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ARTICLE INFO ABSTRACT
Keywords: Given a mild solution X to a semilinear stochastic partial differential equation (SPDE), we
Doob’s h-transform consider an exponential change of measure based on its infinitesimal generator L, defined in
Exponential change of measure the topology of bounded pointwise convergence. The changed measure P" depends on the choice

Girsanov theorem

Guided process

Infinite-dimensional diffusion bridge
Kolmogorov operator

Pinned process

of a function 4 in the domain of L. In our main result, we derive conditions on A for which
the change of measure is of Girsanov-type. The process X under P” is then shown to be a mild
solution to another SPDE with an extra additive drift-term. We illustrate how different choices
of h impact the law of X under P" in selected applications. These include the derivation of an

Semilinear SPDE infinite-dimensional diffusion bridge as well as the introduction of guided processes for SPDEs,
SPDE bridge generalizing results known for finite-dimensional diffusion processes to the infinite-dimensional
case.

1. Introduction
Consider a semilinear stochastic partial differential equation (SPDE) of the form

(€Y

dX() =[AX(@)+ F@6, X)) dt + \/OdW (1), 1> s,
X(s) =x.

The operator A denotes the generator of a strongly continuous semigroup (S,),», on a Hilbert space H, whereas F denotes a non-
linear operator and Q is a symmetric, positive operator on H. The process W is a cylindrical Wiener process on H, defined on a
stochastic basis (2, F, (F,);»0. P). We assume that the operators A, F and Q satisfy suitable conditions such that Eq. (1) admits a
unique mild solution X = (X(t,s,x)),5, for any s > 0 and x € H. Throughout the article we fix some arbitrary x, € H and simply
write X(¢) if the SPDE in (1) is assumed to be initialized at X(0) = x.

For any m € N, let C,(R, x H) be the Banach space of continuous functions ¢ : R, x H — R such that ||¢l,, = sup, (1 +
lx]™~ " e(t, x)| < oo. The process X is Markovian and defines a transition semigroup

(T, 9)(s,x) = Elop(s +1, X(t + 5,5,x))], s,t>0, x€ H,

on C, (R, xH). It is well-known that the semigroup (7)), is not strongly continuous with respect to the norm topology on C,,(R, X H),
see e.g. Cerrai [1] and Da Prato [2]. However, it does possess the properties of a strongly continuous semigroup in several weaker
‘modes of convergence’. This has been studied in the framework of K-convergence in Cerrai [1,3] and Cerrai and Gozzi [4], the mixed
topology in Goldys and Kocan [5] and of bp- (bounded pointwise) or n- convergence in Priola [6]. See also Fabbri et al. [7], Appendix
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B for a recent survey. In the respective convergence of choice, one can then define an infinitesimal generator (L, dom,(L)) of the
semigroup (T;),5( in the usual way. In this article, we will work within the framework of z-convergence as introduced in Priola [6].

Crucially, the operator (L, dom,,(L)) exhibits the common properties that are characteristic for infinitesimal generators of strongly
continuous semigroups. Of particular importance for us is the fact that Dynkin’s formula holds, i.e. for any A € (L,dom,,(L)) the
process

1
D"(t) = h(t, X(t)) — / Lh(s, X(s)) ds
0

is a P-martingale. In other words, X solves the martingale problem of (L,dom,,(L)) as introduced in Stroock and Varadhan [8].
Furthermore, one can show that for any positive 4 € dom,,(L), the process

non R X@©) _ /’ Lh
E"(t) = —h(O, *0) exp( L h (s,X(s))ds) , >0,

whenever existent, is a positive, continuous local P-martingale with E[E”(0)] = 1. If E" is a true P-martingale, it defines an exponential
change of measure P" on F such that for any ¢ > 0

df,. = E"(0)dPyy,. 2

The change of measure P is well-known in the literature for Markov processes, see Palmowski and Rolski [9] and references within.
If the function & is harmonic, i.e. Lh = 0, it is known as Doob’s h-transform, following its introduction in Doob [10]. In Palmowski
and Rolski [9] it was shown that X remains Markovian under P* and solves the martingale problem corresponding to a perturbation
of L.

In this article we aim to establish conditions on the A-function under which X is not only Markovian under the changed measure,
but again the mild solution of another SPDE, differing from Eq. (1) by an additional drift-term dependent on A. This can be viewed
as a special case in which P" is a Girsanov-type change of measure. In this spirit, we show the following as the main result of this

paper.

Theorem 1.1 (Informal). Under suitable assumptions on h € dom,,(L), there exists a unique measure P" on (2, F, (F))»0) that satisfies
(2). Furthermore, the process

t
wha) =w) - / \/OD, log h(s, X(s))ds, t€[0,T],
0

is a cylindrical Wiener process with respect to P". In particular, X under P" solves the SPDE

dX () = [AX(1) + F(t, X (1) + OD, log h(t, X (1))] dt + \/OQdW" (1), 1€ [0,T].

1.1. Approach and challenges

Let us demonstrate our approach on how to derive Theorem 1.1 in the case that H = R¢. Eq. (1) then describes a stochastic
ordinary differential equation (SODE)

dx(t) = b(t, x())dt + 1/qdw(®), 3)

where b is some Lipschitz continuous function, ¢ is a symmetric positive definite matrix and w is an R?-valued Wiener process.
Let h € C;‘Z(R + X RY) be differentiable with bounded derivatives. An application of Itd’s formula then gives that h(z, x(t)) is the
semimartingale given by

t t
h(t, x(t)) = h(0, x() + / Lyh(s, x(s))ds + / (\/anh(s, x(s)), dw(s)),
0 0
where L, is the Kolmogorov operator associated with Eq. (3), defined via
(Loh)(t,x) = 0,h(t, x) + (b(t, x),D, h(t,x)) + % tr[qD)z(h(t, x)].

From this, one can conclude that € dom,,(L) with Lh = Lyh and Dynkin martingale D" given by

t
D) = h(0, x) + /0 (/D h(s, x(5)), dw(s)).

