single circle, and states
of unknown type by ’?’.

2.1.2 State Merging

The next step is to refine the initial hypothesis, which is fully tailored to the training data,
by merging its states, in order to achieve better generalization. Due to the enormous number
of total merges possible at any given point for a DFA, exhaustively checking all of them is
infeasible. EDSM uses the red-blue state merging framework as a strategy for exploring
merges to perform [8]. An overview of this framework is given in Algorithm 1.

Algorithm 1 Red-blue state merging

Input: S = ⟨S+, S−⟩: training set
Output: DFA D consistent with S
1: D ← CreateAPTA(S)
2: Red← {root}, Blue← {children of root}
3: while Blue ̸= ∅ do
4: if there are 2 states r ∈ Red and b ∈ Blue such that their merge is consistent then
5: Pick the highest scoring pair (r, b)
6: Merge(D, r, b)
7: else
8: random← a random state drawn uniformly from Blue
9: Blue← Blue \ {random}

10: Red← Red ∪ {random}
11: end if
12: for each state r ∈ Red do
13: for each child c of r do
14: if c /∈ Red ∪Blue then
15: Blue← Blue ∪ {c}
16: end if
17: end for
18: end for
19: end while
20: return D

The red states serve as the foundation of the hypothesis, while blue states are candidates
that try to merge into it. The red states are assumed to represent a correct and consistent

3



part of the final DFA. Initially, the root of the APTA is marked as red, and its children
become blue states, forming the fringe. The algorithm iteratively attempts to merge blue
states into red ones, assigning a score to each merge and choosing to execute the best one.

Merge(D, r, b) is a procedure that creates a new state in D and reroutes all inbound
and outbound transitions from r and b to it. However, in this process, non-deterministic
transitions may appear — the merged state could have transitions with the same symbol
to multiple target states. In such situations, a determinization step is required to preserve
this property of the DFA. This involves recursively merging the target states of overlapping
transitions until there is no non-determinism left. If, at any point, a merge is attempted
between an accepting state and a rejecting one, it is deemed inconsistent and the entire
merge is canceled. Figure 2 shows an example of non-determinism.

Figure 2: A merge between 2 states during determinization, highlighted by the dashed
rectangle. The result is still non-deterministic.

In the case that there are no consistent merges available, the framework randomly picks
a blue state and promotes it to red, thus continuing the merging process. At the end of
each iteration, the blue fringe is updated such that all uncolored children of the red states
become blue.

2.1.3 EDSM Heuristic

The score of a red-blue candidate merge is determined based on evidence. In principle, we
want to avoid suboptimal merges that lead to bigger and worse-performing DFAs later on.
Therefore, the heuristic for evidence tries to steer the merges towards a more accurate DFA
that fits the data well.

The evidence score s is computed as the sum of the number of merges between accepting
states and the number of merges between rejecting states, before and after performing the
merge, as part of the determinization process: s = P+N , where P is the number of positive-
positive merges and N is the number of negative-negative merges that were executed. In
the original algorithm, the candidate merge with the highest score is greedily chosen as the
next one to be executed. This gradually builds a DFA that is consistent with all traces in
the dataset, with the objective of generalizing effectively to unseen data.

2.2 Ensemble Techniques
While a multitude of ensemble types exists, each with varying assumptions and use cases, we
focus on two approaches that are particularly well-suited for our setting: randomization and

4



boosting. These techniques were chosen for their compatibility with heuristic-based algo-
rithms like EDSM and for their potential to combat imbalanced scenarios often encountered
in automaton inference.

2.2.1 Randomized Models

In learning tasks, algorithms that employ a greedy strategy where, at each step, a locally
optimum choice is made based on a predefined evaluation function or heuristic, may run
into the problem of converging to a local optimum and missing better solutions elsewhere
in a vast search space.

To mitigate this issue, a common technique involves introducing a controlled element of
randomness or noise into the decision-making process of the underlying algorithm. Instead of
strictly adhering to the highest scoring action at all times, a slight perturbation is applied to
the decision criteria. This makes it so that the resulting collection of models might capture
aspects of the input data that were previously missed.

