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Tweede-orde sluitingsmodellering van transitionele
en instationaire turbulente stromingen

van

Ibrahim Hadzié

. Turbulentie die wordt onderworpen aan alleen cyclische compressie en expansie kan niet

in stand blijven en zal onafhankelijk van de begintoestand uitsterven.

. Een kleine verandering van een modelcoéfficiént van een lage-Reynolds tweede-orde slui-

tingsmodel leidt vaak tot een aanzienlijke verandering in de voorspelde resultaten.

. Instabiliteit van een numerieke rekencode kan ook veroorzaakt worden door dat het fysi-

sche model ofwel de implementatie hiervan incorrect is.

. Het hebben van een groot aantal ideeén over een bepaald onderzoeksonderwerp hoeft nog

niet te betekenen dat daar ook goede ideeén bijzitten.

. De directe numeriek simulatie van een volledige vliegtuig blijft gedurende vele tientallen

jaren nog onbereikbaar. We mogen ons gelukkig prijzen dat we Reynolds-gemiddelde
turbulentiemodellen tot onze beschikking hebben.

. Omdat sommige wiskundige modelien vele jaren geleden, toen de oplosmethodes waren

besmet door numerieke fouten vanwege de geringe computerkracht, zijn ontwikkeld zou-
den deze opnieuw moeten worden bekeken en herzien.

. Bij de productie van hand-geknoopte tapijten is kinderarbeid een direct resultaat van de

wens van de aankopers om deze producten zo voordelig mogelijk te krijgen.

. De term ’etnische zuivering’ is uitgevonden om de ware betekenis van de daad te verber-

gen.

. Met het oog op de grote vooruitgang in treinreizen, informatie- en computertechnologie is

het verbluffend dat het onlangs onmogelijk is geworden om op het treinstation van Delft
en andere kleine steden in Nederland een kaartje te kopen voor een internationale bestem-
ming.

Terwijl we op zoek zijn naar oplossingen voor een probleem, stuiten we vaak op andere
onverwachte problemen, die eerst opgelost moeten worden.
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Propositions

belonging to the dissertation

Second-Moment Closure Modelling of Transitional
and Unsteady Turbulent Flows

by
Ibrahim Hadzié¢

. Turbulence subjected to only cyclic compression and expansion cannot sustain and it will

die out irrespective of the initial state.

. A slight change in a model coefficient of low-Re-number second-moment closure models

often leads to a notable change in the prediction results.

. Instability of a numerical code indicates also that either the physical model or its imple-

mentation is incorrect.

. Having a large number of ideas about a particular research subject can mean having no

good ideas.

. The direct numerical simulation of an entire aircraft is inconceivable and will remain so for

many decades to come. We are fortunate to have Reynolds-averaged turbulence closures
at our disposal.

. Since some mathematical models were developed many years ago, when the solution meth-

ods were contaminated by numerical errors because of small computer power, they should
be revisited and revised.

. In the manufacturing of hand-knotted carpets, child labour is a direct result of the pur-

chasers” desire to have these products as cheap as possible.

. The term ’ethnic cleansing’ was invented to conceal the true meaning of the deed.

. Despite great advancement in train transportation, informatics and computer technologies,

it is surprising that it has recently become impossible to buy a ticket for an international
destination at the train stations in Delft and others small cities in the Netherlands.

While we seek solutions of a problem, other unexpected problems often appear and have
to be solved first.
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CHAPTER 1

Introduction

This thesis deals with computational modelling of the wall-bounded fluid flows in arbitrary geo-
metries at transitional and higher Re-numbers using second-moment closure statistical turbulence
models. Accurate prediction of these flows is of vital importance for design of many engineering
devices. Examples of situations where such predictions are needed are numerous and include
external and internal aerodynamics. Of particular importance are the flows in turbines, com-
pressors, pumps, heat exchangers, internal combustion engines, as well as flows around vehicles.
Transitional flows are important also in bio-engineering and in mammal organisms (air flow in
lungs, blood in vanes and arteries).

Besides experiments, several computational techniques are nowadays in use for research and
design purposes concerning turbulent fluid flows. Direct Numerical Simulation (DNS) solves the
Navier-Stokes equations, which describe the fluid flow, with appropriate boundary conditions on
a such fine numerical grid and with a such small time step so that all eddy scales in turbulent
motions of fluid are resolved. The only uncertainty involved is the numerical error. Since DNS
requires a very large computer power and time, it is nowadays limited only to flows at relatively
small Reynolds numbers and in simple geometries. The number of grid points used is up to tens
of millions and such computations last for months on the massively parallel computers. DNS
provides a great deal of information on turbulence phenomena enabling a deep insight into it.
It also supplies essential information for the turbulence modelling. For these reasons, DNS is
gaining on importance, but mainly as a research tool.

An increasingly popular technique for simulation of turbulent flows is the Large Eddy Simu-
lation (LES). It is also an unsteady approach which solves Navier-Stokes equations on a coarser
mesh and with a larger time step than DNS but which are still fine enough to resolve large
scale motions. The effects of the unresolved small scale motions are modelled. LES has been,
with moderate to large success, already applied to computations of turbulent flows at relatively
complex conditions. However, LES requires also significant computer resources and long time
computations. Spalart ef al. (1997) estimated, highly optimistically, as they said, that for a LES
of an airplane wing one needs about 10!! grid points and 5 x 10° time steps on unstructured
adaptive grids. With current trend of increase in computer power (a factor of 5 every 5 years)
they foresee that resolving this task only may become feasible in the forth decade of the next
century!
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Single-point statistical modelling of turbulence is nowadays the most widely spread approach
for predicting turbulent flows. It is based on Reynolds averaging (Reynolds 1894) of the instant-
aneous fluctuating quantities. This approach involves modelling of the second-moment correla-
tion of the fluctuating velocity, which appear in the Reynolds averaged Navier-Stokes (RANS)
equations. Depending on the level at which the modelling is applied, several different approaches
of the statistical modelling of turbulence are to be distinguished. Eddy-viscosity model (EVM) is
an algebraic representation of the second-moment correlation where the needed velocity-, time-
and length-scales of turbulence are supplied usually by transport equations for two of the scales
or any combinations of them. Although numerous shortcomings of the EVM approach have
been well documented in the literature, this approach is still the most widely used turbulence
model for engineering design. Non-linear eddy-viscosity models, currently under development
and investigation, are a possible route to overcome the defects of conventional linear EVMs. A
mathematically and physically better founded approach with the framework of RANS modelling
is the second-moment closure (SMC) which seeks solution of the differential transport equations
for the second-moment correlations of the fluctuating quantities. Some terms in the exact equa-
tions have to be modelled. Solving the transport equations for turbulence quantities offers a large
potential because all particular phenomena which drive these quantities are separately accounted
for.

Computations of turbulent wall flows in the framework of RANS modelling are carried out
with either solving the model equations up to the wall (low-Re-number approach) or applying
the wall functions (high-Re-number approach) which utilise some empirical laws to set boundary
conditions for the mean flow and turbulence quantities relatively far from the wall (outside the
viscous region). Essential difference between these two approaches is that the low-Re-number
approach requires a more sophisticated turbulence model and demands a much finer numerical
mesh in the wall vicinity than the wall function approach. It is argued, however, that the low-
Re-number approach may be unavoidable if transition phenomena and accurate wall friction and
heat transfer are in focus. Successful reproduction of the near wall second-moment statistics
qualifies this approach for computations of a variety of engineering flows.

DNS of turbulent wall flows performed in the last decade and the databases they provided,
made a large impact on the development of turbulence models for the prediction of wall turbulent
flows. These data were especially useful for the development and validation of the SMC models
on the basis of the term-by-term modelling and particularly for the low-Re-number models. The
mathematical models aimed at the computation of turbulent flows are usually developed and
tuned to satisfy the most basic flows such as homogeneous shear flows and channel and boundary
layer flows and only occasionally are tested in more complex cases with separation, though
restricted to rectangular geometries (e.g. back-step flows). In order to be applied to the prediction
of complex flows, as needed in engineering and industrial applications, turbulence models have
to be tested in more severe geometrical and physical conditions. Arbitrary shape of the wall
boundary imposes a large deal of physical complexity and requires advanced numerical solvers.
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1.1 The scope of the research
The present work has two main objectives:

e to investigate possibilities for modelling of transitional wall flows by second-moment clos-
ure modelling and to provide a comparative and critical analysis of the existing models,
and to contribute to their improvement and validation

o (o establish a reliable, accurate and efficient numerical solution procedure for solving the
second-moment closure transport models for arbitrary two-dimensional flow domains with
applying both the wall functions and integration of the model equations up to the wall with
applying the exact wall boundary conditions.

Prior to this work, another PhD thesis (Jakirli¢ 1997) under supervision of Professor K. Han-
jali¢ was aimed to model development in the framework of the low-Re-number second-moment
closure. In the course of that work several different modelling strategies were investigated. The
model emerged was first tested in several equilibrium and non-equilibrium attached, separating
and rotating flows in a broad range of Re numbers and compared with a variety of experimental
and DNS results (Jakirlié 1997). Considered were: channel flows, strongly accelerated boundary
layers and sink flows including also cases with laminarisation, strongly decelerated boundary lay-
ers with increasingly adverse pressure gradient leading to separation, three-dimensional bound-
ary layers subjected to traverse shear and stream-wise acceleration, flow over surface mounted
fence and rib, backward facing step flow and pipe expansion at low and high Re numbers, and
swirling and rotating flows. Being focussed on model development and validation this analysis
was restricted to orthogonal flow domains.

The present author was partly involved in the joint research and contributed to the final for-
mulation of the model coefficients by expanding the optimisation process to a class of transitional
flows which included oscillating boundary layers and by-pass transition on the flat plate with a
sharp leading edge.

Subsequently, the present author explored some alternative approaches to modelling some
of the crucial terms in the transport equation for Reynolds-stresses as well as possible model
improvements. Specifically, a new approach to providing an alternative and a new general de-
rivation of the pressure-strain model was proposed. Also, a new model for stress dissipation rate
tensor is derived which does not use the wall topology parameters. Finally, a critical analysis of
conventional models of dissipation rate £ equation is proposed with suggestion for possible im-
provement for non-equilibrium flows. Further, the model validation was expanded to a broader
range of non-equilibrium flows. In contrast to the work of Dr. S. Jakirli¢, this thesis focusses on
the flows with transitional phenomena and flows with more complex irregular boundaries, using
non-orthogonal block-structured grids. The flows considered in the course of this thesis cover:

e oscillating boundary layers at transitional and higher Re numbers;
o oscillating finite length pipe flows;

o pulsating flows;

e by-pass transition on flat plate with sharp leading edge;
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separation induced transition on flat plate with circular leading edge;

separation induced transition on flat plate with virtually laminar incoming boundary layer;
flow around an airfoil (NACA 4412) at high-Re-number;

developed and developing Couette flows at various pressure gradients;

channel and Couette flows with a wavy fixed wall;

a number of high-Re-number flows in complex geometries applying high- and low-Re-
number models such as: the staggered tube bundle flows, back-step flows with different
pressure gradient imposed by inclination of opposite wall, the hill and stenosis flows, etc.

The latter class of flows (high-Re-number flows), although interesting, are not discussed in
this thesis as they are not relevant to the topic.

1.2 Outline of thesis

This thesis is divided in six chapters. Chapter 2 presents the rational of high- and low-Re-number
second-moment closure models with some critical observations. It also provides some novel
ideas aimed at removing some known difficulties and at broadening the width of model applica-
tion. Chapter 3 presents the essential features of the numerical approach used towards solving the
second moment closure turbulence models with the wall functions and with the exact wall bound-
ary conditions. Special attention is given to obtaining accurate solution and providing sufficient
stability of the numerical solver in order to enable application of the second-moment closure
models in geometrically and physically complex flows. In addition to geometric complexity, a
particular challenge here was the solution of high-Re-number flows using the model with low-
Re-number modifications which allowed integration up to wall. Subsequent two chapters present
applications and model validation in two major classes of transitional flows. In Chapter 4 atten-
tion is focussed on the oscillating and pulsating flows at transitional and higher Re-numbers. Op-
timisation of model coefficients was done using available DNS and experimental data. Chapter 5
presents results of the model validation and its application to transitional flows involving bypass
transition and the separation induced transition with a range of conditions. Finally, conclusions
drawn from the range of studies performed in the course of the present work as well as some
recommendations for the future work are given in Chapter 6.




CHAPTER 2

The Second-Moment Turbulence Closure

This chapter contains an outline of the turbulence models considered and used in the present
study. Several models for high-Re number flows, especially the linear and quasi-linear ones, are
discussed in more depth as they form the basis on which the model refinement and extension
are founded. Special attention is given to the models which allow integration of the equations
up to the wall with the use of exact wall boundary conditions. Some modelling issues, together
with some proposals for their improvement, such as modelling of the pressure-strain correlation
and dissipation rate tensor are discussed in more details. Performances of two low-Re-number
Reynolds-stress models in a channel flow and some non-equilibrium flows are presented and
discussed.

2.1 Introduction

The Reynolds-stress tensor has the greatest influence on the mean velocity and pressure in a
turbulent flow, which in turn are of primary interest for engineering purposes. Therefore, the
proper modelling of this tensor is essential for ensuring satisfactory predictive capability of a
CFD code. A number of modelling approaches for determining the Reynolds-stress tensor in
the framework of the Reynolds-averaging exists in the literature. These approaches differ in the
physical background, complexity and success in predicting modelled quantities. The most popu-
lar one, primarily because of its simplicity and computational convenience, is the eddy-viscosity
model (EVM) by which the Reynolds-stress tensor is assumed to be proportional to the mean
flow rate of strain. The turbulent viscosity 4, is determined from algebraic formulae in terms of
a time (or velocity) and length scales, which are usually provided from transport equations for
these variables or any linearly independent combination of them. Whereas the turbulence kin-
etic energy is generally accepted as a good representation of the velocity scale, the choice of the
second variable, providing the time or length scale is more uncertain. The k—¢, k—[ and k—w are
the most popular models for determination of the time and length scale. Although very popular
and widely used, the eddy-viscosity approach suffers from several weaknesses which are rooted
in the linear stress-strain relation as well as in the model equations, particularly the one which
provides the length or time scale. The basic shortcomings of the eddy-viscosity based models
are: i) unrealistic representation of the diagonal components of the Reynolds-stress tensor; ii}

5
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the history and non-local effects on the Reynolds-stresses tensor cannot be well predicted. These
shortcomings affect overall model performances especially in flows in which the gradients of
normal stresses contribute significantly to the momentum equations. Such are flows with separ-
ation and recirculation, flows with strong normal straining (stagnation and impinging regions);
swirling and rotating flows, secondary motion and three-dimensional flows in general. A number
of corrections to the model equations of eddy-viscosity approach has been proposed aimed at
eliminating some of the above mentioned deficiencies, though, most such remedies work only in
the specific class of flows for which they are tuned.

Due to the fact that the shortcomings of this approach are rooted primarily in the linear
relation between the stress and the mean flow strain rate, a way to improve performance of eddy-
viscosity type of models, which has become popular in the last decade, is to use a non-linear
constitutive relation (e. g. Gatski and Speziale 1993; Craft et al. 1997). Thus, the Reynolds-
stress tensor is expressed in terms of the mean flow strain rate and vorticity, where the time and
length scales are provided by the transport equations as in linear eddy-viscosity models. Better
performances of some quadratic and cubic forms of non-linear eddy-viscosity models over a
linear eddy-viscosity model in several complex flows including separation from smooth surfaces
and by-pass transition flows were reported recently by for example Craft ef al. (1997), Suga
(1997), Apsley et al. (1997).

The second-moment closure (SMC) models (also called the Reynolds-stress models, RSM,
when applied only to the dynamic field) are based on the exact transport equations for the
Reynolds-stress tensor components and are, therefore, the first natural step towards overcom-
ing the oversimplified idea behind the algebraic representation of the Reynolds-stress tensor. The
SMC model equations account separately for all physical mechanisms which drive the Reynolds-
stress tensor and, therefore, are capable of capturing the nonlocal and history effects. Some terms
in these equations (i.e. convection and production) do not need modelling and therefore preserve
the natural type of equations which might be of significant importance in many flows. Major
problem, encountered in SMC is a need to model a number of extra terms, primarily these in-
cluding pressure fluctuations, which are either absent or not dominant in eddy viscosity models.
While providing better physical basis, these terms in the SMC model equations pose new chal-
lenges and may, if modelled incorrectly, cancel the natural advantages of SMC models.

2.2 Reynolds-averaged Navier-Stokes equations

The instantaneous velocity and pressure fields in an incompressible turbulent flow under iso-
thermal conditions are solutions of the instantaneous continuity and Navier-Stokes equations,
for a Newtonian fluid given by

oU;

Fr 2.1)
. i 27 7.

o; . U 10P U; 22

5t Moz, T pon TV orioay
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where p and v are density and kinematic viscosity of the fluid, If; are instantaneous velocity
vector components and and P is instantaneous pressure. According to the Reynolds-averaging
approach, the instantaneous variables are decomposed into an ensemble mean and a fluctuating
part given by

U =U+u, P=P+p, (2.3)

where the capital letters (U;, P) represent an ensemble mean and the lower-case letters (u;. p)
represent the fluctuating part. This averaging leads to the Reynolds-averaged continuity equa-
tion and the Reynolds-averaged Navier-Stokes (RANS) equations for incompressible isothermal
turbulent flow of a Newtonian fluid, which can be written as

ou;
8101- o

0, 2.4)

D[Ji _ _]. apP 620Ti Juzuk

= ——— — . 25
Dt p Oz + Y ozze | Ok &
D
h — is
Here the operator Di is
D 0 J
=—+U, (2.6)

Dt ot Foxy

and T;u; are the one-point second-moment correlations of the fluctuating velocities which are
usually called the rurbulent or Reynolds stresses. The system of equations (2.4) and (2.5) is not
closed, as %;u; is a new variable (second order tensor) which emerges as a consequence of the
averaging. The task of RANS modelling is to provide the value of %;%; in order to close and
solve the system of equations (2.4) and (2.5).

The corresponding continuity and transport equations for the fluctuating variables are also a
direct consequence of Reynolds-averaging and read

8&,’ o

oz, 0, 2.7
» 7. . . 1 2., .

Du; v BLIUk N Ou; - %Uk _ Op 0“u; (2.8)

Dt om0 T B T pom s Orn
Fluctuating velocity u; and pressure p are the solution of equations (2.7) and (2.8) and depend on
the history of the velocity field, initial and boundary conditions. These equations are the basis for

deriving the exact transport equations for turbulence quantities, used for turbulence modelling.
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2.3 Modelling Reynolds-stress transport equation

2.3.1 Exact Reynolds-stress transport equation

The exact transport equation for the Reynolds-stress tensor components %;%; is derived by mul-
tiplication of the transport equation for the fluctuating velocity u; (2.8) with u; and vice versa,
adding these two expressions and taking the Reynolds-average. For an isothermal incompressible
flow of Newtonian fluid the equation can be written as

D v
*’Et—] =PB; —¢g; +1; + 'ij + Dij ) (2.9)
where ot 5
7. [Ji .
Py=- (uluka—xi + “f“’“a_xk> - production of Reynolds-stresses,
Ou; Ou; .
€ij =2 a;k 8—: - dissipation rate tensor,
1 a 0
I =—- (ulg2 + uja—p.) - velocity-pressure/gradient correlation,
p Tj Li
Ju;u;uy,
Dy, = —éTJk - turbulent velocity diffusion of Reynolds-stresses,
k
0 Ouu; e
) y& - viscous diffusion of Reynolds-stresses.

The term in which the fluctuating pressure appears (I;;) is for the modelling purposes usually
decomposed into two terms:

I; = &} + Df, (2.10)

where <I>§(j is a traceless tensor which does not contribute to the turbulence kinetic energy budget
(k = w1/2) and, therefore, is interpreted as a stress redistribution, and ij is a corresponding
deviatoric tensor which represents turbulent transport of %;u; by pressure fluctuations. It is pos-
sible to form more traceless tensors out of the II;;. Some possibilities for decomposition of II;;
are given in Table (2.1).
Groth (1991) argued that of all decompositions listed only the classical one (with the pressure-
strain correlation) is justified since all others yield non-zero diffusion in all directions even if
the flow is homogeneous in some directions. For example, in a two-dimensional flow which is
homogeneous in z3 direction, only the classical decomposition will lead to D3, = 0, whereas
all other alternatives give non-zero D3,. It should be noted that in most models the pressure
diffusion is lumped together with triple velocity correlation and modelled jointly so that, in fact,
the models do not distinguish $;; and IL;;.
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Table 2.1: Decomposition of the velocity-pressure/gradient correlation IT;; into a traceless tensors (<I>’Z-‘J-)
and corresponding deviatoric tensor (ij).

Proposal Y D},
comelation Ly (2 0w _L (o, o
pp 81‘3‘ c’ixl al?j adfi
1{ ap op  20pui . 12 am
197 2 = N A . -z
Lumley (1975) ’ (u oz, + uy 9z, 3 0zx 3 Do
Mansour —_— a4
t al. (1988) L oey Op TG ORRY 1T 0Pt
ctak o\ 90z, Yoz k oww 0"k Ok
. 1 U;Uj 1 - Ui
Durbin (1993) Hi]‘ — gﬂkk&-j — &5 + TJ g ngkdiJ + &ij — A L e

In the framework of the second-moment closure modelling, terms in equation (2.9) denoted
as g, ij and II;;, which are the higher order correlations, have to be modelled.

Following the definition of the turbulence kinetic energy & = w;w;/2 the exact transport
equation for & is obtained from equations (2.9) and can be written as

Dk ou; T, 0 (puy 1 o 0k
- = Uup— —Y—— — . — —_py— 2.11
Dt LLIUka:rk UIk Tr &tk - 2 i +01‘k &rk ( )
—_——— N — ————
Pk = Dt DZ

k

where P, is the production, ¢ is the dissipation and Dj and D}, are the turbulent and viscous
diffusion of the turbulence kinetic energy respectively.

2.3.2 Modelling of pressure-strain correlation

The pressure-strain correlation is of decisive importance for determination of the Reynolds-
stresses from their transport equations. Over the past several decades a number of studies (Chou
1945, Rotta 1951, Hanjalié¢ and Launder 1972, Noat, Shavit, and Wolfshtein 1973, Launder,
Reece, and Rodi 1975, Lumley 1978, Shih and Lumley 1985, Fu, Launder, and Tselepidakis
1987, Speziale, Sarkar, and Gatski 1991, Johansson and Hallbick 1994, Fu and Wang 1997)
have been aimed at the development of models for the pressure-strain correlation tensor. The
majority of models were developed for homogeneous flows. The most important reason for it
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is the simplicity of this kind of flows, especially when compared to the wall bounded flows,
which are strongly non homogeneous due to the presence of a solid wall. Developed and tuned
for homogeneous flows, these models usually perform rather poor when applied to wall flows,
especially if the model equations are to be solved up to the wall.

In this sub-section a short review and discussion of approaches applied to modelling of wall
flows with a special attention to the models integrable up to the wall with applying the exact wall
boundary conditions is given.

2.3.3 Decomposition of ®;;

Taking the divergence of the transport equation for «; (Equation 2.8) leads to the Poisson equation
for the fluctuating pressure p:

1 0% 0U 0w & (e —wi) (2.12)
P al‘l aZL’l al‘k al‘) 81?1 8:rk
It has been shown by Chou (1945) that the solution of this equation has the following form'
_ i/ 9 801 a'u,k 62 (uluk — uluk)' dVv
p= 4 Jv &m Bsc, ax, oxy, |ﬁ -7
dp’-d -
— &aﬁp—s + / p’ grad——— - dS, (2.13)
s 17— R

where 7 denotes the location at which p is evaluated; V is the volume of the flow domain bounded
by surface S, 7 is the location on or in the flow domain over which the integration is taken and
the quantities marked with a prime are evaluated at position 7.

In general, for an incompressible turbulent flow under isothermal conditions, one can write

Oui i/ o (00U (om Oui [ Puns \ Oui| dV
pax]- B a7 Jv agck 8;1‘1 Ba:j 811 axk 81';‘ 177*7?]

Rapid term Slow term

.dS. (2.14)

1—/——1 radp’ Y 1
I ik

Surface contribution

Expression (2.14) indicates that the pressure-strain correlation is dependent on two point cor-
relations and that three basic mechanisms are present: turbulence-turbulence interaction (slow
term); turbulence-mean/flow interaction (rapid term) and surface contribution (surface blockage
and pressure reflection). Thus, the pressure-strain correlation is modelled in the following form

®;; = O + 7 + @ (2.15)

'In the derivation of this solution the Green'’s function = s used. Thus, the solution for p has a different
=7
form if another Green’s function is used.
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where <I>}j, @fj and CI% are the slow term, the rapid term and the pressure-reflection term respect-
ively.

2.3.4 Models for homogeneous flows

Integrals in expression (2.14) have to be evaluated over the entire flow domain. However, the
two-point correlations rapidly decrease as |77’ — 7] increases, so that the volume integration can be
performed over small space surounding the point at which the integrals are computed. Therefore,
the mean velocity gradient can be taken out of the integration. For homogeneous flows away from
solid walls the surface contribution can be neglected. The pressure-velocity/gradient correlation
for homogeneous flows can be now written in the following form

1 O-u,- B’U,j aUl
—= = Ay + —M; 2.16
pp (3:@ + 8$,-> it Ory, Ikl ( )
where:
1 2 T(ou;  ou\| av
Ay = ,/ Oruuy \ (Ous | Ouj | @2.17)
A7 Jv |\ Ox; Oxy, Ozr; O 7! — 7"
1 [fow) (0w  ou\| av
M;; :—/ el i 2 2.18
" on Jy [(8@) (62,3 * 011-)J v’ — 7] @19
Tensors A and M satisfy the following conditions:
- symmetry: Ay = Ajis Mijr = My = My
—Continuity: Ai]' =0 A'Iijkk = A’{iikl =0,
— normalisation: A'[ijkk = 211,1’&] .

The most widely spread practise of modelling the pressure-strain correlation in an algebraic
manner is to express A and M tensors in terms of the Reynolds-stress anisotropy tensor

ity _ =045 (2.19)

where &;; is the Kronecker delta. The most general form of a model for the slow term obtained
by using the general tensor expansion and Caley-Hamilton theorem (Lumley 1978) is:

’ ].
éilj = —leaij — C1€ <aikakj — §A25ij> . (220)

The first term on the right hand side of equation (2.20) was proposed by Rotta (1951). A number
of proposed values for coefficients C; and C; can be found in the literature.
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Also based on the general tensor expansion and Caley-Hamilton theorem the most general
form of a model for the rapid part can be written as (see for example Hanjali¢ 1994; Demuren
and Sarkar 1993):

(b?j = 5 Py Qij

+ ,82 k Sij

2

+ fBsk (aiksjk + a;xSi — galkskléij)

+ ,64 k ((Lika]' + a'ijik)

+ G5k (a'ikalelj + ajkaklsli - 2ailakjslk - 3a1ijalclSlk)

+ Bs k(i + ajpanQy;)

3
+ ﬂ? k [annann (aﬂngj + aijki) + §aima'nj (akakn + ankam) s (221)
where 4 = a;ray; and
1(0U; 0U; 1/0U; 0OU;
=2 Q==—-=2]). 2.2

55 =3 (azj + 61:1-)’ i3 (axj 3Ii) 2.22)

The model coefficients C, Ci and J; to 8z may be, in general, functions of the invariants of the
anisotropy tensors of turbulence quantities and turbulence Reynolds number. A comprehensive
review of models for the pressure-strain correlation with a table overview of model coefficients
values were given recently by e. g. Demuren and Sarkar (1993), Hanjali¢ (1994) and Jakirlié
(1997).

It was shown by e. g. Hanjali¢ and Launder (1972), Launder et al. (1975), Johansson and
Hallbick (1994), Fu and Wang (1997) that using the symmetry, continuity and normalisation
constraints, the number of free coefficients can be reduced, i.e. the coefficients 3; to 35 can be
expressed in terms of a smaller number of independent coefficients. In general, the values of the
independent coefficients are determined either by comparing the entire model performances with
available experimental and DNS data for the Reynolds-stresses, or even the mean velocity, or by
direct model comparison to available DNS data in a term-by-term manner. In addition to this,
some authors have used the realisability constraints to determine or to bound the values of the
model coefficients (e. g. Shih and Lumley 1985; Fu ef al. 1987; Speziale et al. 1994; Durbin and
Speziale 1994). The concept of realisability requires that the model does not produce physically
unrealistic solutions for the Reynolds-stresses. The basic realisability constraints require that the
normal Reynolds-stresses must be positive and that the Schwarz’ inequality must be satisfied:

wu; > 0 and w; < W uag, (i #7) (no summation) (2.23)

2.3.5 Linear models

Although a cubic model is the most general form of the rapid term, it does not provide solution
of the modelling problem. In fact, performances of cubic or, in general, non-linear models, in
comparison to simpler linear ones are not always superior as shown, e.g. by Lien and Leschziner
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(1993a) in a systematic comparison of some linear and non-linear models in complex flows. It
has been shown by Craft and Launder (1996) that for the wall flows a cubic model with variable
model coefficients still needs some corrections in order to take into account the wall effects.
This increases tremendously the complexity of the pressure-strain model making it difficult for
validation and implementation into more general numerical codes. There exist a number of
proposals for the pressure-strain model which are linear in a;; (or quasi linear) and, thus, simple
and convenient for computations of complex flows, which still perform rather well when applied
in a broad range of flows. Two most frequently used forms of writing the rapid part of the
quasi-linear pressure-strain model are:

2
;= - Cf (Pz'j - gpkéij)
A 2 A A
— Cz (D” — §Pk§n) — Cd ]fSij — 04 P;caij (224)
or
1
bej = + C% (Sikakj + Sjrari — gsklalkfsi]’)
+ C};k (Qikak]- + ijaki) + Cgk?S” - Ckaa” (2.25)
where:
ou, __ oU;
Dij = — (uiulgx—j + uju10—3:i> . (226)

An overview of the proposed model coefficients in forms (2.24) and (2.25) is given in Table 2.2.
Two of these proposals include the quadratic term Cy Py.a;, (hence “quasi-linear”) (HL and SSG)
whereas all others are linear. All, except SSG, keep the coefficients constants for high Re-
number.

The HL model was proposed with C; = 2.8. Thus, in the logarithmic region of channel flow
where Py, /2 = 1, the C reduces to C; = 1.9 which is close to the most commonly used value of
this coefficients (C; = 1.8). It is interesting to note that despite of two decades of time span HL
and SSG arrived at the same value of the coefficient C, , though with the opposite sign, which,
again in the HL model was due to adopting ', = 2.8.
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Table 2.2: Coefficients of some linear models for ®;; as they are expressed in two forms given by formu-
lae (2.24) and (2.25) .

Model ct Ch Cs Cy
HL 0.6454 0.0636 0.02545 -0.9
LRR-QI 0.7636 0.1090 0.3636 0.
LRR-IP 0.6 0. 0. 0.
M 0.67 0.125 0.260 0.
SSG 0.4125 0.2125 0.0333 + 0.6254%% 0.9
Oberlack 0.800 0.400 0.800 0.
Model Ct Cc3 C3 C3
HL 0.709 0.582 0.92 —-0.9
LRR-QI 0.8736 0.6536 0.8 0.
LRR-IP 0.6 0.6 0.8 0.
M 0.795 0.545 0.8 0.
SSG 0.625 0.200 0.8 — 0.625A%2 0.9
Oberlack 1.200 0.800 0.800 0.
Note:

Abbreviations: HL - Hanjali¢ and Launder (1972), LRR - Launder et al. (1975), JM - Jones and Musonge
(1988), SSG - Speziale ez al. (1991), Oberlack - Oberlack (1997).

The correlations between coefficients of the two forms are as follows:
4
ci=ct+cs GG=ct-cf =g (ct+c)-cs  ci=ci

1 1 4
ct=5(ct+ap). ch=5(ct-c3). ct=z01-ch at=q}
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Assessment of some linear models for ®;;

There have been controversial claims on the predictive ability of various models, based on par-
tial or subjective validations, and sometimes contaminated by numerical errors. In order to verify
some of the claims and to establish arguments for the choice of basic high-Re-number model to
which the low Re-number modifications were implemented, we present here the results of assess-
ment of several linear and quasi-linear models for the pressure-strain correlation in homogeneous
flows and in fully developed channel flow.

