
FIRSTAFF

Floating Spar
Optimization
A constraint set investigation for the use of
simulated annealing for substructure optimization

Torsten Giles Pietersz

Floating Spar
Optimization

A constraint set investigation for the use of
simulated annealing for substructure

optimization

by

Torsten Giles Pietersz

Academic Supervisor: O. Colomés
Academic Supervisor: Z. Gao
Company Supervisor: M. Livingstone
Project Duration: February, 2022 - November, 2022
TU Delft faculty: Faculty of Mechanical Engineering, Delft
NTNU department: Department of Marine Technology, Trondheim

Cover: Hywind Pilot Site by Aleseund University College [5]

Preface

This thesis attempts to develop a design algorithm for a floating substructure of a wind turbine, the
algorithm is a non-gradient-based optimizer which optimizes for mass. The research is carried out
through the TU-Delft, NTNU and DNV. The latter is highly involved in the requirements set for the tool
itself.
The author would like to acknowledge Zhen Gao, Michael Livingstone and Oriol Colomés. All three of
you have significantly impacted my development during this thesis. Thank you for your time, expertise
and, most of all, your patience.

Torsten Giles Pietersz
Delft, December 2022

i

Summary

This report serves as a thesis for the European Wind Energy Master’s program. The project is set up
in cooperation with DNV, aiming to develop a preliminary design tool for their clientele. Ideally, the tool
will become a part of the greater software package offered by DNV called ’Renewables Architect’ (RA).
This framework has been designed specifically for Multi-disciplinary Design, Analysis and Optimization
(MDAO).

The thesis consists of four chapters; ’Introduction’, ’Numerical load and response’, ’Optimization’
and ’Results’. The introduction begins with background information on what role floating wind will play
in the offshore wind industry and why this is a relevant topic. A general overview of floaters is pre-
sented with a comparison of the advantages of each type of floater. As well a chronological review of
approachs to preliminary design. The numerical load and response chapter is divided into theory and
methodology. Theory begins with the calculation of forcing and starts with hydrodynamics forcing. Hy-
drodyamic forcing is based on wave kinematics, as such airy wave theory and regular wave kinematics
are the first to be explored. After this, the superposition principle is introduced, which leads to irreg-
ular wave kinematics. Both Morison’s equations and the diffraction approach of Maccamy Fuchs are
presented for calculating the hydrodynamic forces. Next, aerodynamics are reviewed in 2.1.1, which
begins with the simple principles of lift force on a blade and goes into blade element momentum theory.
Afterwhich wind kinematics are discussed, covering the Kaimal spectrum and variations of its usage.
The following part of the numerical load and response theory, is the Fatigue damage. Where using
Miner’s rule, two methods for damage calculation are presented; rainflow counting for time domain
simulations and Dirlik’s method for frequency domain simulations. After the theory is discussed, the
numerical load and response methodology is discussed. The methodology begins with an exploration
of the considered site. This will form the basis for fatigue damage calculations’ environmental load
cases later. The Norway North Sea site 15 is used as a reference location. A joint conditional distri-
bution calculates the frequency of occurrence for the relevant environmental condition set. Next the
approach to modelling the floating wind turbine is discussed in 2.2.2. The structural model section
begins with a detailed review of the 15MW reference tower and turbine. This section accounts for any
calculations made on the turbine and tower. After the spar floater is discussed, some of the spar’s
design is based on the values calculated from the turbine and tower. Finally, the three elements, spar,
turbine, and tower, are combined into one global coordinate system in the whole system class, where
more calculations are presented. With the model set up, the next section in the methodology chapter
is the forcing calculation on the model. The decision is made to model in the time domain. The forcing
section discusses how wind and wave kinematics are generated using Kaimal and Jonswap spectra,
respectively. A logarithmic depth distribution is used for wave kinematics for computational efficiency.
The hydrodynamic forcing is calculated with Morison’s equations. For aerodynamic forcing, an aver-
age thrust coefficient is introduced that allows for the calculation of thrust based on the blade-swept
area. The response calculation is then presented in the methodology chapter, where the equations
of motion are set up in matrix form, and terms in all of the matrices are then derived for the mass,
added mass, stiffness and damping matrix. The stiffness matrix considers hydrodynamic stiffness and
mooring stiffness. The terms in the damping matrix are derived from aerodynamic and hydrodynamic
damping. Hydrodynamic damping only considers viscous damping terms. The model is then tested
for a set of regular and irregular wave and wind conditions to analyze the system’s behaviour. The
fatigue calculation is in the next section, where the substructure is divided into welded areas that will
be investigated for lifetime fatigue. The bending stress analysis is presented for the cross-sectional
stress of the substructure.

The Optimization chapter begins with an exploration of the theory behind optimization. This is a
broad review of both gradient and gradient-free methods. First, considering the gradient-based meth-
ods, steepest descent, conjugate gradient and quasi-newton approach are all discussed in this section.
Gradient-free methods have a broader range as they are based on theoretically infinite heuristic logic.

ii

iii

As such, two algorithms are described; Genetic Algorithms and Simulated Annealing. The method-
ology chapter covers how the theory was implemented and motivates design and simulation choices.
The decision is made to use the simulated annealing algorithm, which is further investigated in the
methodology section. The methodology section explains how each step in the algorithm is performed
and investigates the effects of temperature range on the metropolis criteria. The stopping criteria are
also introduced together with their respective parameters. A simple objective function is used to run
through the optimization algorithm to increase understanding of the algorithm. The optimization algo-
rithm is then used on a set of test functions known to be challenging to solve. Finally, the optimization
problem for this research is formulated. The design space is visualized and compared to the most sim-
ilar test function. After which, the constraints used by the optimizer are presented. The first constraint
set consists of logical design constraints determined by the spar geometry. After which, the constraint
set also includes limitations on the extreme response in time domain simulation. In the results chapter,
it is found that this slows down the process so much that it is not feasible to include fatigue damage
in the constraint function. Furthermore, it is found that global fatigue damage wouldn’t be a govern-
ing constraint. The results chapter discusses the importance of mooring stiffness in this optimization.
Present the results from constraining the optimizer with the time domain response and compare the
fatigue lifetime of the optimal designs. It is found that global fatigue is not a governing design consider-
ation. Finally, a discussion is presented where the work is critiqued, and recommendations are made
for further work.

Contents

Preface i

Summary ii

1 Introduction 1
1.1 Floating Wind . 1
1.2 Substructures General Overview . 2
1.3 Preliminary Design . 3
1.4 Research Question . 4

2 Numerical load and response 5
2.1 Theory: Numerical loads and response . 5

2.1.1 Forcing . 5
2.1.2 Fatigue Damage . 12

2.2 Methodology: Numerical loads and response . 14
2.2.1 Environmental Conditions . 14
2.2.2 Structural Model . 18
2.2.3 Forcing Calculations . 23
2.2.4 Response Calculation . 28
2.2.5 Fatigue Calculation . 40
2.2.6 Lifetime fatigue and Environment . 42

3 Optimization 43
3.1 Theory: Optimization . 43

3.1.1 Gradient Based Methods . 43
3.1.2 Gradient Free Methods . 45

3.2 Methodology: Optimization . 48
3.2.1 Simulated Annealing . 48
3.2.2 Test Functions . 52
3.2.3 Optimization Formalism . 55
3.2.4 Constraints . 56
3.2.5 Fatigue Constraints . 58

4 Results 59
4.1 Constraining by Geometrics . 59

4.1.1 Set Mooring Stiffness . 59
4.1.2 Mooring stiffness based on surge natural period 62

4.2 Constraining with Time Domain . 65
4.3 Constraining with Fatigue Damage . 68

5 Conclusion and Discussion 69
5.1 Conclusion . 69

5.1.1 Overal conclusions . 70
5.2 Discussion and Reccomendations . 70

References 72

A Coding Basics 77

B Tables 78

C Original Formulas 82
C.1 Aerodynamic Damping . 82

iv

Contents v

D Source Code 83
D.1 Experiment 1:Logical Constraint Optimization . 83
D.2 Constraint classes . 84

D.2.1 Main Class . 84
D.2.2 Geomtric Constraint Class . 84
D.2.3 Time Domain Constraint Class . 87

D.3 Simulated annealing class . 90
D.4 Structure . 95

D.4.1 Superstructure . 95
D.4.2 Substructure . 98
D.4.3 Full system . 105

D.5 Time domain simulation class . 107
D.6 Kinematics . 109

D.6.1 Wave kinematics class . 109
D.6.2 Wind kinematics class . 112

D.7 Dynamics . 114
D.7.1 Hydrodynamics class . 114
D.7.2 Aerodynamics class . 117

D.8 State class . 120
D.9 Fatigue calculations . 128

D.9.1 All environments import . 128
D.9.2 Fatigue Class . 131
D.9.3 Fatigue loading class . 134
D.9.4 Fatigue rainflow class . 135

D.10Utility Functions . 138
D.10.1 Utilities for Main . 138
D.10.2 Utilities for Packages . 140
D.10.3 Utilities for Wind Functions . 144

D.11 Math Functions . 144
D.11.1 PSD . 144
D.11.2 Integrate Class . 145
D.11.3 Boolean Functions . 146

1
Introduction

1.1. Floating Wind
There is an increasing worldwide demand for electricity and a growing concern about the environmen-
tal impact of energy exploitation on the earth. That increasing concern has led many governments to
express clear goals for what proportion of energy production from renewable sources. One of the con-
sequences has been a massive increase in the production, deployment and operation of wind turbines
[1]. The majority of wind installations installed in Europe are onshore. Due to stronger resources and
increased space availability, it is advantageous to exploit wind resources offshore. This is not a recent
development. The first offshore wind farm (OWF) was built in 1991 off the coast of Denmark. Since
then, many OFWs have been constructed all around the globe [26]. The expectation is that the number
of offshore installations will only increase [42].

(a) Historic onshore and offshore installed power in
Europe. Source: Wind Europe [42].

(b) Forecast installed wind energy in Europe. Source:
Wind Europe [42].

When considering the production of an offshore wind turbine, it is essential to pay attention to the
support structure. This foundation will generally make up around 35% of the cost of the total wind farm
[25]. The most common support structure for offshore wind turbines is the monopile. Representing 80%
of the installed wind turbines, the monopile is dominating [25]. In general, monopiles are designed for
depths of around 35metres. For example, wind farm projects developed before 2020; 90% of the 9GW
Dogger Bank development is below 35m, and about 50% of the 4 GW Hornsea development is below
40m water depth [40]. Space-framed structures like tripods and lattice frames (e.g. jackets) are used
in water depths of around 50 metres [53]. According to Jonkman and Matha (2011), there is a need
to go into deeper water to harness much of the vast offshore resources worldwide. This sentiment is
a logical conclusion when coastal bathymetry worldwide is considered, where the ocean shelves near
the coast quickly drop to depths above 60 metres. Going further offshore also solves the divisive issue
of the aesthetic nature of wind turbines, as when wind farms are far offshore, they can not be seen from
the coast. These extreme depths make the majority of bottom fixed support structures infeasible, and
floating support structures will become the solution [38].

1

1.2. Substructures General Overview 2

1.2. Substructures General Overview
The goal of the floater is to offer support and stability to the wind turbine atop. In general, the mecha-
nisms to do this fall into one of three categories; mooring-, waterplane- and ballast stabilized.

• TLP
The tensioned leg platform is stabilized by a mooring mechanism. The mooring lines underneath
the support structure are tensioned to create a stabilizing moment when the structure is angled.
The tension is created by the high amount of buoyancy of the platform.

• Semi Submersible platform
The Semi submersible platform is stabilized by the restoring moment caused by the significant
second moment of inertia. They typically consist of multiple legs at a distance from the turbine.
These legs cover a relatively large waterplane area, adding to the moment of inertia.

• Barge type platform
The Barge is an extension of semi-submersible type substructures. A barge is typically a shallow
drafted concrete or steel floating hull with a shallow draft. It uses a large water plane area to
achieve stability. An example is the moon pool barge characterized by a square and ring-shaped
floating platform with a central pool that absorbs the wave loads [15].

• Spar Type The Spar type support structure is stabilized by adding a ballast at the bottom of the
support structure. This counterweights the pitching and rolling response that the structure may
encounter.

The spar, semi-submersible, and TLP-type substructures have been reviewed by Liu (2016) [50]
who defined the relative advantages as shown in table 1.1. From table 1.1 it becomes clear the spar has
disadvantages when considering construction and installation. This comes from the difficulty of towing
out a spar type. Furthermore, due to their size, the substructure spars come with more challenging
logistics for fabrication and transportation. Spars are easy to anchor and show minor sensitivity to
wave motions.

Table 1.1: Comparison floating foundation concepts Source: Liu (2016). +,0,- stand for advantageous, neutral and
disadvantaged, respectively. [50]

+ Relative advantage TLP Spar Semi-submersible
0 Neutral -Relative disadvantage
Pitch stability Mooring Ballast Buoyancy
Natural periods + 0 −
Coupled motion + 0 −
Wave sensitivity 0 + −
Turbine weight 0 − +
Moorings + − −
Anchors − + +
Construction and installation − − +
Maintenance + 0 −

1.3. Preliminary Design 3

Figure 1.2: Schematic of the four floater types. Source: Matti Scheu (2018) [74].

1.3. Preliminary Design
For decades floating support structures have been commonly used in the oil and gas industry. The
first mobile submersible unit was commissioned in 1948 [33]. However, offshore wind is a developing
technology; there are currently three operational farms: Hywind Scotland, Kincardine (Scotland) and
Windfloat Atlantic (Portugal). Kincardine, the largest one with 50 MW capacity, was commissioned on
the 19th of October 2021. Hywind Scotland is the first floating wind farm and remains the only one to
implement spar-type floaters. Choosing and designing the support structure has yet to be standard-
ized. In 2002, van Hees proposed a two-stage approach which aimed at determining what type of
support structure to use by comparing the dimensions, stability and resonance periods of 8 substruc-
tures. The preliminary sizing was done using QUESTOR, an in-house software, which uses the stability
and maximum inclining moment with a maximum dynamic inclination angle of 10◦. The most suited
structure (SemiSub: Tri-Floater) is then structurally, hydrodynamically and hydrostatically analyzed to
refine further its sizing [12]. Wayman (2006) took a similar two-stage approach but with only four types
of substructures. The preliminary sizing began with the pitch stability criterion, after which the cost is
estimated, and the substructures are compared. [81]. Wayman then chooses the cheapest solutions
to perform a dynamic and static stability check, to minimize the waves’ action on the structure. The aim
is to reduce the production cost of wind turbines. Therefore the cost is the most important contribution
to the comparison. Lefebvre(2012) nearly copies the approach of Wayman. Still, instead of basing the
maximum moment on the air pressure of the dry part of the structure, as Van Hees did, Lefebvre bases
the preliminary design on the moment created by the maximum amount of thrust produced by the rotor
[45].
Another possibility for sizing the support structure is using a design algorithm that in some way opti-
mizes the performance of the wind turbine [22],[70],[31],[47]. This style of design can cover multiple
facets of the floating wind turbine system. From optimizing the mooring of the structure [11] to optimiz-
ing the controller, tower and floater at the same time [31]. When optimizing multiple systems at the
same time, this is called multidisciplinary design optimization. In 2014 a review was done about the
design optimization of wind turbine support structures [61]; a prominent contribution to the conclusion
was the limitations set by the computational expense for modelling the wind turbine structure. Muskulus
advised to start looking at frequency domain modelling and to purely use design optimization of wind
turbine support structures in the preliminary design phase. An opposing thought would be to further
limit the model’s complexity for the time domain simulation.

The remainder of this thesis will focus on spar-type floaters as shown in 1.3 . Not only are they
well-documented for the oil & gas industry, but they are also well-researched for offshore floating wind
systems. In a 2020 Ocean Engineering publication, the spar-type floater was also found to be the most
cost-effective at deeper draughts [36]. The simple nature of spars has the added benefit of simplifying
the hydrodynamic calculations.

1.4. Research Question 4

Figure 1.3: Spar Floating wind turbine: Hywind prototype Statoil Hydro. Image property of Siemens, taken from NS energy
publication [66]

1.4. Research Question
This thesis aims to combine optimization and numerical load response modeling for the preliminary
design of a spar type substructure. For the investigation of combining optimization with the preliminary
design of spar-type substructure, this thesis will be based around the development of a response model
and the development of a non-gradient optimizer. Finally, these two will be combined to investigate
constraint sets relevant to this specific engineering problem. Investigating constraint sets for a non-
gradient-based optimizer for the optimization of the spar-type substructure of a floating wind turbine will
give insights into the applicability of the simulated annealing algorithm on such engineering problems.
And will eventually answer the following research question:

• What are viable constraint sets when using a simulated annealing algorithm for the optimization
of a spar-type floating substructure

Furthermore, some subquestions will be answered as well:

• What is the role of mooring stiffness in the optimization
• What constraints govern the optimal design of a spar-type substructure

2
Numerical load and response

This chapter will cover the numerical load and response calculations of this research. Beginning by
going over the theory covered regarding these calculations, after which the methodology used will be
introduced, where the model will be tested in a set of predictable conditions to investigate the response
and comment on the validity of the developed model.

2.1. Theory: Numerical loads and response
This section is meant to review the relevant literature investigated for the numerical load and response
part of this research. The theory behind forcing on a floating wind turbine is discussed. This includes
wind- and wave-kinematics and dynamics. Discussing Morrison’s equations, spectral approaches and
BEM theory. Fatigue is discussed using ideas for both time domain and frequency domain simulations.

2.1.1. Forcing
Forcing on a floating wind turbine comes from the exposure to wind and wave loads. The theory behind
these two is discussed in the next few subsections. In principle the approach to forcing calculation is
no different than that of a bottom founded substructure. However for floating offshore wind turbines the
hydrodynamic loads have a more significant effect on the response characteristics.

Hydrodynamics
Wave Kinematics Hydrodynamics play a big part in the behaviour of an offshore floating wind turbine.
Hydrodynamic loading is caused by the interaction between sea and floating wind turbine. As such the
flow of the fluid needs to be modeled. A common approach to calculating flow is using airy wave theory.
An extensive history of water wave theory is covered by Craik (2004)[16].

Regular Wave Kinematics Airy wave theory or linear wave theory is commonly used to model
the wave kinematics of a regular wave. The theory uses potential flow to describe the motion of gravity
waves. Airy wave theory was first correctly publicized in the 19th century and presumes the fluid to be
inviscid, irrotational and incompressible. Furthermore the assumption is made that there is a uniform
mean flow depth. The velocity potential is defined as:

ϕ = −ωH

2k

cosh k(z + h)

sinh kh
sin(ωt− kx) (2.1)

Where ω is the angular velocity of the wave, H is the wave height taken from lowest to highest point,
k is the wave number. h is the depth at still water level (SWL), z is the depth being considered, t the
time and x the position considered on the x-axis. Equation 2.1 is a potential equation, meaning that it’s
derivative to any spatial direction correlates to the velocity in that direction. As such the wave velocity
and acceleration in x direction, u and u̇ respectively, can be defined as:

u =
∂ϕ

∂x
=

ωH

2

cosh k(z + h)

sinh kh
cos(ωt− kx) (2.2)

5

2.1. Theory: Numerical loads and response 6

u̇ =
∂u

∂t
= −ω2H

2

cosh k(z + h)

sinh kh
sin(ωt− kx) (2.3)

It is noted that the equations for water horizontal particle velocity 2.2 an acceleration 2.3 are functions
of depth. As such they can be used to make a velocity profile along the length of the spar or depth of
the ocean.

Figure 2.1: Schematic for hydrodynamic parameterization

The wave number k describes the spatial frequency of a wave, given in radians per meter.

k =
1

λ
(2.4)

Where λ is the wavelength which can be calculated from the frequency and speed of the wave.

λ =
v

f
(2.5)

Where v and f are wave speed and frequency given inm/s and Hz respectively. However there is
a logical problem with this approach; equations 2.2 and 2.3 are used to calculate the wave speed but
also take the wave number as an input. To get around this the dispersion relation of water waves can
be solved for k. The dispersion relation is defined as:

ω2 = gk tanh(kh) (2.6)

Where ω is the angular velocity which can be converted from the frequency f . Solving equation 2.6
for k and using equations 2.2 and 2.3 a velocity profile can be made for a regular wave of given wave
height H at a depth h.

Irregular Wave Kinematics Although regular waves do mimic nature, it is a closer approximation
to reality to consider irregular waves. The shape ζ of an irregular wave can be considered to be a
superposition of many partial regular waves. [87].

ζ(x, t) =

n∑
i=1

ci cos (kix− ωit+ εi) (2.7)

Where n is the number of partial waves, i is the number of wave components and the subscript i

points to each component. ci is the amplitude of the ith partial wave. ωi is the circular frequency of
the partial wave and ki is the wave number. t is time and ε is a randomly generated phase angle of
the partial wave. The randomly generated wave phases have a uniform probibility distribution of 1/(2π)

2.1. Theory: Numerical loads and response 7

in the range of (0, 2π). The amplitudes ci are generated from a spectrum that describes the spectral
density.

ci =
√
2Sζζiδωi (2.8)

Where Sζζi describes the seaway spectrum, a common ocean wave spectrum is the JONSWAP
spectrum. Developed after the collection of north sea data. The JONSWAP spectrum is an artificially
modified Pierson-Mosckowitz spectrum to improve the fit of the spectrum to data collected from the
north sea during the Joint North Sea Wave Observation Project.

The Pierson-Moskovitch spectrum is defined as:

S(ω) =
αg2

ω5
exp

(
−β
(ω0

ω

)4)
(2.9)

Where α is 8.1 ·103 and β is 0.74. ω0 is g
U19.5

where U19.5 is the wind speed at 19.5meters high. The
height at which the initial measurement were done by Pierson andMosckowitz. The Jonswap Spectrum
is practically the same but multiplied by an external factor γr. This ensures that the spectrum is never
fully developed, so even over long term time intervals the spectrum keeps changing.

Sj(ω) =
αg2

ω5
exp

[
−5

4

(ωp

ω

)4]
γr

r = exp

[
− (ω − ωp)

2

2σ2ω2
p

] (2.10)

Where using the data collected from the Joint North Sea Observation Project

α = 0.076

(
U2
10

Fg

)0.22

ωp = 22

(
g2

U10F

)1/3

γ = 3.3

σ =

{
0.07 ω ≤ ωp

0.09 ω > ωp

(2.11)

Where ωp is the peak angular frequency, U10 is the wind speed at 10 meters and F is the fetch
distance. The fetch distance can be defined as the distance over which wind can travel undisturbed
over water in a constant direction. When the two spectra are compared to each other (see fig:2.2) it
becomes clear that the JONSWAP spectrum has a far higher peak spectral density at peak frequency
f = fp. Besides using the spectrum for wave height it can then also be used to obtain the wave
kinematics of irregular waves which later will prove neccesary for the calculation of the wave loading,
which is dependent on said kinematics.

2.1. Theory: Numerical loads and response 8

Figure 2.2: Comparison between Pierson-Moskowitz and JONSWAP spectrum. Taken from Abankwa N (2010) [2]

Using this spectrum the motion behaviour of an irregular wave can be modeled that closely resem-
bles the north sea. Or more specifically the findings of Joint North Sea Observation Project.

Morisons equation There are two common practices for calculating the hydrodynamic forcing; Morisons
and Maccamy Fuchs’. The Morisons equations are based on a 1950’s paper written by JR Morison
[59], it is a semi empirical approach to calculating the hydrodynamic forces. Through experimental
and analytical analyses the paper showed that hydrodynamic forcing can be seen as the sum of inertia
and drag forces. The equation presumes that the acceleration of flow over one location on the body is
uniform. For a spar type floater, or any other cylindrical structure that is mounted vertically in the water,
the equation will only be valid if the diameter of the cylinder is significantly smaller than the wavelength.
When this is not the case diffraction needs to be taken into account.

Fmorison = ρseaCmV u̇︸ ︷︷ ︸
FI

+
1

2
ρseaCdAu|u|︸ ︷︷ ︸

FD

, (2.12)

Cm = 1 + Ca (2.13)

Where ρsea is the density of sea water, V is the volume of the body and u̇ is the wave acceleration
expressed in equation 2.3. Cm is the inertia and added mass coefficient and Cd is the drag coefficient.
u represents the wave speed as expressed in equation 2.2. A is the cross-sectional area of the body
perpendicular to the flow direction. This forcing is calulated as a depedent on the wave speed and
acceleration. This wave speed can be calculated every depth underwater. This is done by considering
a strip of the structure and investigating the water velocity at that depth and in doing so developing a
forcing profile over each strip of the slender structure.
In 1945 R.Maccamy and R. Fuchs published a report of two main parts, an exact mathematical solution
to the linearized problem of water waves of small steepness incident on a circular cylinder. The second
part was an attempt to verify the computation using cylindrical piles in a wave basin which resulted in
good approximation of the forces [52].
Still using airy wave theory but in this case also considering a new boundary for solving the potential
equation. Maccamy & Fuchs decided to introduce the boundary condition that if there is a cylinder in
the fluid, then the fluid could not move through that cylinder. Instead the waves hitting the fluid will
reflect and scatter back. Taking this into consideration the velocity potential can be expressed as:

ϕ = ϕw + ϕs (2.14)

2.1. Theory: Numerical loads and response 9

Where ϕ is the total potential, ϕw is the ’incident wave’ potential as expressed in equation 2.1 and
ϕs is the ’scattered wave’ potential. The body surface boundary condition, where the waves hit and
reflect off the structure can be expressed as:

∂ϕs

∂n
= −∂ϕw

∂n
(2.15)

The pressure at any given depth can then be expressed as

p = −ρgz − ρ
∂ϕ

∂t
(2.16)

The pressure needs to be calculated around the radius of the cylindrical structure in the fluid. After-
which the hydrodynamic force at any given depth on the structure can be calculated by integrated the
pressure over the radius of the structure . The force is then expressed as:

Fz = 2 ∗
∫ π

0

p(θ) a cos(π − θ)dθ (2.17)

FZ =
2ρgH
k

cosh k(d+ z)
cosh kd

(ka) cos(σt− δ) (2.18)

Cm =
4A(ka)

π(ka)2
(2.19)

A(ka) =
1√

[J ′2
1 (ka) + Y ′2

1 (ka)
(2.20)

δ = − tan−1 [Y ′
1(ka)/J

′
1(ka)] (2.21)

ka = π · D
L

(2.22)

The scattered potential ϕs is calculated using a set of bessel functions J1 and Y1, where the subscript
is meant to indicate the order of bessel function.

Aerodynamics
The aerodynamic loading is caused by the interaction between wind kinematics and the structure. One
of the challenges of modeling the aerodynamic behaviour is the measurement of relevant wind data.
Aerodynamic loading is the largest contributor to the overturning moment of a floating wind turbine. In
2012 Schubel did a review on wind turbine blade design which includes a summary of blade loads
[76] which is where the image below is taken from. Hansen’s 2015 book on aerodynamics offers a
comprehensive review on the matter [44]. The calculation of the aerodynamic loads is based on blade
element momemtum theory (BEM) which find it’s roots in the 1D momentum theory. Essentially cutting
the blade up into a set amount of slices and interpolating the aerodynamic behaviour of slice each over
the entire blade. The derivation of the entire theory would be too cumbersome for the scope of this
report but a summarized version is presented below.

A wind turbine transforms the kinetic energy in the wind into mechanical energy and finally in the
turbine itself, using a generator this will be transformed into electrical energy. It is common to find a
two dimensional approach to calculating the aerodynamics. This presumes that the flow of air moves
across the blade. For this calculation the blade can be presumed to be infinitely long and only one 2-D
slice is considered.

2.1. Theory: Numerical loads and response 10

Figure 2.3: Schematic of lift and drag forces Source: Hansen (2015) [44]

Cl =
L

1/2ρairV 2
∞c

(2.23)

Cd =
D

1/2ρairV 2
∞c

(2.24)

The lift and drag coefficient can be determined using equations 2.23 and 2.24. Where c is the cord
length, ρair is the air density in kg/m3 and V∞ is the wind speed. This offers the forcing along the blade
of the turbine and therefore for the full lift or drag force would have to be integrated over the blade. As
the geometry of the blade is smooth and changing throughout, so does the lift and drag characteristic
along the blade.

The thrust on a wind turbine can be calculated used 1-dimensional infinitely bladed wind turbine. By
comparing the wind speed and air pressure before and after. If the flow is presumed to be frictionless
there will be no change in the internal energy. So the shaft power can be related to the mass flow of
air.

Figure 2.4: Schematic infinitely bladed wind turbine Source: Hansen (2015) [44]

The mass flow is defined as:
ṁ = ρair · u ·A (2.25)

The thrust and power can be calculated as follows:

T = ρairuA (Vo − u1) = ṁ (Vo − u1) . (2.26)

P =
1

2
ρairuA

(
V 2
o − u2

1

)
. (2.27)

The axial induction factor is the amount of wind that doesn’t make it to the turbine.

u = (1− a)Vo. (2.28)

2.1. Theory: Numerical loads and response 11

Using the definition of the axial induction factor a, the expressions for thrust and power become:

P = 2ρairV
3
o a(1− a)2A

T = 2ρairV
2
o a(1− a)A

(2.29)

These can be made dimensionless to create a set of thrust and power coefficients for each blade
part.

Cp =
P

1
2ρairV

3
o A

CT =
T

1
2ρairV

2
o A

(2.30)

For modelling where there is not enough computational power available to compute the thrust over
each element of the blade or even consider each blade, an average CT can be used to get a simplified
relationship between wind speed and thrust. This simplified version presumes a quasi-static nature
where the changes in thrust are an instant reaction to experienced wind speed changes.

T = CT · 1
2
ρairV

2
o A (2.31)

Wind Kinematics To calculate the loading on the wind turbine, the wind has to be modelled. When
modelling a constant wind speed, the wind speed that is experienced by the turbine can be expressed
as

Vo = Vconstant − ẋ (2.32)

Where Vconstant is the wind speed and ẋ is the motion of the turbine in x direction. It is presumed
that they are positive along the same axis.

Modelling the wind speed to mimic a specific environment requires a spectral approach similar to
the irregular wave kinematics discussed in 2.1.1.

In 1972 J Wyngaard described the behaviour of spectra and cospectra of turbulence in the surface
layer. Based on the fluctuation of temperature and wind from data obtained in the 1968 AFCRL Kansas
experiments [39]. To this day, the spectrum described in that paper is still widely used for modelling
wind. The Kaimal spectrum is expressed as:[

nSu(n)

u2
∗

]
f=4

= 0.12ϕ2/3
ϵ (2.33)

ϕe
2/3 =

{
1 + 0.5|z/L|2/3, −2 ⩽ z/L ⩽ 0
1 + 2 · 5|z/L|3/5, 0 ⩽ z/L ⩽ +2

}
. (2.34)

Where z/L is a dimensionless length known as the stability parameter, it comes from the Monin-
Obukhov similarity theory, z describes the height at which the wind is being considered, and L is the
Obukhov length [73]. The spectrum is normalized over the square of friction velocity u∗.

However, an array of adjusted Kaimal spectra is used throughout the industry. For example, the
spectrum was defined in the 2016 paper of Abrous [4].

s (f) =

[
ln (h/z0)2

]−1

· l · vw

(1 + 1.5 (f · l/vw))
5
3

(2.35)

While in the investigation of the Kaimal spectrums applicability in the offshore wind industry by
Cheynet in 2017 [14], the IEC Kaimal model was used. This model normalizes the spectrum over the
wind speed standard deviation σ2

u:

fSu(f)

σ2
u

=
4fLu/ū

(1 + 6fLu/ū)
5/3

(2.36)

2.1. Theory: Numerical loads and response 12

Lu = 8.1Λ1

Λ1 =

{
0.7z if z ≤ 60 m
42 m if z ≥ 60 m

(2.37)

2.1.2. Fatigue Damage
Calculation of fatigue is crucial to the design of a floating wind turbine system. It determines the lifetime
of the structure and will therefore be a determining factor in the structural design decisions made on
any such structure. This subsection explores how fatigue can be calculated by first looking at Miner’s
rule, then expanding on rainflow cycle counting and finally discussing Dirliks method which is used for
damage calculation in the frequency domain.

Miner's Rule
The basis of both Dirliks Method and rainflow counting is a hypothesis presented by both Palmgren
in 1924 [67] on ballbearings and Miner in 1945 [57] on ordinary structural components. This widely
accepted hypothesis is referred to as ’Miner’s Rule’. The hypothesis assumes that if a structure is
exposed to ni cycles at stress level Si, the structure would fail at Ni cycles. The fraction of reduced life
is precisely proportional to ni[19]. In other words the structure will fail when:∑ ni

N1
= 1 (2.38)

Or in a situation where there are k amount of stress levels. The damage fraction can be calculated
as:

k∑
i=1

ni

Ni
= C (2.39)

Where ni is the number of cycles accumulated at stress Si. C is the fraction of life consumed
after exposure to the cycles at the set of k stress levels. Ni is the number of available cycles in the
components lifetime at stress level Si

Indexing the stress levels, the damage D on any component can be calculated with the:

Di = ni × Si (2.40)

The presumption is made that the critical failure damage is the same across all stress ranges. This
implies that if the failure damage we’re to be 100, then it would take 10 cycles at stress level 10 or 20
cycles at stress level 5.

Dfailure = Ni × Si (2.41)

Which means the equation 2.39 can be rewritten as:

k∑
i=1

ni × Si

Ni × Si
= C ⇒

∑k
i=1 ni × Si

WFallure
= C (2.42)

Rainflow Counting
Rainflow counting is a method for calculating the fatigue on a structure from unsteady cyclic loading.
The rainflow method is a widely used algorithm, and as such, in cooperation with multiple industries,
the method was standardized in 1994 [6]. The rainflow method is a technique that makes it possible
to store service measurements for fatigue analysis through cycle counting, both fatigue life prediction
and simulation testing. The procedure begins with a preliminary treatment of the loading, sampling,
extraction of extremes and quantifying values into classes. It normally consists of monitoring a specific
variable (i.e. stress) over time. Computationally this sequence can come from a loading model that
adequately represents the real evolution of stress or experimentally from a single variablemeasurement
over time. The rainflow counting method aims to bin a time series of loading into a set stress range and
count the cycle of each stress range. The first step is putting the loading series through a hysteresis
filter to filter out small variations that do not constitute a new stress cycle. This has also been referred

2.1. Theory: Numerical loads and response 13

to as a ’peak-valley’ filter. In other words, the rainflow counting method only counts the extremes of
the loading sequence. To speed up the analysis, splitting the possible extremes into 64 classes with
constant interval steps in between is common. So rather than having however many unique possible
stresses, there are 64 bins on the stress axes where the nearest points all fall too. A different term
for this is ’binning’. To determine the damage, the rainflow counting method extracts stress cycles by
always looking at four successive points, as these would be considered one stress cycle. Depending
on the relative difference in stress between these points, the rainflow method will either move to the
next point or consider these four points in one cycle. If a cycle is found, or in other words, if the middle
stresses are bound by the extreme stresses and one cycle is counted, the middle stress is removed,
the next four points are taken and so forth. The algorithm of which taken from [6] is shown in figure 2.5

Figure 2.5: Rainflow algorithm proposed 1994 by C. Amzallag et al. Source: Amazllag et al (1994) [6]

Dirliks Method
Although the rainflow counting method is beneficial, when it comes to optimization, there is a prefer-
ence for being able to compute quickly. Therefore it is common to see frequency-domain approaches
where no time series are being produced. Therefore the 4-point counting method used in the rainflow
method is no longer an option. In 2013 Mršnik [60] reviewed multiple methods to calculate fatigue
within the frequency domain, and found that besides Dirlik’s method [19], the Tovo–Benasciutti 2005
[9] and Zhao–Baker 1992 [88] methods should be considered as methods for fatigue analysis in the
frequency domain. Nonetheless, Zhao-Baker and Tovo-Benasciutti methods have not yet been used
in optimization publications reviewed for this thesis.
The Dirlik method is based on two different groups of spectra which have been numerically simulated
in the time domain. Early in the development of the Dirlik method, it was decided that it was too com-
plex to derive the distribution of rainflow cycles from a PSD function G(ω) in closed form. Instead, a
Monte Carlo approach was used to generate a sample stress history s(t) from G(ω). Then the rainflow
algorithm was used on s(t) to extract the cycles, and the probability density function of rainflow counted
ranges. This allowed calculating the fatigue damage for any given material constants in an S/N curve.
The Monte Carlo simulation is run twice, from which three probability density functions are taken, one
exponential and two Raleigh. The Dirlik method approximates the cycle-amplitude distribution. The

2.2. Methodology: Numerical loads and response 14

rainflow cycle amplitude probability density function (PDF) estimate is defined as:

pa(s) =
1

√
m0

[
G1

Q
e

−2
2 +

G2Z

R2
e

z2

2R2 +G3Ze
−z2

2

]
(2.43)

Where the damage is expressed as

D̄DK = C−1vpm
k
2
0

[
G1Q

kΓ(1 + k) + (
√
2)kΓ

(
1 +

k

2

)(
G2|R|k +G3

)]
(2.44)

Where
G1 =

2
(
xm − α2

2

)
1 + α2

2

, G2 =
1− α2 −G1 +G2

1

1−R
,G3 = 1−G1 −G2 (2.45)

Q =
1.25 (α2 −G3 −G2R)

G1
, R =

α2 − xm −G2
1

1− α2 −G1 +G2
1

(2.46)

and
α2 =

m2√
m0m4

, xm =
m1

m0

√
m2

m4
, vp =

1

2π

√
m4

m2
(2.47)

In the damage equation, 2.44, both C and m are parameters of the initial part of the SN curve,
defined as the region less than 107 cycles.

2.2. Methodology: Numerical loads and response
For the scope of this thesis, it has been decided to develop a time domain simulation. The methodology
of this is presented in this section of the thesis. Beginning with the introduction of the environmental
conditions considered for this research. After this, the structural model is introduced, and the forcing
calculations are made, leading to the response and fatigue calculations.

2.2.1. Environmental Conditions
To investigate the effect of constraints on the optimization of a spar type substructure a test case
is considered. The 15MW reference turbine is placed 32 kilometers off the coast of Norway. The
environmental data is taken from a study done by Z.Gao [49] (2015). The data was generated using
a hindcast model from the Kopadistrian University of Athens. From this study site no. 15 is is used as
this is the largest distance from shore in the north sea. The depth however, has been adjusted to allow
for the size of spar that would be necesary to sustain a turbine and tower of the size described in the
15 MW reference turbine [27].

Site no Area Name depth (m) shore(km) 50-year Uw at 10m (m/s) 50-year Hs (m) Mean value of Tp (s)
15 North Sea North Sea Center 29 400* 300 27.2 8.66 6.93

Table 2.1: Site Conditions for fatigue calculations taken from [49]
*Depth has been adjusted from 29 to 400 meters

The wind measurements are measured at 10-min averages whereas the wind developed for re-
sposne calculations develops instantaneous wind. The kaimal spectrum used to develop instantaneous
wind will give wind time series with the 10-min average is given. As such a probability density plot is
needed for the occurrence of each wind speed. The wind speed characteristics are not separate from
the wave conditions, as such the joint probability of wind speed Uw, significant wave height Hs, and
significant wave period Tp can be expressed as:

fUw,Hs,Tp(u, h, t) ≈ fUw(u) · fHs|Uw(h | u) · fTp|Hs(t | h) (2.48)

This is the simplified version proposed by Z.Gao [49], where the distribution of Tp is only conditioned
on the wave height. The distribution of the wind speed is expressed using a weibull distribtution:

fUw(u) =
αU

βU

(
u

βU

)αU−1

· exp
[
−
(

u

βU

)αU]
(2.49)

2.2. Methodology: Numerical loads and response 15

The conditional distribution of Hs on Uw is also given with a weibull distribution:

fHs|Uw(h | u) = αHC

βHC

(
h

βHC

)αHC−1

· exp
[
−
(

h

βHC

)αHC]
(2.50)

Where αHC and βHC are the shape and scale parameters respectively. These are fitted using power
functions.

αHC = a1 + a2 · ua3 (2.51)

βHC = b1 + b2 · ub3 (2.52)

a1, a2, a3 and b1, b2, b3 are parameters that have been fitted to measrurements of the site.
The parameters for Site 15 are shown in the table 2.2:

Distributions Parameter Associated equation Site 15
Marginal Uw αU 2.49 2.299

βU 2.49 8.920

Conditional Hs given Uw a1 2.51 1.755
a2 2.51 0.184
a3 2.51 1
b1 2.52 0.534
b2 2.52 0.007
b3 2.52 1.435

Table 2.2: Parameters for marginal distribution Uw and conditional distribution of Hs at given Uw

Lastly is the conditional distribution of the wave period at a given wave height. This is expressed
as a function of mean and standard deviation of the natural logarithm of period.

fTp|Hs(t | h) =
1√

2πσLTCt
· exp

[
−1

2

(
ln(t)− µLTC

σLTC

)2
]

(2.53)

Where the means and standard are approximated by:

µLTC = c1 + c2 · hc3 (2.54)

σ2
LTC = d1 + d2 · exp (d3h) (2.55)

The parameters for this distribution are presented in 2.3

Distributions Parameter Associated equation Site 15
Conditional Distribution Tp given Hs c1 2.54 1.578

c2 2.54 0.222
c3 2.54 0.674
d1 2.55 0.008
d2 2.55 0.227
d3 2.55 −0.956

Table 2.3: Parameters for Conditional Distribution of Tp at a given Hs

The joint distribution consists of marginal distribution of the wind speed, a conditional distribution
for wave height at a given wind speed, and a conditional distribution for wave period with a given wave
height.

2.2. Methodology: Numerical loads and response 16

Figure 2.6: Probability density plot using fUw 2.49 with bin size of 1m/s for site 15

The weibull distribution is plotted for a wind speed of 0 to 25meters. The wind speed with the highest
probability of 0.106 is 7m/s. The first wind speed above 7 to have a probability density smaller than
0.01 is 17m/s. As such the fatigue calculations will be done from cut in wind speed of 3 up to 17 m/s.
To limit the computational expense a stepsize of 2 is used for the wind speed.
To determine the wind wave conditions relevant to the fatigue lifetime damage the figures below are
investigated. The conditional distribution of wave height given wind speed and of wave period given
wave height are presented in figure 2.7. The figure on the left 2.7a shows the distribution of significant
wave height Hs at a given wind speed U . Any collumn in this figure can be summed to 1 as it accounts
for probability density for each wave height occurring at that given wind speed. Between wind speeds
of 0 and 4m/s the chances of there being a significant wave height above 1m is negligible. As the
wind speed increases there is a larger variation of possible significant wave height occurring. At wind
speeds between 5 and 17 m/s it is much more important to consider multiple wind wave conditions as
the probability of occurrence is shared over around 3 wave heights. For example at a wind speed of
10m/s the significant wave heights that can be expected to occur are 1,2 and 3 meter. This information
is used to determine what wave wind conditions are relevant to this test case.