An application of the integration by parts formula for semimartingales then shows that the local martingale E” equals the stochastic
exponential

1
E"(1) = exp (M"(z) -3 [M"]I)

of the It process M" (1) = f(;(\/EDx log A(s, x(s)), dw(s)). Therefore, if E" is a true martingale, the Girsanov theorem implies that the
process w'(t) = w(r) — /o’ \/EDX log h(s, x(s)) ds is a Wiener process under P” and that x solves the SODE

dx(t) = b(t, x(¢))dt + gD, log h(t, x(t))dt + \/ngwh(t).
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We face two key challenges when generalizing this approach to the setting of an infinite-dimensional Hilbert space H. Firstly, since
A is an unbounded operator on H, we generally cannot expect the SPDE (1) to admit a strong solution. This renders any direct
application of Itd’s formula infeasible and even for smooth functions 4, the process h(z, X (1)) is in general not a semimartingale.
We circumvent this issue by approximating X by a sequence of strong solutions X, that satisfy Eq. (1) when substituting A by
its Yosida approximations (A,),. Under suitable assumptions on &, one can then approximate the process i(t, X (¢)) by the sequence
of semimartingales A(z, X,,(¢)) for which Itd’s formula is applicable.
Secondly, consider the Kolmogorov operator

(Lop)(t,x) = 0,(t,x) + (Ax + F(t,x), D, (¢, x)) + % tr[QDi(p(I, x)]

associated with the SPDE (1). In order for Ly¢ to be a well-defined and continuous function on R, x H, besides the usual smoothness
properties of ¢, one requires that there exists a continuous extension of the mapping

R, xdom(4) = R, (t,x) = (Ax,D, o(t, x)).

This severely limits the class of functions for which L¢ is a well-defined differential operator and substantial work has been done to
construct suitable spaces of test functions for Kolmogorov operators in infinite dimensions, see Da Prato [2] and references within.

In particular, for most of our applications, the A-functions of interest cannot be expected to be in the domain of L,. However,
in Manca [11,12] it is shown that the space of exponential test functions £,(R, x H), defined as the real and imaginary parts of the
functions

R, X H - R, (s,x)  exp(i((x,a) + ¢s)), a € dom(A*),c €R,

acts as a core for the infinitesimal generator (L, dom,,(L)) with respect to z-convergence. Therefore, under the weaker assumption
that 2 € dom, (L), we may approximate 4 with a sequence of suitable test functions (h,), C £4(R, x H) for which Lyh, remains
well-defined.

1.2. Related work and applications

In applications of the exponential change of measure E”, one chooses a suitable h-function such that X under P" exhibits certain
desired properties. A well-known application from the finite-dimensional setting is the derivation of diffusion bridges that describe
the process x conditioned on hitting an endpoint x(T) = y € R?. An application of our results lifts this to the infinite-dimensional
case, thereby allowing us to derive an equation for the infinite-dimensional diffusion bridge (or SPDE bridge).

To the best of our knowledge, the existing literature on infinite-dimensional bridges is limited to the case where F = 0. This
ensures mild solutions are Gaussian processes, which leads to an explicit expression for the SPDE bridge, also called an Ornstein—
Uhlenbeck (OU) bridge in this case. Simao [13] shows that an infinite system of one-dimensional OU bridges defines an OU bridge
on a Hilbert space. In a more general, non-diagonal setting, Goldys and Maslowski [14] derive an equation for the OU bridge and
apply it to study basic properties of transition semigroups for semilinear SPDEs. More recently, Di Nunno et al. [15] consider a
linear stochastic reaction—diffusion equation on a bounded domain where the process is conditioned on a noisy observation at time
T. A general framework for the spatial discretization of these bridge processes is developed.

Our approach via the change of measure E” is more general. In the specific case that h(t, x) = p(t, x; T, y), with p the transition
density of the process with respect to an appropriately chosen reference measure, it gives rise to the infinite-dimensional diffusion
bridge that conditions the process to hit y at time 7. Our results allow for other choices of h, for example A(t, x) = p(t, x; T, y), where
p is the transition density of the SPDE without the nonlinearity. The resulting process is called a guided process, analogous to the
finite-dimensional setting introduced in Schauer et al. [16]. The guided process is different from the conditioned process, but it
mimics properties of that process, though the extra term in the drift ignores the nonlinearity. Contrary to p, the transition density p
is explicitly known. Therefore, the SPDE for the guided process can be numerically approximated. Taking into account the likelihood
ratio of distribution of the true conditioned process with respect to the guided process, weighted samples of the conditioned process
are obtained. It is exactly this approach which has been proposed in earlier works in the simpler setting of stochastic ordinary
differential equations (see, for instance, Schauer et al. [16], Delyon and Hu [17], Bierkens et al. [18] and applications in Mider
et al. [19]). The results in this paper prove the existence of the guided process as the mild solution to a particular SPDE.

Another application that we consider is that of forcing the process so that its marginal distribution at time T is fixed to a specified
distribution. This extends the results for the finite-dimensional case considered in Baudoxin [20].

1.3. Outline

We provide an overview of the needed preliminaries in Section 2. Particular attention will be given to semigroups that are
strongly continuous with respect to z-convergence as well as their infinitesimal generators. In Section 3, we present, in a detailed
manner, the main result of this paper and its proof. Additionally, a modified version is given for the special case that the change
of measure is limited to a finite time horizon. We showcase some applications of the main result in Section 4. These include the
derivations of the infinite-dimensional diffusion bridge and the forced process as well as the guided process.
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2. Preliminaries
2.1. On the stochastic basis

We assume to be working on the stochastic basis (£, F, (F,),»(.P) defined as follows. Let H be some Hilbert space, embedded
in another Hilbert space H’ such that the embedding J : H & H’ is a Hilbert-Schmidt operator. Note that in particular, JJ* is a
positive definite trace-class operator on H'. Define 2 = C(R,; H') as the space of all continuous functions from R, to H' equipped
with the metric

[s+]
1 Neo-all,
dwa@) =Y —
(@ ®) 221+||a) al,’

where ||@ — @||, = sup,¢(q ) |@(*) — @()|. Then (£, d) is a Polish space and we denote by 7 the Borel ¢-algebra of (£, d).

On (2, F) define the canonical process  : R, x 2 — H’, n,(w) = w(r) and let (F,);», be the right-continuous extension of the
natural filtration of 5, i.e. 7, = (.50, : s <t+e¢) for any 7 > 0. By the Kolmogorov extension theorem, there exists a Gaussian
measure P on (2, F, (F,);50) such that, under P, the canonical process 7 is a Wiener process on H’ with covariance operator JJ*. In
particular, # is a cylindrical Wiener process on H.

Denote by P, the restriction of P onto F, for any ¢ > 0. We will need the following result (see Stroock [21], Lemma 4.2).

Lemma 2.1. Let (E(1));5o be a non-negative martingale on (2, F, (F,),»o,P) with E[E(0)] = 1. Then there exists a unique measure Q on
F such that dQ, = E(t)dP, for all t > 0.

Remark 2.2. Note that Lemma 2.1 does not give absolute continuity of Q with respect to P. However, under the stronger assumption
that E is a uniformly integrable martingale, it can be shown that Q is absolutely continuous with respect to P on ¥ with dQ = E_dP,
where E,, is the unique random variable such that E(t) = E [E,, | ;] for all t > 0.