2.2.2 Boosting

Boosting is a type of ensemble that is based on the intuition that combining multiple weak
models should result in a stronger one [12]. It is a sequential training process in which a
weak learner is given adjusted training data at every step. Models are boosted iteratively,
where they are trained to correct the errors made by the previous ones. Boosting assigns
higher weights to properties of misclassified samples, forcing subsequent models to focus
on those cases. It is appreciated for performing well by achieving high final accuracies,
not overfitting, and reducing bias in the models, properties which are also desirable for the
problem at hand.

It has been shown to be successful in both classification [13] and regression [14] tasks.
Since EDSM outputs an automaton that will be used to predict new traces, this is analogous
to a binary classification problem, for which boosting is appropriate.

3 Methodology
This section describes the ensembling approaches and the evaluation methods used to test
the effectiveness of the ensembles.

3.1 Ensemble Types
3.1.1 Randomized Models

In the context of EDSM, the heuristic computes an evidence score for each candidate merge
and then greedily picks the best one. To diversify the resulting hypotheses, we introduce
noise into the scoring mechanism. This allows the algorithm to choose merges that appear
to be suboptimal, which can be beneficial by enabling the red-blue framework to perform
merges that would otherwise be inaccessible. This can potentially reveal DFAs that perform
better than the current state-of-the-art.

5



EDSM Adaptation

We apply a multiplicative random factor to the evaluation score s:

snew = s · (1−R),where R ∼ U(0, r),with 0 < r < 1.

Here, U(0, r) denotes the uniform distribution over the interval (0, r). Each member of the
ensemble will use a fixed r as a hyperparameter in the training phase.

3.1.2 Boosting

In order to perform boosting, we assign weights to every state in the APTA derived from the
training set. All weights are initialized uniformly in the CreateWeightedAPTA procedure,
and get recalculated at every learning iteration using a validation set. Pseudocode of this
process is given in Algorithm 2.

Algorithm 2 Boosting process

Input: S = ⟨S+, S−⟩: training set, V = ⟨V+, V−⟩: validation set, n: number of models
Output: Ensemble ε = (M1,M2, ...,Mn)
1: D ← CreateWeightedAPTA(S)
2: for i in 1, 2, ..., n : do
3: Mi ← MergeStates(D)
4: Vi ← Validation traces misclassified by Mi

5: D ← UpdateWeights(D,Vi)
6: Add Mi to ε
7: end for
8: return ε

Each model is merged from the weighted APTA using EDSM in MergeStates, taking into
account the weights obtained after the previous iteration. The accuracy of the new model
on the validation set is used as its weight, determining its contribution to the ensemble’s
vote. Then, all misclassified traces are simulated on the APTA. The final states of these
simulations have their weights doubled in UpdateWeights. In cases where a validation trace
does not have a complete path in the APTA, the simulation considers the last reachable
state as its final state.

EDSM Adaptation

For all candidate merges (r, b), the score calculation is changed to

snew =
wr + wb

2
· s

Where wr and wb are the weights of the red and blue states, respectively, and s is the
standard EDSM score. This is motivated by the fact that we want to focus more on the
properties of a trace that caused it to be misclassified. States with higher weights correspond
to regions of the DFA that require more careful handling, because they represent uncertainty
based on a validation set of traces. Averaging the weights of the red and blue states in a
candidate merge ensures that both contribute to the adjusted evidence score. If either state
is frequently responsible for misclassification of traces, the combined score increases relative
to the standard one, making the merge gain priority over others.

6



3.2 Ensemble Prediction
After an ensemble has been created, we use it to predict traces of unseen data. In the context
of ensembles of DFAs, we choose weighted majority voting as the prediction method, due to
its ability to account for differences in model quality. In a standard majority voting scheme,
each DFA in the ensemble would cast one vote for a prediction, and the final decision would
be based on which one occurred more often amongst the models. However, this approach
assumes that all models are equally accurate, which is false, due to either randomization
or state weighting. Weighted majority voting addresses this by assigning a weight to each
model’s vote, based on its individual accuracy. In order to compute these weights, we will use
validation sets, separated from the training and test sets, to avoid leaking information and
skewing results. At prediction time, the votes of the models are scaled by their weights and
the final decision corresponds to the class with the higher weighted sum. Formally, given
n DFA models M1,M2, ...,Mn, each with an associated weight wi, i ∈ 1, n, the ensemble
prediction for a trace t is:

prediction(t) =

{
1 if

∑n
i=1 wi ·Mi(t) > 0

0 otherwise

where Mi(t) = 1 if model i accepts trace t and −1 otherwise. This makes the models that
were more accurate on the validation data have a proportionally bigger influence on the
ensemble prediction, reducing the impact of weaker models.