(a) Conditional wave height distribution given wind speed using 2.50 and
bin size of 1m/s

(b) Conditinoal wave period distribution given wave height, used 2.53
and bin size of 1s

Figure 2.7: Conditional probability densities for Norway site 15

The next step would be to analyze what wave periods to consider, the function for the conditional
distribution of wave period given wave height (eq: 2.53) gives the distribution of wave period for any
given wave height and is presented in 2.7b.

Using the figures above the wind wave conditions for the lifetime fatigue have been determined.
While trying to limit the amount of simulations required to evaluate a design the decision is made to
use up to 4 most likely wave periods for each wave height, and up to 3 most like wave height per wind
speed. Using the probability density plot of the wind (fig: 2.6) the decision is made to consider wind

2.2. Methodology: Numerical loads and response 17

speeds from 3 to 17 m/s with intervals of 2m/s. This covers the cut in wind speed and ignores wind
speeds that occur less than 1% of the time. The wave period distribution for a wave height of 1m is
wide spread. As such it would be computationally very heavy to run for every wave period with that
given wave height. That’s why the decision is made to only consider the wave loading with a slow
wave period of 6 and 7 seconds. This approach leads to a very large table which can be found in the
appendix. A small part of it is presented here to illustrate some further design choices.

Wind speed u [m/s] fuw Wave height h [m] fhs|uw Wave Period t [m/s] fhs|tp
11 0.06703 2 0.432 5 0.218

6 0.298
7 0.2199

3 0.428 6 0.157
7 0.342
8 0.287
9 0.137

13 0.03902 2 0.2264 5 0.218
6 0.298
7 0.2199

3 0.4725 6 0.157
7 0.342
8 0.287
9 0.137

4 0.2541 7 0.134
8 0.3679
9 0.322
10 0.132

Table 2.4: Design environmental conditions using joint probabilities for wind speed, wave height, and wave period.

From table 2.4 it becomes clear that by considering the wave period t the amount of environmental
conditions to consider to evaluate the lifetime fatigue damage increases on average by three. Further-
more, the most probable wave period for a given wave height is concentrated around one area. For
the sake of computational expense, the average weighted probability of the wave period will be taken
for each wind wave condition. The weighted average of the wave period can be calculated with the
following:

Tuse =

∑
ti · fhs|tpi∑
fhs|tpi

(2.56)

The probability density of the wind speed is normalized for the considered probabilities, after which
the freq of occurrence is calculated by multiplying the normalized marginal distribution of the wind
speed with the conditional distribution of the wave height at a given wind speed and of the normalized
distribution of wave period at a given wave height. This results in the following environmental conditions
for the fatigue lifetime damage calculation.

2.2. Methodology: Numerical loads and response 18

Wind speed u [m/s] fuw fuwnorm Wave height h [m] fhs|uw fshs|uw norm Wave Period t [m/s] Freq Occurrence
3 0.05767 0.11941442 1 0.8033 1 25 0.11941442
5 0.09329 0.19317099 1 0.858 0.867543 25 0.16758414

2 0.131 0.132457 6 0.02558686
7 0.10609 0.21967532 1 0.513 0.521872 25 0.11464236

2 0.47 0.478128 6 0.10503296
9 0.09395 0.19453762 1 0.2252 0.22538 25 0.04384495

2 0.605 0.605484 6 0.11778949
3 0.169 0.169135 7.43 0.03290318

11 0.06703 0.13879571 2 0.432 0.502326 6.001 0.06972064
3 0.428 0.497674 7.437 0.06907507

13 0.03902 0.08079679 2 0.2264 0.237566 6.001 0.01919454
3 0.4725 0.495803 7.437 0.04005927
4 0.2541 0.266632 8.47252 0.02154298

15 0.01861 0.03853481 2 0.1004 0.102043 6.001 0.0039322
3 0.3271 0.332452 7.437 0.01281099
4 0.4144 0.421181 8.47252 0.01623013
5 0.142 0.144324 9.429 0.00556148

17 0.00728 0.01507434 3 0.1758 0.184315 7.437 0.00277843
4 0.369 0.386874 8.47252 0.00583186
5 0.3291 0.345041 9.429 0.00520126
6 0.0799 0.08377 10.35 0.00126278

Table 2.5: Environmental conditions used for fatigue damage calculation

2.2.2. Structural Model

Figure 2.8: Three elements of the structural model and
their local coordinate system. The denotations; 1, 2, 3 &

G are turbine, tower spar and global respectively.

The structural model is considered to consist of three
rigidly connected parts; the tower, the RNA assembly
and the substructure (see figure:2.8). This section will
explore how these parts have been modeled and in do-
ing so give insight into what simplifications have been
made. For the modeling of the structure in the op-
timization the IEA 15MW reference wind turbine has
been used [27] as such any results from the optimiza-
tion have a bias to the tower and turbine combination.

A Cartesian coordinate system is used with the ori-
gin at the SWL and it’s positive z-direction facing up-
wards. Meaning that any negative z-coordinate can
be considered to be submerged in water, presuming
still water conditions. Each part will first be considered
in it’s own local coordinate system, afterwhich the in-
ertia’s are adjusted for the global coordinate system.
The research considers a 3 degree of freedom system;
surge(x-translation),heave (z-translation) and pitch (ro-
tation about the y axis). This choice is motivated by
computational efficiency which will be discussed later
on. In a 6 degree of freedom system the subscripts
for these degrees of freedom would be 1, 3 and 5. In
the rest of report these same subscripts will be used
to refer to surge(1), heave(3) and pitch(5).

Positive rotation is considered to be counter-
clockwise. The same holds true for positive moments.

Tower
In the defenition of the 15MW IEA reference turbine
[27] the tower used was meant to be planted on a
monopile. The substructure will be designed such that
the same tower would fit a top the spar. The material
properties weights and distances can be found in the
table 2.6

The tower was designed as an isotropic steel tube.
With a thickness ranging from 23 to 45millimetres. The

2.2. Methodology: Numerical loads and response 19

tower defined in [27] begins 15 metres above SWL.
The transition piece sits between the SWL and the
start of the tower. For the sake of coding efficiency
the height, diameter and thicknesses of the transition
piece are included in the tower and thus seen as one
piece. The exact data can be found in appendix B.
Using those coordinates and the material properties,
the mass can be calculated per section and then
summed to get the total mass of the tower.

Ai = π · ((Di

2
)2 − (

Di

2
− ti)

2 (2.57)

δh = hToweri+1
− hToweri (2.58)

mi = Ai · ρsteel · δh (2.59)

mtower =

k∑
i=1

mi (2.60)

Where Ai is the area per section, Di is the outer diameter of that section, and ti is the thickness. δh
is the height difference within a section. This alternates between 0.0001 and 5 metres, as can be seen
in B.2. Calculated with the difference in tower height between two sections, hToweri+1

and hToweri . The
sectional mass can then be calculated with the sectional area Ai, the density of the steel ρsteel and δh.
The sectional masses mi are also used to calculate the tower’s centre of gravity. As the tower is
practically modelled as straight-edged buckets that progressively go down in diameter every 5 metres,
the z-coordinate of the centre of gravity of each section is halfway up that section.

zcmTower
=

∑k
i=1

hToweri+1
+hToweri

2 ·mi

mtower
(2.61)

The moment of inertia of the tower is calculated by first calculating the moment of inertia for each
section with the origin of each being in the centroid of the section piece, after which the parallel axis
theorem [3] to calculate the moment of the tower around the SWL. The moment of inertia of each is
calculated with the formula for a thin-walled cylinder 2.62

Ix = Iy =
1

12
m
[
3
(
r21 + r22

)
+ h2

]
(2.62)

Ixtower
=

k∑
i=1

(Ixi
+mi · z2cmi

) (2.63)

Description Value Unit
Y oungsModulus(E) 2.00E11 Pa
ShearModulus(G) 7.93E10 Pa
ρsteel 7.85E3 kg/m3

mtower 0.97E6 kg
zcm 57.8 m
zhub 150 m
Ixtower

4.81E9 kg ·m2

Table 2.6: Calculated values of the tower

2.2. Methodology: Numerical loads and response 20

Turbine
The turbine is considered a mass with inertia, as such, information on the turbine contains the weight
of the rotor nacelle assembly and the blades. The moment of inertia of the RNA is given. However the
weight of the blades are not included in the given value, the IEA reference turbine does not mention
anything about the moment of inertia of the blades. To make up for this, the moment of inertia of the
RNA is adjusted with the blades modelled as distanced point masses using the parallel axis theorem
[3].

IxxRNA
= IxxRNAIEA

+ 3 ·mblade · x2
cmblade

(2.64)

Where IxxRNA
is the moment of inertia of the RNA, including the blades, IxxRNAIEA

represents
the given moment of inertia in the definition of the reference turbine, mblade is the mass of the blades.
xcmblade

is the location of the blade’s centre of gravity, which is considered to be the distance to the
centre of the RNA.

The coordinate of the centre of gravity of the RNA, including blades will not need to change as the
blades are symmetrical and, in this case considered to be stiff. The given inertia values of the table

The moment of inertia of each component of the RNA is given in B.1 and has the origin of the
coordinate system at the tower top. Using the parallel axis theorem [3] this makes the expression for
moment of inertia over the SWL(IXXSWL

):

IxxSWL
= IxxRNA

+ (mRNA + 3 ·mblade) · z2hub (2.65)

where IxxRNA
is the moment of inertia of the RNA including blades, mRNA and mblade is the mass of

the RNA and blade respectively. zcmRNA
is the z-coordinate of the center of mass of the RNA.

Name Amount Unit
MassRNA 820E3 kg
MassBlade 65E3 kg
MassTotal 1015E5 kg
zhub 150 m
zcm 153.97 m
IXXrnaIEA

126.03E4 kg ·m2

IXXrna
152E6 kg ·m2

IXXrnaSWL
242E8 kg ·m2

Vrated 11 m/s
Lblade 150 m

Table 2.7: Values used from the IEA reference turbine regarding the turcentressembly

Spar Floater
The spar floater is the substructure of the floating turbine. The goal is to optimize the design of the spar
for cost; which in this case is correlated to mass. For floating wind turbines, the substructure design
greatly influences the response characteristics of the system. In most cases, the turbine and tower will
be designed first, which creates the requirements for the substructure. As such both the tower and
turbine form prerequisite information for designing the spar. The spar is presumed to be of one length
with a set diameter where the steel thickness is the same over the length of the spar. The three design
variables of the spar are then length Lspar, diameter Dspar and steel thickness tspar

From these, the water plane area and water plane moment of inertia can be calculated.

Awp = π · Dspar

2

2

(2.66)

It =
π

4
· Dspar

2

4

(2.67)

The spar is considered to be moored at a third of the length of the draught where zmoor = − 1
3 ·

Lspar calculations in the design of the spar can be divided into three classes; geometrics, stability and
structural array.

2.2. Methodology: Numerical loads and response 21

Geometrics Geometrics contains the calculations regarding the mass, inertia and centre of gravity.
The mass is calculated by first considering the necessary ballast. The ballast can be calculated using
Archimedes’s principle [10]. The necessary ballast can be equated to the submerged volume.

∇ = ρsea · (Lspar − zfreeboard) · (
Dspar

2
)2 · π︸ ︷︷ ︸

V0

(2.68)

mballast = ∇− (mspar +mturbine +mtower) (2.69)

Where ∇ is the weight of a submerged volume of water. V0 is the underwater volume, ρseawater

is the density of seawater, Lspar is the total length of the spar and zfreeboard is the amount of free-
board. All msubscript are masses where the subscript indicates what the mass is from. Although self-
evident, it should be noted thatmspar only considers the steel mass. The total mass of the substructure
msubstructure is a simple sum.

msubstructure = mspar +mballast (2.70)

Ballasting a spar is often done with heavy materials like cement. In [48], the ballast density was a de-
sign variable ranging from 1281 to 2082kg/m3. The industry now also knows super dense materials like
Magnadense [64], which reach densities up to 5100kg/m3. However, as Leimeister et al. pointed out
[46], this recent dense material is similar in price to cement. As such, the multidisciplinary optimization
that was run by Leimeister et al. found that the optimal design used Magnadense [64]. For purposes
of this research Magnadense is always used and ρballast is 5100kg/m3. This allows the calculation of
the centre of gravity of the ballast.

zballast =
mballast

ρballast
· 1

Awp
(2.71)

Where zballast amount of depth that the ballast will take up.

zcmballast
= −L+ 0.5 · zballast (2.72)

Which is essential for calculating the moment of inertia of the spar. Using the parallel axis theorem,
the moment of inertia of the spar floater is calculated by considering the steel structure of the spar to
be a hollow cylinder(2.62) and the ballast to be a solid cylinder. Then using the parallel axis theorem,
the moment of inertia of the substructure in the global coordinate system can be written as:

Ixballast =
1

2
·mballast · (

D

2
− t)2 (2.73)

Ixspar = Ixballast ·mballast · z2cmballast
+ Ixsteel +msteel · z2cmsteel

(2.74)

Where Ixspar is the moment of inertia of the spar within the global coordinate system. Ixballast is the
ballast moment of inertia taken around its centre of mass in equation (2.73).Ixsteel is the moment of
inertia of the steel structure of the spar calculated with the equation, being considered as a hollow
cylinder it is estimated with equation (2.62). m and zcm refer to the mass and centre of mass in the
global coordinate system, respectively.

Full System
The full system considers all three parts; turbine, tower and spar. Given that all the inertia has been
calculated in the same coordinate system, these can be summed to calculate the inertia of the full
system within the global coordinate system.

Ifsxx = Ixxspar + Ixxturbine
+ Ixxtower (2.75)

The mass of the full system mfs is the full system mass defined as the sum of masses of the spar,
ballast, turbine and tower.

mfs = mspar +mturbinemtower (2.76)

2.2. Methodology: Numerical loads and response 22

Allowing for the calculation of the z-coordinate of the centre of mass:

zcm =
mspar ∗ zcmspar +mtower · zcmtower +mturbine ∗ zcmturbine

mfs
(2.77)

With the full system put together, the intact stability calculations are possible. The intact stability refers
to the undamaged stability of the structure. A measure for the initial stability is the metacentric height
which is the distance between the centre of gravity and the metacentre. The metacentre is the point at
which a vertical line through the centre at the heeled position would cross the vertical line at the initial
position. The metacentric height is defined as:

GM = BM − CG− CB (2.78)

where GM is the metacentric height, CG is the centre of gravity as calculated in 2.77. CB is the
centre of buoyancy, and presuming still water conditions, this would be at half the depth of the spar.

CB = − (Lspar − zfreeboard)

2
(2.79)

BM is the distance between the centre of buoyancy and metacentric height. It can be calculated as:

BM =
Ifsxx

∇
(2.80)

Where ∇ represents the displaced volume of the substructure, which is just the submerged volume of
the substructure.

∇ = ρsw · (Lspar − zfreeboard) · r2 · π (2.81)

2.2. Methodology: Numerical loads and response 23

2.2.3. Forcing Calculations
This section is a detailed review of how the aero- and hydrodynamic forcing is calculated in this the-
sis. The theory of these calculations is covered in section 2.1.1. This section will explain how that is
implemented within the model developed for this research. As time domain simulations will be part of
the spar design evaluation it is imperative that the optimizer is able to run the simulation for a given set
of designs. The conditions under which each design is going to be evaluated will be discussed in the
constraint section of the optimization review 3.2. The optimizer will vary the design of the spar, it will
not change the environment in which the spar is modelled. As such the wind and wave kinematics are
precalculated using the methods discussed in section 2.1.1 and 2.1.1. As both regular and irregular
wave conditions, steady and unsteady wind conditions will be evaluated these kinematics are calcu-
lated once beforehand and then passed on through the rest of the evaluation. The irregular wind and
wave conditions are generated using a reverse Fourier transform. For wind that means getting the
spectral amplitudes from the Kaimal spectral densities 2.33, by taking the square root of double the
spectral density multiplied by the frequency step size.

a =
√

2 · Su · df (2.82)

Where Su is the spectral density, for wind using a Kaimal spectrum this is Sukaimal
described by:

Sukaimal
= 4 · I2vw · l ∗ ((1 + 6 ∗ (f) ∗ l

vw
))(

−5

3
) (2.83)

Where I is the turbulence intensity, vw is the wind speed, l is the turbulence length and f is the frequency.
As such using a reverse Fourier transform over frequency range f gives a time series of the wind speed.

Figure 2.9: Irregular wave height time series using average wind speed of 11 m/s. Turbulence intensity of 0.14% and a
turbulence length of 340.2 meters

The irregular wave is essentially a superposition of a set of regular waves. In this model unidirec-
tional waves are considered. Using the amplitudes from the JONSWAP spectrum and a reverse Fourier
transform the wave height time series of an irregular wave can be generated.

Where in this case the spectral density is defined as:

SUJS
(f) = 0.3125 ·Hs2 · Tp · ((f

fp
)−5) · exp(−1.25 · ((f

fp
)−4)) · Γ (2.84)

Γ = (1− 0.287 · log(γ)) · γexp(−0.5·(
f
fp

−1

σ

2

) (2.85)

Where γ is the gamma parameter of the JONSWAP spectrum, fp is the peak frequency defined as
1 over the peak frequency Tp and σ is defined as in 2.11.

σ =

{
0.07 f ≤ fp

0.09 f > fp
(2.86)

The amplitudes for this spectral density are calculated using equation 2.82 and filling it into equation
2.84. An example of that time-series with a significant wave height of 10 meters and a wave period of
10 seconds is presented below.

2.2. Methodology: Numerical loads and response 24

Figure 2.10: Irregular wave height time series using Hs = 10m and T = 10s

The same is done for the wave speeds to develop a wave speed velocity over time that corresponds
with the wave’s irregular wave height. This is displayed in the image below where the wave speed of
the last 45 seconds of the time series is plotted at 3 different depths. As can be seen in figure 2.11 the
deeper depth shows smaller amplitudes of the wave speed.

Figure 2.11: Irregular wave speeds at three depths, 33, 9 and 0 meters deep. The time series was generated using Hs = 10m
and T = 10s

Underwater Profile The response is investigated for both regular and irregular wave forcing. By
using the JONSWAP spectrum and the velocity profile of irregular wave forcing along the spar can be
calculated. The velocity is calculated at an array of depths underwater. The spacing of which has an
impact on the computational efficiency of the optimizer. One approach would be using a linear spacing
for the array describing the coordinates underwater zuw. The argument could be made that when a spar
is very deep that a linear spacing of the velocity profile adds unnecessary computing time. Considering
the linear wave velocity 2.133 it’s clear that there is an exponential relationship between depth and
wave speed. To demonstrate this the velocity profile for a seabed with a depth of 400 meters wave
height and a period of 10 meters and 10 seconds is displayed.

2.2. Methodology: Numerical loads and response 25

(a) Linear spacing of 2 meters. (b) Log spacing from zbot to −1 and linear spacing between 0 and 1.

Figure 2.12: Comparison between the shape of the wave velocity profile when modelled using a log spacing scale along the
depth and a linear spacing along the depth. The red markings indicate each depth considered.

When the spar has a large draught, i.e. deeper than 150 meters there is not a lot of wave velocity
at deeper depths. Looking at equations for wave speed 2.133, it is clear that there is an exponential
relationship between the wave speed and wave speed. As seen in the comparison figures 2.12 the
profile’s shape can be closely estimated using log spacing instead of linear spacing. This will save
computing time as more ’relevant’ points are being considered. That is to say, with the log spacing,
most points considered are in the part of the profile with significantly more velocity. Whereas the points
near the bottom, where the velocity becomes negligible are considered less. This will make a difference
when the Morison force is integrated over the depth.

As a check for validation, the acceleration and wave velocity can be plotted over crucial time stamps
in the wave period. As is expressed in equation 2.2 the wave velocity is cos dependent. This is also
the only term dependent on time, which implies that the acceleration will be dependent on sin. As such
the two should be 90

◦ . This is best illustrated in figure 2.13 where sin and cosine are plotted over a full
cycle of 2π.

Figure 2.13: Plot of sin and cos with red lines plotted at 0,0.5,1,1.5 and 2 π

As wave velocity and acceleration are dependent on cosine and sin it is to be expected that the
wave acceleration is maximum when the wave speed is zero and vice versa. This can be seen in
figure 2.14, where the wave velocity and acceleration are plotted for a regular wave with a period of 8
seconds. In the right plot, the blue and purple lines that are the wave speed at the beginning and end
of one wave period are at the same maximum speed. These same lines in the plot on the left (wave
acceleration) are centred at zero as the wave acceleration is zero here. When the wave speed is zero,
red and orange lines (2 and 6 seconds), the wave acceleration is maximum.

2.2. Methodology: Numerical loads and response 26

Figure 2.14: Wave speed an acceleartion profile plot for a regular wave of 8 seconds.

Hydrodynamics The Morison equations (equation 2.17) are used to calculate the forcing in the x-
direction as a function of depth. To avoid using the entire water depth for calculating the force the
position of the substructure within the water is considered. By taking the position z of the structure
adding that to the draught, and finding the nearest index in the velocity vector at that depth. The inertial
and drag forces can then be defined as:

dFi(z) = (Cm+ 1) · ρsw · π
4
·D2

sparu̇(z) (2.87)

dFd(z) = Cd · 1
2
· ρsw ·Dspar · (u(z)− (ẋ+ z · θ̇)) · |(u(z)− (ẋ+ z · θ̇))| (2.88)

It should be noted that the Froude Krylov part of the Morison forcing equation is taken up in the
added mass matrix. The force is integrated over the draught of the spar using Simpson’s method
where.

Fhydro =

∫ 0

−Lspar

[dFi + dFd] dz = simpson((dFi + dFd), zuw) (2.89)

As such the overturning moment caused by hydrodynamic forcing can be calculated as the forcing
at each point multiplied by its distance to the global coordinate system origin.

Mhydro =

∫ 0

−Lspar

[(dFi + dFd) · z] dz = simpson((dFi + dFd) · z, zuw) (2.90)

Aerodynamics For aerodynamic forcing both steady and unsteady wind are considered, and the
wind speed for all conditions is computed using the theories described in 2.1.1. Where for computa-
tional efficiency reasons and the general scope of this research the thrust is calculated using a similar

2.2. Methodology: Numerical loads and response 27

formulation to 2.31. But in this case, a reduction factor is used to factor in the loss due to the difference
from mean wind speed to relative wind speed.

Fwind = Fwindmean
(Vwind, CTwind

) + fred · (Fwindred
(Vrel, CTrel

)− Fwindmean
(Vwind, CTwind

)) (2.91)

Where Fwindmean
is the thrust force created by the average wind speed. So this is calculated using the

simplified thrust formula expressed in equation 2.31, the wind speeds Vwind and the thurst coefficient
stemming from the wind speed.

Fwindmean
= 0.5 · ρair ·Arotor · CTwind

· V 2
wind (2.92)

Fwindred
= 0.5 · ρair ·Arotor · CTrel

· Vrel · |Vrel| (2.93)

CTwind
=

{
0.81 Vwind ≤ Vrated

0.81 · exp(−a · (Vwind − Vrated)
b) Vwind > Vrated

(2.94)

fred =

{
0.54 Vwind ≤ Vrated

0.54 + 0.027 · (Vwind − Vrated) Vwind > Vrated

(2.95)

WhereCTrel
is calculated in the same way asCTwind

but replacing the wind speed Vwind with the relative
wind speed Vrel.

CTrel
=

{
0.81 Vrel ≤ Vrated

0.81 · exp(−a · (Vrel − Vrated)
b) Vrel > Vrated

(2.96)

The parameter values a and b are set to 0.5 and 0.65 respectively. Fwindred
is there to factor in the

situations where the movement of the platform itself changes the inflow that the turbine experiences.

Vrel = Vwind − zhub · θdot + xdot (2.97)

The overturning moment caused by the thrust force is a simple force multiplied by the arm equation

Mwind = Fwind · zhub (2.98)

where zhub is the turbine’s hub height.
The function for thrust force Fwind and thrust coefficient Ct can be plotted as a function of wind

speed. These two curves for the 15 MW reference turbine are presented in figure 2.15. It is clear that
above the rated wind speed, the thrust coefficient and, therefore the thrust decrease with any further
increase in wind speed. The thrust force before that point increases exponentially due to the quadratic
relationship between thrust and wind speed.

(a) Thrust Coefficient curve using equation 2.95. (b) Thrust curve using equation 2.91

Figure 2.15: Thrust and thrust-coefficient curve plotted over wind speed from 0 to 20 m/s

2.2. Methodology: Numerical loads and response 28

2.2.4. Response Calculation
This section will contain the details of the response calculations. First, the general equation of motion is
set up after which each entry within the equation of motion is discussed. Finally, the equation of motion
is put into an ordinary differential equation solver to get the solution to the system.

Equation of Motion
The response calculations define how the system defined in section 2.2.2 will respond when exposed
to environmental forcing. The response is calculated in the time domain approach, this means that a
loading time series is used to calculate the response over time of the system. These results can then
be post-processed to get information on how the system is behaving. The system’s behaviour can be
described with the:

[M+ A] · [Ẍ] = [B] · [Ẋ] + [K] · [X]− [F] (2.99)
Where [M] is themassmatrix, [A] is the addedmatrix, [X] is the positional vector with its time derivatives
representing the movement of the system in the 3 degrees of freedom. [K] and [B] are the stiffness
and damping matrices respectively.

Mass Matrix
The mass matrix can be given by:

[M] =

 mfs 0 zcm ·mfs

0 mfs 0
zcm ·mfs 0 Ifsxx

 (2.100)

(2.101)

If the centre of the coordinate system is at the centre of gravity of the structure, the mass matrix [M]
becomes a diagonal matrix. However in this case the centre of the global coordinate system is located
at the tower base. This means that there are two cross-terms introduced in the matrix. The cross terms
are in positions i, j = 5, 1 and i, j = 1, 5. The term m5,1 describes what the inertial moment in pitch
would be due to surge. The term m1,5 describes what the surge force due to pitch would be. Which is
expressed by the same term.

m1,5 = m5,1 = mfs · zcm (2.102)

Added Mass
The spar is a structure moving through a fluid as such added mass needs to be taken into account.
The added mass is defined as the weight of the surrounding volume that needs to be moved for the
movement of the structure. This is expressed as a matrix form with entries aij . Each entry stands
for mass associated with force on the body in the ith direction due to a unit acceleration in the jth

direction. The subscripts will conform with 6 degrees of freedom systems. Where subscripts 1, 2 and
3 are translational motions: surge, sway and heave. Subscripts 4,5 and 6 represent the rotational
motions pitch, roll and yaw respectively. Due to the symmetry of the structure, the added mass matrix
is symmetrical in nature and as such not all entries need to be calculated. Furthermore, some of the
entries will be zero-valued as the movement in that direction would not cause action on the concerning
axes. An example would be the force in x direction due to heave: vertical motion will not result in
horizontal forcing. The added mass in the heave is neglected

• a11 = Force in x-direction due to surge. Non-Zero
• a13 = Force in x-direction due to heave. Zero
• a15 = Force in x-direction due to pitch. Non-Zero
• a33 = Force in y-direction due to heave. Non-Zero
• a35 = Force in y-direction due to pitch. Zero
• a55 = Moment around x axis due to pitching. Non-Zero

[A] =

a11 0 aa51
0 a33 0
a15 0 a55

 (2.103)

2.2. Methodology: Numerical loads and response 29

Figure 2.16: FBD surge motion

Added mass in Surge a11 would be the mass associated with force in the x-direction caused by
the acceleration in the x-direction. Thanks to the simple nature of the spar this can be calculated by
integrating the 2D hydrodynamic coefficient of a circle in surge over the length. To derive the added
mass in surge the equation of motion for the surge is set up 2.104. EOM:

m · ẍ1 + k1 · x1 = F̃Hydro (2.104)

Local motion along the spar depth:
x(z) = x1 (2.105)

Using the full morison equation 2.106 it becomes clear that the only term on the right side of 2.104
that involves the acceleration of the body is the hydrodynamic mass force. As such this term can be
added in the mass matrix.

Hydro-Force:

F̃Hydro =

∫ 0

zbot

ρπ4D2Cm

(
∂u

∂t
− ẍ1

)
︸ ︷︷ ︸
Hydrodynamic mass force

+ ρ
π

4
D2 ∂u

∂t︸ ︷︷ ︸
Froude Krylov

+
1

2
ρDCD (u− ẋ1) |u− ẋ1|︸ ︷︷ ︸

Drag Term

 dz (2.106)

a11 =

∫ 0

zbot

ρ
π

4
D2 · Cmdz (2.107)

Figure 2.17: FBD pitch motion

Added mass in pitch The same approach is taken for the pitch motion. However in this case inertia
and rotation are considered rather than mass and translational acceleration. The equation of motion
for the hydrodynamic moment is set up as:

IO · ẍ5 + c5 · x5 = M̃Hydro (2.108)

2.2. Methodology: Numerical loads and response 30

Local Motion along the spar depth:
x(z) = z · x5 (2.109)

Hydro Moment:

M̃Hydro =

∫ 0

zbot

(ρsw
π

4
D2Cm

(
∂u

∂t
− zẍ5

)
︸ ︷︷ ︸

Hydrodynamic mass moment

+ ρ
π

4
D2 ∂u

∂t︸ ︷︷ ︸
Froude Krylov

+
1

2
ρDCD (u− (z)ẋ5) |u− zẋ5|︸ ︷︷ ︸

Drag Term

) · zdz
(2.110)

Where in equation 2.110 the only term to be multiplied with the acceleration is in the hydrodynamic
mass moment term. This is then moved to the added mass term

a55 =

∫ 0

zbot

[
ρ
π

4
D2Cm

]
(z)2dz (2.111)

(IO + a55) ẍ5 + c5x5 = Mhydro (2.112)
(2.113)

To be clear this then influences how the forces will be calculated. Although elaborated later on the
Hydrodynamic forces are calculated while ignoring the acceleration in mass:

Mhydro =

∫ 0

zbot

ρ
π

4
D2 (Cm + 1)

∂u

∂t︸ ︷︷ ︸
Inertia load

+
1

2
ρDCD (u− zẋ5) |u− ẋ1|

drag load︸ ︷︷ ︸ ·z
 dz (2.114)

Added Mass Cross Term For the cross term in the added mass in pitch, the moment caused by a
movement in the surge is considered. Which uses equation 2.106 and multiplies it by the distance z.
This means that the cross term in the added mass matrix can be written as:

a15 = a11 · z =

∫ 0

zbot

(
ρ
π

4
D2 · Cm · z

)
dz (2.115)

Stiffness matrix
The stiffness matrix can be formed by considering the mooring and hydrodynamic stiffnesses in every
degree of freedom. From the equation of motion described in equation 2.99, the stiffness matrix is
multiplied by the displacement to get a force or moment (depending on the index in the system). Similar
to the added mass matrix there are only coupling terms between pitch and surge. The stiffness can be
modelled as seen in figure 2.18

Figure 2.18: Stifness schematic

2.2. Methodology: Numerical loads and response 31

[K] =

k11 0 k51
0 k33 0
k15 0 k55

 (2.116)

The mooring is attached at a third of the draught of the spar. When considering the change in static
forces at a displacement in surge the entry in the stiffness matrix affecting surge can be expressed as
the mooring stiffness.

k11 = kmoor (2.117)

The mooring stiffness is calculated based on a presumption of the natural period in surge of 60
seconds and the mass and added mass in the surge. Where the mass of the spar is considered.

kmoor = ω2
nsurge

· [mspar + a11] (2.118)

Where ωnsurge = 2πcdot 1
60 .

The stiffness in heave is the hydrodynamic stiffness caused by a change in buoyancy force when
the structure is submerged further in water. That buoyancy force can be expressed as the weight of
the increased volume when the structure moves along the z-axis. As the stiffness is multiplied by the
translation along the z-axis it is the change volume of the spar divided over the translation.

k33 = ρsw · g ·Awp (2.119)

where Awp is the waterplane area.
The pitch stiffness k55 is based on the hydrodynamic stability properties of the spar. The spar is

self-stabilizing when the centre of mass lies below the centre of buoyancy. This means that when the
spar takes on some pitch angle θ the buoyancy and gravity force will create a righting moment. On top
of that, there is also a hydrodynamic stiffness caused by having to rotate through a liquid. This term is
based on the second moment of the waterplane area. The stiffness in pitch can thus be calculated by
dividing the moment caused by a change in pitch, over the pitch. As small angles are presumed this
ratio can be calculated as:

k55 =
Mhydrostatic

θ
= g

 ρsw · Ixxwp︸ ︷︷ ︸
Added Hydrodynamic Stiffness

+ ·∇ · zcb︸ ︷︷ ︸
Bouyancy

−mfs · zcm︸ ︷︷ ︸
Gravity

 (2.120)

The cross term in the stiffness matrix refers to the moment caused to pitch by surge translation or
the addition to the force in x direction caused by pitching. As such it can be described by the extension
of the mooring stiffness multiplied by the distance of the mooring point to the centre of the coordinate
system.

k15 = k51 = −zmoor · kmoor (2.121)

Damping Matrix
The damping matrix describes how the system loses energy. A floating wind turbine is exposed to aero-
and hydro-dynamic forcing and as such there is also aero- and hydro-dynamic damping. This problem
has been approached using Meng’s (2022) analytical approach to the damping terms for a spar floating
wind turbine [55], ignoring the radiation damping terms.

Aerodynamic Damping Aerodynamic damping comes from the interaction between the rotor and
the wind. The assumptions are made that the connections between the nacelle tower top and rotor are
rigid. The blades are also assumed to be rigid, ignoring blade- and edge-wise vibrations. The vibration
velocity of the blades is presumed to be much smaller than the inflow of wind speed, meaning that
linearization should offer a good approximation. The vibration of each blade element can be divided
into two parts, one is caused by the platform motions, and the other by the tower top. Using these
assumptions Meng (2022) derives an analytical expression for the aerodynamic damping per blade
element that is integrated over the blade. Where the damping force can be expressed as:

FdampAerop = Cpp
Aero U̇+ Cpt

Aero u̇ (2.122)

2.2. Methodology: Numerical loads and response 32

Where FdampAerop is the aerodynamic damping force, Cpp
Aero is the damping caused by platform motions

U. Cpt
Aero is the damping caused by the tower top motions u For application in this research, some

adjustments had to be made, as the thrust force is calculated from an average thrust coefficient, and
the aerodynamic coefficients are immediately integrated over the length of the blade. The damping
matrix for platform-induced damping can be expressed as:

Cpp
Aero = AptCtp

Aero

=

 cxU1
0 cxU5

0 czU3
0

hRcxU1
0 cθyU5

+ hRcxU5

 .
(2.123)

Where mathbfApt is the transformation matrix to move damping matrix to the same space.

cxU1
=

T

V0
(2.124)

cxU5 = hR
T

V0
(2.125)

cθyU5
=

3

2

T

V0
(2.126)

czU3 = 0 (2.127)

The damping introduced by the tower top motions are defined as:

Cpt
Aero = AptCtt

Aero =

 cxx 0 0
0 0 0
hRcxx 0 cθθ,θy

 (2.128)

Where after similar simplification:
cxx =

T

V0
(2.129)

cθθθθ =
3 · L3

blade

6

T

V0
(2.130)

After simplification, the terms in the aerodynamic damping matrix become, see C for the complete
expression for the damping terms as intended by Meng(2022) [55].

Hydrodynamic Damping The hydrodynamic damping is derived from the Morison equation by in-
tegrating the viscous damping force over the draught of the spar. The viscous damping force in the
x-direction and moment over the y-axis is defined as.

FViscous
1, damp (t, Z) = −CDρwD dZ |v1(t, Z)|

(
U̇1 + U̇5Z

)
(2.131)

FViscous
5, damp (t, Z) = −CDρwD

∫ 0

−Lspar

(
U̇1Z + U̇5Z

2
)
|v1(t, Z)| dZ (2.132)

Using linear wave theory in deep water

v1(t, Z) = Hsσe
kZ sinσt (2.133)

and the dispersion relation
σ2 = gk (2.134)

Inserting 2.133 and 2.134 into the linearized damping expressed in equations 2.131 and 2.132 that the
damping forces can bee written as:

FViscous
1, damp (t, Z) = −CDρwDHsσ| sinσt|

[
A1e

k(Z−hT)U̇1 +A2e
k(Z−hT)U̇5

]0
−Lspar

(2.135)

2.2. Methodology: Numerical loads and response 33

FViscous
5, damp (t, Z) = −CDρwDHsσ| sinσt|

[
A2e

k(Z−hT)U̇1 +A3e
k(Z−hT)U̇5

]0
−Lspar

(2.136)

Where:
A1 =

1

k

A2 =
Z

k
− 1

k2

A3 =
Z2

k
− 2Z

k2
+

2

k3

(2.137)

This leads to the damping coefficients:

cvisU1U1
= CDρwDHsστA1e

kZ
∣∣0
−Lspar

cvisU1U5
= CDρwDHsστA2e

kZ
∣∣0
−Lspar

cvisU4U4
= CDρwDHsστA3e

kZ
∣∣0
−Lspar

(2.138)

Where τ is defined as 2
π . Finally this viscous damping matrix can be defined as:

CMorison
Vis =

 cvisU1U1
0 cvisU1U5

0 0 0
cvisU5U1

0 cvisU5U5

 (2.139)

Ordinary Differential Equation Solver
The system is solved using an ODE solver. all matrices and the force vector are known the ODE solver
solves for what solution of acceleration, speed and position the equation 2.99 is true. For this thesis, an
ODE solver is used which uses an Adams/BDF method with automatic stiffness detection. The solver
is part of a larger library Scipy. The solver’s manual, it refers to two papers that describe the automatic
ODE solving method [69] and [32].

Test Cases
To test the time domain simulation a single simulation is run using a substructure defined by the following
design variables:

[x] = [D,L, T]T = [20, 170, 0.13] (2.140)

The water depth for all the tests run in this section will be set to 400 metres.

Regular Wave response The regular wave response is tested for a wave height of 8 meters and a
period of 12 seconds. Damping is considered from both the platform and the turbine motions, this is
an overestimation of the damping as the turbine motion damping is supposed to mimic the damping
caused by the vibration of rotating blades. The simulation is run for 1500 seconds and the first 500 are
ignored to remove any transient behaviour from the system. For the power spectral density analysis
only 100 seconds are considered. The response is plotted below in figure 2.19. The figure shows the
response over time on the left and the power spectral density on the right. what can be seen is that the
surge and pitch response fluctuate around zero, which is to be expected in regular waves. The pitch
and surge motion are not caused by any thrust force at the tower top and as such, there is no offset in
pitch or surge.

2.2. Methodology: Numerical loads and response 34

Figure 2.19: Response of the system in regular wave of 8 meters and period of 12 seconds

As the pitch is a response of the mooring force increasing and decreasing out of phase with the
surge, the pitch response will be of the same frequency as the surge response. The power spectral
density analysis of these 100 seconds indicates that there is a heave response at half the frequency of
the regular wave and pitching, this is due to the natural frequency in heavy caused by the change in
buoyancy caused by a regular wave and the inertia of the system itself.

Steady Wind response For the steady wind response first, a wind speed of 11 m/s is considered,
this is the rated wind speed and as such, it should cause the largest pitching response. This is because
above rated thrust force will decrease as the thrust coefficient is modelled to decrease from the rated
wind speed onwards. This is to emulate the blades pitching out of the wind to keep the turbine spinning
at rated RPMs. There is no response in heave from pitching as there are no coupling terms from pitch
to heave. When a wind turbine is pitched by a thrust force that is presumed to be constantly horizontal
there is no contribution to the heave behaviour from the thrust force. The pitch response pitches around
1◦, which if it is the largest response of this turbine could indicate that it is slightly oversized for its
application.

2.2. Methodology: Numerical loads and response 35

Figure 2.20: Response of the system in steady wind of 11 m/s.

If a wind speed of just under-rated wind speed is used there is a second excitement coming from the
change in thrust force. For a steady wind speed of just under rater wind speed, when the turbine surges
into the wind the relative wind speed increases and actually increases over the rated wind speed. As
such the thrust coefficient decreases, which causes a decrease in thrust and therefore in pitch and
surge response. This behaviour is seen in the pitch response.

Figure 2.21: Response of the system in steady wind of 10.9 m/s.

Steady Wind and Regular Wave Response The response to a combination of regular waves and
steady wind speed is presented below. A rated wind speed 11 m/s is used in combination with a wave
height of 8 meters and a period of 8 seconds. What can be seen in the figure is that there is a heave
frequency response at both frequencies of its own natural frequency and that of the wave velocity. Both
the pitching and surge have the most response at the same frequencies. This indicates that the surge
response for this simulation is governed by either wind or wave. And as the wave natural frequency
is 1

8 ≈ 0.013 it must be governed by the waves. The pitch offset is caused by the steady wind and its

2.2. Methodology: Numerical loads and response 36

fluctuation is caused by the waves.

Figure 2.22: Response of the system in steady wind of 11 m/s, wave height 8 m and period 8 seconds.

Irregular Wave | Steady Wind response If the wind is left as a constant and the Jonswap spectrum
is used to generate an irregular wave will cause an irregular motion response much nearer to what
would happen at sea. As the spectrum is a sum of a set of regular waves the power spectral density
should look like the Jonswap spectrum. This is clearly seen in the figure 2.23 where the response
still fluctuates around zero, but the fluctuations are far less predictable. There is no difference in the
heave response plot as the change in buoyancy has not been related to the irregular wave. The pitch
response is dominated by the waves as such it mimics the wave spectrum seen in the heave response
spectral density plot.

2.2. Methodology: Numerical loads and response 37

Figure 2.23: Response of the system in steady wind of 11 m/s, and an irregular wave pattern generated with significant wave
height 8 m and significant period 12 seconds.

Irregular Wave | Unsteady Wind response Irregular wave and unsteady wind lead to a combination
of the Kaimal and Jonswap spectra in the spectral density plots of the heave and pitch response. It’s
interesting to see that the surge response is about as influenced by the wind as by the waves. The
surge spectral density is seen to peak at the slow wind-changing frequencies and at the quicker wave
frequencies. Whereas the spectral density for the pitch shows a negligible peak at the wave frequencies
(≈ 0.15 to 0.20).

2.2. Methodology: Numerical loads and response 38

Figure 2.24: Response of the system in the unsteady wind with a ten-minute average of 11 m/s, and an irregular wave pattern
generated with significant wave height 8 m and significant period 12 seconds.

5MW spar comparison case
For some validation of the response characteristics of this turbine, the natural frequencies can be com-
pared to the research done in 2021 by Zhang Y [86]. Which investigated and the dynamic response
of the 5MW reference turbine on a specified spar floater. Where the response was validated by com-
paring it to six other investigations of the dynamic response of that reference turbine and floater. The
natural frequencies found are presented in the image of a table below taken from that research.