In many applications the martingale E is only defined on some half-open interval 7 € [0, 7). In that circumstance, the following
variation of Lemma 2.1 will be useful.

Lemma 2.3. Let (E(?),cor) be a non-negative martingale on (2, F, (F,);c(o.1), P) with E[E(0)] = 1. Then there exists a unique measure
Q on Fy such that dQ, = Et)dP, for al 0 <7 < T.

Proof. The proof is similar to that of Stroock [21], Lemma 4.2. For details, see Pieper-Sethmacher et al. [22], Appendix A. [
2.2. On stochastic evolution equations

The following is a standing assumption on the components involved in Eq. (1).

Assumption 2.4.

(i) A is the generator of a strongly continuous semigroup (S;);»o on H. In particular there exists a Cg > 0,wg € R such that
1Sl iy < Cs exp(@gst) for all £ > 0.
(i) W is a cylindrical Wiener process on H.
(iii) Q is a symmetric, positive and bounded operator on H. Furthermore, the family of operators (Q,),», defined by

t
0, = / S,08* ds “
0

is such that sup, tr(Q,) < 0.
(iv) F is such that there exists a constant C > 0 with

IF@,x) = F@t, )|l < Cplix = yll and ||[F, x)|l < Cp(1 + [Ix]))
forallt>0and x,y € H.

Under Assumption 2.4, Eq. (1) admits a unique mild solution X = (X(t, 5, x)),», for any initial value x € H, i.e. X is an H-valued,
F,-adapted process that satisfies

t t
X(t,5,x)=S8_;x+ / S F(u, X(u, s, x))du + / Sy \/adW(u), t>s. (5)
N N

The process X is Markovian and has a P-almost surely continuous modification. Furthermore, for any m > 1, there exist some
constants C,, > 0,7,, > 0, also depending on wg, Cg,Cf and Q, such that

BLIX @, 5, 0)N"] < Cpp exp(r(t = DA + [1x[I™). O]
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Though bounds similar to (6) are well known results in the literature, this particular bound follows from Goldys and Kocan [5],
Proposition 3.1. To abbreviate notation, we fix some arbitrary x, € H and simply write X (r) whenever (1) is assumed to be initialized
at X(0) = x.

Due to the unbounded nature of A, Eq. (1) generally does not admit a strong solution. However, one can approximate its mild
solution with strong solutions to a sequence of substitute equations in the following way. Let (4,),,, be the Yosida approximation
of A, i.e. (4,),5,, is the sequence of bounded, linear operators on H defined as

A, = nAR(n, A),

where R(n, A) = (n— A)~! is the resolvent of A. It then holds that lim, A,x = Ax for any x € dom(A) and that A, defines a semigroup
S such that lim, S"x = S,x for all x € H and

”S;(n)“L(H) < Cgexp (w,1) @]
with @, = “s”_ Now let X ,» be the strong solution to the equation
n—owg
dX,(0) = [A,X,(0) + F(t, X, ()] dr + V/OdW (1), X, (s) = x. ®)
It is well-known (see e.g. Da Prato and Zabczyk [23], Proposition 7.4) that
lim E [ sup |X,()—X®I”| =0 9
n—oo te[s,T]

for any T > s,p > 1 and in particular X,, — X in probability as C([s,T]; H)-valued random variables.

In the special case that F = 0, we denote the time homogeneous mild solution to Eq. (1) by Z and refer to it as the
Ornstein—Uhlenbeck (OU) process. The random variables Z(z, s, x) are Gaussian with mean S,_;x and covariance operator Q,_,. Under
Assumption 2.4 (iii), Z(t, s, x) converges in distribution to its invariant distribution v ~ N'(0, Q) with

Qoo:/ SMQS: du. (10)
0

2.3. On transition semigroups and their generators on spaces of polynomial growth
Let (E,| - |g) be a Banach space. For any m > 0, we let C,,(R, x H; E) be the space of all continuous functions ¢ : R, X H - E
that are bounded in 7 and of at most polynomial growth of order m in x. The space C,,(R, X H; E) is a Banach space with norm

loll = sup lp@t, )| g
" weRxm L+ llx]™

If E =RY, equipped with the Euclidean norm, we simply write C,,(R, x H).
It follows from the inequality (6) that the time-homogeneous space-time process of X, given by Y (¢, (s,x)) = (t + 5, X(t + 5, 5, X)),
defines a transition semigroup (T}),5¢ on C, (R, x H) via

(Tip)(s,x) =Elp(s +t, X(t +5,5,x)], 9€C,(R.xH),t>0,x€ H. an

As noted in the introduction, (T}),»( is not strongly continuous with respect to the norm topology on C,,(R, x H). Instead, one has
to turn to the weaker mode of z-convergence.
We say a sequence (¢,), C C,, (R, X H) is z-convergent to ¢ € C,, (R, x H) and write z-lim, ¢, = ¢ if

sup [l@,ll,, < o0 and lim g, (1, x) = @(t,x) for all (r,x) e R, x H.
n n
The r-closure of a subset B in C,,(R, x H) is defined as

B ={peC,R,xH): Ip,), CBs.t z-limgp, = ¢}.
n

The set B is said to be z-closed if B° = B and z-dense if B = C, (R, x H). A linear operator L : dom(L) € C,,(R,xH) - C, (R, x H)
is a w-closed operator if the graph {(¢, Lg) : ¢ € dom(L)} is z-closed in C,(R, x H) x C,,(R, x H). If a subdomain D c dom(L) is
such that for any ¢ € dom(L) there exists a sequence (¢,), in D with

z-lim ¢, = ¢ and z-lim Lo, = Lo 12)
n n

we call D a z-core for (L, dom(L)).
The following definition of z-semigroups is based on Priola [6]. They are exactly those semigroups that are ‘strongly continuous’
with respect to z-convergence.

Definition 2.5 (z-Semigroup). Let (T)),5, be a semigroup of bounded, linear operators on C, (R, x H),m > 0. We say (T,),» is a
r-semigroup if the following conditions hold:
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(i) There exist some M > 1 and w € R such that for all r > 0
[IT,|| £ M exp(w?). (13)
(ii) For any ¢ > 0 and any (¢,), € C,,(R, x H) such that z-lim, ¢, = ¢ € C,,(R, X H) we have

#-1imT,¢p, = T,p € C,,(R,. X H). a4
n

(iii) For any ¢ € C,,(R, X H) and (s,x) € R, x H fixed, the mapping
[0,00) — R, t = T;(s,x) (15)

is continuous.