Homogeneous flows

In order to assess performances of the linear models for the pressure-strain given in Table 2.2 in
simple one-dimensional flows, such as, for example, the homogeneous shear flows, one can apply

Da;; : , .
the stress equilibrium condition I;t] = 0 (Speziale et al. 1991), which leads to the algebraic

approximation of the transport equation for the Reynolds-stress (2.9)

Duu;

Dt

(A

k

Dk
~ D5+ D} = (— -Di+ D;) : (2.27)

Dt

If the dissipation tensor is assumed to be isotropic, equation (2.27) yields

P — %Pk bij + Py = ul:]
Using the models for the slow and rapid part of the pressure-strain tensor given by (2.20) and
(2.24), a system of non-linear® algebraic equations for unknown anisotropies of the Reynolds-
stresses (a;;) as function of the ratio of the production and dissipation of the turbulence kinetic
energy (P, /¢) is obtained, which can be solved to yield a;;.

Table 2.3 shows the computed values of anisotropy tensor a;; for two values of Py /e for linear
models given in Table 2.2. The results are compared with experimental data for a homogeneous
shear flow of Tavoularis and Corrsin (1981) for P;/c = 1.7 and with both the experiments of
Laufer (1950) and DNS of (Kim er al. 1987) for a log-region of a plane channel for Re, =
ur h/v = 180 and 395. For various models the value of coefficients in the slow-part of ®;; are
also indicated in Table 2.3.

The coefficients of the Jones-Musunge model were chosen to reproduce the experimental
data by Tavoularis and Corrsin (1981) and therefore this model performs very well for the case
P, /e = 1.7. In general, the best results for both cases are produced by the SSG model, although
it cannot capture the level of anisotropy in the logarithmic region of channel flows. The result of
the SSG model for P,/ = 1 is the same as obtained by Demuren and Sarkar (1993) (also given
in the data bank of Journal of Fluids Engineering). On the basis of the computation of a channel
flow (P, /s = 1) and experimental data of Laufer (1950), Demuren and Sarkar (1993) concluded
that SSG model is capable of computing the correct Reynolds-stress anisotropy in the logarithmic
region without introducing any wall-reflection term. According to the results in Table 2.3 this

(Pr—¢). (2.28)

>The non-linearity of this system of equation is due to the non-linear model for the slow part and quasi-lincar
model for the rapid part of ®;,.
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is not quite so, as the values of normal components of Reynolds-stress tensor are for about 20%
underpredicted, compared to the experimental data for P, /e = 1 at high Re number. However,
the agreement to DNS data, which are at lower Re-number, is much better.

Note that no model here compared includes the wall reflection term. For reference, results
of the basic RSM with wall reflection Gibson and Launder (1978) (%}, Rotta model, ®? 1P
model, see Appendix A for full specification of the model) is given for the case with P /e = 1
(corresponding to channel flow near the wall). According to the results, this model performs still
better than any model listed here.

Table 2.3: Comparison of predicted Reynolds-stress anisotropies in 1-dimensional flow for two values of
Pk / £.

a1 Q22 12 ’ C;, C7

“Tavoularis and Corrsin

(1981)

Exp. B,/e = 1.7 0.403 —0.300 —0.300

HL 0.4446 —-0.2772 —0.2630 2.8
LRR-QI 0.2637 —0.2060 —0.3588 1.8
LRR-IP 0.3627 —0.1813 —0.3633 1.8

M 0.4044 —0.2988 —0.3013 1.5
SSG 0.4334 -0.2869 —0.3188 1.7, 1.05
Oberlack 0.3358 —0.4198 —0.1746 2.0
High Re number data

near wall

Exp. P,/e = 1.0 0.51 —0.46 -0.24

DNS P./e = 1.0 (0.35...0.45) —(0.25...0.35) —{0.25...0.30)

HL 0.2712 —0.1691 —0.2611 2.8
LRR-QI 0.2155 —0.1683 —0.3362 1.8
LRR-IP 0.2963 —0.1481 —0.3395 1.8

M 0.3489 —0.2578 —0.3033 1.5
SSG 0.4007 —0.2536 —0.3137 1.7, 1.05
Oberlack 0.2667 —0.3333 —0.2160 2.0
Basic RSM 0.4313 —0.4197 —0.2550 1.8

Note:

Abbreviations: HL - Hanjali¢ and Launder (1972); LRR - Launder ez al. (1975); JM - Jones and Musonge
(1988); SSG - Speziale er al. (1991); Oberlack - Oberlack (1997); Basic RSM - <I>ilj Rotta model, <I>12j P
model and Gibson and Launder (1978) model for wall reflection with f, = 1, see Appendix A.




2.3. Modelling Reynolds-stress transport equation 17

Evaluation of coefficients of ¢;; model using DNS data for inhomogeneous flows

DNS data for some simple flow can be used to evaluate directly the local coefficients and their
variation (if any) in the flow, instead of a qualitative estimation. DNS data for channel flows are
here used to evaluate the values of the coefficients of the model for the pressure-strain correlation
given by (2.20) and (2.24). A system of equations can be formed:

/ 1
ql;j = - leaij — L€ (aikakj — 5‘42(5“)
2 2
e (P,-j - gpk(sij) _c (Dij - gpkaij) _ NS, — CP P (229)

Six coefficients are unknown in this model. Since, the channel flow is one-dimensional and
homogeneous in two directions, only four components of ®;; are non-trivial. Due to redistribu-
tion, the number of independent components reduces to three. Since, commonly, coefficients in
the slow part of ®;; are tuned in the shear-free flows it is justified 1o use those coefficient before
tuning the rapid-part coefficients. Thus, these coefficients can be evaluated from the system of
equations

2 2
t ].
(I)ZNS + |:_Clgaij — CIE (aikakj — gAQ(S”) — CiPka”} (230)

by feeding DNS data for ®7;°. Fig 2.1 shows results for C}, C3, C§ as solution of system (2.30)
in two channel flows (Re, = 180 and Re, = 395). Coefficients on the right-hand-side are those
of SSG model (Table 2.2). The results show that values of the unknown coefficients are fairly
constant in a large portion of the flow as presumed by most models, especially in the logarithmic
region. Near wall C';* becomes negative which is corrected if C; is damped to zero near the wall,
in which case C,* drops also to zero at the wall. It seems that there is some dependence on the
Reynolds-number. Note that these values are dependent on the choice of the model for <I>11j and
coefficient C§. Whether a linear model for the rapid part of ®;; can be sufficient for computation
of wall flows needs to be further assessed. Possibly in a similar way as above, the value of the
model coefficients need to be evaluated for some other non-homogeneous flows in order to make

a final judgement.
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Figure 2.1: Symbols: Coefficients C2, C4, C4 obtained from DNS data for two channels Re, = 180 and
Re, = 395 as solution of system of equations (2.30) with Cy, C and C% as proposed by Speziale et al.

(1991) (SSG model coefficients are given with lines).
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2.3.6 Modelling of wall-effects

Two approaches used currently for modelling wall bounded turbulent flows differ much both
in requirements for the mathematical model and the numerical solver. The high-Re-number
approach, with wall function, where some empirical laws are used to bridge a thin viscous sub-
layer close to the wall requiring a mathematical model to represent turbulence only at high-Re-
number (though in highly inhomogeneous conditions), so that a relatively coarse numerical mesh
can be used. The low-Re-number approach, where the model equations are integrated to a solid
boundary with the exact boundary conditions, requires more sophisticated model which needs to
describe behaviour of the turbulence quantities in the wall vicinity where a multitude of effects
(viscosity, high inhomogeneity, wall blockage, etc.) impose additional requirements for model
modification. The model needs to satisfy the two-componentality limit which the turbulence
obeys close to the wall due to a higher damping of the normal-to-the-wall fluctuations than of
those in stream and spanwise directions. Therefore, a much finer numerical grid than for wall
functions approach has to be used.

Since developed with assumption of the local homogeneity and equilibrium, the models for
homogeneous flows described above are not capable of representing properly the behaviour of
turbulent flows which are far from the equilibrium, and particularly in the near-wall flow region
which is always highly inhomogeneous. Therefore, in order to compensate for difference in
anisotropy of the Reynolds stress tensor in homogeneous and wall flows at comparable ratio of
production/dissipation, a wall effect term® is added to model for ¥;;. Although the need for such
term can be justified by the existence of the surface integral in equation (2.14) the most common
practice is to accommodate the need for increasing the Reynolds-stresses anisotropy in the near
wall region primarily by damping the component normal to the wall in an ad-hoc manner. Thus,
the complete model for ®;; is tuned to satisfy experimental and DNS data. The wall reflection
term is decomposed into a slow and a rapid contribution as done with the pressure-strain model
for homogeneous flows

B — Y 1 B2, (231)
Several proposals are popular and often used in computations. Shir (1973) proposed

@?jl = C1§ (mn,knméij - §Mnkn,j - ;mnkm) fu (2.32)
and Gibson and Launder (1978) extended it to include the effects of the mean shear as

3 3
L (@ﬁmnknméﬁ - 5<I>§,L,nknj - ééfknkni> fa (2.33)
where 77 = (ny, na, n3) is the unit vector normal to the wall. For flows with arbitrarily shaped wall
boundary, vector 7 is the unit vector that connects the position at which the model is evaluated,
to the nearest position at a wall-boundary. fy is a function which indicates proximity of a wall.

CLREYS

3Known also as “wall-echo”, *wall-reflection” or “wall-blockage” effect.
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The most frequently used definition of fy was proposed by Launder et al. (1975) and Gibson and
Launder (1978)

1L
== -, 2.34
i c 1 (2.34)
where C; = kC,** = 2.5 is a coefficient chosen to provide unity value of fy in the log-law
3/2
region, I, = —— is the turbulence length scale and [y is the distance to the nearest position at a

wall-boundary.5 Function f has value of unity close to a wall and diminishes as the distance to the
wall increases. As shown in Figure (2.2), the function fy, evaluated from DNS data for channel
flow at two Re-numbers, takes the value of one roughly at the beginning of the logarithmic
region, but significantly exceeds that value in the buffer region and goes to zero as the wall is
approached. For computations with the high-Re-number models and wall functions fy is limited
to unity. The model coefficients proposed by Gibson and Launder (1978) are: C} = 0.5 and
CYy=03.

30 ——— —_ S

P o Re=180
Y e = Re=395
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Figure 2.2: Function fy = —~———— in channel flow at two Reynolds numbers (Re, = 180 and 395)
& Kk € 1

W
evaluated from DNS data. Iy is the wall distance and x = 0.41 is von Karman constant.

Craft (1991) recognised that the Gibson-Launder wall reflection model (2.32) and (2.33)
predicts the opposite effect in flows which are not parallel to the wall, such as in a jet impinging
normally on a flat plate. The model predicts an increase in the normal-to-the-wall component of
w;u; tensor and in reality that component is damped. Craft (1991) proposed a new model which
predicts the impinging flows well and reduces to the Gibson-Launder model in the wall parallel
flows such as channel or boundary layers. Craft’s model is given with

ou,

o7 = —0.044 Bz, T (ngngbi; — 3nin;) fu
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7 -

Bbk 3 801- 3 8Ul
—0.080 k& <%—;n,nkalm&j — Eﬁnmjalm — 5@711”@]‘&5"1) fw (235)

.
+0.600 kg%:nmm <n1-n]- - %nqnq(i;j> fa
Inviscid wall effects are basically dependent on the distance to a solid wall and its orientation, as
seen from the surface integral in the Poisson equation for fluctuating pressure (2.13). This term
is expected to account for the wall blockage and pressure reflection. The DNS data for plane
channel flow (Kim et al. 1987) show that this term decays fast with the wall distance and becomes
insignificant outside the viscous layer. However, a notable difference in the stress anisotropy
between a homogeneous shear flow and equilibrium wall boundary layer for comparable shear
intensities shows that the effect of wall presence permeates much further away from the wall
into the log-layer. This indicates at an indirect wall effect through a strong inhomogeneity of the
mean shear rate, which is ignored by all available pressure-strain models.

The wall reflection models account predominantly for the wall effects outside the viscous
layer. Despite some opposing views in literature, the wall reflection model with topology para-
meters was used in the present study for physical reasons as discussed above. Replacing the wall
echo term by non-linear rapid pressure-strain models leads either to very complex expressions
(e.g. cubic models), or insufficient effects (e.g. quasi-quadratic models of Speziale et al. 1991).
Besides, in all flows considered, the use of wall distance and unit normal vector poses neither
computational problems nor extra computing time, since both parameters are computed ones
during the process of grid generation.

Durbin (1993) proposed a model integrable up to the wall which does not need any wall
reflection term and predicts the near wall reasonable well. More details are given below.

Fully developed channel flow

Fig 2.3 shows results of computation of a channel flow applying wall function and using three
models for the pressure-strain correlation: a) Launder, Reece, and Rodi (1975) without wall-
reflection term (LRR-QI); b) The Rotta model + IP model + wall-reflection of Gibson and Laun-
der (1978) (GL) and c¢) Speziale et al. (1991) (SSG). In all cases wall functions* are used for
boundary conditions. Daly-Harlow model (2.75) is used for diffusion and the standard high-Re-
number equation for ¢ (see later equation (2.98)), with C;, = 1.44 and C,, = 1.92 for LRR-QI
and GL and C;, = 1.44 and C,, = 1.83 for SSG model. Model computations are performed for
Re, = u, h/v = 2000 in order to be able to use the wall function. Symbols are DNS data for
two cases: Re, = 395 and Re, = 595 of Kim (1990, Kim (1997). DNS data for y= < 30 are
not shown in the figures.

“For implementation of the wall functions into the numerical code ses Section 3.6.
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Figure 2.3: Reynolds-stress tensor and its anisotropy tensor components. Symbols: DNS data at Re. =
395 (empty symbols, Kim (1990)) and Re, = 595 (filled symbols, Kim (1997)). DNS data for yT <30
are not plotted here. Lines: SMC computations at Re, ~ 2000. a) Launder, Reece, and Rodi (1975)
without wall-reflection term; b) The Rotta model + 1P model + wall-reflection of Gibson and Launder
(1978) and c) Speziale et al. (1991).
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It is seen that the LRR-QI model does not predict sufficient anisotropy of Reynolds stresses,
particularly close to the wall. The GL and SSG models do better but there is a difference between
them. The important difference between GL model and SSG model is in the prediction of 7T and
ww stresses. The GL model predicts twice higher value of the difference ass — ayo than the
SSG model. According to these results the SSG model predicts overall the stress anisotropy
closer to DNS data. However, the major difficulty of the SSG model is predicting the near-wall
stress levels, which are much too low. The GL model is obviously superior here. Whereas the
anisotropy level away from the wall can be adjusted by tuning of the coefficients in GL model, it
does not seem possible to improve the near-wall prediction of SSG model by simply adding the
quasi-linear term as the authors claim. Fig 2.4 shows profiles of the mean velocity obtained with
the three models. The model results are in good agreement with the log-law.
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Figure 2.4: Channel flow: The mean velocity profile. Symbols and legend as in Fig 2.3.

2.3.7 A model of the pressure fluctuations

As shown above, the pressure-strain correlation models available in the literature have a diversity
of forms although a general form can cover the majority of proposals. The models are developed
by applying the tensor representation theory to determine the unknown tensors A and A in
equation (2.16). The continuity, symmetry, normalisation and realisability constraints are used
to reduce the number of unknown coefficients which are then determined from experimental and
DNS data and numerical optimisations. The diversity of the models, their complexity and wide
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differences of values of the model coefficients, are a consequence of the author’s views on thr
importance of some terms in some particular flows and the use of different data to set the model
coefficients.

In this sub-section it is demonstrated that it is possible to derive the form of the most known
pressure-strain models by starting from the transport equation for the velocity fluctuations and
modelling the pressure-gradient fluctuations. Such practise is named by Parks ez al. (1998) the
preclosure modelling. In this approach the continuity and symmetry constraints are inherited
from the transport equation for the velocity fluctuations. The problem of determination of the
model coefficients remains the same as in the standard approach and is not addressed here.

The instantaneous pressure-gradient in an incompressible isothermal turbulent flow is given
with (see equation (2.8))
1 8]) Dul 8UZ Hui 8“1' 82Ul‘
—— = - —u
pOz;

= i — — V. 2.36
Dt akak ailkak 8Ik k VBa:k 8.Z'k ( )

Since, the velocity-pressure/gradient correlation is defined as
1 dp Op
I = —— [ u;=—— —— 2.37
! P (u Oz; +u76mi (2.37)

a redistributive (traceless) tensor of II;; can be constructed as (Lumley 1978, see Table 2.1)

1
The instantaneous pressure-gradient may be expressed in terms of “known” fluctuating quantities

and any mean averaged quantity, which are available as for the standard modelling purposes.

The instantaneous pressure p is the solution of equation
1 8217 _ 8Uk aul 8'1% Bul 62ukul
pOxpxy  Ox; Oxp Oz Oz, Oxyxy |

(2.39)

with appropriate boundary conditions. Since this equation is linear in p, the fluctuating pressure
can be split into two parts: a slow part (ps) and a rapid part (pg) so that p = ps + pr and

1 Ops _ Ow Oup  Bwpy

_ — 2.40
pOzypzy  Ox; Ox),  Omizmy’ (2.40)

1 Opr _ 28brk@l_
pOrpzr O Oxy

(2.41)

The ps and pg contribute to the slow and rapid part of the velocity-pressure/gradient correlation
(2.42)

1{ dps dps\ 1/( Opr Opr
=15+ I = —= [u;— vl e - 242
IL; 5+ 1L p (u oz + uy oz, p 7 oz, + u; oz, ( )

slow part rapid part
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Note that in this decomposition the Hfj and Hf; are called the slow and the rapid parts be-

cause of their physical meaning and by notation are to be distinguished from the splitting of the
pressure-strain correlation given with expression (2.15).

The model for the slow term

Since the slow term represents contributions of the velocity fluctuations, a model for the pressure-
gradient fluctuations may include only the velocity fluctuations. If the pressure-gradient fluctu-
ations are approximated as

1 6])5 . Ol Uj CQ U;Up Ug

Z i 2.43
p Ox; 27 2 k 7’ (243)

which is an intuitive non-linear representation of the instantaneous pressure-gradient based on
the equation (2.36), the model for velocity-pressure/gradient correlation is then

Sy O AR (2.44)

II,, =C
7 Y k

The model given with (2.43) assumes proportionality between the transport of fluctuating velo-
city u; and itself, and is given by
DU,’ U;

~ 2.4
Dt T (2.45)

Therefore, the same assumption can be made for the averaged velocity fluctuations so that the
“time scale” 7 can be obtained from the transport equation for turbulence kinetic energy in ho-
mogeneous shear-free flows as follows’

g_’tf:_g S T (2.46)

leading to a non-linear model for I1,;, which expressed in terms of the anisotropy of the Reynolds-
stress tensor a;;, reads

2 4 4
Hij = —~Cie (aij + 551J> — Che (aikakj - gaij + §5U> . 247
The corresponding redistribution model for the slow part is

4 1
(bl'j = — (Cl + 502) EQi; — CQE (a,-kakj — §A25ij> 5 (248)

which is equal to the model proposed by Lumley (1975), equation (2.20).

5The negative value of the “time scale” 7 is used for convenience.
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The model for the rapid term

Since the rapid term represents the influence of the mean velocity gradient and the fluctuating
velocity on the pressure fluctuation, a model for the fluctuating pressure-gradient intuitively de-
duced from equation (2.36) may be
PR Oyt .
p Oz; 3tk Oxy, (249)
which leads to the model for ®;; first proposed by Noat et al. (1973), and known as IP-model
("isotropisation of production”) given with

2
D, = ~C3s (Pij - gpkéij) . (2.50)

A more general model including the mean velocity strain S;; is given with

1 6pR _ 8Ul 6Uk
_,0 oz = CSUka:Ek + Caup Bz, (2.51)

and leads to

2 2
o, = —C, (R-j - gpkd,-j) —c (D,-j - gpkcsij) . (2.52)
which is a part of the most existing models for rapid part.

Following the same procedure it is possible to recover some forms of the non linear models
for the rapid term. For example, the preclosure model given by

10 aU; U, U,
—= apR =Cs (ukukul + uk—k wu; + u;—l ukui)
P OTL;

8.’El 8;1:1 6.’17}(-

(2.53)

leads to the form which has been proposed by Fu et al. (1987) and more recent variants extens-
ively used by the UMIST modelling group.

It was demonstrated above that the form of some most frequently used models for the pressure-
strain correlation can be derived starting from the modelling of the pressure-gradient fluctuation.
Using this approach, it might be possible to evaluate an appropriate form of the model for ®;;
and, possibly, to determine the value and the form of the model coefficients.

2.3.8 Low-Re-number turbulence models

In a large number of flows application of wall functions is not possible or justified, for example
in transitional flows, flows with separation and reattachment, or essentially all non-equilibrium
wall flows and those where computation of the flow details in the immediate wall vicinity, such
as wall friction, pressure distribution, heat and mass transfer, are of significant importance and
interest.
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Basically, the standard wall functions are valid only in energy equilibrium® fully turbulent
flows such as channel and Couette flows, or a boundary-layer at zero or small pressure gradient.
Thus, the first computational point near the wall is expected to be located in the region where the
semi-logarithmic velocity distribution is valid, which was found experimentally to exist only in
above mentioned flows. Flow details between this point and the wall are not computed. In ab-
sence of a better approach, wall functions are used widely for industrial applications of a variety
of turbulent flows. Surprisingly, despite a strong departure from equilibrium and deviation from
logarithmic velocity law, in many cases the predicted flow pattern is satisfactory. The problem
is that there are also many situations where this is not the case, and it is difficult to know in
advance what the outcome will be. Even more important is the unreliability of wall functions in
predicting the wall phenomena, which, as a rule, are not well reproduced. A way to overcome
the problem is in deriving more general wall functions which will be applicable to a wider class
of non-equilibrium flows. While such attempts have been proposed ( Chieng and Launder 1980;
Kim and Choudhury 1995; Ciofalo and Collins 1989; Kiel and Vieth 1995 etc.) their success has
still not been proved in a broader class of flows. The major problem is not so much in bound-
ary conditions (wall function) for velocity, but for turbulence quantities for which the equations
are solved. Integration of the equations up to the wall and using the exact boundary conditions
should be, in principle, a better alternative. This requires the modification of all equations to
account for multiple wall effects: viscosity (low-Re-number) as well as for non-viscous wall
proximity effects.

Before such modifications are introduced it is necessary to adopt a reference high-Reynolds
number model which should serve as an asymptotic model to which the modifications should
reduce for sufficiently high turbulence Reynolds numbers and at a sufficient distance from a
solid wall. A number of studies have been aimed at predicting turbulent flows using the low-
Re-number models with exact wall boundary conditions. In the frame-work of EVM the first
such model was proposed by Jones and Launder (1972). They modified the turbulent viscosity
in an ad hoc manner ensuring that the turbulent viscosity is damped and becomes zero as the
Re-number decreases to zero. In addition, they introduced an additional term to the transport
equation for ¢ in order to capture the strong change of ¢ near the wall and its limiting value
at the wall. Extensive reviews with systematic assessment and comparison of performances of
some widely used low-Re-number eddy-viscosity models were given for example by Patel et al.
(1985) and Sarkar and So (1997).

In the framework of SMC, the low-Re-number modelling requires considerable modifications
of the pressure-strain model and of the dissipation rate tensor in the wall vicinity, as well as some
modifications of the transport equation for ¢, as done, for example, by Hanjali¢ and Launder
(1976), Kebede ef al. (1985), Launder and Shima (1989), Launder and Tselepidakis (1993),
Shima (1993), Durbin (1993), Hanjali¢ ez al. (1995), Craft and Launder (1996), Craft (1997).
Essentially two rather different approaches are adopted: 7) the coefficients of the high-Re-number
model, which serve as high-Re-number asymptotes (usually constants), are modified in terms of

Energy equilibrium implies that the production and dissipation of turbulence kinetic energy are in balance, i.e.
that the convective and diffusive transport are small. These conditions lead to roughly constant shear stress and
universal semi logarithmic mean velocity distribution in the inner-wall coordinates.
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turbulent Reynolds-number Re,, distance to the wall, or any (preferably invariant) turbulence
parameters; i) elliptic relaxation and scale switch (Durbin 1993) by which the pressure-strain
correlation is the solution of an elliptic partial differential equation’ which accounts for the wall
effects and reduces to the high-Re-number asymptote model.

The low-Re-number models demand a fine grid near walls, which may hinder their wider
application to very complex three-dimensional flows at high Re-numbers. It is argued, however,
that this approach may be unavoidable if transition phenomena and accurate wall friction and
heat transfer are in focus, such as, for example, in the problem of gas turbine blade cooling.

In the present work, the attention is given to the flows with transition where the dominant
effect on the generation of turbulence is due to a wall bounding of the flow. Considered will be
mainly flows which are, in bulk, parallel to the wall (though involving local separation), what
means that flows with impingement on a solid surface, as a dominant mechanism will not be
considered. For flows such as boundary layers, the basic second-moment closure?® with a linear
pressure-strain model was found to reproduce the general flow pattern reasonably well, except in
the immediate vicinity of a solid wall. For this reason a version of wall-proximity modifications
developed in conjunction with the basic Reynolds-stress model (Hanjali¢, Jakirli¢, and HadZié
1995; Jakirli¢ 1997; Hanjali¢ and Jakirli¢ 1998) was explored for computation of flows which are
subject of the present study. Admittedly, for the treatment of more complex flows which involve
rotation or normal impingement, it may be necessary to adopt as a basis a more adequate high-
Re-number SMC. However, it is believed that the low-Re-number and wall-vicinity modifications
used here can equally well be adopted in conjunction with other high-Re-number models, with
possibly some slight modifications of the coefficients. Another approach proposed by Durbin
(1993), will also be considered as a possible alternative, though due to some noted difficulties,
this model was not pursued to the same extend as the former one.

2.3.9 The adopted low-Re-number SMC

The Hanjali¢-Jakirli¢ low-Re SMC (hereafter HJ) uses the basic high-Re-number model as its
high-Re-number asymptote. The wall-proximity modifications are implemented in the pressure-
strain ®;; model and in the stress dissipation ¢;; model. Several additional terms were also added
into the -equation.

The model for the pressure-strain correlation is linear and has the form®:

! Qi = @y + Dyo+ 05+ P, (2.54)
| ®;;1 = —Cieay (2.55)
2
B2 = —C (Pij - —Pkéi,-) (2.56)
3
@51 = O] wa (ukumnknm(&j — 5 TR — Eukujnkni> (2.57)

7For every component of ®;; one elliptic equation is solved.

8See Appendix A for detailed specification of the model.

®Although generally the linear slow term was use in some cases the quadratic model was also explored, equa-
tion (2.20).
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oY

, 3 3
e = 3 fuw (‘I’km,znknm5ij - Eq)ik,?nknj - _(I)kj;ann'i) (2.58)

| 2
’ where @;; ; is the return to isotropy (Rotta 1951) model for the slow part, ®;; , is the isotropisation
| of production (IP) (Noat et al. 1973) model for the rapid part and @, + @} , is the Gibson and
} Launder (1978) model for the wall reflection term.
| The linear mode] is used because of its simplicity, computational robustness and satisfactory
l performance in a number of wall bounded flows. Some non-linear models proposed predict some
wall flows rather well, without a need to introduce variable coefficients (Craft and Launder 1996;
| Craft 1997), but at the expense of a large number of terms and coefficients. Hanjali¢ and Jakirli¢
! (1998) argue that such a complexity in the model of just one part of a single term in the stress
‘ transport equation is disproportionate to the relative simplicity of the rest of the modelled terms
| both in ;175 and € equation.
‘ The adoption of the simple linear pressure-strain model requires variable coefficients to ac-
count for complex near-wall effects, if the equations are to be integrated up to the wall. The
coefficients need to account for wall-vicinity and viscous effects. In addition, the model needs to
satisfy the two-componentality and vanishing-Re-number limits. Wall impermeability imposes
| a blockage to fluid velocity and its fluctuations in the normal direction causing a strong aniso-
| tropy of the turbulence. This fact was exploited by introducing, in addition to Re;, both the
} turbulent-stress and dissipation-rate anisotropy invariants A,, A, F; and F as parameters in the
coefficients, accounting thus far separatety for the wall effect on anisotropy of stress bearing and
| dissipative scales (Hanjali¢ and Jakirli¢ 1998). Using these invariants, the coefficients of the
‘ pressure-strain model read

‘ C,=C+ VAE? C =25AFYVif F = min(0.6; Ay)
Cy = 0.84"2 C¥ = max(1~0.7C;0.3) C¥ = min(4;0.3)
Re,\ 372 _ L3/2
f= min{(ﬁeé) ;1} fw = min [2.5&? : 1.4} Re, = k?/(ve), (2.59)

where

AQ = @405, A3 = Qi AL, A=1-— 9/8(142 — AJ)
E> = e;e,5, FEs=ejejper, E=1-9/8(F> — Ej)
A5 = Uzuj/k — 2/361‘]', €ij = 5ij/€ - 2/36L] (260)

Fig 2.5 shows a comparison of the pressure-strain correlation obtained from the HJ model
prediction of the channel flow at Re, = 180 and the corresponding DNS data.

The stress dissipation rate <;; is modelled in the form proposed by Hanjali¢ and Jakirli¢
(1993), which reproduced well the components of <;; obtained by DNS in a plane channel. The

Sij
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Figure 2.5: Pressure-strain correlation predicted using the HJ low-Re-number Reynolds stress model in a
channel flow at Re; = 180. Symbols are DNS data of Kim ez al. (1987) and lines are the model results
for ®;; (expressions 2.54 to 2.58) obtained in the entire computation of the flow.

model is given by the following formulae and will be discussed below

2
& = foeiy+ (1= fi)g0ue (2.61)
e [Wug + (wen ny, 4 Tugning + Telimgnnng) fd)
€ = % — (2.62)
J k 1+ 1.5 (wpug/k) npng fa
fo = 1—vVAE?,  fi=(1+0.1Re)"". (2.63)

The transport equation for ¢ used in conjunction with HJ model is discussed in Section 2.4.

The model had been extensively tested, as mentioned earlier, and provided good and sat-
isfactory results in a large number of fully turbulent flows. The summary of the model, with
the entire model specification and detailed results for several non-equilibrium flows are given in
Appendix B.

Couette flows

As a new illustration of the HJ model performances in the non-equilibrium wall flows, relevant
particularly to the present study, we show some results of computation of three cases of Couette
flows at different conditions.

While the zero-pressure gradient Couette flow poses no specific challenge, some cases with
imposed strong pressure gradient, and particularly the developing Couette flows, depart substan-
tially from local equilibrium. The model results are compared to available DNS and experimental
data.
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The first case is the developed Couette flow with such an adverse pressure gradient
(OP/0z/ (prJ / 5) = —1.1 x 107®) that the mean velocity close to the moving wall has almost
uniform distribution, and, consequently, a minimum level of the mean shear rate. Here the effects
of mean flow inhomogeneity, as well as of viscosity are absent, so that the wall effect is reduced
to only non-viscous blockage and pressure reflection. A satisfactory reproduction of mean and
turbulence quantities here is an indirect confirmation that the model distinguishes viscous effects
due to wall vicinity. Fig 2.6 shows profiles of the mean velocity, turbulence kinetic energy,
all components of the Reynolds-stress tensor and the dissipation rate normalised with the wall
friction velocity of the fixed wall.