Figure 2.25: Table from dynamic response investigation [86]

The natural period found for the test case in this response calculations for surge heave and pitch are
0.114, 0.222 and 0.244 respectively. It is thus found that the responses in heave and pitch are similar and
therefore likely to be valid. However, the surge natural frequency is twice as large. This is attributed
to the substructure in this test case being significantly larger that the superstructure. This can be seen
when comparing ratios of the spar vs superstructure investigated by Zhang [86]. The spar of the 5MW
turbine had a depth of 120 meters whereas the hub height was 90 meters. This is the same ratio as the
test spar where the depth is 200 with a superstructure hub height of 150. However, the diameter of the
spar in the test case for this research is twice as large as the tower diameter whereas the investigation

2.2. Methodology: Numerical loads and response 39

of the 5MW turbine floater was considered to be about 1.5 times as large. This becomes a significant
difference when considering the effect it has on the mass of the structure. Furthermore, the natural
frequency in surge is determined by the mooring stiffness and mass of the structure so this could also
be the effect of a different choice in mooring stiffness calculation. The model is considered to give
realistic responses.

2.2. Methodology: Numerical loads and response 40

2.2.5. Fatigue Calculation
This section goes over the fatigue calculations. The theory behind fatigue calculation is covered in
section 2.1.2, where approaches for fatigue damage calculations in the time and the frequency-domain
are discussed. For the time domain simulation, the overturning moment history can be used to calculate
the stress history at the tower base.

Figure 2.26: Schematic of how the spar is ’sliced’ from the weld locations

The fatigue analysis inherits information from the time domain simulation. Most importantly the
forcing and positional history of the floater. The spar is presumed to be made of a set of cylinders
welded together at 10 meter intervals. These welds are presumed to be the quickest to fail and are
therefore investigated for lifetime fatigue. The stress is calculated over the steel cross-sectional area
of the spar, thus ignoring any added stiffness that the ballast would provide. Meaning that any optimum
solution that is led by the fatigue calculations is expected to suggest a conservative thickness.

Stress History The first step is to calculate what the stress will be in the structure. This is done
by setting up the equations of motions as described in equation 2.99. If the free body diagram at a
weld is shown it’s clear that Newton’s first law should still apply; the sum of all forces and moments
should equal the mass(or inertia) multiplied by the acceleration. From the response analysis the forces,
moments and velocities are known. As such if the structure is ’sliced’ open at a weld, the internal forces
should still allow for that balance to be made up. Even for a small part of the spar:

dm · ẍ =
∑

F (2.141)

dI · θ̈ =
∑

M (2.142)

As the positional and velocity time history of the structure are known from the response analysis,
the accelerations can be calculated by presuming linear acceleration between time steps.

ẍi =
ẋi+1 − ẋi

ti+1 − ti
(2.143)

where x can be any of the degrees of freedom.
The mass of the ’sliced’ FBD can be calculated as:

dm =
Lspar − zcutoff

Lspar
·mspar (2.144)

2.2. Methodology: Numerical loads and response 41

The same ratio can be applied to the moment of inertia

dIxx =
Lspar − zweld

Lspar
· Ixxspar

(2.145)

where zweld is the coordinate from which the ’slicing’ is being done. Which allows for the calculation of
the shear force.

Tshear = dm · ẍ− simpson(Fxhist
, zcutoff) (2.146)

Which allows for the shear stress τ calculation

τ =
Tshear

Acrosssection
(2.147)

Where Acrosssection is the cross sectional area of the spar. Calculated from a hollow cylinder cylinder.

Figure 2.27: Cross section of the spar

Acrosssection = (r22 − r12) (2.148)

The bending stress is calculated using the overturning moment at the weld locations.

Moverturning = dIx · ẍ− simpson(Tshear · zcutoff , zcutoff) (2.149)

So the bending stress becomes:
ϕ =

Moverturning

Ixarea2

y

(2.150)

Where y is the distance from the neutral line, to get the biggest stresses this is considered to be the
radius of the spar. y = 0.5 ·Dspar. Ixarea2 is the second moment of the cross-sectional area of a hollow
cylinder.

Ixarea2 =
π

4
· (r42 − r41) (2.151)

where r1 and r2 are the inner and outer diameters of the spar.

Lifetime Stress and Cycle calculation A rainflow counter is used to get the cycles and stress ampli-
tudes over the lifetime of the structure. With any given stress history the signal is first filtered through
a hysteresis, or ’peak-valley’ filter to filter out any noise in the stress history. After which the rainflow
count cycle is used to get the range, and average of the stress history.

2.2. Methodology: Numerical loads and response 42

The range and average are calculated from the stress history which is only a limited amount of time.
Stress is presumed to increase linearly with time. So the cycles can be scaled up in time as:

Nlifetime = nhistory ·
tlifetime

tstresshistory
(2.152)

From here the lifetime equivalent stress can be calculated as the following sum:

ϕeq =
∑

(Nlifetime · (
ϕm
range

neq
)(

1

m
) (2.153)

2.2.6. Lifetime fatigue and Environment
To be able to model the lifetime fatigue of a floating wind turbine it’s important to be able to represent
all the combinations of wind and wave speeds. The largest contributor to lifetime fatigue will be the
condition that occurs most at the given sight. For this research, the decision is made to base the
lifetime fatigue on the method described by Gao (2015) [49]. Where a method for determining the
joint probability of wind speed, significant wave height and significant wave period is presented. In this
research, the Norway 5 site is used with an adjusted depth to allow for a realistic substructure for the
15 MW reference turbine and tower [27].

The total lifetime damage is calculated by analysing the time series of bending stress at every weld
on the substructure. The time series for bending stress is calculated using the response, and the
response can be calculated for the set of environmental conditions listed in table 2.5. The kinematics
for each environmental condition is precalculated. The Weibull distribution of the wind is based on a
10-minute average wind speed. For a realistic simulation, the wind should be simulated as changing
throughout those ten minutes. As such the Kaimal spectrum (eq:2.33) is used for wind kinematics.
The wave kinematics are also produced using the significant wave height from the table and use the
Jonswap spectrum to generate the irregular wave time series 2.84. It can be seen in the table that by
using the weighted average of the wave period there are as many wave time series as there are wave
heights.

3
Optimization

This chapter regards the theory and methodology of optimization and how it relates to this research.
Optimization is a discipline within itself and as such will first be broadly introduced in the theory sec-
tion. Covering both gradient and non-gradient based approaches. The decision is made to use a non
gradient-based optimization algorithm: simulated annealing. In the methodology section, this algorithm
will be thoroughly explored and tested on a set of test functions.

3.1. Theory: Optimization
Optimization is used in many engineering problems and has become a useful tool for exploring design
spaces. An optimization is a minimization of some objective function. By defining an objective function,
the goal is to find the set of design variables that minimize that objective. Formally expressed as:

minimize f
with respect to x ∈ Rn

subject to ĉj(x) = 0, j ∈ [1, m̂]
ck(x) ⩾ 0, k ∈ [1,m]

(3.1)

Where f is the objective function, x is the set of design variables within the design space Rn. ĉj
and ck(x) are the equality and inequality constraints respectively. There are many approaches to mini-
mizing the objective function f , the first clear division in approaches is gradient vs non-gradient-based
optimizations.

3.1.1. Gradient Based Methods
Gradient-basedmethods try to find the gradient within the design space to move in a direction that leads
to a smaller outcome before re-evaluating a new point. By using the design space’s gradient information,
the direction in which to move to lead to a smaller outcome is clear. Many algorithms perform gradient-
based optimizations. Determining the direction of the search is where the key differences lie.
Before determining the search direction, it is helpful to consider how such a gradient-based optimization
method moves along a given direction. The step size determining algorithm is often referred to as a
line search. It determines how big of a step to take before re-evaluating whether or not a new local or
global minimum has been found. At this point, the gradient would need to be re-evaluated. Typically
this point is found by finding a point that adheres to the Wolfe conditions introduced in 1969 [82]. The
first condition is the ’sufficient decrease’ condition which checks whether the next point considers lies
far enough below the initial point

f (xk + αpk) ≤ f (xk) + µ1αg
T
k pk (3.2)

Here f is the objective function, xk the initial point, α the stepsize and pk the search direction. The
tolerance µ1 determines the slope of the steepest descent line.

43

3.1. Theory: Optimization 44

The next thing to check is the curvature condition, where the line search checks whether or not the
curvature at the new point is less than the previous point.

g (xk + αpk)
T
pk ≥ µ2g

T
k pk (3.3)

Here g is the gradient of the objective function, and µ2 is the tolerance. It should be noted that there
is a relationship that µ1 <≤ µ2 ≤ 1, which prevents the line search from getting stuck.
Optimizations can be done with many versions of the line search adhering to strong or weak Wolfe
conditions with different tolerances. The Wolfe conditions are considered strong when all tolerance
has to be absolute in the curvature condition.

Suppose an objective function is defined as f(x) where x is defined as a set of design variables.
Presuming a smooth function, the first and second derivative of f(x) can be defined as the gradient gi
and the hessian Aij where i and j are the indexes of the variable being derived to.

gi(x) =
∂f

∂xi
(3.4)

Aij(x) =
∂2J

∂xi∂xj
(3.5)

One can imagine that with large amounts of design variables, the computational expense to calculate
the Hessian becomes very large as such most gradient-based methods will differ in the approach to
estimating gradients and Hessians.

Steepest Descent What is often considered the most intuitive of methods is the steepest-descent
method. Reviewed by Meza in 2010 [56], the steepest descent finds its basis in the fact that for a
continuous smooth function, the gradient points in the opposite direction to the steepest descent. This
method doesn’t store any information from previous gradients but purely looks at the gradient at the
current point, in doing so it often results in a zig-zag motion towards a minimum. This method defines
the search direction pk.

pk = − gk
∥gk∥

(3.6)

Conjugate Gradient The conjugate gradient method is only minimally different from the steepest
descent and saves information on the search direction from previous iterations. The history and work-
ings of which can be found in the publication of Nazareth (2009) [62]. This method uses the same
calculation for the direction as the steepest descent from equation 3.6 but adds to it a β term which is
calculated with information from the previous iteration. Within conjugate gradient methods, there is a
further variation on how to define the β term, below, you can find one example.

β =
gTk gk

gTk−1gk−1
(3.7)

pk = − gk
∥gk∥

+ βkpk−1 (3.8)

Quasi Newton In 2001 Schoenberger [75] published a clear explanation of the Quasi-Newtonmethod
which finds its characteristic in iteratively building an estimation for the Hessian. The widely used al-
gorithms were all developed around in the early seventies and still hold relevance today. Some of the
most well-known include Broyden’s (1965) method, the SR1 formula (Davidon, 1959; Broyden, 1967),
the DFP method (Davidon, 1959; Fletcher and Powell, 1963) and the BFGS method (Broyden, 1969;
Fletcher, 1970; Goldfarb, 1970; Shanno, 1970).

3.1. Theory: Optimization 45

Derivative Calculation The calculation of derivatives is another problem to be considered. For sys-
tems that consist of a high number of design variables, calculating the derivative analytically is not a
feasible solution. There are numerical approaches to getting the gradient and, if required, to calculating
the Hessian. Estimating the derivative with finite differences is the simplest one. The gradient is calcu-
lated by taking making a straight line between two points within the design space. It should be noted
then that numerically if the step size is too small, the difference between the two points can become
impossible to calculate due to computational limitations on the fidelity of the computer. A general ver-
sion for applying this to meshes was presented by Perrone in 1975 [68]. Another example of derivative
calculations is the complex step, presented methodically by Martins in 2003 [54]. This method takes
the derivative similarly to the finite-difference method but instead of moving within the real space, a
Taylor expansion is done to estimate small steps in the complex plane. It is then found that the deriva-
tive can be estimated by taking the imaginary part of the expansion and thus no subtraction is needed.
The two remaining derivative calculation methods seen in optimizations are Analytical and algorithmic.
Both see any computational model as a sequence of explicit functions. Depending on how every step
of the sequence is taken, it is possible to get partial derivatives at every step and in doing so calcu-
late derivatives within the system. This requires access to the source code of any model as between
sequential steps the derivatives have to be calculated. It can be concluded then that this is a very
involved process. Which finally leads to the most numerically exact method, analytic differentiation.
Analytic differentiation can be split up into direct and adjoint methods. Both use the traditional chain
rule and set it to zero. But differ in either factorizing the residuals (direct) or the partial derivative (adjoint)

3.1.2. Gradient Free Methods
Gradient-free methods are ways to navigate the design space without calculating the gradient of the
design space. Gradient-free methods are efficient in finding local minima for high-dimensional, non-
linearly constrained, convex problems. However, they are sensitive to noisy and discontinuous func-
tions. Oftentimes, it is seen that these methods are based on heuristic logic or copy some sort of
natural phenomena. Genetic algorithms, for instance, mimic evolution by introducing similar stages to
the exploration of a design space as stages of population growth. Considering a set of design solutions
to be the population which can procreate and share characteristics. For further reading on genetic
algorithms the reader is referred to Sivandam (2008) [78]. Particle swarm is another method based on
natural phenomena, using principles from bees searching for honey. Developed in 1995 by Kennedy
and Eberhart [23] the method is a widely popular approach and was reviewed just six years after by
Shi (2001) [24]. The general idea is to give each agent within the swarm (one particle moving along the
design space) a direction and a velocity. At each iteration, the best overall position is stored together
with the best ever position ever visited. Depending on where the agent is, the velocity and direction will
change. As such there are many versions of gradient-free methods, like the divided rectangles which
navigate a space on the basis of dividing rectangles until the optimal solution is found. The Nelder-
mead method was developed in 1965 [63] and is still a popular optimization algorithm which is based
on producing a simplex in the design space that navigates based on specific rules. As gradient-free
methods are based on heuristics there is a nearly endless amount of possible approaches. As such to
avoid an endless list of approaches; the simulated annealing and genetic algorithm approach will be
further explored.

Genetic Algorithm Inspired by Darwin’s theory of evolution, where the creature best suited to its en-
vironment has the highest likelihood of survival. The genetic algorithm consists of making a population
of designs where the design variables can be seen as chromosomes. The genetic algorithm evaluates
each design with the objective function. The initial population can be generated from any random distri-
bution to increase diversity. The goal of the initial population is to spread uniformly around the search
area in the design space, as such Gaussian random distributions are commonly used. The next phase
is the selection phase, where the lowest solutions (most fit) have the highest chance of finding a mate.
This is done by assigning a probability to each design in the design space. In the literature there are
many operators for the selection phase; Boltzmann selection [28], fitness uniform selection [35], Tour-
nament Selection [84]. After the selection phase is the crossover, or procreation phase. Taking two
’parent’ designs and generating a new one. Two popular crossover methods are single and double-
point crossovers. The single-point crossover takes the design variables of one parent and swaps them

3.1. Theory: Optimization 46

with the design variable of the other parent from a specific point. An example would be if parent 1 had
design variables [A,B,C,D,E] and parent 2 had [F,G,H, I, J] a single point crossover from point 2
would result in children: [A,B,H, I, J] and [F,G,C,D,E]. A two-point crossover is similar but taken
between two points. There are many more versions of crossover to be found in the literature: Uniform
Crossover [34], partially mapped crossover [17] and more to be found in the crossover review from Kora
[43] The last phase is a mutation, in which the design variables of the child designs are adjusted. The
mutation rate is typically low to avoid a random search. At high mutation rates, the selection phase is
nullified. As with the other phases, there are many techniques for the mutation phase: Power mutation
[18], Gaussian [8], Supervised Mutation[89]. The best solution from the last generated population is
returned as the global optimum solution to the objective function.

Simulated Annealing The simulated annealing (SA) algorithm was first independently proposed by
Kirkpatrick et al in 1983 [41] and Černy in 1985 [13]. As explained by Sahab M in 2013 [72], the
algorithm is based on the way crystalline structures form to the optimum energy state during the slow
cooling process of metals. The SA algorithm applies a similar process to finding the optimum of an
objective function. Using a statistical search of the design space the SA algorithm is increasingly less
likely to accept bad solutions. For the cooling analogy, the objective function can be seen as the energy
state, and moving to a new set of design variables corresponds to a change in that state. A plethora of
engineering-related optimizations using simulated annealing is named in Sahab M 2013 [72] showing
its wide spread usage in the engineering industry.

The SA-algorithm starts with a feasible starting design. From this point, a new design is developed
by adjusting the design variables to a specified degree from the starting point. The designs have to
be feasible, so pass some sort of feasibility check, after which the design is tested on the objective
function. If the new design results in a lower value of the objective function, the design is accepted.
When this is not the case a random number is generated, and compared to a temperature PDF function,
if the random number is below the temperature pdf function, the ’worse’ design is accepted. The laws
of thermodynamics would state that at any given temperature the probability of change in the energy
state of δE is:

p(∆E) = exp
(
− ∆E

kBT

)
(3.9)

Where kb is the Boltzmann constant and δE is the difference between current energy state Ei and
new energy state Ej :

δE = Ej − Ei (3.10)

As more iterations go on the temperature pdf function returns smaller values which decreases the
chance of accepting worse designs. There are variations to this approach. For instance, rather than
ignoring infeasible designs, a penalty function can be introduced which allows more freedom of move-
ment in the design space as introduced by J Stern in 1992 [79]. The initial temperature and cooling
schedule are important parameters in simulated annealing. Kirkpatrick’s first paper suggests that the
initial temperature be determined in terms of the initial probability value.

T0 = − ∆E

log (1− P0)
(3.11)

For the cooling schedule, there is a balance to be found as well. Cool too quickly and the chance of
finding the global optimum decrease. Cool too slowly and you have computational inefficiency. In the
first proposed algorithm [41] used a linear cooling schedule.

T (k) = −ηk + T0 (3.12)

Where T0 is the initial temperature, η is the slope of the decreasing line and k the iteration count. Golden
and Skiscim [29] also used a linear approach to the cooling schedule but defined it as:

T (k) = T0
c− k

c
= T0 −

k

c
T0 (3.13)

Where c should be chosen through trial and error. The ratio of k over c is a decreasing factor with
increased iterations k. Sekihara had an approach where after the minimum amount of iterations the

3.1. Theory: Optimization 47

cooling schedule would speed up [77].

T (k) =

{ T0

(1+k) if k ≤ klim
α · T (k − 1) if k > klim

(3.14)

Johnson [37] proposed another popular cooling schedule found in the literature:

T (k)
T0

(i+ βT0)
(3.15)

Where β is a coefficient for the initial temperature T0

Or thewidely used adaptive cooling schedule fromAtiqullah [7] that uses the variance of temperature
over the iterations:

T (k + 1) = T (k) exp

(
− λT (k)√

Var[T (k)]

)
(3.16)

Where 0 < λ =< 1.
Although the temperature could theoretically decrease to zero, this does not have to be a necessity

for finding the global optimum. In a method suggested by Van Laarhoven [80] the optimization stopped
when the temperature dropped below a predetermined final temperature TM . Lundy and Mees [51]
suggested this final temperature be defined as:

TM ≤ ε

ln
[
|S|−1

P

] (3.17)

There seems to be a near endless amount of variants on the SA algorithm, Chaotic SA, Fast SA,
Hybrid SA. All of which try and improve the performance of the algorithm. Chaotic SA is based on chaos
which is a mathematical property of dynamical systems which shows unstable pseudo-random, non-
periodic behaviour. Chaotic sequences have been adopted rather than random sequences in heuristic
algorithms [85]. Mingjun and Huanwen introduce chaotic systems to the SA algorithms [58]. The first
chaotic map is made using a one-dimensional logistic map defined as:

zk+1 = f (µ, zk) = µzk (1− zk) with k = 0, 1, . . . (3.18)

Where zk is between 0 and 1 and is the chaotic variable z at the kþiteration. µ is the bifurcation factor
of the system. This system carries the stochastic property and sensitivity dependence on the initial
conditions of chaos. The second chaotic system can be produced by a new chaotic map defined as:

zk+1 = ηzk − 2 tanh (γzk) exp
(
−3z2k

)
(3.19)

This mapping model was derived from a chaotic neuron, developed in chaotic genetic algorithms
[83]. The chaotic mapping is the initialising step for the first feasible design. Given an initial value z0,
generate set of chaotic variables zki using equations 3.18 and 3.19

A new solution is generated using a formula dependent on one of the chaotic variables zkm :

ym,i = xm,i + α× (bi − ai)× zkm , (3.20)

Where α is a decreasing variables adjusted with α = α · e−β

Implying that the main difference between chaotic SA and normal SA is the replacement of how
the first design is generated, and how the design space is navigated. From Mingjun and Huanwen’s
paper [58] it is unclear whether the results from chaotic SA are significantly better than the classic SA
proposed by Kirkpatrick [41].

3.2. Methodology: Optimization 48

3.2. Methodology: Optimization
This section will explore how the optimization algorithm used for this thesis has been implemented and
tested. The optimization method used is a gradient-free optimizer; simulated annealing. The theoretical
background is discussed in section 3.1.

3.2.1. Simulated Annealing
The heuristic logic of the simulated annealing algorithm is based on the cooling of the crystalline struc-
tures in metals. The logic is motivated by the need to allow the optimizer to move to less optimal places
and in doing so explore more of the design space. The optimization chooses an arbitrary new point
within the design space, checks for feasibility and based on a temperature variable either will or will not
accept a ’worse’ design set.

This section will go into detail about to steps within the algorithm and discuss its performance in a
set of test functions. The simulated annealing algorithm can be broken down into 4 steps.

• Initialize
• Generate new design
• Evaluate new point
• accept or generate again

These steps continue until the stopping criteria are met.

Initialize The simulated annealing algorithm begins with a point within the feasible design space,
so the starting point cannot be an infeasible design. When the optimization is initialized it uses the
initial feasible starting point within the design space xstart to evaluate the objective function f(xstart).
An initial temperature T0 and a cooling rate r are parameters with which to control how quickly the
optimizer settles to a solution. Further is the parameter L that determines the minimum amount of trial
movements before moving on to the next point. The optimization loop can be divided into two iteration
loops, one inner iteration loop counted by k and an outer iteration loop counted by K.

Generate new design Beginning at some point xstart a new point is generated by adjusting the
design.

xnew = xold + α · xold (3.21)

Where α is a parameter that is uniformly distributed between plus and minus ∆max. Where ∆max

is chosen to be 0.1. This defines the max search distance at one step. This does mean that if the
initial feasible design is far away from the optimum and consists of small design variables, it will take
longer to converge to an optimum solution. However for the case of a spar-type floater, the system is
expected to be sensitive to small changes, and as such a feasible design is not expected to be very far
from the optimum.

Accept or Reject Design The new point is then checked for feasibility, where a check is done to see
if it crosses any of the constraint conditions. After the new point is deemed to be within the feasible
space, the objective function is evaluated at the new point. If the new point results in a smaller value
of the objective function the point is automatically accepted. If this is not the case the point could still
be accepted. The acceptation is based on the probability density function and a random number z
uniformly generated between 0 and 1. In literature, this is also referred to as the metropolis condition.
The probability density function is defined as:

p = exp(−df

Tk
) (3.22)

Where df is the difference in objective function values f(xnew) and f(xold), where if df is positive,
means that the new point is worse off than the old point xold. If the randomly generated number is less
than p the point is accepted.

The probability density function is plotted below to show the behaviour and working of this part of the
algorithm. From figure 3.1 it becomes clear that as the difference becomes less positive the likelihood
of acceptance increases as function value p converges to 1 from a lower temperature. And in figure

3.2. Methodology: Optimization 49

3.1b it is noted that when the difference df is large the probability p remains negligible until a much
higher temperature.

(a) plotted from temperature range 0 to 50. (b) plotted from temperature range 0 to 2

Figure 3.1: Probability density plot for less optimum designs

If the new point is worse off and the randomly generated number z is higher than the p a new feasi-
ble point is generated again. This continues until a new acceptable point is generated. Completion of
this acceptance is considered the inner iteration. Which will go on until k ≥ L, from which point either
the global optimum is found by checking stopping criteria. Or where the best point is taken and from
this best point the same inner iteration loop goes again. In which the outer loop counter K goes up by
one as well.

Stopping Criteria There are three stopping criteria:

• Lack of consecutive change
• Proportional Improvement
• Outer Iteration Limit

Lack of consecutive change The lack of consecutive change checks that the best position is
found after a set number of outer iterations is still improving. What happens is that for J number of
inner iterations the evaluation of those iterations is compared. If the evaluations are too close together
it means that the optimizer is barely moving through the design space which indicates a global optimum.
By checking all the J set of accepted new points within an inner iteration if they are all near each other
it could also indicate that the temperature is so low that accepting worse points becomes impossible.
Which also means that the optimizer can stop running. This check is done by comparing the difference
in objective function between iterations and dividing it over the initial evaluation. If in the J set of new
points the improvement is all smaller than parameter γ, the stopping condition is met.

Proportional Improvement The proportional improvement check looks at the number of points
within an inner iteration that is actually better than the starting point. In a situation where the iteration
limit L is set to 50, if a very small set of those 50 is actually resulting in a better solution for the objective
function, chances are likely that an optimum has been found. This stopping condition is governed by
a percentage of L. After acceptance of this, a new inner iteration counter goes up. This will continue
until the inn K is reached.

3.2. Methodology: Optimization 50

Outer iteration Limit The outer iteration limit is the limit of K. This stopping condition prevents
the optimizer from carrying on in an infinite loop. After the outer iterations have metKlim the optimizer
needs to stop. This forms a quadratic relationship with the max amount of iterations that the optimizer
can achieve.

imax = L ·Klim (3.23)

A schematic is presented below to give an overview of the simulated annealing optimization algo-
rithm.

Figure 3.2: Simulated annealing schematic

Going through two cycles
For added clarity on how the optimizer works a loop will be described following the change of a design
variable throughout two cycles of the simulated annealing algorithm. The optimization takes some
objective function, constraint function and control parameters. Relevant to this explanation are listed
below:

• Starting temperature: T0 = 100

• Cooling factor: r = 0.97

• Adjustment parameter: δ = 0.1

• Inner loop limit: L = 2

3.2. Methodology: Optimization 51

Starting from i = 0 to i = 2. In the first iteration, a better point is immediately found, in the second cycle
the metropolis acceptance criteria will be used. The goal of the optimizer is to minimize some objective
function f(x). The optimizer begins with some feasible starting variable x0, that is to say, it is within the
feasible design space and therefore does not cross the constraints. The optimizer is initialized with a
starting temperature T that will decrease over time with parameter r.

The first step is to evaluate the objective function at the initial feasible design point.

f0 = f(x0) (3.24)

Next a new point is generated by adjusting every design variable in x with some random number be-
tween positive and negative δ · x0 of the starting x0. This is always taken from the starting design to
avoid favouring smaller design. If this adjustment was taken from xi instead of x0, the potential area
that the optimizer would consider would increase and decrease as the next xi gets bigger and smaller
respectively. The design is then checked for feasibility by seeing if any of the constraints are activated
with the new design, in which case a new point is generated and checked again. This carries on untill
a point is found within the feasible design space.

x1 = x0 + rand(−δ · x0, δ · x0) (3.25)
After a point is found within the feasible design space. The objective function is evaluated with the

new design point.
f1 = f(x1) (3.26)

Then to check if the design can be accepted or not the difference in the result of the objective function
is determined.

df = f1 − f0 (3.27)
For the first cycle, df is a negative value, implying that f(i + 1) is smaller than f(i) and as such the
new design point is immediately accepted. This marks the completion of one inner loop. As such the
design resulting in the lowest value of the objective function is saved as xbest and a new inner loop is
started.

With the new acceptable design, it needs to be checked whether enough inner loops have been
completed, that is to say, have enough new points been accepted to check for convergence?
If not, a new point is generated again. Where the same steps are performed. Evaluating the difference
of this new point from the starting design point x0.

x2 = x0 + rand(−δ · x0, δ · x0) (3.28)

f2 = f(x2) (3.29)
df = f2 − f0 (3.30)

Presuming that in this case, df is a positive number, meaning that f2 is higher than f0. This is to say that
this design, although feasible is actually worse. In such a scenario the metropolis condition is called
where a random uniform number z is generated that lies between 0 and 1. At the same time, the pdf
function (eq 3.22) is evaluated, and if the randomly generated number z is lower than the evaluation of
the pdf function, the design point is still accepted. If not a new feasible point is generated again until
either the difference df is a negative value, or the worse design is accepted. Let’s presume that df is a
positive value of 2 and that the starting temperature T0 = 100. As such the pdf can be calculated as:

p = e−
df
T0 = e−

2
100 = 0.98 (3.31)

As the evaluation of the pdf function results in a number close to 1 it is likely that the randomly generated
number z will be lower and thus that the point will be accepted regardless. In this case, a random
number of 0.6 is generated and as such the new design is accepted.
As there has again been an accepted design the check is done to see if enough inner iterations have
been done. As parameter L = 2 that is the case. This means that a check for stopping criteria can be
done. As it turns out the newly generated point does not suffice any of the stopping criteria. As such
the temperature is adjusted. And the best of the explored design points is now used as x0

x0 = min(xk) (3.32)
Ti+1 = r · T0 (3.33)

3.2. Methodology: Optimization 52

Where xk are all the accepted new points, in this case, x1 and x2. This marks the completion of the
outer loop. In the image below figure 3.3the route can be seen from the schematic presented before in
3.2.

Figure 3.3: Cycles explained in the simulated annealing schematic

3.2.2. Test Functions
To test the functionality of the optimizer a set of test functions are used. These functions come with
specific challenges and will help to illustrate how to optimizer is functioning.

Ackley
The first function to be tested is the Ackley function. The Ackley function is characterized by a nearly
flat outer edge and a sudden large drop in the centre surrounded by smaller divots. And is defined as:

f(x) = −a exp

−b

√√√√1

d

d∑
i=1

x2
i

− exp

(
1

d

d∑
i=1

cos (cxi)

)
+ a+ exp(1) (3.34)

With the global minimum:
f (x∗) = 0, at x∗ = (0, . . . , 0) (3.35)

Where a, b and c are parameters that can be adjusted to control the shape of the function and d is the
amount of dimensions considered. The function is illustrated in figure 3.4 for a case where d = 2

3.2. Methodology: Optimization 53

Figure 3.4: 3D plot of the Ackley function in two dimensions with parameters set as a = 20, b = 0.2 and c = 2π

Two single tests are run with this function and the SA algorithm at starting point x0 = [5, 5], but
two different inner loop limitations. As the exact optimum is situated at x = [0, 0] the figure shows that
with more iterations a better point is found. However, depending on the function it might not be worth
doubling the computational cost for a decimal point improvement.

(a) SA optimization using L = 200 (b) SA optimization using L = 1000

Figure 3.5: SA optimiation of the Ackley Function

To further investigate the iteration limit necessary another test can be run with this optimizer. The
goal is to see how sensitive convergence is to its starting point. To test this the Ackley function is tested
for 1000 randomly generated starting points between−10 and 10. Using an optimization limit of L = 200
results in 200 of the 1000 starting points converging to a solution smaller than 0.1 and 720 converging
to a solution smaller than 1. Whereas if L = 1000 the number of converges solution goes up to 400 for
solutions smaller than 0.1 and 920 for solutions smaller than 1.

3.2. Methodology: Optimization 54

There is no pattern to be recognized in the starting points that have not converged. Below the figure
shows the starting point for an iteration limit of 200 that did not converge to a solution smaller than 0.1.

Figure 3.6: Contour plot of starting points that did not lead to a convergence of a solution smaller than 0.1

In a design space where there are a lot of local optima the iteration limit, L has to be set much
higher to avoid getting stuck in local optimum solutions. This problem is enhanced when the optimum
lies around the zero point. Because the Simulated annealing algorithm will only allow movement based
on a percentage of the design point.

Booth
The booth function is defined as:

f(x) = (x1 + 2x2 − 7)
2
+ (2x1 + x2 − 5)

2 (3.36)

with a global optimum at
f (x∗) = 0, at x∗ = (1, 3) (3.37)

This function is characterized by a long flat middle, on the x = −y axis, as such it can be a challenge
for optimizers to still get to the global optimum. A common starting point for testing the booth function
is x0 = [10,−10].

3.2. Methodology: Optimization 55

Figure 3.7: 3D plot of the booth function

When this function is optimized with the simulated annealing algorithm it becomes clear that the
iteration limit can be set too far smaller values than the Ackley function and still achieve good results.

(a) SA Booth function optimization using L = 300 (b) SA booth function optimization using L = 15

Figure 3.8: SA optimization of the Ackley Function

What can be seen through these figures is that in a design space that does not have many local
minima but rather a slow-changing minimum that the iteration limit can be set to a far smaller value and
still get reasonable results.

3.2.3. Optimization Formalism
The goal of the optimizer is to minimize some objective function f with respect to design variables
x ∈ Rn. while subject to equality and in-equality constraints ĉj and ck. The optimizer developed in this

3.2. Methodology: Optimization 56

thesis optimizes for the mass of the substructure, mass can be correlated to cost.

f = mspar = ρsteel · t · 2π · D
2

· L+ 2 · ρsteel · t · (
D

2
)2 (3.38)

Where ρsteel is the density of steel, t is the thickness of the steel plating of the spar, assumed to be
equal along the entire length L. D is the diameter of the spar buoy. The objective function contains all
three design variables. As such x is defined as

x =

DL
t

 (3.39)

Although the design space has 4 dimensions, function 3.38 can be divided over the thickness to
create a design space that can be illustrated in a three-dimensional plot. From figure 3.9 it is seen that
the design space at any given thickness is an angled bowed plane. There are no obvious local minima.
It can be theorised that if this objective function was left unconstrained that the global optimum would
lie at −∞. Which would lead to either a constraint that the design variables must be larger than 0 or a
change in the objective function to take the absolute result of equation 3.38. What is clear however is
that the optimum will be governed by the constraints put on the objective function.

Figure 3.9: 3D plot of the spar mass objective function with a steel thickness set to t = 0.1

3.2.4. Constraints
The constraint function is expected to govern the optimum result within the design space. As such
this research will investigate and compare what the optimum solution looks like when using a varied
set of constraints. Specifically, the difference in global optimum design when the optimizer constraints
include response and fatigue calculations. The constraint function used in the optimizer will return an
infeasible design as soon as one of the constraints is met. As such it makes sense to present the
constraints in order of computational complexity.

Logical Design check
The first constraint check on the design consists of some logical ratios of the design variables. All the
design variables should be above 0, there is no such thing as a negative length, this also ensures that
only positive values of the objective function will be considered. Furthermore, the draught of the floater
should be greater than the diameter, it would not be considered a spar otherwise. The thickness has
to be less than half the diameter, if not the diameter would be determined by 2 · t rather than D. More

3.2. Methodology: Optimization 57

realistically the thickness should be within an acceptable range of between 0.01 and 0.1.

[x] > 0 (3.40)
D < L (3.41)

t < 0.5D (3.42)
D

L
> 0.01 (3.43)

0.01 < t < 0.2 (3.44)

Geometry vs Environment
With the sizing of the structure accepted the spar can now be placed in the environment. This includes
information about the average wave height and water depth. The hydrodynamic forcing calculations
are based on Morison equations. These equations are applicable to slender cylinders where the wave-
length is longer than approximately five times the diameter of the cylinder. As such a constraint is made
based on the average wavelength and the diameter of the cylinder. Where the significant wave height
of the considered area is taken for the calculation of λ

λ > 5 ·D (3.45)

The floating structure should also float freely. As such, a limit is introduced to the length of the spar
versus the depth of the water.

L < 0.8 · h (3.46)

Where h is the depth of the water.

Full System Constraints
When considering the full system. The diameter of the substructure cannot be smaller than the diamter
of the tower base.

Dspar ≥ Dtowerbase (3.47)

With an acceptable spar design, checks can be done on the combination of floater and superstruc-
ture. These constraints are based on DNV-OS-J103 [65] and DNVGL-ST-0119 [21]. According to J103
(sec:4 2.1.2), the natural period of floaters in surge sway and yaw is typically above 100 seconds to
allow for some room; the constraint is formed as follows:

Tsurgenatural > 90s (3.48)

Depending on the location and sea state being considered, there is substantial energy in the spectral
period range of 5 to 25 seconds. That is why a natural period for a spar-type floater is advised to be
above 25 seconds. (J103 sec 4: 2.1.3)

Tpitchnatural > 25s (3.49)

The intact stability constraint defined by DNVGL-ST-0119 Section 10.2.4.2 states that the GM of
the spar structure must be greater than 1 metre. The GM is represented s the difference between the
vertical level of the metacentre and the critical level of the centre of gravity and shall be calculated
based on the maximum vertical centre of gravity VCG. For deep draught floaters it is required that GM
be larger than 1m (ST-0119 sec 10: 2.4.2)

GM > 1 (3.50)

Furthermore the design has to have a positive value for ballast

mballast > 0 (3.51)

The next constraint is for the Mathieu instability; this occurs when the natural period in heave is
some multiple of the natural period in pitch. It occurs at large heave motions causing harmonic pitching.
Although the standard only includes the case where the ratio of the natural period in heave over the
pitch is half. Haslum 1999 ([30]) shows instability regions at a ratio of 0.5, 1, 1.5 or 2. As such, the
constraints are defined as follows.

3.2. Methodology: Optimization 58

0.45 >
Tsurgenatural

Tpitchnatural
> 0.55 (3.52)

0.95 >
Tsurgenatural

Tpitchnatural
> 1.05 (3.53)

1.45 >
Tsurgenatural

Tpitchnatural
> 1.55 (3.54)

1.95 >
Tsurgenatural

Tpitchnatural
> 2.05 (3.55)

Furthermore, natural period constraints are imposed for the 1P and 3P frequency ranges. At these
frequencies, an excitation from tower shadowing could cause resonance if any of the natural periods
are close.

T1Plow
> Tnatural > T1Phigh

(3.56)
T3Plow

> Tnatural > T3Phigh
(3.57)

Response Constraints
For optimizations of floating wind turbine systems that include aerodynamic loading, it is common to see
a constraint on the pitch response under specified wind loading, as wind loading is the most significant
contributor to pitching behaviour. For this simplified model, a pitch constraint of theta < 8 °is imposed.
This is tested by running a time domain simulation at rated wind speed where the largest pitch response
is to be expected. This expectation comes from the fact that at rated wind speed, the thrust force is
largest as the blades do not pitch out of the wind.

θ < 8◦ (3.58)

The surge motion is constrained to a maximum of 30 metres to safeguard the electrical wiring. This
is tested by running a time domain simulation with a sizeable significant wave period. Large wave
periods result in large surge responses.

x < 30 (3.59)

The response is tested using a time domain a 50-minute time domain simulation (excluding the transient
time of 10 minutes)

3.2.5. Fatigue Constraints
The lifetime fatigue can be calculated for every design; however, every design is checked for feasibil-
ity in the simulated annealing algorithm. As such, any design that passes through the time domain
constraint check will also be limited for its fatigue lifetime. This is computationally expensive, as the
randomly designed new feasible points can endlessly lie outside the feasible region. Nonetheless, it
is essential to formulate what the fatigue constraints would look like. Which in this case would be a
fatigue damage of less than 80% of the structure’s life cycles at 50 years.

σ(Nlifetime) < 0.8 · σ(NC203:lifetime) (3.60)

Where fS(Nlifetime) is the function for the SN-curve of offshore steel given by DNV standard C203 [20]
where the sn curve for the base material of high-strength steel is used.

logN = 17.446− 4.70 log∆σ (3.61)

4
Results

This Chapter will discuss the results from the optimization run according to the methodology from chap-
ter 2.2. To research the effect and usefulness of response constraints on the optimization function of
the design of a spar-type floating wind turbine. A set of experiments is run on two test cases after
which the optimum designs are compared. To offer insight into how the constraints are affecting the
optimum designs the most active constraints will be discussed for each case. In the first test case,
logic constraints are used to run the optimization algorithm. This optimization is then run 100 times to
investigate what the optimum design area looks like. The next experiment includes the response of the
system as a constraint in the optimizer. Finally, the fatigue damage on designs from each experiment
is compared.

4.1. Constraining by Geometrics
In this section results from running the simulated annealing algorithm using constraints from 3.44 to
3.57 are presented. This excludes any fatigue and response calculations. It also highlights the role
that the mooring stiffness has on what the optimum design looks like. As in the first section of this test
case the mooring stiffness is considered to be a set value.

4.1.1. Set Mooring Stiffness
For a single optimization the figure below shows the trial points used to find the optimum, in other words
it shows the explored design space by plotting all the potential acceptable designs.

Figure 4.1: Distribtution of trial points for a single iteration with L = 5E5,L = 30,γ = 0.01, Klim = 50, r = 0.97)

As the mass volume is linearly affected by the length and quadratically by diameter. The expectation

59

4.1. Constraining by Geometrics 60

is that the optimizer will favour a very thin design long and slender. The exploration of the design space
is random, with a limiting amount of iterations there is a chance that this also limits the exploration of the
design space. As such it is good to investigate what happens when the optimization is runmultiple times
from the same starting point x = [20, 250, 0.1]T , the parameters are shown in the first table presented
below under the experiment. What was interesting to see is that with the current set up there were not
many temperature changes. The optimizer had never reached the Klim, rather it would find a solution
that met one of the stopping criteria within two Outer loop iterations. As the starting point was always
the same but the search is random it is surprising to see that the standard deviation in improvement
is only 0.75% This means that the solutions found all have similar weights to each other. The average
improvement is 89% which suggests that the starting point is far too heavy for these constraints.

Experiment Iteration L Klim γ Unsolved Obj.reduc [%] σ[%] tavg [s] T
1 100 30 10 0.01 1 89.9 0.75 49.23 6
2 300 40 10 0.005 1 90.23 0.696 62.14 6
3 200 30 10 0.005 2 90 0.81 56.10 6
4 50 10 10 0.0025 9 87 8.31 4.23 6

Table 4.1: Results from experimenting with different parameters and a set starting point that is on the heavy side, (expected to
be far from global optimum). Thie optimization does not take response or fatigue into account

In the third experiment, a counter was introduced to see what stopping criteria are being met the
most. It turns out that in 200 iterations the consecutive change was called upon 118 times and the
proportional improvement 82 times. The temperature never went down more than 7 times. This adds
up with what was discussed in the methodology and test functions 3.2.2. As the design space can
be considered to be similar to the booth function, where the design space does not show many local
optima, the amount of inner iterations required to find an optimum drastically decreases.

The fourth experiment included lowering the inner iteration limit L = 10 and halving the γ parameter
that controls the stopping criteria for consecutive change. This drastically decreased the average time
it took to find a better point but came at the cost of 20% of the solutions not being any better than the
starting point. This happens because of the proportional improvement-stopping conditions. With such a
small inner iteration limit the chance becomes likely at high temperatures that all accepted new designs
are worse designs, allowing the optimizer to stop. As discussed in the methodology the proportional
improvement-stopping criteria only look at improvement within an iteration.

To solve this problem it is proposed to adjust the proportional improvement stopping criteria to
include somemeasurement of the PDF value at that stage. This is done by considering the temperature
of the system before checking the stopping criteria. By introducing a new parameter β that determines
when the proportional improvement stopping condition is called upon.