Remark 2.6. Note that contrary to the case of semigroups that are strongly continuous with respect to the norm topology on
C, (R, x H), condition (i) needs to be assumed as it does not follow from the other conditions.

Remark 2.7. Conditions (i) and (iii) imply that any z-semigroup (7)), is ‘strongly continuous’ with respect to z-convergence, i.e. if
(t,), is a sequence such that 7, | 0 then
z-limT, o =@, @€C,(R,.xH).
n n

We then write z-lim, ), T, = ¢.
Lemma 2.8. For any m > 0, the semigroup (T}),» defined in (11) is a z-semigroup on C,,(R, x H).

Proof. We show that (T}),5 satisfies properties (i) to (iii) in Definition 2.5. Let ¢ € C,,(R, x H). Then it holds for any (s, x) that

[(Tio)(s, 0)| <Ellg(s + 1, X(s + 1,5, %)
<ol BT+ 1X (s + 1,5, 001™] (16)
< el (1 + Cpexp(y,H(1 + [Ix[I™)),
where we used the definition of [|¢]|,, in the second and the inequality (6) in the third step. It follows that
|T;0(s, x)|
IToll, = su —_—
™ et TN
(1 + C,, exp(y,,HD(1 + |[x]I™)
<llell, sup -
(s.x)ER, X H L+ Il

< ll@lln(l + Cp) exp(y,t)

and thus (13) holds with M = (1 + C,,) and w = y,,,.
To show (ii), let (¢,), be a sequence in C,, (R, x H) such that z-lim, ¢, = ¢. It then follows by the dominated convergence
theorem that

li;n(T,gon)(s, x) = lizn Elg,(+ s, X(t+5,5,x))]
=E[p(t + 5, X(t+ 5,5, x)] = (T;90)(s, x).

Furthermore, from (16) and sup, [l¢|l,, < oo it follows that sup, [|T;@,ll,, < o and therefore that z-lim,T,¢, = T,¢. To show
(iii), it suffices to note that continuity of ¢ — T;¢(s, x) follows from the almost sure continuity of ¢+ — X(-,s,x) and dominated
convergence. []

The infinitesimal generator of a x-semigroup is defined in a similar manner as for a strongly continuous semigroup.

Definition 2.9. Let (T}),», be a z-semigroup on C, (R, x H). The infinitesimal generator L of (T}),5, is the operator defined via

T —_
dom,(L) =1{@€C,R,xH): 3y € Cp(R, x H) s.t. z-lim, ’(pt ?_ w}

(Lo)s,x) = lim, w, @ € dom,,(L).(s,x) €R, x H.

a7

As the upcoming result shows, the infinitesimal generator of a z-semigroup satisfies the common properties characteristic for
generators of strongly continuous semigroups.

Theorem 2.10. Let L be the infinitesimal generator of a n-semigroup (T,)5, on C, (R, x H). Then:

(i) The domain dom,,(L) is =-dense in C,,(R, X H).
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(ii) The operator L is the unique r-closed operator such that for all A > w the resolvent R(A, L) = (A — L)~! is a bounded, linear operator
on C,(R, x H) with

R(A, L)p(s, x) = / exp(—ADT, (s, x) dt. (18)
0
(iii) It holds that T,(dom,,(L)) C dom,,(L) and for all ¢ € dom,,(L) and fixed (s,x) € R, x H the function t — T,¢(s, x) is differentiable
with
d
T 19(s,x) = LT, (s, x) = T, Lg(s, x). (19)

Proof. See Priola [6], Propositions 3.2 to 3.6., where these properties have been shown in the context of z-semigroups on C,(H). [

The following is essentially a version of Dynkin’s formula in the context of z-semigroups.
Lemma 2.11. Let Y(¢) = (t, X(¢)) be the space-time process of X (¢). Then for any ¢ € dom(L) the process

t
D‘”(t)=<0(Y(t))—/ Lo(Y(s))ds (20)
0

is an F,-adapted P-martingale. We call D?(t) the Dynkin martingale (of (¢, Lgp)).
Proof. Clearly Y(¢) = (¢, X (¢, x)) is F,-adapted with initial condition Y (0) = (0, x). It holds for any r <t that
E[D?®) | F.]=E [(ﬂ(Y(t)) - /Ot Lo(Y () du | 7}]
=Elp(Y®) | F.]-E [/Or Lo(Y (u)) du | f}] -E [/t Lo(Y (w)du | F, (21

=T,_, oY (r) - /0 Lo(Y () du - / T,— Lo(Y(r))du,

where we used the Markov property and 7,-adaptedness of Y (¢) in the last step. By Theorem 2.10 (iii) and a substitution we have

4 t—r
/ T, Lo(Y(r)du = / T,Lo(Y (r)) du
r 0
=T,_,pY () — ¥ () P-as.
Plugging this into (21) gives E[D?(¢) | F,] = (Y (1)) — /Or Lo(Yw)de. [

In general, the abstract definition of the infinitesimal generator given in (17) does not lend itself easily to a closed form expression
of Ly for ¢ € dom,,(L). However, in many cases one can instead construct a suitable z-core for (L, dom,,(L)) on which L acts in
a more ‘descriptive’ manner. It turns out that in this case, L acts as the Kolmogorov operator associated with (1) on the space of
exponential test functions £,(R, x H), defined as the span of the real and imaginary parts of the functions

R, X H - R, (s,x) — exp(i((x,a) + ¢s)), a € dom(A¥),c €R, (22)

and £,(R, x H) defines a z-core of (L,dom,,(L)) as the following lemma shows. The z-core property of £,(R, x H) will play a
crucial part in the proof our main result.

Lemma 2.12. For any m > 1, the space €,(R, x H) is a subset of dom,,(L) with Lo = Ly, where
(Lop)(t, x) = 0,¢(t, x) + (x, A*D,(t, X)) + (F(t,x), D, (t,x)) + % tr (QD?g(t,x)) (23)

for any ¢ € &£4(R, x H). Moreover, £,(R, x H) is a n-core for (L,dom,,(L)), ie. for any ¢ € dom,(L) there exists a sequence
(@), C EL(R, x H).! such that

z-lim @, = @ and z-lim Ly, = Leo. (24)
n n
Furthermore, if ¢ € (L,dom,,(L)) is such that D, ¢ € C,,(R, x H; H), the approximating sequence (¢,,), in (24) can be chosen such that
#-1imD ¢, = D, ¢. (25)
n
Proof. This follows from some slight generalizations of the results in Manca [12], where the z-core property of exponential test

functions for generators of z-semigroups was studied in the context of time homogeneous SPDEs. For more details, see Appendix
A. O

1 This approximation relies on multi-indexed sequences, see Appendix A However, for ease of notation, we may assume that the sequence only has one index.
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Remark 2.13. Note that for ¢ € £4(R, X H), Lg is in general not a bounded function anymore. Let for example ¢(f,x) =
sin({x, h)), h € dom(A*). Then D, ¢ = hcos({x, h)) and D)%(p(x) = —h ® hsin({x, h)) and thus

* 1 .
Lep = cos(x. h))(¢x. A*h) + (F(t.). h)) = 3 sin((x. h))(VOh. \/Oh).
which is not bounded but of linear growth under the Lipschitz assumption on F. In particular, £4,(R, X H) is not a z-core for
(L,dom,, (L)) if m=0.