The next two cases considered are developing flows from a fully developed channel flow to
fully developed Couette flow. The imposed speed of the moving wall determine the pressure
field within the flow and the character of the flow at final stage. The Reynolds number based on
the wall speed of Re,, = U,d/v = 3000 produces approximately the same pressure gradient as
in the previous fully developed case. The Reynolds number of Re,, = 5000 produces Couette
flow with zero pressure gradient. In these two cases of particular interest is the model response
in the developing region where the flow undergoes a transition from a plane channel flow to a
fully developed Couette flow. In both cases about 40 channel widths are needed for the fully
developed Couette flow to be established. Figures 2.7 and 2.8 show that the model reproduces
well the evolution of the mean velocity and streamwise fluctuation after encountering the moving
wall (z = 0).
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Figure 2.6: Couette flow with adverse pressure gradient: dP/dx/ (pUE, /5) = —1.1 x 107 (which

provides 0U /9y ~ 0 near moving wall) Re,, = U6 /v = 3000, Symbols: DNS of Kuroda ez al. (1993).
Lines: HJ SMC model.
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Figure 2.7: U and V12 in a developing flow from pure Poiseuille to fully developed Couette flow with
adverse pressure gradient as in the case shown in Fig 2.6 reached at z/h = 40. Symbols: Experiments of
| Corenflos et al. (1993). Lines: HJ SMC model. The lower wall moves from z = 0. U, is the bulk mean
velocity.

i

—_

y/h o

b

)

Re,, = 5000

T

T

& !
T

0 0 0 0 0 2 u/U,
Figure 2.8: U and V42 in a developing flow from pure Poiseuille flow to fully developed Couette flow
with zero pressure gradient reached at /h =~ 40. Symbols: Experiments of Corenflos et al. (1993).
Lines: Low-Re-number HI SMC. The lower wall moves from = = 0. Uy is the bulk mean velocity.
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2.3.10 Durbin’s low-Re SMC

The majority of the low-Re-number Reynolds-stress models have an algebraic form for model-
ling the pressures-strain correlation. The model coefficients are to adjust the values of the mod-
elled terms, as the wall is approached and to satisfy the wall limits. The basis for this adjustment
is to match the terms in the equation obtained by DNS or experiments.

Durbin (1993) proposed a different modification of the second-moment closure model based
on elliptic relaxation of the pressure-strain correlation, which accounts for the wall effects. This
relaxation, together with the switch from the large-eddy scale to the Kolmogorov scale when the
latter becomes more dominant, allows the integration of the model equations to the wall. Durbin
(1991) introduced the elliptic relaxation approach, first, in the framework of eddy-viscosity
model. In addition to k and ¢ equations he solves a transport equation for the quantity v? which
is used to obtain the damping of the turbulent viscosity near wall. The 2 is the second-moment
correlation of the velocity fluctuations normal to the wall or, in general, it can be regarded as the
second-moment correlation of the velocity fluctuations normal to the streamlines. The transport
equation for v2 has roots in the modelled transport equation for Reynolds-stresses but can be
regarded simply as the equation for an another velocity scale used to model £ and e equations.
This model is known as the k — ¢ — v2 model.

Durbin (1993) proposed a specific grouping of terms in the exact Reynolds-stress transport
equation

Du;w; TR Owum; 12 Owp Pu;
=g+ P — —ZLe— L LI ! 2.64
DE St u T e T T T 3% T Ty, 264
where the redistribution tensor is given by
1 9p 1 Op 12_ Oup Uy
= U — —Uj— + — = — & €. 2.65
& pw oz; puJ dz;  p3 7oz Y T (2.65)
Modelling of this redistributive tensor is done by an elliptic equation
2 fij i
ij _ Jig
—Vifi; + 727 12 (2.66)
where the redistributive tensor f;; is defined as
fij = kfij. 2.67)

The justification of the elliptic equation for f;; is given in Durbin (1993). The inviscid wall
effects are accounted for by elliptic equation (2.66) where a length-scale function L ensures that
function f;; relaxes to the value which corresponds to a homogeneous high-Re-number model
away from the wall, ®}7:

1 W
1= ot (- 550)
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where @g is the homogeneous model for ®;; for which any pressure-strain model can be used.
Durbin (1993) adopted a single combination: the Rotta model for the slow part (2.55) and the IP
model for the rapid part (2.56) with C} = 1.22 and C5 = 0.6:

1-C Cs 2
Note that instead of the standard value C'; = 1.8 in the Rotta model, a significantly smaller value

ul:j < in the log-law region.

is used, which takes into account the difference €;; —

ERM wall-boundary conditions

The largest influence on the ERM behaviour in the viscous sub-layer has the wall boundary
condition for f;; which is derived so that the redistributive tensor g;; is in balance with diffusion
and dissipation in the immediate wall vicinity. Examination of the dominant terms near the wall
in the model equations for the Reynolds-stresses shows that only redistribution, dissipation and
viscous diffusion are in balance in the very proximity of the wall (viscous sub-layer):

g i( _”&)_WN
kfi; PR v Véim + o) B ~0 (2.70)

2.71)

1 | @ J Ouw;

k| k Oy Ody
The Taylor series expansion of the velocity fluctuations near the wall (u; = a; + &y + ¢ yr+)
gives:

u? =bibiy’ + ...

V2 =Gyt + .

w? = babsy® + ...

T = bieay® + ...
1 - £,

E=—(bby +03b3)y° + ... = —y2 + .. 2.72
2(11+ 3b3)y” + 2yy+ (2.72)

where biby, Gc3, bsbs & bycy are functions independent of y.

Expressions (2.71) and (2.72) lead to the wall boundary conditions for f;;:

fi, =0
2
f22u = —201/2 (%)
¥ /e
fa3, = —foa,

fia, = —8° (g) (2.73)
P
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where P is the first numerical point next to the wall. Note that the arbitrary factor 20 instead of
exact 8 in expression (2.73) is used in computations. This value was adopted in the course of the
optimisation to reproduces the DNS data, as shown below (this is consistent with the experience
of some other researcher, for example D. Laurence of EDF, personal communication).

Channel flow results

The following figures show the results of computation of a channel flow at Re, = u, h/v =
395 1% obtained using ERM. The results are compared to DNS data of Kim (1990). Fig 2.9a
shows solutions for f;; and value of i’;{ obtained in a channel flow. At about y™ = 50, which is
beginning of the logarithmic-velocity profile, function f;; relaxes to ff . The large differences
in the value and shape of gp;; (Fig 2.9b) is achieved by the wall-value of function f;;. Since
the elliptic relaxation model accounts essentially for the near wall region, generally any other
turbulence model for p;; can be used, as done, for example, by Laurence et al. (1995).

Figures 2.10 and 2.11 show profiles of the mean velocity and all components of the Reynolds-
stress tensor in the channel flow obtained with ERM. Excellent agreement with the DNS data is
achieved. Fig 2.12 shows profile of dissipation ¢ and w;u;/k € compared to DNS data for
¢ and £;;. Excellent result for £ at wall is due to correct behaviour of k near the wall, since
Ey =V (62k/8n2)w.

Fig 2.13 shows function f;; = g;;/k evaluated from DNS data for channel at Re, = 395.
Although the above shown derivation of the value of f;; (2.73) at the wall boundary seems plaus-
ible, the DNS data show that only the f; component has a finite value and all other three are
infinite. The reason for this is the neglect of turbulent diffusion in the derivation of the wall
values.

The wall-boundary value for f;; is evaluated using values of the model variables at the fist
point near wall. For 22 and 12 components f§ ~ 1/ n', where n is the distance of the first point
to the wall. This makes the wall boundary condition rather sensitive to the size of the numer-
ical mesh. As the distance of the first numerical point from the wall decreases, the numerical
procedure becomes more unstable. If this point is located relatively far from the wall, say at
y " -values between 1 and 5, the convergence of the numerical code is good. Because of this one
may employ a smaller number of computational points in the viscous sub-layer than it is usually
the case if an algebraic model for ®;; is used. On the other hand, a fine mesh close to the wall is
required if the viscous sublayer is to be resolved, what is particularly important when treating the
laminar to turbulent transition. This is, however, rather difficult and often not possible to achieve
in complex flow simulations. This was the main reason that the present author did not achieve
good convergence using the elliptic relaxation model for computation of several flow-cases with
by-pass transition and with separation induced transition. Despite appealing advantages, it seems
that modifications of Durbin model are needed to make it applicable to transitional flows and,
therefore, this model was not further pursued here.

= 13500 where / is the half of the channel width.

Upn, 2h
0This is equal to Re,, = ——
v




2.3. Modelling Reynolds-stress transport equation 37

20.0 |

a) 10.0

-10.0

60.0 80.0  100.0

200 L= -
0.0 200 400

0.10 ————— —

HH

b) 0.05

0.00

-0.05

i N

-0.10 -~ - :
0.0 20.0 40.0 60.0 80.0 100.0

+

y
Figure 2.9: Elliptic relaxation model computation of channel flow at Re, = 395. a) Symbols: Func-
tions i‘;’ as given with equation (2.69); Lines: f;;, solution of equation (2.66). b) Symbols: Velocity-
pressure/gradient correlation (II;;) from DNS data of Kim (1990); Lines: ERM for p;; = & f;;.
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Figure 2.10: Mean velocity in linear and logarithmic scale (Symbols: DNS data of Kim (1990); Lines:
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Figure 2.11: Turbulence kinetic energy and Reynolds-stresses (Symbols: DNS data Kim (1990); Lines:
ERM).
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Figure 2.13: Function f;; = g;;/k evaluated from DNS data.
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2.3.11 Turbulent diffusion and pressure transport

The turbulent diffusion ij, as defined in equation (2.9), is usually modelled jointly with the devi-
atoric tensor obtained after splitting of the velocity-pressure/gradient fluctuation (equation (2.10)).
If the pressure-strain decomposition (Table 2.1) is used, this is given by

()ﬁ,.ﬂ.bjuk _ } (é?pul i (3])'1[1')

Dt 4+ DP. — Cataid
R oz, | oz

T, (2.74)

Models for Dj; have roots in the transport equation for the triple moments of the fluctuating ve-
locity @w;w;uy, which is derived from equation (2.8). Thus, the model coefficients are set to obtain
optimal overall prediction of the Reynolds-stresses or the mean velocity. In that way the pressure
diffusion is modelled implicitly, or can be regarded as neglected.

The most frequently used model for the turbulent diffusion is that proposed by Daly and
Harlow (1970) (also called, the generalised gradient diffusion hypothesis, GGDH) and reads

I

UG = ~Cy Ty 2.75)
The value of C; is obtained by the numerical optimisation of the model results and has a value
of about 0.20. A weakness of this model is that it is not tensorially invariant, although it is sym-
metric in ¢ and j, but the triple correlation %; ;4 is symmetric in all three indexes. Hanjali¢
and Launder (1972) neglected the transport terms in the exact transport equation for triple cor-
relation W;u; % and assumed the quasi-GauBian property of the fourth order correlations of the
fluctuating velocities, and proposed a model which is tensorially invariant:

Uty = —C,TWuy | 4 Ut + T ket + Upty it (2.76)
al'k aZEi an

where C, = 0.11.

The required timescale in models (2.75) and (2.76) is computed commonly as 7 = k/e.
Durbin (1993) argued that the time scale cannot be smaller than the Kolmogorov timescale 75, =
(v/)'/* and proposed

C
T= g max (1, T ) , where Cr =6, (2.77)

Rez /2
which is different from the large-eddy time scale only when turbulence Reynolds-numbers Re; =
k?/ve < 36 which occurs in the final stage of the decay of grid turbulence and in the immediate
wall vicinity. The author’s experience is that the use of the time-scale switch in the turbulent
diffusion of u;@; is not so rewarding as it is e.g. in € equation, where it is used to prevent the
singularity of ¢ equation at the wall and contributes to relatively correct behaviour of ¢ in the
viscous sublayer, as obtained by ERM.

Other more complex models for the triple-moments have been proposed e. g. by Lumley
(1978), Reynolds (1984), Obi and Hara (1995) and Craft (1997). Most of these models have not
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yet been extensively tested. In this thesis the turbulent diffusion is modelled by equation (2.75)
which was also used during development and testing of the HJ low-Re-number model. Although
inconsistent with the general modelling principles adopted in this thesis (lack of tensorial invari-
ance), the model was used because more complex models yield little benefit but at the expense of
higher computational demands, and, in some cases, of computational robustness. Most of all, the
use of a different model for diffusion will require significant additional adjustment of the other
model coefficients.

2.3.12 Dissipation Rate Tensor

The second most important term to be modelled in the Reynolds-stress transport equation (2.9)
is the dissipation-rate tensor defined as

Ou; Ou;
Eij:2 uﬂ

V@m,c oz, (2.78)

For high Re-number flows this term is usually modelled assuming that the smallest scale dissip-
ative eddies are isotropic (Rotta 1951)

e = 2eby, (2.79)
3

where ¢ is the isotropic dissipation which is discussed in Section 2.4 below. According to the
DNS of homogeneous flows at low to moderate turbulence Reynolds number (e. g. Matsumoto
et al. 1991) as well as DNS of channel flows, the dissipation rate tensor does not comply with
the notion of isotropic condition assumed by the mode] (2.79).

Rotta (1951) argued that €;; in the limit of zero turbulence Reynolds number Re, = k?/(ve)
is

ST (2.80)

This model produces the correct wall values (for Re; = 0), but as it follows fully the anisotropy
of Reynolds-stresses, i.e. e;; = a;, it cannot reach the isotropic state as fast as the DNS data
show that happens. Fig 2.14 shows the distribution of the flatness factors of the Reynolds-stress
anisotropy tensor a;; = u;u;/k — 2/36;; and the dissipation-rate anisotropy tensor e;; = ¢;; /< —
2/36;;, A and E respectively, in a Couette flow with adverse pressure gradient obtained from
DNS data. The dissipation anisotropy tensor e;; reaches the isotropic state (which is given by
E = 1) much closer to the walls than the stress anisotropy tensor disapproving, thus, far the
model (2.80) for near wall-flows.

Hanjali¢ and Launder (1976) introduced a form which covers the high Re-number flows as
well as the near-wall region

2
g =(1— Fo)ze0 + figi;, (2.81)
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where ¢7; is a model for the dissipation rate valid near the wall, and in this model is given by
(2.80). The blending function f; = e;;/a;; expresses the proportionality between the small-scale
(dissipation rate) and the large-scale (Reynolds stress) anisotropies. It takes the value of unity at
the wall and tends to zero at appropriate distance from the wall, or at the appropriate Re-number,
ensuring the transition between the low Re-number region near the wall and the high Re-number
region far from the wall. This function is usually modelled in terms of Re; (Hanjali¢ and Launder
1976) and more recently in terms of A and E' (Hanjali¢ and Jakirli¢ 1993). According to DNS
results of wall flows the function f; is not universal, but rather different for each component of
the stress and dissipation tensor.

Launder and Reynolds (1983) demonstrated that expression (2.80) of the model for ¢;; is
asymptotically incorrect in the wall limit for the components which contain the index of the
direction normal to the wall (e. g. 2). Applying the Taylor series expansion to the velocity
fluctuation in the vicinity of a wall they obtained

€ eu 1 e es

k  wup 4Wus; Usuz

1 ez 1en  e3
2 U1U> 2 UaUs U3 '

(2.82)

In order to obtain a correct behaviour in the wall limit, Launder and Reynolds (1983) proposed a
correction in terms of the wall unit vector

8;- =€ [ui:j + (giku—knknj + %n;m,) + q%nkm (5”} s (2.83)

where the n; is the unit vector of the direction normal to the wall.

Kebede er al. (1985) extended further this expression as follows, in order to provide that £7;
contracts to €:

« g [u;u; U; U UjUp UrUy
€ij = f {—llz_—]- (—zk——nknj + -Jk—nkm) + Tnkm 51‘3‘ (2.84)
S Uplty
where F' =1+ 3 5 e

In order to reduce an unrealistically prolonged effect of the wall correction, Hanjali¢ and Jakirti¢
(1993) proposed the model in the form

E;j = % [u:] + (yfuk—nkn]‘ -+ yjk—knkni + %ulnknmmj) fd] R (285)
3T,y 1

where FF = 1 + 37 M far fa= . Of several forms for f; tested by them, the

1+ 0.1Ret
DNS results of ¢;; are best reproduced by the function

fo=1—-VAE?® (2.86)

Fig 2.14 shows the shape of function (2.86) in a Couette flow evaluated from the DNS data.
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Figure 2.14: A, E and f; evaluated from DNS data of Kuroda et al. (1993) for a Couette flow with
adverse pressure gradient dP/8x/ (pUE,/(S) = —1.1 x 1073 (which provides 8U/8y =~ 0 near the

moving wall) at Re,, = U,,d/v = 3000.

A comprehensive review of the algebraic models for the dissipation rate tensor, which include
the wall correction in terms of the wall orientation vector was recently given by Jakirli¢ (1997).
The wall-normal vector cannot be uniquely defined for complex wall flows, and in the numerical
sense, such models are not convenient for applications to the wall-flows in arbitrary geometries.
Attempts have been made recently to design the models for the dissipation rate tensor which
satisfy the near wall behaviour without using the wall topology information (e. g. Shima 1995,
Perot and Moin 1995b and Craft and Launder 1996).

Shima (1995) and Hanjali¢ ez al. (1996) proposed a dissipation rate model which does not
use the wall orientation vector. Model (2.81) was extended by including the viscous diffusion
of Reynolds-stresses and turbulence kinetic energy to satisfy the wall limit and was inspired by
the analysis of the near-wall values of every single term in the transport equation for u;@;. The
model of Shima is given by

o i 2.
B2 k a7 287

2
Eij = (1 — fs)§€6ij + fs—E + =

ud; 1D827¢LTJ» wu; Ok
k 2 ’

where the blending function f; has form (2.86).

A disadvantage of this model is the use of the second derivatives of %;it; and k, since their
evaluation is always accompanied by a relatively large numerical error, which can contaminate
the solution.
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Perot and Moin (1995b) proposed a model for ¢;; which does not use any damping function
and has a very simple form
2 0Qur 0Q
T3 % T2 Ox; Oz’
where the tensor (J;; is the solution of equation Q;+Q,; = %;u;. This makes );; a generalised
square root of Reynolds-stress tensor and, for that reason it does not have a unique solution.
However, this does not seem to be important in the model because ) appears in pairs cancel-
ling any dependence of sign (Perot and Moin 1995b). The model reproduce well DNS data for
channel flows, shear-free wall boundary layers as well as shear-free free-surface boundary lay-
ers. However, calculation of Q;; was found by Craft and Launder (1996) to be unsuitable for
computation of complex flows.

€ij

(2.88)

A new near wall correction model

In the remaining part of this sub-section a new form of the wall-correction part of the model
for the dissipation rate tensor (equation 2.81) is derived. This model does not involve the wall-
orientation vectors and uses only the first derivatives of the Reynolds-stress. It is therefore sim-
pler than Shima’s model as well as any other model with the wall-orientation vector, and, as such,
it is more convenient to be applied to computation of complex flows.

The starting point of the derivation is the fluctuating velocity which can be expressed as

U; = aikl/g, (289)

where % is turbulence kinetic energy and a; is a dimensionless fluctuating variable. By differen-
tiating expression (2.89) and averaging, the dissipation rate tensor is

Ou; Ou; Oa; Oa; . 10aa; Ok kY2 ok1/?
oy = 2w T o, | 001 00, | 2000 OF | L O TORT) 2.90
J V@xk Oy, v Oz, Oy, - 2 Oz, Oxy TG Az Oxrp | (2.90)

and the dissipation of turbulence kinetic energy is

{a—a- da; Ok2 k12
=V |———k + TGl —— 291
c Y al‘k 61:k Taa 8xk 8$k :l ( )

where @;a; = Lty and @;a@; = 2. The only terms to be modelled in equations (2.90) and (2.91)

are the correlations of gradients of ;. Here we model this terms as

3(1.1- 6(1]- _ a;a;

sz 6.Z'k - L2 '

(2.92)

From equations (2.90) and (2.91) the length scale L is obtained as

L= <27k> ’ (2.93)

£
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where
ORV2 Ok1/2
E =€ — —— . 2.94
c € v 8:1% 8.Tk ( )
Finally the model for g;; is given by
amaj ok
€5 = G;0; 2.95
i = a;ae +v By axk (2.95)

where @;a; = uﬂfj

the examination of the second term shows that this term has the zero value at a wall and becomes
again zero at y~ a2 10. Therefore, this model can be regarded as a correction to the Rotta model
in the wall vicinity, and a correction for the transition from the wall region to the core, or high-
Re-number region, is still needed. For that purpose we adopted the function used in the model of
Hanjalié¢ and Jakirli¢ (1993). The author’s experience shows that this function provides the best
convergence'! among several different forms examined. The new model is given finally as

_ Uit 0 (wu;\ Ok
g =(1—f5) co”+f3[ E+I/al‘ ( . )8@] (2.96)

Fig 2.15 shows a priory testing of three models: the HJ model (equations 2.81 and 2.85),
the Shima model (equation 2.87) and the new model given with (equation 2.96) in the channel
&ij 3
for the three models compared to DNS data. Fig 2.17 and Fig 2.18 show the a priory model
testing in two flows for which the DNS data of Perot and Moin (1995a) are available: the wall
shear-free flow and the free-surface shear-free flow. These results show that the new model
performs reasonably well in the wall flows and provides results closer to DNS than the other two
models compared here. The new model predicts the wall-limiting values of components of ¢;;
tensor correctly. For the £;; component a larger deviation from DNS data is observed although
the model predicts the £;; component in good agreement with DNS data, as shown in Fig 2.15
and Fig 2.17. Because they were developed for wall flows, these models predict incorrect wall
boundary behaviour in the free-surface shear-free flow.

flow at two Re-numbers using DNS data. Fig 2.16 shows the near-wall limit value

ISystem of equations given with (2.81) is non-linear when the function f; (2.86) is used.
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Figure 2.15: A priory testing of three models for €;; and comparison with DNS data for two channel flows:
Re, = 180 Kim et al. (1987) and Re, = 395 Kim (1990)
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Figure 2.17: Components of the dissipation tensor (a) and its near-boundary-limit value (b) in a wall
shear-free flow. Symbols are the DNS data of Perot and Moin (1995a) and lines are the a priory tests of
models given by (2.85) and (2.95).
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Figure 2.18: Components of the dissipation tensor (a) and its near-boundary-limit value (b) in a free-
surface flow. Symbols are the DNS data of Perot and Moin (1995a) and lines are the a priory tests of
models given by (2.85) and (2.95).
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2.4 Modelling the dissipation of turbulence kinetic energy

2.4.1 The standard model

The EVMs directly and the SMC models indirectly solve the transport equation for the turbu-
lence kinetic energy £ which can be regarded as the velocity scale of the turbulent motion. For
modelling purposes, almost all single-point closure models require a timescale and a lengthscale.
In most proposals these scales are computed using & and the dissipation rate of turbulence kinetic
energy ¢ for which a scalar transport equation is solved. Dissipation rate ¢ appears in the trans-
port equation for k£ and can be regarded as a destruction of turbulence kinetic energy by small

scale motions of fluid and, ultimately, by viscosity.

The exact transport equation for ¢ is derived from the transport equation for the velocity

fluctuation following the definition of £ (equation 2.11) and can be written as!'?

D

Di =P P24 PS4+ P oY 4 T, + 11, + D, 2.97)
where

P! = -2y gg; ZZ] Si; = —€i;Si; = —¢y g% - Mixed production,
P2 = _2v ?;f g Y = (891;,: gzlj ggj - Production by mean rate of strain,
P = —2v JSZ; Bijg;ck - Gradient production,
P!= 2 SZ; gz; gj:i - Turbulent production,
Y = 22 af:;;k af;;;k - Dissipation,
T.=-v % (umg—z%) - Turbulent transport,
I, = —%1/53— <§:1 ZQ:: - Pressure transport,

=v 8;2;5“ - Viscous diffusion.

12Notation as given by Mansour et al. (1988) and used in Fig 2.19.
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All terms on the right hand side of equation (2.97), excluding the viscous diffusion, have to be
modelled. Distribution of all terms in equation (2.97) obtained with DNS by Kim (1990) in a
fully developed channel flow at Re, = 395 is displayed in Fig 2.19. It shows that P* and Y are
the dominant terms in the core region (y* > 50) but near the wall they are of the same order as
other production terms. At the wall the dissipation Y is in balance with the viscous diffusion D..
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Figure 2.19: Budget of ¢ equation obtained with DNS of a channel flow at Re, = 395 (Kim 1990). a)
Notation as given in equation (2.97). b) Terms arranged accordingly to equations (2.99) and (2.100). All

terms are made dimensionless with u$ /12,

The most frequently used form of the modelled transport equation for & is that proposed by
Davydov (1960) and later reformulated by Hanjali¢ and Launder (1972)

De P, € 0 Oe
Ft = Cal ? - CEQ ; + 5= (V5lm + CsTulum) a_ (2.98)

81‘[ Lm
The first two terms on the right-hand-side of equation (2.98), the source and the sink term,
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which are supposed to model the production and the destruction (dissipation) of € respectively,
are given by
1 2 3 Py
Pl + P} +P}=C., —, (2.99)

P! -Y =-C, (2.100)

N,

where the model coefficients were chosen to satisfy some simple flows such as decay of isotropic
turbulence and shear homogeneous flows. A range of values for these two coefficients can be
found in literature. The coefficients C,, was determined using experimental data for isotropic
decaying turbulence (P, = 0). According to most experimental data C., must take a value of
around 1.9 in order to give the correct decay rate of the turbulence kinetic energy in the inertial
range. C,, can be obtained by optimisation in a local equilibrium shear flow. In this way the
standard model values are obtained: C., = 1.44 and C,, = 1.92. The UMIST turbulence
modelling group proposed (Fu et al. 1987, Craft 1991, Launder and Tselepidakis 1991) C,, =1
and C,, = 1.92/(1 + 0.63 (AA)"/?) which were used in free flows as well as in wall flows.

2.4.2 A critical analysis of the model and possible improvements

We now turn to a critical analysis of modelling the transport equation for ¢ based on recent DNS
data. Fig 2.20 shows the ratio of the production and the dissipation terms (P! + P?+ P3) /(P! —
Y’) in the ¢ equation obtained with DNS in a channel flow. Apparently this function has a very
similar shape to that of the ratio Py /e, shown in Fig 2.21. Using expressions (2.99) and (2.100)
a model for the ratio of the production and the dissipation in € equation is given by

PL+P <P C, P
Pi-Yy  C, €

(2.101)

The a priory tests using expression (2.101) and three sets of model coefficients: the standard
model, the UMIST model and the SSG model (Speziale et al. 1991) (C,, = 1.44 and C,, =
1.83), are shown in Fig 2.20. All three models perform fairly well in the log-law region (P /e ~
1) although it may be said that the standard model (with C;, = 1.44 and C,, = 1.92) gives
the closest results to DNS data. It is also shown here that the models with constant coefficients
capture also the peak at y* = 15 almost correctly but the more complex model, with variable
model coefficients (the UMIST model), is not so good. Note that the production P2, which is
important only in the near wall region, is included in the evaluation of DNS data. None of the
models follow the DNS data in the viscous sub-layer y* < 5 (Fig 2.20a).

The most important conclusion from these DNS data is that the ratio (P} + P>+ P?) /(P*-Y)
is a function proportional to the ratio P, /e. This is observed here in a case of equilibrium flow.
Nevertheless, it has to be mentioned that the form of the model and the values of coefficients
were proposed two decades before DNS data were available.

Since ¢ is used in obtaining of the time- and length-scale of turbulence, which are crucial
in the closure problem, € equation is often blamed for some unsatisfactory results of RANS
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models, especially in complex flows. The above shown analysis of DNS data may justify par-
ticularly good results of RANS models in the equilibrium flows. A similar investigation of non-
equilibrium flows would be particularly challenging and might provide insight into modelling of
€ equation as well as to cure some deficiencies observed in computing relatively complex flows.
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Figure 2.20: Ratio of the dissipation and the production in the ¢ equation (P! + P2 + P3)/(P* - Y)
obtained from DNS data in channel flow at Re, = 395 and compared to model results for C;, /Cs, - P /=
with: C;; = 1.44and C;;, = 1.92; C;;, = 144 and C,, = 1.83; C;;, = 1l and C, = 1.92/(1 +
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Figure 2.21: Ratio of production Py, and dissipation £ of the turbulence kinetic energy k in a channel flow

at Re; = 180 and 395 obtained with DNS (Kim ez al. 1987, Kim 1990).
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The DNS data show that in the log-region of the fully developed channel flow the produc-
tion P! + P? + P3, the dissipation P? — Y and the turbulent transport 7; close the balance
of the equation. Since the ratio production/dissipation in this flow is about 0.7 (Fig 2.20), the
turbulent transport participates with remaining 30% in the budget of this equation. Therefore,
the modelling of diffusion is as important as modelling of the production and the dissipation.
In the framework of SMC the Daly-Harlow model is commonly used (expression (2.75)) with
C. =0.18.

2.4.3 The low-Re-number models

Equation (2.98) is used only in high-Re-number models, which, in the case of wall flows, use the
wall functions. This means that for the low-Re-number flow and near wall layer, the equation
needs to be extended to account for the viscosity and near wall effects. The above neglected
terms, such as the gradient production Y (2.97), have to be modelled.

The first low-Re number modification of equation (2.98) was proposed by Jones and Launder
(1972) (JL) in the framework of EVM. This model was subsequently modified by Launder and
Sharma (1974) (LS) and this form is still the most frequently used low-Re number model. JL
and LS models have a modified turbulent viscosity which, following its definition, accommodate
for the change of the shear stress near the wall, which is given as (LS model):

—30 k2 kY|
— I . — h g = £ — 2 21 2
vy = exp ((1 T Ret/50)2) Cy ex where 153 v ( on ) (2.102)

Analysing the DNS data of Mansour et al. (1988), Rodi and Mansour (1993) found that none of
the popular proposals for v, is in satisfactory agreement with DNS data.

The LS model solves the transport equation for £ which is numerically more convenient
because  at wall is zero. Further, the turbulent production term Pf’ in equation (2.97)is modelled
as

02U, 82U,
3 _ U ¢ 2.103
Fe 2VVt8wk6$m Oz 0z, ( )
and a damping of the dissipation term is done so that
Pi-Y=—fC, 2, (2.104)

where f =1 — 0.3 exp (—Reﬁ). Entire specification of the Launder-Sharma model is given in
Appendix D.
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The low-Re number transport equation for the dissipation rate € in connection with SMC
proposed by Hanjali¢ and Launder (1976) is a modification of equation (2.98) and expres-
sion (2.103) and can be written as

De Py e 0 I
E = Cfl ? — fEC’E2 ; + a_CE[ (Vé(m + CzTﬂ[Um) 6_:
k &U; U
" S — . .1
+Csa v {_:Ukl“a;xkalm 8l’kaxm (2 05)
where
_ 2

P C_Clj exp [_ (%e) } (2.106)

was chosen to satisfy a change from inertial to the final period of decay of isotropic turbulence.
In order to compensate for excessive growth of the length scale L, Hanjali¢ and Jakirlié
(1998) introduced an additional source term into the transport equation for ¢, which reads

) A A
=max{ |[=or) —1| [=o=] ;
S ma"{ (c,amj) (c,axj) /0}

This term has its origin in the correction introduced first by Yap (1987), but has been reformu-
lated in an invariant form. It uses the gradient of the length scale, and was proved particularly
beneficial to the improvement of the predictions of reattaching separated flows. Fig 2.22 demon-
strates the effect of inclusion of this term on the prediction of the streamlines in a fully periodic
flow over ribs. It shows the computed streamline pattern obtained with the basic high-Re-number
Reynolds-stress model, with two sets of coefficients in ¢ equation, the standard values and the
UMIST model. The shape and the size of the bubble remained almost the same, but the anomaly
in the streamline pattern in the reattachment region, predicted with most Reynolds-stress mod-
els, disappeared. This also had a favourable effect on the predictions of the flow properties in
the reattachment region and downstream, as obtained in this case and shown by Hanjali¢ and
Jakirli¢ (1998) in computations of the back-step flows. For the particular flow shown in Fig 2.22,
due to the periodicity of the flow, the .S; term has a more pronounced influence than in some
other flows (e.g. back-step). By producing a realistic shape of the streamlines in the reattach-
ment region the recirculation bubble is extended. Due to presence of the subsequent rib and a
bubble in front of it, the use of S, results in connecting of these two bubbles. Since there is
not sufficient experimental evidence (experiments performed by Drain and Martin 1985) about
the length of these two bubbles, it is difficult to judge the model performances. Nevertheless,
available experimental data indicate that the standard model with the new term, predicts velocity
profiles closer to experiments than without this term (not shown here). Note that the UMIST
model] predicts a somewhat shorter recirculation, and similar underprediction of the recirculation
in some back-step flows is also obtained (not shown here).