Stop =


K = βKlim ∧ I

L ≤ 0.01 True

rK < β ∧ I
L ≤ 0.01 True

else False

(4.1)

K = 1
2Klim or if where r is the cooling parameter in the cooling schedule Ti+1 = Ti · r.

With this adjusted stopping criteria, and β set to half gives the following results when experiment
4 is rerun. Where now no point do not offer convergence. However the average time has gone up
significantly, tavg = 88.5. Upon further inspection, it is found that the reason why it is taking longer is
that the optimizer is not able to find new feasible points. When generating a new space in the design
space the metropolis condition is never met. As such the random adjustment of the initial design point
carries on until a better design is found. This is caused by the metropolis condition’s pdf function always
returning p = 0, thus forcing a near-endless loop of generating a new point where the difference in the
objective function is negative. This behaviour was due to a very low starting temperature of 6. For the
optimization of the mass function of a spar that has a starting x = [20, 250, 0.1]T , the first differences
found by the optimizer are of the order of magnitude 104. Using the metropolis condition 3.22 results
in a constant p = 0.

When a single iteration is run this results in far more trial points as shown below. It’s obvious that
there are far more trial points used, and with that a lot more of the feasible design, space is covered.

4.1. Constraining by Geometrics 61

Figure 4.2: Distribution of trial points when using the adjusting proportional improvement condition for a single iteration. Using
parameters: L = 5E5,L = 30,γ = 0.01, Klim = 50, r = 0.97)

After this is adjusted the optimizer shows that it cools down a lot more, caused by the new accep-
tance of ’worse’ designs. As such more inner loop iterations are completed with a proportion of worse
designs. When the inner loop limits L is left to a low number this still causes the proportional improve-
ment criteria to be called on quickly. Beneath is a comparison of two identical simulations that only
differ in having the ’proportional improvement’ criteria adjusted or not.

(a) Global optima found without using the adjust stop criteria, standard
deviation and the average of the design variables are presented at the
bottom. The iteration had 120 temperature changes, never reached

Klim and always used the ’proportional improvement’ stopping criterion.

(b) Global optima found using the adjust stop criteria, standard deviation
and the average of the design variables are presented at the bottom.
The iteration had 946 temperature changes, never reached Klim and

always used the ’proportional improvement’ stopping criterion.

What can clearly be seen from the subfigures 4.3a and 4.3b is that the adjusted stopping criteria
lead to a smaller standard deviation in all three design variables. However, the amount of iterations is
tenfold. This could perhaps still be adjusted by increasing parameter β. In both cases, the only stopping
criterion used was proportional improvement which means that there is never a lack of consecutive
change. This criterion is governed by parameter γ and can be relaxed for better involvement. In this
experiment, it was set to γ = 0.0025, which means in an inner iteration with L trials, if none of the trials
has improved by 0.25% a global optima is presumed.
Another interesting point from the optimum solutions is found in figure 4.3b are the extremes on the
left and on the right. Where an optimum spar has either a large depth L ≈ 260 and slender diameter
D ≈ 18. Or vice versa L ≈ 160 and D ≈ 28. Similar extreme cases were found in figure4.3a, however
due to the larger exploration of the design space figure 4.3b is considered more reliable. figure 4.3b
also shows a clearer Pareto front.

4.1. Constraining by Geometrics 62

4.1.2. Mooring stiffness based on surge natural period
The results from the test case run with a set mooring stiffness resulted in optimum designs that were
on the larger side of what was expected. It was found that the constraint most governing the search
for feasible design were the natural period in surge. This lead to the decision to redefine the mooring
stiffness as a variable dependent on mass and added mass. Figure 4.4 shows the coverage of the
design space when one optimization is run. Using the starting point of x = [12, 200, 0.2]T (meters).
What can be seen is that the optimizer no longer considers designs of sizes comparable to what was
seen in figure 4.2. Instead, a fall smaller range of spar lengths and diameters is seen to populate the
feasible design space.

Figure 4.4: Coverage of the design space when one optimization is run using a mass dependent stiffness

Just as with experiments using a set mooring stiffness, the optimization using the adjusted stiffness
is also computationally inexpensive. As such it can be run over an iteration loop. Presented below
is the comparison of two versions of the optimization loop, using the standard stopping criteria on the
image on the left, and the adjusted criteria proposed in equation 4.1 on the right.

4.1. Constraining by Geometrics 63

(a) Global optima found using 50 separate optimizations. Did not utilize
the adjust stop criteria. The stiffness of the system is dependent on the
mass of the structure. The standard deviation and the average of the
design variables are presented at the top of the figure. The iteration
never reached Klim and always used the ’consecutive change’

stopping criterion.

(b) Global optima found using 50 separate optimizations. Utilizes the
adjusted stop criteria. The stiffness of the system is dependent on the
mass of the structure. The standard deviation and the average of the
design variables are presented at the top of the figure. The iteration

reached Klim and always used ’consecutive change’ and ’proportional
improvement stopping criterion

The two figures are plotted on similar-sized scales. It can be seen in the figure to the right (4.5b)
that the global optima converge to a much smaller area. Forming a clearer Pareto front, the diameter
on the front runs within a range of 10 to 11.38 meters. The spar length has a range of 181.23 to 199.04
meters and a thickness range of 100 to 108 millimetres. Which for all three design parameters is far
smaller than the range presented in the figure on the left. As the figure on the right presents a mapping
of global optima using more trial points and presents a smaller standard deviation of all the optima, the
two designs with the most extreme diameters are compared for motion response and fatigue analysis.
Acceptable motion response is defined as what will be used as a constraint in the optimization using
motion response, where the pitch can not ever exceed 8

◦ and surge must remain under 10 meters.
The optimal designs that differ the most in diameter are presented in the equation set below:

x1|Dmax
= [11.38m, 183.98m, 10.0mm]T 511 · 103 (4.2)

x2|Dmin
= [10.00m, 191.24m, 10.5mm]T 489 · 103 (4.3)

The response is investigated in the condition where the largest response is expected to occur. This
happens at the highest aero- and hydrodynamic loading which occurs at rated wind speed and the
largest slowest significant wave height and period: Umean = 11m/s, Hs = 10, Tp = 14s. From the
figure 4.6b it can be seen that the response of the global optima with the smallest diameter (x2|Dmin

)
does not have an acceptable response. The pitch response settles at over 10◦ . However the design
with the largest diameter (x1|Dmax

) falls well within the acceptable range, settling the pitch at just over
5

◦ . Fatigue calculations are done on both designs, it is found that the max damage on the substructure
is at the tower base. After a lifetime of 25 years the damage is far within the limit, D < 0.1, which is far
within the limit on both designs. This indicates that for these designs the global fatigue damage is not
a driving factor. However, if the response were to be considered a constraint designs within this Pareto
front could still be considered infeasible.

4.1. Constraining by Geometrics 64

(a) Motion Response of a spar using design x1|Dmax . The
environmental conditions consist of rated wind speed (11m/s),

Hs = 10, Tp = 14s

(b) Motion Response of a spar using design x2|Dmin
. The

environmental conditions consist of rated wind speed (11m/s),
Hs = 10, Tp = 14s

Looped over 1000 iterations the Pareto front begins to get a more defined shape. The constraint
stopping designs from being smaller than the tower base can clearly be seen by the vertical cut-off at
diameters of 10 meters. The thickness range is near the minimum thickness of 10 mm. The standard
deviations and averages of this set of global optima are similar to that presented for 50 iterations.

Figure 4.7: Converged points when optimizing 1000 times. Using parameters: L = 5E5,L = 50,γ = 0.01, Klim = 50,
r = 0.97)

4.2. Constraining with Time Domain 65

4.2. Constraining with Time Domain
For the next set of constraints, the time domain response is included in the design evaluation of the
optimizer. This includes a constraint on both pitch and surge response of 8◦ and 10meters respectively.
This means that in the evaluation of a new feasible point a time domain simulation is run to get the most
extreme response. Where Umean = 11m/s, Hs = 10 and Tp = 14s. This has a significant slowing
effect on the time it takes to run the optimizer. The exact slowing effect is computer-dependent and
in this study, it lead to an evaluation time that was 40 times slower per design compared to the logic
constraint evaluation. Due to the expectations of a slower optimization the parameters of the optimizers
were adjusted to quicker converging values using an inner loop minimum L of 10 and the convergence
parameter γ = 0.1. When using the adjusted stopping criteria the optimizer used its maximum amount
of iterations possible before finding an optimum. The same is found with a traditional more relaxed
stopping constraint. The exploration of both optimizations is presented in the two subfigures below.
As both the optimizations used the same amount of iterations the adjusted stopping criteria have not
had any effect on the reliability of the optimum that was found. Instead, they can be combined as one
exploration of the design space. In both cases, the optimizer converged because less than 2 out of 10
trial points resulted in a lower mass.

(a) Using the adjusted stopping criteria proposed in equation 4.1.
Optimum found as design: x = [10.67m, 252.31m, 0.08mm]T and

mass:524 · 104kg

(b) Using traditional Simulated Annealing stopping criteria. Optimum
found as design: x = [12.12m, 181.3m, 0.07mm]T and

mass:376 · 104kg

Figure 4.8: Design space exploration using time domain response as a constraint in the optimizer. Starting point:
x = [12m, 200m, 0.1m]T

The two optimal masses found have a significant difference of more than 35%. This leads to the
interpretation that the design space has not been sufficiently explored. To counter the limited exploration
of these two optimizations, a third optimization is performed where L is set to 50, implying that there will
be 50 design evaluations before the temperature is adjusted and stopping criteria are checked. This
ensures a broader exploration that will increase the likelihood of finding a better design.

4.2. Constraining with Time Domain 66

Figure 4.9: Distribtution of trial points for a single iteration with T0 = 5E5,L = 50,γ = 0.01, Klim = 50, r = 0.97

Figure 4.9 shows that for this optimization run there is a good investigation of the feasible design
space. The length, diameter and thickness range investigated ranges in a far wider area than what was
done before and presented in figure 4.8. This maps a part of the feasible design space. It is peculiar
that in the space where the length of the spar is between 180 and 200 meters, the diameter between
12 and 14 the feasible points found all have the thicker steel walls t > 0.10 meter. The optimum found
within this optimization run is: x = [13.12, 145.5, 0.01]T meters. Which sizing wise is far smaller when
compared to the optima found before. The optimum mass found is also far less than in the other two
runs. The optimal mass found in this optimization run is 472 · 103kg, which is an order of magnitude
lighter than the optimal designs found in the other two optimization runs.

This leads to the conclusion that running the optimization with parameter L set to 10 is insufficient
to result in a reliable optimum. Furthermore, when compared to the results of the optimzation done
using only logical constraints, the optimizer has found lighter designs that are still within the acceptable
motion response range.

The fatigue performance of the optima found in this test case, using design x = [13.12, 145.5, 0.01]T

meters. Results in the maximum motion response are presented in figure 4.10, where as expected
the response is within an acceptable range. This can be expected because if it were to exceed those
values the design would be considered infeasible. It is good to note that the lightest design does not
necessarily reach the limit of the motion response, as such it can be stated that the optimum design
that lies within the feasible space does not go to the extremes of response. In other words, the current
constraints could be made stricter without negatively impacting the global optimum.

4.2. Constraining with Time Domain 67

Figure 4.10: Response of optimal design in extreme conditions.Hs = 10, Tp = 14s

When running this global optimum through the fatigue analysis it results in the highest fatigue being
found at the tower base. Where with a lifetime of 25 years the accumulated damage is 0.04766. This
means that global fatigue will not be a governing factor in the optimum design of the spar.

Increasing design space exploration
As figure 4.10 suggests more of the design space had been explored when compared to the figures in
4.8. This came at a large computational cost which brings into question the practicality of this optimizer
as a design tool for the clientele of DNV. However to get an idea of what the feasible design space looks
like the parameters are adjusted once again to try and cover even more space. The result is shown

Klim L T0 r δ J γ ∆
50 100 55E 0.97 0.05 50 0.01 0.05

in the figure below. Where the optimum found is at: x = [13.12, 145.5, 0.01]T meters. And resulting
in a steel mass of 429 · E3kg. This is the lightest feasible design found so far. It is interesting to see
that there is a feasible design space when using the designs with a thickness of less than 0.02 meters,
which lies within aL/D ratio of approximately 200/16 ≈ 11 to 275/21 ≈ 13. However, while following this
feasible axis that lies between those ratios designs become increasingly heavy, so although interesting
does not have to be further investigated for optimal design research. It can also be seen that when the
optimizer considers designs that are on the thicker side (green in the figure) feasible designs are found
in a smaller range of diameter and length. The designs with a larger thickness are found at lengths of
100 to 200 meters however at a sloped relationship. Where the length-to-diameter ratio actually varies
quite some going from an approximate range of L/D of 15 down to 5.55. In this design set the shorter
the length of the spar the wider the diameter has to be to allow for enough ballast for stability and
enough mass for a feasible response.

4.3. Constraining with Fatigue Damage 68

Figure 4.11: Distribtution of trial points for a single iteration with L = 5E5,L = 100,γ = 0.01, Klim = 50, r = 0.97

When comparing the feasible design space shown in figure 4.11 to the Pareto space found using the
geometric constraints (figure: 4.7) it seems that the feasible design space using time domain constraint
is far broader than the optimum found in the Pareto front from the geometric constraints. As such
considering the extreme response as a constraint is seen to be computationally heavy and results in
considering designs that can be thrown away beforehand. They are already known to be too heavy
and fall outside the before-found Pareto front.

4.3. Constraining with Fatigue Damage
When the optimizer includes fatigue constraints the optimizer fails to run within a reasonable time.
This is due to the large number of simulations necessary to acquire a realistic damage lifetime of the
structure. The fatigue analysis consists of running 21-hour long simulations. If this needs to be done
for every potential design it would result in an analysis that is too long to be considered feasible. As
such this has not been done for this research, the decision was made instead to use some of the optima
found using both the time domain constraints and the geometric constraints and investigate the lifetime
fatigue damage. In both cases, this has led to very small damage to overall global fatigue. This is
attributed to the fact that due to the floating nature of the substructure the bending stress taken up in
the structure is actually far less when compared to a structure that is bottom-fixed. This reduction is
attributed to the fact that bending moments on a floating structure cause a motion response rather than
solely causing internal bending stress.

5
Conclusion and Discussion

5.1. Conclusion
This research has been an investigation of constraint sets on the optimization of the design of a spar-
type substructure. In this chapter, the findings from this research are presented after which some
crucial critiques are expressed about the study, followed by recommendations for future research on
the topic.

This research has been a review of a time domain simulation and non-gradient-based optimization
for the design of a spar-type substructure of a floating wind turbine. Two constraint sets have been
investigated, the first considering only the geometry of the substructure and the next considering the
geometry and time domain response. The third constraint set, using fatigue life damage as a constraint
was not investigated as this would not govern the design space and would be computationally infeasible.

Geometric constraint conclusions
The first constraint set only considered geometric constraints. This resulted in two main findings: moor-
ing stiffness is a critical consideration and the stopping criteria need adjusting for proper exploration of
the design space.

The geometric constraints are first used with a set mooring stiffness, that is to say, the mooring
design is considered as a set input that does not depend on the design of the substructure. This is first
used with a single optimization run, the exploration of the feasible design space shows a favour of deep
and thin, or shallow and wide designs. The set mooring stiffness is used while running 4 experiments
to investigate optimization parameters. In the experiments, the optimization is run for a set amount
of iterations and varying parameters. This showed that using a parameter L of 10 results in varying
optima of nearly 8% and increased the number of unsolved optimizations. From the other experiments,
it is concluded that using L of 30 results in reliable optima. Furthermore reducing γ from 0.01 to 0.005
did not result in any significant increase in optimum. When using the generic stopping constraints
the optimizer was found to converge rather quickly and as such the stopping criteria are adjusted to
only be called upon at a set amount of trial points or change in temperature. This results in a much
broader exploration of the design space. The optimization is run for 40 times using the normal stopping
constraint and adjusted one which greatly improves the view on the Pareto front. The Pareto front is
found to be on an axis that would seem unrealistic for the design of a substructure. And it is found
that this Pareto front is governed by the surge natural period constraint which is mainly dependent on
the mooring stiffness. As such it is concluded that a set mooring stiffness is not appropriate for the
investigation of multiple designs. This is a significant finding as mooring design, due to its low cost, is
considered to be an afterthought in the design of floating structures. Where often times the mooring
design is a result of the structure rather than the other way around. This led to the use of a mooring
stiffness that is based on a natural frequency in surge of 60 seconds. Where a similar investigation is
done using both the traditional and adjusted stopping criteria, this time using 50 iterations. Using the
adjusted stopping criteria resulted in a far narrower area of optimal solutions. From the 50 optimizations

69

5.2. Discussion and Reccomendations 70

run with the adjusted stopping criteria, two optimal designs are used, chosen to be the most extreme
diameters found in the Pareto front. When the response is investigated it showed one to be within
and one to be outside of acceptable response behaviour. This indicates that if anything outside the
response constraint is deemed to be unacceptable, using time domain response as a constraint would
be useful. Furthermore, the fatigue analysis on both these designs resulted in damage that was less
than 10%, which indicates that global fatigue is not a governing factor in determining the optimal design.
Rendering any investigation of using the fatigue damage as a constraint useless, this was the biggest
motivation to not consider fatigue analysis as a constraint in one of the constraint sets. This would only
slow down the optimizer without adding any new information to the system. Due to the computationally
feasible nature of the first constraint set, it has been run 1000 times. This showed a clearer view of
the Pareto front consisting of a broad length of spar (180 − 208m), limited thickness (10.0 − 11.2mm)
and a limited diameter range of (10− 12.8m). The lowest diameter comes from the set constraint that
the diameter of the spar can not be smaller than that of the tower, in this case, that is 10m. Most
optimizations result in a small thickness and it does not seem as though there is any reason to have
a thicker than necessary thickness. As such it can be concluded that for the preliminary design of a
spar-type substructure of a floating wind turbine where only the global fatigue is considered. The steel
thickness can be chosen to be the thinnest allowable thickness rather than a design variable. As while
using the thinnest steel the lifetime fatigue remains far from a critical value.

Time domain constraint conclusions
Using the extreme response of the system as a constraint results in a significant increase in computa-
tional cost. So much so that it gives another reason why using global fatigue would not be a suitable
constraint. When using the extreme response as a constraint a one-hour simulation is run. For the
global fatigue investigation, this is done for 21 environmental conditions which would render an opti-
mization run computationally infeasible for any worthwhile results. To decrease the computational cost
the extreme response is used as a constraint in two optimizations using parameter L = 10. Although
from the first constraint set it was concluded that this would result in less reliable results it does allow
for a quick exploration of the design space and at least two potential optima. Not only did this result in
two very different explorations, but also in two designs that resulted in an objective function difference
of more than 35%. This further verified the conclusion that L = 10 does not result in a sufficient explo-
ration of the design space. Given the large computational cost, the choice was made to use L = 50
which resulted in a far broader exploration of the design space, after which L = 100 was also run (cost-
ing multiple days to run) to really get a good idea of what the feasible design space looks like. When
using thicknesses that are more than the minimum value the feasible design space is pulled to smaller
lengths and thinner diameters. Whereas when using the thinnest steel thickness a far broader area
is considered to be feasible. This leads to the conclusion that due to the large nature of the feasible
design space, it is not computationally efficient to immediately consider the time domain response.

5.1.1. Overal conclusions
This research has shown that both response analysis and geometrical constraints are relevant to be
considered in the optimization of a spar type floating substructure. However global fatigue analysis
is nor relevant, nor computationally viable to use as a constraint in such optimizations. The mooring
stiffness governs the natural period in surge, and in doing so plays a defining role in determining the
optimal solution. As when determining the optimal design a governing constraint becomes the natural
period.

5.2. Discussion and Reccomendations
Aerodynamic damping When calculating the aerodynamic forcing the thrust force is calculated with
a simplified thrust coefficient that is based on the relative wind speed. Where a reduction factor is
used to account for ”situations where the movement of the platform changes the inflow that the turbine
experiences”, this can otherwise be translated to aerodynamic damping. Or at least the aerodynamic
damping caused by the movement of the platform. On top of that the damping matrix also has an
analytical expression for aerodynamic damping. This results in the finding that actually the damping is
considered twice and as such the aerodynamic damping effects have been ’over’ considered. It would
be worth investigating what the effects are on the thrust force when this reduction factor is not used, or

5.2. Discussion and Reccomendations 71

when the aerodynamic damping is not considered in the damping matrix.

Coupling thrust force and Heave motion This model presumes that the thrust force is always work-
ing in the x-plane of the global coordinate system. There is no coupling between pitch motion and
heave motion. In contrast, it could be theorized that at any pitch angle ϕ, the thrust force is angled
as well and therefore has a contribution to the z-plane of sin θ · Fthrust which in turn should affect the
heave motion of the structure. At small angles, this can be reduced to θ · Fthrust. The calculation of
the heave response does not seem to serve any real purpose in this research as without it coupling to
bending to pitch or heave, and it will not add to bending stress and, therefore, not influence the fatigue.
There are also no constraints used for heave.

Response The response testing of the turbine showed that the largest response would be around 1
degree (for the given test design). Compared to the Pareto front from the first experiment, this is an
infeasible, too-small, too-light design. As such, it is to be expected that the designs from this Pareto
front would have even less response. It would be worth considering either changing the constraints on
response or finding a more governing way to test the system for optimization. Using inactive constraints
is an unnecessary calculation.

Design Variables The optimizer considers the steel thickness to be a continuous function. It could
be a point of discussion whether this is a good design decision, as plate thickness is typically predeter-
mined and can be considered a discrete variable. It might even lead to far less computational expense
to run the optimizer for 4 set thicknesses, using only the diameter and length of the spar as design
variables. Furthermore, it would be interesting to increase the complexity of the design of the spar by
allowing a variation in diameter and steel thickness between the welded parts of the spar.

Fatigue Calculations The fatigue calculations are based on a set of environmental conditions with
a combination of the most probable wind speed and wave height. At higher wind speeds, it is said
to be more important to consider a set of wave heights and therefore wave periods. However, if the
frequency of occurrence is also considered the question is how much these conditions contribute to the
lifetime damage. Most of the damage over the lifetime of the turbine will be done when the response is
at its largest, which is the case at lower wind speeds which come in combination with a smaller amount
of relevant possible wave heights. It could be investigated whether, by limiting the conditions used for
the fatigue calculation analysis, the lifetime damage constraint would become a feasible constraint for
the simulated annealing algorithm.
Furthermore, the fatigue calculations are done using a global analysis of the structure. For floating
structures this damage is found to be very low, this is attributed to the fact that compared to a bottom-
founded offshore structure the bending stress in the structure is far less. However, what has not been
investigated is the local fatigue at the mooring location. This cyclic loading could offer a more relevant
fatigue life damage than the global bending stress.

TwoOptimzations For further development of this tool, it would be recommendable to use the Pareto
front found using many iterations with the geometric constraint set as design constraints in the response
constraint set. It has been seen that when considering the extreme response as a constraint the feasible
design space remains very large. As such many designs are considered that are already too large. For
any other given design, this could be achieved by running two separate runs of optimizations. One
where the geometric constraints are considered for many optimzations to develop the Pareto front and
therefore define the boundaries that should be considered for the time domain extreme response. This
would in some way eliminate the heavy computational nature of the optimizer when also considering
the extreme response.

References

[1] Irena – International Renewable Energy Agency. FUTURE OF WIND Deployment, investment,
technology, grid integration and socio-economic aspects A Global Energy Transformation paper
Citation About IRENA. 2019. ISBN: 978-92-9260-155-3. URL: www.irena.org/publications..

[2] Nana O. Abankwa et al. “Ship motion measurement using an inertial measurement unit”. In: IEEE
World Forum on Internet of Things, WF-IoT 2015 - Proceedings. Institute of Electrical and Elec-
tronics Engineers Inc., 2015, pp. 375–380. ISBN: 9781509003655. DOI: 10.1109/WF-IoT.2015.
7389083.

[3] A. R. Abdulghany. “Generalization of parallel axis theorem for rotational inertia”. In: American
Journal of Physics 85.10 (Oct. 2017), pp. 791–795. ISSN: 0002-9505. DOI: 10.1119/1.4994835.

[4] Ahmed Abrous, Rene Wamkeue, and El Madjid Berkouk. “Modeling and simulation of a wind
model using a spectral representation method”. In: Proceedings of 2015 IEEE International Re-
newable and Sustainable Energy Conference, IRSEC 2015. Institute of Electrical and Electronics
Engineers Inc., Apr. 2016. ISBN: 9781467378949. DOI: 10.1109/IRSEC.2015.7455141.

[5] Alesund University Press. HywindScotland2. URL: https://tinyurl.com/HywindImage.
[6] C. Amzallag et al. “Standardization of the rainflow counting method for fatigue analysis”. In:

International Journal of Fatigue 16.4 (June 1994), pp. 287–293. ISSN: 0142-1123. DOI: 10 .
1016 / 0142 - 1123(94) 90343 - 3. URL: https : / / reader . elsevier . com / reader / sd / pii /
0142112394903433?token=7D3E1A5346731D33522C3D05D92862E9A8504789C033DA336B355EA8D
04D63AB9525F7A728FDC15452EB1629DC45F18B&originRegion=eu- west- 1&originCreation=
20221024173242.

[7] Mir M. Atiqullah. “An Efficient Simple Cooling Schedule for Simulated Annealing”. In: 2004, pp. 396–
404. DOI: 10.1007/978-3-540-24767-8{_}41.

[8] Okezue Bell. “Applications of Gaussian Mutation for Self Adaptation in Evolutionary Genetic Al-
gorithms”. In: (Jan. 2022). URL: http://arxiv.org/abs/2201.00285.

[9] D. Benasciutti and R. Tovo. “Spectral methods for lifetime prediction under wide-band stationary
random processes”. In: International Journal of Fatigue 27.8 (Aug. 2005), pp. 867–877. ISSN:
0142-1123. DOI: 10.1016/J.IJFATIGUE.2004.10.007.

[10] Jeffrey Bierman and Eric Kincanon. “Reconsidering Archimedes’ Principle”. In: ThePhysics Teacher
41.6 (Sept. 2003), pp. 340–344. ISSN: 0031-921X. DOI: 10.1119/1.1607804.

[11] Matthias Brommundt et al. “Mooring System Optimization for Floating Wind Turbines using Fre-
quency Domain Analysis”. In: Energy Procedia 24 (Jan. 2012), pp. 289–296. ISSN: 1876-6102.
DOI: 10.1016/J.EGYPRO.2012.06.111.

[12] Bernard H Bulder, Andrew Henderson, and Rene Huijsmans. Study to feasibility of and boundary
conditions for floating offshore wind turbines Float Wind (Drijfwind) View project Offshore Loading
and Discharge View project. Tech. rep. 2002. URL: https://www.researchgate.net/publicat
ion/260432811.

[13] V. Cerny. “Thermodynamical approach to the traveling salesman problem: An efficient simulation
algorithm”. In: Journal of Optimization Theory and Applications 1985 45:1 45.1 (1985), pp. 41–51.
ISSN: 1573-2878. DOI: 10.1007/BF00940812. URL: https://link.springer.com/article/10.
1007/BF00940812.

[14] Etienne Cheynet, Jasna Bogunović Jakobsen, and Charlotte Obhrai. “Spectral characteristics of
surface-layer turbulence in the North Sea”. In: Energy Procedia 137 (Oct. 2017), pp. 414–427.
ISSN: 1876-6102. DOI: 10.1016/J.EGYPRO.2017.10.366.

[15] Tzu Ching Chuang, Wen Hsuan Yang, and Ray Yeng Yang. “Experimental and numerical study
of a barge-type FOWT platform under wind and wave load”. In: Ocean Engineering 230 (June
2021). ISSN: 00298018. DOI: 10.1016/j.oceaneng.2021.109015.

72

www.irena.org/publications.
https://doi.org/10.1109/WF-IoT.2015.7389083
https://doi.org/10.1109/WF-IoT.2015.7389083
https://doi.org/10.1119/1.4994835
https://doi.org/10.1109/IRSEC.2015.7455141
https://tinyurl.com/HywindImage
https://doi.org/10.1016/0142-1123(94)90343-3
https://doi.org/10.1016/0142-1123(94)90343-3
https://reader.elsevier.com/reader/sd/pii/0142112394903433?token=7D3E1A5346731D33522C3D05D92862E9A8504789C033DA336B355EA8D04D63AB9525F7A728FDC15452EB1629DC45F18B&originRegion=eu-west-1&originCreation=20221024173242
https://reader.elsevier.com/reader/sd/pii/0142112394903433?token=7D3E1A5346731D33522C3D05D92862E9A8504789C033DA336B355EA8D04D63AB9525F7A728FDC15452EB1629DC45F18B&originRegion=eu-west-1&originCreation=20221024173242
https://reader.elsevier.com/reader/sd/pii/0142112394903433?token=7D3E1A5346731D33522C3D05D92862E9A8504789C033DA336B355EA8D04D63AB9525F7A728FDC15452EB1629DC45F18B&originRegion=eu-west-1&originCreation=20221024173242
https://reader.elsevier.com/reader/sd/pii/0142112394903433?token=7D3E1A5346731D33522C3D05D92862E9A8504789C033DA336B355EA8D04D63AB9525F7A728FDC15452EB1629DC45F18B&originRegion=eu-west-1&originCreation=20221024173242
https://doi.org/10.1007/978-3-540-24767-8{_}41
http://arxiv.org/abs/2201.00285
https://doi.org/10.1016/J.IJFATIGUE.2004.10.007
https://doi.org/10.1119/1.1607804
https://doi.org/10.1016/J.EGYPRO.2012.06.111
https://www.researchgate.net/publication/260432811
https://www.researchgate.net/publication/260432811
https://doi.org/10.1007/BF00940812
https://link.springer.com/article/10.1007/BF00940812
https://link.springer.com/article/10.1007/BF00940812
https://doi.org/10.1016/J.EGYPRO.2017.10.366
https://doi.org/10.1016/j.oceaneng.2021.109015

References 73

[16] Alex D.D. Craik. “The origins of water wave theory”. In: Annual Review of Fluid Mechanics 36
(2004), pp. 1–28. ISSN: 00664189. DOI: 10.1146/annurev.fluid.36.050802.122118.

[17] Kusum Deep and Hadush Mebrahtu. “Variant of partially mapped crossover for the Travelling
Salesman problems”. In:México © International Journal of Combinatorial Optimization Problems
and Informatics 3.1 (2012), pp. 2007–1558. ISSN: 2007-1558. URL: http://www.redalyc.org/
articulo.oa?id=265224466006.

[18] Kusum Deep and Manoj Thakur. “A new mutation operator for real coded genetic algorithms”. In:
Applied Mathematics and Computation 193.1 (Oct. 2007), pp. 211–230. ISSN: 0096-3003. DOI:
10.1016/J.AMC.2007.03.046.

[19] Turan Dirlik. Application of computer in fatigue analysis. Tech. rep. 1985. URL: http : / / go .
warwick.ac.uk/wrap/2949.

[20] DNV GL. RECOMMENDED PRACTICE DNV GL AS RP-C203: Fatigue design of offshore steel
structures. Tech. rep. 2014. URL: www.dnvgl.com..

[21] DNV GL. STANDARD DNV GL AS Support structures for wind turbines. Tech. rep. 2016. URL:
www.dnvgl.com..

[22] Suguang Dou et al. “Optimization of floating wind turbine support structures using frequency-
domain analysis and analytical gradients”. In: Journal of Physics: Conference Series. Vol. 1618.
4. IOP Publishing Ltd, Sept. 2020. DOI: 10.1088/1742-6596/1618/4/042028.

[23] R. Eberhart and J. Kennedy. “A new optimizer using particle swarm theory”. In:MHS’95. Proceed-
ings of the Sixth International Symposium on Micro Machine and Human Science. IEEE, 1995,
pp. 39–43. ISBN: 0-7803-2676-8. DOI: 10.1109/MHS.1995.494215.

[24] Eberhart and Yuhui Shi. “Particle swarm optimization: developments, applications and resources”.
In: Proceedings of the 2001 Congress on Evolutionary Computation (IEEE Cat. No.01TH8546).
IEEE, 2001, pp. 81–86. ISBN: 0-7803-6657-3. DOI: 10.1109/CEC.2001.934374.

[25] M. Dolores Esteban, José Santos López-Gutiérrez, and Vicente Negro. Gravity-based founda-
tions in the offshore wind sector. 2019. DOI: 10.3390/jmse7030064.

[26] Giuseppe Failla and Felice Arena. “New perspectives in offshore wind energy”. In: Philosophical
Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 373.2035
(Feb. 2015). ISSN: 1364503X. DOI: 10.1098/rsta.2014.0228.

[27] Evan Gaertner et al. Definition of the IEA Wind 15-Megawatt Offshore Reference Wind Turbine
Technical Report. Tech. rep. 2020. URL: www.nrel.gov/publications..

[28] David EGoldberg.ANote on Boltzmann Tournament Selection for Genetic Algorithms and Population-
Oriented Simulated Annealing. Tech. rep. 1990, pp. 445–460.

[29] Bruce L Golden and Christopher C Skiscim. Using Simulated Annealing to Solve Routing and
Location Problems. Tech. rep. 1986.

[30] H.A. Haslum. “MathieuInstability”. In: Aleternative Shape Of Spar Platforms or Use in Hostile
Areas. 1999.

[31] John Marius Hegseth, Erin E. Bachynski, and Joaquim R.R.A. Martins. “Integrated design opti-
mization of spar floating wind turbines”. In: Marine Structures 72 (July 2020), p. 102771. ISSN:
0951-8339. DOI: 10.1016/J.MARSTRUC.2020.102771.

[32] C Hindermarsh. “ODEPACK, a systemized pack of ODE solvers”. In: Scientific Computing (1982).
[33] R J Howe. OTC 5354 Evolution of Offshore Drilling and Production Technology. Tech. rep. 1986.

URL: http : / / onepetro . org / OTCONF / proceedings - pdf / 86OTC / All - 86OTC / OTC - 5354 -
MS/2031553/otc-5354-ms.pdf/1.

[34] Xiao Bing Hu and Ezequiel Di Paolo. “An efficient genetic algorithm with uniform crossover for
air traffic control”. In: Computers & Operations Research 36.1 (Jan. 2009), pp. 245–259. ISSN:
0305-0548. DOI: 10.1016/J.COR.2007.09.005.

[35] Marcus Hutter. “Fitness uniform selection to preserve genetic diversity”. In: Proceedings of the
2002 Congress on Evolutionary Computation. CEC’02 (Cat. No. 02TH86002002. 2002.

https://doi.org/10.1146/annurev.fluid.36.050802.122118
http://www.redalyc.org/articulo.oa?id=265224466006
http://www.redalyc.org/articulo.oa?id=265224466006
https://doi.org/10.1016/J.AMC.2007.03.046
http://go.warwick.ac.uk/wrap/2949
http://go.warwick.ac.uk/wrap/2949
www.dnvgl.com.
www.dnvgl.com.
https://doi.org/10.1088/1742-6596/1618/4/042028
https://doi.org/10.1109/MHS.1995.494215
https://doi.org/10.1109/CEC.2001.934374
https://doi.org/10.3390/jmse7030064
https://doi.org/10.1098/rsta.2014.0228
www.nrel.gov/publications.
https://doi.org/10.1016/J.MARSTRUC.2020.102771
http://onepetro.org/OTCONF/proceedings-pdf/86OTC/All-86OTC/OTC-5354-MS/2031553/otc-5354-ms.pdf/1
http://onepetro.org/OTCONF/proceedings-pdf/86OTC/All-86OTC/OTC-5354-MS/2031553/otc-5354-ms.pdf/1
https://doi.org/10.1016/J.COR.2007.09.005

References 74

[36] A. Ioannou et al. “A preliminary parametric techno-economic study of offshore wind floater con-
cepts”. In: Ocean Engineering 197 (Feb. 2020), p. 106937. ISSN: 0029-8018. DOI: 10.1016/J.
OCEANENG.2020.106937.

[37] David Jhonson et al. “OPTIMIZATIONBYSIMULATEDANNEALING: ANEXPERIMENTALEVAL-
UATION; PART II, GRAPH COLORING AND NUMBER PARTITIONING.” In: (1990).

[38] J. M. Jonkman and D. Matha. “Dynamics of offshore floating wind turbines-analysis of three
concepts”. In:Wind Energy 14.4 (2011), pp. 557–569. ISSN: 10991824. DOI: 10.1002/we.442.

[39] J. C. Kaimal et al. “Spectral characteristics of surface�layer turbulence”. In: Quarterly Journal of
the Royal Meteorological Society 98.417 (1972), pp. 563–589. ISSN: 1477870X. DOI: 10.1002/
qj.49709841707.

[40] Dan Kallehave et al. “Optimization of monopiles for offshore wind turbines”. In: Philosophical
Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 373.2035
(Feb. 2015). ISSN: 1364503X. DOI: 10.1098/rsta.2014.0100.

[41] S Kirkpatrick, C D Gelatt, and M P Vecchi. Optimization by Simulated Annealing. Tech. rep. 4598.
1983, pp. 671–680.

[42] Ivan Komusanac et al. Wind Energy in Europe: 2020 statistics and the outlook for 2021-2025.
Tech. rep. Wind Europe, 2019.

[43] Padmavathi Kora and Priyanka Yadlapalli. “Crossover Operators in Genetic Algorithms: A Re-
view”. In: International Journal of Computer Applications 162.10 (Mar. 2017), pp. 34–36. DOI:
10.5120/ijca2017913370.

[44] Martin O L Hansen. Aerodynamics of Wind Turbines. 2015.
[45] Simon Lefebvre and Maurizio Collu. “Preliminary design of a floating support structure for a 5 MW

offshore wind turbine”. In: Ocean Engineering 40 (Feb. 2012), pp. 15–26. ISSN: 0029-8018. DOI:
10.1016/J.OCEANENG.2011.12.009.

[46] Mareike Leimeister, Maurizio Collu, and Athanasios Kolios. “A fully integrated optimization frame-
work for designing a complex geometry offshore wind turbine spar-type floating support structure”.
In:Wind Energy Science 7.1 (Feb. 2022), pp. 259–281. ISSN: 2366-7451. DOI: 10.5194/wes-7-
259-2022.

[47] Mareike Leimeister et al. “Design optimization of the OC3 phase IV floating spar-buoy, based on
global limit states”. In: Ocean Engineering 202 (Apr. 2020), p. 107186. ISSN: 0029-8018. DOI:
10.1016/J.OCEANENG.2020.107186.

[48] Mareike Leimeister et al. “Design optimization of the OC3 phase IV floating spar-buoy, based on
global limit states”. In: Ocean Engineering 202 (Apr. 2020). ISSN: 00298018. DOI: 10.1016/j.
oceaneng.2020.107186.

[49] Lin Li, Zhen Gao, and Torgeir Moan. “Joint Distribution of Environmental Condition at Five Eu-
ropean Offshore Sites for Design of Combined Wind and Wave Energy Devices”. In: Journal of
Offshore Mechanics and Arctic Engineering 137.3 (2015). ISSN: 1528896X. DOI: 10.1115/1.
4029842.

[50] Yichao Liu et al. “Developments in semi-submersible floating foundations supporting wind tur-
bines: A comprehensive review”. In: Renewable and Sustainable Energy Reviews 60 (July 2016),
pp. 433–449. ISSN: 1364-0321. DOI: 10.1016/J.RSER.2016.01.109.

[51] M Lundy and A Mees. CONVERGENCE OF AN ANNEALING ALGORITHM. Tech. rep. 1986,
pp. 111–124.

[52] RC Maccamy and R Aam Fuchs. Wave forces on piles: a diffraction theory. 69th ed. US Beach
Erosion Board, 1954.

[53] SanjeevMalhotra. “Design and construction considerations for offshore wind turbine foundations”.
In: Proceedings of the International Conference on Offshore Mechanics and Arctic Engineering -
OMAE. Vol. 5. 2007, pp. 635–647. ISBN: 0791842711. DOI: 10.1115/OMAE2007-29761.

[54] Joaquim R. R. A. Martins, Peter Sturdza, and Juan J. Alonso. “The complex-step derivative ap-
proximation”. In: ACM Transactions on Mathematical Software 29.3 (Sept. 2003), pp. 245–262.
ISSN: 0098-3500. DOI: 10.1145/838250.838251.

https://doi.org/10.1016/J.OCEANENG.2020.106937
https://doi.org/10.1016/J.OCEANENG.2020.106937
https://doi.org/10.1002/we.442
https://doi.org/10.1002/qj.49709841707
https://doi.org/10.1002/qj.49709841707
https://doi.org/10.1098/rsta.2014.0100
https://doi.org/10.5120/ijca2017913370
https://doi.org/10.1016/J.OCEANENG.2011.12.009
https://doi.org/10.5194/wes-7-259-2022
https://doi.org/10.5194/wes-7-259-2022
https://doi.org/10.1016/J.OCEANENG.2020.107186
https://doi.org/10.1016/j.oceaneng.2020.107186
https://doi.org/10.1016/j.oceaneng.2020.107186
https://doi.org/10.1115/1.4029842
https://doi.org/10.1115/1.4029842
https://doi.org/10.1016/J.RSER.2016.01.109
https://doi.org/10.1115/OMAE2007-29761
https://doi.org/10.1145/838250.838251

References 75

[55] Qingshen Meng et al. “Analytical study on the aerodynamic and hydrodynamic damping of the
platform in an operating spar-type floating offshore wind turbine”. In: Renewable Energy 198 (Oct.
2022), pp. 772–788. ISSN: 0960-1481. DOI: 10.1016/J.RENENE.2022.07.126.

[56] Juan C. Meza. “Steepest descent”. In:WIREs Computational Statistics 2.6 (Nov. 2010), pp. 719–
722. ISSN: 1939-5108. DOI: 10.1002/wics.117.

[57] Miner and A Milton. “Cumalative damage in fatigue ”. In: (1945).
[58] Ji Mingjun and Tang Huanwen. “Application of chaos in simulated annealing”. In: Chaos, Solitons

& Fractals 21.4 (Aug. 2004), pp. 933–941. ISSN: 0960-0779. DOI: 10.1016/J.CHAOS.2003.12.
032.

[59] JR Morison, JW Johnson, and SA Schaaf. “The force exerted by surface waves on piles”. In:
Journal of Petroleum Technology (1950).

[60] Matjaž Mršnik, Janko Slavič, and Miha Boltežar. “Frequency-domain methods for a vibration-
fatigue-life estimation – Application to real data”. In: International Journal of Fatigue 47 (Feb.
2013), pp. 8–17. ISSN: 0142-1123. DOI: 10.1016/J.IJFATIGUE.2012.07.005.

[61] Michael Muskulus. Design optimization of wind turbine support Structures-A Review European
Academy of Wind Energy View project AWESOME-Advanced Wind Energy Systems Operation
and Maintenance Expertise View project. Tech. rep. 2014. URL: http://www.isope.org/publi
cations.