3.3 Evaluation Methods
The resulting ensembles are analyzed from 2 perspectives: their predictive quality on new
data and their internal diversity.

3.3.1 Ensemble Output Metrics

The ensemble outputs are measured using 4 key metrics in order to provide a comprehensive
overview of their predictive quality:

• Balanced Accuracy: overall proportion of correctly classified samples out of all samples,
adjusted for the class ratios

Balanced Accuracy =
1

2

(
TP

TP + FN
+

TN

TN + FP

)
(1)

• Precision: proportion of true positive predictions out of all samples predicted as posi-
tive

Precision =
TP

TP + FP
(2)

• Recall: proportion of true positive predictions out of all positive samples

Recall =
TP

TP + FN
(3)

• F1-score: harmonic mean of precision and recall

F1-score = 2 · Precision · Recall
Precision + Recall

=
2 · TP

2 · TP + FP + FN
(4)

7



Where: TP = True Positives, TN = True Negatives, FP = False Positives, FN = False
Negatives.

Given that most real-world applications consist of imbalanced data, we use balanced
accuracy, which ensures that both the positive and negative classes are weighted equally in
the evaluation. This prevents the ensemble from achieving high predictive scores when it
favors the majority class.

We also include precision, recall and F1-score in our analysis. These are metrics that
focus on the positive class, which is justified in the context of software inference or pro-
tocol analysis. High precision indicates that the ensemble makes few false positive errors,
while high recall reflects a low number of false negative errors. False negatives can lead
to overlooking valid behaviors of the system, potentially blocking system operations. On
the other hand, false positives have the risk of allowing unsafe behavior. The F1-score pro-
vides a balanced view when there is a trade-off between these two types of errors. A high
F1-score means that the ensemble has good overall classification accuracy with respect to
positive traces. Negative traces often represent faults or random deviations from normal
behavior, so their accurate prediction is not as essential, their role being mainly to prevent
oversimplifying the automaton by reducing the number of permitted, consistent merges.

3.3.2 Inter-model Variety Metric

Average Disagreement Rate

For any 2 distinct models MA and MB , their disagreement rate ∆A,B is calculated as the
proportion of test samples for which MA and MB have different predictions. To obtain the
overall disagreement rate of the ensemble ∆ε, this rate is then averaged over all ordered pairs
of models in the ensemble ε. This measure provides insight into an ensemble’s diversity: a
higher average disagreement rate indicates greater diversity, which leads to robustness and
resilience to outliers.

∆A,B =
1

N

N∑
i=1

1MA(ti )̸=MB(ti) (5)

where N is the number of test traces t, and 1condition is the conditional function that returns
1 if the condition is true and 0 otherwise.

4 Experimental Setup and Results
This section covers the experiments that were performed in order to evaluate the effectiveness
of our approaches. We first describe the general setup regarding the implementation details,
followed by results obtained using the methodology.

4.1 Setup
All experiments were performed using the open-source FlexFringe framework [15] written in
C++, which provides implementations of automaton inference algorithms, including EDSM.
The proposed ensembles are integrated within its codebase.

We used 10 constituent models for every ensemble configuration. The Randomized Mod-
els were tested in 3 instances: a highly randomized ensemble with the hyperparameter
r = 0.7. Second, a slightly randomized ensemble with r = 0.4. The third ensemble has

8



the lowest amount of randomization, with r = 0.1. The boosted ensemble was also bench-
marked. Lastly, all ensembles were compared to a single DFA learned using the original
EDSM heuristic.