A, L=k?/e. (2.107)
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The transport equation for the dissipation rate £ used by Durbin (1993) with ERM is given
with

C* P, —C. S
DE_;E_C“_'“’_E__F‘E(V&m‘FCgTulum) 0

T = 2.
Dt T ox; oz, (2.108)

P
where C7 = 1.44 (1 + O.I—k), C., = 1.9 and C, = 0.14. The timescale 7 is given with (2.77)
€

which switches from the large-eddy time scale k/e to the Kolmogorov time scale at Re; = 36.
The ”scale-switch” can be also seen as a damping function f. (expression (2.106)). As mentioned
above, the use of a scale-switch removes the singularity of € equation. In addition, it plays an
important role in obtaining a good shape of £ near wall and correct wall value of € (see Fig 2.12).
Note that equation (2.108) does not involve the second derivatives of the mean velocity making
this equation simple and numerically convenient.
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Figure 2.22: Streamlines in a fully periodic channel flow over ribs (Re = 2HU, /v = 37200, where H is
the channel width) obtained with the basic high-Re-number RSM and four variations in transport equation
for € (2.98). RSMO: C;, = 1.44 and C:, = 1.92; RSM1: C;, = 1 and Cs, = 1.92/(1 4 0.63 (A42)"/?).



CHAPTER 3

Adopted Numerical Method

In this chapter the numerical method used in the present study is briefly described. Further, the
main features of the implementation of the turbulence models used into the numerical code are
outlined. Some examples of validation of the implementation of the models and the numerical
schemes for convection are presented. Attention is especially given to: discretisation for non-
orthogonal mesh, block-wise local mesh refinement, approximation of convection, numerical
aspects of second-moment closure (SMC) modelling, applying both the wall functions and the
exact wall boundary conditions.

The basis for implementation of the turbulence models is a widely used method for compu-
tation of fluid flows in arbitrary geometries developed by Peri¢ (1993)!. A numerical code for
laminar flows in two-dimensional arbitrary geometries, provided by courtesy of Prof. M. Peri¢
of University of Hamburg, has been extensively modified for the purposes of the present study.
The goal was to establish a reliable, accurate and efficient solver for turbulent flows when SMC
models are used.

3.1 Introduction

Computational fluid dynamics (CFD) is nowadays often used to gain insight into fluid flows.
Reliability is a basic requirement which CFD techniques have to fulfill in order to be used for
engineering design purposes. Two basic ingredients of CFD, the numerical technique and the
mathematical model of physical processes, are the crucial factors which influence the quality
of CFD-code results. The optimal results in geometrically and physically complex turbulent
flows can be achieved only by combining the latest accomplishments which have been made
in the areas of both principal ingredients of CFD. Therefore, combining the SMC models and
numerical solution algorithms for non-orthogonal meshes with collocated variable arrangement
is a particularly challenging task, especially if the model equations are to be integrated up to
the wall. The design of an efficient and robust numerical algorithm for solving SMC model
equations for an arbitrary numerical mesh is an essential prerequisite for taking advantage of
better physical foundation and performances of SMC models over simpler models such as eddy-
viscosity or algebraic models.

'Details can be also found in Ferziger and Peri¢ (1996).
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Numerical solution algorithm for turbulent flows using RANS approach is usually an exten-
sion of the solution procedure for laminar flows. In the case of the eddy-viscosity type of models
the model implementation is straightforward, primarily due to the way in which these models
couple to the momentumn equations that is essentially a contribution to the diffusion. Only two
additional scalar equations (for turbulence kinetic energy k and its dissipation rate ¢) are to be
solved. In the case of SMC models a number of numerical difficulties arise. First, a larger num-
ber of transport equations (up to 6 equations for the Reynolds-stresses w;u; and one equation for
the dissipation rate ¢) have to be solved. Depending on the complexity of the SMC model used,
these equations contain a relatively large number of terms (especially redistribution and diffu-
sion process models, leading often up to more than one hundred terms) weakening the coupling
between the model variables themselves and the velocity field as well. Second, the coupling
between the Reynolds stresses and velocity in the momentum equation is rather weak and it is
widely recognised as a main cause of lower stability that the SMC models have in comparison to
EVMs (Huang and Leschziner 1985, Obi et al. 1989, Lien and Leschziner 1993b).

The majority of the SMC model computations (including some major commercial CFD soft-
ware such as Fluent, Star-CD, Fire)employ the wall functions (WF) for the mean ve-
locity and the model variables utilising some empirical lows. By doing this, the first numerical
point is located in the logarithmic-law region relatively far from the wall (in wall units it is at
y* > 30). In contrast to this approach, it is possible to solve the turbulence model equations by
integrating them up to the wall and imposing exact wall boundary conditions. In this approach
all sources of the numerical instabilities and difficulties present in the WF approach are signific-
antly more pronounced. This is primarily due to the fact that the changes of all model variables
are most dramatic in the region which is covered by only one control volume (CV) in the WF
approach. In that region the Reynolds-stress components change from zero at the wall, reach-
ing maximum value at the edge of the viscous sub-layer which is located around the midway
between the wall and the first numerical point of WF approach, and then falling down for about
10 to 20 % of their peak value by the end of first CV of WF approach. Further, the wall region
has to be covered by a dense numerical mesh in the direction normal to the wall employing at
least 10 points in the space where only one control-volume is placed in WF approach. In order
to obtain a more stable procedure, the numerical mesh in the wall directions has to be much finer
than that of WF approach.

A very important factor which has a strong influence on the stability and even ability of the
numerical procedure to converge to the solution (if it exists) is the model capability to describe
the variable behaviour physically correctly. This is more pronounced in the low-Re-number
approach when it is possible that the model tends to a laminar or even a non-physical solution,
leading to divergence. Therefore, the quality of a turbulence model is a very important factor
which may strongly determine the numerical stability of the solution algorithm. This is especially
important for the low-Re-number models.

The objective of the present study is the computation of the wall flows in arbitrary geometries
with integration of the model equations up to the wall and imposing exact wall boundary con-
ditions (so called low-Re-number modelling). The following text presents the practise adopted
in the present study directed to solve the SMC model equations together with the Reynolds-
averaged Navier-Stokes equations in the framework of low-Re-number modelling of turbulent
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flows in arbitrary geometries. The above addressed problems and their solution towards a reli-
able and efficient solution algorithm are described.

3.1.1 Numerical solution procedure

In the framework of this study a computational procedure for solving the Navier-Stokes equa-
tions in arbitrary two-dimensional geometries, developed by Peri¢ (1993), has been extended to
computation of turbulent flows using SMC models. This is not a straightforward and easy task, as
the use of SMC model changes the character of the momentum equations (now Reynolds equa-
tions) in which the molecular diffusion is negligible except within the viscosity affected regions,
whereas the dominating turbulent stresses, supplied from separate transport equation, appear as
source terms. This change has serious implications on the equations’ character and therefore
on their solution. The procedure is based on a fully conservative finite volume method for non-
orthogonal meshes. A block-structured body-fitted mesh with block-wise local grid refinement
is employed for the discretisation of the transport equations. This preserves the simplicity of
the method and achieves the flexibility needed to handle geometrically complex flow situations.
Block interfaces are treated in a conservative manner, consistent with the treatment of inner
cell-faces. Cell centred (collocated) variable arrangement and Cartesian vector and tensor com-
ponents are used. No transformation of vector or tensor variables in the discretisation procedure
is needed. In order to account for non-linearity and coupling between transport equations, an it-
erative solution algorithm with under-relaxation of the variables is used to approach the steady or
the instantaneous solution. A pressure-correction method based on SIMPLE algorithm (Patankar
1980) is used for pressure-velocity coupling.

The starting point of the procedure are the transport equations in their integral form. The sur-
face and volume integrals are approximated using second-order approximations based on mean
value approach (mid-point rule). The cell-face values of variables and gradients featuring in sur-
face integrals are approximated using linear interpolation and central differences, respectively.
The equations are linearised and solved sequentially. The ILU solver (Stone 1968) has been
adopted for solving systems of linear equations.

In order to minimise numerical error and retain/preserve the stability of the procedure when
the SMC models are used, the higher order upstream-weighted approximation schemes (linear
upwind scheme - LUDS and quadratic upwind scheme - QUICK) as well as total variation di-
minishing (TVD) - type schemes have been employed to approximate convection.

In order to prevent the appearance of oscillatory pressure field, a selective interpolation pro-
cedure for the cell-face velocity entering the continuity equation is applied.

Turbulence has been predicted using two-equation eddy-viscosity models and second-moment
closure models. Both the high and low Reynolds-number variants of these models have been used
by applying the wall functions or exact boundary conditions respectively.

The stability of the numerical procedure when SMC models are used is achieved with the
artificial turbulent viscosity introduced into the momentum equations.
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3.2 Discretisation of transport equations

In this section the discretisation of the transport equation is outlined. The numerical method
used in this work allows division of the solution domain into a finite number of blocks which can
have irregular structure and which are further divided in a finite number of control volumes of
quadrilateral form with the straight line connection between corner-points. A typical numerical
cell with definition and notation is shown in Fig 3.1.

® Cell center

© Cell-face center
o Corners

Figure 3.1: A generic numerical cell with definition and notation.

The connection between blocks is obtained by matching grid lines at block-interfaces. One ex-
ample of possible block organisation is given in Fig 3.6 on page 68 and some others can be
found in Chapter 5. More flexibility has been achieved for the block structured grids using the
block-wise refinement doubling the number of control volumes in each direction. In this case
the matching of the grid lines is required for each even grid line. This allows the use of finer
grids in regions where needed (for example near walls if low-Re number models are used) which
results in a cost-effective meshing of the domain. In both variants the interface is treated in a
fully conservative manner consistent with the treatment of inner cell-faces.

A turbulence model in the framework of RANS modelling approach is usually a system of
partial differential equations where each of them can be written in a general form. Thus, the
differential transport equation for a generic quantity ¢ can be written in the coordinate-free form
as

0

g—f + div(pig) — div(l gradg) = ¢ . (3.1)
S— N—— S~~~

Transient

term

Convection Diffusion Source
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where ¢ stands for the mean velocity vector components U;, Reynolds-stress tensor components
u;w;, turbulence kinetic energy k, its dissipation rate ¢, or, generally, for any transported variable.

In order to solve the differential equation (3.1) this equation is integrated over each control
volume 2. Using GauB’ divergence theorem the volume integrals of convection and diffusion in
equation (3.1) are converted into the surface integrals and this equation in the integral form can
be written as

o .

—/p¢d9+/ (pi¢ —T gradg) -dS = /qu , (3.2)
Convection Diffusion

Transient term Source term

Two integral types are present in equation (3.2): integrals over the control volume (2 (unsteady
and source terms) and integrals over the closed surface S surrounding the control volume (con-
vection and diffusion).

3.2.1 Volume integrals

The volume integrals here are approximated by the mid-point rule, which is second-order accur-
ate, where the mean value of the integrated variable is approximated by the value of the function
at the control volume center P

/q A0 = 7 AQp ~ gp AQp. (3.3)
Q

For the unsteady flow cases the integration of transport equations needs to be performed in time.
Since the surface and volume integrals are evaluated in an implicit scheme at the new time
level, the flow history is then taken into account through the unsteady (transient) term only. The
simplest implicit scheme for discretisation of the unsteady term is the first-order Euler scheme

ot At

(pp op — pp &%) | (3.4)

where the superscript o’ denotes the previous time level (¢ — At, At is time step), and the
variable value is evaluated at CV-center P. This scheme is unconditionally stable but suffers
of low accuracy and in this work it has been used only when a steady state was computed by
marching in time toward solution. This false time stepping sometimes improves convergence
of entire solution procedure and was applied in some cases with SMC models, especially for
transitional flows with coexistence of laminar and turbulent regions.

An implicit second-order approximation of the unsteady term at time level () for which we
seek solution is achieved by fitting a parabola through the solution at three time levels and then
taking the derivative at time level ¢



60 3. ADOPTED NUMERICAL METHOD

/8'0(de AQp3 pp ¢p — 4 pp % ~ pp ¢F

< 5 (3.5)

where the superscript 00’ denotes time ¢ — 2A¢. This scheme is marginally more complex
than the Euler scheme (only solutions of one more level have to be stored) but is second-order
accurate and is also less prone to oscillations than the Crank-Nicolson scheme with almost the
same accuracy (Lilek et al. 1997).

3.2.2 Surface integrals

The surface integral in the equation (3.2) is the sum of integrals over all CV faces:

/f aS=% [f-as= S (3.6)

ng

where f is the convective (pvip) or diffusive (I grad¢) vector.

Diffusion

The diffusive flux applying the midpoint rule is approximated as

= /I‘ grado - dS ~ (T grad¢ - ), . 3.7
Sn

The gradient of ¢ in the Cartesian coordinates is

¢ -
gradg = 6—@ L (3.8)
and the diffusive flux becomes
Fi~ (T §¢ S . (3.9)

It is assumed here that mass fluxes, fluid density p and diffusivity I' are known at the center
of each CV face n. In order to calculate the convective and diffusive fluxes the value of ¢
and its gradients on the CV faces are expressed as a function of the nodal values by means of
interpolation. The value of derivatives of any variable in any direction ¢ in the Cartesian co-
ordinates at CV centre is evaluated from the Gaul3’ theorem, (Peri¢ 1993)

(@) n Zn P
P

oz, ACp (3.10)
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where ¢,, is the value of generic variable ¢ at center of the cell face calculated by linear interpol-
ation from two neighbouring nodal values. This formula is valid for CVs of arbitrary shape. It is
of decisive importance for implementation of the block-wise grid refinement where some control
volumes at block interface can have 5 or even 7 cell-faces.

In order to calculate diffusion, the gradients at cell-face are required. In the framework of a
structured grid approach it is possible to evaluate gradients using the co-ordinate transformation
as follows:

(%)n - Aén [(@n = 6p) (s = o) = (90 = &r)(yw — yp)]

(3.11)

(%g)n - A%Zn [(zx —zp)(dr — &) — (21 — 2,)(én — ép)]

where AQ, is the volume with centre at point n and bounded by the central and corner points P,
N, I and r (for notation see Fig 3.1)

AQ, = (v —xp) (Y — yr) — (11 — 22 )(yny — yp) . 3.12)

The cell-corner values involved in equation (3.11) are evaluated by interpolation from four neigh-
bouring central points and the nodal values are considered as unknown. Other possibilities to ex-
press the derivatives at cell-face are proposed by for example Muzaferija (1994) and Lilek et al.
(1997). It does not require transformation at cell-face but has a simpler form than adopted here.

Convection

The convective flux through the cell face n is approximated as

Fe = /quﬁ- 45 ~ thndn (3.13)
511

where 77, is the mass flux through the cell face n approximated with midpoint rule

Tty = / pi - dS = (pU:S)), = (pUSy — pV 6z),, (3.14)
Sn

where & = U i + V j is velocity and S, = 8z i+ 8y J is the volume surface vector parallel to
the unit normal vector 7 at the call face n.

Differencing Scheme (CDS): The large majority of the numerical procedures for solving lam-
inar and turbulent flows nowadays are based on second-order central differencing for the spatial
derivatives. While the central differencing is regarded as the most natural representation of dif-
fusive terms in equation (3.2) it has been found that CDS applied to convection may, in certain
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circumstances (e. g. when the local cell Peclet number Pe = pU,A, /T exceeds value of 2
and especially in computations of turbulent flows), produces a non-physical oscillatory solution
(wiggles) or even causes divergence of the solution procedure. Therefore, the numerical approx-
imation of the convection in transport equation (3.2) has been recognised as the weakest point
of the discretisation procedure and crucial for numerical accuracy and stability.

Upstream Differencing Schemes: The simplest and widely used technique to cure the deficiency
of the CDS is the upstream extrapolation from the neighbouring nodes which is usually called up-
wind differencing scheme (UDS). This scheme is only first order accurate but bounded and very
stable. The good stability of UDS is due to its large numerical error which has the form of dif-
fusive terms (also called artificial numerical diffusion) acting stabilizingly to solution procedure.
Linear upwind differencing scheme (LUDS) and quadratic upwind scheme (QUICK) (Leonard
1979) are the natural straightforward higher-order extensions of the UDS. They were shown to
be relatively stable and, because of this, they have been widely used. In the same way as CDS,
the LUDS and QUICK are not bounded and therefore may lead to oscillatory non-physical solu-
tions (wiggles). This becomes especially dangerous when such schemes are applied to transport
equations for the turbulence quantities used in models. An unrealistic solution, as for example
negative turbulence kinetic energy or its dissipation rate, might lead the entire numerical proced-
ure to be unstable or to diverge.

Figure (3.2) is a schematic representation of evaluation of cell-face value ¢, by CDS and
three upstream-weighted approximations for convection (UDS, LUDS and QUICK) which were
also adopted for the purposes of the present studies. Because of its good stability and efficiency,
UDS was, in the present study, usually used to approach solution, but final results were always
obtained with more accurate higher order schemes.

Total Variation Diminishing (TVD) Schemes: The QUICK scheme is often seen as the best com-
promise in terms of accuracy and stability (e. g. Lien and Leschziner 1994) and therefore used
in many research and commercial CFD codes. However this scheme is not bounded and as such
it is not convenient for computation of variables for which an unbounded scheme may cause
serious difficulties in obtaining solution as mentioned above. A number of studies have been
published concerning the reliability of the turbulence models in the frame-work of the second-
moment closure modelling (e. g. Speziale ef al. 1994; Durbin and Speziale 1994). It was reported
that some models for the pressure-strain $;; can lead to unrealistic solution of Reynolds-stresses
especially in the case of the two-dimensional turbulence limit of which the wall flows are one
example. Therefore, it is important to have a solution procedure which does not tend to produce
an unrealistic solution due to numerical discretisation.

The concept of the TVD class of differencing schemes for convection is based on controlling
the numerical solution in a non-linear way such as to prevent the appearance of any new extreme
(Hirsch 1990). This provides a monotone and bounded solution and prevents numerical oscilla-
tions by controlling the flux of computed quantity within the control volume. This is achieved
by not allowing the quantity called Total Variation (TV) defined as

TVig) = ; |dre1 — Skl | (3.15)
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Figure 3.2: Schematic presentation of the upstream numerical schemes for convection. UDS — Upwind;
CDS - Central; LUDS — Linear Upwind; QUICK — Quadratic Upwind Differencing Scheme.

to increase. If on a uniform collocated one-dimensional mesh (Fig 3.3) the flux-limiter is defined
as

Gip1 — Gs
T = 3.16
+1/2 o — 1 (3.16)

and the flux-limiter function ¢/, is used as

1. ,
Git1j2 = Pi + 57#( ) (¢ — Diz1) | 3.17)

Tit1/2
the flux-limiter functions used in present study are listed in Table 3.1. The graphical representa-
tion of several flux-limiter functions of the TVD scheme is given in Fig 3.4.

In order to make the implementation of the higher-order schemes for convection into the
computer code simpler, we use the so called deferred correction approach: the UDS scheme is
implemented in an implicit manner and the difference between a particular higher-order scheme
and the UDS is treated explicitly.

The importance of accurate discretisation of convection has been recognised over about two
decades of experience of application of CFD technique to engineering flows. In a review paper
on application of numerical methods to computation of fluid flows Leonard (1997) summarised
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Table 3.1: Flux-limiters in the TVD scheme.

Flux-limiter function V()
[ . 3 1
SMART, Gaskell and Lau (1988) maz |0, min (4, ZT + T 27")}
[ . 3 1
MUSCL, van Leer (1974) maz |0, min <2, ZT + T 27")]
. . I . 3 11 3
UMIST, Lien and Leschziner (1993b) maz LO, min (2, ZT + 7 ZT + T 27“)]

this in the following conclusion: the first-order schemes should not be used for practical calcu-
lations. Also, the policy of some journals is to publish only the numerical solution proven to be
free of numerical error (e.g. Journal of Fluids Engineering). Nevertheless, solutions obtained
by UDS or by blending of UDS and CDS, where the portion of UDS has to be relatively high in
order to promote stability, are still often used especially for computation of industrial turbulent
flows.

Fig 3.5 demonstrates the importance of the use of non-diffusive high-accurate discretisation
of convection in computation of a turbulent flow. It shows profiles of mean velocity and stream-
wise normal component of Reynolds-stress tensor in a by-pass transition on a flat-plate with
circular leading edge (for details for this flow-case see Chapter 5). Results are obtained using
the HJ low-Re-number SMC with two schemes: UDS scheme and TVD scheme with UMIST
limiter applied to convection in momentum and model equations. Under the same conditions
the UDS approximation fails to capture the separation-bubble (as seen from profiles of the mean
velocity at x = 0.015 m). The more accurate approximation of convection done with TVD
scheme leads to excellent representation both of mean flow and the turbulence. Basically, it is
the model’s capability to predict the separation and transition, but it is shown here that some
numerical diffusion can strongly influence the solution.
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Figure 3.3: One-dimensional collocated mesh showing computational nodes as defined in equation (3.17)
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Figure 3.4: SMART, MUSCL and UMIST flux-limiter functions for TVD schemes as given in Table 3.1.
The shaded area indicates region of second order accuracy for TVD flux-limiter functions.
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Figure 3.5: By-pass transition on a flat plate with circular leading edge (for more details about this flow
see Chapter 5). Profiles of mean velocity and stream-wise fluctuation obtained with the HJ low-Re SMC
model and two schemes for convection: UDS and TVD with UMIST limiter (lines) compared to experi-
ments by Coupland (1995) (symbols).
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3.3 Local grid refinement

The numerical procedure allows division of the solution domain into a number of non-overlapping
blocks and each block is subdivided into a finite number of control volumes by a structured mesh.
The grid lines have to match at block interfaces. In order to achieve more flexibility, block-wise
grid refinement has been implemented in the present work. A refined block is made by doubling
the number of control volumes in both directions so that each even grid line of refined block
has to match the corresponding grid line of non-refined block at the block-interfaces. This is
illustrated in Fig 3.6, which shows a numerical mesh used to study the lid- and buoyancy-driven
cavity flows. These cases were used to assess implementation of grid-refinement algorithm into
the numerical code. Results are compared with the benchmark solutions of Demirdzi¢ et al.
(1992) showing that it is possible to obtain essentially the same results as on the mesh which
corresponds to the most refined blocks of refined mesh, but with a significant reduction (50%)
of the number of computational points and the computing time. In the case of buoyancy-driven
cavity the mesh is kept coarser in the core region where the computed variables do not vary sig-
nificantly while the mesh is refined in the wall vicinity, especially near inclined walls which are
in this case heated/cooled and where the gradients of temperature and velocity are the largest.
The result shown in Fig 3.6 is obtained on a mesh made of seven blocks containing in total 36992
CVs. A corresponding ’non-refined’ mesh with the same density near walls has 69632 CVs. The
results obtained on these two meshes (the latter type computed with only one block and also
seven blocks) are practically identical. This proves that local mesh refinement is a useful and
worthwhile technique for computation of complex fluid flows.

The criteria for the grid generation and refinement is the user’s estimation of possibilities
and needs to cover some flow regions with either coarser or finer mesh. One possible basis for
making decision (besides the user’s experience) can be, for example, the steepness of the variable
gradients. For example, in a back-step flow all variables undergo the strongest changes in the re-
circulation and recovery region which can, therefore, be covered with a refined block. Another
important characteristic of the refinement is that it preserves the ratio of CV dimensions which
acts favourably on the numerical stability.

In the method used here the computational nodes are placed in the center of each control
volume (see Fig 3.7) and all unknowns at these positions are found by solving a system of lin-
ear equations obtained by discretising the physical equations. Although the structured four-
neighbours computational cell is employed within a block, equation (3.10) enables evaluation
the gradients irrespective of the number of cell-faces of a CV. The fluxes at block interfaces are
evaluated using the neighbouring cell-center and cell-vertex values.

3.4 Modified pressure-correction algorithm

In the case of incompressible flows, continuity equation is often used to derive a method for cal-
culation of the pressure field. The so-called pressure-correction algorithms are perhaps the most
widely used and possibly the most successful approaches to determine the pressure in implicit
incompressible flow solvers. The approach adopted here is an iterative method in which velocity
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Figure 3.6: a) Numerical mesh for study flows in buoyancy-driven cavity. The mesh is made of 7 blocks
containing in total 36992 CVs. b) Stream lines obtained on this mesh for the benchmark conditions of
Demird#i¢ et al. (1992) (Pr = 0.71 and Ra = g[)’ATLSPr/ v? =108 Top and bottom boundaries are
adiabatic walls and the inclined boundaries (angle 45°) are heated and cooled walls with constant flux.)
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Figure 3.7: Block-interface between non-refined (M) and refined (N) block. The even mesh-lines of the
refined block have to match grid lines of the neighbouring block. Interpolation for cell-face values at
interface is done using the nearest nodal values.

components are obtained with an estimated pressure field, which was obtained from the previous
non-linear iteration or time step. The obtained velocity field does not satisfy the continuity equa-
tion. In order to enforce the continuity condition, the velocity is corrected. This is done by using
pressure-velocity coupling method based on SIMPLE-algorithm (Patankar 1980) where the mass
imbalance is used to calculate the pressure-correction field which forces the velocity to satisfy
continuity. A detailed description of the algorithm for laminar flows is given in Peri¢ (1993), and
Ferziger and Peric¢ (1996).

The same procedure as for laminar flows is applied for turbulent flows when linear eddy-
viscosity models are used. Since the Reynolds-stress is then modelled as

2 ou;  oU;
mu; = kb — : J
the momentum equation can be rewritten as follows

DU,  10P 8 oU; aUJ->

m‘5%+£WM%%+%

(3.18)

2
where P = P + -k is then computed, and the real pressure predicted by eddy-viscosity model
should be evaluated from this.

Since the SMC models predict the anisotropy of the normal components of the Reynolds-stress
tensor, the contributions of the stresses to the momentum equations which can be associated with
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pressure are, in general, different in each direction, unlike that of linear eddy-viscosity models.
Modification of the pressure algorithm is therefore necessary and this was done here as described
below.

The discretised momentum equation may be written as

-5\ m—1
i F Tk i yrmx m— 8 P+ U2
AY wp T ZA%/' iGN = i,Pl - <—(m—pJ) AQp (3.19)
N i P

and then the velocities calculated at the CV center can be expressed explicitly as functions of
gradients of the pressure associated with the corresponding normal components of the Reynolds-
stress tensor:

—\m—1
AQp [0 (P + puf)

M Frm
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where the pseudo-velocity Ni’};‘ is defined as
- AS U+ Qr
U—:}; — ZN N Yi,N Qz,P ‘ (321)

U;
AP

and the superscript m denotes the non-linear iteration and the * indicates the non-corrected ve-
locity.

For the calculation of mass-fluxes we need the velocities at cell-faces, which are calculated
by using equation (3.20). Pseudo-velocity is interpolated from CV centers, and the pressure
contribution is calculated directly at the cell-face. The velocity at cell-face n is

L > o tew) (P pu_?)m_l (3.22)

me=(U) = AQ, (—

Uz,n < i >n <A¥f Ox;
where A(Q,, is the control volume bounded by points P and N and corners { and r (see Figure
3.1). Instead equation (3.21), which would lead to a complicated calculation, the interpolation
of the pseudo-velocity at cell-face is done by using equation ( 3.22). This leads to the following
expression for non-corrected velocities at cell-face

O a— 1 (P +pu})\ /8P +pud)

where {-) denotes linear interpolation from the neighbour nodal values and no summation over
i is applied. The second term on the right hand side can be seen as a correction to the linear
interpolation using the nodal values. It vanishes when the function (P + pu?) is linear or quad-
ratic, and is proportional to the square of mesh spacing and the third derivative of the function
(Ferziger and Peri¢ 1996). Thus, this term is a second order correction which goes consistently
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towards zero as the grid is refined. It is large only when the variation of this function is not
smooth (Lilek et al. 1997).

The mass fluxes through the cell face n calculated using Equations (3.23) do not satisfy the
continuity equation

St = A (3.24)

and need to be corrected so that

> (g +my) =0 (3.25)

where m’n is the mass-flux correction. By truncating equation (3.23) when approaching continu-
ity the velocity correction can be expressed in terms of the pressure correction as

U;n:_<§b{£> (513) | (3.26)
! APl n 8:1:1 n

The gradients of P’ can be evaluated by using expressions (3.10). Since in an implicit iterative
method the mass conservation does not have to be satisfied exactly at the end of each outer
iteration, the gradient of pressure-correction can be calculated as (Peri¢ 1993; DemirdZi¢ et al.
1992)

’ ’

oF' Py — F;
—_ e 2
(axi)n NP ©.27)

where NP is the distance between central point P and the neighbouring central point N. The
equation for the pressure correction P’ follows from Equations (3.27), (3.25) and (3.26).

By the wall-, inlet-, outlet- and symmetry-boundary conditions the velocity is prescribed and
therefore does not need to be corrected. Thus the zero-gradient boundary condition is applied on
the pressure-correction equation. If the pressure is prescribed at a boundary (so called pressure
boundary condition) the velocity is computed to satisfy that pressure.

3.5 Stability treatment of SMC modelling

While the implementation of the eddy-viscosity models into a numerical code for laminar flows
is straightforward, the experience of researchers working on numerical aspects of SMC model-
ling show that the implementation of such models into the numerical code is a non-trivial task
(Lien and Leschziner 1994). It has been experienced that the solvers for turbulent flows which
use eddy-viscosity models are more stable than those that employ Reynolds-stress models. The
main reason is that these two models contribute to the momentum equations in a rather differ-
ent manner. The contribution of the linear EVM does not change the form and character of the
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Navier-Stokes equations. On the other hand, the contribution of the SMC models to the mo-
mentum equations is non-diffusive and for the high-Re number flows it is much larger than the
viscous diffusion.

Since the Reynolds-stresses in the linear EVM approach are expressed in terms of the velocity
gradients associated with the eddy-viscosity, the contribution of the stresses to the momentum
equation in this case is in essence diffusive to that equation and, basically, the same as in laminar
flow. This is of decisive importance to stability, because the diffusive terms in substance stabilise
the numerical procedure. The viscosity coefficient in momentum equation is now the sum of the
laminar and turbulent viscosity. In the case of the SMC modelling the contribution of Reynolds-
stresses is through their gradients that can cause or reinforce the oscillations in a similar manner
as the pressure does. These contributions are dominant part of the momentum equation because
the only diffusion here is molecular one, which is rather small, especially if the Reynolds-number
is high. All this becomes more pronounced when non-orthogonal grid is applied.

Several, in essence similar techniques, to promote stability in framework of SMC model-
ling have been proposed in last few years. It was recognised that low stability of SMC model
is basically due to absence of diffusive terms in the momentum equation and that the stability
can be restored by increasing diffusive coefficients in discretised momentum equations. In the
framework of a staggered finite-volume approach with orthogonal grid Huang and Leschziner
(1985) introduced a technique by which the velocity-gradient type diffusion terms are extracted
from the discretised Reynolds-stress transport equations. An apparent viscosity appears and en-
larges the diffusion coefficients in discretised momentum equations. This technique was adopted
by Obi er al. (1989) in the framework of a finite-volume approach with collocated variable ar-
rangement for orthogonal grid and extended later by Obi (1991) to non-orthogonal grids. The
Reynolds-stresses extracted from its discretised transport equation can be expressed in this form

3/ P P

where I';; is an apparent diffusivity, which is a function of the SMC model used, and which,
for a stable procedure, must be unconditionally positive. Stresses expressed by equation (3.28)
are then used in the discretisation of the momentum equation. In this way the first terms on the
right hand side of the equation (3.28) are associated with viscous diffusive terms in momentum
equation and contribute significantly to diffusive coefficients. Because of this, new source terms
appear in the momentum equations.