[62] J. L. Nazareth. “Conjugate gradient method”. In:WIREs Computational Statistics 1.3 (Nov. 2009),
pp. 348–353. ISSN: 1939-5108. DOI: 10.1002/wics.13.

[63] J. A. Nelder and R. Mead. “A Simplex Method for Function Minimization”. In: The Computer
Journal 7.4 (Jan. 1965), pp. 308–313. ISSN: 0010-4620. DOI: 10.1093/comjnl/7.4.308.

[64] Non-hazardous material safety data sheet for. 2018. URL: https://www.lkabminerals.com/wp-
content/uploads/2019/02/MagnaDense-SDS-12-06INT-19-03.pdf.

[65] Det Norske Veritas. OFFSHORE STANDARD DET NORSKE VERITAS AS Design of Floating
Wind Turbine Structures. Tech. rep. 2013. URL: http://www.dnv.com.

[66] NS Energy. A sea change for HYWIND. URL: https://www.nsenergybusiness.com/features/
featurea-sea-change-for-hywind-4303964/attachment/4-hywind/.

[67] A Palmgren. “Life Length of Roller Bearings or Durability of Ball Bearings”. In: ZVDI 68.14 (1924),
pp. 339–341.

[68] Nicholas Perrone and Robert Kao. “A general finite difference method for arbitrary meshes”. In:
Computers & Structures 5.1 (Apr. 1975), pp. 45–57. ISSN: 0045-7949. DOI: 10.1016/0045-
7949(75)90018-8.

[69] Linda Petzold.AUTOMATICSELECTIONOFMETHODSFORSOLVINGSTIFF ANDNONSTIFF
SYSTEMS OF ORDINARY DIFFERENTIAL EQUATIONS* LINDA PETZOLDt. Tech. rep. 1983.
URL: https://epubs.siam.org/terms-privacy.

[70] Nicolò Pollini et al. “Gradient-based optimization of a 15 MWwind turbine spar floater”. In: Journal
of Physics: Conference Series. Vol. 2018. 1. IOP Publishing Ltd, Sept. 2021. DOI: 10.1088/1742-
6596/2018/1/012032.

[71] Guido van Rossum. The python language reference. Amsterdam: Python Software Foundation,
2010.

[72] Mohammed Ghasem Sahab, Vassili V. Toropov, and Amir Hossein Gandomi. “A Review on Tra-
ditional and Modern Structural Optimization: Problems and Techniques”. In: Metaheuristic Appli-
cations in Structures and Infrastructures (2013), pp. 25–47. DOI: 10.1016/B978-0-12-398364-
0.00002-4.

[73] Ameya Sathe andWimBierbooms. “Influence of different wind profiles due to varying atmospheric
stability on the fatigue life of wind turbines”. In: Journal of Physics: Conference Series. Vol. 75. 1.
Institute of Physics Publishing, June 2007. DOI: 10.1088/1742-6596/75/1/012056.

[74] Matti Scheu et al. “Human exposure to motion during maintenance on floating offshore wind
turbines”. In:Ocean Engineering 165 (Oct. 2018), pp. 293–306. ISSN: 0029-8018. DOI: 10.1016/
J.OCEANENG.2018.07.016.

https://doi.org/10.1016/J.RENENE.2022.07.126
https://doi.org/10.1002/wics.117
https://doi.org/10.1016/J.CHAOS.2003.12.032
https://doi.org/10.1016/J.CHAOS.2003.12.032
https://doi.org/10.1016/J.IJFATIGUE.2012.07.005
http://www.isope.org/publications
http://www.isope.org/publications
https://doi.org/10.1002/wics.13
https://doi.org/10.1093/comjnl/7.4.308
https://www.lkabminerals.com/wp-content/uploads/2019/02/MagnaDense-SDS-12-06INT-19-03.pdf
https://www.lkabminerals.com/wp-content/uploads/2019/02/MagnaDense-SDS-12-06INT-19-03.pdf
http://www.dnv.com
https://www.nsenergybusiness.com/features/featurea-sea-change-for-hywind-4303964/attachment/4-hywind/
https://www.nsenergybusiness.com/features/featurea-sea-change-for-hywind-4303964/attachment/4-hywind/
https://doi.org/10.1016/0045-7949(75)90018-8
https://doi.org/10.1016/0045-7949(75)90018-8
https://epubs.siam.org/terms-privacy
https://doi.org/10.1088/1742-6596/2018/1/012032
https://doi.org/10.1088/1742-6596/2018/1/012032
https://doi.org/10.1016/B978-0-12-398364-0.00002-4
https://doi.org/10.1016/B978-0-12-398364-0.00002-4
https://doi.org/10.1088/1742-6596/75/1/012056
https://doi.org/10.1016/J.OCEANENG.2018.07.016
https://doi.org/10.1016/J.OCEANENG.2018.07.016

References 76

[75] Ronald Schoenberg. Optimization with the Quasi-Newton Method. Tech. rep. 2001.
[76] Peter Schubel and Richard Crossley. “Wind Turbine Blade Design”. In:Wind Turbine Technology.

Apple Academic Press, Mar. 2014, pp. 1–34. DOI: 10.1201/b16587-3.
[77] Kensuke Sekihara, Hideaki Haneishi, and Nagaaki Ohyama. Details of Simulated Annealing Al-

gorithm to Estimate Parameters of Multiple Current Dipoles Using Biomagnetic Data. Tech. rep.
2. 1992.

[78] S.N. Sivanandam and S.N. Deepa. “Genetic Algorithm Optimization Problems”. In: Introduction
to Genetic Algorithms. Berlin, Heidelberg: Springer Berlin Heidelberg, 2008, pp. 165–209. DOI:
10.1007/978-3-540-73190-0{_}7.

[79] Julio M. Stern. “Simulated annealing with a temperature dependent penalty function”. In: ORSA
journal on computing 4.3 (1992), pp. 311–319. ISSN: 08991499. DOI: 10.1287/ijoc.4.3.311.

[80] Peter J.M. Van Laarhoven, Emile H.L. Aarts, and Jan Karel Lenstra. “Job shop scheduling by
simulated annealing”. In: Operations Research 40.1 (1992), pp. 113–125. ISSN: 0030364X. DOI:
10.1287/opre.40.1.113.

[81] ElizabethWayman.Coupled Dynamics and Economic Analysis of FloatingWind Turbine Systems.
Tech. rep. 2004.

[82] Philip Wolfe. “Convergence Conditions for Ascent Methods”. In: SIAM Review 11.2 (Apr. 1969),
pp. 226–235. ISSN: 0036-1445. DOI: 10.1137/1011036.

[83] Li-Jiang Yang and Chen Tian-Lun. Application of Chaos in Genetic Algorithms. Tech. rep. 2. 2002.
[84] Jiaping Yang andCheeKiong Soh. “STRUCTURALOPTIMIZATIONBYGENETICALGORITHMS

WITH TOURNAMENT SELECTION”. In: Journal of computing in civil engineering 11.3 (1997),
pp. 195–200.

[85] Yanli Zhang,Weidong Zhou, and Shasha Yuan. “Multifractal analysis and relevance vectormachine-
based automatic seizure detection in intracranial EEG”. In: International Journal of Neural Sys-
tems 25.6 (Sept. 2015). ISSN: 01290657. DOI: 10.1142/S0129065715500203.

[86] Yichi Zhang et al. “Dynamic responses analysis of a 5 MW spar-type floating wind turbine under
accidental ship-impact scenario”. In: Marine Structures 75 (Jan. 2021), p. 102885. ISSN: 0951-
8339. DOI: 10.1016/J.MARSTRUC.2020.102885.

[87] Dan Zhao et al. “Analysis codes for floating offshore wind turbines”. In:Wind Turbines and Aerody-
namics Energy Harvesters (2019), pp. 401–430. DOI: 10.1016/B978-0-12-817135-6.00006-5.

[88] Wangwen Zhao and Michael J. Baker. “On the probability density function of rainflow stress range
for stationary Gaussian processes”. In: International Journal of Fatigue 14.2 (Mar. 1992), pp. 121–
135. ISSN: 0142-1123. DOI: 10.1016/0142-1123(92)90088-T.

[89] Yu Zhou et al. “A problem-specific non-dominated sorting genetic algorithm for supervised feature
selection”. In: Information Sciences 547 (Feb. 2021), pp. 841–859. ISSN: 0020-0255. DOI: 10.
1016/J.INS.2020.08.083.

https://doi.org/10.1201/b16587-3
https://doi.org/10.1007/978-3-540-73190-0{_}7
https://doi.org/10.1287/ijoc.4.3.311
https://doi.org/10.1287/opre.40.1.113
https://doi.org/10.1137/1011036
https://doi.org/10.1142/S0129065715500203
https://doi.org/10.1016/J.MARSTRUC.2020.102885
https://doi.org/10.1016/B978-0-12-817135-6.00006-5
https://doi.org/10.1016/0142-1123(92)90088-T
https://doi.org/10.1016/J.INS.2020.08.083
https://doi.org/10.1016/J.INS.2020.08.083

A
Coding Basics

The research for this thesis has been done in Python, a widely used programming language in the
engineering industry. Classes, objects and functions will be explained in this chapter for purposes of
legibility of the thesis. The reader is referred to the ’Python Reference’ [71] for more details on the
language itself. Although the appendix will contain the code, the thesis report will not go into detail on
every function made.
A function in python is much like a mathematical equation, there is an input and an output. The main
difference is that in python the type of output can be a set of data types, a value, a print off, virtually
anything could be returned by a function. When modeling a system multiple functions can be relevant,
it is useful to find efficient ways to group these together.
The code for this thesis was developed using object oriented programming or (OOP). This implies a
specific code structure where an ’object’ is made which can contain both data and functions. These
objects can be made multiple times and carry varieties of the same information. The set of common
information and functions is contained within a class. An object is an instance of a class. For example,
imagine the goal of a piece of code is to model the manufacturing of three types of cars: SUV, coupé
and a sedan. Each type of car will have information relevant to that car, and with it comes specific
functions about that car i.e: cost and weight. AS every car will have some of the same information a
class ’car’ can bemade containing information like what type of engine, howmany doors, car shape and
infotainment system. On the basis of that information the class can then contain functions like;’calculate
cost’ and ’calculate weight’. Which means that with the class ’car’ an instance could be made of the
SUV, coupe and sedan that can than be recalled in every other function (or class) that would require
an instance of the ’car class’ as input.
Throughout the thesis classes will be mentioned. For the optimization of the spar floater it makes sense
that the substructure is a separate class containing the design variables. Allowing for the optimizer to
make multiple instances of the spar to test and evaluate.

77

B
Tables

78

79

Name XTT [m] ZTT [m] Mass [t] Ixx
[
kg m2

]
Iyy
[
kg m2

]
Izz
[
kg m2

]
Yaw system 0.000 −0.190 100.0 490,266 490,266 978,125
Turret nose 5.786 4.956 11.394 12,571 10,890 10,909
Inner generator stator 5.545 4.913 226.629 3, 777, 313 2, 012, 788 2, 042, 312
Outer generator rotor 6.544 5.033 144.963 3, 173, 003 1, 673, 269 1, 691, 864
Shaft 6.208 5.000 15.734 33,009 22,906 23,018
Hub 10.604 5.462 190.0 1, 382, 171 2, 169, 261 2, 160, 637
Bedplate 0.812 2.697 70.329 398,973 515,880 535,055
Flange 4.593 4.831 3.946 4,081 2,065 2087
Misc. equipment 0.000 0.500 50.0 16,667 16,667 25,000
TDO shaft bearing 6.582 5.040 2.230 3,515 1,784 1,803
SRB shaft bearing 5.388 4.914 5.664 8,930 4,593 4,641
Nacelle total 5.486 3.978 820.888 12, 607, 277 21, 433, 958 18, 682, 468
Nacelle total minus hub 3.945 3.352 630.888 10, 680, 747 122, 447, 810 10, 046, 187
kg m 2 kilogram square meters m meters t metric tons
TDO tapered double outer SRB spherical roller bearing

Table B.1: Lumped Masses and Moments of Inertia for the Nacelle Assembly (The coordinate system has its origin at the tower top, with x pointed downwind [parallel to ground/water and not
the shaft] and z pointed up) [27] (Table5-1)

80

Height [m] Outer Diameter [m] Thickness [mm]
0 10 45.517
0.001 10 43.537
5 10 43.527
5.001 10 42.242
10 10 42.242
10.001 10 41.058
15 10 41.058
15.001 10 39.496
28 10 39.496
28.001 10 36.456
41 9.926 36.456
41.001 9.926 33.779
54 9.443 33.779
54.001 9.443 32.192
67 8.833 32.192
67.001 8.833 30.708
80 8.151 30.708
80.001 8.151 29.101
93 7.39 29.101
93.001 7.39 27.213
106 6.909 27.213
106.001 6.909 24.009
119 6.748 24.009
119.001 6.748 20.826
132 6.572 20.826
132.001 6.572 23.998
144.582 6.5 23.998

Table B.2: Height, Outer Diameter and thickness of tower at 5 meter intervals. Taken from [27](Tabel: 4-2)

81

Wind speed u [m/s] f_uw Wave height h [m] f_hs|uw Wave Periodt [m/s] f_hs|tp
3 0.05767 1 0.8033 25 0.064
5 0.09329 1 0.858 25 0.064

2 0.131 5 0.218
6 0.298
7 0.2199

7 0.10609 1 0.513 25 0.064
2 0.47 5 0.218

6 0.298
7 0.2199

9 0.09395 1 0.2252 25 0.064
2 0.605 5 0.218

6 0.298
7 0.2199

3 0.169 6 0.157
7 0.342
8 0.287
9 0.137

11 0.06703 2 0.432 5 0.218
6 0.298
7 0.2199

3 0.428 6 0.157
7 0.342
8 0.287
9 0.137

13 0.03902 2 0.2264 5 0.218
6 0.298
7 0.2199

3 0.4725 6 0.157
7 0.342
8 0.287
9 0.137

4 0.2541 7 0.134
8 0.3679
9 0.322
10 0.132

15 0.01861 2 0.1004 5 0.218
6 0.298
7 0.2199

3 0.3271 6 0.157
7 0.342
8 0.287
9 0.137

4 0.4144 7 0.134
8 0.3679
9 0.322
10 0.132

5 0.142 8 0.141
9 0.3839
10 0.3265
11 0.1151

17 0.00728 3 0.1758 6 0.157
7 0.342
8 0.287
9 0.137

4 0.369 7 0.134
8 0.3679
9 0.322
10 0.132

5 0.3291 8 0.141
9 0.3839
10 0.3265
11 0.1151

6 0.0799 9 0.1643
10 0.3905
11 0.3064
12 0.101

Table B.3: Table with all the relevant environmental conditions

C
Original Formulas

C.1. Aerodynamic Damping
The entries in the matrix can be defined as.

cxU1 = Nb

∫ R

0

∂(dT)
∂V0

dr (C.1)

cxU5 = NbhR

∫ R

0

∂(dT)
∂V0

dr (C.2)

cθyU5 =
Nb

2

∫ R

0

r2
∂(dT)
∂V0

dr (C.3)

where Nb is the number of blades, R is the blade length, r the position along the blade and V0 is the
steady inflow of wind. dT is the thrust force at each blade element and hR is the distance from rotor
centre to the centre of the global coordinate system.

cθyθy =
Nb

2

∫ R

0

r2
∂(dT)
∂V0

(C.4)

cxx = Nb

∫ R

0

∂(dT)
∂V0

(C.5)

82

D
Source Code

D.1. Experiment 1:Logical Constraint Optimization
Experiment 2 is almost the exact same with a change in constrainttype in line 43 from ’logical’ to ’time
domain’. And some change in the optimization parameters that are discussed in the relevant chapters

1 #!/usr/bin/env python3
2 # -*- coding: utf-8 -*-
3 """
4 Created on Mon Oct 17 11:32:47 2022
5

6 @author: Giles
7 """
8 import time
9 start_time = time.time()
10

11 import numpy as np
12 from OptimizationAlgorithms.SimulatedAnnealingClass import Simulated_Annealing_Class
13 from objective import calc_steel_mass
14 from Constraintclasses.ConstraintClass import constraints_class
15 from Substructure.SparClass import Spar_Class
16 from SuperStructure.IEA15MWTowerClass import IEA15MW_Tower_Class
17 from SuperStructure.IEA15MWTurbineClass import IEA15MW_Turbine_Class
18 from FullSystem.FullSystemClass import Full_System_Class
19 from Utilities.Windfunctions import weibull_pdf,movewindup
20 from TimeDomain_Response.EnviromentClass import Enviroment_Class
21 from main_utility import optimizeloop,didnotconverge,statistics,design_variable_stats
22 from OptiloopClass import Spar_Optimize_Loop_class
23 from plotfile import plot_single_run
24 # load Turbine & Tower
25 turbine = IEA15MW_Turbine_Class()
26 tower = IEA15MW_Tower_Class()
27

28 # set up environment for site 14
29 h = 400 # water depth
30 H = 10.96 # 50 year wave Significant Wave height
31 T = 11.06 # 50 Year wave Period
32 U = movewindup(33.49,130) # 50 Year Wind (U10 from Join Distirbution site 14)
33 TI = 0.14 # Turbulence Intensity
34 environment = Enviroment_Class(h,H,T,U,TI)
35

36 # Set up Spar
37 D0 = 10 #m
38 L0 = 200 #m
39 t0 = 0.1 #m
40

41 x0 = np.array([D0,L0,t0])
42 T0 = 500000
43 constraintclass = constraints_class(turbine,tower,environment,printswitch =0,constrainttype =

'logical')
44 initial_check = constraintclass.constraint_function(x0)

83

D.2. Constraint classes 84

45 print(initial_check)
46

47 optimize = Simulated_Annealing_Class(calc_steel_mass,constraintclass.constraint_function,T0,
x0,L=100,J=50,delta = 0.1,gamma = 0.01, K_lim = 10, r = 0.97)

48 print(optimize.xbest)
49

50 print("---%s seconds ---" % (time.time()-start_time))
51 plotsingle =1
52 if plotsingle:
53 plot_single_run(optimize.x0_list,optimize.xbest,calc_steel_mass(optimize.xbest))
54 xbest1 = optimize.xbest
55 optiloop =1
56 if optiloop:
57 iterations = 1000
58 optclass = Simulated_Annealing_Class
59 objective = calc_steel_mass
60 constraint = constraintclass.constraint_function
61 L = 50
62 optiloop = Spar_Optimize_Loop_class(iterations,optclass,objective,constraint,x0,L,T0=1

E5)
63

64

65 print("---%s seconds ---" % (time.time()-start_time))

D.2. Constraint classes
D.2.1. Main Class

1 #!/usr/bin/env python3
2 # -*- coding: utf-8 -*-
3 """
4 Created on Sun Nov 6 19:51:10 2022
5

6 @author: Giles
7 """
8 from Constraintclasses.LogicConstraintClass import logical_constraint_class
9 from Constraintclasses.Time_Constraint_Class import time_constraint_class
10

11 class constraints_class():
12 def __init__(self,turbine,tower,environment,printswitch =1,constrainttype = 'logical'):
13 self.turbine,self.tower,self.environment,self.printswitch = turbine,tower,

environment,printswitch
14

15 self.constraint_function = self.choose_constraint_function(constrainttype)
16

17 return
18

19

20 def choose_constraint_function(self,constrainttype):
21 if constrainttype == 'logical':
22 constraintclass= logical_constraint_class(self.turbine,self.tower,self.environment,

self.printswitch)
23 constraint_function = constraintclass.constraint_function
24 return constraint_function
25 if constrainttype == 'timedomain':
26 constraintclass = time_constraint_class(self.turbine,self.tower,self.environment,self

.printswitch)
27 constraint_function = constraintclass.constraint_function
28 return constraint_function

D.2.2. Geomtric Constraint Class
1 #!/usr/bin/env python3
2 # -*- coding: utf-8 -*-
3 """
4 Created on Mon Oct 17 10:54:36 2022
5

6 @author: Giles

D.2. Constraint classes 85

7 """
8 import numpy as np
9

10 from main_utility import unpack_x
11 from Substructure.SparClass import Spar_Class
12 from FullSystem.FullSystemClass import Full_System_Class
13 from TimeDomain_Response.TimeDomainSimulationClass import Time_Domain_Simulation_Class
14 from TimeDomain_Response.EnviromentClass import Enviroment_Class
15 class logical_constraint_class():
16 def __init__(self,turbine,tower,environment,printswitch =1):
17 self.tower = tower
18 self.turbine = turbine
19 self.environment = environment
20

21 #self.D,self.L,self.t = unpack_x(x[0])
22

23 self.printswitch = printswitch
24 def constraint_function(self,x):
25 #print(x)
26 D,L,t = unpack_x(x)
27

28 #check logical feasibilities
29 constraint = []
30

31 #check spar sizing
32 check_x = self.check_x(D,L,t)
33 constraint.append(check_x)
34 if any(constraint):
35 return np.array(constraint)
36

37 #generate spar
38 spar = Spar_Class(D,L,t,self.turbine,self.tower)
39

40 #Check Faulty ballast
41 faultyballast = self.check_spar(spar)
42 constraint.append(faultyballast)
43 if any(constraint):
44 return np.array(constraint)
45

46 #check environment
47 environment_check = self.check_geometry_v_environment(spar,self.environment)
48 constraint.append(environment_check)
49 if any(constraint):
50 return np.array(constraint)
51

52 #Generate Full System
53 fullsystem = Full_System_Class(spar,self.tower,self.turbine)
54

55 full_systemcheck = self.check_full_system(fullsystem)
56 constraint.append(full_systemcheck)
57 if any(constraint):
58 return np.array(constraint)
59

60 #Storm Stability check
61

62

63 return np.array(constraint)
64

65

66

67 def check_x(self,D,L,t):
68 '''
69 Function to check geometry of just the spar
70

71 Returns
72 -------
73 bool
74 if True, infeasible.
75

76 '''
77 if D < 0 or L <0 or t<0:

D.2. Constraint classes 86

78 if self.printswitch:
79 print('constraint: D<0,L<0 or t<0')
80 return True
81 if D>L:
82 if self.printswitch:
83 print('constraint: D>L')
84 return True
85 if t>D:
86 if self.printswitch:
87 print('constranint: t>D')
88 return True
89 if D/L < 0.01 :
90 if self.printswitch:
91 print('constraint: D/L<0.01')
92 return True
93 if t > 0.2 or t< 0.010:
94 if self.printswitch:
95 print('constraint: t out of bounds')
96 return True
97

98 else: return False
99

100

101 def check_geometry_v_environment(self,spar,environment):
102 if spar.L> 0.8*environment.h :
103 if self.printswitch:
104 print('constraint: L>0.8 h')
105 return True
106 if environment.lamda < 5*spar.D:
107 if self.printswitch:
108 print('constraint: lamda < 0.5 D (morison invalid)')
109 return True
110 else:
111 return False
112

113 def check_spar(self,spar):
114 if spar.faulty:
115 if self.prinswitch:
116 print('constraint: negative ballast')
117 return True
118 if spar.GM <1.0 :
119 if self.printswitch:
120 print('constraint: GM spar<1')
121 return True
122 else:
123 return False
124

125 def check_full_system(self,full_system):
126 #logical checks
127 if full_system.D_spar < full_system.tower.tower_base_diameter:
128 if self.printswitch:
129 print('constraint: D_spar<D_tower')
130 return True
131

132 #2.1.2 DNV-OS-J103
133 if full_system.spar.T_period[0]<100:
134 if self.printswitch:
135 print("Design has a natural period of" + str(full_system.spar.T_period[0]))
136 return True
137 #2.1.3 DNV-OS-J103
138 if full_system.spar.T_period[2] < 25:
139 if self.printswitch:
140 print('constraint: natural period in heave too small')
141 return True
142 #2.4.2 DNV-OS-J103
143 if full_system.GM <1 :
144 if self.printswitch:
145 print('constraint: GM full system <1')
146 return True
147 #3.2.18 DNV-OS-J103 (mathieu instability)
148 ratio = full_system.T_period[1]/full_system.T_period[2]

D.2. Constraint classes 87

149 if ratio >0.45 and ratio < 0.55 :
150 if self.printswitch:
151 print('constraint:Mathieu instabillity 0.45,0.55')
152 return True
153 if ratio >0.95 and ratio < 1.05 :
154 if self.printswitch:
155 print('constraint: Mathieu Instability 0.95,1.05')
156 return True
157 if ratio >1.45 and ratio < 1.55 :
158 if self.printswitch:
159 print('constraint:Mathieu Instability 1.45,1.55')
160 return True
161 if ratio >1.95 and ratio < 2.05 :
162 if self.printswitch:
163 print('constraint:Mathieu Instability 1.95,2.05')
164 return True
165 #--blade passing Frequencies
166 if self.check_bladepass(full_system.T_period[0],full_system.turbine):
167 if self.printswitch:
168 print('constraint:Surge is within blade passing frequency')
169 return True
170 if self.check_bladepass(full_system.T_period[1],full_system.turbine):
171 if self.printswitch:
172 print('constraint: Heave is within blade passing frequency')
173 return True
174 if self.check_bladepass(full_system.T_period[2],full_system.turbine):
175 if self.printswitch:
176 print('constraint:Pitch is within blade passing frequency')
177 return True
178

179 return False
180

181 def check_storm_stability(self,full_system):
182 storm = self.environment
183 storm.U_mean = 36
184 #2.1.3 DNV-OS-J103 (storm stability (no yaw fautl)
185 seed = 1
186 wind = 1
187 waves = 0
188 t_eval = 3600
189 dt = 0.5
190 q0 = np.array([0,0,0,0,0,0])
191 TD_sim = Time_Domain_Simulation_Class(q0,full_system,storm,dt,t_eval,0.5,seed,wind,

waves)
192 if any(TD_sim.y[2]>8):
193 return True
194 return False
195

196 def check_bladepass(self,naturalperiod,turbine):
197 if naturalperiod > turbine.P1low and naturalperiod < turbine.P1high:
198 return True
199 if naturalperiod > turbine.P3low and naturalperiod < turbine.P3high:
200 return True

D.2.3. Time Domain Constraint Class
1 #!/usr/bin/env python3
2 # -*- coding: utf-8 -*-
3 """
4 Created on Sun Nov 6 20:14:35 2022
5

6 @author: Giles
7 """
8

9 #!/usr/bin/env python3
10 # -*- coding: utf-8 -*-
11 """
12 Created on Mon Oct 17 10:54:36 2022
13

14 @author: Giles

D.2. Constraint classes 88

15 """
16 import numpy as np
17

18 from main_utility import unpack_x
19 from Substructure.SparClass import Spar_Class
20 from FullSystem.FullSystemClass import Full_System_Class
21 from TimeDomain_Response.TimeDomainSimulationClass import Time_Domain_Simulation_Class
22 from TimeDomain_Response.EnviromentClass import Enviroment_Class
23 class time_constraint_class():
24 def __init__(self,turbine,tower,environment,printswitch =1):
25 self.tower = tower
26 self.turbine = turbine
27 self.environment = environment
28

29 #self.D,self.L,self.t = unpack_x(x[0])
30

31 self.printswitch = printswitch
32 def constraint_function(self,x):
33 #print(x)
34 D,L,t = unpack_x(x)
35

36 #check logical feasibilities
37 constraint = []
38

39 #check spar sizing
40 check_x = self.check_x(D,L,t)
41 constraint.append(check_x)
42 if any(constraint):
43 return np.array(constraint)
44

45 #generate spar
46 spar = Spar_Class(D,L,t,self.turbine,self.tower)
47

48 #Check Faulty ballast
49 faultyballast = self.check_spar(spar)
50 constraint.append(faultyballast)
51 if any(constraint):
52 return np.array(constraint)
53

54 #check environment
55 environment_check = self.check_geometry_v_environment(spar,self.environment)
56 constraint.append(environment_check)
57 if any(constraint):
58 return np.array(constraint)
59

60 #Generate Full System
61 fullsystem = Full_System_Class(spar,self.tower,self.turbine)
62

63 full_system_check = self.check_full_system(fullsystem)
64 constraint.append(full_system_check)
65 if any(constraint):
66 return np.array(constraint)
67

68 response_check = self.check_max_response(fullsystem)
69 constraint.append(response_check)
70 if any(constraint):
71 return np.array(constraint)
72

73 #Storm Stability check
74 if not all(constraint):
75 if self.printswitch:
76 print('design is feasible')
77 return np.array(constraint)
78

79

80

81 def check_x(self,D,L,t):
82 '''
83 Function to check geometry of just the spar
84

85 Returns

D.2. Constraint classes 89

86 -------
87 bool
88 if True, infeasible.
89

90 '''
91 if self.printswitch:
92 print('D =' + str(D),'L ='+str(L),'t ='+str(t))
93 if D < 0 or L <0 or t<0:
94 if self.printswitch:
95 print('constraint: D<0,L<0 or t<0')
96 return True
97 if D>L:
98 if self.printswitch:
99 print('constraint: D>L')
100 return True
101 if t>D:
102 if self.printswitch:
103 print('constranint: t>D')
104 return True
105 if D/L < 0.01 :
106 if self.printswitch:
107 print('constraint: D/L<0.01')
108 return True
109 if t > 0.15 or t< 0.010:
110 if self.printswitch:
111 print('constraint: t out of bounds')
112 return True
113 #if L<65 :
114 # if self.printswitch:
115 # print('constraint: L<65')
116 #return True
117

118

119 else: return False
120

121

122 def check_geometry_v_environment(self,spar,environment):
123 if spar.L> 0.8*environment.h :
124 if self.printswitch:
125 print('constraint: L>0.8 h')
126 return True
127 if environment.lamda < 5*spar.D:
128 if self.printswitch:
129 print('constraint: lamda < 0.5 D (morison invalid)')
130 return True
131 else:
132 return False
133

134 def check_spar(self,spar):
135 if spar.faulty:
136 if self.printswitch:
137 print('constraint: negative ballast')
138 return True
139 if spar.GM <1.0 :
140 if self.printswitch:
141 print('constraint: GM spar<1')
142 return True
143 else:
144 return False
145

146 def check_full_system(self,full_system):
147 if full_system.D_spar < full_system.tower.tower_base_diameter:
148 if self.printswitch:
149 print('constraint: D_spar < Tower Base')
150 return True
151 if full_system.L_spar < 2/3*full_system.z_hub:
152 if self.printswitch:
153 print('constraint: L_spar < 2/3 z_hub')
154 return True
155 else:
156 return False

D.3. Simulated annealing class 90

157 def check_max_response(self,full_system):
158

159 waves = 1
160 wind = 1
161 Tdur = 1000
162 T_transient = 250
163 dt = 1
164 f_highcut = 0.5
165

166 q0 = np.array([0,0,0,0,0,0])
167 H = 10
168 T = 14
169 U = self.turbine.V_rated
170 TI = 0.14
171 seed = 1
172

173 environment = Enviroment_Class(self.environment.h,H,T,U,TI)
174 TD = Time_Domain_Simulation_Class(q0,full_system,environment,dt,Tdur,f_highcut,seed,

waves,wind,T_transient)
175 if any(abs(TD.x_response)>10):
176 if self.printswitch:
177 print('Constraint: surge response too high')
178 return True
179 if any(abs(TD.phi_response)>8):
180 if self.printswitch:
181 print('Constraint: Pitch Response too high')
182 return True
183 else:
184 return False
185

186

187 def check_bladepass(self,naturalperiod,turbine):
188 if naturalperiod > turbine.P1low and naturalperiod < turbine.P1high:
189 if self.printswitch:
190 print('constraint: Naturalperiod within 1P')
191 return True
192 if naturalperiod > turbine.P3low and naturalperiod < turbine.P3high:
193 if self.printswitch:
194 print('constraint: Naturalperiod within 3P')
195 return True

D.3. Simulated annealing class
1 #!/usr/bin/env python3
2 # -*- coding: utf-8 -*-
3 """
4 Created on Fri Sep 30 10:06:01 2022
5

6 @author: Giles
7 """
8 from Math.Significance import round_it
9 from math import exp
10 import random
11 import numpy as np
12

13 class Simulated_Annealing_Class():
14 def __init__(self,objective,constraints,T0,x0,L=10,J=50,delta = 0.1,gamma = 0.01, K_lim =

10, r = 0.97,printswitch = 0):
15 '''
16 Initialization of the simulated annealing optimization class
17

18 Parameters
19 ----------
20 objective : Function
21 Objective function to minimize.
22 constraints : Function
23 constraint function (must return array of boolean, and take the
24 design variables) (false = within feasible).
25 T0 : Value

D.3. Simulated annealing class 91

26 Initial Temprature (often the expected global minumum).
27 x0 : Array or List
28 Design Variables.
29

30 L : Value, optional
31 Minimum trials for each iteration. The default is 10.
32 J: Value optional
33 Consecutive iterations for stopping. The default is 50
34

35

36 Returns
37 -------
38 None.
39

40 '''
41 #---- Stop conters
42 self.consec_change_count=0
43 self.howmanydown_count =0
44 self.K_lim_count =0
45 self.Tempchange_count =0
46

47 self.T0 = T0 #expected global minimum
48 self.x0 = x0 #feasible trial point
49 self.objective = objective #Objective function
50 self.constraints = constraints #constraint function
51 self.L = L #minimum trials in iteration
52

53 self.r=r
54

55

56 #Parameters for final check
57 self.K_lim = K_lim #Max iterations
58 self.J = J #consecutive iterations for stopping
59 self.delta = delta #how nearby new points can lie
60 self.gamma = gamma #how small can stopping change be
61 #printing
62 self.print = printswitch
63 #include tempchange in stop criteria
64 self.tempchange =1
65

66

67 self.xbest = x0
68 self.xbest, self.x0_list, self.f0_list = self.basic_version()
69

70

71

72

73 return
74

75 def basic_version(self):
76

77

78 #------step1 (Set up initial Values)
79 Tk = self.T0 #expected global minimum/first temperature
80 x0 = self.x0 #feasible trial point
81 r = self.r
82 objective = self.objective
83

84 fx0= objective(x0)
85

86 L = self.L #Minimum trials inside loop
87

88 #List for stop criteria
89 x0_list = []
90 f0_list = []
91

92 x0_list.append(x0)
93 f0_list.append(fx0)
94 #iteration counter
95 K=0 #Outside loop counter
96 k=1 #Inside loop counter

D.3. Simulated annealing class 92

97 I= 0 #Counts the amount of better trial points in an iteration
98

99 while K<self.K_lim:
100 #------step 2 (Start to Iterate)
101 xk = self.gen_xk_feas(x0)
102

103 fxk = objective(xk)
104 df = fxk - fx0
105

106 #------step 3
107 if df>0:
108 mc = 0
109 while df>0: #metropolis condition
110 mc = mc+1
111 pdf = exp(df/-Tk)
112 z = random.uniform(0,1)
113 if self.print:
114 #print(str(mc))
115 moreinfo = self.print_metropolic_counter(mc)
116 if moreinfo:
117 print('df ='+ str(df), 'pdf ='+ str(pdf),'z='+ str(z),Tk)
118 if z<pdf:
119 x0 = xk
120 fx0 = objective(x0)
121 if I > 0:
122 I=I-1
123 break
124

125 else:
126 xk = self.gen_xk_feas(x0)
127 fxk = objective(xk)
128 df= fxk-fx0
129 else:
130 x0 = xk
131 fx0= objective(x0)
132 I=I+1
133 #----- Evaluate the new point
134

135 if k<L:
136 k=k+1
137 x0_list.append(x0)
138 f0_list.append(fx0)
139 self.xbest,self.f0_best = self.updatelowest(x0,self.xbest)
140

141 elif self.checkanystop(f0_list, I,K):
142 x0_list.append(x0)
143 f0_list.append(fx0)
144 self.xbest,self.f0_best = self.updatelowest(x0,self.xbest)
145

146 if self.print:
147 print("Optimum found",self.f0_best)
148 return self.xbest,x0_list,f0_list
149 break
150 else:
151 K=K+1
152 print("K =", K)
153 k = 1
154 Tk = r*Tk
155 x0_list.append(x0)
156 f0_list.append(objective(x0))
157 I=0
158

159 if self.print:
160 print("Iteration Limit reached", objective(self.xbest), 'was the best point')
161

162 return x0,x0_list,f0_list
163

164

165

166 def gen_xk_feas(self,x0):
167 '''

D.3. Simulated annealing class 93

168 Function that generates a new feasible set of design variables
169

170 Parameters
171 ----------
172 x0 : List or Array
173 Design Variables.
174

175 Returns
176 -------
177 xk : List or Array
178 New set.
179

180 '''
181 xk = self.gen_xk(x0) #randomly generated point in neibourhood of last point
182

183 infeasible = self.checkinfeasible(xk)
184 while infeasible:
185 xk = self.gen_xk(x0)
186 infeasible = self.checkinfeasible(xk)
187 return xk
188

189 def gen_xk(self,x0):
190 '''
191 Function used to generate a new set of variables. Will stay within
192 20% of the given trial point
193

194 Parameters
195 ----------
196 x0 : array
197 array of design variables (inputs to objective function).
198

199 Returns
200 -------
201 array
202 Newly randomly generated set of design variables.
203

204 '''
205 adjustment = np.zeros(len(x0))
206 for i in range(len(x0)):
207 adjustment[i] = round_it(random.uniform(-self.delta*self.x0[i],self.delta*self.x0

[i]),5)
208

209

210 return x0+adjustment
211

212 def checkanystop(self,f0_list,I,K):
213 '''
214 Checks all the stopping criteria
215

216 Parameters
217 ----------
218 f0_list : List
219 List of all accepted new points in outer iterations.
220 I : Integer/Value
221 Counter for the amount of inner iterations that have df<0.
222 K : Integer/Value
223 Outer iteration counter.
224

225 Returns
226 -------
227 bool
228 Any stop criteria met.
229

230 '''
231 Consecutive_change_check = self.consecutive_change(f0_list)
232 notenoughnew = self.howmanydownstop(I,K,self.tempchange)
233 K_check = K==self.K_lim
234

235 if Consecutive_change_check:
236 if self.print:
237 print('ConsecutiveChange')

D.3. Simulated annealing class 94

238 self.consec_change_count = self.consec_change_count +1
239 return True
240 elif notenoughnew:
241 if self.print:
242 print('notenoughnew')
243 self.howmanydown_count = self.howmanydown_count +1
244 return True
245 elif K_check:
246 if self.print:
247 print('K_limit reached')
248 self.K_lim_count = self.K_lim_count +1
249 return True
250 else:
251 self.Tempchange_count = self.Tempchange_count +1
252 return False
253

254

255

256 def consecutive_change(self,f0_list):
257 '''
258 (1) The algorithm stops if change in the best function value is less
259 than some specified factor gamma for the last J consecutive iterations.
260

261 Parameters
262 ----------
263 f0_list : List
264 List of accepted new best points.
265

266 Returns
267 -------
268 bool
269 Stop criteria met.
270

271 '''
272 #We need to have atleast a minum amount of outer loop iterations
273 if len(f0_list)<self.J:
274 return False
275 #Then we take the last relevant ones
276 else:
277 lastlist = f0_list[-self.J:]
278

279 change_list = []
280 for i in range(len(lastlist)-1):
281 df = abs(lastlist[i]-lastlist[i+1])
282 change = df/f0_list[0]
283 change_list.append(change)
284

285 if all(i <self.gamma for i in change_list):
286 return True
287 else:
288 return False
289

290 def howmanydownstop(self,I,K,tempchange=0,Delta=0.05):
291 '''
292 The program stops if IlL < 6, where L is a limit on the number of
293 trials (or number of feasible points generated) within one iteration,
294 and I is the number of trials that satisfy df < 0 .
295 Basically the optimiser should stop if in one iteration only small
296 portion of the new points is actually in a better position
297

298 Parameters
299 ----------
300 I : Value
301 Counter of new good positions within iteration.
302

303 Returns
304 -------
305 bool
306 Stop Criteria met.
307

308 '''

D.4. Structure 95

309 if tempchange:
310 if self.r**K < 0.5 or K > 0.5*self.K_lim:
311 if I/self.L<Delta :
312 print(I ,'/', self.L, "<",str(Delta))
313 return True
314 else:
315 return False
316 else:
317 return False
318 else:
319 if I/self.L<Delta :
320 print(I ,'/', self.L, "<",str(Delta))
321 return True
322 else:
323 return False
324

325

326

327

328 def checkinfeasible(self,x0):
329 '''
330 Function that checks infeasibility. So if the trial point is infeasible
331 the function will return True. Please be sure that the constraints function
332 returns only a set of Boolean values or integers between 0 and 1.
333

334

335 Parameters
336 ----------
337 x0 : List or Array
338 Trial Design variables.
339

340 Returns
341 -------
342 bool
343 True = Infeasuble.
344 False = Feasible Point
345

346 '''
347 array_2_check = self.constraints(x0)
348 if any(array_2_check):
349 return True
350 else:
351 return False
352

353 def updatelowest(self,x0,xbest):
354 if self.objective(x0)<self.objective(xbest):
355 #print("bestpoint so far", self.objective(x0))
356 xbest = x0
357 f0_best = self.objective(x0)
358 else:
359 xbest = xbest
360 f0_best = self.objective(xbest)
361 return xbest,f0_best
362

363 def print_metropolic_counter(self,mc):
364 if mc == 500:
365 return print('Generated 500 infeasible trial points'),1
366 if mc == 750:
367 return print('Generated 750 infeasible trial points'),1
368 if mc == 1000:
369 return print('Generated 1000 infeasible trial points'),1
370 if mc == 1500:
371 return print('Generated 1500 infeasible trial points'),1

D.4. Structure
D.4.1. Superstructure
Tower

D.4. Structure 96

1 # -*- coding: utf-8 -*-
2 """
3 Created on Tue May 10 00:25:34 2022
4

5 @author: TORSPI
6 """
7 import pandas as pd
8 from math import pi, sqrt
9 import sys
10 sys.path.append('/Users/Giles/Desktop/Desktop – ’Torstens MacBook Pro/Code2.0/Code/Structure'

)
11

12

13 class IEA15MW_Tower_Class():
14 """ CLass instance to make the tower based on the IEA15 MW reference turbine
15 Initially this tower was put on a monopile, therefore it has only been considered
16 from 0.00 meters onwards (SWL) """
17 def __init__(self) :
18 #Tower Properties
19 self.tower_steel_E = 2.00e11 #Youngs modulus in Pa
20 self.tower_steel_G = 7.93e10 #Sheer modulus in Pa
21 self.tower_steel_rho = 7.85e3 #kg/m^3
22

23 #import tower data
24 data = pd.read_excel(r'/Users/Giles/Desktop/Desktop – ’Torstens MacBook Pro/Code2.0/

ThesisPackages/Structure/SuperStructure/TowerData.xlsx')
25 self.tower_height = pd.DataFrame(data,columns=['Height']) #heights