Datasets

The StaMinA competition [16] offers datasets derived from automata that model software
systems. These datasets vary in sparsity and alphabet sizes, as both factors are controlled
during generation, making them well-suited for evaluating our ensembles. FlexFringe also
includes 100 training datasets from the StaMinA competition. We split each of those into
training, validation and test sets with a 70-15-15 ratio, such that the sparsity of the original
datasets is preserved. The training set is used to infer the DFA. The validation set is used
to compute the model’s weight in the ensemble, and, in the case of boosting, to update
state weights in the APTA after each iteration. The test set is reserved for evaluating the
predictive performance of the ensemble. The original datasets contained duplicates, but as
these make no difference to the EDSM inference, we made all traces unique, ensuring that
each trace appears only once across the training, validation and test sets in every split. This
prevents information leakage and preserves the integrity of the evaluation.

4.2 Results
We plotted the evaluation metrics of 50 out of the 100 datasets for ease of visualization. The
datasets are sorted in increasing order of their density, measured as the proportion of positive
traces. Furthermore, in order to provide objective analysis of the results, we computed the
mean and standard deviation of every method. For the ensembles, we additionally performed
a t-test against the baseline EDSM to determine whether there are statistically significant
improvements. Appendix A provides the complete statistics for interpretation.

Figures 3, 4, 5, 6 show the ensemble output metrics, while Figure 7 compares the inter-
model variety of the ensembles.

Figure 3: Balanced Accuracy

Balanced Accuracy is similar across all ensembles and almost every type of ensemble
performs marginally better than the single DFA on the overall datasets.

9



Figure 4: Precision

For the sparsest datasets, the ensembles significantly outperform the single DFA in terms
of precision, meaning the traces predicted as positive by the ensembles are much more likely
to be truly positive. This improvement is statistically significant, with p-values resulting
from the paired t-tests for all ensembles, over all datasets, well below 0.05. The gap closes
as the sets become denser, as reflected by the negative t-statistics.

Figure 5: Recall

Ensemble performance regarding recall was not superior to the baseline, with their bene-
fits primarily realized on the less sparse datasets. As the sets begin to contain more positive
traces, the single DFA distances itself, but the ensembles maintain comparable performance
when all datasets are considered.

10



Figure 6: F1-score

As the harmonic mean of precision and recall, the F1-score aligns with the trends observed
in the previous results. Ensemble methods are significantly better than the baseline when
the datasets contain a limited number of positive traces. Conversely, their performance
significantly worsens as the datasets gain more positive traces. This behavior is supported
by high t-statistic values and exceptionally low p-values in all paired t-tests performed on
both the lower and upper halves of the data.

Figure 7: Average Disagreement Rate

We observe the expected pattern of disagreement rates being higher the more randomized
an ensemble is. The boosted ensemble consistently has the highest average disagreement
rate among all other evaluated methods, regardless of the dataset portion analyzed.

11



5 Discussion
All metrics point to the fact that the ensemble methods are able to generalize better than
a single, greedily-learned DFA when the amount of positive data available is limited. The
baseline EDSM model performs better as the datasets increase in the number of positive
traces. This is a good indicator of the importance of evidence when merging states of the
original APTA—the better EDSM can differentiate between candidate merges, the more
it can achieve good predictive performance. However, the ensemble methods were able
to maintain comparable output quality, a result which may be attributed to the weighted
majority voting, which attempts to compensate for less desirable models present in the
ensemble.

Boosting was inconsistent, varying from the best to the worst performing one on seem-
ingly unrelated datasets. However, the F1-score indicates that it is a middle ground between
the single DFA and the Randomized Models. The biggest differences are observed at the
extremes of the datasets, in the sparsest and densest ones. This can be attributed to the
constant recalculation of the state weights and points to non-convergence. It consistently
exhibited the highest average disagreement rate among its models, but instead of enabling
a more comprehensive representation of the target data, this appears to have hindered its
performance.

6 Responsible Research
This section discusses the ethical implications regarding DFA learning and outlines the
responsible research practices for this paper.

While this work focuses on the theoretical learning and evaluation of DFAs, we acknowl-
edge the importance of responsible research. Since no personal, sensitive or real-world user
data was used, and the methods do not interact with human subjects, the ethical risks in
this context are minimal.