For the same purpose Lien (1992) (see also Lien and Leschziner (1994)) have extracted an ex-
pression for #;w; from the algebraic truncation of the modelled Reynolds-stress transport equa-
tion so that

aU;
Uy = —vi; — | (3.29)
7 7 8117]‘
and then expressed the Reynolds-stress computed in the m-th non-linear iteration as
m AUN\™ AN
(Tw;)™ = — (ufj 8.17]-) + (uﬂ.’/j + v 6;rj) (3.30)
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Table 3.2: Apparent viscosity tensor in Obi’s and Lien’s approach.

Interpolation of equations Anisotropic turbulent viscosity
Obi (1991) Lien and Leschziner (1994)
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and introduced it into the momentum equation. This is usually called artificial viscosity approach
meaning that some diffusion is added to and subtracted from the momentum equation while
they are then discretised as source and diffusion respectively. When the numerical procedure
converges to the solution, expression (3.30) reduces to the Reynolds-stress. By this an amount of
numerical diffusion, equal to the difference of discretisation of introduced terms, is inserted into
momentum equation.

The coefficients I';; and ij in equations (3.28) and (3.29) are given in Table 3.2. They have
slightly different form due to the manner of extraction of apparent viscosity. In both cases the
same pressure-strain model of Gibson and Launder (1978) was used.

2

The apparent viscosity in the Lien and Leschziner approach can be expressed as v;; = Clij k?
where the coefficients Cf] are functions of the turbulence model used. The value of coefficient
C’Zf in Table 3.2 vary between 0.065 — 0.951 in the near wall region and 0.175 — 0.577 in the free
flows?. The above described techniques for stabilisation of the numerical method are strongly
dependent on the SMC model used. The Lien-Leschziner approach introduces a non-invariant
viscosity in momentum equation that may lead to a non-invariant solution.

Since the present work was aimed primarily at low-Re-number SMC modelling, and for the sake
of general applicability and simplicity, we adopted here the approach with invariant apparent vis-
.2

cosity equal to that of the eddy-viscosity approach i.e. v, = C,— instead of tensorial expression
5

2These values correspond to four components of Reynolds-stress tensor in 2D flows.
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proposed by Lien-Leschziner. The Reynolds-stress is now expressed as

m au;  oUN]™ [ au;  au\1™ !
(u.,-uj) = [Vt (8&7] + 6:57_ ):| + l:’U,,‘UJ + 1 <6—.77] + 61‘7_ >} (331)
where m indicates the current outer iteration. The momentum equation becomes
opU;  0pU;U; 0 ou; oU;\| _oP
o g, b, | WG, T o )| T
0 ou; 09U,

All terms on the right-hand side of equation (3.32) are treated explicitly using values from the
previous iteration. In this way the diffusive coefficients of the discretised momentum equations
become identical to these of eddy-viscosity model, and the stability of the SMC computations is
considerably retained. From the anthor’s experience, the stability of SMC models is still lower
than that of EVMs, which is primarily due to the complexity of these models.

The contribution of the artificial diffusion to the discretised momentum equation is due to a
different treatment of the diffusive terms. Since the central discretisation is used for diffusion
and linear interpolation for the evaluation of cell-face values, this contribution is zero when the
variation of velocity is linear or quadratic on uniform mesh. This contribution is large only in
regions where the velocity varies strongly, and goes consistently towards zero as the mesh is
refined.

The author’s experience is that the same treatment is needed when the SMC modelling is
applied to heat transfer and cures apparently the same problem which appears in the transport
equation for the mean temperature.

3.6 Wall boundary conditions

In the present studies two classes of the turbulence models to account for the presence of the
permeable wall are used: i) high-Re number models where the near wall region is bridged by
so called wall function, and ii) low-Re number models when the transport equations are integ-
rated up to the wall, imposing exact boundary conditions to each equation. If the wall-function
approach is used, the near-wall computational point should be located in the logarithmic-law
region. In contrast to this, if low-Re-number models are used, a large number of computational
points have to be placed in the region between the wall and the position were the first near-wall
point of WF approach would be located®.

3.6.1 Wall functions

The wall function for SMC models is essentially the same as for EVM. The only difference is
that it needs to take into account anisotropy of the Reynolds-stress tensor at the first near-wall

3Usually more then 20 control volumes; this number depends also on the bulk Reynolds number.
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Figure 3.8: First control volume near wall and definition of the global Descartes (z,y) and the local
wall-oriented co-ordinate system (¢,7) with notation.

point. A possibility is, as used earlier by several authors (g.g. Lien 1992), to prescribe the values
of all Reynolds-stresses in the near-wall node as functions of turbulence kinetic energy k. For
a particular turbulence closure model the values of the Reynolds-stresses in the log-law region
can be derived by imposing 'local equilibrium condition’, P, = ¢, and neglecting convection
and diffusion (that may be seen as a good approximation for near equilibrium flows). In the
wall-oriented co-ordinates the Reynolds-stresses obtained with GL and SSG model are

uf u w? i

k k k k
GL 1.098 0.247 0.655 0.255
SSG 1.067 0.413 0.520 0.314

The wall-damping function f,, of GL model is set to unity. The transformation of the Reynolds-
stresses from the Cartesian to the wall-oriented co-ordinates and vice versa is given in Ap-
pendix E.1.

In order to explicitly impose the values of Reynolds-stresses, one first has to determine these
values which is only a simple problem for linear models and 2D flows.

A general way to provide correct values of the Reynolds-stresses independent of the model used
is to impose the value of the production of each particular stress in accordance with the wall
function. The production of turbulent kinetic energy in the log-low region is in balance with the
dissipation rate, and in wall-oriented co-ordinate system, it can be written as
T
P. = —ut—u;% €. (3.33)
on
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The mean velocity parallel to the wall in the log-low region is given with

% Lin(mnr), (3.34)

U, K

where n* = — is normalised distance from the wall, x = 0.41 is von Karman constant and
v
E = 8.41 is an experimental constant. The wall velocity u, computed from equation (3.34) is

% Utli

U = BT

(3.35)

Following the definition of C, in the eddy-viscosity approach the wall velocity can be calculated
as

ur = CY* kM2 (3.36)

The wall velocity expressed in two different ways, Equations (3.35) and (3.36) are used to cal-
culate the wall-shear stress as follows
Uy

Tw = *|_UT| o iU, (3.37)

The turbulent shear-stress in the wall-oriented co-ordinates in log-low region is

Tw

T~ T (3.38)
p

From the logarithmic law the gradient of the velocity parallel to the wall in the direction normal
to the wall can be expressed as

8Ut _ Ur

= (3.39)

KN
where 7 is distance the first computational point from the wall. The remaining gradients of the
velocity components can be neglected dU; /8t = 0U,/0n = JU,/0t = 0. These velocity
gradients obtained in the wall-oriented co-ordinates are transformed to Cartesian co-ordinates
and together with stresses used to calculate the production terms in the %;u; transport equation.
In this way the logarithmic-law for the equilibrium wall flows and non-orthogonal grids is im-
posed. The expressions for the transformation from the Cartesian co-ordinates to the arbitrary
coordinates and vice versa are given in Appendix E.1.

In an equilibrium flow the results obtained with both methods described above are identical.
The later approach takes into account deviation of the ratio P,/e from unity which might be
significant in non-equilibrium flows such as those with separation, recirculation, reattachment,
recovery and impingement. Although, in the author’s experience the former approach is numer-
ically more stable, we applied the latter because of its obvious advantages in computing complex
flows and implementation into the computer code.
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Dissipation of turbulence kinetic energy ¢ in the log-law region follows directly from the equi-
librium assumption ¢ = P. Using equations (3.33), (3.39) and (3.38) dissipation is

P (3.40)

The zero gradient (Neumann) boundary condition is specified to each Reynolds-stress compon-
ent and turbulence kinetic energy. The dissipation ¢ given with equation (3.40) is prescribed
explicitly. Although consistent with the treatment of production of the mean-equilibrium flows,
this is the weak point in the conventional wall function approach. Several more sophisticated
proposals were published (e.g. Chieng and Launder 1980; Kim and Choudhury 1995; Ciofalo
and Collins 1989; Kiel and Vieth 1995) but which only marginally gain in prediction quality.

3.6.2 The exact wall boundary conditions

In order to apply the exact wall boundary condition to the velocity and turbulence model equa-
tions, one has to use a turbulence model suitable to account for strong variation of model variables
through the viscous sub-layer and the buffer region. The exact wall boundary conditions are de-
termined by the physical behaviour of moving fluid approaching a solid wall and the definition
of turbulence model variables.

For the mean velocity and the Reynolds-stresses the Dirichlet boundary condition U; = 0,
u;u; = 0 are applied. For the pressure the Neumann boundary condition is used dP/dn = 0.
For the dissipation rate ¢ the Dirichlet boundary condition is applied. The value of ¢ at the wall
is derived from the balance of transport equation for £ at the wall:

27,
ew:z/(a A) . (3.41)

an?

Since the evaluation of second derivatives of k at the wall is connected with the numerical un-
certainty and a need for a very fine numerical mesh, a simplification of expression (3.41) can be
applied. Using the asymptotic expansion of fluctuating velocity near the wall it can be shown
that turbulence kinetic energy & behaves as

k= agn® + bpn® + ... (3.42)

where n is distance from the wall. Keeping only the first term of (3.42) the dissipation at the wall
can be computed as

okL/2\*
=V ( 5 )w (3.43)

Expression (3.43) is equivalent to expression (3.42) if the first numerical point to the wall is at
nt < 5. This allows the numerical mesh to be distributed so that the first point can be located
atnt =~ 1 — 2 without serious numerical difficulties. For larger n* the numerical results are
contaminated and it causes other numerical problems such as slow convergence.
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3.7 Treatment of the source terms

The numerical treatment of source terms of the turbulence model equations is often of decisive
importance for the numerical stability of the entire numerical scheme. For these turbulence
quantities which are physically always positive (e. g. £ and normal components of the Reynolds
stress tensor) we treat implicitly all negative contributions and explicitly all positive ones. This
leads to an increase in the diagonal dominance of the implicit portion of the scheme and thereby,
enhances its stability. The source contribution to these equation can be written as

¢ AQp

ap AQp = Q;_(ﬁ AQp + (IPT op, (3.44)

. . I ap® AQp

where g} includes all the positive contributions and g all the negative ones, whereas ~~————
P

is the contribution to the Ap coefficients.



CHAPTER 4

Oscillating and Pulsating Flows

This section describes the application of the second-moment closure model to computations
of oscillating and pulsating boundary layer, channel- and pipe-flows at transitional and higher
Reynolds numbers. The particular emphasis is on prediction of the reciprocating flows with the
laminar-to-turbulent and turbulent-to-laminar transition which occurs within an oscillation cycle.
Two of the considered cases for which DNS data are available (oscillating boundary layers with
sinusoidal free-stream velocity by Spalart and Baldwin (1989) and with steep but not sinusoidal
free-stream velocity variation by Justesen and Spalart (1990), both at Res, = 1000) were used
to tune some of the model coefficients. The model reproduces well the “conditional turbulence”,
with sudden turbulence bursts and subsequent relaminarization, in the oscillating boundary layers
and pipes in the whole range of transitional Reynolds numbers in accord with results of DNS and
experiments. Predictions of turbulence dynamics in the outer region of a channel or pipe show
also good qualitative agreement with experimental records.

4.1 Introduction

From the variety of unsteady turbulent flows our interest in the present study lies at the ones that
are bounded by smooth plane walls and forced by a periodic time-varying flow-rate or pressure
gradient. These flows can be classified into two groups: i) reciprocating flows with zero time-
mean flow-rate and velocities (oscillating or "oscillatory” flows); and i7) the flows with non-zero
mean flow-rate and velocities (pulsating or "pulsatile” flows). Oscillating and pulsating wall-
bounded flows are often encountered in engineering (aerodynamics and thermodynamics, e.g.
rotating airfoils and turbomachinery blades, heat exchangers attached to reciprocating engines),
in environment (e.g. coastal waters), and in bio-engineering and biomedical sciences (e.g. blood
flow in major mammalian arteries and air in lungs). These flows have been the subject of extens-
ive experimental and, more recently, numerical investigations. Because of their importance, the
understanding and accurate prediction capability of these flows is of great practical interest.
Such unsteady flows are the next in complexity, compared to the steady wall flows, such as
channel- and pipe-flows, which are the basic test cases for the development of turbulence models.
From the numerical point of view, these unsteady flows are as simple as the steady channel
and pipe flow and are, therefore, very suitable for the validation of turbulence models. Since
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these flows are periodic, they are independent of the initial conditions and the uncertainty of the
inflow conditions is eliminated, which is also of significant importance for the turbulence model
development. These flows are one-dimensional in space (homogeneous in the two directions
parallel to the wall) requiring small computational resources. At the same time, these flows are
physically rather complex, being significantly different from the steady equilibrium flows and
are, therefore, a severe test for turbulence models. Any turbulence model intended for unsteady
wall flows (e.g. internal combustion engine, Sterling engine, vortex shedding flows, etc.) should
be first tested in oscillating and pulsating wall flows.

Oscillating and pulsating turbulent flows exhibit a number of features, seldom encountered
jointly in other flows. Such are the periodic interchange of favourable and adverse pressure
gradients, reversal of the mean flow and the shear stress, inflection of the mean velocity pro-
files, laminar to turbulent and reverse transition. Reciprocating flows are more complicated than
pulsating flows, because the flow may go through laminar and turbulent stages and transitions in
between. In pulsating pipe or channel flows, the time-mean properties are largely unaffected by
the forced oscillations.

In general, the oscillating pipe or channel flows with zero time mean can be characterised by
the Reynolds number Res, = Uy dg/v (Up is the amplitude of mean velocity, 65 = 1/2v/w is
the Stokes layer thickness!, w is oscillation frequency) and the Stokes parameter A = R/és (R
is the pipe radius or the half of channel width). These flows can be classified into four broad
types (Hino et al. 1989): i) laminar flow; i7) disturbed laminar or weakly turbulent flow, where
’small-amplitude’ perturbations appear superimposed on the velocity traces towards the end of
the acceleration phase of the cycle but where otherwise the velocity traces agree with laminar
theory; iii) intermittently (conditionally) turbulent flow; where turbulent bursts appear violently
and explosively during the decelerating phase of the cycle while during the acceleration phase
the flow reverse to laminar; and possibly iv) fully turbulent flow, where the flow remains turbu-
lent throughout the cycle. The weakly turbulent regime (hereafter denoted as “turbulescence”,
Hanjali¢, Jakirli¢, and Hadzi¢ 1995) is characterised by a visible but small amplitude perturb-
ations in the mean velocity oscillogram over the whole cycle, which only marginally affects
the laminar-like mean flow properties. The conditional turbulence denotes the pattern with pro-
nounced turbulence bursts sustained only over a part of the cycle. It seems more appropriate to
call this regime periodically turbulent or simply bursting’ regime. Hino et al. (1989) argued that
this regime will prevail always if Res, > 550, (close to the stability criterion for the oscillating
boundary layer) provided that Stokes parameter is A > 1.6. Hino et al. (1989) plotted a demarc-
ation line separating the weakly and conditionally turbulent regimes, which follows the relation
Re,, ~ 1100\. Seume (1988) identified a similar relationship expressed in terms of the Valensi
number, Va = wd?/4v = 22 for the transition Reynolds number above which a rapid increase
in the measured velocity fluctuations was detected. Hino ez al. (1989) concluded that oscillating
pipe flows are more ‘stable’ than unidirectional steady flows and can be turbulent only during a
part of each cycle, decaying suddenly when the direction of flow is reversed. This conclusion
can be extended by saying that the bursting regime in an oscillating pipe or channel flow can
exist over a wide range of Reynolds numbers, its span increases progressively as the Stokes para-

IStokes layer thickness is a measure of the “penetration depth” in oscillating flows.
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meter A increases. In the experiments of Jensen et al. (1989) on oscillating boundary layers the
bursting turbulence was detected over a range in which Re-number varied almost by one order of
magnitude. Hino ez al. (1989) constructed the stability diagram, summarising their experimental
results. The transition from laminar to weakly turbulent flow of type (iii) and turbulent flow of
type (iv), as well as the transition from type (iii) to (iv) were determined.

Oscillating boundary layers are characterised only by the Reynolds number Res,. Stability
analysis (Davis 1972) suggests Res; =~ 600 to be the laminar stability threshold. The direct
numerical simulation (DNS) by Spalart and Baldwin (1989) for this Re;, showed flow features
which differ from typical laminar flows. But, it was only for Res, = 800 and 1000 that DNS
showed a marked transition to turbulence around the start of the deceleration phase to be followed
by laminarization during the acceleration phase. Very similar shapes of the wall-shear stress
distribution over a cycle were found experimentally by Jensen et al. (1989) for Res; =760 and
1140 in oscillating boundary layer flows and Akhavan et al. (1991) for Re; = 1080 and A = 10.6
in oscillating pipe flows. Hino et al. (1983) recorded a similar profile in a rectangular duct for
Res, = 876. Neither Hino er al. (1989) nor other authors defined the criterion above which no
relaminarization will occur and the flow will remain fully turbulent over the whole cycle.

4.1.1 Relevant experimental and DNS studies

Due to relatively simple configurations of the oscillating flows and their possible control through
imposed force, these flows have recently received special attention in experimental studies as
well as in numerical ones particularly as test cases for turbulence models. The flows are periodic
in time, homogeneous in the directions parallel to wall and all flow quantities are functions only
of the wall normal coordinate and the time.

Oscillating wall-bounded flows with imposed periodical unsteadiness have been the subject
of great interest for a long time. Several valuable experimental studies of these flows have been
conducted over past few years. In the present study we turn our attention to experimental and nu-
merical (DNS) studies which provide data bases suited for model validation. Jensen et al. (1989)
studied experimentally oscillating boundary layer flows over both smooth and rough walls with
purely sinusoidal variation of free-stream velocity. This work provided detailed measurement
results of mean velocity, wall shear stress and turbulence properties in the streamwise direction
and in the direction perpendicular to the wall, for the flows at Re;, from 120 up to 3460. Since
the transition to turbulence in these flows occurs at Res, = 800 the measurements were carried
out for the laminar, transitional and turbulent flows. All experiments were performed in a chan-
nel with the cross-section aspect ratio of 1 : 1.4 but the Stokes parameter is sufficiently large
(A = 75) to consider these flows as boundary layers. Akhavan et al. (1991) reported detailed
measurements of oscillating pipe flows for three different flow conditions, all in the transitional
flow regime. The Stokes parameter A and Reynolds number Res, were varied. Experimental
results include the mean streamwise velocity, the streamwise and radial as well as shear com-
ponent of the Reynolds stress tensor and the wall shear stress. Spalart and Baldwin (1989) con-
ducted direct numerical simulation of the oscillating boundary layers with sinusoidal variation
of free-stream velocity for four Reynolds numbers Re;s, = 600, 800, 1000 and 1200. Justesen
and Spalart (1990) carried out a DNS of an oscillating boundary layer with a steep variation of
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pressure-gradient and a resting period between acceleration and deceleration at Res, = 1000.
The DNS databases provide the mean velocity and the Reynolds-stress tensor components.

4.1.2 Relevant modelling studies

Numerical simulations by the Reynolds averaged Navier-Stokes modelling cannot predict all the
phenomena observed in experiments such as the subtle details of the turbulence initiation at the
very edge of laminar regime. Since the assumptions on which the wall functions are based are not
valid in the most of the oscillating flows, the basic requirement concerning a turbulence model
to be employed for computation of these flows is the integration of model equations up to the
wall. HaMinh, Viegas, Rubesin, Vandromme, and Spalart (1989) reported reasonable agreement
between computations with a low-Re-number SMC model and DNS results of Spalart and Bald-
win (1989) for an oscillating boundary layer at Res, = 1000. The model could not describe
the behaviour of turbulent quantities in the near wall region nor it could maintain the turbulence
at Res;, = 600. Justesen and Spalart (1990) applied three low-Reynolds-number eddy-viscosity
models to compute the oscillating boundary layers. The results were compared with DNS data of
Spalart and Baldwin (1989), experiments of Jensen ef al. (1989) for purely sinusoidal oscillating
boundary layers, and with DNS of an oscillating boundary layer with ’steep’ variation of free-
stream velocity at Res;, = 1000 for which they performed also a DNS. It was shown that these
models provide relatively good results for the wall shear stress as well as velocity profiles, tur-
bulent kinetic energy and dissipation. The major deficiencies of Jones and Launder (1972) and
Chien (1982) k& — £ models are in the computation of flows at transitional Reynolds-numbers.
Both models predict the transition to early. Shima (1993) computed the oscillating boundary
layer for Res, = 1000 with his version of a low-Reynolds-number SMC. The results are in good
overall agreement with corresponding DNS results. This model does not produce correctly the
peak of the wall shear stress, its value and position. Dafa’Alla, Juntasaro, and Gibson (1996)
compared their ¢ — { model with DNS data of Spalart and Baldwin (1989) for Re;s, = 1000 and
with experiments of Jensen et al. (1989) at Res, = 3460. This model gives very similar level of
accuracy as the Launder—Sharma k — ¢ model.

4.1.3 Decompositions of unsteady turbulent flows

The most convenient way to isolate the turbulence from organised unsteadiness is to employ the
phase or the ensemble averaging. Most of the experimental studies provide such results. From
the computational point of view, it becomes easy to employ the single-point closure models to
predict these flows if any of these approaches are used, which, in contrast to the time averaging,
provide detailed information about the time history during a cycle that can be very important in
flows with reverse velocity.

According to the phase averaging any periodic flow variable G (x, 1) can be decomposed into

3 components (Hussain and Reynolds 1970)

9ix,t) = Clx) * Clx,0) T 9x, 1) (“.1)
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where é(x) is the time-mean value of the variable G at location x, & (x, 6) is the periodic com-
ponent at a phase angle ¢ at the same position x and 9I(x, 1) is the fluctuating part. In the case of

the ensemble averaging any considered quantity is decomposed into two components
9x,1) = Clx,0) T 9(x,1) “2

where G(x, ¢) = é(x) + G(x, ) and ¢ is the time. Ensemble averaging leads to the same

transport equation as for the steady flow, but with only one additional term which accounts for
the variable change in time. In all unsteady computations in this study the ensemble averaging
approach is used.

4.1.4 Flow definition

The laminar boundary layer with a free-stream velocity that varies sinusoidally in time around a
zero mean in a semi-infinite domain, bounded by a flat wall, is the simplest example of the oscil-
lating flows and has the well-known analytical solution (see for example Schlichting (1969)).

Uy = Uscos(wt)

y A Free stream
S
o
; /
- ] \% time
I
[S——

Wall

Figure 4.1: The definition sketch of oscillating boundary layers.

The free-stream velocity is given by

Uso(ty = Uocos(wt) 4.3)
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where U, is the peak of free-stream velocity, w = 27 /T is angular frequency, T is the period of
the oscillations, and ¢ is time. The pressure gradient calculated from the free-stream velocity is

oP _ 0Us
8z pc'?t

The solution of Navier-Stokes equations that describes the flow is

= pwl,sin(wt) . 4.4

Uty = Unoty — Use™¥/%5 cos(wt — y/85), 4.5)

where g = (2v/ w)% is the Stokes-layer thickness, and y is distance from the wall. The wall-
shear stress is calculated from the mean velocity:

U 2U,
Tw = (—,,@)—y)w = p,\/(;s cos(wt + %) 4.6)
The friction coefficient is
T, 2 T
ComTw __ 2 ( ¢ -) 4.7
[ on2/2 Res. cos | wt + 1 “4.7)

and is a periodic function similar to the free-stream velocity with the phase lead of ¢ = 7 /4 with
the maximum which can be expressed as a function of a nondimensional parameter the Reynolds
number based on Stokes-layer thickness and maximum free-stream velocity Res, = U,ds/v,
(v is the kinematic viscosity). The amplitude of the wall shear stress in the laminar flows is
universal function of Reynolds number C, = 2/ Re;,. The peak of the wall-shear stress and the
phase lead ¢ (for laminar flow ¢ = 45°) are often used to show the departure of a turbulent flow
from the laminar state (see Jensen ef al. 1989). Jensen et al. (1989) used the Reynolds number
based on the amplitude of the free-stream motion a = U, /w and the maximum of the free-stream
velocity, Re, = U,a/v = Re? /2. The above given analytical solutions are commonly used to
asses the accuracy of the numerical method. The numerical method adopted here provides fairly
good agreement with the theoretical solutions.

4.2 Oscillating flows

In this section the predictions of oscillating (reciprocating) boundary layers, channel and pipe
flows in a range from laminar to fully turbulent flow regime with sinusoidal and ’steep’ variation
of pressure gradient are considered.

4.2.1 Mathematical model

Oscillating flows were studied using the low-Re-number eddy-viscosity model of Launder and
Sharma (1974) and the low-Re-number SMC model of Hanjali¢ and Jakirli¢ (HJ) (Hanjali¢,
Jakirli¢, and HadZi¢ 1995; Jakirli¢ 1997; Hanjali¢ and Jakirli¢ 1998) which is described in details
in Section 2.3.9. Most of the results are given for SMC model, because the eddy-viscosity model
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results were published earlier by some researchers (see for example Sana and Tanaka 1995,
Dafa’Alla er al. 1996, Justesen and Spalart 1990). Since, the flow is fully developed in the space,
the only Reynolds stress component appearing in the U mean velocity transport equation is the
shear stress wo. The normal components of the Reynolds stress tensor appear in the turbulence
model closure. In the SMC model employed here the pressure-strain correlation is modelled
conventionally as the sum of the linear return-to-isotropy model for the slow part and the linear
isotropisation-of-production model for the rapid part. A wall reflection term is employed to
account for the wall effects on the wall-bounded flows. By adopting the linear models of ®;;, we
followed initially the approach of Launder and Shima (1989), but modified first the coefficients
C4, Cy, CY and Cj to achieve best overall performances in testing several non-equilibrium flows
with pronounced low-Re-number and wall proximity effects (see Jakirli¢ 1997). This model is
given with:

(Dij,l = —C1€CL,'J'
2
B2 = —Cs(Py— 5Py (“.8)
o = ¥ f,5 (T, o, — Suw S
g1 = O] qu WU T T 05 — §UjUrknkn]‘ — 51%11]"19”4
3 3
ol = C3fw (q’km,2nknm5ij - §(I)ik,2nkn'j - 5¢kj,2nkni) .

The coefficients of the pressure strain correlation, originally proposed as constants by Gibson
and Launder (1978), are extended to take into account the strong change of the Reynolds stresses
from the peak value in logarithmic region to zero at the wall. Various forms of the functional
expression for the coefficients have been tested in a number of wall-parallel test flows, Jakirli¢
(1997). Here two variants of the model that differ only slightly, both relevant to the simple linear
model as given by expressions (4.8) are presented.

The coefficients adopted in both models of @;; are summarised in Table 4.1. Some of the
model coefficients were chosen to have this particular form and value as a result of the a priory
testing and optimisation of the pressure strain model in channel flows using available DNS data.
Optimisation of these coefficients was subsequently performed for the very basic wall flows such
as channel and zero-pressure gradient boundary layer flows as well as the oscillating boundary
layer at Re;, = 1000, comparing overall model performances with DNS and experimental data.

The first model, denoted as M1, reproduced very well the appearance of turbulent burst over
the whole considered range of transitional Re-numbers, but produced an increase in the friction
factor in wall flows at high Re-numbers, where the employed modifications were expected to
fade out completely. The second, slightly different model, denoted as M2, is void from this
deficiency, as discussed later.

4.2.2 Numerical details

A numerical code based on the control volume approach, as described in Chapter 3, is applied
to all cases under consideration. For the oscillating boundary layer flows a parabolised version
of this code is used. The time dependent pressure gradient given with (4.4) is imposed explicitly
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Table 4.1: Specification of model coefficients

Model M1 Model M2
C 2.6AAY f 25AFVAf
F - min{0.6; 4>}
f 1—exp[—(Re/150)]  min{(Re;/150)*%; 1}
C, C + VAE?
Cs 0.75A'/2 0.80A%/2
Cy 1-067C 1-0.70C
Cy  max{2/3 —1/(6C>);0} min(4;0.3)
e, 0.35 0.25

fo max{k%%/(2.5ex,);1} max{k®?/(2.5cz,);1.4}

in equation for the streamwise mean velocity U which is the only mean quantity computed. The
mean velocity normal to the wall is set to zero. Zero gradients in flow direction are applied to
all variables. The typical time step used in the computations was 1 degree. Tests performed
with time steps of 5, 2.5, 1, 0.5 and 0.20 degrees showed that the time step of At = 1° =
1/3607 provides the grid independent solution. In these computations the implicit three-level
second order scheme (see Section 3.2) for discretisation of unsteady terms is used. For oscillating
boundary layer flows a Cartesian one-dimensional numerical mesh (with only one control volume
in streamwise direction) with 100 control volumes in y direction is employed. The size of CVs
is increased exponentially starting from the wall where it was ensured that the first numerical
point is placed within ¥t < 0.5 and providing about 20 points in the viscous sub-layer and
buffer region. Tests with coarser (80 CVs) and finer (120 CVs) mesh showed that the solution
on 100 CVs is grid independent. Diffusion and source terms are discretised with second order
schemes. For computation of oscillating and pulsating pipe and channel flows an appropriate
flow rate is imposed. Thus, the pressure is solved using SIMPLE algorithm. The computational
domain had the length of usually 0.5R and grid of 5 to 10 CVs in the flow direction. The periodic
boundary conditions are applied to set fully developed flow in space. The initial conditions are
not relevant, but their choice influences the duration of computations. The periodical solution is
usually obtained in about 4 to 6 periods.

4.2.3 OBL with sinusoidal free-stream velocity

The first group of flows considered are boundary layers on a flat wall subjected to the sinusoidal
free stream variation U,, = Uj cos(wt), at several Re;, ranging from the fully laminar flow at
Res; = 120 to the fully turbulent flow at 3460. The evolution of the wall shear stress over
the cycle provides a good illustration of the flow dynamics in the near-wall area, where the
instabilities are generated first. Fig 4.2 compares SMC computations with the measurements of
Jensen et al. (1989) and with the results of DNS by Spalart and Baldwin (1989) for a range of
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Re-numbers. Since the flow is symmetric with regard to phase angle the results could be given
only for one half of the cycle, but because of some asymmetry in the experimental results, the
results are given for the entire cycle. The absolute value of the wall shear stress is given in the
figure.

At the lowest Res, = 560 shown here, which corresponds to the Hino et al. demarcation
between the "deformed laminar’ and ’weakly turbulent’ (turbulescent) regimes, the experimental
profile looks like laminar, though shifted by a small phase angle and slightly perturbed over the
whole cycle in the same sense as seen in velocity oscillogram of Hino et al. (1989). The SMC
model could not reproduce these small perturbations and yielded laminar solutions irrespective
of the initial turbulence field. Similar features have been reproduced by the DNS of Spalart and
Baldwin (1989) at Res, = 600. Although, this Re-number is marginally higher than the previ-
ously considered and the flow is still in the turbulescent regime, which is far from real turbulence,
both models considered agreed very well with the DNS data, as shown in Fig 4.2. Already at
Res, = 760, which falls in the range of bursting (’conditionally turbulent regime’) the models
reproduce very well the experimentally detected sudden jump in the wall shear stress corres-
ponding to the turbulent bursts after the onset of the deceleration phase, as well as a subsequent
relaminarization during the acceleration. As the Re-number increases, the transition appears
earlier and this behaviour is well predicted by the models, as indicated by a sharp bend in the
curves. There is, however, a distinct difference between the performances of the two models at
this and slightly higher Re-numbers. The earlier model M1 produces a sharp turbulent burst very
similar to that recorded by experiments in the second half of the cycle, but its peak appears about
12 to 15 degrees earlier than recorded by experiments. The second model M2 yields a more
gradual development of the turbulent burst and agrees very well with the experimental data in
the first half of the cycle. The experimental scatter and the difference between the two halves
of the cycle makes it difficult to judge which of the model reproduces the experiments better.
However, at a still slightly higher Re-number of 800, for which Spalart and Baldwin performed
direct numerical simulations, the model M1 gave excellent agreement with the DNS data. At
higher Re-numbers the difference between the performances of the two models fades away, but
becomes noticeable again at the two highest Re-numbers, where the flow becomes fully turbulent
over the whole cycle. Although both models yield a too high (about 20%) maximum wall shear
stress, it is believed that the model M2 gives the realistic value and that the experimental data
might be somewhat too low. This is partly substantiated by the fact that the model M2 gave a
very good reproduction of the channel flow and of boundary layers at various pressure gradients
at high Re-numbers (Jakirli¢ 1997). Also, the log-plot of the mean velocity profiles, shown in
Fig 4.3 for a range of phase angles ¢ at Res, = 3460 seems to confirm the above conclusion.
Excellent agreement is obtained during the acceleration, whereas a disagreement appears around
the peak velocity, but only in the outer layer, while the inner wall layer follows closely the uni-
versal logarithmic law. Similar level of over-prediction of the wall shear stress (between 15 and
25%) for the case of Res, = 3460 was reported by Justesen and Spalart (1990) and Dafa’ Alla
et al. (1996) who used eddy-viscosity type of models. The broken line in Fig 4.2 indicates the
beginning of transition to fully turbulent regime. Both models, M1 and M2 predict this position
very well.