(transition piece and tower)
26 self.tower_diameter = pd.DataFrame(data,columns=['Outer Diameter']) #outer

Diameter
27 self.tower_thickness = pd.DataFrame(data,columns=['Thickness'])*1e-3 #tower

thickness
28

29 #masses
30 self.m_tower = 860e3 #Tower mass
31

32 #Heights
33 self.z_hub = 150 #hub height in meters (above SWL)
34 self.z_transition = 15 #transition piece height
35 self.m_list = self.calc_mass_per_section()
36 self.m_tower_IEA = self.calc_tower_mass()
37 self.m_tran = self.calc_transition_mass()
38 self.m_total = self.m_tran + self.m_tower_IEA
39 self.z_cm = self.calc_centerofmass()
40

41 #Diameters
42 self.tower_base_diameter = 10 #m
43 self.tower_top_diameter = 6.5#m
44

45

46 # Distances from SWL
47 self.Ix = self.calc_moment_of_inertia() #Moment of

inertia around swl
48 self.I_tower = 4.2168*10**8 + self.m_tower*self.z_cm**2
49 self.I_test = 4.2168*10**8 +self.m_total*self.z_cm**2
50

51

52

53 def calc_mass_per_section(self):
54 self.m_list = []
55 for i in range(0,26):
56 D = self.tower_diameter.iat[i,0]
57 t = self.tower_thickness.iat[i,0]
58 a_sec = pi *(((D/2)**2)-(D/2-t)**2)
59 m_pl = a_sec *self.tower_steel_rho
60 delta_h = self.tower_height.iat[i+1,0]-self.tower_height.iat[i,0]
61 m_sec = delta_h * m_pl
62 self.m_list.append(m_sec)
63 return self.m_list
64

65 def calc_tower_mass(self):

D.4. Structure 97

66 self.m_tower = 0
67 for i in range(7,26):
68 m_sec = self.m_list[i]
69 self.m_tower += m_sec
70 return self.m_tower
71

72 def calc_transition_mass(self):
73 self.m_tran = 0
74 for i in range(0,7):
75 m_sec = self.m_list[i]
76 self.m_tran += m_sec
77 return self.m_tran
78

79 def calc_centerofmass(self):
80 self.dcm_list = []
81 dcmm_list = []
82 #making a list of masses and their respective individual COM
83 for i in range(0,26):
84 dcm = (self.tower_height.iat[i,0]+self.tower_height.iat[i+1,0])/2
85 self.dcm_list.append(dcm)
86 dcmm_list.append(dcm*self.m_list[i])
87

88 z_cm = sum(dcmm_list)/(self.m_tower_IEA+self.m_tran)
89 return z_cm
90

91 def calc_moment_of_inertia(self):
92 """
93 Function that returns the moment of inertia of the tower.
94 The coordinate system is centered at the SWL
95

96

97 Returns
98 -------
99 Value
100 Moment of inertia.
101

102 """
103 Ix_list = []
104

105 for i in range (0,26):
106 D = self.tower_diameter.iat[9,0]
107 t = self.tower_thickness.iat[i,0]
108 h = self.tower_height.iat[i+1,0]-self.tower_height.iat[i,0]
109

110 Ix_sec = 1/12 * self.m_list[i]*(3*((D/2)**2+(D/2-t)**2)+h**2)
111 Ix_list.append(Ix_sec + self.m_list[i]*self.dcm_list[i]**2)
112

113 self.Ix_tower = sum(Ix_list)
114 return self.Ix_tower

Turbine

1 # -*- coding: utf-8 -*-
2 """
3 Created on Wed May 11 23:09:02 2022
4

5 @author: TORSPI
6 """
7 from math import sin, cos, radians
8 import numpy as np
9 class IEA15MW_Turbine_Class():
10 def __init__(self):
11 """
12 Initializes the turbine class which are modeled \ atop the tower
13 Can be further detailed at later stage, see table 5-1 in the defenition of
14 the 15MW reference turbine. CUrrently the Ixx moment of inertia is taken
15 and the blades weights are neglected (although mentioned in the INIT function)
16

17 """

D.4. Structure 98

18 self.m_rna = 820.888e3 #mass of
rotor nacelle assembly

19 self.m_blade = 65e3 #mass of
individual blade

20 self.m_total = self.m_rna + 3*self.m_blade
21 self.z_hub = 150 #meters above

sea level
22

23 self.z_cm = self.z_hub + 3.97
24

25 self.D_rotor = 240 #m
26 self.V_rated = 11 #m/s
27 self.L_blade = 120 #m given in

IEA
28 self.blade_cm = 26.8 #m given in

IEA
29 self.y_cm_blade,self.z_cm_blade = self.calc_cm_blades() #--> should

be 0 (center of gravity of three blades)
30

31 #----- moments of inertia
32 self.Ixx_rna_IEA = 12602277 #kg m^2
33 self.Ixx_rna = self.Ixx_rna_IEA + 3*self.m_blade*self.blade_cm**2 #moment of

inertia included blades as point masses
34 self.Ixx_rna_SWL = self.Ixx_rna + self.m_total*self.z_cm**2 #moment of

inertia wrt SWL
35

36 minrotorspeed = 5/60
37 maxrotorspeed = 7.56/60
38 self.P1low = minrotorspeed
39 self.P1high = maxrotorspeed
40 self.P3low = 3* minrotorspeed
41 self.P3high = 3* maxrotorspeed
42

43 self.cutin = 3
44 self.cutout = 25
45

46 def calc_cm_blades(self):
47 '''
48 Function to check the center of gravity of the three blades. Due to
49 symmetry it should end up in the middle of the three blades-> middle of
50 the hub.
51

52 Returns
53 -------
54 y_cm : Value
55 center of mass coordinate on y plane (across blades).
56 z_cm : Value
57 center of mass coordinate on z plane (height).
58

59 '''
60

61 n_blades = 3
62 angle_between_blades = 360/n_blades
63 angle2use = angle_between_blades - 90
64 rad2use = radians(angle2use)
65 Blade1 = np.array([0,self.L_blade])
66 Blade2 = np.array([-cos(rad2use),-sin(rad2use)])*self.L_blade
67 Blade3 = np.array([cos(rad2use),-sin(rad2use)])*self.L_blade
68

69 cm = (self.m_blade*Blade1 + self.m_blade*Blade2 + self.m_blade*Blade3)/(3*self.
m_blade)

70 y_cm = cm[0]
71 z_cm = cm[1]
72

73 return y_cm,z_cm

D.4.2. Substructure
Spar class

D.4. Structure 99

1 # -*- coding: utf-8 -*-
2 """
3 Created on Wed Mar 23 12:42:18 2022
4

5 @author: TORSPI
6 """
7 import sys
8 import numpy as np
9

10

11 from math import pi, sqrt
12 from Math.BooleanFunctions import checkifeven
13

14 from Substructure.SparIntactStability import Intact_Stability
15 from Substructure.SparGeometrics import Spar_Geometrics
16 from Substructure.SparStructuralArrayClass import Spar_structural_arrays
17

18

19 class Spar_Class():
20 def __init__ (self,D,L,t,turbine,tower,cylinder_length = 10):
21 """
22 When initialized this class constructs the spar
23 calls on the Spar_Geometrics class to determine masses and inertia which are
24 all considered dependent on the geometry.
25 Then it calls the IntactStability class to determine the intact stability criteria.
26

27

28 Parameters
29 ----------
30 D : Value
31 Diameter of Spar.
32 L : Value
33 Length of Spar.
34 t : Value
35 steel thickness (considered to be the same over the entire spar) .
36

37 Returns
38 -------
39 None.
40

41 """
42 self.D = D
43 self.L = L
44 self.t = t
45 self.cylinder_length = cylinder_length
46 self.D_vec = self.calc_D_vec()
47 self.A_vec = self.calc_A_spar_vec()
48 self.A_wp = pi*(D/2)**2 #Wateplane area (when pitch =0)
49 self.L11 = pi/4*(D/2)**4 #Waterplane Moment of inertia FOR SOLID CYLINDER
50 self.L12 = self.L11; self.L22 = self.L11
51 #constants
52 self.rho_seawater = 1025 # kg/m^3
53 self.rho_steel = 7700 # kg/m^3
54 self.rho_ballast = 5100 # kg/m^3 --> magnadense (dense cement = 2400)
55 self.z_freeboard = 5 #metres
56 self.g = 9.81 #m/s^2
57 #mooring
58 #self.k_moor = 667000*3
59 self.z_moor = -1/3 * self.L #The mooring is thirdway down the spar
60 self.I_11a = pi/4 *(self.D/2)**4 #Used for the rotational stiffness (comes from

area moment of inertia solid cylinder)
61

62 #geometrics
63 geometrics = Spar_Geometrics(self,turbine,tower)
64 self.m_spar,self.m_maincollumn, self.m_topplate,self.m_bottomplate = Spar_Geometrics.

calc_steel_mass(geometrics,self) #m_spar is the steel weight of the spar
65

66

67 self.m_ballast = Spar_Geometrics.calc_m_ballast(geometrics,self,turbine,tower)
68 #print("fault is", self.faulty)
69 self.m_total = Spar_Geometrics.calc_m_total(geometrics,self)

D.4. Structure 100

70 self.z_ballast = Spar_Geometrics.calc_z_ballast(geometrics,self)
71 self.ballast_cm = Spar_Geometrics.calc_ballast_cm(geometrics,self)
72 self.z_cm = Spar_Geometrics.calc_centerofmass(geometrics,self)
73 self.z_cm_full = Spar_Geometrics.calc_full_centerofmass(geometrics,self)
74

75 self.Ix = Spar_Geometrics.calc_Ix(geometrics,self)
76 self.Ix_area2 = Spar_Geometrics.calc_Ix_momentofarea(geometrics,self) #Waterplane

Moment of inertia FOR spar!
77 self.nabla = Spar_Geometrics.calc_displacement(geometrics,self)
78

79

80 self.A_cross_section = Spar_Geometrics.calc_cross_sectional_area(geometrics,self)
81 self.weld_locations = Spar_Geometrics.calc_weld_locations(geometrics,self)
82

83 #stability
84 stability = Intact_Stability(self)
85 self.CG = Intact_Stability.calc_CG(stability,self)
86 self.CB = Intact_Stability.calc_CB(stability,self)
87 self.GM = Intact_Stability.calc_GM(stability,self)
88 #Structural Arrays
89 structuralarrays = Spar_structural_arrays(self)
90 self.Mass_Array = Spar_structural_arrays.Mass_array(structuralarrays,self)
91 self.AddedMass_Array = Spar_structural_arrays.Added_mass_array(structuralarrays,self)
92

93 self.k_moor = (2*pi*1/60)**2*(self.Mass_Array[0][0]+self.AddedMass_Array[0][0])
94 self.Stiffness_Array = Spar_structural_arrays.K_array(structuralarrays,self)
95 self.Natural_Period = Spar_structural_arrays.Natural_Period(structuralarrays,self)
96 self.f_natural = 1/(2*pi)*self.Natural_Period
97 self.T_period = 1/self.f_natural
98

99 #print (pi* (self.D/2)**2 *(self.L-self.z_freeboard))
100

101 return
102

103 def calc_D_vec(self):
104 """
105 Returns
106 -------
107 array
108 Makes an array of positions along the diameter of the spar. These
109 steps are taken at 10% of the diameter.
110

111 """
112 self.D_vec = np.arange(-0.5*self.D,\
113 +0.5*self.D+0.05*self.D,\
114 0.1*self.D)
115 return self.D_vec
116

117 def calc_A_spar_vec(self):
118 """
119 Function that calculates the area of a circle using a 'strip' method.
120 If the amount of slices is even an extra slice is taken from the zero
121 point too the sides.
122

123 Then using pytagoras the area of a strip inside a circle can be estimated
124 taking the rectangular area and then removing the difference between
125 y1 and y2.
126

127

128 Returns
129 -------
130 array
131 Array of all the areas inside the circle.
132

133 """
134 dx = abs(self.D_vec[0]-self.D_vec[1])
135 self.Ai = []
136

137 #Determening even amount of slices
138 if checkifeven(self.D_vec):
139 D_half = np.array_split(self.D_vec,2)[0]

D.4. Structure 101

140 D_half = np.append(D_half,0)
141 else:
142 D_half = np.array_split(self.D_vec,2)[0]
143

144

145 #loop to create the area
146 for i in reversed(range(len(D_half)-1)):
147 dx = abs(D_half[i]-D_half[i+1])
148 x1 = D_half[i+1]
149 x2 = D_half[i]
150

151 y1 = sqrt((0.5*self.D)**2 - x1**2)
152 y2 = sqrt((0.5*self.D)**2 - x2**2)
153

154 self.Ai.append(2*y1*dx - dx*(y1-y2))
155

156 Ai_1 = self.Ai[::-1]
157 self.A_vec = np.array([*Ai_1, *self.Ai])
158 #if len(self.A_vec) != len(self.D_vec):
159 #print('houston, problem len(A_vec)-len(D_vec)='+str(abs(len(self.A_vec)-len(self

.D_vec))))
160 return self.A_vec

Spar geometrics

1 # -*- coding: utf-8 -*-
2 """
3 Created on Mon Mar 28 15:28:31 2022
4

5 @author: TORSPI
6 """
7 from math import pi
8 import numpy as np
9

10 class Spar_Geometrics():
11 def __init__(self,spar,turbine, tower, stiffeners = 8):
12 spar.Cm = 0.50
13 spar.L_dis =np.linspace(0, spar.L,100)
14 return
15

16 def calc_steel_mass(self,spar):
17 self.m_maincollumn = spar.rho_steel * spar.t * 2*pi * spar.D/2*spar.L
18 self.m_topplate = spar.rho_steel * spar.t * (spar.D/2)**2
19 self.m_bottomplate = self.m_topplate
20

21 self.m_spar = (self.m_maincollumn+self.m_topplate+self.m_bottomplate)
22 return self.m_spar,self.m_maincollumn, self.m_topplate,self.m_bottomplate
23

24 def calc_m_ballast(self,spar,turbine,tower):
25 """
26 Takes spar and superstructure to detemine how much ballast is needed
27

28 Parameters
29 ----------
30 spar : Class Instance
31 superstructure: Class Instance.
32

33 Returns
34 -------
35 Value
36 Ballast weight.
37

38 """
39 spar.faulty = 0
40 self.m_ballast = spar.rho_seawater*(spar.L-spar.z_freeboard) *(spar.D/2)**2*pi\
41 -(self.m_spar + turbine.m_total + tower.m_total)
42 if self.m_ballast <0:
43 #print('negative ballast, faulty design')
44 spar.faulty = 1
45 return 0

D.4. Structure 102

46 return self.m_ballast
47

48 def check_faulty(self):
49 if self.faulty:
50 return True
51 else:
52 return False
53

54 def calc_m_total(self,spar):
55 '''
56 Calculates the total mass of the spar. i.e. the mass of the steel
57 and ballast.
58

59 Parameters
60

61 '''
62 self.m_total = self.m_spar + self.m_ballast
63 return self.m_total
64

65 def calc_z_ballast(self,spar):
66 '''
67 Calculates the height from the bottom of the spar thats filled with ballast
68

69

70 '''
71 ballast_cube = self.m_ballast/spar.rho_ballast
72 self.z_ballast = ballast_cube/(pi*(spar.D/2)**2)
73 return self.z_ballast
74

75 def calc_ballast_cm(self,spar):
76 return -spar.L + 0.5 * spar.z_ballast
77

78 def calc_Ix(self,spar):
79 '''
80 Calculates the moment inertia of a the spar
81

82 '''
83

84

85 Ix_steel = 1/12 * spar.m_spar*(3*((spar.D/2)**2+(spar.D/2-spar.t)**2)+spar.L**2)
86 Ix_ballast = 1/2 * spar.m_ballast * (spar.D/2-spar.t)**2
87

88 self.Ix = Ix_steel+spar.m_spar * spar.z_cm**2 \
89 + Ix_ballast+spar.m_ballast*spar.ballast_cm**2
90 return self.Ix
91

92 def calc_Ix_momentofarea(self,spar):
93 r2 = spar.D/2
94 r1 = spar.D/2 -spar.t
95 self.Ix_area2 = pi/4 * (r2**4-r1**4)
96 return self.Ix_area2
97

98 def calc_displacement(self,spar):
99 self.nabla = spar.rho_seawater*(spar.L-spar.z_freeboard) *(spar.D/2)**2*pi
100 return self.nabla
101

102 def calc_centerofmass(self,spar):
103 """
104 Calculates the distance from SWL to the centre of mass of the spar
105 only considers the steel mass
106

107 Parameters
108 ----------
109 spar : Class instance.
110

111 Returns
112 -------
113 Value .
114

115 """
116 self.z_cm = (self.m_maincollumn*-0.5*spar.L+self.m_topplate*-0.5*spar.t+\

D.4. Structure 103

117 self.m_bottomplate*(-spar.L+0.5*spar.t))/self.m_spar
118 return self.z_cm
119

120 def calc_full_centerofmass(self,spar):
121 self.z_cm_full = (self.m_spar*self.z_cm + self.m_ballast *(-spar.L+self.z_ballast))/(

self.m_total)
122 return self.z_cm_full
123

124 def calc_weld_locations(self,spar):
125 """
126 Function that returns array of locations of welds. Z-axis is arranged such
127 that the zero point is at the top of the spar. The array entries begin
128 at the frist weld from the bottom of the spar
129

130 Parameters
131 ----------
132 spar : Class Instance
133

134 Returns
135 -------
136 weld_locations : Array
137 Array containing locations of welds.
138

139 """
140 amount_of_welds= int(np.ceil(spar.L/spar.cylinder_length)-1)
141 #weld locations
142 weld_locations = np.zeros(amount_of_welds)
143 for i in range(amount_of_welds):
144 weld_locations[i] = -spar.L+spar.cylinder_length*(i+1)
145

146 return weld_locations
147

148 def calc_cross_sectional_area(self,spar):
149 A1 = spar.A_wp
150 A2 = pi*((spar.D-2*spar.t)/2)**2
151

152 return A1-A2

Spar structural arrays

1 # -*- coding: utf-8 -*-
2 """
3 Created on Fri Mar 25 13:02:30 2022
4

5 @author: TORSPI
6 """
7 import numpy as np
8 import scipy.linalg as la
9 #from Spar_3D.SparClass import Spar_Class
10 from Math import IntegrateClass
11 from math import pi
12

13 class Spar_structural_arrays():
14 def __init__(self,spar):
15 return
16

17

18 def Mass_array(self,spar):
19 self.M = np.array([[spar.m_total,0,0],
20 [0,spar.m_total,0],
21 [0,0,spar.Ix]])
22 return self.M
23

24 def Added_mass_array(self,spar):
25 def a11func(z):
26 return spar.rho_steel * pi/4 * spar.D**2*spar.Cm
27

28 a11_integrated = spar.rho_steel * pi/4 * spar.D**2 *spar.Cm * (spar.L)
29 self.a11 = a11_integrated
30

D.4. Structure 104

31 self.a33 = 0
32

33 def a55func(z):
34 return (spar.rho_steel* pi/4*spar.D**2 * spar.Cm) * (z)**2
35 a55_integral = IntegrateClass.Integrate(a55func)
36 self.a55 =a55_integral.integral(-spar.L,0,1)
37

38 def a15func(z):
39 return (spar.rho_steel* pi/4*spar.D**2 * spar.Cm) * (z)
40

41 a15_integral = IntegrateClass.Integrate(a15func)
42 self.a15 =a15_integral.integral(-spar.L,0,1)
43

44 self.A = np.array([[self.a11, 0, self.a15],
45 [0, self.a33, 0],
46 [self.a15, 0, self.a55]])
47 return self.A
48

49

50 def K_array(self,spar):
51 C11 = spar.k_moor; C33 = spar.rho_seawater*spar.g*spar.A_wp;\
52 C15 = -spar.z_moor*spar.k_moor
53

54 C55 = spar.g*((spar.rho_seawater*spar.L11) +(spar.nabla*spar.CB) -spar.m_total*spar.
z_cm)

55

56 self.K_matrix = np.array([[C11,0,C15],
57 [0,C33,0],
58 [C15,0,C55]])
59 return self.K_matrix
60

61

62 def Natural_Period(self,spar):
63

64 D, V = la.eigh((np.linalg.inv(self.M+self.A))*self.K_matrix)
65 self.omega_natural = np.sqrt(D)
66 return self.omega_natural
67 #D, V = la.eigh((np.linalg.inv(self.M+self.A))*self.K_matrix)
68 #Omega_natural = np.sqrt(D)
69 #return Omega_natural

Spar intact stability

1 # -*- coding: utf-8 -*-
2 """
3 Created on Mon Mar 28 13:39:24 2022
4

5 @author: TORSPI
6 """
7

8 class Intact_Stability():
9 def __init__(self,spar):
10 return
11

12

13 def calc_CG(self,spar):
14 self.CG = (spar.m_maincollumn*0.5*spar.L+spar.m_bottomplate*0.5*spar.t+spar.

m_topplate*spar.L\
15 +spar.m_ballast*spar.z_ballast)/spar.m_total
16

17 self.CG = spar.z_cm
18 return self.CG
19

20 def calc_CB(self,spar):
21 self.CB = -(spar.L-spar.z_freeboard)/2
22 return self.CB
23

24 def calc_GM(self,spar):
25 self.BM = spar.Ix/spar.nabla
26

D.4. Structure 105

27

28 GM =self.BM - self.CG-self.CB
29 return GM

D.4.3. Full system
Full system class

1 # -*- coding: utf-8 -*-
2 """
3 Created on Mon May 9 21:20:22 2022
4

5 @author: TORSPI
6 """
7 import sys
8 import scipy.linalg as la
9 import scipy.sparse.linalg as sla
10 import numpy as np
11 from math import sqrt, pi
12 from FullSystem.FullIntactStability import Full_Intact_Stability
13

14 class Full_System_Class():
15 def __init__ (self,spar,tower,turbine):
16 self.spar = spar
17 self.turbine = turbine
18 self.tower = tower
19

20 self.D_spar = spar.D
21 self.D_spar_vec = spar.D_vec
22 self.A_spar_vec = spar.A_vec
23 self.L_spar = spar.L
24 self.t_spar = spar.t
25 self.freeboard_spar = spar.z_freeboard
26 self.nabla = spar.nabla
27 self.Ixx = self.calc_inertia(spar,tower,turbine)
28 self.g = 9.81
29 self.rho_seawater = spar.rho_seawater # kg/m^3
30

31 self.m_total = self.calc_mass(spar,tower,turbine)
32 self.z_cm = self.calc_center_of_mass(spar,tower,turbine)
33

34 #Stability
35 stability = Full_Intact_Stability(self)
36 self.CG = Full_Intact_Stability.calc_CG(stability,self)
37 self.CB = Full_Intact_Stability.calc_CB(stability,self)
38 self.GM = Full_Intact_Stability.calc_GM(stability,self)
39

40

41

42

43 self.M_matrix = self.gen_M_matrix()
44 self.K_matrix = self.gen_K_matrix(spar)
45

46

47 self.A_matrix = spar.AddedMass_Array
48 self.omega_natural = self.calc_omega_natural()
49

50

51

52 self.f_natural = 1/(2*pi)*self.omega_natural
53 self.T_period = 1/self.f_natural
54

55

56

57

58 self.D_rotor = turbine.D_rotor
59 self.V_rated = turbine.V_rated
60 self.z_hub = tower.z_hub
61

62

D.4. Structure 106

63

64

65

66 def calc_mass(self,spar,tower,turbine):
67 self.m_total = spar.m_total + tower.m_total + turbine.m_rna
68 return self.m_total
69

70 def calc_center_of_mass(self,spar,tower,turbine):
71 self.z_cm = (spar.m_total*spar.z_cm_full +tower.m_total* tower.z_cm + turbine.m_total

*turbine.z_cm)\
72 /self.m_total
73 return self.z_cm
74

75 def calc_inertia(self,spar,tower,turbine):
76 self.I_xx = spar.Ix + tower.Ix + turbine.Ixx_rna_SWL
77 return self.I_xx
78

79 def gen_M_matrix(self):
80 self.M_matrix = np.array([[self.m_total,0,self.m_total*self.z_cm],
81 [0,self.m_total,0],
82 [self.m_total*self.z_cm,0,self.Ixx]])
83 return self.M_matrix
84

85 def gen_K_matrix(self,spar):
86 C11 = spar.k_moor; C33 = spar.rho_seawater*spar.g*spar.A_wp;\
87 C15 = -spar.z_moor*spar.k_moor
88 x_cb= 0
89 C53 = -spar.rho_seawater*spar.g*spar.A_wp*x_cb
90

91 C55 = spar.g*((spar.rho_seawater*spar.L11) +(spar.nabla*self.CB) -self.m_total*self.
z_cm)

92

93

94

95 self.K_matrix = np.array([[C11,0,C15],
96 [0,C33,C53],
97 [C15,C53,C55]])
98 return self.K_matrix
99

100

101 def calc_omega_natural(self):
102 D, V = la.eigh((np.linalg.inv(self.M_matrix+self.A_matrix))*self.K_matrix)
103 self.omega_natural = np.sqrt(D)
104 return self.omega_natural
105

106 def calc_z_uw(self,spar):
107 L = spar.L
108

109 #def dqdt

Full system Intact stability

1 class Full_Intact_Stability():
2 def __init__(self,fullsystem):
3 return
4

5

6 def calc_CG(self,fullsystem):
7 self.CG = fullsystem.z_cm
8 return self.CG
9

10 def calc_CB(self,fullsystem):
11 self.CB = - (fullsystem.L_spar-fullsystem.freeboard_spar)/2
12 return self.CB
13

14 def calc_GM(self,fullsystem):
15 self.BM = fullsystem.Ixx/fullsystem.nabla
16

17

18 GM =self.BM - self.CG-abs(self.CB)

D.5. Time domain simulation class 107

19 return GM

D.5. Time domain simulation class
1 # -*- coding: utf-8 -*-
2 """
3 Created on Thu May 12 20:57:48 2022
4

5 @author: TORSPI
6 """
7 import numpy as np
8 from math import pi
9 from scipy.integrate import solve_ivp, simps
10 from scipy.optimize import fsolve
11 from scipy.linalg import inv
12 from math import pi, tanh, cos, sin, cosh, sinh, sqrt
13 from Kinematics.WaveKinematicsClass import Wave_Kinematics_Class
14 from TimeDomain_Response.StateClass import State_Class
15 from Kinematics.WindKinematicsClass import Wind_Kinematics_Class
16 from TimeDomain_Response.SiteWindClass import Site_Wind_Class
17

18 from numbalsoda import lsoda_sig, lsoda
19

20 class Time_Domain_Simulation_Class():
21 def __init__(self,q0,full_system,environment,dt,Tdur,f_highcut,seed=1,waves=2,wind=2,

T_transient = 600):
22 #inherit matrices + constants from full sytem
23 self.environment = environment
24 self.spar = full_system.spar
25 self.full_system = full_system
26 self.MA_matrix = full_system.M_matrix#+full_system.A_matrix
27 self.K_matrix = full_system.K_matrix
28

29

30 self.g = full_system.g
31 self.D_spar = full_system.D_spar
32 self.D_spar_vec = full_system.D_spar_vec
33

34 df = 1/(2*Tdur)
35 self.f_matrix = np.arange(df,f_highcut+df,df)
36 #damping matrix guessed
37

38 #generate time matrices
39 self.dt = dt;
40 self.Tdur = Tdur;
41 self.t = []
42 self.t_eval = (np.arange(0,self.Tdur+self.dt,self.dt)).tolist()
43

44 T_transient = T_transient ;
45 index_notrans = np.where(np.array(self.t_eval)>T_transient)[0][0]
46

47

48 self.A_spar_vec = self.calc_A_spar_vec()
49 self.L_spar = full_system.L_spar
50 self.t_spar = full_system.t_spar
51 self.rho_seawater = full_system.rho_seawater # kg/m^3
52 self.D_rotor = full_system.D_rotor
53 self.V_rated = full_system.V_rated
54

55 self.H = environment.H #significant Wave Heigh
56 self.T = environment.T #significant Wave Period
57 self.h = environment.h
58 self.z_uw = environment.z_uw
59 self.U_mean = environment.U_mean
60 self.TI = environment.TI
61 #passing kinematics class
62 np.random.seed(seed)
63 self.phi_water = 2*pi * np.random.rand(len(self.f_matrix))
64 np.random.seed(seed+1)

D.5. Time domain simulation class 108

65 self.phi_wind = 2*pi * np.random.rand(len(self.f_matrix))
66

67 self.sitewind = Site_Wind_Class(self.t_eval,self.f_matrix,self.TI)
68

69 self.wavekinematics = Wave_Kinematics_Class(self.f_matrix,self.H,self.T,self.h,self.
z_uw,self.t_eval,self.dt,self.phi_water)

70 self.windkinematics = Wind_Kinematics_Class(self.f_matrix,self.t_eval,self.U_mean,
self.TI,self.phi_wind,l=340.2)

71

72

73 self.A_vec = self.calc_A_spar_vec()
74

75 #Setting up stateclass
76 self.stateclass = State_Class(self.full_system,self.wavekinematics ,\
77 self.windkinematics,environment,dt,Tdur)
78

79 #--- Hyrdodynamic Loading
80 self.Hydro = self.stateclass.Hydro
81 self.waves = waves
82 self.wind = wind
83

84 self.dqdt = self.stateclass.choose_dqdt(self.waves,self.wind)
85

86 self.sol = self.response(q0)
87

88 self.y_notransient = self.remove_transient_response(self.sol.y,index_notrans)
89

90 self.t_response = self.t_eval[index_notrans:]
91 self.x_response = self.y_notransient[0]
92 self.z_response = self.y_notransient[1]
93 self.phi_response = self.y_notransient[2]*180/pi
94

95 return
96

97 def response(self,q0):
98 """
99 Function that returns the response of the system when subject to wind
100 and wave loading. The solution is given at the water line, and can be
101 found in the result whichis an OdeResult Object called 'y'.
102

103 The order of the result is: x,z,phi,x_dot,z_dot,phi_dot
104

105

106

107 Parameters
108 ----------
109 q0 : Array or list
110 Starting state, (Containing the initial position and velocities of the
111 system?).
112

113 Returns
114 -------
115 sol : OdeResult Object
116 Object containing the soltion to the ODE problem. Contains the states
117 at every given timestep.
118

119 """
120 sol =solve_ivp(self.dqdt,[0,self.Tdur+self.dt],q0,method='LSODA', t_eval=self.t_eval)
121 #sol,succes = lsoda(self.dqdt,q0,self.t_eval)
122 return sol
123

124 def calc_A_spar_vec(self):
125 """
126 Function that calculates the area of a circle using a 'strip' method.
127 If the amount of slices is even an extra slice is taken from the zero
128 point too the sides.
129

130 Then using pytagoras the area of a strip inside a circle can be estimated
131 taking the rectangular area and then removing the difference between
132 y1 and y2.
133

D.6. Kinematics 109

134

135 Returns
136 -------
137 array
138 Array of all the areas inside the circle.
139

140 """
141 dx = abs(self.D_spar_vec[0]-self.D_spar_vec[1])
142 D = self.D_spar
143 self.Ai = []
144

145 #Determening even amount of slices
146 if self.checkifeven(self.D_spar_vec):
147 D_half = np.array_split(self.D_spar_vec ,2)[0]
148 D_half = np.append(D_half,0)
149 else:
150 D_half = np.array_split(self.D_spar_vec ,2)[0]
151

152

153 #loop to create the area
154 for i in reversed(range(len(D_half)-1)):
155 dx = abs(D_half[i]-D_half[i+1])
156 x1 = D_half[i+1]
157 x2 = D_half[i]
158

159 y1 = sqrt((0.5*D)**2 - x1**2)
160 y2 = sqrt((0.5*D)**2 - x2**2)
161

162 self.Ai.append(2*y1*dx - dx*(y1-y2))
163

164 Ai_1 = self.Ai[::-1]
165 self.A_vec = [*Ai_1, *self.Ai]
166

167 return np.array(self.A_vec)
168

169 def checkifeven(self,anyvector):
170 """
171 Function that checks if list or array has even amounts of entries
172

173 Parameters
174 ----------
175 anyvector : Array or List
176 The array or list that you want to consider
177

178 Returns
179 -------
180 bool
181 truth for even, false for uneven.
182

183 """
184 if (len(anyvector) % 2) ==0 :
185 return True
186 else: return False
187

188 def remove_transient_response(self,y,notransientindex):
189 y_notransient = np.zeros((6,len(y[0])-notransientindex))
190 for i in range(len(y)):
191 y_notransient[i] = y[i][notransientindex:]
192 return y_notransient

D.6. Kinematics
D.6.1. Wave kinematics class

1 # -*- coding: utf-8 -*-
2 """
3 Created on Tue May 24 12:59:59 2022
4

5 @author: TORSPI
6 """

D.6. Kinematics 110

7 import numpy as np
8 from scipy.optimize import fsolve
9 from math import pi, tanh, cos, sin, sinh, log, exp, sqrt
10 import random
11

12 class Wave_Kinematics_Class():
13 def __init__(self,f_matrix,H,T,h,z_uw,t_eval,dt,phi):
14 self.f_matrix = f_matrix
15 self.H = H #Significant Wave Height
16 self.T = T #Wave Period
17 self.h = h #Water Depth
18 self.z_uw = z_uw #vector to the water depth
19 self.t_eval = t_eval #time vector
20 self.g = 9.81 #gravity constants
21 self.dt = dt #time step
22 self.Tdur = t_eval[-1]
23

24 #calculating the kinematics with internal functions of this class
25 self.uwave_x, self.uwave_x_dot, self.uwave_z,self.uwave_z_dot ,\
26 = self.calc_wave_motion(self.H,self.T)
27 #wavenumber1wave
28 self.k_reg = self.solve_k(1/T,self.h)[0]
29

30

31 self.Sjs, self.Ajs = self.JonSwap(self.H,self.T,self.f_matrix)
32 self.phi = phi
33 self.zeta_irr_fft, self.u_irr_matrix, self.du_irr_matrix = \
34 self.calc_zeta_u_du_fft(self.Ajs, self.f_matrix)
35

36

37 def calc_wave_motion(self,H,T):
38 x = 0
39 f = 1/T
40 k,L = self.solve_k(f,self.h)
41 omega = f * 2 * pi
42

43 #u_w = np.empty((len(self.z_uw),len(self.t_eval))) #empty
matrix rows for water depth, collums for time

44 #du_w= np.empty((len(self.z_uw),len(self.t_eval)))
45 u_wx = []
46 du_wx = []
47

48 u_wz = []
49 du_wz = []
50 for j in range(0,len(self.t_eval)):
51

52 u_wx.append(0.5*omega*H*np.cosh(k*(self.z_uw+self.h))*\
53 cos(omega*self.t_eval[j]-k*x)/sinh(k*self.h))
54 du_wx.append(-0.5*omega**2*H*np.cosh(k*(self.z_uw+self.h))*\
55 sin(omega*self.t_eval[j]-k*x)/sinh(k*self.h))
56

57 u_wz.append(-0.5*omega*H*np.sinh(k*(self.z_uw+self.h))*\
58 sin(omega*self.t_eval[j]-k*x)/sinh(k*self.h))
59 du_wz.append(-0.5*omega*H*np.sinh(k*(self.z_uw+self.h))*\
60 cos(omega*self.t_eval[j]-k*x)/sinh(k*self.h))
61

62 return np.array(u_wx), np.array(du_wx), np.array(u_wz),np.array(du_wz)
63

64 def calc_zeta_matrix(self,H,T,D_spar_vec):
65 """
66 Calculates a matrix of waveheights at either side of the spar
67 By first aranging the spar in pieces from left to right
68 then using airy wave theory to calculate the wave height over time
69 at that part of the spar
70

71 The wave height is taken over the middle line of the spar.
72 And is taken inbetween the points defined in self.D_spar_vec
73

74 Returns
75 -------
76 Array

D.6. Kinematics 111

77 wave height at everymoment at every point of the spar. Taken over the
78 spars diameter.
79

80 """
81 f = 1/T
82 omega = f * 2 * pi
83 k,L = self.solve_k(f,self.h)
84 #getting to the middle of the diameter boundaries of the spar:
85 #distance between points on spar
86 dx = D_spar_vec[1]-D_spar_vec[0]
87 D_spar_between = D_spar_vec + dx/2
88 D_spar_between = D_spar_between[0:-1]
89

90 self.zeta_matrix = H/2 * np.cos(omega*np.array(self.t_eval) -k*D_spar_between[np.
newaxis].T)

91 return self.zeta_matrix
92

93 def solve_k(self,f,h):
94 """
95 Finds the wavenumber k and calculates wavelength using the dispersion
96 relationship
97

98 Parameters
99 ----------
100 f : float
101 wavefrequency.
102 h : float
103 water depth.
104

105 Returns
106 -------
107 k: float
108 Wave Number
109 L: float
110 Wave Length
111

112 """
113 omega = f*2*pi
114 fun = lambda k: omega**2-self.g*k*tanh(k*h)
115 k = fsolve(fun,4)
116 L = (2*pi)/k
117 return k.astype(np.float),L.astype(np.float)
118

119 def JonSwap (self,Hs,Tp,f_matrix,Gamma=3.33) :
120 fp = 1/Tp
121 df = f_matrix[1]-f_matrix[0]
122 Sjs = np.zeros(len(f_matrix))
123 a = np.zeros(len(f_matrix))
124

125 for i in range(len(f_matrix)):
126 if f_matrix[i] <= fp:
127 sigma = 0.07
128 else:
129 sigma = 0.09
130

131 Sjs[i] = 0.3125*Hs**2 *Tp\
132 *((f_matrix[i]/fp)**-5)\
133 * exp(-1.25*((f_matrix[i]/fp)**-4))\
134 *(1-0.287*log(Gamma))\
135 * Gamma**exp(-0.5*(((f_matrix[i]/fp)-1)/sigma)**2)
136

137

138 a[i] = sqrt(2*Sjs[i]*df)
139

140 return Sjs,a
141

142

143 def calc_zeta_u_du_fft(self,a_wave,f_matrix):
144 omega = f_matrix * 2 * pi
145 M = len(self.t_eval)
146 k_irr =self.calc_k_irr(f_matrix)

D.6. Kinematics 112

147

148 #---Fast Fourier
149 scaling = 1
150 amplitude = a_wave*scaling
151 zeta_hat = amplitude * np.exp(1j*self.phi)
152 zeta_irr_fft = M * (np.fft.ifft(self.a2sizeM(zeta_hat,M))).real
153

154 #--going from SWL (turning the coordinates around)
155 z_coordinates = self.z_uw + self.h
156

157 u_matrix_hat = np.zeros([len(z_coordinates),len(self.f_matrix)],dtype = 'complex')
158 du_matrix_hat = np.zeros([len(z_coordinates),len(self.f_matrix)],dtype = 'complex')
159

160 u_matrix = np.zeros([len(z_coordinates),M])
161 du_matrix = np.zeros([len(z_coordinates),M])
162

163 for i in range(len(z_coordinates)):
164 u_matrix_hat[i,:] = 0.5*amplitude*np.exp(1j*self.phi)*omega\
165 *np.cosh(k_irr*(z_coordinates[i]))/np.sinh(k_irr*self.h)
166

167 du_matrix_hat[i,:] = 0.5*amplitude*np.exp(1j*self.phi)*1j*omega*omega\
168 *np.cosh(k_irr*(z_coordinates[i]))/np.sinh(k_irr*self.h)
169

170 u_matrix[i,:] = M*np.fft.ifft(self.a2sizeM(u_matrix_hat[i,:],M)).real
171 du_matrix[i,:]= M*np.fft.ifft(self.a2sizeM(du_matrix_hat[i,:],M)).real
172

173

174 return zeta_irr_fft,u_matrix,du_matrix
175

176

177 def a2sizeM(self,a,M):
178

179 if len(a) +1 > M:
180 print('M already smaller than a, must be bigger to size up vector')
181

182 asized = np.zeros(M,dtype = 'complex')
183 for i in range(len(a)):
184 asized[i+1] = a[i]
185

186 return asized
187

188 def calc_k_irr(self,f_matrix):
189 k_irr = np.zeros(len(f_matrix))
190 for i in range(len(k_irr)):
191 f = f_matrix[i]
192 k_irr[i] = self.solve_k(f,self.h)[0]
193

194 return k_irr
195

196 def gen_k_irr_timeseries(self,u_irr_matrix):
197 k_irr_timeseries = np.zeros(len(u_irr_matrix[0]))
198 for i in range(len(u_irr_matrix[-1])):
199 omega = u_irr_matrix[-1][i]
200 fun = lambda k: omega**2-self.g*k*tanh(k*self.h)
201 k = fsolve(fun,0.2)
202 L = 2*pi/k
203 k_irr_timeseries[i] = k
204 k_irr_timeseries = np.clip(k_irr_timeseries ,0.0001,1)
205 return k_irr_timeseries
206 # index = np.random.randint(0,len(self.k_irr),(len(self.t_eval)))
207 # k_irr_timeseries = self.k_irr[index]
208 # k_irr_timeseries = np.clip(k_irr_timeseries ,0.3449203,1)
209 # return k_irr_timeseries

D.6.2. Wind kinematics class
1 # -*- coding: utf-8 -*-
2 """
3 Created on Thu Jun 16 15:46:15 2022
4

D.6. Kinematics 113

5 @author: TORSPI
6 """
7 import numpy as np
8 from math import exp
9 from Utilities.Windfunctions import weibull_pdf
10 class Wind_Kinematics_Class():
11 def __init__(self,f_matrix,t_eval,U_mean,I,phi,l=340.2):
12 self.f_matrix = f_matrix
13 self.t_eval = t_eval #time vector
14 self.dt = t_eval[1]-t_eval[0]
15 self.Tdur = t_eval[-1]
16

17 self.phi = phi
18

19 self.S_wind, self.a_wind = self.skaimal(U_mean,I,l)
20

21 self.V_wind_irr = self.V_wind_fft(self.a_wind,U_mean)
22 pass
23

24 def skaimal(self,u,I,l):
25 """
26 Using the IEC defenition of the kamail turbulence model (International
27 Electrotechnical Commission, 2015) This function returns the spectral
28 densitiy
29

30

31 Parameters
32 ----------
33 f_highcut : TYPE
34 DESCRIPTION.
35 df : TYPE
36 DESCRIPTION.
37 u : Value
38 Mean Wind Speed.
39 I : TYPE
40 Turbulence Intensity.
41 l : Turbulence Length, set to 340.2 in class. (standard DS742 2007 say 150m)
42 DESCRIPTION.
43

44 Returns
45 -------
46 None.
47

48 """
49 #figure out standard
50 # sigma = (TI /100)*u
51 # S_f = (4 * sigma * L /u)/(1+6*f*L/u)**(5/3)
52

53

54 #Past used example
55 f_matrix = self.f_matrix
56 df = f_matrix[1]-f_matrix[0]
57 S_wind = np.zeros(len(f_matrix))
58 a_wind = np.zeros(len(f_matrix))
59