Nevertheless, there are some broader implications to take into account. For example,
DFA learning methods could be integrated into real-world systems such as intrusion detec-
tion, threat classification, and behavioral modeling. In such applications, ethical concerns
might be present, especially related to fairness and misuse. While this paper is not connected
in any way to these cases, we encourage mindful application of the presented methods.

The use of generative AI in this paper was limited to non-substantial assistance, such as
improving sentence wording and formatting. The research ideas, concepts, experiments and
analyses were fully conducted by the authors. The used prompts had the form of “Does this
sentence sound natural, and is it easy to understand? [...]”.

To ensure reproducibility of the results, the FlexFringe framework1, which includes the
datasets and codebase used for DFA inference and ensemble methods, is publicly available.
The code for the implementation of the ensembles is provided, along with the datasets and
scripts used to run the experiments.

7 Conclusions and Future Work
This paper presented a novel application of ensemble learning to DFA inference by adapting
the EDSM algorithm in such a way that it fits the general ensemble framework. Through

1https://github.com/tudelft-cda-lab/FlexFringe

12

https://github.com/tudelft-cda-lab/FlexFringe


the introduction of controlled stochasticity and state weights, we generated diverse models
that deviated from the greedy path of learning. This allowed for construction of ensembles
of DFAs that achieved similar or better performance and generalization than single models,
depending on the sparsity of the data, with ensembles outperforming the DFA learned using
a state-of-the-art algorithm due to the fact that they were able to capture a more complete
representation of the data at hand. The experiments showed that the impact of the evidence
heuristic used in the original algorithm was not negligible—as the datasets got denser, the
heuristic had access to more information about merges and could therefore make better
decisions.

Future work in this direction may include exploring a wider variety of ensemble methods
and investigating alternative modifications to the EDSM heuristic to enhance accuracy and
generalizability. Additionally, developing ways to increase model diversity without com-
promising the predictive performance of the ensemble, together with more comprehensive
measures of this quantity, might be useful. Evaluating ensembles on a larger range of hyper-
parameters could yield practical advantages. For randomized models, considering specific
probability distributions beyond the uniform one presents an interesting path to pursue. In
the context of boosting, updating the state weights based on the trace path, rather than
only the final state that the simulation ends up in, could prove beneficial. Furthermore,
establishing theoretical guarantees on the convergence of boosting algorithms that employ
robust weight recalibration methods and EDSM score adaptations should lead to better
results. One may also draw inspiration from combinatorial optimization approaches to ef-
fectively balance the exploration of a large set of merge candidates with the exploitation of
promising options.

References
[1] E. Gribkoff. Applications of deterministic finite automata. UC Davis, pages 1–9, 2013.

[2] S. Wang, F. Sun, H. Zhang, D. Zhan, S. Li, and J. Wang. EDSM-based binary protocol
state machine reversing. Computers, Materials and Continua, 69(3):3711–3725, 2021.

[3] M.J.H. Heule and S. Verwer. Software model synthesis using satisfiability solvers. Em-
pirical Software Engineering, 18(5):825–856, 2013.

[4] A. Aho and M. Corasick. Efficient string matching: An aid to bibliographic search.
Communications of the ACM, 18:333–340, 1975.

[5] E. M. Gold. Language identification in the limit. Information and Control, 10(5):447–
474, 1967.

[6] D. Angluin. Learning regular sets from queries and counterexamples. Information and
Computation, 75(2):87–106, 1987.

[7] J. Oncina and P. García. Inferring regular languages in polynomial update time. World
Scientific, 1992.

[8] K. J. Lang, B. A. Pearlmutter, and R. A. Price. Results of the abbadingo one dfa learn-
ing competition and a new evidence-driven state merging algorithm. In International
Colloquium on Grammatical Inference, pages 1–12. Springer Berlin Heidelberg, 1998.

13



[9] D. Opitz and R. Maclin. Popular ensemble methods: An empirical study. Journal of
Artificial Intelligence Research, 11:169–198, 1999.

[10] M. Azad, T.H. Nehal, and M. Moshkov. A novel ensemble learning method using
majority based voting of multiple selective decision trees. Computing, 107(42), 2025.

[11] E. M. Gold. Complexity of automaton identification from given data. Information and
Control, 37(3):302–320, 1978.