3. Main result

In this section we present the proof of our main result. It establishes conditions on the h-function for which, under the exponential
change of measure P”, the mild solution X to the SPDE (1) is a mild solution to yet another SPDE with an additional drift term
dependent on the h-function of choice.

Our point of departure is that, following Lemma 2.11, for any 4 € dom,,(L), the process

D) = h(t, X(1)) — / Lh(s, X(s))ds
0

is a P-martingale. Additionally, it can be shown that for any positive function 4 € dom,,(L), the process

Wy < R XO) ([T Lk
E"(t) = 7(0,x0) exp( /0 h(s,X(s))ds), t>0, (26)

is a continuous P-local martingale whenever it exists, see for example Palmowski and Rolski [9], Lemma 3.1. If E” is a true
P-martingale, it follows from Lemma 2.1 that it defines a unique measure P" on F such that

A 0 @27)
— = 1), t>0.
= F'0

Throughout this section we fix some arbitrary m > 1. We will need the following assumptions.

Assumption 3.1. The function # : R, x H — R, satisfies:

() h € dom,,(L) such that n~'Lh € C,,(R, x H).
(ii) A is Fréchet differentiable in x such that D, 4 € C,(R, X H; H).
(iii) A is such that E” is a P-martingale.

The following is this sections main result.
Theorem 3.2. Let h satisfy Assumption 3.1 and let P" be the measure defined by (27). Then, for any T > 0, the process
t
Whity = W) - / \/OD, log h(s, X(s))ds, t€[0,T1, (28)
0
is a cylindrical Wiener process with respect to P". In particular, X under P" is a mild solution to the SPDE
dX () = [AX (1) + F(t, X (1) + OD, log h(t, X (1))] dt + \/OQdW" (1), 1€ [0,T]. (29)
The main part of the proof of Theorem 3.2 lies in the following lemma.
Lemma 3.3. Let h satisfy Assumption 3.1(i) and (ii) and let D" be the corresponding Dynkin martingale. Then
1
D"(t) = h(0, x,) + / {(VOD,h(s, X (), dW (5)), 1>0. (30)
0
Furthermore, let E" be the process as defined in (26). Then E" is the stochastic exponential given by
E"(t) = exp (M"(t) - %[Mh],) , 120, €3))
where M"(1) = [}(1/OD, log h(s, X (5)), dW (s)).
Proof. Step One. We begin by showing the claim in Eq. (30) for any exponential test function h» € £4(R, X H).
Let (4,),5, De the Yosida approximation of A such that lim, A,x = Ax for all x € dom(A) and let X,, be the sequence of strong

solutions to Eq. (8). Define the sequence of processes (D), via

t
Dty = h(t, X,,() - / Lh(s, X,,(5)) ds. (32)
0
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We first show that Df,'(t) ﬂ D"(t) for any ¢ > 0. It follows from (9) that A(t, X, (t)) E» h(1, X(t)) and Lh(t, X,,(1)) E» Lh(t, X(1)).
Furthermore, it holds that

E /’Lh( X, (s)ds|| < ]E[/x |Lh(S’X"(S))|(1 1X,HN1™d
suy S, n N S < su P E—— + N S
x| o C L TR "
' (33)
<Ll sup [+ BN 01D s
n Jo
< co.
Here, we used in the last step that, by the bounds in (6) and (7), there exists for any m > 1 some C‘m > 0 and ¥,, > 0 such that
sup E[|| X, (9)]I"] < C,, exp(7,,5). (34

By the dominated convergence theorem it follows from (33) that
t Ll (]P’) t
/ Lh(s, X,(s))ds—— / Lh(s, X(s))ds
0 0

P
and therefore in total we get that D*(H)— D" ().
On the other hand, for any n > wg, an application of It6’s lemma gives that
dh(t, X,(t)) = L,h(t, X ,(1))dt + (\/anh(t, X,®),dW (@),

where L,A(t,x) = 0,h(t,x) + (x, AXD, h(t,x)) + (F(x),D,A(t, x)) + %tr[QDih(z, x)] is the Kolmogorov operator associated with the
approximating SPDE in (8). Plugging this into (32) gives that

t
DI(t) = h(0,x,) + / (VOD, (s, X,,(5)), dW (5))
0

t
+ / [L,h(s, X, () = Lh(s, X,,(s))] ds
0

‘ (35)
= (0, x0) + /0 (VD h(s, X, (5)), dW (5))
+ /t(xn(s), (A% — A*) D h(s, X, (s))) ds.
It remains to sgow that
lim /0 t(\/EDXMs, X, (s)), dW (s)) = /O t(\/Ethcv, X(5)),dW (5)) (36)
and
lim /)t<Xn(s), (AX — A*) D, h(s, X, (s)) ds =0 (37)

P
in probability. Then (30) follows from D’(t)— D"(r) and (35)-(37).
To show (36), note that by the Itd isometry and (34) we have

' 2 '
supE [”/ (V/OD, h(s, X ,(5)), dW (5)) ] =sup/ E[||\/6th(s,)(n(s))||2ds]
n 0 n 0

1
< sup [QIID A, /0 EI(1+ 1 X, ()™ ds

< 0.

P
Since D, (s, X,,(s))— D,A(s, X(s)), we get (36) by an application of the dominated convergence theorem.
Lastly, for any h € £4(R, x H), it holds that D A(s, x) = fozl z;8(s,x) for some z; € dom(A*) and g; € E,(R, X H), i = 1,... k.
We show (37) for k = 1. The case that k > 1 follows from linearity. We have

/(Xﬂ(s), (A:—A*)th(s,Xn(s))>ds:/ (X,(9), (A% = A*) 2 ) g1 (s, X, (5)) ds.
0 0

By (9) it follows that Xni X in C([0,1]; H) and in particular sup, sup,co 1 11X, (s)I| < o0 a.s. Thus (37) follows from lim, (A* — A*) z; =
0. In total this concludes that (30) holds for any h € £,(R, x H).