A summary of the comparison of the wall shear stress is given in Fig 4.4 in form of the
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Figure 4.2: Evolution of the wall shear stress in an oscillating boundary layer over a cycle for different
Re-numbers; the dotted line denotes the incipience of turbulent bursts.
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Figure 4.3: Semi-logarithmic plot of the mean velocity at different phase angles for Res, = 3460.

peak 7,,, normalised with pUZ2/2. The diagram confirms a very good agreement, apart from the
highest Re-numbers, as discussed earlier. It should be noted, however, that a line drawn through
the experimental points in the Re-number region after the transition, would exhibit a convex
form mainly due to a low friction factor at the highest Re-number, whereas typical experimental
friction factor curves in a channel or for boundary layer are concave. Such feature show also the
predicted results.

Fig 4.5 compares the phase lead of the maximum wall shear stress over the peak free-stream
velocity, showing a change-over from 45 degrees for laminar to about & degrees for turbulent
flow at Res, = 3460. In a range of Re-numbers where the transition occurs after the start of
the deceleration phase, 7,, exhibits two peaks: the first corresponding to almost laminar regime
and the second, which lags behind the velocity maximum, corresponding to the turbulent burst
(negative ).

A more detailed comparison was made with the DNS data of Spalart and Baldwin, showing a
very good agreement of the mean velocity and all stress components at different phase angles for
Res, = 1000. The comparison of the wall shear stress for this case is shown in Fig 4.6. This fig-
ure shows the free-stream velocity and the pressure gradient 9P/dx as functions of phase angle
¢. Both variants of SMC models follow closely the DNS points, better than any earlier reported
model, though they do not reproduce in full the asymmetric sharp peak. For the reference the
result obtained using low-Re-number linear eddy-viscosity model of Launder and Sharma (1974)
is given. A sharper transition can be generated e.g. by replacing the f-function in the model M1
by 1 — exp[—(Re/150)2] (not shown here), but this function delays the transition and already at
Res, = 760 the model could not maintain the turbulence. The sharp increase of the wall shear
stress beginning at ¢ ~ 135° is a direct consequence of the deceleration of the mean flow. In a
laminar flow the wall shear stress reaches the maximum at ¢ = 135°. Therefore, this is the crit-
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Figure 4.4: Non-dimensional maximum wall shear stress (wave friction factor) versus Res.

ical moment when the present back-ground small level turbulence acts favourable in generation
of the Reynolds-stresses uZ and %o via their production.

Fig 4.7 shows the mean velocity profiles in the wall coordinates. The model predicts the
existence of the logarithmic law, but also the large deviation of this law at ¢ between 60 and
110 degrees closely following the DNS data. We need to note here, that the large deviation of
the model results from DNS at ¢ = 70° is because the wall shear stress 7, used for velocity
and the length scaling is here rather close to zero and any small difference in 7,, between model
computation and DNS produce a large difference. Linear plots of the mean velocity show that
the predicted velocity at this phase angle is very close to DNS data, and Fig 4.6 shows that the
wall shear stress predicted with the model does not match DNS data exactly.

Fig 4.8 shows profiles of the shear-stress %o as function of the wall distance at various phase
angles. Because of the logarithmic scale used for the wall distance this figure shows comparison
very close to the wall. Agreement between the model computation and DNS data is very good.
It indicates a very low value of @0 near the wall between ¢ = 50° and ¢ = 150° which occurs
during acceleration towards the beginning of deceleration phase, which is at ¢ ~ 135°. This
laminarization is due to acceleration of the mean flow. In this phase the wall shear stress behaves
closely to laminar solution which is due to absence of the shear stress in the wall vicinity. Also,
other Reynolds-stresses are rather small in this phase, as show shown in Fig 4.9. The model
predicts well the dynamics of all stresses. Some difference to DNS data is observed at ¢ = 140°
and 150°, which are at the beginning of the steep increase in the wall shear stress (see Fig 4.6),
which indicates transition to fully turbulent flow near the wall.

The variation of maxima of all non-zero turbulent stresses during the half of the cycle is
shown in Fig 4.10. The 2 stress increases first. The wo stress, which is negative near the
wall, contributes first to the generation of u? stress, which starts just after ¢ = 100° The major
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Figure 4.5: Phase lead of the maximum wall shear stress with respect to the maximum free-stream velo-
city. Legend as in Fig 4.4.

increase in u? and v stresses occurs between this point and 160 degrees. Since v? stress is
still decreasing in time a rapid growth of the @z stress is due to turbulent diffusion and pressure
fluctuations. This diagram shows that despite small value of the shear stress @ (it is only 10% of
u? stress) a substantial variation of @v is important for prediction of the dynamics of turbulence.
It should be noted that the distance of the position of the stress maxima from the wall varies
along the flow and that it increases during acceleration, thickening the viscous boundary layer
and producing the laminarizing effects on the mean flow.
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Figure 4.6: Evolution of the wall shear stress at Res; = 1000 for “mild” (sinusoidal) variation of the
free-stream velocity. Lines are computations obtained with two sets of the model coefficient as given in
Table 4.1 and the eddy-viscosity model of Launder and Sharma (1974).
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Figure 4.7: Comparison of computed profiles of mean velocity with DNS data results for the sinusoidal
case at different phase angles. Symbols: DNS (Spalart and Baldwin 1989), Lines: SMC M2.
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has the « component and the smallest one is the v component.

Vo, w = v w?; at all phase angles the largest value




94 4. OSCILLATING AND PULSATING FLOWS

.025
— maximum value
- ——— ' SU?
[ -t & - 'U‘g/U 2
020 —+ °
- —A———A—- q / n‘
: o ©
015 £
010 +
005 —
B St S . eeeel T
0 _?;?_ﬂ"\“}_'ﬁfg‘f?'?’; Ly by b by b e g 1y
100 150 200 250 ¢
r
002 - wv/Uf .
C T E e - mammum
F minimum,
?Eud\“"‘u--a_
r S
0 : X x T oS SRS
2 o x X
L X
-.002 F
:\r‘jli‘tll!|}|l‘!1!|!J4|J‘!;!|I|v|‘l\gl\|I
100 150 200 250 ¢

Figure 4.10: Evolution of peak values of all components of Reynolds-stress tensor over a half of the cycle.
Sinusoidal variation of free stream velocity, Res; = 1000. Symbols DNS (Spalart and Baldwin 1989),
Lines SMC M2.




4.2. Oscillating flows 95

4.2.4 OBL with ’steep’ pressure gradient

The next case considered is a more rigourous test than the previous one. This flow, simulated by
Justesen and Spalart (1990), was subjected to much steeper acceleration and deceleration, with
quasi-steady intervals in between. The mean free-stream velocity is given by Fig 4.11.
Ua(t) = Uy [320166 cos(wt) — 76230 cos(3wt) + 22869 cos(bwt) 4.9
—5445 cos(7wt) + 847 cos(9wt) — 63 cos(11wt)].

The pressure gradient is computed from (4.9) and imposed into the momentum equation. The
pressure-gradient peak is about three times larger than that of the previous sinusoidal case.

Predicted and DNS results for the wall shear stress, are compared in Fig 4.11 showing an
excellent agreement with both models.

o o DNS, Spalart (1990)
----------- Computation (M1)
———— Computation gM}?
————— Computation EVM LSh
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Figure 4.11: Evolution of the wall shear stress at Res;, = 1000 for "steep” variation of the free-stream
velocity. Lines are computations obtained with two sets of the model coefficient as given in Table 4.1 and
the eddy-viscosity model of Launder and Sharma (1974).

More details for this case are shown in Fig 4.12 and 4.13 where the normal- and shear stress
components are plotted in parallel. Turbulent stresses are also well predicted apart from some
curious bumps, exhibited by the DNS results in the outer region at ¢ of 10 and 20 degrees.

Some further illustration of the ability of the models to reproduce the dynamics of the tur-
bulence field can be obtained from Fig 4.14 where the computed time contours of all Reynolds-
stress components are compared with those obtained from DNS. Note that the covered boundary
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layer thickness on the ordinate is 206,, corresponding to the thickness over which the data in
Fig 4.12 and 4.13 are plotted. For comparison, the DNS by Justesen and Spalart (1990) covered
0s = 35, whereas the half channel width of the experimental flow of Jensen ef al. was = 736,.
The time co-ordinate on the abscissa covers one cycle. Both, the qualitative and quantitative
comparison show excellent agreement with the DNS results. These plots give the possibility of
comparing the time response and the evolution of different stress components. In wall-parallel
flows the energy from the mean motion is being transferred directly into the «2 component due
to the shear deformation, so that u2 reaches the maximum value earlier than any other stress
component. The computations give the maximum u2 at p ~ 135°, in good agreement with DNS,
as indicated also in Fig 4.15. Other normal stresses, v2 and w? lag behind, since they receive
energy solely through the redistributive action of the fluctuating pressure. The model computa-
tions yield the maximum +2 and w? in excellent agreement with DNS (Fig 4.15). Evolution of
the peak shear-stress across the flow in time is computed satisfactorily. As in the case with sinus-
oidal pressure-gradient, this is of decisive importance for the generation of turbulence, primarily
42 component. We observe also that the time and space development of Reynolds-stresses is
very well captured by the model. Although the agreement for u? is not ideal, it can be concluded
that the model of the pressure redistribution process (®P;;) responds well to the imposed steep
variation of the free stream velocity.
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Figure 4.12: Profiles of normal components of the Reynolds-stress tensor over a cycle in oscillating
boundary layer with ’steep’ variation or free stream velocity at Res; = 1000. - - - DNS (Justesen and
Spalart 1990), — SMC M2.

Fig 4.16 shows the mean velocity and the turbulent shear stress for both cases of an oscillating
boundary layer considered above. Both cases show an abrupt amplification of turbulence at the
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Figure 4.13: Comparison of computed profiles of turbulent shear stress with DNS results at different phase
angle. Oscillating boundary layer with ’steep’ variation of free stream velocity. - - - DNS (Justesen and
Spalart 1990), — SMC M2.

onset of flow deceleration, followed by its gradual damping during acceleration to the level at
which the turbulent fluctuations exert negligible influence upon the mean flow. The results are
plotted in form of closed loops over the abscissa which is folded around the free stream reversal
point (180 deg) to exhibit the hysteresis of the flow properties at different flow depths. In addition
to the illustration of excellent agreement between the model computations (lines) and direct
numerical simulations (symbols), Fig 4.16 indicates clearly the ability of the model to reproduce
well the dynamics of the response and different modulations of mean and turbulence properties
at different distance from the wall, with variable phase shifts.

4.2.5 Oscillating channel and pipe flows

If A > 1 the boundary layer in a pipe or channel flow remains much thinner than the channel
half-width and there is no effect of the channel Re-number. However, if the penetration depth
approaches or exceeds the channel half width, the interaction of the two merging boundary lay-
ers influences the stability and turbulence pattern. Application of the same model to the fully
developed oscillating channel and pipe flow reproduced the same pattern in the near-wall region
at similar Re;,, but not so well in the outer region if A is close to 1. In absence of DNS data or
detailed experimental results we present here only few results obtained for a channel and pipe
flow at the conditions close to the available experiments.

Fig 4.17 displays the computed wall shear stress and wo very close to the wall, together with
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Figure 4.14: Time development of contours of constant turbulent stresses at Res = 1000 for ’steep’
variation of free-stream velocity.
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the experimental data of Hino er al. (1983) obtained in a rectangular duct at Res;, = 876 and
A=128.
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Figure 4.17: Evolution of the shear stress at the wall and at a position in the flow in a plane channel with
Res, =876and A = 12.8.

At this value of ), one would expect that the flow is essentially of the boundary layer type.
The computed and measured profiles of the wall shear stress look similar, but there is a con-
siderable phase difference. The same could be said for the w?, obtained at y = 5 mmn (Note:
5s = 3.9 mm, channel width H = 100 mm). In light of previously shown excellent agreement
with the measurements for the same Rej, it is difficult to explain these discrepancies. For il-
lustration, Fig 4.18 shows a comparison between the recorded and computed evolutions of the
ensemble-averaged velocity at several positions across the flow.
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Figure 4.18: Recorded (Hino et al. 1983) and computed histograms of the mean velocity at various
positions across the channel (Res, = 876, A = 12.8).
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Figure 4.19: Recorded (Hino et al. 1989) and computed histograms of the mean velocity at various
positions across the pipe (Res, = 1530, A = 1.91).
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Except very close to the wall (for y=0.05 and 1 mm), the agreement is satisfactory - both
records exhibiting the transition at the start of the deceleration phase. However, the experiments
indicate a relatively low level of turbulence despite a large channel Re-number, (Re = 2.25 X
10%). Much closer agreement is shown with the results of an earlier experiment of Hino et al.
(1989), Fig 4.19 where the computed velocities at several radial positions are compared with the
oscillogram obtained in a pipe at a larger Stokes Re-number, Res; = 1530, but at much smaller
channel Re number, Re = 5830.

The corresponding lines are obtained at the same non-dimensional distance, normalised with
the Stokes thickness dg. Both pictures exhibit the same sudden jump in the velocity profiles in
the near-wall region and a corresponding sudden decrease in the central region. In this case the
Stokes parameter A = 1.91 and the instability and transition occur also at the pipe centerline.
The phase shift of the velocity maximum is also well reproduced.

Finally Fig 4.20 presents a comparison of the histograms of the bursts in streamwise turbulent
fluctuations at three radial position, recorded by (Seume 1988) and SMC results. The resemb-
lance of the signals, both in shape and magnitude, is so striking, in particular at two positions
away from the wall, that we considered presenting the results worthwhile, although they were
obtained for a frequency about three times smaller than in the experiment (other parameters are
the same). The computations at the exactly same conditions produced similar but milder signals.
It should be noted that the experiments were carried out in a finite pipe of L/D = 60 and that
the oscillograms were recorded at L/D = 44, whereas our time-marching computations takes
no account of the pipe length. The solution of the whole flow domain reproduces the velocity
histogram much better (HadZi¢ and Hanjali¢ 1995, not shown here).

Oscillating pipe flow

In order to validate the model against the results of other authors, for which more data are avail-
able, we consider briefly the fiow studied experimentally by Akhavan et al. (1991). We selected
an oscillating fully developed pipe flow case with Res; = 1080 and A = 10.6. As shown in
Fig 4.21, the model prediction of the wall shear stress follows closely the experimental results.
Note that in this case Res, is marginally larger than in DNS case of Spalart and Baldwin (1989)
and since X is relatively large the influence of the wall is not very pronounced. A slightly slower
increase of the wall shear stress than in the boundary layer is observed in the transition phase

(¢ = 60° — 100°).

4.3 Pulsating Pipe Flows

Next flows considered are the two cases of developed pipe flows with imposed sinusoidal oscil-
lation of the bulk flow in a long pipe, investigated experimentally by Tu and Ramaprian (1983)
with frequencies of 0.5 and 3.6 Hz and amplitudes of 64 and 15 % respectively. The mean Re-
number of 50000 was sufficient to ensure fully turbulent regime over the whole cycle in both
cases. Contrary to our expectation, the reproduction of this case appeared to be difficult. Experi-
ments in the low-amplitude high-frequency flow indicated a very small departure of the velocity




104 4. OSCILLATING AND PULSATING FLOWS

fluctuations from the steady flow values close to the wall, as expected, considering that A >> 1,
and this feature was depicted reasonably well by computations. However, the wall shear stress
exhibits a curious modulation, which could not be reproduced by the model, shown in Fig 4.22.
The computed wall shear stress remained fully sinusoidal as the imposed pressure variation, with
peak values and their phase position in good agreement with experiments.

For the high-amplitude low-frequency case the wall shear stress is reproduced better, apart
from positive peaks, which were overpredicted by 13%, as shown in Fig 4.23. The non-linear
model of the "slow’ pressure-strain term (with negative coefficient C| = —0.4C', as adopted for
some other flows) gave a slight improvement, as shown in both figures. Turbulence fluctuations
(Fig 4.24) are reproduced in qualitative agreement with experiments, though better in the decel-
eration phase than during the acceleration. It should be noted that according to the criterion of
Tu and Ramaprian (1983) both flows with A > 1 should have a central core which oscillates like
a solid body, while the computations showed that the diffusion of unsteady wall disturbances
during the deceleration phase extends almost over the complete cross-section.

4.4 Concluding remarks

The low-Re-number second-moment closure model was applied to study the dynamics of mean
and turbulence field in broad range of oscillating and pulsating boundary layer and pipe flows at
transitional and higher Re-numbers. Jointly with some basic test cases for low Re-number model
for which DNS data are available, such as channel and boundary-layer flows, the oscillating
boundary layer at Res, = 1000 (DNS by Spalart and Baldwin 1989) was used to select and
adjust values and functional form of some low Re-number model coefficients.

Computations of oscillating boundary layers for a range of transitional Reynolds numbers,
Res, between 760 and 3460 show a very good agreement with DNS and experimental results.
For oscillating flows in pipes and channels for the same Re; the transition features are equally
well reproduced if A >> 1 and if the duct Reynolds number is higher than the critical value,
defined approximately by Re = 1500A. It is obvious that these (and probably other) turbulence
models cannot simulate the subtle details of non-laminar (or perturbed laminar) pattern at the
initiation of instability at the lower transition limit, as found by experiments or DNS, e.g. at
Res; =~ 600. However, the model seems to be capable of reproducing the conditionally turbulent
regime with sudden bursts of turbulence at the start of deceleration phase and subsequent re-
laminarization, over a range of transitional Re-numbers. The model requires a minimum of
“background” turbulence to be able to reproduce its amplification and eventual transition to the
fully turbulent regime. What this minimum is, depends on the choice of the adjustment functions,
which have in the past been tuned to satisfy the switch-over from the outer turbulent to the inner
viscous regimes in near-wall flows. The SMC model reproduces well the transition dynamics in
the corresponding range of Re-numbers, including the form and magnitude of the sudden bursts
of turbulence quantities at various positions in the flows.
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Figure 4.23: High frequency low amplitude pulsating pipe flow.
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CHAPTER 5

Bypass and Separation Induced Transition

In this chapter the results of the computation of transitional flows using single-point closure mod-
els (linear eddy-viscosity and second moment closure) in several geometries and with several
flow-conditions are presented. The first class of the flows considered are the bypass transition
flows on the flat-plate with sharp leading edge subjected to several free-stream turbulence (FST)
intensities, length scales and pressure-gradients. Afterwards, the models have been applied to
the separation induced transition on flat-plate with circular leading edge under a range of FST
level, and to the separation induced transition on flat wall. The mechanism of transition in these
two classes of flows are rather different. In the first case, the transition is induced by free-stream
turbulence and the turbulence in the boundary layer is enhanced due to mean rate of strain and
presence of the wall. In the separation induced transitional flows, the transition is primarily
induced by a separation bubble generated by the adverse pressure gradient. The resuits of the
computations are compared with the experimental and DNS data. The bypass and circular lead-
ing edge transitional flows are used as the benchmark in an ongoing collaborative ERCOFTAC!
project on the capability of turbulence models to predict transitional flows (Savill 1996). All
these cases are with relatively high free-stream turbulence level (more than 2%). Because of the
importance of reliable and detailed experimental or DNS data for model validation, attention is
also given to two cases with separation bubble, for which recent DNS data are available. Results
of computation of a case with the transitional sepparation bubble on a flat wall (DNS by Spalart
and Strelets 1997) using the SMC model are presented and discussed. In this case, transition is
induced by separation, but the incoming boundary layer is virtually laminar. A turbulent sep-
aration bubble (DNS by Spalart and Coleman 1997), which resembles the transitional one, was
also investigated because more data were available. Although in this case the incoming boundary
layer was turbulent, the rapid increase of turbulence within the bubble occurs, similarly as in the
transitional sepparation bubble. Finally, an illustration of prediction of a complex and industri-
ally relevant flow using the second moment closure low-Re-number model is presented. It is the
flow over the NACA 4412 airfoil at maximum lift, with the incidence angle of 13.877, and high
Re-number (Re. = 1.52 x 10°) (experiments by Coles and Wadcock 1979).

'ERCOFTAC stands for European Research Community on Flow, Turbulence and Combustion
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5.1 Introduction

Transition from laminar flow to turbulence can be classified in three major groups (Mayle 1991):
i) natural transition, ii) bypass transition, and iii) separation-induced transition. The natural
transition occurs as a consequence of a gradual growth of small perturbations of a laminar flow
into two-dimensional waves (so called Tollmin-Schlichting waves) which then, by the non-linear
effects, break into turbulence. The expression bypass transition, introduced by Morkovin, means
that most of development stages in the natural transition is bypassed by some strongly forced
disturbances. The bypass transition usually occurs by diffusion of turbulence from the free-
stream into a boundary layer. The experiments show that in a boundary layer flow with zero
pressure gradient this is the case if FST is larger than 1%. It is possible that a boundary layer
separates while still laminar and that at certain conditions the vortices generated by separation
reattach to the boundary forming a bubble and generating turbulence within the bubble, which
then penetrates into the incoming laminar flow. This kind of transition is called separation-
induced transition. This is often the case in flows with adverse pressure-gradients and occurs for
example at the leading edge of an airfoil or gas turbine blades.

The mechanism of formation of turbulence in the transitional flows is very complex, and
such a process can be studied in details only by means of direct numerical simulation (DNS)
which have already been performed for several transitional flows. For example, Spalart and Yang
(1987) and Laurien and Kleiser (1989) performed DNS of the boundary-layer type of transition
and Spalart and Strelets (1997) performed a DNS of a separation bubble from a flat-plate. This
approach, although very expensive, is important for understanding the process of transition and
provides essential information for modelling purposes. Large-eddy simulations (LES) have been
already applied to computation of transitional flows. Voke and Yang (1995) performed LES for
several bypass transition flows and Yang and Voke (1995) performed a LES of the separation-
induced transition on a flat plate with circular leading edge.

A number of modelling techniques is currently in use for computation of transitional flows.
Possibly the most widely spread ones are in the framework of the RANS modelling. Since
the first successful application of low-Re & — ¢ model to flows with laminarization (Jones and
Launder 1972) a substantial progress has been made in the development of turbulence mod-
els, expanding gradually their applicability to a wider range of flows including some forms of
transition. Progress reports on the activity of the ERCOFTAC Transition Special Interest Group
(SIG), (Savill 1993) provide a good overview of the current achievements of single-point closures
in modelling the diffusion-controlled bypass transition. Despite substantial efforts, the outcome
seems to be inconclusive. Particularly disappointing is the evidence that higher model complexity
brought only marginal improvements, and only in some cases. Nevertheless, some conclusions
did emerge. The models which use the invariant turbulence parameters, such as the turbulence
Re number, perform better than those which use the local wall distance. Satisfying the correct
wall limits of the shear stress and of energy dissipation rate was also found to be important for
a successful reproduction of the transition. Finally, few contributions with the Reynolds-stress
models with low-Re-number modifications all seemed to perform better than two-equation mod-
els. Major advantages of the SMC were in the provision to account for anisotropy of the free
stream- and of the near-wall stress field, and, particularly in the ability to reproduce the normal-
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to-the-wall velocity fluctuations. Another merit is in the exact treatment of the turbulence pro-
duction and effects of streamline curvature. These features help also in handling other forms of
non-equilibrium phenomena frequently encountered jointly with different forms of transition.

Another frequently used technique for modelling transitional flows is the intermittency ap-
proach. Tt is assumed that the transitional region is composed of intermittent spots of turbulence
in otherwise fully laminar flow. The transitional region is then taken into account by a linear
combination of laminar and turbulent solution that is controled by the intermittency v which is
defined as the fraction of time that the flow is turbulent. The intermittency factor -y is determined
by experiments for a particular flow. It takes zero value in fully laminar region and unity in the
fully turbulent region.

In the framework of linear eddy-viscosity models it is still possible to solve a single set of
Navier-Stokes equations while using +y to control transition in computations. The effective eddy-
viscosity to be used in momentum equations is

He =+ Yib (5.D

where p; is the eddy-viscosity obtained from a turbulence model. A major disadvantage of this
semi-empirical approach is the need of experimental correlations for v that limits applicability
of this approach to a quite small number of well documented flows.

Although the intermittency models may bring some advantages, particularly for low FST, the
gains do not seem to justify the introduction of yet another parameter (and defining equation)
which relies heavily on empiricism. Single-point closures have been successfully used to predict
intermittent turbulence e.g. at the edge of boundary-layer or free-shear flows without having to
define and reproduce this quantity, which remains hidden in the model, just as other information
about eddy structure and spectral properties.

5.2 Some basic RANS modelling requirements

Single-point closure models are based on Reynolds averaging, which by its virtue conceals the
dynamics of flow disturbances. These models are capable of representing turbulent flows with
a relative success and are nowadays widely used for industrial applications. It is generally ac-
cepted that the turbulence closures offer more flexibility and better prospects for predicting real
complex flows with transitions than any classical linear stability theory. The ability to predict a
change-over from one regime to another (not necessarily the actual transition mechanism) at ap-
propriate location and under appropriate conditions, and consequent modifications of mean flow
parameters, without having to introduce any artificial triggering, will often serve the purpose of
computing complex industrial flows involving transition.

Current statistical models can be expected to reproduce transition only when either a continu-
ous source of turbulence exists somewhere in the flow or at its edge from where the turbulence
will diffuse (be entrained) into the rest of the non-turbulent flow. Alternatively, the laminar flow
must contain some background turbulence, sufficiently weak not to influence the laminar-like
mean flow properties but sufficient to amplify itself when the flow deformation or other disturb-
ance is imposed or reaches a sufficient strength to interact with the background turbulence. Such
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case is retransition, e.g. in an oscillating turbulent boundary layer at low Re numbers, or in a
laminar-like or laminarizing boundary layer subjected to a strong adverse pressure gradient e.g.
in compressor cascades. The ability to predict the bypass transition depends on the model of tur-
bulent diffusion, particularly away from the wall, which essentially controls the boundary layer
turbulization. In contrast to that, the prediction of laminarization and subsequent re-transition
depends on the model’s ability to reproduce accurately the process of turbulence decay and pro-
duction at a low turbulence Re number in a strongly anisotropic field in the near wall region.

The essential requirement on RANS models for the prediction of transitional flows is the
integration of the model equations up to the wall (so called low-Re-number models). The low-
Re-number modifications have been proposed at different modelling levels, but in the most cases
they were tailored to achieve overall damping of turbulence as the wall is approached. In most
cases, no distinction is made between the pure viscosity effects, which are of a scalar nature, and
non-viscous, directionally biased wall blockage and a consequent pressure reflection. Unlike the
viscosity which damps evenly the turbulence fluctuations in all directions, a solid wall imposes
a selective damping of the normal-to-the-wall velocity fluctuations and a consequent eddy splat-
ting, resulting in increased turbulence anisotropy, approaching the two-component state very
close to the wall. Most low-Re-number models treat both effects jointly and often relating the
overall damping to the local wall distance. While such a practise can reproduce near wall beha-
viour in near-equilibrium steady flows similar to those in which the models were tuned, it fails
in most cases with complex wall topography, or with a significant departure from equilibrium
conditions. In view of the fact that most transitional phenomena are provoked, enhanced or oth-
erwise controlled by sudden changes in boundary or external conditions, it is obvious that such
models cannot reproduce a broader variety of transition phenomena.

5.3 By-pass transition on a flat plate

The ability of the HJ low-Re SMC had been investigated first in bypass transition on a flat-plate
with sharp leading edge with constant and variable pressure. The case is the simplest of all
transitional flows considered here.

The transition from a laminar-like mean flow near the wall which is developing at the very
beginning of the plate? to turbulent boundary layer somewhere downstream is in this case driven
by free-stream turbulence. Two cases with constant pressure and with 3% and 6% FST and one
case with variable pressure gradient and with 8% FST are considered. Within the ERCOFTAC
Transition SIG workshop (Savill 1993) these cases are designated as T3A, T3B and T3Cl1 re-
spectively. Corresponding free stream mean velocities are 5.2 and 9.6 m/s in T3A and T3B
cases, whereas in T3C1 case the free-stream velocity varies between 6 and 8 m/s. In all cases
the working fluid is air.

“Experiments were carefully controlled to prevent separation at the leading edge.
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Laminar

Figure 5.1: Definition sketch of bypass transition on a flat plate with sharp leading edge.

5.3.1 Computational details and inlet conditions

Computations of these cases were performed with a parabolized Navier-Stokes numerical code
using the control-volume approach with typically 100 nodes across the flow in a collocated vari-
able arrangement (the same code as for the oscillating boundary layers). The corresponding
pressure gradient was specified explicitly and the normal to the wall component of the mean
velocity is evalnated from the continuity equation. The parabolic computations started at the
leading edge with uniform profiles of all quantities equal to the streamline values supplied by ex-
periments. A validation of the parabolic approach was performed by computing the case T3B by
the full (elliptic) Navier-Stokes solver, over a computational domain starting at the leading edge
and extending sufficiently downstream to capture in full the transition region. Admittedly, this
was not sufficient since the elliptic effect of the leading edge could be detected only by starting
the computation ahead of the edge and accounting for the real shape and thickness of the plate.
These were ignored in this case, but studied in details in the case of a symmetric round-edged
plate, as discussed later. The computational domain is 10 mm wide (which is about 5 times of
the maximum boundary-layer thickness) and 2.5 m, 1.5 m and 1.5 m long for these three cases
respectively. For the parabolic computations x-step was Az = 1 mm which provides grid in-
dependent results (tests were done for Az = 0.5,1.0 and 2.5 mm). The elliptic computation
of T3B case was performed on an orthogonal grid of 300 CVs in streamwise direction and 120
CVs across the flow. The mesh in direction normal to the wall was made exactly the same as that
for parabolic code computation. Since the zero pressure boundary condition was applied in the
free-stream, the computational domain in that region was enlarged for 50% of the width used for
the parabolic code that was covered with additional 20 CVs. Zero pressure boundary condition
was applied also at the down-stream domain boundary. The wall friction factor, which is the
most sensitive parameter of the flow behaviour, obtained with these two approaches is shown
in Fig 5.2. A small difference between these two results can be addressed to different grids in
streamwise direction, to neglecting some terms done in parabolic approach, and to possible ef-
fects of pressure variation up to the wall. All results for T3A, T3B and T3C cases presented here
are obtained with the parabolic approach.
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Figure 5.2: Comparison of SMC computations of wall friction factor in T3B case obtained with parabolic
and elliptic code on grids of 2500 and 300 CVs in the flow direction respectively.