[12] R. E. Schapire. The strength of weak learnability. Machine Learning, 5(2):197–227,
1990.

[13] Y. Freund and R. E. Schapire. A decision-theoretic generalization of on-line learning and
an application to boosting. In Computational Learning Theory, pages 23–37. Springer
Berlin Heidelberg, 1995.

[14] R. S. Zemel and T. Pitassi. A gradient-based boosting algorithm for regression prob-
lems. In Proceedings of the 14th International Conference on Neural Information Pro-
cessing Systems, pages 675–681, 2000.

[15] S. Verwer and C. A. Hammerschmidt. flexfringe: A passive automaton learning pack-
age. In 2017 IEEE International Conference on Software Maintenance and Evolution
(ICSME), pages 638–642. IEEE, 2017.

[16] N. Walkinshaw, B. Lambeau, C. Damas, P. Dupont, S. Ramesh, J. Clark, J. Hughes,
T. Margaria, and J. Krinke. STAMINA: a competition to encourage the development
and assessment of software model inference techniques. Empirical Software Engineering,
18(5):791–824, 2013.

A Statistical Analysis
Tables 1–4 present the statistics for the 4 output metrics, in order: Balanced Accuracy,
Precision, Recall and F1-score. Table 5 presents the statistics for the average disagreement
rate within an ensemble. Every table except Table 5 has three subtables that offer a more
detailed breakdown of the results by dataset density. The datasets are sorted in increasing
order of density, so the lower half corresponds to sparser datasets and the upper half to
denser ones.

14



Table 1: Balanced Accuracy

Method Mean Standard Deviation Paired t-test vs Single (t, p)

Single 0.6019 0.1183 —
Random, r = 0.1 0.6116 0.1153 (1.30, 0.1952)
Random, r = 0.4 0.6083 0.1178 (0.87, 0.3846)
Random, r = 0.7 0.6121 0.1211 (1.33, 0.1859)
Boosted 0.6092 0.1259 (1.29, 0.1990)

(a) All datasets

Method Mean Standard Deviation Paired t-test vs Single (t, p)

Single 0.5834 0.0735 —
Random, r = 0.1 0.6039 0.0825 (2.51, 0.0155)
Random, r = 0.4 0.6004 0.0859 (1.98, 0.0528)
Random, r = 0.7 0.6048 0.0894 (2.35, 0.0229)
Boosted 0.5943 0.0841 (1.32, 0.1925)

(b) Lower half of datasets

Method Mean Standard Deviation Paired t-test vs Single (t, p)

Single 0.6204 0.1480 —
Random, r = 0.1 0.6193 0.1402 (-0.08, 0.9328)
Random, r = 0.4 0.6162 0.1422 (-0.35, 0.7286)
Random, r = 0.7 0.6194 0.1458 (-0.08, 0.9373)
Boosted 0.6241 0.1556 (0.48, 0.6365)

(c) Upper half of datasets

15



Table 2: Precision

Method Mean Standard Deviation Paired t-test vs Single (t, p)

Single 0.5790 0.1316 —
Random, r = 0.1 0.6330 0.1460 (3.29, 0.0014)
Random, r = 0.4 0.6284 0.1466 (3.03, 0.0031)
Random, r = 0.7 0.6323 0.1488 (3.24, 0.0016)
Boosted 0.6331 0.1387 (4.38, 0.0001)

(a) All datasets

Method Mean Standard Deviation Paired t-test vs Single (t, p)

Single 0.5186 0.0856 —
Random, r = 0.1 0.6689 0.0929 (10.50, 0.0001)
Random, r = 0.4 0.6641 0.0976 (9.70, 0.0001)
Random, r = 0.7 0.6707 0.0989 (10.48, 0.0001)
Boosted 0.6552 0.0908 (9.26, 0.0001)

(b) Lower half of datasets

Method Mean Standard Deviation Paired t-test vs Single (t, p)

Single 0.6394 0.1414 —
Random, r = 0.1 0.5970 0.1772 (-1.89, 0.0648)
Random, r = 0.4 0.5927 0.1758 (-2.15, 0.0367)
Random, r = 0.7 0.5939 0.1777 (-2.06, 0.0443)
Boosted 0.6109 0.1711 (-2.59, 0.0125)