60 S_wind = 4*I**2*u*l * ((1+6*(f_matrix)*l/u))**(-5/3)
61 a_wind = np.sqrt(2*S_wind*df)
62

63 return S_wind, a_wind
64

65 def V_wind_fft(self,a_wind,U_10_min):
66 M = len(self.t_eval)
67 V_dynamic_hat = a_wind*np.exp(1j*self.phi)
68 V_dynamic = M*np.fft.ifft(self.a2sizeM(V_dynamic_hat,M)).real
69 V_time_series = U_10_min + V_dynamic
70 return V_time_series
71

72

73

74

75 def a2sizeM(self,a,M):

D.7. Dynamics 114

76

77 if len(a) +1 > M:
78 print('M already smaller than a, must be bigger to size up vector')
79

80 asized = np.zeros(M,dtype = 'complex')
81 for i in range(len(a)):
82 asized[i+1] = a[i]
83

84 return asized

D.7. Dynamics
D.7.1. Hydrodynamics class

1 # -*- coding: utf-8 -*-
2 """
3 Created on Tue May 24 14:11:53 2022
4

5 @author: TORSPI
6 """
7 import numpy as np
8 from Math.Significance import round_it
9 from math import pi,tanh,sqrt,e
10 from scipy.optimize import fsolve
11 import collections.abc
12

13 class Hydrodynamics_Class():
14 def __init__(self,h,z_uw,full_system):
15 self.full_system = full_system
16 self.h = h
17 self.z_uw = z_uw
18

19

20 self.g = 9.81
21

22 self.Ca = 1.0
23 self.Cd = 0.6
24

25 self.rho_seawater = full_system.rho_seawater
26 self.D_spar = full_system.D_spar
27 self.D_spar_vec = full_system.D_spar_vec
28 self.A_vec = full_system.A_spar_vec
29 self.L_spar = full_system.L_spar
30 self.z_cm = full_system.z_cm
31

32

33 def solve_k(self,f,h):
34 """
35 Finds the wavenumber k and calculates wavelength using the dispersion
36 relationship
37

38 Parameters
39 ----------
40 f : float
41 wavefrequency.
42 h : float
43 water depth.
44

45 Returns
46 -------
47 k: float
48 Wave Number
49 L: float
50 Wave Length
51

52 """
53 omega = f*2*pi
54 fun = lambda k: omega**2-self.g*k*tanh(k*h)
55 k = fsolve(fun,200)
56 L = 2*pi/k

D.7. Dynamics 115

57 return k.astype(np.float),L.astype(np.float)
58

59 def calc_hydrodynamic_forcing_x(self,u_wave_x,u_wave_dot_x,x_dot,theta_dot,z_uw):
60 """
61 Function for determining Hydrodynamic forcing for one specific time against
62 spar.
63 Forcing is determined using the Morison equations.
64 considereing unilateral waves along the x-axis
65

66 Parameters
67 ----------
68 u_wave : array
69 wave speed along depth. (1 or 2 dimensional)
70 u_wave_dot : array
71 wave acceleration along depth. (1 or 2 dimensional)
72

73 Returns
74 -------
75 dF_hydro: array
76 forcing along depth of spar.
77

78 """
79 self.z_down_bound,self.z_up_bound = self.gen_zbounds(z_uw)
80 if u_wave_x.ndim > 1:
81

82 dF_i = np.zeros((len(u_wave_x[0]),len(u_wave_x)))
83 dF_d = np.zeros((len(u_wave_x[0]),len(u_wave_x)))
84 for i in range(len(u_wave_x)):
85 dF_i[:,i] = (self.Ca+1) * self.rho_seawater * pi * (self.D_spar**2)/4 * (

u_wave_dot_x[i]+x_dot[i])
86 dF_d[:,i] = self.Cd*0.5*self.rho_seawater*self.D_spar* \
87 (u_wave_x[i]-(x_dot[i]+ z_uw*theta_dot[i]))*abs(u_wave_x[i]-(x_dot[i]+z_uw*

theta_dot[i]))
88

89

90

91 else: #abs(x_dot) < 0.01:
92 dF_i = (self.Ca+1) * self.rho_seawater * pi/4 * self.D_spar**2 * \
93 (u_wave_dot_x) #-(x_dotdot-z_uw*theta_dotdot)) #-(x_dot-z_uw*theta_dot))
94

95 dF_d = self.Cd * 0.5 * self.rho_seawater * (self.D_spar)* \
96 (u_wave_x -(x_dot+ z_uw*theta_dot)) * abs(u_wave_x -(x_dot + z_uw*theta_dot))
97

98 #else:
99 # V_dz = pi/4*self.D_spar**2
100 #
101 # Froude_Krylov = self.rho_seawater * V_dz * u_wave_dot_x
102 # Hydromassforce = self.rho_seawater*self.Ca*V_dz*(u_wave_dot_x) #-(x_dotdot-z_uw

*theta_dotdot)) #-(x_dot-z_uw*theta_dot))
103 # dF_i = Froude_Krylov + Hydromassforce
104

105 # dF_d = self.Cd * 0.5 * self.rho_seawater * pi * self.D_spar *\
106 # (u_wave_x-(x_dot- z_uw*theta_dot))*abs(u_wave_x-(x_dot-z_uw*theta_dot))
107

108 dF_hydro =dF_i +dF_d
109

110 return np.around(dF_hydro ,6)
111

112 def calc_hydrodynamic_forcing_z(self,zeta_array):
113

114 if len(zeta_array) != len(self.A_vec):
115 print('houston,problem')
116

117 Fb_stat = self.rho_seawater*self.A_vec*(self.L_spar)
118 Fb_dyn = self.rho_seawater *self.A_vec*(self.L_spar+zeta_array)
119

120 Fb_vec = Fb_dyn - Fb_stat
121 return Fb_vec
122

123 def calc_A_spar_vec(self):
124 """

D.7. Dynamics 116

125 Function that calculates the area of a circle using a 'strip' method.
126 If the amount of slices is even an extra slice is taken from the zero
127 point too the sides.
128

129 Then using pytagoras the area of a strip inside a circle can be estimated
130 taking the rectangular area and then removing the difference between
131 y1 and y2.
132

133

134 Returns
135 -------
136 array
137 Array of all the areas inside the circle.
138

139 """
140 dx = abs(self.D_spar_vec[0]-self.D_spar_vec[1])
141 D = self.D_spar
142 self.Ai = []
143

144 #Determening even amount of slices
145 if self.checkifeven(self.D_spar_vec):
146 D_half = np.array_split(self.D_spar_vec)[0]
147 D_half = np.append(D_half,0)
148 else:
149 D_half = np.array_split(self.D_spar_vec ,2)[0]
150

151

152 #loop to create the area
153 for i in reversed(range(len(D_half)-1)):
154 dx = abs(D_half[i]-D_half[i+1])
155 x1 = D_half[i+1]
156 x2 = D_half[i]
157

158 y1 = sqrt((0.5*D)**2 - x1**2)
159 y2 = sqrt((0.5*D)**2 - x2**2)
160

161 self.Ai.append(2*y1*dx - dx*(y1-y2))
162

163 Ai_1 = self.Ai[::-1]
164 self.A_vec = [*Ai_1, *self.Ai]
165

166 return np.array(self.A_vec)
167

168 def checkifeven(self,anyvector):
169 """
170 Function that checks if list or array has even amounts of entries
171

172 Parameters
173 ----------
174 anyvector : Array or List
175 The array or list that you want to consider
176

177 Returns
178 -------
179 bool
180 truth for even, false for uneven.
181

182 """
183 if (len(anyvector) % 2) ==0 :
184 return True
185 else: return False
186

187 def gen_C_visc_morisons(self,Hs,k):
188 '''
189 Function based off of a analytical expression for damping coefficients
190 not funcitonal, as it introduces negative damping in current state
191

192

193 Parameters
194 ----------
195 Hs : Value

D.7. Dynamics 117

196 Waveheihgt.
197 k : Value
198 Wave number.
199

200 Returns
201 -------
202 array
203 Damping matrix .
204

205 '''
206 hb = abs(self.full_system.spar.z_cm_full - self.L_spar)
207 hT = abs(self.full_system.spar.z_cm_full)
208 tau = 2/pi
209

210 def A1(Z,k):
211 return 1/k
212 def A2(Z,k):
213 return Z/k-1/(k**2)
214 def A3(Z,k):
215 return Z**2/2 - 2*Z/k**2 + 2/k**3
216

217 def gen_Cxx(Z,k,Afunc):
218 sigma = sqrt(self.g*k)
219 C_xx = self.Cd*self.rho_seawater*self.D_spar*Hs*sigma*tau*Afunc(Z,k)*e**(k*Z)
220 return C_xx
221

222 C11 = abs(gen_Cxx(hT,k,A1)-gen_Cxx(-hb,k,A1))
223 C51 = abs(gen_Cxx(hT,k,A2)-gen_Cxx(-hb,k,A2))
224 C55 = abs(gen_Cxx(hT,k,A3)-gen_Cxx(-hb,k,A3))
225

226 C_matrix = np.array([[C11,0,C51],
227 [0,0,0],
228 [C51,0,C55]])
229 return C_matrix
230

231 def gen_zbounds(self,z_uw):
232 halfstep = round_it(((z_uw[2]-z_uw[1])/2),5)
233 z_up_bound = z_uw+halfstep
234 z_up_bound[-1] = 0
235 z_down_bound =z_uw - halfstep
236 z_down_bound[0] = z_uw[0]
237

238 return z_down_bound,z_up_bound

D.7.2. Aerodynamics class
1 # -*- coding: utf-8 -*-
2 """
3 Created on Mon May 30 20:10:52 2022
4

5 @author: TORSPI
6 """
7 from math import exp, pi
8 import numpy as np
9 from Math.Significance import round_it
10 class Aerodynamics_Class():
11 def __init__(self,V_rated,D_rotor,V_wind):
12 self.V_rated = V_rated
13 self.D_rotor = D_rotor
14 self.A_rotor = pi*(0.5*D_rotor)**2
15 self.C_T0 = 0.81
16 self.rho_air = 1.225
17 self.a = 0.5
18 self.b = 0.65
19

20 self.plot = 0
21 if self.plot ==1 :
22 V_array = np.linspace(0,20,100)
23 self.plot_CT_curve(V_array)
24 self.plot_T_curve(V_array)

D.7. Dynamics 118

25 def calc_CT(self, V_rel) :
26 """
27 Function that determines CT (thrust coefficient) for the relative wind
28 speed. Is used in combination with a reduction factor to account for
29 spatial variation of turbulence across the rotor
30

31 Parameters
32 ----------
33 V_rel : Value
34 Relative windspeed of the hub vs the 10 minute average.
35

36 Returns
37 -------
38 C_T : Value
39 Thrust Coefficient.
40

41 """
42 if V_rel <= self.V_rated :
43 C_T = self.C_T0
44 else: C_T = self.C_T0*exp(-self.a*(V_rel-self.V_rated)**self.b)
45

46 return C_T
47

48 def calc_C_T_10(self,V_10_min):
49 """
50 Function that determines CT from the 10 minute average.
51 This makes up the biggest portion of the wind forcing
52

53

54 Parameters
55 ----------
56 V_10_min : Value
57 10 minute average wind speed .
58

59 Returns
60 -------
61 C_T_10 : Value
62 Thrust coefficient .
63 f_red : Value
64 Reduction factor .
65

66 """
67 if V_10_min <= self.V_rated :
68 C_T_10 = self.C_T0
69 f_red = 0.54
70 else:
71 C_T_10 = self.C_T0 * exp(-self.a*(V_10_min-self.V_rated)**self.b)
72 f_red = 0.54+ 0.027*(V_10_min - self.V_rated)
73

74 return C_T_10, f_red
75

76 def calc_F_wind(self,V_rel,V_10_min):
77 C_T = self.calc_CT(V_rel)
78 C_T_10, f_red = self.calc_C_T_10(V_10_min)
79

80 F_wind_mean = 0.5*self.rho_air*self.A_rotor*C_T_10*V_10_min**2
81 F_wind_red = 0.5*self.rho_air*self.A_rotor*C_T*V_rel*abs(V_rel)
82 F_wind = F_wind_mean +f_red*(F_wind_red-F_wind_mean)
83

84 return F_wind
85

86 def calc_dF_wind(self,V_rel,V_10_min):
87 C_T = self.calc_CT(V_rel)
88 C_T_10, f_red = self.calc_C_T_10(V_10_min)
89

90 F_wind_mean = 0.5*self.rho_air*self.A_rotor*C_T_10*V_10_min**2
91 F_wind_red = 0.5*self.rho_air*self.A_rotor*C_T*V_rel*abs(V_rel)
92 return f_red*(F_wind_red-F_wind_mean)
93

94 def calc_F_trust_J103(self,V_wind):
95 C_T,_ = self.calc_C_T_10(V_wind)

D.7. Dynamics 119

96 return 0.5*self.rho_air*C_T*self.A_rotor*V_wind**2
97

98

99 def genC_aero_pt(self,V_rel,V_10_min,full_system):
100 '''
101 Calculates aerodynanic damping array
102 based off of a analytical expression for damping coefficients
103 not funcitonal, as it introduces negative damping in current state
104 Has been adjusted to work off on thrusst force. (original is an integral
105 over the blade)
106

107 Parameters
108 ----------
109 V_rel : Value
110 Relative Wind Speed.
111 V_10_min : Value
112 Wind speed.
113 full_system : instance
114 turbine, tower, spar.
115

116 Returns
117 -------
118 array
119 Damping Matrix.
120

121 '''
122 #length from rotor to spar mass centre
123 hR = round_it(abs(full_system.spar.z_cm_full),5)
124

125 dT = self.calc_dF_wind(V_rel,V_10_min)
126 cxx = abs(dT/V_10_min)
127

128 c00 = 3/2 * abs(dT/V_10_min) * 1/3 *(0.5*self.D_rotor)**3
129

130 return np.array([[cxx,0,0],
131 [0,0,0],
132 [hR * cxx,0,c00]],dtype=float)
133

134 def genC_aero_pp(self,V_rel,V_10_min,full_system):
135 '''
136 Calculates aerodynanic damping array
137 based off of a analytical expression for damping coefficients
138 not funcitonal, as it introduces negative damping in current state
139 Has been adjusted to work off on thrusst force. (original is an integral
140 over the blade)
141

142 Parameters
143 ----------
144 V_rel : Value
145 Relative Wind Speed.
146 V_10_min : Value
147 Wind speed.
148 full_system : instance
149 turbine, tower, spar.
150

151 Returns
152 -------
153 array
154 Damping Matrix.
155

156 '''
157 #length from rotor to spar mass centre
158 hR = round_it(abs(full_system.z_hub),5)
159 hT = round_it(abs(full_system.z_hub),5)
160

161 dT = self.calc_dF_wind(V_rel,V_10_min)
162 cxU1 = abs(dT/V_10_min)
163 cxU5 = hR*abs(dT/V_10_min)
164 c0U5 = 1/2*abs(dT/V_10_min)*(full_system.turbine.L_blade**3)/3
165

166

D.8. State class 120

167 C_matrix_pp = np.array([[cxU1, 0, cxU5],
168 [0, 0, 0],
169 [hR * cxU1, 0, c0U5+ hR*cxU5]],dtype=float)
170 return C_matrix_pp
171

172 def genC_matrix(self,V_rel,V_10_min,full_system):
173 C_matrix_pt = self.genC_aero_pt(V_rel,V_10_min,full_system)
174 C_matrix_pp = self.genC_aero_pp(V_rel,V_10_min,full_system)
175 # print(C_matrix_pt +C_matrix_pp)
176 #print('')
177 return C_matrix_pt + C_matrix_pp
178

179 def plot_CT_curve(self,V_array):
180

181 CT_list = np.zeros(len(V_array))
182 for i in range(len(V_array)):
183 CT_list[i] = self.calc_CT(V_array[i])
184 import matplotlib.pyplot as plt
185 fig, ax = plt.subplots()
186 plt.plot(V_array,CT_list)
187 plt.title("Thrust Coefficent Curve")
188 plt.xlabel('Wind Speed [m/s]')
189 plt.ylabel('Thrust Coefficient')
190

191 def plot_T_curve(self,V_array):
192 F_list = np.zeros(len(V_array))
193 for i in range(len(V_array)):
194 F_list[i] = self.calc_F_wind(V_array[i],V_array[i])
195 import matplotlib.pyplot as plt
196 fig,ax = plt.subplots()
197 plt.plot(V_array,F_list)
198 plt.title("Thrust Curve")
199 plt.xlabel('Wind Speed [m/s]')
200 plt.ylabel('Thrust [N]')

D.8. State class
1 # -*- coding: utf-8 -*-
2 """
3 Created on Tue May 24 12:19:29 2022
4

5 @author: TORSPI
6 """
7 import numpy as np
8 from math import e, sqrt, pi , log10
9 from scipy.integrate import solve_ivp, simps
10 from scipy.linalg import inv
11 from TimeDomain_Response.HydrodynamicsClass import Hydrodynamics_Class
12 from TimeDomain_Response.AerodynamicsClass import Aerodynamics_Class
13 from Utilities.Utilities import find_nearest_index, cut_profile2size
14 from Math.Significance import round_it
15 class State_Class():
16 '''
17 Class containing all states that can be considered in the ODE function.
18 Depending on how the wind/waves are considered it makes sense to use different states
19 (steady wind = constant wind) -> (unsteady wind = irregular wind)
20 (steady wave = regular waves) -> (unsteady wind = irregular waves)
21

22 '''
23 def __init__(self,full_system,wavekinematics,windkinematics,environment,dt,Tdur):
24 self.xtopspeed = 100
25 self.thetatopspeed = 20
26

27 self.full_system = full_system
28 self.MA_matrix = full_system.M_matrix+full_system.A_matrix
29 self.K_matrix = full_system.K_matrix
30 self.F_matrix = np.array([[0],[0],[0]])
31 #self.B_matrix = np.array([[565855,0,68042.4],
32 # [0,0,0],

D.8. State class 121

33 # [68042.4,0,8e10]])
34

35 self.H = environment.H #significant Wave Heigh
36 self.T = environment.T #significant Wave Period
37 self.h = environment.h
38 self.z_uw = environment.z_uw
39 self.V_wind_10 = environment.U_mean
40 self.TI = environment.TI
41

42 self.rho_seawater = full_system.rho_seawater
43

44

45 self.dt = dt
46 self.Tdur = Tdur
47 self.t = []
48 self.t_eval = (np.arange(0,self.Tdur+self.dt,self.dt)).tolist()
49

50

51 self.g = 9.81
52

53

54 self.D_spar = full_system.D_spar
55 self.D_spar_vec = full_system.spar.D_vec
56 self.A_spar_vec = full_system.A_spar_vec
57 self.L_spar = full_system.L_spar
58 self.t_spar = full_system.t_spar
59 self.rho_seawater = full_system.rho_seawater # kg/m^3
60 self.z_hub = full_system.z_hub
61 self.D_rotor = full_system.D_rotor
62 self.V_rated = full_system.V_rated
63

64 #-- Regular Wave Speeds
65 self.wavekinematics = wavekinematics
66 self.uwave_x = wavekinematics.uwave_x
67 self.uwave_x_dot= wavekinematics.uwave_x_dot
68 self.uwave_z = wavekinematics.uwave_z_dot
69

70 self.zeta_matrix = wavekinematics.calc_zeta_matrix(self.H,self.T,self.D_spar_vec)
71

72 #-- Irregular Wave Speed
73 self.uwave_x_irr = wavekinematics.u_irr_matrix.T
74 self.uwave_x_dot_irr = wavekinematics.du_irr_matrix.T
75 self.zeta_matrix_irr = wavekinematics.zeta_irr_fft
76

77 #-- Irregular Wind Speed
78 self.uwind_x_irr = windkinematics.V_wind_irr
79 #--- Hyrdodynamic Loading
80 self.Hydro = Hydrodynamics_Class(self.h,self.z_uw,full_system)
81

82

83 #- regular Aerodynamics
84 self.Aero = Aerodynamics_Class(self.V_rated,self.D_rotor,self.V_wind_10)
85

86

87 self.printswitch = 0
88 self.limittopspeed = 0
89 self.i = 0
90 # Damping Matrix
91 uwave_x_use,z_uw = cut_profile2size(self.L_spar,self.uwave_x[0],self.z_uw,0)
92 self.B_matrix = self.gen_C_matrix_visc(wavekinematics.k_reg,z_uw)
93 # irregular
94

95 #---- Temporarily stored values
96 self.x_dotdot = 0
97 self.theta_dotdot=0
98

99 def choose_dqdt(self,waves=0 ,wind=0):
100 """
101 Function that chooses what state function will be used.
102 Switches: 0 - off
103 1 - steady (regular)

D.8. State class 122

104 2 - unsteady (irregular)
105

106 Parameters
107 ----------
108 waves : Value, optional
109 Wave Switch. The default is 0.
110 wind : Value, optional
111 Wind Switch. The default is 0.
112

113 Returns
114 -------
115 function
116 state function dqdt for the ODE solver.
117

118 """
119

120

121 if waves == 0 and wind == 0 :
122 return self.dqdt_noforcing
123 if waves == 0 and wind == 1:
124 return self.dqdt_steady_wind_response
125 if waves == 1 and wind == 0 :
126 return self.dqdt_regular_wave_response
127 if waves == 1 and wind ==2:
128 return self.dqdt_unsteady_Wi_steady_Wa
129 if waves ==1 and wind ==1 :
130 return self.dqdt_steady_WiWA
131 if waves == 2 and wind ==1 :
132 return self.dqdt_unsteady_Wa_steady_Wi
133 if waves ==2 and wind ==2:
134 return self.dqdt_unsteady_WaWi
135 else:
136 print('no such state function has been made using no wind and wave')
137 return self.dqdt_noforcing
138

139 def dqdt_noforcing(self,t,q):
140 """
141 state where there is no hydrodynamic or aerodynamic forcing.
142

143 Parameters
144 ----------
145 t : float
146 time .
147 q : array
148 contains all of the states for the ODE function.
149

150 Returns
151 -------
152 dqdt : array
153 Derived state.
154

155 """
156 x,z,theta, x_dot,z_dot,theta_dot = self.unpack_q(q)
157 self.F_matrix = np.array([[0],[0],[0]])
158 C_matrix = self.B_matrix
159 #Damping Matrix
160 V_rel = -self.z_hub*theta_dot+x_dot
161 C_aero = self.Aero.genC_aero_pp(V_rel,0.01,self.full_system) #only platform!
162 C_matrix = C_aero
163 dqdt = self.setup_dqdt(x,z,theta,x_dot,z_dot,theta_dot,self.F_matrix,C_matrix)
164 return dqdt
165

166 def dqdt_regular_wave_response(self,t,q):
167

168 """
169 state where there is only regular waves
170

171 Parameters
172 ----------
173 t : float
174 time .

D.8. State class 123

175 q : array
176 contains all of the states for the ODE function.
177

178 Returns
179 -------
180 dqdt : array
181 Derived state.
182 """
183 x,z,theta, x_dot,z_dot,theta_dot = self.unpack_q(q)
184

185 #-- index into wavespeeds --
186 indexT = np.round((t-self.t_eval[0])/self.dt)-1
187 uwave_x_use = self.uwave_x[indexT.astype(int)]
188 uwave_x_dot_use = self.uwave_x_dot[indexT.astype(int)]
189 #-- cut off wavespeed under the spar
190 uwave_x_use,z_uw = cut_profile2size(self.L_spar,uwave_x_use,self.z_uw,z)
191 if len(z_uw) < 3:
192 print('z_uw too small')
193 uwave_x_dot_use, _ = cut_profile2size(self.L_spar,uwave_x_dot_use,self.z_uw,z)
194 #-- index into waveheight
195 zeta_array_use = self.zeta_matrix[:,indexT.astype(int)]
196

197 #--Wave Forcing
198 #---------------in x_direction
199 dF_hydro =self.Hydro.calc_hydrodynamic_forcing_x(uwave_x_use,uwave_x_dot_use,x_dot,

theta_dot,z_uw)
200 #----------------in z_direction
201 dF_heave = self.Hydro.calc_hydrodynamic_forcing_z(zeta_array_use)
202 #----------------Pitch force (moment)
203 M_hydro = simps(dF_hydro*z_uw,z_uw)
204 #print(M_hydro)
205

206 #Damping Matrix
207 V_rel = -self.z_hub*theta_dot+x_dot
208 C_aero = self.Aero.genC_matrix(V_rel,0.01,self.full_system)
209 C_matrix = self.B_matrix+C_aero
210

211

212 if self.printswitch == 1:
213 print('x_dot =',x_dot, 'theta_dot = ', theta_dot)
214 print('C_matrix = ', C_matrix)
215 print('V_rel = ',V_rel)
216 # print('t = ', t,'x = ', x,'z = ', z,'theta = ', theta)
217 # print('wave force = ', simps(dF_hydro,z_uw))
218

219

220 self.F_matrix[0] = round_it(simps(dF_hydro,z_uw),6)
221 self.F_matrix[1] = sum(dF_heave)
222 self.F_matrix[2] = M_hydro
223

224 dqdt = self.setup_dqdt(x,z,theta,x_dot,z_dot,theta_dot,self.F_matrix,C_matrix)
225

226 return dqdt
227

228 def dqdt_steady_wind_response(self,t,q):
229 ''' Used specifically for storm heeling calculation.
230 Note: caclulation of F_wind_x is different here, as the turbine
231 is suposedly not spinning.
232 writen in accordance with OS-J103 (1.1.11)
233 '''
234 x,z,theta, x_dot,z_dot,theta_dot = self.unpack_q(q)
235

236 #--Wind Forcing
237 F_wind_x = self.Aero.calc_F_trust_J103(self.V_wind_10)
238 #print(F_wind_x)
239 M_wind_x = F_wind_x*self.z_hub
240

241 #damping matrix
242 V_rel = self.V_wind_10-self.z_hub*theta_dot+x_dot
243 C_aero = self.Aero.genC_matrix(V_rel, self.V_wind_10,self.full_system)
244 C_matrix = C_aero

D.8. State class 124

245

246

247 self.F_matrix[0] = round_it(F_wind_x ,6)
248 self.F_matrix[1] = 0
249 self.F_matrix[2] = M_wind_x
250

251

252 dqdt = self.setup_dqdt(x,z,theta,x_dot,z_dot,theta_dot,self.F_matrix,C_matrix)
253 return dqdt
254

255

256 def dqdt_steady_WiWA(self,t,q):
257 x,z,theta, x_dot,z_dot,theta_dot = self.unpack_q(q)
258 if self.printswitch:
259 if t >105:
260 print('time to check')
261 pass
262 if self.limittopspeed:
263 x_dot = self.top_speed(x_dot,self.xtopspeed)
264 theta_dot = self.top_speed(theta_dot,self.thetatopspeed)
265

266 #-- index into wavespeeds --
267 indexT = np.round((t-self.t_eval[0])/self.dt)-1
268 uwave_x_use = self.uwave_x[indexT.astype(int)]
269 uwave_x_dot_use = self.uwave_x_dot[indexT.astype(int)]
270 #-- cut off wavespeed under the spar
271 uwave_x_use,z_uw = cut_profile2size(self.L_spar,uwave_x_use,self.z_uw,z)
272 uwave_x_dot_use, _ = cut_profile2size(self.L_spar,uwave_x_dot_use,self.z_uw,z)
273

274 #-- index into waveheight
275 zeta_array_use = self.zeta_matrix[:,indexT.astype(int)]
276

277 #--Wave Forcing
278 #---------------in x_direction
279 dF_hydro =self.Hydro.calc_hydrodynamic_forcing_x(uwave_x_use,uwave_x_dot_use,x_dot,

theta_dot,z_uw)
280 #----------------in z_direction
281 dF_heave = self.Hydro.calc_hydrodynamic_forcing_z(zeta_array_use)
282 #----------------Pitch force (moment)
283 M_hydro = simps(dF_hydro*z_uw,z_uw)
284

285 #--Wind Forcing
286 V_rel = self.V_wind_10-self.z_hub*theta_dot+x_dot
287 F_wind_x = self.Aero.calc_F_wind(V_rel,self.V_wind_10)
288 M_wind_x = F_wind_x*self.z_hub
289

290

291 #damping matrix
292 V_rel = self.V_wind_10-self.z_hub*theta_dot+x_dot
293 C_aero = self.Aero.genC_matrix(V_rel, self.V_wind_10,self.full_system)
294 C_matrix = abs(self.B_matrix+C_aero)
295 if self.printswitch:
296 if any(np.linalg.eigh(C_matrix)[0]<0):
297 print('unstable damping')
298 print(C_matrix)
299 else:
300 print('FINE')
301

302 self.F_matrix[0] = simps(dF_hydro,z_uw)+F_wind_x
303 self.F_matrix[1] = sum(dF_heave)
304 self.F_matrix[2] = M_hydro + M_wind_x
305

306 if self.printswitch:
307 print('t = ', t,'x = ', x,'z = ', z,'theta = ', theta)
308 print('wave force = ', simps(dF_hydro,z_uw))
309 print('Wind Force = ', F_wind_x)
310 print('wind moment = ', M_wind_x, 'wave moment = ', M_hydro)
311 print('t = ', t,'x_dot = ', x_dot,'theta_dot = ', theta_dot)
312

313 dqdt = self.setup_dqdt(x,z,theta,x_dot,z_dot,theta_dot,self.F_matrix,C_matrix)
314 return dqdt

D.8. State class 125

315

316 def dqdt_unsteady_Wa_steady_Wi(self,t,q):
317 x,z,theta, x_dot,z_dot,theta_dot = self.unpack_q(q)
318

319 #-- index into wavespeeds --
320 indexT = np.round((t-self.t_eval[0])/self.dt)-1
321 uwave_x_use = self.uwave_x_irr[indexT.astype(int)]
322 uwave_x_dot_use = self.uwave_x_dot_irr[indexT.astype(int)]
323 #-- cut off wavespeed under the spar
324 uwave_x_use,z_uw = cut_profile2size(self.L_spar,uwave_x_use,self.z_uw,z)
325 uwave_x_dot_use, _ = cut_profile2size(self.L_spar,uwave_x_dot_use,self.z_uw,z)
326

327 #-- index into waveheight
328 zeta_array_use = self.zeta_matrix[:,indexT.astype(int)]
329

330

331 #--Wave Forcing
332 #---------------in x_direction
333 dF_hydro =self.Hydro.calc_hydrodynamic_forcing_x(uwave_x_use,uwave_x_dot_use,x_dot,

theta_dot,z_uw)
334 #----------------in z_direction
335 dF_heave = self.Hydro.calc_hydrodynamic_forcing_z(zeta_array_use)
336 #----------------Pitch force (moment)
337 M_hydro = simps(dF_hydro*z_uw,z_uw)
338

339 #--Wind Forcing
340 V_rel = self.V_wind_10-self.z_hub*theta_dot+x_dot
341 F_wind_x = self.Aero.calc_F_wind(V_rel,self.V_wind_10)
342 M_wind_x = F_wind_x*self.z_hub
343 #damping matrix
344

345 V_rel = self.V_wind_10-self.z_hub*theta_dot+x_dot
346 C_aero = self.Aero.genC_matrix(V_rel, self.V_wind_10,self.full_system)
347 C_matrix = self.B_matrix+C_aero
348

349 if self.printswitch:
350 print('Hydro momen is', M_hydro)
351 self.i = self.i+1
352 print(self.i)
353

354 self.F_matrix[0] = round_it(simps(dF_hydro,z_uw)+F_wind_x ,6)
355 self.F_matrix[1] = sum(dF_heave)
356 self.F_matrix[2] = M_hydro + M_wind_x
357

358

359 dqdt = self.setup_dqdt(x,z,theta,x_dot,z_dot,theta_dot,self.F_matrix,C_matrix)
360

361

362

363 return dqdt
364

365 def dqdt_unsteady_Wi_steady_Wa(self,t,q):
366 x,z,theta, x_dot,z_dot,theta_dot = self.unpack_q(q)
367

368 #-- index into wavespeeds --
369 indexT = np.round((t-self.t_eval[0])/self.dt)-1
370 uwave_x_use = self.uwave_x[indexT.astype(int)]
371 uwave_x_dot_use = self.uwave_x_dot[indexT.astype(int)]
372 #-- cut off wavespeed under the spar
373 uwave_x_use,z_uw = cut_profile2size(self.L_spar,uwave_x_use,self.z_uw,z)
374 uwave_x_dot_use, _ = cut_profile2size(self.L_spar,uwave_x_dot_use,self.z_uw,z)
375

376 #-- index into waveheight
377 zeta_array_use = self.zeta_matrix[:,indexT.astype(int)]
378

379 #--Wave Forcing
380 #---------------in x_direction
381 dF_hydro =self.Hydro.calc_hydrodynamic_forcing_x(uwave_x_use,uwave_x_dot_use,x_dot,

theta_dot,z_uw)
382 #----------------in z_direction
383 dF_heave = self.Hydro.calc_hydrodynamic_forcing_z(zeta_array_use)

D.8. State class 126

384 #----------------Pitch force (moment)
385 M_hydro = simps(dF_hydro*z_uw,z_uw)
386

387 #--Wind Forcing
388 V_rel = self.V_wind_10-self.z_hub*theta_dot+x_dot
389 F_wind_x = self.Aero.calc_F_wind(V_rel,self.V_wind_10)
390 M_wind_x = F_wind_x*self.z_hub
391 #damping matrix
392

393 V_rel = self.V_wind_10-self.z_hub*theta_dot+x_dot
394 C_aero = self.Aero.genC_matrix(V_rel, self.V_wind_10,self.full_system)
395 C_matrix = self.B_matrix+C_aero
396

397 if self.printswitch:
398 print('Hydro momen is', M_hydro)
399 self.i = self.i+1
400 print(self.i)
401

402 self.F_matrix[0] = round_it(simps(dF_hydro,z_uw)+F_wind_x ,6)
403 self.F_matrix[1] = sum(dF_heave)
404 self.F_matrix[2] = M_hydro + M_wind_x
405

406

407 dqdt = self.setup_dqdt(x,z,theta,x_dot,z_dot,theta_dot,self.F_matrix,C_matrix)
408

409

410 def dqdt_unsteady_WaWi(self,t,q):
411 x,z,theta, x_dot,z_dot,theta_dot = self.unpack_q(q)
412

413

414 #-- index into wavespeeds --
415 indexT = np.round((t-self.t_eval[1])/self.dt)-1
416 uwave_x_use = self.uwave_x_irr[indexT.astype(int)]
417 uwave_x_dot_use = self.uwave_x_dot_irr[indexT.astype(int)]
418 #-- cut off wavespeed under the spar
419 uwave_x_use,z_uw = cut_profile2size(self.L_spar,uwave_x_use,self.z_uw,z)
420 uwave_x_dot_use, _ = cut_profile2size(self.L_spar,uwave_x_dot_use,self.z_uw,z)
421

422 #-- index into waveheight
423 zeta_array_use = self.zeta_matrix[:,indexT.astype(int)]
424

425 #--Wave Forcing
426 #---------------in x_direction
427 dF_hydro =self.Hydro.calc_hydrodynamic_forcing_x(uwave_x_use,uwave_x_dot_use,x_dot,

theta_dot,z_uw)
428 #----------------in z_direction
429 dF_heave = self.Hydro.calc_hydrodynamic_forcing_z(zeta_array_use)
430 #----------------Pitch force (moment)
431 M_hydro = simps(dF_hydro*z_uw,z_uw)
432

433 #--Wind Forcing
434 V_wind = self.uwind_x_irr[indexT.astype(int)]
435 V_rel = V_wind-self.z_hub*theta_dot+x_dot
436 F_wind_x = round_it(self.Aero.calc_F_wind(V_rel,self.V_wind_10),5)
437 M_wind_x = F_wind_x*self.z_hub
438

439 #damping matrix
440 V_rel = self.V_wind_10-self.z_hub*theta_dot+x_dot
441 C_aero = self.Aero.genC_matrix(V_rel, self.V_wind_10,self.full_system)
442 C_matrix = self.B_matrix+C_aero
443

444

445 self.F_matrix[0] = round_it(simps(dF_hydro,z_uw)+F_wind_x ,6)
446 self.F_matrix[1] = sum(dF_heave) #+F_wind_x*theta
447 self.F_matrix[2] = M_hydro + M_wind_x
448

449

450 dqdt = self.setup_dqdt(x,z,theta,x_dot,z_dot,theta_dot,self.F_matrix,C_matrix)
451

452 if self.printswitch:
453 print('t = ', t,'x = ', x,'z = ', z,'theta = ', theta)

D.8. State class 127

454 print('wave force = ', simps(dF_hydro,z_uw))
455 print('Wind Force = ', F_wind_x)
456 print('wind moment = ', M_wind_x, 'wave moment = ', M_hydro)
457 print('t = ', t,'x_dot = ', x_dot,'theta_dot = ', theta_dot)
458 #print(self.F_matrix)
459 #print('')
460

461 return dqdt
462

463

464 def unpack_q(self,q):
465 x = q[0]
466 z = q[1]
467 theta = q[2]
468

469 x_dot = q[3]
470 z_dot = q[4]
471 theta_dot = q[5]
472 return x,z,theta, x_dot,z_dot,theta_dot
473

474 def setup_dqdt(self,x,z,theta,x_dot,z_dot,theta_dot,F_matrix,C_matrix):
475 dqdt = [0]*6
476 dqdt[0] = x_dot
477 dqdt[1] = z_dot
478 dqdt[2] = theta_dot
479 eqsolve = inv(self.MA_matrix).dot\
480 (F_matrix- (C_matrix.dot(np.array([[x_dot],[z_dot],[theta_dot]]))+self.K_matrix.

dot(np.array([[x],[z],[theta]]))))
481

482 dqdt[3] = eqsolve[0]
483 dqdt[4] = eqsolve[1]
484 dqdt[5] = eqsolve[2]
485

486 return dqdt
487

488 def make_F_matrix(self,keyword='whatforcingyouuse'):
489 keyword=keyword.upper()
490 keyword=keyword.replace(' ','')
491

492 if keyword == 'NOFORCING':
493 F_matrix = np.array([[0],[0],[0]])
494 return F_matrix
495 elif keyword == 'WAVEREGULAR':
496 return F_matrix
497

498

499

500

501 def choose_wind_wave_protocol(self,waves,wind,wavekinematics,windkinematics):
502 if waves ==1 :
503 #-- Regular Wave Speeds
504 self.uwave_x = wavekinematics.uwave_x
505 self.uwave_x_dot= wavekinematics.uwave_x_dot
506 self.uwave_z = wavekinematics.uwave_z_dot
507 return self.uwave_x,self.uwave_x_dot,self.uwave_z
508 if waves == 2:
509 #-- Irregular Wave Speed
510 self.uwave_x_irr = wavekinematics.u_irr_matrix.T
511 self.uwave_x_dot_irr = wavekinematics.du_irr_matrix.T
512

513 def gen_C_matrix_visc(self,k,z_uw):
514 Cd = self.Hydro.Cd
515 rho = self.full_system.rho_seawater
516 D = self.full_system.D_spar
517 H = self.H
518 sigma = sqrt(self.g*k)
519 tau = 2/pi
520

521 def A1(k,Z) :
522 return 1/k
523 def A2(k,Z):

D.9. Fatigue calculations 128

524 return Z/k - 1/(k**2)
525 def A3(k,Z):
526 return (Z**2)/k - (2*Z)/k**2 + 2*(k**3)
527

528 def gen_Cxx(k,Z,A):
529 return Cd*rho*D*H*sigma*tau*A(k,Z)*e**(k*Z)
530

531 dC11 = np.zeros(len(z_uw))
532 dC15 = np.zeros(len(z_uw))
533 dC55= np.zeros(len(z_uw))
534 for i in range(len(z_uw)) :
535 dC11[i] = gen_Cxx(k,z_uw[i],A1)
536 dC15[i] = gen_Cxx(k,z_uw[i],A2)
537 dC55[i] = gen_Cxx(k,z_uw[i],A3)
538

539 C11 = sum(dC11)
540 C15 = sum(dC15)
541 C55 = sum(dC55)
542 C_matrix = np.array([[C11*10, 0, C15],
543 [0, 0, 0],
544 [C15, 0, C55]],dtype=float)
545

546 return C_matrix
547

548 def top_speed(self,x_dot,topspeed) :
549 if x_dot > topspeed :
550 if self.printswitch:
551 print('over top speed')
552 return topspeed
553 elif x_dot<-topspeed:
554 if self.printswitch:
555 print('under topspeed')
556 return -topspeed
557 else:return x_dot

D.9. Fatigue calculations
D.9.1. All environments import

1 #!/usr/bin/env python3
2 # -*- coding: utf-8 -*-
3 """
4 Created on Tue Nov 8 12:16:36 2022
5

6 @author: Giles
7 """
8 from threading import Thread
9 import pandas as pd
10 import numpy as np
11 from TimeDomain_Response.EnviromentClass import Enviroment_Class
12 from TimeDomain_Response.TimeDomainSimulationClass import Time_Domain_Simulation_Class
13 from Utilities.ThreadWithReturnValueClass import ThreadWithReturnValue
14 from FatigueCalculations.FatigueClass import Fatigue_Class
15

16

17 class fatigue_environmental_import_class():
18 def __init__(self,environment,full_system,SN_func,space = 'lin'):
19 self.full_system = full_system
20 self.SN_func = SN_func
21 #import tower data
22 data = pd.read_excel('/Users/Giles/Desktop/Desktop – ’Torstens MacBook Pro/Code2.0/

ThesisPackages/FatigueCalculations/Fatigue_Cond.xlsx')
23 self.U_mean_list = pd.DataFrame(data,columns=['Uw']) #heights(

transition piece and tower)
24 self.T_list = pd.DataFrame(data,columns=['T']) #outer

Diameter
25 self.Hs_list = pd.DataFrame(data,columns=['Hs']) #tower

thickness
26 self.freqoccur = pd.DataFrame(data,columns=['freqoccur'])
27

D.9. Fatigue calculations 129

28 self.h = environment.h
29 self.TI = environment.TI
30 self.space = space
31 self.logstep = 50
32 self.environmentlist = self.gen_environment_list()
33 self.q0 = [0,0,0,0,0,0]
34

35 self.eq_stress_list,self.eq_cycles_list,self.TD_sim_list \
36 = self.calc_fatigue_per_condition()
37

38 self.eq_stress_list_scaled , self.eq_cycles_list_scaled = self.scale_condition_damage
()

39

40 self.damage,self.stress_life,self.cycle_life = self.calc_damage_life(SN_func)
41

42

43 def calc_damage_life2(self,SN_func):
44 stress_scaled_array = np.array(self.eq_stress_list_scaled)
45 cycles_scaled_array = np.array(self.eq_cycles_list_scaled)
46