Step Two. We proceed to show (30) for any 4 € dom,,(L) that satisfies Assumption 3.1(i) and (ii). By Lemma 2.12 there exists a
sequence (h,), € £4(R, x H) such that

z-limh, = h, z-limD,h, =D, h and z-lim Lh, = Lh. (38)
n n n
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Denote by D"«(t) the Dynkin martingale of (h,, Lh,). Firstly, it follows by dominated convergence, the bound in (6) and the
r-convergence in (38) that

DM(r) = h,(t, X (1)) — / Lh,(s, X(s5))ds
0

2o X)) - / th(s, X(s))ds (39
=D"(). 0
On the other hand, since (h,), C £4(R, X H), it follows from Step One that
DM (t) = h, (0, xy) + /O t( VOD,h,(s, X(5)),dW (s)), neN. (40)
We already have that lim,, 4,(0, x4) = h(0, x,). It thus remains to show that
/0 (VDD (s X (). AW (5)) /0 (VDD h(s. X(s). AW (5). (41)

By Itd isometry it suffices to establish that

1 t
hmE[ / ||\/§thn(s,X(s)>||2ds]=E[ / V@D, (s, X()IP ds |
n—o0 0 0

but this again follows from an application of the dominated convergence theorem, the z-convergence of z-1lim, D, A, = D, s and the
bound in (6). In total, the claim (30) thus follows from (39)-(41).

Step Three. We finish the proof by showing the claim in (31). First note that by Assumption 3.1(i) and the bound in (6), the
process

t
t / Lh o x(s))ds (42)
) h

is finite P-a.s. and the process E" in (26) is therefore well-defined with E [Eh (0)] = 1. Furthermore, the mapping in (42) is continuous
and of finite variation and thus (see e.g. Palmowski and Rolski [9], Lemma 3.1)

t
[h(t, X(1)), exp <— / Lh(s,X(s))ds)] =0. (43)

0 h t

By Lemma 2.11, the process A(t, X(¢)) is a semimartingale and with the integration by parts formula for semimartingales it follows

that
oy = —! _ [tk
dE"(t) = O.x [h(t,X(t))d <exp< /0 7 (s, X(s)) ds))

0)

'

+exp <—/ LTh(s,X(s)) ds) dh(t,X(t))]
0

I S SR Sy Ay v
= 70 %0 [ exp( /0 A (s, X(s)) ds) Lh(t, X(¢))dt (44)

t
+exp <— / LTh(s, X(s)) ds) dh(z, X(t))]
0

__ 1 ’M R
= h0,xg) P (— /0 5 X (s))ds) dDh(s),

where D" (1) = h(t, X (1))~ J; Lh(s, X(s))ds is the Dynkin martingale of (h, Lh). From step two it follows that dD" () = (/OD,h(t, X (1)),
dW (1)) and plugging this into (44) gives

'
dE"1) = ﬁ exp <—/0 LTh(S,X(s)) ds) (VOD, h(t, X)), dW (1))
, X0

(45)
= E"(1)(+/OD, log h(1, X (1)), dW (1)).
In particular, the process E”(r) is the stochastic exponential E"(f) = exp (M Aty — %[M ”],) of the Itd process
1
Mo = / (\/EDX log h(s, X(5)),dW (s)). O (46)
0

We are now ready to give the remainder of the proof of Theorem 3.2, which is essentially just an application of Girsanov’s
theorem.

Proof of Theorem 3.2. Let E” be the process as defined in (26). By Assumption 3.1 (iii), E” is a P-martingale and thus, following
Lemma 2.1, defines a measure P on F such that dP? = E"(T)dP; on Fy for any T > 0. On the other hand, Lemma 3.3 shows that

10
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E" is the stochastic exponential of the Ité process

Mh() = /0 (V/OD, log (s, X(5)), AW (5)). (47)

It therefore follows from Girsanov’s theorem that
t
Whity=w() - / \/OD, log h(s, X(s))ds, t€[0,T], (48)
0

is a cylindrical Wiener process with respect to the measure P". In particular, under P*, the process X given in (5) is a mild solution
to the SPDE

dX(1) = [AX(1) + F(t, X(1) + OD, log h(t, X(0))] dt + V/OdW (1), 1€[0.T). O
3.1. The change of measure on a finite time interval

In certain applications we work with A-functions that are only defined on the half open interval [0,T) for some T > 0. We then
replace Assumption 3.1 with the following.
Assumption 3.4. The function & : [0,T) x H — R satisfies for any .S < T

@i h e C,([0,S1x H) such that Lh(t, x) exists for any [0, S]x H and hlLhe C, ([0, S1x H).
(ii) h is Fréchet differentiable in x such that D, .4 € C,,([0, S1x H; H).
(iii) A is such that (E"(t)),elo‘ s] is a P-martingale.

Under Assumption 3.4 (iii), (E" (")sejo.1) is @ non-negative martingale with E[E(0)] = 1. Following Lemma 2.3, it thus defines a
measure P* on Fr such that

h

& e 0,1 (49)
P ®, t€]0,7).

We get the following version of Theorem 3.2.
Theorem 3.5. Let h satisfy Assumption 3.4 and let P" be the measure defined on Fr by (49). Then for any S < T, the process
t
Whiny=w) - / \/OD, log h(s, X(s))ds, t € [0, S], (50)
0

is a cylindrical Wiener process with respect to P". In particular, X under P" is a mild solution to the SPDE

dX(1) = [AX(1) + F(1, X(1) + OD, log h(t, X(1))] dt + V/OdW" (1), 1 €[0.T). (51)

Proof. Let S < T be arbitrary but fixed. Let & be an extension of 4 onto R, x H defined via

- h(t, x), 1<,
h(t,x) =
h(S.x), t>S.

Then h satisfies Assumption 3.1. Following the proof of Lemma 3.3, we get that
1
EMr) = exp (M"(z) - E[Mh]’) , t€[0,S],

where M"(1) = /Ot(\/EDX log h(s, X(s)), dW (s)). The claim then follows from Assumption 3.4 (iii) and an application of Girsanov’s
theorem. [

Typically, the martingale property of E” in Assumption 3.4 (iii) is the most difficult of the three to verify. The following lemma
summarizes conditions under which it is satisfied.