(c) Upper half of datasets

16



Table 3: Recall

Method Mean Standard Deviation Paired t-test vs Single (t, p)

Single 0.5900 0.1444 —
Random, r = 0.1 0.5766 0.1469 (-0.78, 0.4349)
Random, r = 0.4 0.5722 0.1540 (-1.03, 0.3057)
Random, r = 0.7 0.5719 0.1573 (-1.06, 0.2911)
Boosted 0.5834 0.1559 (-0.44, 0.6590)

(a) All datasets

Method Mean Standard Deviation Paired t-test vs Single (t, p)

Single 0.5509 0.1164 —
Random, r = 0.1 0.5972 0.0909 (2.34, 0.0236)
Random, r = 0.4 0.5940 0.1078 (2.05, 0.0459)
Random, r = 0.7 0.5884 0.1085 (1.83, 0.0738)
Boosted 0.5985 0.1195 (2.09, 0.0417)

(b) Lower half of datasets

Method Mean Standard Deviation Paired t-test vs Single (t, p)

Single 0.6292 0.1583 —
Random, r = 0.1 0.5561 0.1845 (-2.88, 0.0059)
Random, r = 0.4 0.5504 0.1866 (-3.17, 0.0026)
Random, r = 0.7 0.5554 0.1927 (-2.94, 0.0050)
Boosted 0.5682 0.1840 (-3.69, 0.0006)

(c) Upper half of datasets

17



Table 4: F1-score

Method Mean Standard Deviation Paired t-test vs Single (t, p)

Single 0.5825 0.1351 —
Random, r = 0.1 0.5996 0.1399 (1.10, 0.2730)
Random, r = 0.4 0.5952 0.1443 (0.81, 0.4203)
Random, r = 0.7 0.5966 0.1469 (0.91, 0.3674)
Boosted 0.6032 0.1421 (1.66, 0.1009)

(a) All datasets

Method Mean Standard Deviation Paired t-test vs Single (t, p)

Single 0.5318 0.0967 —
Random, r = 0.1 0.6276 0.0807 (6.54, 0.0001)
Random, r = 0.4 0.6232 0.0926 (5.68, 0.0001)
Random, r = 0.7 0.6226 0.0928 (5.89, 0.0001)
Boosted 0.6214 0.0956 (5.25, 0.0001)

(b) Lower half of datasets

Method Mean Standard Deviation Paired t-test vs Single (t, p)

Single 0.6331 0.1484 —
Random, r = 0.1 0.5717 0.1762 (-2.71, 0.0092)
Random, r = 0.4 0.5671 0.1774 (-3.01, 0.0041)
Random, r = 0.7 0.5706 0.1821 (-2.78, 0.0077)
Boosted 0.5849 0.1750 (-4.00, 0.0002)

(c) Upper half of datasets

18



Table 5: Average Disagreement Rate

Method Mean Standard Deviation

Random, r = 0.1 0.3703 0.1119
Random, r = 0.4 0.3774 0.1089
Random, r = 0.7 0.3902 0.1045
Boosted 0.4245 0.0801

(a) All datasets

Method Mean Standard Deviation

Random, r = 0.1 0.3885 0.0751
Random, r = 0.4 0.3949 0.0697
Random, r = 0.7 0.4080 0.0588
Boosted 0.4381 0.0457

(b) Lower half of datasets

Method Mean Standard Deviation

Random, r = 0.1 0.3522 0.1370
Random, r = 0.4 0.3600 0.1351
Random, r = 0.7 0.3723 0.1332
Boosted 0.4109 0.1019

(c) Upper half of datasets

19


	Introduction
	Background
	DFA Learning
	Initial Hypothesis
	State Merging
	EDSM Heuristic

	Ensemble Techniques
	Randomized Models
	Boosting


	Methodology
	Ensemble Types
	Randomized Models
	Boosting

	Ensemble Prediction
	Evaluation Methods
	Ensemble Output Metrics
	Inter-model Variety Metric


	Experimental Setup and Results
	Setup
	Results

	Discussion
	Responsible Research
	Conclusions and Future Work
	Statistical Analysis