According to the T3A and T3B case description, provided by the organiser of the ER-
COFTAC workshop, the stream-wise normal Reynolds-stress develops as

o)
Y (1000 - 2 + 610)77, (5.2)

Uo
where z is the stream-wise distance from the leading edge of the plate. For the isotropic turbu-
lence the kinetic energy is

g__ o
k=3 =Up C? (1000 - z + 610) 77| (5.3)

and the dissipation rate is

dk 15000 _
e=—Uy— = —— U2 C*(1000 - z + 610) 7" (5.4)
dzx 7
The coefficient C' can be evaluated for a particular case using known experimental value of the
free-stream turbulence.
Using the model equation for the dissipation rate £, the development of turbulence kinetic

energy in free-stream is given with

1
(1’C52) €o 1 —052

k= |k + Uy kG=
0

(x — xp) (5.5)

where x is the position where kj is known and z is the position at which k& is computed. This
expression can be also used to estimate the dissipation at any position (i.e. at inlet) providing
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the computed decay of turbulence kinetic energy in accordance with experiments. These two
formulae give very close values for inlet dissipation if C.o = 1.92 is used.

According to the authors of experiments the free-stream turbulence is isotropic. However, the
experimental data at the edge of the boundary layer show some anisotropy (Fig 5.3). Therefore,
these data were used to estimate the anisotropy of Reynolds-stresses at the inlet of the computa-
tional domain. Computational results of the Reynolds-stresses in the free-stream, obtained with
these inlet conditions, are close to experimental data at the edge of the boundary layer. The return
to isotropy can be regarded as satisfactory, Fig 5.3.

Atinlet (z = 0. m) the turbulence length scales L., = kf & /e; are 9.9 min for T3A, 26.6 mm
for T3B and 9.8 mm for T3C1. Theses values of ¢; provide the best agreement of the decay of
turbulence in free-stream with the experimental data.

Westin and Henkes (1996) showed in detail that different values of dissipation rate in the
free-stream as well as in the boundary layer significantly move the position of the transition.
In order to reduce the influence of initial conditions, we performed the computations starting at
plate’s edge with uniform profiles of all variables.

i)
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Figure 5.3: Evolution of the Reynolds-stresses in the free-stream computed with SMC model (lines) for
the inlet conditions that are described in the text above. Symbols are experiments by Roach and Brierley
(1990) at the edge of the boundary layer.

5.3.2 Results and discussion

In the framework of ERCOFTAC workshops the Launder-Sharma low-Re-number eddy-viscosity
model has proved to perform the best among all the low-Re number eddy-viscosity models in by-
pass transition under the influence of free-stream turbulence in the range between 1% and 6%.
Fig 5.4 shows the wall-shear stress C'y and the shape factor H obtained with this model for the
cases T3A and T3B. The model predicts the transition too early and too suddenly so that the
transition region is much shorter than in experiments.

One deficiency of the linear & — ¢ model is its inability to reproduce the anisotropy of
Reynolds-stress tensor and particularly of the normal components. This is overcome by SMC
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Figure 5.4: Wall-shear stress (C';) and shape factor (H) computed with the Launder-Sharma low-Re-
number EVM for the T3A and T3B cases. Symbols: Experiments by Roach and Brierley (1990).

models solving transport equations for stress components. In these equations the production of
the stress is treated exactly while pressure-strain correlation is modelled. This is of significant
importance for accounting the dynamics of the stress in the flow. These features are crucial in ob-
taining generally better results with SMC models compared to eddy-viscosity models. Therefore,
it is accepted that SMC models should provide better results in bypass transition flows.

The low-Re SMC results for C; and H are shown in Fig 5.5. The model reproduces the
transition including the location of the beginning and the end of transition for T3B case (with
FST of 6%) in good agreement with experiments. In the initial phase C is over-predicted. As the
FST is reduced to 3% the model fails to maintain the turbulence as was measured in experiments.
Actually, the position of the beginning of transition is at the same place as in experiments but the
transition itself is very slow. These computational results are in accordance with computations
of Westin and Henkes (1996) which were performed with the same turbulence model but with
slightly different inlet conditions. It was shown by Hanjali¢ and HadZi¢ (1995) that a slight
decrease in the dissipation rate can significantly improve results for the T3A case, but it does not
produce properly the decay of turbulence in the free-stream.

It should be recalled that these results were obtained using Rotta linear model for the slow-
part of the pressure-strain correlation with coefficient C; given by (2.59). However, by introdu-
cing the general nonlinear form of the model (Lumley 1978)

q)ij,l = —016 (56)

; 1
a;; + Cl (aikakj — §A251J>:| s

brings in much improvement as shown in by dashed lines in Fig 5.5. Significant improvement of
C'; in the T3A case can also be archived with Ci = 0.7 (not shown here). Excellent agreement
with experiments in the T3A case is obtained with C; = 1.2 (Fig 5.5). This has similar, but not
so large, effects on the T3B case that gives now the transition a little too early.

Fig 5.6 and 5.7 show the ability of the model to reproduce the development of the flow during
the transition for the T3A and T3B case respectively. Positions at which the profiles are taken are
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Figure 5.5: Friction factor and shape parameter for bypass transition cases T3A and T3B. Symbols: Ex-
periments by Roach and Brierley (1990). Lines: Computations with SMC.

indicated in Fig 5.5. For both cases the profiles are given at an early stage of development, just
before the beginning of transition, in the middle of transitional region, at the end of transition
and in the fully developed turbulent boundary layer established after transition. Fig 5.6 shows
the computational results for T3A case obtained with non-linear model (equation (5.6)). The
velocity is predicted very well in accordance with results for C'y, but the Reynolds stress results
deviate from experiments both in value and shape. Before the beginning of the transition and
during the transition all normal stresses are under-predicted, and the boundary layer is thiner
then experiments show. The production of the stress is much too small. This is primarily due
to deficiency in modelling of the dissipation rate rather than due to deficiency in modelling of
the redistribution and turbulent diffusion, because already at 0.095 m experiments show a peak
of turbulence kinetic energy near the wall which is not reproduced by the model. Fig 5.7 shows
results for T3B case obtained with the linear model for ®;;. This figure confirms that the model
reproduces the transition close to the experiments (as seen from the results for C'¢). Stream-
wise velocity and normal stresses are reproduced very well, following the shape and value of
experimental results. However, the computed turbulent shear stress exceeds substantially the
experimental data at all locations. This finding is strange in view of excellent prediction of the
mean velocity and also good results of this model for the zero pressure boundary-layer flow
and might be ascribed to an experimental error. The LES of Yang and Voke (1993) shows an
overprediction of experimental value of 7w by about 30% in the flow with about 5% FST and at
Re, = 130.000. Experimental and numerical results shown here indicate that it is very important
to use the correct anisotropy of the Reynolds-stress tensor at the inlet to be able to compare the
experimental and the numerical results.

The third case (T3C) involves variable pressure starting with favourable pressure gradient
and reverting to adverse pressure gradient further downstream. The results of the case T3Cl,
which correspond to 8% free stream turbulence, are presented here. Strong acceleration (see
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Figure 5.6: Mean velocity and Reynolds-stress profiles in the case T3A (locations indicated in Fig 5.5,
right). Symbols: Experiments Rolls—Royce ASL. Lines: Computation with SMC model.
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Fig 5.8) in the initial region makes this flow very sensitive to initial conditions. This sensitivity
is illustrated by three computed lines in Fig 5.9 corresponding to three slightly different initial
dissipation length scales. The chain line obtained with L., = 5.0 mm shows no transition: the
boundary layer remains laminar throughout the considered flow domain. A small increase to
5.5 mm reproduced the transition reasonably well (full line), though its incipience started some-
what earlier than found by experiments. Further increase in L., moves the transition location
back towards the leading edge, but the effect is not very pronounced, as shown by dotted line.
It should be noted that an accurate reproduction of the pressure gradient from the experimental
data for the free stream velocity variation is difficult and a small change can have a noticeable
effect on the predictions.
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Figure 5.8: Comparison of the experimental end computed mean velocity obtained using 8P/dz given
by experiment and computed from the experimental values for the mean velocity.
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Figure 5.9: Friction factor and shape parameter for bypass transition on a flat plate with variable pressure
gradient (free-stream velocity vary as shown in 5.8) and 8% FST. Symbols: Experiments Rolls—Royce
ASL. Lines: Computation.
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5.4 Transition on a flat-plate with circular leading edge

The transitional flows around a circular leading edge on a flat-plate with several flow condi-
tions, investigated experimentally at Rolls-Royce ASL (Coupland 1995), have been adopted as
benchmark test cases for turbulence modelling within the ERCOFTAC Transition SIG The trans-
ition in this case is also induced by free-stream turbulence and the experiments indicate that the
transition is preceded and enhanced by a thin laminar-like separation bubble which appears at
plate just behind the circular edge. This very thin bubble becomes major cause of enhancement
of turbulence near the wall. Significant increase of the streamwise normal Reynolds stress was
measured in that region. Therefore, the accurate representation of turbulence in the stagnation
region as well as in the separation region is of decisive importance for successful computations
of such flows.

In last few years several computations of such flows have been reported within the ER-
COFTAC Transition SIG (e.g. Chen er al. 1994). All of them are based on the eddy-viscosity
models. Predicting the correct shape and size of the separation region, which is crucial for pre-
dicting correctly the transition, was found to be a major challenge in which most conventional
low-Re-number models failed.

In this work we applied the Launder-Sharma eddy viscosity model (see Appendix D for the
detailed specification of the model) and the HJ low-Re SMC model to bypass transition flows
around a circular leading edge in order to investigate the ability of these models to capture sep-
aration induced transition. The numerical results are compared to experimental data that include
mean velocity and the streamwise normal Reynolds stress. Several cases with different free-
stream conditions but in the same geometry were considered. The conditions vary in the mean
free-stream velocity and the FST level. Major attention was given to the T3L4 case correspond-
ing to the mean free-stream velocity U, = 5 m/s and FST about 5.5%. This case was chosen
first because it is the case with the highest level of free-stream turbulence of all six experiments
performed.

5.4.1 Computational details

The computational domain was chosen with the inlet located 100 rnm upstream from the plate-
edge. In order to avoid any influence of the numerical treatment at domain boundaries, the flow-
parallel boundary is located 150 mm away from the plate in the free-stream (in experiments the
plate is located in the middle of channel with half-height of 218 mm) and the outlet boundary
is located 500 mm downstream from the plate-edge. The symmetry boundary conditions are
applied in the free-stream and zero-gradient of all variables at outlet. In order to handle easier
and more accurate circular leading edge, the computational grid was divided into two blocks,
Fig 5.10. The block, which covers the free-stream, contains 184 x 15 CVs and is not refined
because the changes of all variables are not strong in that region. The inner block contains
308 x 60 control volumes, covers a region of 25 mm near the wall and the grid lines in the
direction normal to the wall were highly nonuniformly distributed so that y* in the first point to
the wall never exceeded the value of 0.3. After grid optimisation the selected grid covered the
region of separating bubble (which was predicted only with SMC model) with up to 28 CVs in
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the width (negative streamwise mean velocity) and about 55 CVs in the length. The stagnation
region was covered with 60 CVs. A grid with the same number of computational points, but
distributed in a different manner - being coarser at beginning of the plate and covering the bubble
region with only about 25 CVs in the length - was used to assess the sensitivity of the solution to
the grid density. The length of the separation bubble is computed on both grids with a difference
of about 2%, and the differences in mean velocity and streamwise Reynolds-stress between these
two solutions are even smaller, as shown in Fig 5.11.

At the inlet the uniform profiles of all variables were specified. The values are chosen in
accordance with experimental data (Coupland 1995) and equation (5.2). In the T3L4 case the
free-stream velocity was U,, = 5m/s and the isotropic turbulence was defined by Va2 /Uy =
0.0627 and L. = k%2/¢ = 27.3 mm. These initial conditions provide appropriate decay of
turbulence in the free-stream, as can be seen in Fig 5.16 from profiles of u/U,. It is known that
a small anisotropy of free-stream can influence the position of transition, but due to a lack of
experimental data for v2 and w? the isotropic turbulence at inlet was chosen.

184 x 15 CVs

outlet

I
Il
I
I
I
ii

308 x 60 CVs

Figure 5.10: Computational domain, boundary condition and numerical grid for T3L4 case.

5.4.2 Results and discussion

As mentioned above, the most popular eddy-viscosity low-Re-number model (Launder and Sharma
1974) fails to reproduce the bypass transition in this case. Chen et al. (1994) made an ef-
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Figure 5.11: Solutions obtained wit SMC on two different grids (Grid 1 is the coarser grid and Grid
2 1s the finer one shown in Fig 5.10).

fort to improve the results. They reported computations of the case in the same geometry
with Uy = 29 m/s and u/Uy = 0.012 and did show that the significant improvement can
be achieved by modifying the production of kinetic energy as suggested by Kato and Launder
(1993) Py = C,,f,e5Q, (where S = k/e (S,;5;:)"/%) and Q = k/z (Q4;€;)"/%)) and also in an
ad-hoc manner expressing production of k as P, = C,, f,£S (0.155 + 0.85(2)) obtaining even
closer results to experiments.

Fig 5.13 shows calculated stream-lines for the eddy-viscosity and the SMC model. The
separation bubble was predicted only with the SMC model and is in close agreement with the
experimental results as can be best seen in Fig 5.16 from profiles of mean velocity. The main
reason that the EVM does not predict the bubble is that the predicted turbulence kinetic energy is
too large in the stagnation region. Fig 5.12 shows the evolution of maximum value of streamwise
normal Reynolds stress. The experiments show that the stress increases in the bubble region
reaching its maximum near reattachment (the experiments do not give the value of the length of
the bubble, but from the mean-velocity profiles it can be concluded that the reattachment point
lies between 19 and 21 mm).

The contours of turbulence kinetic energy given in Fig 5.14 illustrate the development of k
around leading edge and in the separation bubble. The much too high value of k in the stagnation
region predicted with EVM produces too strong mixing and does not allow formation of separa-
tion bubble and therefore the real transition cannot be captured. In contrast to this result the SMC
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model predicts proper development of turbulence. This is basically due to correct prediction of
production and dissipation of turbulence kinetic energy in the stagnation region. Although it is
known that the wall reflection model of Gibson and Launder (1978), which is used here in the
SMC does not work correctly in the impingement flows such as impinging jet on a flat plate
(Craft 1991), in the present case the stagnation region with dominant normal-strain production
is rather small. The major effect originates still from shear production in the layer. Also, the
curvature of the streamlines is smaller than in the impinging jet.

Fig 5.15 and 5.16 show the streamwise mean velocity profiles and the normal streamwise
stress at several positions computed with £ — € and SMC model. According to the experimental
results, the positions at which the results, are compared are located: near the point of separation
(x=0.006 m); in the middle of the bubble (x=0.015 m); just behind the point of reattachment
(x=0.026 m); in the recovery region (x=0.075 m) and, finally, in the fully developed boundary
layer (x=0.300 m). As seen in these figures the results obtained with £ — ¢ model show poor
agreement with experimental data what is a direct consequence of failure to predict the separa-
tion bubble. As already said, Launder-Sharma model produces maximum of turbulence kinetic
energy in front of the plate. The evolution of the turbulence kinetic energy downstream is shown
in Fig 5.12. Because of much too high value of &, the model cannot predict the very thin bubble
and, therefore, there is no transition in the bubble region.

In contrast to this result the SMC model reproduces correct value and almost correct shape
of maximum of 2, though the peak is about 4 mm (20% of the bubble length) behind the exper-
imental one. Fig 5.12 shows the drastic difference in predicting turbulence kinetic energy using
EVM and SMC. The SMC calculates the maximum in the middle of the bubble, as indicated
by experiments. The SMC results can be regarded as good. Fig 5.16 shows the profiles of the
mean velocity and all components of the Reynolds-stress tensor at five selected positions, as said
above. The predicted values of VuZ show a good development through the flow in accordance
with experiments. It should be noted that a possible stress anisotropy in the free-stream can in-
fluence the evolution of the flow near the wall as well as the transition itself. The v component of
Reynolds-stress exceeds the « component at first three positions, as shown in Fig 5.16, which is
most likely a consequence of the assumed isotropic turbulence at the inlet and in the free-stream
which may not be realistic. Nevertheless, the stress anisotropy at position £ = 0.3 m is consistent
with the model results of a boundary-layer with zero pressure gradient.

These results are obtained with the second-order discretisation of solved equations (the con-
vective terms in momentum equations were approximated with the QUICK scheme; whereas in
the model equations the TVD scheme with UMIST limiter is used). It should be emphasised
that the use of the UDS scheme with the SMC model, the predicted bubble was to short (about 6
mm only) and the mean velocity and stress in the recirculation region are far from experimental
results as is shown in Fig 3.5, on page 66.

Fig 5.17 shows the values of the coefficients C1, Ca, CT and C§ of the pressure-strain model
¢i; in the SMC model obtained for the T3L4 case. The results are given at the same positions
as the computational results in Fig 5.16. The values of the standard high-Re-number model
coefficients, which are constants, are indicated with dashed lines. Strong variation of the model
coefficients shows all complexity of the flow. Values of the model coefficients at z = 300mm
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Figure 5.12: Evolution of the maximum of w2 in streamwise direction. SMC and EVM results. Separation
bubble indicated as predicted with SMC.

which is a well established boundary layer, are very similar to results obtained in a backward-
facing step flow at Re = 5000 and x/H = 6 (which is in the recovery region) as shown in
Fig 5.18.

5.5 T3L flows with lower free-stream turbulence

The ERCOFTAC Transition SIG workshop data-bank contains altogether 6 experiments per-
formed in the same geometry as the previous T31.4 case, but with different mean free-stream
velocity and different FST level. The case considered above (T3L4) is with 5.5% FST. All other
experimental cases are with lower levels of FST. As shown for the by-pass transition on the flat
plate with sharp leading edge the SMC model shows some difficulties in predicting the transition
correctly if FST is smaller than 3%. A similar tendency is observed in the T3L flows. Two
cases were selected to investigate the model ability to predict this kind of flow with lower FST:
T3L3 and T3L6 which are both with about 2.5% FST, but T3L3 is with Uy = 5m/s and T3L6
is with Uy = 10m/s. The same computational domain as in the T3L4 case was used for these
two cases. The inlet conditions are selected in accordance with the experiments and are given in
Figures 5.19 and 5.20 which show the SMC model results for the stream-lines and the contours
of the turbulence kinetic energy k/UZ. The largest value of &/U2 and computed separation and
reattachment points are indicated in the figure. In both cases the model predicts the separation
bubble and the transition to turbulence induced by this bubble. However the predicted separation
bubble is in both cases too large in comparison with experiments. This is due to the weakness
of the model to predict the transition at a lower level of free-stream turbulence. Nevertheless,
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Figure 5.13: Computed stream-lines for T3L4 case obtained with EVM and SMC.
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Figure 5.14: Computed turbulence kinetic energy & for T3L4 case obtained with EVM and SMC. For the
value of k see Fig 5.12 on page 125.
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Figure 5.15: T3L4 case. Launder-Sharma EVM model results for U, k and w.

these results are better than any other in the literature (without triggering of turbulence) of which
author is aware of.
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tensor.
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Figure 5.18: The coefficients of the ®,; term of low-Re SMC evaluated from the DNS data for a backward-
facing step flow (Le et al. (1997)) at Re = 5000 at /H = 6 downstream from the step. (Courtesy of Dr.
S. Jakirlié of TU Darmstadt.)
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Figure 5.19: T3L3 flow: Computed stream-lines and contours of turbulence kinetic energy &/ Ug (contour
interval by 0.05) obtained with SMC. Separation point is at zg/R = 0.9745 and reattachment point is
zr/R = 6.692. Inlet: U, = 5m/s, u/U, = 0.0265 and L, = 0.023m.
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Figure 5.20: T3L6 flow: Computed stream-lines and contours of turbulence kinetic energy k/UZ (contour
interval by 0.05) obtained with SMC. Separation point is at zg/R = 0.9296 and reattachment point is
zr/R = 3.438. Inlet: U, = 10m/s, u/U, = 0.0286 and L. = 0.0125m.
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5.6 Turbulent and transitional separation bubble on a plane
wall

Separation from a smooth surface and the accompanied recirculation, even if small, have a large
influence on the overall flow behaviour especially beyond and downstream of the separation loc-
ation. The separation bubble is usually a result of adverse pressure gradient and it may appear at
leading- or/and trailing-edge of the blades in gas turbines, compressor blades, aerofoils, etc. Due
to separation and reattachment, the flow becomes complex, highly curved and usually highly
turbulent, with anisotropy of the Reynolds-stress tensor affecting significantly the momentum
equation. The success in computation of such flows relies on the correct representation of turbu-
lence anisotropy and the turbulence model’s ability to predict large departure from equilibrium.
Therefore, the modelling of separation bubble at smooth surface is a challenging task and im-
portant for prediction of performances of the associated engineering devices. As shown above,
the form of transition within the bubble depends on the structure of the oncoming flow and on
the level of the free-stream turbulence as well as on boundary conditions and flow circumstances,
such as pressure-gradient, curvature of the wall etc. All these factors strongly influence the shape
and the length of the bubble. The laminar separation bubble, accompanied by transition to turbu-
lence, is even more complex than the turbulent one. Therefore, it is more difficult to predict the
transitional separation bubble, than the turbulent ones.

Because of the great importance, which the separation induced transitional flows have in
many industrial applications, and difficulties for the majority of turbulence models to predict
such flows, the next two cases considered are turbulent and transitional separation bubbles on a
plane wall. Due to difficulties in measuring, the experimental data for such flows are rare and in-
complete. However, several recently published DNS studies of separation bubble flows (Spalart
and Coleman 1997; Spalart and Strelets 1997; Na and Moin 1998), offer an excellent opportunity
for validation of the models.

The cases considered are:

a) Turbulent separation bubble: a ‘rapid’ separation and reattachment of a turbulent boundary
layer on a flat wall created by imposed suction and blowing of the fluid in the free-stream. The
DNS were performed by Spalart and Coleman (1997). DNS results for the same case but with
slightly different conditions were reported more recently by Na and Moin (1998);

b) Transitional separation bubble: a laminar boundary-layer separated from a flat wall by im-
posed suction of the fluid in the free-stream. Laminar to turbulent transition occurs within the
bubble. The DNS of this flow were performed by Spalart and Strelets (1997).

5.6.1 Turbulent separation bubble

In this flow, the separation bubble is created by imposed suction and blowing along the bound-
ary of the computational domain opposite to the wall. An incoming turbulent boundary layer at
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Reg = 300 (according to the authors of DNS, Spalart and Coleman (1997), this is a not perfectly
developed boundary layer) separates due to the large adverse pressure gradient (APG) induced
by suction and reattaches rapidly under the equally large favourable pressure gradient (FPG) in-
duced by blowing of the fluid at some downstream position. This produces a small separation
bubble at the wall in the region between APG and FPG.

The computational domain adopted for the RANS computation is a box of the length L=10
and the width Y=1 (non-dimensional lengths), see Fig 5.22, and is covered with an Cartesian
numerical mesh of 100 x 100 CVs. The mesh is especially refined in the bubble region. The flow
inlet is located at X=0 where the DNS data for the mean velocity and the Reynolds-stresses are
available and are used to specify the inlet conditions. Since the incoming boundary-layer was
not well developed, it posed uncertainties in reproducing the inflow conditions, particularly the
dissipation rate profile (which was not provided by DNS) to which the downstream flow pattern
is very sensitive (Spalart and Coleman 1997, Dengel and Fernholz 1990). The dissipation ¢ at
the inlet was computed by solving the ¢ model equation with imposed known DNS data and
assuming zero gradients of all variables in stream-wise direction.

The bulk Reynolds-number based on the incoming free-stream velocity and the flow domain
is Re = UY/v = 22000. In accordance with DNS, the top boundary suction and blowing
velocity, which is anti-symmetric around X = 6.6, is given as

s 66—2 [l (66—az\2
Vi) =0435 V2 =75~ exp {5_( 122 >] 67

and the zero vorticity

Wy  Ma
oy Ay

boundary condition for the stream-wise mean velocity is imposed in an implicit manner in con-
junction with Dirichlet boundary condition. For all turbulence variables the Neumann boundary
condition (9% /8y = 0) was imposed. The solution procedure with these boundary conditions did
not show any numerical difficulties in the free-stream region. The results for the mean stream-
wise velocity component near the top boundary are in excellent agreement with DNS data (see
Fig 5.23).

(5.8)

The RANS computations are performed with the HJ low-Re-number second-moment closure
with and without the term .S), yielding similar flow patterns in reasonable agreement with the
DNS. However, without . the dividing streamline shows an anomalous forward bending in the
separation point and backward bending at reattachment. This deficiency of the standard second-
moment closure was detected earlier in the studies of backward facing step flow, particularly at
low Re numbers (for discussion see Section 2.4). While the use of wall functions and placing
the first grid point at a relatively large distance from the wall may conceale the anomaly, it be-
comes especially visible when using models which allow the integration up to the wall and the
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application of finer numerical grids. The introduction of the S term into the dissipation equation,
which compensates for excessive growth of the length scale in the stagnation zones, eliminates
the anomaly both when used in conjunction with the standard high-Re-number second-moment
model with wall functions, or with low-Re-number models and integration up to the wall.

The computed separation bubble, Fig 5.22, is somewhat thinner than in DNS, what may be
a consequence of inadequate inflow conditions. The streamline anomaly without S; makes the
distance between separation and reattachment shorter. The inclusion of S rectifies the anomaly
(Fig. 5.22) and extends the bubble length at the wall, though both the separation and reattach-
ment points are predicted somewhat more upstream than in DNS. This is seen in the plot of the
friction factor, Fig 5.21, which shows also some discrepancy in the recovery zone. The mean
velocity profiles, however, agree very well with the DNS, Fig 5.23. The computed components
of turbulence intensity are similar to DNS (see also the contours of kinetic energy, Fig 5.22),
though with some discrepancy, which is most noticeable in the profiles of the shear stress.

442’312

o DNS Spalart and Coleman (1997)
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Figure 5.21: Friction factor along the wall in the flow with separation bubble.
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Figure 5.22: Streamlines (a) and kinetic energy contours (b) in a separation bubble. Top figures: DNS
Spalart and Coleman (1997) (Courtesy of Dr. P. Spalart of Boeing). Bottom figures: computations low-
Re-number SMC.
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Figure 5.23: Mean-velocity and Reynolds-stress tensor components at characteristic positions (z = 5
before separation, x = 6.125 in the middle of separation, z = 7 just beyond separation and z = 8.5
recovery of boundary layer). Symbols: DNS by Spalart and Coleman (1997); Lines: low-Re-number
SMC.
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5.6.2 Transitional separation bubble

This case, for which DNS were performed recently by Spalart and Strelets (1997), resembles
the turbulent bubble discussed in the previous subsection, except that the incoming flow was
laminar. The separation of the laminar boundary layer was created by imposed suction along
the computational domain boundary opposite to the wall. The flow separates due to the adverse
pressure gradient induced by suction and becomes shortly turbulent (within the first half of the
bubble). Since the suction is limited to a small part of the domain, the pressure gradient drops to
almost zero at the end of the suction region, so that fluid reattaches the wall around that point.
The length of the separation bubble is about two flow-domain widths. In this way created bubble
becomes highly turbulent, although the incoming boundary layer is laminar. The turbulence
generated by bubble penetrates into the laminar part of the flow and is transported downstream by
convection. A great challenge for the turbulence models is prediction of coexistence of virtually
laminar flow portions and highly turbulent ones without undertaking any outside measures. The
peak of the stream-wise normal component of the Reynolds-stress tensor is predicted by the
DNS within the separation bubble close to the reattachment point, which is also observed in
experiments by Coupland (1995) for T3L cases.

According to Spalart and Strelets (1997) the flow is defined with three non-dimensional para-
meters: deceleration factor S = Q,/(YU,) which is the ratio between the suction flow rate Q);
and the incoming flow rate Y U,; the bulk Reynolds-number Rey = YU,/v and the Reynolds-
number based on the boundary layer length X, Rex = XU, /v at which the suction occurs (X is
measured from the origin of the boundary-layer). In this particular case S = 0.3, Rex = 10° and
Rey = Rex /3 were chosen (Spalart and Strelets 1997) to generate the separation bubble large
enough and at a fairly large Reynolds number. In the RANS computations the same bound-
ary conditions sa those of the DNS were imposed. A Blasius laminar boundary layer with
§ = 6.8639 10~3 Y was specified at the inlet and the suction velocity at the top boundary is
given as

Vi) = e el (5.9)

and the zero vorticity (expression (5.8)), as done in the previous case. The suction flow rate is
computed as

10
0, = [3 Vi) do.

Spalart and Strelets (1997) reported that o does not influence the solution if kept small enough;
we used o = 0.24.

The computations are performed on numerical meshe of 200x50 CVs. Fig 5.24 shows a
comparison of the wall friction factor obtained with the HJ low-Re-number SMC, and the DNS
data. The length of the separation bubble is predicted by the model quit well. The model cannot
predict the strong acceleration of the reversed flow near the end of the separation bubble. The
DNS data show that the bubble has a tendency to “split” into two parts around X = 3.4 where
the wall shear stress has almost a positive value. Similar under-prediction of C; is observed in
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computations of the back-facing step flow at lower Re-number by Hanjali¢ and Jakirli¢ (1998)
using the same model, although in that case the flow is fully turbulent and the separation occurs
from a sharp edge. Nevertheless, the results for these two rather different separation-bubbles
obtained with the SMC are consistent.

Fig 5.25 shows the development of the maximum value of components of the Reynolds-
stress tensor along the flows predicted with SMC and compared with DNS data. Although only
DNS data for two components are available, the figure indicates that the position of maximum
Reynolds-stress obtained with SMC is in good agreement with the DNS data. The model does not
capture fully the peak value and the increase in Reynolds-stress components in the transitional
region is too sharp. In the recovery region beyond the bubble, where the zero pressure gradient
boundary layer develops, the predicted values of stress components are in good agreement with
DNS. The peak value of Va2 /Uy 1s about 0.25 which is equal to the value measured by Coupland
(1995) for T3L4 case (with 5% FST). The Va2 /Up in the recovery region is about 0.1 which is
about 50% lower than measured by Coupland (1995). This is probably a consequence of a high
level of free-stream turbulence. In the view of the fact that both laminar and fully turbulent
region coexist in the flow, the results can be regarded as pretty good. Fig 5.27 shows the profiles
of the mean velocity U and all components of the Reynolds-stress tensor at several positions.
Unfortunately, no data are available for comparison.

It needs to be mentioned that the author was not able to obtain a convergent solution with the
Launder-Sharma low-Re-number eddy viscosity model.
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Figure 5.24: Friction factor along the wall in the transitional separation bubble flow. Symbols are DNS
data of Spalart and Strelets (1997) and line is SMC model result.
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Figure 5.25: Evolution of the maximum value of the Reynolds-stress components across the flow in the
flow direction in the transitional separation bubble flow. Symbols are DNS data of Spalart and Strelets
(1997) and lines are SMC model results.
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Figure 5.26: Mean velocity vectors, streamlines and contours of V'u2/Uj in the transitional separation
bubble flow computed with low-Re-number SMC.
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Figure 5.27: Profiles of the mean streamwise velocity and all components of the Reynolds-stress tensor
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in the transitional separation bubble flow obtained with low-Re-number SMC.
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5.7 Airfoil NACA 4412

As an illustration of the prediction of a complex and industrially relevant flow using a second
moment closure low-Re-number model, we consider now the flow over the NACA 4412 airfoil at
maximum lift, with the incidence angle of 13.87°, and high Re-number (the chord-based Re. =
L—';J'i = 1.52 x 10°, where c is the chord length) (experiments by Coles and Wadcock 1979).
This flow is often used as a test for turbulence modelling. Flows around airfoils involve several
important physical phenomena such as: transition to turbulence, laminar separation bubble at
leading edge, separation bubble at suction side, curvature of flow, turbulent wake. It is of decisive
importance for the wing design to predict such flows accurately. A review of of computations
of airfoil flows at high fixed angle of incidence was given recently by Guilmineau et al. (1997).
Most frequently used turbulence models for computation of airfoil flows at high incidence are
eddy-viscosity one- and two-equation models that do not account properly for curvature effects
and anisotropy of turbulence and, therefore, perform rather poorly in such configurations. In
most computations reported in literature the transition is imposed artificially at the prescribed
location adopted from experiment by switching on the turbulence model (or, alternatively, the
production of the kinetic energy). The location of transition can have a significant effect on the
solution.