Lemma 3.6. Either of the following conditions are sufficient for (E"(1)),co.s) to be a martingale:

1. In addition to Assumption 3.4(i), h~'Lh € C,([0, S1x H) is bounded.
2. In addition to Assumption 3.4(i) and (ii), it holds that

s
E [exp (%/ 1/OD, log A(t, X(z))||2dz>] < oo.
0
3. In addition to Assumption 3.4(i) and (ii), the mapping (t,x) — \/EDX log A(t, x) is Lipschitz in x, uniformly in ¢ € [0, S].
Proof. The first condition has been shown in Palmowski and Rolski [9], Proposition 3.2. The second condition is the Novikov
condition, see for example Da Prato and Zabczyk [23], Proposition 10.17. A proof for the last condition can be found in Appendix

B. O

11



T. Pieper-Sethmacher et al. Stochastic Processes and their Applications 185 (2025) 104630

4. Applications
4.1. Conditioned SPDEs

In this subsection we introduce a class of A-functions for which the change of measure P” corresponds to conditioning the process
(X(®))eqo,r) on X(T). Applications of this type of conditioning include for example the infinite-dimensional diffusion bridge.

For the construction of the A-functions in this section, we rely on the transition density of X with respect to some suitable
reference measure. Since the state space of X is not Euclidean, the typical choice of the Lebesgue measure is not available to us.
However, one can construct a suitable Gaussian reference measure on (H, B(H)) as follows.

In addition to Assumption 2.4, let the following hold.

Assumption 4.1 (Strong Feller Assumption). The semigroup (S,),»o and covariance operators (Q,),», defined in (4) are such that
im(S,) c im(Q)/?) for all 1 > 0.

Under Assumption 4.1, the Ornstein-Uhlenbeck process Z is strongly Feller and absolutely continuous with respect to its invariant
measure v ~ N'(0, Q) with covariance operator O, as defined in (10).
Furthermore, it follows from the Girsanov theorem that L(X(t,s,x)) ~ L(Z(,s,x)) for all + > s. In particular, we have that
L(X(t,s,x)) ~ v and we define by p(s, x;7, y) the transition density
dIL(X (1, s, x))
dv
of X with respect to v. From the Markov property of X it follows that p(s, x; ¢, y) satisfies the Chapman—Kolmogorov equation

p(s,x;t,y) = (y), v-ae.yeH, (52)
p(s,x;1,y) = / p(s,x;r, z)p(r, z; 1, y) v(dz) (53)
H

for all s <r <t and for v-a.e. every y € H. Let us now define the function 4 : [0,T) X H — R, via
h(t, x) = / p@t,x; T, y) u(dy), (54)
H

for some measure y on (H, B(H)) such that [, 1y P0,x0; T, y) u(dy) < oo. The h-function constructed in (54) satisfies the following.

Lemma 4.2. The function h is space-time harmonic, i.e. for any (s,x) € [0,T) x H it holds that
(T h)(s,x) = h(s,x), t<T—s.

In particular, Lh =0 and h(t, X (1)) is a [P-martingale.

Proof. Let (s,x) € [0,T) x H be fixed. Then for any r < T — s we have
(T h)(s,x) =E[h({t+ 5, X+ s5,s5,x))]

= / h(t + s, 2)p(s, x;t + s, z) v(dz)
H

= / / p(t+5,z;T,y)p(s, x;t + 5, z) v(dz)u(dy)
HJH

=/ p(s,x; T, y) u(dy) = h(s, x),
H

where we use the definition of 4 in the third and the Chapman-Kolmogorov equation the fourth line. By definition of L it follows
that Lh = 0. Furthermore, using the Markov property of (¢, X(¢)) we have for any s <t < T that

E[a@®, X @) | Fi] = (T,_sh)(s, X(5)) = h(s, X(s)). O
From Lemma 4.2 it follows that & satisfies Assumption 3.4(i) and (iii). In particular, A(z, X (¢))/h(0, x,) is a non-negative martingale
with mean one and thus defines a unique measure P" on F;. via

AP h(, X(1)
® "o <7 o2

On the other hand, Assumption 3.4 (ii) is hard to verify in general, as the Fréchet differentiability of » depends on p(s, x;t,y) as
well as the choice of . We thus keep it as an assumption.

Assumption 4.3. The function 4 defined in (54) is Fréchet differentiable in x such that D, € C,,([0,S]1x H; H) for any S < T.

The following result shows how the measure P” changes the law of X.

12
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Proposition 4.4. Let P" be the measure defined by (55). It then holds for any bounded and measurable function g and 0 < t; < --- <t, <T
that

EMg(X (1)), ... X(t1,)] = / E[g(X (1)), ..., X)) | X(T) = y]&(dy), (56)
H

where ¢ is the measure defined on (H, B(H)) via

p0,xo; T, y)u(dy)
Ji PO, x0: T, y) u(dy)

Additionally, if Assumption 4.3 is satisfied, X under P" satisfies the SPDE

édy) = (57)

dX (1) = [AX(1) + F(1, X(1) + OD, log h(t, X (1))] dt + V/OdW" (1), 1 €[0.T),

where W" is the P"-cylindrical Wiener process as defined in (50).
Proof. To show (56) it suffices to show that

E"[g(X(1)] = / E[g(X(®) | X(T) = yl &(dy)
H

for any < T and continuous and bounded g : H — R. The claim then follows by a standard cylindrical argument, see e.g. Ethier
and Kurtz [24], Proposition 4.1.6. Indeed it holds that

h. X(®) ]

h —
Ef[g(X(1)] = E [g<X D%0.%0)

h(t,
- / ) h(f) "))p(o,xo;r,x) v(dx)

/ 2 fHP(t x;T,y) u(dy)
L PO.x0: T ) u(dy)

=/ (/ g(x)p(O,xo,t,X)p(t,x,T,y) V(dx)> p©0,x0; T, y) A(dy)
o \Ju P0,x0: T, y) S PO, x; T, y) u(dy)

p(0, x5, x) v(dx)

= / E[g(X(®) | X(T) =yl &(dy)
H

with &(dy) = % Here we used the definition of 4 in the third, Fubini’s theorem in the fourth and Bayes’ theorem in
0
the last step. This shows the first claim of the proposition. The second is a direct consequence of Theorem 3.5 under Assumption

4.3. O

The formula
B [g(X (), ..., X(t,)] = / Elg(X (), ..., X(1,)) | X(T) = yl&(dy)
H

provides a disintegration of the conditioned process: to draw from it one first generates an endpoint X (7)) = y from &(dy), followed
by drawing the path conditioned on this value of y, see Example 4.5. Different choices of the measure y in (54) correspond to
different kinds of conditioning. We illustrate this in the following examples.

Example 4.5 (The Infinite-Dimensional Diffusion Bridge). Let y € H be such that p(7,x; T, y) is well-defined.” Set u = 8, as the Dirac
measure

1, ifyeA
5,(A) =

0, else.
It follows that & = s, and thus the formula (56) reduces to
E"[g(X ), ..., X)) = ElgX W), ..., X1,) | X(T) = yl.