47 damage_array = np.zeros(len(stress_scaled_array))
48 for i in range(len(stress_scaled_array)):
49 stress_range_i = stress_scaled_array[i]
50 n_i = cycles_scaled_array[i]
51 N_i = SN_func(stress_range_i)
52 D_i = n_i/N_i
53 damage_array[i] = D_i
54

55 return damage_array[i]
56

57

58 def calc_damage_life(self,SN_func):
59 '''
60 Function takes weighted average of the stress over the cycles to get the
61 lifetime stress and cycle
62

63 Parameters
64 ----------
65 SN_func : Function
66 SN curve funciton rewritten to take cycles as input and output the
67 amount of stress at that number of cycles level.
68

69 Returns
70 -------
71 stress_life : TYPE
72 DESCRIPTION.
73 cycle_life : TYPE
74 DESCRIPTION.
75

76 '''
77 stress_scaled_array = np.array(self.eq_stress_list_scaled)
78 cycles_scaled_array = np.array(self.eq_cycles_list_scaled)
79 #check if it was the right idea
80

81 stress_life = np.sum(stress_scaled_array*cycles_scaled_array ,0)/np.sum(
cycles_scaled_array ,0)

82 cycle_life = np.sum(cycles_scaled_array ,0)
83

84 stress_SN = SN_func(cycle_life)
85 damage = stress_life/stress_SN
86

87 #defo the right idea
88

89

90 return damage,stress_life,cycle_life
91

92

93

94 def scale_condition_damage(self):
95 eq_stress_list_scaled = []
96 eq_cycles_list_scaled = []

D.9. Fatigue calculations 130

97 for i in range(len(self.environmentlist)):
98 eq_stress_list_scaled.append(self.freqoccur.iat[i,0]*self.eq_stress_list[i])
99 eq_cycles_list_scaled.append(self.freqoccur.iat[i,0]*self.eq_cycles_list[i])
100

101 return eq_stress_list_scaled , eq_cycles_list_scaled
102

103

104

105 def calc_fatigue_per_condition(self):
106 '''
107 Function that returns the lifetime fatigue of each condition.
108 Result should be modified by the frequency of occurence. (miners rule
109 means its a
110 linear relationship.)
111

112 Returns
113 -------
114 eq_stress_list : TYPE
115 DESCRIPTION.
116 eq_cycles_list : TYPE
117 DESCRIPTION.
118 TD_sim_list : TYPE
119 DESCRIPTION.
120

121 '''
122 TD_sim_list = []
123 eq_stress_list = []
124 eq_cycles_list = []
125 for i in range(len(self.environmentlist)):
126 TD = Time_Domain_Simulation_Class(self.q0,self.full_system,self.environmentlist[i

],1,200,0.5,1,2,2,0)
127 TD_sim_list.append(TD)
128

129 Fatigue_i = Fatigue_Class(TD)
130 eq_stress_list.append(Fatigue_i.eq_stress)
131 eq_cycles_list.append(Fatigue_i.eq_cycles)
132

133

134 return eq_stress_list,eq_cycles_list,TD_sim_list
135

136

137 def gen_environment_list(self):
138 '''
139 Function that initializes all environemntal conditions needed for a fatigue analysis
140 based off the environmental condition specified in excel file
141

142 Returns
143 -------
144 environment_list : list
145 list of isntances of the environmental conditions.
146

147 '''
148 environment_list = []
149 for i in range(len(self.U_mean_list)):
150 Hs = self.Hs_list.iat[i,0]
151 T = self.T_list.iat[i,0]
152 U = self.U_mean_list.iat[i,0]
153

154 environment_i = Enviroment_Class(self.h,Hs,T,U,self.TI,self.space,self.logstep)
155

156 environment_list.append(environment_i)
157

158 return environment_list
159

160 def get_TD_sim(self,environment):
161 TD_sim = Time_Domain_Simulation_Class(self.q0,self.full_system,environment

,1,3600,0.5,1,2,2,600)
162 return TD_sim

D.9. Fatigue calculations 131

D.9.2. Fatigue Class
1 # -*- coding: utf-8 -*-
2 import pandas as pd
3 import numpy as np
4

5 from Utilities.Utilities import indices,JonSwap, Kaimal
6 #from Kinematics.WaveKinematicsClass import Wave_Kinematics_Class
7 #from Kinematics.AerodynamicsClass import Aerodynamics_Class
8 from scipy.integrate import solve_ivp, simps
9 from FatigueCalculations.FatigueLoadingClass import Fatigue_Loading_Class
10 from FatigueCalculations.FatigueRainflowClass import Fatigue_Rainflow_Class
11

12 class Fatigue_Class():
13 """" This class runs the fatigue calculations for a single environmental
14 condition, as such it requires a TD_simulation run as an input
15

16

17 """
18

19

20 def __init__(self,TD_simulation,m=4,n_eq=1*10**6,years = 50):
21 #import scatter DNV
22 #data_dnv = pd.read_csv(r'FatigueCalculations/scatter_moderate.csv')
23 #data_dnv = data_dnv.set_index('Unnamed: 0')
24 #data_dnv = data_dnv/data_dnv.values.sum()
25

26 #import lumped scatter DTU
27 #LumpScat = pd.read_excel("FatigueCalculations/Scatter_Diagram_ass3.xlsx")
28 #LumpScat.columns = [c.replace(' ','_') for c in LumpScat.columns]
29 #LumpScat.TI_normal = LumpScat.TI_normal/100
30 #LumpScat.TI_extreem = LumpScat.TI_extreem/100
31

32 #self.WindSpeed = LumpScat.Speed
33 #self.TI_normal = LumpScat.TI_normal
34 #self.TI_extreem = LumpScat.TI_extreem
35 #self.Hs = LumpScat.Hs
36 #self.Tp = LumpScat.Tp_
37

38 self.m = m
39 self.n_eq = n_eq
40 self.years = years
41 Hsmj = self.calc_Hs_eq
42

43 #---Inherit from TD
44 self.spar = TD_simulation.spar
45 self.D_rotor = TD_simulation.D_rotor
46 self.D_spar = TD_simulation.D_spar
47 self.f_matrix = TD_simulation.f_matrix
48 self.dt = TD_simulation.dt
49 self.t_eval = TD_simulation.t_eval
50 self.z_uw = TD_simulation.z_uw
51 self.sol = TD_simulation.sol
52

53 self.Tdur = TD_simulation.Tdur
54 self.t_60_index = indices(self.t_eval, lambda x: x==60)[0]
55 self.t_nontrans = self.t_eval[self.t_60_index:]
56 #--- Wave kinematics
57 self.wavekinematics = TD_simulation.wavekinematics
58 self.windkinematics = TD_simulation.windkinematics
59 self.Hydro = TD_simulation.Hydro
60 self.stateclass = TD_simulation.stateclass
61 self.dqdt = TD_simulation.dqdt
62

63 self.fatigueloads = Fatigue_Loading_Class(self)
64 phi = self.fatigueloads.phi #bending stress
65 tau = self.fatigueloads.tau #shear stress
66

67 #--- lifetime stress
68 self.eq_stress,self.eq_cycles = self.calc_life_stress(phi)
69

D.9. Fatigue calculations 132

70

71 return
72

73 def eq_moment_UPWIND(self,scatter):
74 for i in range(len(scatter)):
75 Hs = self.Hs[i], Tp = self.Tp[i]
76 windspeed = self.WindSpeed[i]
77 I = self.TI_normal[i]
78 [Mdynamic] = self.fftmoment(self.t_eval,Hs,Tp,windspeed,I,340.2) #CREATE THIS

FUNCITON
79

80 def fftmoment(self,t_total,Hs,Tp,windspeed,I,l):
81 Sjs,ajs = JonSwap(Hs,Tp,self.f_matrix)
82 Skm,akm = Kaimal(windspeed,I,self.f_matrix,l)
83

84 u_wave = self.wavekinmatics.u_irr_matrix[0]
85 du_wave = self.wavekinematics.du_irr_matrix[0]
86 V_time_series = self.windkinematics.V_wind_irr
87

88 q0 = [0,0,0,0,0,0]
89

90 sol = solve_ivp(self.dqdt,[0,self.Tdur+self.dt],q0,t_eval=self.t_eval)
91

92

93

94 def calc_Hs_eq(self,scatterdiagram):
95 """
96 This function is a simplified damage equivalent approach taken from a
97 TU delft repositry "REDUCTION OF FATIGUE COMPUTATIONAL TIME FOR OFFSHORE
98 WIND TURBINE JACKET FOUNDATIONS, it can lump scatter diagrams or a more
99 holistic approach to environmental data.
100

101 The function lumps the significant wave height into an equivelant wave height
102 by taking the average of multiplied wave height and probabilities over
103 the probability itself.
104

105 This approach aims at the preseration of the wave period distribution
106 while establishing an associated distributino of wave heights for all wave period

classes.
107

108

109 Parameters
110 ----------
111 scatterdiagram : Dataframe
112 A scatter diagram that is read in. Where Collums represent Tp
113 and the rows represent Hs
114

115 Returns
116 -------
117 Hsmj : TYPE
118 DESCRIPTION.
119

120 """
121 Hs = scatterdiagram.index.values
122 scatterdiagram = scatterdiagram.to_numpy()
123

124 Hsmj = []
125 pj = np.sum(scatterdiagram,axis=0)
126

127 for j in range(len(scatterdiagram[0])): #Every Tp
128 numerator = []
129 for i in range(len(scatterdiagram)):#EVery HS
130 pij = scatterdiagram[i,j]
131 numerator.append(pij*Hs[i]**self.m)
132 Hsmj.append((sum(numerator)/pj[j])**1/self.m)
133 Hsmj = np.array(Hsmj)
134 Hsmj[np.isnan(Hsmj)] = 0
135

136 return Hsmj
137

138 def calc_Tz_eq(self,scatterdiagram):

D.9. Fatigue calculations 133

139 Tp = scatterdiagram.columns.values
140 Tp = Tp.astype(float)
141 array = scatterdiagram.to_numpy()
142

143 Tzni = []
144 pi = np.sum(array,axis=1)
145

146 for i in range(len(array)):
147 numerator =[]
148 for j in range(len(array[0])):
149 pij = array[i,j]
150 numerator.append((pij/Tp[j]))
151 if pi[i] ==0:
152 Tzni.append(0)
153 else:
154 Tzni.append((sum(numerator/pi[i]))**-1)
155 Tzni =np.array(Tzni)
156 Tzni[np.isnan(Tzni)]=0
157 return Tzni
158

159 def Calculate_Forcing_History(self):
160 x,z,theta, x_dot,z_dot,theta_dot = self.unpack_q(self.sol.y)
161

162 uwave_x_use = self.wavekinematics.uwave_x
163 uwave_x_dot_use = self.wavekinematics.uwave_x_dot
164 #-- index into waveheight
165 zeta_array_use = self.wavekinematics.zeta_matrix
166

167 #--Wave Forcing
168 #---------------in x_direction
169 dF_hydro =self.Hydro.calc_hydrodynamic_forcing_x(uwave_x_use,uwave_x_dot_use,x_dot,

theta_dot)
170 #----------------in z_direction
171 dF_heave = self.Hydro.calc_hydrodynamic_forcing_z(zeta_array_use)
172 #----------------Pitch force (moment)
173 M_hydro = simps(dF_hydro*self.z_uw,self.z_uw)
174

175 #--Wind Forcing
176 V_rel = self.V_wind_10-self.z_hub*theta_dot-x_dot
177 F_wind_x = self.Aero.calc_F_wind(V_rel,self.V_wind_10)
178 M_wind_x = F_wind_x*self.z_hub
179

180 self.F_matrix[0] = simps(dF_hydro,self.z_uw)+F_wind_x
181 self.F_matrix[1] = sum(dF_heave)
182 self.F_matrix[2] = M_hydro + M_wind_x
183

184 return self.F_matrix
185

186 def calc_life_stress(self,signal):
187 """
188 Function that returns the lifetime equivelant stress at every weld location
189

190 Parameters
191 ----------
192 signal : array
193 Stress time history.
194

195 Returns
196 -------
197 eq_life_stress : Array(1D)
198 Array of all the lifetime stresses (for each weld).
199

200 """
201 eq_life_stress = np.zeros(len(signal))
202 eq_cycles = np.zeros(len(signal))
203

204 for i in range(len(signal)):
205 rainflow = Fatigue_Rainflow_Class(self,signal[i],self.t_eval)
206 rf_array = rainflow.rf
207 eq_life_stress[i],eq_cycles[i] = Fatigue_Rainflow_Class.calc_eq_life_stress(

rainflow,rf_array,self.years)

D.9. Fatigue calculations 134

208

209 return eq_life_stress, eq_cycles

D.9.3. Fatigue loading class
1 #!/usr/bin/env python3
2 # -*- coding: utf-8 -*-
3 """
4 Created on Wed Sep 7 10:06:49 2022
5

6 @author: Giles
7 """
8 import numpy as np
9 from Utilities.Utilities import cut_profile2size, unpack_q, calc_ddx, find_nearest_index,

find_length
10 from scipy.integrate import simps
11

12 class Fatigue_Loading_Class():
13 """" This class is meant to be used to keep all the fatigue related loading
14 calculations in one spot.
15

16 """
17

18

19 def __init__(self,fatigue_instance):
20 #--- Importing the spar instance
21 self.spar = fatigue_instance.spar
22 #--- Importing the time domain solution
23 self.sol = fatigue_instance.sol
24 self.x,self.z,self.theta, self.x_dot,self.z_dot,self.theta_dot = unpack_q(

fatigue_instance.sol.y)
25 #--- Wave kinematics
26 self.wavekinematics = fatigue_instance.wavekinematics
27 self.windkinematics = fatigue_instance.windkinematics
28 #--- Hyrdodynamic Loading
29 self.z_uw = fatigue_instance.z_uw
30 self.Hydro = fatigue_instance.Hydro
31

32

33 self.stateclass = fatigue_instance.stateclass
34 self.dqdt = fatigue_instance.dqdt
35

36 self.cut_hydro_force, self.lowest_depth, self.z_uw_cut = self.forcing4fatigue()
37 self.lowest_idx = find_nearest_index(self.lowest_depth,self.z_uw)
38

39 self.tau, self.phi = self.calc_max_stress_per_weld()
40

41 return
42

43 def calc_max_stress_per_weld(self):
44 '''
45 Calculates the max stress on the welds.
46 (last entry is highest up (closest to the tower base)
47

48 Returns
49 -------
50 tau_max : List
51 Max shear Stress per weld.
52 phi_max : TYPE
53 Max bending stress per weld.
54

55 '''
56 phi_max = np.zeros((len(self.spar.weld_locations),find_length(self.cut_hydro_force)))
57 tau_max = np.zeros((len(self.spar.weld_locations),find_length(self.cut_hydro_force)))
58

59 for i in range(len(phi_max)):
60 phi_iteration,tau_iteration = self.calc_internal_stresses(self.spar.

weld_locations[i],self.spar.D/2)
61 phi_max[i] = phi_iteration
62 tau_max[i] = tau_iteration

D.9. Fatigue calculations 135

63 return tau_max,phi_max
64

65

66 def calc_internal_stresses(self,weld_location,y):
67

68 #getting accelerations -> F = m*ddx
69 dd_x, z_double_dot, dd_theta = self.calc_acceleration_from_solution()
70 #getting forcing
71 forcing_x = self.cut_hydro_force
72

73 #Calc partial mass
74 #Ignores the ballast, sees spar as a hollow cylinder.
75 dm = (self.spar.L - weld_location)/self.spar.L * self.spar.m_spar
76 dIx = (self.spar.L - weld_location)/self.spar.L * self.spar.Ix
77

78 #use weld location to recut hydro forcing
79 cut_off = find_nearest_index(weld_location,self.z_uw_cut)
80 forcing_x = self.cut_hydro_force[:cut_off]
81 z_use = self.z_uw_cut[:cut_off]
82

83

84 #Forces in X -> shear stress
85 T = dm*dd_x - simps(forcing_x.T,z_use)
86 tau = T/self.spar.A_cross_section
87

88 #Moment around weld
89 M = dIx*dd_x - simps(forcing_x.T*z_use,z_use)
90 phi = M/(self.spar.Ix_area2/y) #FIX dIx should instead be second moment of the area
91

92 return tau, phi
93

94 return
95

96 def forcing4fatigue(self):
97 L_spar = self.spar.L
98 z_spar = self.sol.y[1]
99

100

101 Hydro_Forcing = self.Hydro.calc_hydrodynamic_forcing_x(self.wavekinematics.uwave_x,
self.wavekinematics.uwave_x_dot,self.sol.y[3],self.sol.y[5],self.z_uw)

102 Lowest_Depth = np.amin(z_spar)-L_spar
103

104 Hydro_Forcing_cut, z_uw_cut = cut_profile2size(L_spar,Hydro_Forcing,self.z_uw,np.amin
(z_spar))

105

106 return Hydro_Forcing_cut, Lowest_Depth ,z_uw_cut
107

108 def calc_acceleration_from_solution(self):
109 t = self.sol.t
110 #addding a zero collumn to the solution
111 position_velocity = np.array(self.sol.y)
112 x,z,theta, x_dot,z_dot,theta_dot = unpack_q(position_velocity)
113

114 x_dot = np.insert(x_dot,0,0)
115 z_dot = np.insert(z_dot,0,0)
116 theta_dot = np.insert(theta_dot ,0,0)
117 t = np.insert(t,0,0)
118

119 x_double_dot = calc_ddx(x_dot,t)
120 z_double_dot = calc_ddx(z_dot,t)
121 theta_double_dot = calc_ddx(theta_dot,t)
122

123 return x_double_dot, z_double_dot, theta_double_dot

D.9.4. Fatigue rainflow class
1 #!/usr/bin/env python3
2 # -*- coding: utf-8 -*-
3 """
4 Created on Wed Sep 14 16:33:38 2022

D.9. Fatigue calculations 136

5

6 @author: Giles
7 """
8 import numpy as np
9 import matplotlib.pyplot as plt
10 import rainflow
11 from Utilities.Utilities import find_nearest_index
12

13 class Fatigue_Rainflow_Class():
14 def __init__(self,fatigue_class_instance ,signal,time) :
15 #--- Inherit from head instance
16 self.m = fatigue_class_instance.m
17 self.n_eq = fatigue_class_instance.n_eq
18

19 self.time = time
20 self.extremes, self.extreme_times = self.sig2ext(signal,time,0)
21 self.rf = self.rainflow_extract(self.extremes)
22

23

24

25

26 def sig2ext(self,sig,t=[1], plot=0):
27 #finding the turning point
28 sig = np.array(sig)
29 turningpoint_list = self.turningpoints(sig)
30 #-- Cutting off everything but the turning points
31 extremes = sig[turningpoint_list]
32

33 #--- The Same should be done with time
34 if len(t) == 1 : #if no time was given, 1 second is presumed
35 dt = np.array(range(0,len(sig)))
36 extreme_times = dt[turningpoint_list]
37 elif len(sig) == len(t): #if the time was given the same indexing applies
38 dt = np.array(t)
39 extreme_times = dt[turningpoint_list]
40 else: raise ValueError("The time and signal are of different sizes")
41

42 #-removing tripples
43 triple_free_idx = self.remove_triples(extremes)
44 extremes = extremes[triple_free_idx]
45 extreme_times = extreme_times[triple_free_idx]
46

47 #removing doubles
48 double_free_idx = self.remove_doubles(extremes)
49 extremes = extremes[double_free_idx]
50 extreme_times = extreme_times[double_free_idx]
51

52 #- re-check for turning points (we may have removed some)
53 turningpoint_list = self.turningpoints(extremes)
54 #-- Cutting off everything but the turning points
55 extremes = extremes[turningpoint_list]
56 extreme_times = extreme_times[turningpoint_list]
57

58 if plot:
59 self.plot_first50(dt,sig,extreme_times,extremes ,20)
60

61 return extremes, extreme_times
62

63

64 def turningpoints(self,signal):
65 """
66 Function returns array of turning points.
67 To maintain the same size array it is presumed that the first and last
68 entry in the signal are also turningpoints.
69

70 Parameters
71 ----------
72 signal : array
73 series of signals (in this case loading or stress makes sense).
74

75 Returns

D.9. Fatigue calculations 137

76 -------
77 TYPE: Array
78 Binary array to indicate if there is or isnt a turning point at that point.
79

80 """
81 dx = np.diff(signal)
82 point_list = np.less_equal((dx[1:] * dx[:-1]), 0).astype(int)
83 point_list = np.insert(point_list ,0,1)
84 point_list = np.insert(point_list,len(point_list),1)
85 return point_list.astype(bool)
86

87

88 def remove_triples(self,signal):
89 dx = np.diff(signal)
90 check1 = np.not_equal([dx[1:],dx[:-1]], 0)
91

92 point_list = np.logical_and(check1[0],check1[1]).astype(int)
93 point_list = np.insert(point_list ,0,1)
94 point_list = np.insert(point_list,len(point_list),1)
95 return point_list.astype(bool)
96

97 def remove_doubles(self,signal):
98 point_list = np.not_equal(signal[1:],signal[:-1])
99 point_list = np.insert(point_list,len(point_list),1)
100 return point_list.astype(bool)
101

102 def plot_first50(self,dt,sig,extreme_times,extremes,point=50):
103 """
104 This function plots the first 50 points of the 'cleaned' signal
105 and also plots the same points on the unclean version. Matching up
106 in final time stamp. This allows to visualize the effect of SIG2EXT
107

108 The 50 is standar but can be adjusted to whichever number the user
109 wants by changing the 'point' value
110

111 Parameters
112 ----------
113 dt : Array
114 timeseries.
115 sig : Array
116 unfiltered signal.
117 extreme_times : Array
118 Time stamps matching the filtered signal.
119 extremes : Array
120 Filtered signal from SIG2EXT .
121 point : Value, optional
122 How many points do you want plot?. The default is 50.
123

124 Returns
125 -------
126 Plot
127 2 plots of the same time span. Top is unfitered bottom is filtered.
128

129 """
130 idx = find_nearest_index(extreme_times[point],dt)
131 plt.figure
132 plt.subplot(211)
133 plt.plot(dt[0:idx],sig[0:idx])
134 plt.subplot(212)
135 plt.plot(extreme_times[0:point],extremes[0:point])
136 return plt.show()
137

138 def rainflow_extract(self,signal):
139 """
140 Function that extracts the rainflow counter data and stores it in one
141 numpy array. The rainflow counter works with lazy iterator which means
142 the results normally would not be stored. Hence the need for this
143 function
144

145 Parameters
146 ----------

D.10. Utility Functions 138

147 signal : 1D Array
148 signal that goes through the rainflow counter.
149

150 Returns
151 -------
152 rf : Array of 1D arrays
153 Array containing range, mean, count, start and finish iterations
154 for each cycle. (in that order).
155

156 """
157 #Making empty arrays
158 rng, mean, count = np.empty(0), np.empty(0), np.empty(0)
159 i_start, i_end = np.empty(0), np.empty(0)
160

161 for rng_i, mean_i, count_i ,i_start_i, i_end_i in rainflow.extract_cycles(signal):
162 rng = np.append(rng,rng_i)
163 mean = np.append(mean,mean_i)
164 count = np.append(count,count_i)
165 i_start = np.append(i_start,i_start_i)
166 i_end = np.append(i_end,i_end_i)
167

168 rf = np.array([rng,mean,count,i_start,i_end])
169 return rf
170

171 def scale_cycles2lifetime(self,cycles,cycle_time,years):
172 years2seconds = years*365*24*60*60
173 scaling_factor = years2seconds/cycle_time
174 scaled_cycle = cycles * scaling_factor
175 return scaled_cycle
176

177 def calc_eq_life_stress(self,rf,years):
178 cycles = rf[2]
179 cycle_time = self.time[len(self.time)-1]
180 scaled_cycles = self.scale_cycles2lifetime(cycles,cycle_time,years)
181

182

183 equivelant_stress = np.sum(scaled_cycles*(rf[0]**self.m)/self.n_eq)**(1/self.m)
184 eq_stress_test = self.calc_eq_loadrange(rf)
185

186 return equivelant_stress,np.sum(scaled_cycles)
187

188 def calc_eq_loadrange(self,rf):
189 '''
190 Usually, a further simplification of the fatigue loading quantification
191 is performed by converting the fatigue load spectrum into a damage
192 equivalent load range ΔRe. This is a constant load range which, in an
193 equivalent number of cycles Ne, will produce the same amount of damage
194 as the actual fatigue load spectrum with different load ranges ΔRi and
195 cycles Ni. The equivalent load range ΔRe is defined as (Hansen, 2008):
196

197 Parameters
198 ----------
199 rf : List of arrays
200 Rainflow output.
201

202 Returns
203 -------
204 eq_loadrange : Value
205 Equivelant load range.
206

207 '''
208 eq_loadrange = np.sum(((rf[0]**self.m)/self.n_eq))**(1/self.m)
209 return eq_loadrange

D.10. Utility Functions
D.10.1. Utilities for Main

1 #!/usr/bin/env python3
2 # -*- coding: utf-8 -*-

D.10. Utility Functions 139

3 """
4 Created on Mon Oct 17 12:20:33 2022
5

6 @author: Giles
7 """
8 import time
9 import numpy as np
10 from Utilities.Utilities import find_nearest_index
11 def unpack_x(x):
12 D = x[0]
13 L = x[1]
14 t = x[2]
15 return D,L,t
16

17 def optimizeloop(iterations,x0,objective,constraints,T0,optimizationclass,L=10):
18

19 solution_list = np.zeros(iterations)
20 x_best = np.zeros([iterations,len(x0)])
21 x0_list = np.zeros([iterations,len(x0)])
22 x_start_list = np.zeros([iterations,len(x0)])
23 time_list = np.zeros([iterations,len(x0)])
24 consec_change_count_lst=[]
25 howmanydown_count_lst =[]
26 K_lim_count_lst =[]
27 Tempchange_count_lst =[]
28 for i in range(iterations):
29 #x0[0] = np.random.uniform(5,15)
30 #x0[1] = np.random.uniform(150,300)
31 #x0[2] = np.random.uniform(0.01,0.5)
32 print(i)
33 x_start_list[i] = x0
34

35 start_time = time.time()
36 optimize = optimizationclass(objective,constraints,T0,x0,L,J=50,delta =

0.1,gamma = 0.0025,K_lim = 50)
37 x0_list[i] = optimize.x0
38 x_best[i] = optimize.xbest
39 solution_list[i] = objective(x_best[i])
40 consec_change_count_lst.append(optimize.consec_change_count)
41 howmanydown_count_lst.append(optimize.howmanydown_count)
42 K_lim_count_lst.append(optimize.K_lim_count)
43 Tempchange_count_lst.append(optimize.Tempchange_count)
44 print("---%s seconds ---" % (time.time()-start_time))
45 time_list[i] = (time.time()-start_time)
46 return solution_list,x_best,x_start_list,time_list, consec_change_count_lst ,

howmanydown_count_lst , K_lim_count_lst, Tempchange_count_lst
47

48

49 def didnotconverge (x_best_list,x0):
50 x_noconverge = x_best_list[x_best_list==x0]
51 return x_noconverge
52

53 def max_improve(solution_list,f0):
54 diff = solution_list - f0
55 return ((diff)/f0)*100
56

57 def statistics(solution_list,f0):
58 '''
59 Generates the average and standard deviation of a looped optimization.
60

61 Parameters
62 ----------
63 solution_list : TYPE
64 Array of all the found optima.
65 f0 : TYPE
66 Starting solution.
67

68 Returns
69 -------
70 TYPE
71 Average optima and standard deviation.

D.10. Utility Functions 140

72

73 '''
74 A = clean_x0_list(solution_list,f0)
75 A = (solution_list-f0)/f0
76 A = A*100
77 A=A[A!=0]
78 return np.average(A), np.std(A)
79

80

81 def clean_x0_list(x0_list,x0):
82 index = np.where(x0_list==x0)
83

84 x0_clean = np.delete(x0_list,index,0)
85 return x0_clean
86

87 def design_variable_stats(x0_list,x0):
88 x0_list = clean_x0_list(x0_list,x0)
89 D_list = np.zeros(len(x0_list))
90 L_list = np.zeros(len(x0_list))
91 t_list = np.zeros(len(x0_list))
92 comb_list = np.zeros(len(x0_list))
93

94

95 for i in range(len(x0_list)):
96 D_list[i] = x0_list[i][0]
97 L_list[i] = x0_list[i][1]
98 t_list[i] = x0_list[i][2]
99 comb_list[i] = D_list[i]*L_list[i]*t_list[i]
100 print(D_list[i]*L_list[i]*t_list[i])
101 Avg_D = np.average(D_list)
102 Avg_L = np.average(L_list)
103 Avg_t = np.average(t_list)
104 Avg_comb = np.average(comb_list)
105

106 Avg_x = np.array([Avg_D,Avg_L,Avg_t])
107 std_x = np.array([np.std(D_list),np.std(L_list),np.std(t_list)])
108 std_comb = np.std(comb_list)
109

110

111

112

113 return Avg_x, std_x, [Avg_comb,std_comb]
114

115 def find_extreme_designs(xbest_list):
116 D_max,L_max,t_max = np.amax(xbest_list ,0)
117 D_min,L_min,t_min = np.amin(xbest_list ,0)
118

119 D_max_idx = np.where(xbest_list == D_max)[0]
120 L_max_idx = np.where(xbest_list == L_max)[0]
121 t_max_idx = np.where(xbest_list == t_max)[0]
122

123 D_min_idx = np.where(xbest_list == D_min)[0]
124 L_min_idx = np.where(xbest_list == L_min)[0]
125 t_min_idx = np.where(xbest_list == t_min)[0]
126

127 x_Dmax = xbest_list[D_max_idx]
128 x_Lmax = xbest_list[L_max_idx]
129 x_tmax = xbest_list[t_max_idx]
130

131 x_Dmin = xbest_list[D_min_idx]
132 x_Lmin = xbest_list[L_min_idx]
133 x_tmin = xbest_list[t_min_idx]
134

135 x_max = np.array([x_Dmax,x_Lmax,x_tmax])
136 x_min = np.array([x_Dmin,x_Lmin,x_tmin])
137

138 return x_max, x_min

D.10.2. Utilities for Packages

D.10. Utility Functions 141

1 # -*- coding: utf-8 -*-
2 """
3 Created on Mon Aug 1 12:04:34 2022
4

5 @author: TORSPI
6 """
7 import numpy as np
8 from math import exp, log, sqrt,pi,tanh
9 from scipy.optimize import fsolve
10 import pickle
11 import math
12

13 def save_obj(obj,filename,path = 'Objects/'):
14 with open(path+filename, 'wb') as outp:
15 pickle.dump(obj, outp, pickle.HIGHEST_PROTOCOL)
16

17 def load_obj(filename,path = 'Objects/'):
18 with open(path+filename, 'rb') as picklefile :
19 content = pickle.load(picklefile)
20 return content
21

22

23 def indices(a, func):
24 return [i for (i, val) in enumerate(a) if func(val)]
25

26 def JonSwap (Hs,Tp,f_matrix,Gamma=3.33):
27 """
28 Function that generates the spectral densities according to the JonSwap
29 Spectrum. Using a standard paramater of 3.33, this can also be adjusted when
30 the function is called.
31

32 Parameters
33 ----------
34 Hs : Value
35 Significant Wave Height.
36 Tp : Value
37 Significant Wave Period.
38 f_matrix : Array
39 Frequence matrix.
40 Gamma : Value, optional
41 Jonswap Parameter. The default is 3.33.
42

43 Returns
44 -------
45 Sjs : TYPE
46 Spectral Density.
47 a : Array
48 Spectral Amplitudes.
49

50 """
51 fp = 1/Tp
52 df = f_matrix[1]-f_matrix[0]
53 Sjs = np.zeros(len(f_matrix))
54 a = np.zeros(len(f_matrix))
55

56 for i in range(len(f_matrix)):
57 if f_matrix[i] <= fp:
58 sigma = 0.07
59 else:
60 sigma = 0.09
61

62 Sjs[i] = 0.3125*Hs**2 *Tp*((f_matrix[i]/fp)**-5)\
63 * exp(-1.25*((f_matrix[i]/fp)**-4))*(1-0.287*log(Gamma))\
64 * Gamma**exp(-0.5*(((f_matrix[i]/fp)-1)/sigma)**2)
65

66 a[i] = sqrt(2*Sjs[i]*df)
67

68 return Sjs,a
69

70 def Kaimal(u,I,f_matrix,l=340.2):
71 """

D.10. Utility Functions 142

72 Using the IEC defenition of he kaimal turbulence model (International
73 Electrotechnical Commission, 2015) This function returns the spectral
74 densitiy
75

76 Expression for Kaimal spectral density found in:
77

78 Operational Vibration-Based Response Estimation for Offshore Wind Lattice Structures
79 February 2015
80 DOI:10.1007/978-3-319-15230-1_9
81

82 Parameters
83 ----------
84 f_matrix : Array
85 Array containing all frequencies.
86 u : Value
87 Mean Wind Speed.
88 I : Value
89 Turbulence intensity. (standard deviation of the wind speed)
90 l : Value
91 Length .Optional: default = 340.2
92

93 Returns
94 -------
95 S_wind : Array
96 Spectral Density
97 a_wind : Spectral Amplitudes
98

99 """
100 #figure out standard
101 # sigma = (TI /100)*u
102 # S_f = (4 * sigma * L /u)/(1+6*f*L/u)**(5/3)
103

104

105 #Past used example
106 df = f_matrix[1]-f_matrix[0]
107 S_wind = np.zeros(len(f_matrix))
108 a_wind = np.zeros(len(f_matrix))
109

110 S_wind = 4*I**2*u*l * ((1+6*(f_matrix)*l/u))**(-5/3)
111 a_wind = np.sqrt(2*S_wind*df)
112

113 return S_wind, a_wind
114

115 def unpack_q(q):
116 x = q[0]
117 z = q[1]
118 theta = q[2]
119

120 x_dot = q[3]
121 z_dot = q[4]
122 theta_dot = q[5]
123 return x,z,theta, x_dot,z_dot,theta_dot
124

125 def find_nearest_index(value,array):
126 array = np.asarray(array)
127 idx = np.abs(array-value).argmin()
128 return idx
129

130 def cut_profile2size(L_spar,profile,z_uw,spar_position):
131 #-- find the lowest position of spar in water
132 lowest_point = spar_position-L_spar
133 lowest_profile_index = find_nearest_index(lowest_point,z_uw)
134 if z_uw[lowest_profile_index] < L_spar:
135 lowest_profile_index = lowest_profile_index -1
136

137 useful_profile = profile[lowest_profile_index:]
138

139 return useful_profile, z_uw[lowest_profile_index:]
140

141 def calc_ddx(dx,t):
142 """

D.10. Utility Functions 143

143 This function calculates the time derivative based on linear assumpution.
144 Assuming that the change in time derivative at two steps has happened linearly
145

146

147 Parameters
148 ----------
149 dx : Array
150 Thing you want to take the derivative of (at given time steps).
151 t : Array
152 Array of time values correspondiing with the to be derived array.
153

154 Raises
155 ------
156 ValueError
157 The two arrays must be the same size.
158

159 Returns
160 -------
161 ddx : Array
162 Time Derivative.
163

164 """
165 #check lengths
166 if len(dx) == len(t):
167 ddx = np.zeros(len(dx)-1)
168 for i in range(len(dx)-1):
169 ddx[i] = (dx[i+1]-dx[i])/(t[i+1]-t[i])
170 if math.isnan(ddx[i]):
171 ddx[i]=0
172 return ddx
173 else:
174 raise ValueError("Two different size arrays can not be used")
175

176 def find_length(array):
177 """
178 This function returns the longest length in a multiple dimension array.
179 The built in function len will only return the length of the first dimension
180

181

182 Parameters
183 ----------
184 array : Array
185 Multiple Dimension array.
186

187 Raises
188 ------
189 ValueError
190 This function works up to 5 dimensions.
191

192 Returns
193 -------
194 Value
195 Length of the longest dimension.
196

197 """
198 dimensions = np.ndim(array)
199 if dimensions == 1 :
200 return len(array)
201 if dimensions == 2:
202 len1 = [len(array),len(array[0])]
203 return max(len1)
204 if dimensions == 3:
205 len1 = [len(array),len(array[0]),len(array[0][0])]
206 return max(len1)
207 if dimensions == 4:
208 len1 = [len(array),len(array[0]),len(array[0][0]),len(array[0][0][0])]
209 return max(len1)
210 if dimensions == 5:
211 len1 = [len(array),len(array[0]),len(array[0][0]),len(array[0][0][0]),len(array

[0][0][0][0])]
212 return max(len1)

D.11. Math Functions 144

213 if dimensions > 5:
214 raise ValueError("This function cannot return the length of an array with so many

dimensions")

D.10.3. Utilities for Wind Functions
1 #!/usr/bin/env python3
2 # -*- coding: utf-8 -*-
3 """
4 Created on Sun Oct 16 20:54:11 2022
5

6 @author: Giles
7 """
8 from math import exp
9

10 def movewindup(U10,z,alpha=0.1):
11 '''
12 Function returns wind speed at any height using the power law.
13

14 Parameters
15 ----------
16 U10 : Value
17 Wind Speed at 10 meters.
18 z : Value
19 Hub Height.
20 alpha : Value, optional
21 Power law coefficient. The default is 0.1.
22

23 Returns
24 -------
25 Value
26 Wind speed at given height.
27

28 '''
29 return U10*(z/10)**alpha
30

31 def weibull_pdf(u,alpha = 2.029,beta = 9.409):
32 '''
33 Returns weibull pdf function given a specific wind speed.
34 if not specified the parameter values are taken from Norway Site 5
35 Found in:
36 "Joint Distribution of Environmental Condition at Five European
37 Offshore Sites for Design of Combined Wind and Wave Energy Device"s
38

39

40 Parameters
41 ----------
42 u : Value
43 DESCRIPTION.
44 alpha : Value, optional
45 Parameter. The default is 2.029.
46 beta : Value, optional
47 Parameter. The default is 9.409.
48

49 Returns
50 -------
51 TYPE
52 DESCRIPTION.
53

54 '''
55 return alpha/beta*(u/beta)**(alpha-1)*exp(-(u/beta)**alpha)

D.11. Math Functions
D.11.1. PSD

1 # -*- coding: utf-8 -*-
2 """

D.11. Math Functions 145

3 Created on Fri Jun 17 11:01:32 2022
4

5 @author: TORSPI
6 """
7 import numpy as np
8

9 def PSD(time,signal):
10 """
11 Return Power Spectral Density of any signal over time
12

13 Parameters
14 ----------
15 time : array
16 vector of time (1D array).
17 signal : Array
18 Response in time.
19

20 Returns
21 -------
22 psd : Array
23 Power spectral density over frequency.
24

25 """
26 df = 1/(time[-1]-time[0])
27 f_vec = df*np.linspace(0,len(time)-1,len(time))
28 ai = np.fft.fft(signal)/len(time)
29 ai[0] = 0
30 ai[range(round(len(time)/2),len(time))]=0
31 ai = 2*ai
32 psd = abs(ai)**2/2/df
33

34 return psd,f_vec

D.11.2. Integrate Class
1 # -*- coding: utf-8 -*-
2 """
3 Created on Sun May 8 17:20:02 2022
4

5 @author: TORSPI
6 """
7 import numpy as np
8

9 class Integrate:
10 """
11 Class used to integrate functions
12 """
13 def __init__(self,function):
14 self.function = function
15 self.error = 0
16 self.sign = 1
17

18 def integral(self,lower,upper,precision=100):
19 """
20 Integral using the trapezoidal method
21

22 Parameters
23 ----------
24 lower : Value
25 Lower limit of the integral.
26 upper : Value
27 Upper limit of the integral.
28 precision : Value, optional
29 Defines precision of integral for a hundreth precision fill in a
30 hundred . The default is 1000.
31

32 Returns
33 -------
34 Value
35 Integral of passed function .

D.11. Math Functions 146

36

37 """
38

39 if lower>upper:
40 lower,upper = upper,lower
41 self.sign = -1
42 numberofpoints = (upper-lower)*precision
43 dx_list = np.linspace(lower,upper,int(numberofpoints+1))
44 integral = 0
45 super_sum = 0
46 sub_sum = 0
47

48 for i in range(len(dx_list)-1):
49 delta = dx_list[i+1]-dx_list[i]
50 try:
51 y1 = self.function(dx_list[i])
52 y2 = self.function(dx_list[i+1])
53 sub_area = y1*delta
54 super_area = y2*delta
55

56 area = (y2+y1)/2 * delta
57 integral+= area
58 sub_sum += sub_area
59 super_sum += super_area
60 except ZeroDivisionError:
61 print(f"\nAvoided pole")
62 self.error = super_sum - sub_sum
63 return self.sign*integral

D.11.3. Boolean Functions
1 # -*- coding: utf-8 -*-
2 """
3 Created on Tue May 24 19:45:12 2022
4

5 @author: TORSPI
6

7

8 Contains random mathmatical functions that return boolean values
9 """
10

11 def checkifeven(anyvector):
12 """
13 Function that checks if list or array has even amounts of entries
14

15 Parameters
16 ----------
17 anyvector : Array or List
18 The array or list that you want to consider
19

20 Returns
21 -------
22 bool
23 truth for even, false for uneven.
24

25 """
26 if (len(anyvector) % 2) ==0 :
27 return True
28 else: return False

	Preface
	Summary
	Introduction
	Floating Wind
	Substructures General Overview
	Preliminary Design
	Research Question

	Numerical load and response
	Theory: Numerical loads and response
	Forcing
	Fatigue Damage

	Methodology: Numerical loads and response
	Environmental Conditions
	Structural Model
	Forcing Calculations
	Response Calculation
	Fatigue Calculation
	Lifetime fatigue and Environment

	Optimization
	Theory: Optimization
	Gradient Based Methods
	Gradient Free Methods

	Methodology: Optimization
	Simulated Annealing
	Test Functions
	Optimization Formalism
	Constraints
	Fatigue Constraints

	Results
	Constraining by Geometrics
	Set Mooring Stiffness
	Mooring stiffness based on surge natural period

	Constraining with Time Domain
	Constraining with Fatigue Damage

	Conclusion and Discussion
	Conclusion
	Overal conclusions

	Discussion and Reccomendations

	References
	Coding Basics
	Tables
	Original Formulas
	Aerodynamic Damping

	Source Code
	Experiment 1:Logical Constraint Optimization
	Constraint classes
	Main Class
	Geomtric Constraint Class
	Time Domain Constraint Class

	Simulated annealing class
	Structure
	Superstructure
	Substructure
	Full system

	Time domain simulation class
	Kinematics
	Wave kinematics class
	Wind kinematics class

	Dynamics
	Hydrodynamics class
	Aerodynamics class

	State class
	Fatigue calculations
	All environments import
	Fatigue Class
	Fatigue loading class
	Fatigue rainflow class

	Utility Functions
	Utilities for Main
	Utilities for Packages
	Utilities for Wind Functions

	Math Functions
	PSD
	Integrate Class
	Boolean Functions