In the considered flow around NACA4412 airfoil the transition length is very short and the
treatment of the transition proved to have little influence on the overall results. However, pre-
dicting the transition location in unknown flows without an empirical input is the major criterion
in judging the RANS turbulence model for transitional flows.

Computations were performed with a four-block O-grid with both the high-Re-number and
the HJ low-Re-number second-moment closures (398 x88 and 398 x 128 nodes, respectively),
without imposing any artificial transition. Grid point nearest to the wall was at y* between 0.1
and 1.5 for the low-Re model and between 10 and 50 for the high-Re model with wall function.
The high-Re-number model gave almost identical results both for 1.5% and for 5% free stream
turbulence. Because of the high bulk flow Reynolds number, the application of the low-Re-
number model due to a need for a fine and highly non-uniform numerical grid near walls becomes
more demanding (slower convergence), particularly with a low free stream turbulence. It should
be noted that all computations were performed in a steady mode, what may not be fully suitable,
particularly for a low free-stream turbulence.

The computational domain adopted here was as shown in Fig 5.28. The inlet is located at
0.8c in front of the airfoil leading edge, the outlet at the distance of about 2¢ beyond the airfoil
trailing edge and the top and bottom boundary are located at about 1¢ away from the airfoil.
The reason for choosing this domain was twofold: first, the RANS computations with roughly a
twice as large domain, show negligible difference in results and, second, the experiments were
performed in a wind-tunnel with a cross-section which is in total about 4¢ wide and about 3¢
long (Wadcock 1980). With respect to the experiments, the computational domain for which the
results shown here are obtained is located in the middle of the experimental section. There is a
doubt that the wind-tunnel walls may have contaminated the results, although it is unlikely that
the inner part of the boundary layer will be very sensitive to these effects. Admittedly, it would
be more correct to compute this case simulating the whole wind-tunnel section, as done by Rhie
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and Chow (1983).

b)

Figure 5.28: NACA 4412 flow: a) computational domain; Numerical mesh of O type consists of four
blocks in total 398 x 88 CVs for the high-Re-number model and 398 x 128 CVs for the low-Re-number

model; b) near wall mesh.

Results obtained with 5% free stream turbulence are presented here. The pressure coefficient
obtained by both models agree well with the experiments (Fig. 5.29). A difference between the
two sets of results is more visible in the mean velocity- and shear stress profiles, and, particularly,
in the size of the separation bubble, Fig. 5.30. Unlike in some fully-turbulent flows (e.g. back-
step), where both models result in a similar streamline pattern in the recirculation zone, here the
low-Re-number models yield a substantially thinner bubble.

Because of insufficient experimental data it is difficult to judge which streamline pattern is
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closer to reality. The mean velocity and shear stress profiles obtained by both models show also
close agreement with experiments at most locations along the airfoil, and also in the near wake
region, but the low-Re-number model seems to be slightly superior.

In view of the fact that some simpler models such as the zonal & — w model of Menter, see
Guilmineau et al. (1997), can give a reasonable reproduction of available experimental mean
flow parameters for a two-dimensional high-load airfoils, this example may not be the most ap-
propriate for illustrating arguments in favour of second-moment closures. In any case, the results
obtained with these two second moment closure models are consistently better than those of
eddy-viscosity type of models reported by Guilmineau et al. (1997), especially for the turbu-
lence quantities. Nonetheless, with this case we demonstrate that the second-moment closures
(including their low-Re-number variants with integration up to the wall) may be successfully
used to compute complex flows over curved surfaces at high Re numbers and with strong pres-
sure variations. A comparison of results obtained with high and low-Re-number variants of the
same basic model, as well as with results obtained with £ — ¢ and & — w models (available in
literature) are also believed to provide useful information.
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Figure 5.29: NACA 4412 flow: pressure coefficient C, obtained with low-Re SMC and with high-Re
SMC + WFE.
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Q/UO— = 2.000

Figure 5.30: NACA 4412 flow: the chordwise mean velocity U/U, and the perpendicular component of
the velocity vector V/U, and the shear-stress %o/U2 in the chordwise oriented coordinate system at x/c =
-0.05, 0.25. 0.5, 0.642, 0.908, 1.1747, 1.95146. Legend as in Fig 5.29.
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Figure 5.31: NACA 4412 flow: the normal components of the Reynolds-stress tensor in the chordwise
oriented coordinate system at x/c = -0.03, 0.25, 0.5, 0.642, 0.908, 1.1747, 1.95146. Legend as in Fig 5.29.
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Figure 5.32: NACA 4412 flow: a) streamlines obtained with low-Re SMC and b) with high-Re SMC +
WF.

5.8 Concluding remarks

It has been shown here that the low-Re-number SMC is capable of resolving bypass transition for
relatively high level of the free-stream turbulence (more than 3%) reasonably well, both for plate
with sharp and circular leading edge. Under these circumstances the model predicts the transition
location, streamwise mean velocity, Reynolds-stresses, as well as the separation bubble in T3L
cases, closely to the experiments. For flows with smaller level of FST this version of the model
has difficulty in reproducing the increase of turbulence in the boundary layer at the rate which
was found in experiments. Nevertheless, in the T3L case with lower FST the model predicts the
separation bubble, and the consequent transition, but the agreement with experiments is not as
good as in the case with higher level of FST.

It has been demonstrated that including a nonlinear model for slow-part of the pressure-
strain correlation leads to significant improvement of the results for the bypass transition on flat
plate with small free-stream turbulence (3%). Unfortunately, this modification does not improve
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prediction of the T3L cases with lower FST (virtually, there is no difference in the results).

Although, this SMC model shows some difficulties in predicting the bypass transition at low
level of FST, the model is capable of predicting reasonably well the coexistence of virtually
laminar and fully turbulent flow regions and separation induced transition on a plane wall, as
shown in the case of transitional separation bubble.

It was confirmed that the Launder-Sharma version of the eddy-viscosity model fails to re-
produce the transition in the circular-leading edge geometries. In the stagnation region much
too high level of turbulence kinetic energy is predicted with this model. This is caused by
over-estimation of the production of turbulence kinetic energy (which is always positive due to
Boussinesq hypothesis) in that region. In contrast to this result the SMC model predicts proper
development of turbulence. This is basically due to the correct prediction of the production and
the dissipation of turbulence kinetic energy in the stagnation region. Although the wall reflection
model of Gibson and Launder (1978) which is used here in the SMC does not work correctly in
impingement flows, in the T3L case the stagnation region is rather small and dominant genera-
tion of turbulence is due to shear production and normal-to-the-wall pressure reflection, which is
well reproduced by the conventional wall-echo model.

Besides the modelling issues, the accurate representation of convective terms in the transport
equations, especially in curved geometries, was shown to be very important for the computation
of the bypass transition at flat plate with circular leading edge. It was demonstrated that an ad-
vanced numerical strategy, such as multi-block and grid refinement, with accurate discretisation
of the model equations in a stable way, offers an opportunity to explore the potential of SMC
models in more physically and geometrically complex flows. Application of the low-Re-number
model to fairly complex industrially relevant flows, such as NACA 4412 airfoil, does not possess
any additional difficulty in comparison to the wall function approach. Although, the low-Re-
number approach requires much finer numerical mesh, these more demanding requirements are
justified by better performances. The computation of phenomena related to low Re numbers,
such as transition, cannot be resolved otherwise.



CHAPTER 6

Conclusions

This thesis has described an investigation of possibilities to model the laminar to turbulence
transition in a wide range of conditions using the second moment closure models. In the course
of this work a variety of numerical and modelling issues have been examined.

The most important tasks accomplished in the present study are:

e A numerical code for solving the second moment closure turbulence models on two-
dimensional, collocated, non-orthogonal, block-structured, body-fitted grids with block-
wise grid refinement has been developed. The high accuracy of the procedure is achieved
by using QUICK and TVD schemes for discretisation of convective terms in the transport
equations solved. The application of higher order schemes was found to be crucial for
obtaining accurate solution, especially in more complex geometries involving flow separa-
tion. The high stability of the procedure is achieved by introducing, in a specific manner, an
isotropic artificial turbulence viscosity in the momentum equations, as well as in the equa-
tion for the mean scalar, when applied. This proved to be computationally more robust
than any other known approach, and especially as compared to treating second moment
gradients as a source term.

e Many of the cases predicted in the present study are at the lower Re-number edge between
laminar and turbulent regime and some involve a coexistence of the laminar and fully tur-
bulent flow portions in the same flow domain. In such cases some components of Reynolds
stresses are damped more than others and may fully disappear leading to two-component
turbulence. Numerical computation of such conditions is sensitive as it may lead to non-
physical negative values of essentially positive quantities. Therefore, it is of utmost im-
portance to have a numerical scheme which prevents physically unrealistic solution. This
has been achieved here using bounding TVD schemes for discretisation of convection. Of
course, adequate modelling, which satisfies the realisability constraint is also of equal im-
portance.

e Since transitional flows are in focus, attention is given to low-Re-number turbulence mod-
els with integration up to the wall. Possibilities for modelling of transitional flows with two
second moment closure models were investigated: the HJ model and the Durbin elliptic
relaxation model. It was found that the latter model is not very stable when the numerical
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grid near the wall is very fine (y™ < 0.1). Since it is difficult to control the grid distribu-
tion in an unknown situation and, especially, in the transitional flows where the laminar
and turbulen flow regions may appear within the same flow, the elliptic relaxation model
was not pursued beyond some tentative investigation. Nevertheless the elliptic relaxation
modelling of the wall effects on the pressure strain correlation, shows potential for further
exploration in computation of turbulent non-equilibrium flows and it is probably a good
candidate for a turbulence model aimed at general application.

Since the HJ model was found to perform satisfactory in a broad range of non-equilibrium
flows, this model was further applied to the transitional flows. Jointly with some basic test
cases for low Re-number model for which DNS data are available, such as channel and
boundary-layer flows, the oscillating boundary layer at Res, = 1000, for which are also
DNS data available, was used to select and adjust values and functional form of some low
Re-number model coefficients. Such a choice of the model coefficients of the HJ model
provides satisfactory results in transitional flows as well as in the fully turbulent wall flows.

Some alternative routes to modelling of some of the terms have also been explored. A new
model for dissipation rate tensor ¢;; was proposed. The model is aimed at improving the
behaviour of the ¢;; in viscous sublayer and provides correct wall limit values. The model
is free from the wall topology information and is computationally convenient. Assessment
using DNS data shows improvement over the models available in the literature.

An alternative approach of deriving the pressure-strain correlation models was also pro-
posed. The model is based on modelling the pressure fluctuation using fluctuating and
averaged quantities. Instead of Poisson equation for fluctuating pressure as used con-
ventionally, this approach models directly the gradient of the fluctuating pressure which
appears in ®;;. This is done in terms of fluctuating and mean velocity and turbulence time
scale by approximating the Navier-Stokes equation for fluctuating motion. The determin-
ation of the model coefficients is the same as in the conventional approach.

A term by term analysis of conventional models of dissipation rate ¢ equation using DNS
data is also proposed with suggestion for possible improvement for non-equilibrium flows.
The SMC low-Re-number turbulence model was applied to a range of oscillating and
pulsating flows at transitional and higher Re number, in bypass transition flows and the
separation induced transitional flows in a wide range of conditions. In most of the cases
the applied SMC model shows obvious advantages and better performances than any other
model available in the literature. It is important to mention here that all transitional flows
were predicted without prescribing or triggering the transition or any other empirical input,
as practised often in models for transitional flows. The ability to predict transition and its
location without external trigger is the essential requirement for a general model for com-
plex flows.

It was demonstrated that an advanced numerical strategy, such as multi-block and local
grid refinement, with accurate discretisation of the model equations in a stable way, of-
fers an opportunity to explore the potential of SMC models in more physically and geo-
metrically complex flows and high-Re-number flows. Application of the low-Re-number
model to fairly complex industrially relevant flows, such as NACA 4412 airfoil, does not
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posses any additional difficulty in comparison to the wall function approach. Although,
the low-Re-number approach requires much finer numerical mesh, these more demanding
requirements are justified by better performances. Computation of phenomena related to
low Re numbers, such as transition, cannot be resolved otherwise.

As compared with conventional and mostly used eddy-viscosity type of models, it has been
demonstrated by this thesis that the turbulence modelling in the framework of second moment
closure has many advantages: in most cases considered the SMC models performs better than
EVMs. It should be recalled that the numerical solution procedure for SMC is slightly more
complex than for EVMs, but not so much to discourage a wider use of SMC models. The present
author’s experience is that the computer demands for SMC are between two (wall functions) and
three times (low-Re-models) larger than those for EVM. This is primarily due to complexity of
these models and larger number of equations to be solved. However, SMC are physically better
founded and offer a larger potential for further improvement. Therefore this author is of opinion
that SMC models will play in the near future a more significant role in the industrial CFD than
they have had in the past. For more distant future, the RANS my be superseded by LES or
DNS. However according to estimation of Spalart ez al. (1997), as mentioned in Chapter 1, very
complex engineering design problems, such as a flow around an airplain wing, will be possible
to tackle by LES only in four decades from now.







APPENDIX A

Basic high-Re-number Reynolds-stress model

This appendix displays the basic high-Re-number Reynolds-stress model. The pressure-strain
correlation is composed of:

- the return to isotropy (Rotta 1951) model for the slow part,

- the isotropisation of production IP (Noat ef al. 1973) model for the rapid part,

- Gibson and Launder (1978) model for the wall reflection term.

Dissipation rate tensor is isotropic. Daly and Harlow (1970) model is used for the turbulent
diffusion.
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APPENDIX B

The low-Re-number second moment closure (HJ)

This appendix gives a summary of the model equations of the Hanjali¢-Jakirli¢ (HJ) low-Re-
number Reynolds-stress model. Some unpublished results, obtained in the course of model val-
idation, which are not directly relevant to transitional flows are also shown in this appendix.
These results illustrate further the ability of the model to predict non-equilibrium flows. Results
are not discussed but figure captions provide necessary informations about the flows.

Performances of this model in a large number of non-equilibrium flows have been pub-
lished in: Hanjali¢, Jakirli¢, and Durst (1994), Hanjali¢, Jakirli¢, and HadZi¢ (1995), Hanjali¢
and HadZi¢ (1995), Jakirli¢ (1997), Hanjali¢ and Jakirli¢ (1998), Hanjali¢, HadZi¢, and Jakirli¢
(1998).

B.1 The model equations and coefficients
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B.2 Channel flow
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B.2. Channel flow
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Figure B.1: Results of the HJ low-Re-number Reynolds stress model in a fully developed channel flow at

180. Symbols are DNS data of Kim ez al. (1987) and lines are the model results.
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Figure B.2: Budget for transport equations for

180. Symbols are DNS data of Kim er al. (1987) and

lines are the model results. (Courtesy of Dr. S. Jakirli¢ of TU Darmstadt.)

model in a fully developed channel flow at Re,
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B.3 Couette flow with a fixed periodical wavy wall

U/vVpm

5.000
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uv/Vpm?
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Figure B.3: Profiles of U, V/uZ and 7w in a Couette flow with a fixed wavy wall. Symbols: Experiments
by Nakabayashi e al. (1991). Solid lines: HJ low-Re-number Reynolds-stress model. Dashed lines:
Launder-Sharma low-Re-number eddy-viscosity model. (Vpm, = 1m/s). Wavy fixed wall is defined as:
4.5 mm, 26 = 15 mmand L = 1.4m, U,, = 7.9m/s,

hizy = 20 — e cos(2mx/L), where e
= 4000.
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B.4 Turbulent flow in a channel with a wavy wall

Wavy wall is defined with: H(a:) = H[1+ acos(27z/B)), where B = 3.84H, a = 0.05 and

Re,, = Uy, H/v = 4400 (U,,, is the bulk mean velocity). Strong variation of the pressure gradient
as well as the wall shear stress is induced by just 0.05H amplitude of variation of the top wall
boundary.
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Figure B.4: Wall-shear stress. HJ low-Re number models: C,, = 0, solid line; C., = 1.16, dashed line;
k — & Launder-Sharma model, chain line.
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Figure B.5: Figure continues on next page.
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Figure B.6: Lines: Mean velocities and Reynolds-stresses obtained with HI SMC. Symbols: DNS data of
Kajishima et al. (1995).
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APPENDIX C

Durbin’s elliptic relaxation model

This appendix gives a summary of the model equations of the Durbin’s elliptic relaxation model
(ERM) (Durbin 1993) with the wall boundary conditions.
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Wall-oundary conditions for f;;
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APPENDIX D
Launder-Sharma eddy-viscosity model

This model was published in Launder and Sharma (1974).
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Ew=0; ky,=0 (D.5)
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APPENDIX E

Velocity and Reynolds-stress transformation

This appendix displays the relations of the quantities used within second moment closure mod-
elling, such as the velocity vector components, their gradients, and the Reynolds-stress tensor
components in two 2D Cartesian co-ordinate systems: the global system in which a computed
flow is defined and a local (e. g. wall-oriented) one. These relations are used within the numer-
ical procedure described in Chapter 3 to impose the wall conditions for the mean velocity and
the Reynolds-stresses in the frame work of the wall function approach.

If we define two Cartesian co-ordinate systerns (z,y) and (z', ") with the same origin and
the positive z’-axis is obtained from the positive z-axis by a counter-clockwise rotation through
an angle § as in Figure E.1 the point M has the co-ordinates in these two systems

y X x=21'cosf —y sinf

y =2'sinf + y' cosd

=\

7 = zcos®+ ysind

y = —xsinf + ycosd

Figure E.1: Coordinate transformation.

The components of the velocity vector V =U i +V j = U’ 7+ V' j are
U="U"cosf - V'sind
V =U'sinf + V'cos b
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U' =Ucosf + Vsind
V' = —Usinf + V cosf

and the gradients of the velocity components are
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Summary

Second-Moment Closure Modelling of Transitional and Unsteady
Turbulent Flows

Statistical modelling of turbulent fluid flows, based on Reynolds-averaging of the fluctuating
flow quantities, aims at determining the averaged quantities which are needed for computation,
analysis and design of a variety of industrial, environmental and biological flows. Among several
statistical modelling techniques, the second-moment closure (SMC) is the approach which has
the best physical foundation and still remains simple and applicable for solving real problems.
This becomes particularly important in predicting transitional and other low-Re-number turbu-
lent flows. Although most flows in engineering and nature are highly turbulent, there are many
situations of practical relevance where the viscosity effects play important role and cannot be
ignored. Such flows often undergo laminar-to-turbulent and reverse transition and some involve
a simultaneous coexistence of the laminar and fully turbulent regime in the flow domain of in-
terest. Low-Re-number effects are also always present in near-wall regions in all wall bounded
turbulent flows. The Reynolds-averaging approach conceals, by its virtue, the dynamics of the
flow disturbances and, therefore, is not capable of predicting the actual transition mechanism.
However, this modelling technique is capable of predicting the transition to turbulence when
even a small source of turbulence exists in the flow or at its edge, as for example the by-pass
transition in wall bounded flows, separation induced transition and oscillating wall flows. The
ability to predict a change-over from one regime to another at appropriate location and under
appropriate conditions, and consequent modifications of mean flow parameters, without having
to introduce any artificial triggering, serve the purpose of computing complex industrial flows
involving transition.

This thesis deals with computational modelling of the wall-bounded fluid flows in arbitrary
geometries at transitional and higher Re-numbers using SMC statistical turbulence models. The
two main objectives of this study are: i) to investigate possibilities for modelling of transitional
wall flows by second-moment closure modelling, to provide a comparative and critical analysis
of the existing models, and to contribute to their improvement and validation; 4) to establish
a reliable, accurate and efficient numerical solution procedure for solving the second-moment
closure transport models for arbitrary two-dimensional flow domains with applying both the
wall functions and integration of the model equations up to the wall with applying the exact wall
boundary conditions.

Chapter 2 presents the rationale of high- and low-Re-number second-moment closures. Be-
cause transitional flows are in focus, attention is given to low-Re-number turbulence models
with integration up to the wall. Possibilities for modelling of transitional flows with two second-
moment closure models were investigated: the Hanjali¢-Jakirli¢ (HJ) model and the Durbin el-
liptic relaxation model. It was found that the latter model is not very stable when the numerical
grid near the wall is very fine. Because it is difficult to control the grid distribution in an un-
known situation and, especially, in the transitional flows where the laminar and turbulent flow
regions may appear within the same flow, the elliptic relaxation model was not pursued beyond
some tentative investigation. Nevertheless the elliptic relaxation modelling of the wall effects on
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the pressure strain correlation, shows potential for further exploration in computation of turbu-
lent non-equilibrium flows and it is probably a good candidate for a turbulence model aimed at
general application.

Alternative routes to modelling of some of the terms in the transport equations for the Reynolds-
stresses have also been explored. A new model of the dissipation rate tensor &;; was proposed.
The model, aimed at improving the behaviour of ¢;; in the viscous sublayer, provides correct wall
limit values and is free from the wall topology information. It proved also to be computation-
ally convenient. An alternative approach of deriving the pressure-strain correlation models was
also proposed. The model is based on modelling the pressure fluctuations using fluctuating and
averaged quantities. Instead of the Poisson equation for fluctuating pressure, as used convention-
ally, this approach models directly the gradient of the fluctuating pressure which appears in the
velocity-pressure/gradient correlation. This is done in terms of fluctuating and mean velocity,
and turbulence time scale by approximating the Navier-Stokes equation for fluctuating motion.
The determination of the model coefficients follows the same procedure as in the conventional
approach. A term by term analysis of the conventional models of the dissipation rate equation us-
ing results from direct numerical simulation (DNS) is also proposed with suggestion for possible
improvement for non-equilibriom flows.

Chapter 3 presents the essential features of the numerical approach used for solving modelled
equations with the wall functions and with the exact wall boundary conditions. Special attention
is given to obtaining accurate solution and providing sufficient stability of the numerical solver in
order to enable application of the SMC models in geometrically and physically complex flows.
A numerical code for solving SMC models on two-dimensional, collocated, non-orthogonal,
block-structured, body-fitted grids with block-wise grid refinement has been developed. The
high accuracy of the procedure is achieved by using QUICK and TVD schemes for discretisation
of the convective terms in the transport equations. The application of higher order schemes
was found to be crucial for obtaining accurate solution, especially in more complex geometries
involving flow separation. The high stability of the procedure is achieved by introducing, in a
specific manner, an isotropic artificial turbulent viscosity in the momentum equations.

Since the HJ model was found to perform satisfactory in a broad range of non-equilibrium
flows, this model was further applied to the transitional flows. Jointly with some basic test cases
for low Re-number model, such as channel and boundary-layer flows, the optimisation of the
model coefficients was done using available DNS and experimental data for oscillating boundary
layer flows at transitional Re-number. Such a choice of the model coefficients of the low-Re-
number SMC model provides satisfactory results in transitional flows as well as in the fully
turbulent wall flows.

Subsequent two chapters present applications and model validation in two major classes of
transitional flows. In Chapter 4 attention is focussed on the oscillating and pulsating flows at
transitional and higher Re-numbers. Chapter 5 presents results of the model validation and its
application to transitional flows involving bypass transition and the separation induced transition
in a range of conditions. In most of the cases the SMC model shows obvious advantages and
better performances than any other model available in the literature. It is important to mention
here that all transitional flows were predicted without prescribing or triggering the transition
or any other empirical input, as often practised in models for transitional flows. The ability
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to predict transition and its location without external trigger is the essential requirement for a
general model for complex flows.
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Samenvatting

Tweede-orde sluitingsmodellering van transitionele en instation-
aire turbulente stromingen

Statistisch modelleren van turbulente stromingen, gebaseerd op Reynolds-middeling van de fluc-
tuerende stromingsgrootheden, richt zich op de bepaling van de gemiddelde grootheden die nodig
zijn voor de berekening, analyse en het ontwerp van een keur aan industriéle, milieu-technische
en biologische stromingen. Temidden van verschillende statistische modelleringstechnieken, is
tweede-orde sluiting (SMC) de benadering die de meest hechte fysische onderbouwing heeft en
desondanks eenvoudig en toepasbaar blijft voor het oplossen van reéle problemen. Dit wordt
voornamelijk belangrijk bij het voorspellen van transitionele stromingen en andere turbulente
stromingen bij lage Reynoldsgetallen. Hoewel de meeste stromingen in de techniek en in de
natuur sterk turbulent zijn, zijn er ook vele praktisch relevante gevallen waar de effecten van
viscositeit een belangrijke rol spelen en niet veronachtzaamd kunnen worden. Dergelijke stro-
mingen ondergaan vaak omslag van laminair naar turbulent en omgekeerd en sommige bevatten
gelijktijdig het laminaire en het volledig turbulente regime in het beschouwde stromingsdomein.
Lage-Reynolds effecten zijn ook altijd aanwezig in gebieden nabij een wand in wandgebon-
den turbulente stromingen. De aanpak met behulp van Reynolds-middeling verbergt van nature
de dynamica van verstoringen in de stroming en is derhalve niet geschikt voor het voorspellen
van het eigenlijke omslagmechanisme. Desalniettemin is deze modelleringstechniek in staat om
de omslag naar turbulent te voorspellen wanneer slechts een kleine bron van turbulentie in de
stroming of aan de rand aanwezig is, zoals bijvoorbeeld in het geval van bypass-transitie bij
wandgebonden stromingen, loslating geinduceerde omslag en oscillerende wanden. De moge-
lijkheid om de overgang van het ene naar het andere regime te voorspellen op de juiste plaats en
onder de juiste voorwaarden, en de daaruitvolgende wijzigingen van gemiddelde stromingspara-
meters, zonder het introduceren van kunstmatig triggeren, heeft tot doel om complexe industriéle
stromingen met omslag te berekenen.

Dit proefschrift behandelt de numerieke modilering van wandgebonden stromingen in wille-
keurige geometrie€n rond transitionele en hogere Reynoldsgetallen met behulp van SMC statis-
tische turbulentiemodellen. De twee belangrijkste doelen van deze studie zijn: i) om de moge-
lijkheden te onderzoeken voor de modellering van transitionele wandstromingen met behulp van
tweede-orde sluitingsmodellering, om een vergelijkende en kritische analyse te verschaffen van
de bestaande modellen, en om bij te dragen aan de verbetering en validatie daarvan; ii) om een
betrouwbare, nauwkeurige en efficiénte numerieke oplosprocedure te verkrijgen voor het oplos-
sen van SMC transportmodellen voor willekeurige twee-dimensionale stromingsdomeinen onder
het toepassen van zowel wandfuncties als het doorintegreren van de modelvergelijkingen tot op
de wand met de exacte randvoorwaarden aan de wand.

Hoofdstuk 2 behandelt de basis van tweede-orde sluitingsmodellen voor hoge en lage Rey-
noldsgetallen. Omdat de nadruk ligt op transitionele stromingen, wordt er aandacht geschonken
aan lage-Reynolds turbulentiemodellen, met integratie tot op de wand. De mogelijkheden voor
het modelleren van transitionele stromingen met twee SMC modellen zijn onderzocht: het model
van Hanjali¢-Jakirli¢ (HJ) en het elliptische relaxatiemodel van Durbin. Dit laatste model is niet
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erg stabiel gebleken wanneer het rekenrooster bij de wand zeer fijn is. Omdat het moeilijk is
om de verdeling van de gridpunten te controleren in onbekende situaties en vooral in transitio-
nele stromingen waar laminaire en turbulente gebieden kunnen voorkomen in dezelfde stroming,
is het elliptische relaxatiemodel slechts verkennend onderzocht. Desondanks laat de elliptische
relaxatiemodellering van de wandeffecten op de pressure-strain correlatie mogelijkheden zien
voor nader onderzoek naar de berekening van turbulente niet-evenwichtsstromingen en is het
waarschijnlijk een goede kandidaat voor een turbulentiemodel dat is gericht op algemene toepas-
singen.

Alternatieven voor de modellering van sommige termen in de transportvergelijkingen voor
de Reynoldsspanningen zijn ook onderzocht. Een nieuw model voor e dissipatie-snelheidstensor
€;; is voorgesteld. Het model, gericht op de verbetering van het gedrag van €;; in de visceuze
sublaag, verschaft de correcte limietwaarden bij de wand en is vrij van informatie over de wand-
topologie. Het bleek ook numeriek geschikt te zijn. Een alternatieve aanpak voor het afleiden
van de pressure-strain correlatiemodellen is ook voorgesteld. Het model is gebaseerd op de mo-
dellering van drukfluctuaties met gebruik van zowel fluctuerende als gemiddelde grootheden. In
plaats van de Poisson-vergelijking voor de fluctuerende druk, zoals meestal gebruikt, modelleert
deze aanpak direct de gradient van de fluctuerende druk die verschijnt in de correlatie tussen de
snelheid en de drukgradient. Dit is gedaan in termen van fluctuerende en gemiddelde snelheid
en turbulente tijdsschaal door het benaderen van de Navier-Stokes vergelijking voor fluctuerende
bewegingen. Het bepalen van de modelcoéfficiénten volgt dezelfde procedure als in de con-
ventionele aanpak. Tevens is een termsgewijze analyse van de conventionele modellen voor de
dissipatie-snelheid vergelijking voorgesteld met gebruik van directe numerieke simulaties (DNS)
en suggesties voor mogelijke verbeteringen bij niet-evenwichtsstromingen.

Hoofdstuk 3 behandelt de essentiéle punten van de numerieke aanpak die is gebruikt voor
het oplossen van de gemodelleerde vergelijkingen met wandfuncties en met de exacte randvoor-
waarden op de wand. Speciale aandacht is gegeven aan het bereiken van een nauwkeurige op-
lossing en het verschaffen van voldoende stabiliteit van de numeriek oplossingsmethode om de
toepassing van de SMC-modellen mogelijk te maken in geometrisch en fysisch complexe stro-
mingen. Er is een numerieke rekencode ontwikkeld voor het oplossen van SMC-modellen op
twee-dimensionale, gecolloceerde, niet-orthogonale, blok-gestructureerde, body-fitted grids met
bloksgewijze gridverfijning. De grote nauwkeurigheid van de procedure is bereikt door het toe-
passen van QUICK en TVD-schema’s voor de discretisatie van de convectieve termen in de
transportvergelijkingen. Het toepassen van hogere-orde schema’s is cruciaal gebleken voor het
bereiken van nauwkeurige oplossingen, vooral in meer complexe geometrieén waar loslating
van de stroming optreedt. De grote stabiliteit van de procedure is verkregen door het op een
specifieke wijze introduceren van een isotrope kunstmatige turbulente viscositeit in de impuls-
vergelijkingen.

Omdat het HJ-model bleek te voldoen in een breed spectrum van niet-evenwichtsstromingen,
is dit model verder toegepast op de transitionele stromingen. Tesamen met enige standaard test-
gevallen voor lage-Reynolds modellen, zoals kanaal- en grenslaagstromingen, is de optimalisatie
van de modelcoéfficiénten uitgevoerd met behulp van beschikbare DNS-data en experimentele
data voor oscillerende grenslaagstromingen bij transitionele Reynoldsgetallen. Een dergelijke
keuze voor de modelcoéfficiénten van het lage-Reynolds SMC model verschaft bevredigende
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resultaten in transitionele stromingen en in volledig turbulente wandstromingen.

De hieropvolgende twee hoofdstukken behandelen toepassingen en modelvalidatie in twee
belangrijke klassen van transitionele stromingen. In hoofdstuk 4 wordt de aandacht gericht op
de oscillerende en pulserende stromingen rond transitionele en hogere Reynoldsgetallen. Hoofd-
stuk 5 behandelt de resultaten van modelvalidatie en de toepassing op transitionele stromingen,
met bypass-transitie en door loslating geinduceerde omslag in een reeks condities. In de meeste
gevallen laat het SMC model duidelijke voordelen en betere prestaties zien dan ieder ander in de
literatuur beschikbaar model. Het is belangrijk om hier te vermelden dat alle transitionele stro-
mingen zijn voorspeld zonder het voorschrijven of triggeren van transitie of enige andere empiri-
sche input, zoals vaak wordt gedaan bij modellen voor transitionele stromingen. De mogelijkheid
om omslag en de locatie daarvan te voorspellen zonder uitwendige trigger is een essenti€le eis
aan algemene modellen voor complexe stromingen.
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