In other words, X under P* is the process (X (D)eo.y conditioned on hitting the endpoint X (T') = y. We refer to this process as the
infinite-dimensional diffusion bridge. If the transition density p(z,x;T,y) satisfies Assumption 4.3, the infinite-dimensional diffusion
bridge is characterized by the bridge equation

dX*(1) = [AX* (1) + F(t, X* (1)) + OD, log p(t, X *(1); T, y)| dt + /OdW (1). (58)

This equation corresponds to the well known diffusion bridge equation for the case of a finite-dimensional state space.

2 This holds for v-a.e. y € H.

13
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Example 4.6 (Conditioning on a Noisy Observation). Suppose we do not observe the endpoint X(T') = y directly, but instead we
observe a sample v from a distribution g(v | y)v(dv) where ¢(- | y) is some probability density function with respect to v. This
corresponds to observing X(T') under noise ¢. Furthermore, assume ¢ is such that

u(dy) = q(v | y)v(dy)

is a finite measure. It then follows that
p(0,x0; T, y)q( | y)v(dy)
J PO, x: T, »)a(w | y) v(dy)”
This has a nice Bayesian interpretation where the endpoint y gets assigned prior density z(y) = p(0, x,; T, y) and the observation is
given by v. The likelihood for this observation is #(y | v) = g(v | y) and hence
z(NZ(y | v)v(dy) )
[ =We(y | v)v(dy)
This shows that &(dy) gives the posterior measure of y, conditional upon observing v. Therefore, using this h-transform, the
conditioned process is constructed by first sampling the endpoint y conditional on the observation, followed by sampling the bridge

sdy) =

édy) =

to y.

Example 4.7 (The Forced/tilted Process). Let q be some arbitrary density function with respect to v such that

_ q(y)
u(dy) = 05Ty v(dy)

defines a finite measure on (H, B(H)). By straightforward substitution we get that

p(t,x;T,y)
htx) = | LoB ¥ d
(t.x) /H p(O’XO;T’y)q(y) v(dy)

and &(dy) = q(»)v(dy). Hence this corresponds to forcing/tilting X (T) to have the distribution g(y)v(dy).

4.2. Guided processes

In Example 4.5, setting h(t, x) = p(t, x; T, y), we have derived the infinite-dimensional diffusion bridge equation
dX*(1) = [AX* (1) + F(t, X* (1)) + OD, log p(t, X*(1): T, y)| dt + \/QdW (1), 1 € [0,T),

that characterizes the law of the conditioned process X(¢) | X(T) = y for v-a.e. y € H. In many practical applications, one seeks to
draw samples from X*. In general, however, the transition density p(z, x; T, y) is not tractable, rendering a direct simulation of X*
infeasible.

This motivates the following construction. Let ji(¢, x; T, y) be a tractable density of the mild solution X of another auxiliary SPDE.
Then, setting A(f,x) = j(t, x; T, y), one can define a change of measure P such that

(i) X under PR equals in law the mild solution X° to the SPDE
dX°(1) = [AX°(0) + F(t, X°(1)) + OD, log h(t, X°(1))] d + V/OdW (1), 1 € [0, T).
(i) P" and P - and therefore, the laws of X* and X° on C([0,T]; H) - are absolutely continuous with some likelihood ratio @.

Samples of the bridge process X* can then be obtained by drawing proposal samples from the law of X° and accepting or rejecting
the proposals based on the likelihood ratio @. We now showcase the idea of this construction in more detail.
For this, let 5 denote the transition density of the OU process Z with respect to v, i.e.

dL(Z(,
P(s,x;t,y) = %(y), v-a.e. y€ H,s <t.
%

Since Z is a Gaussian process and v a Gaussian measure on (H, B(H)), the densities j(s, x; ¢, y) can be obtained by the Cameron-Martin
formula. We shall place an additional assumption on the covariance operators of Z.

Assumption 4.8. The covariance operators (Q,),», as defined in (4) commute.

The following proposition shows that j defines a function h that satisfies Assumption 3.4 and that the SPDE induced by the
changed measure P" remains tractable.

Proposition 4.9. For v-a.e. y € H, the function h(t,x) = jp(t,x; T, y) satisfies Assumption 3.4. Moreover,
_1
D, logh(t,x) = I}_, Q2 [y — Sy_x], (59)
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_1 ~
where I'y_, = QTE St— is a bounded operator on H by Assumption 4.1. In particular, there exists a unique change of measure P" such

that X under P" is a mild solution to the SPDE

_L ~
dX°(n) = [AX°(0) + F(t, X°(0) + O}_,0,2 [y — Sr_ X°(0]| dr + \/Qdw ™ (z). (60)

Proof. Let S < T be arbitrary but fixed. We start by showing that Assumption 3.4 (ii) is satisfied, i.e. that h(t,x) is Fréchet
differentiable in x on [0, S]1x H with derivative D, A(f, x) of at most polynomial growth in x. For this, write

L _d(Z(T,t,x)) . dIL(Z(T,1,0)) i
pt,x;T,y) = ALZT.1.0) ) o (y), v-ae.yeH.

Since Z is a Gaussian process, the Cameron-Martin formula gives that

dL(Z(T,1,x))
dL(Z(T,1,0))

1 1 1
—_ —_— 1 —_—
(») =exp <(QTE,y, 0,2, Sr_x) - 3 IIQTE,ST_,XI|2>

1
-1 1
=exp ((F;_,QT:y,)Q - §||I"T_,x||2> , v-ae. y€H,

1
where the mapping 7 — I’ ;_,QT: y is continuous for v-a.e. y € H, see Appendix C for details. It follows that, for v-a.e. y € H fixed,

the function A(t, x) = j(t, x; T, ) is well-defined and bounded on [0, S]x H. Moreover, it is Fréchet differentiable in x with derivative
-1
D, A, x) = h(t,x)[;}_, (QTfty - FT_,x> .

It holds that (S,), and (Q,), are strongly continuous, from which it follows that 1 — I';_,x is continuous for any fixed x € H. In
1

particular, by the uniform boundedness principle and the continuity of ¢ — FT*—xQ;E/ y, we have that

_1
sup (urr_,n + ||r;f,,QTE,y||) < oo,
t€[0,S]

In total we get that D& € C,([0, S1x H; H) since

1
D h(t, x . 1 QR 2l I T x|l
|| x ( )” < sup |h(t,x)| T—t=T—t + T—t 1 < .
relo.sixen L+ Ix|l 1€[0,51.xeH 1+ [x]| L+ [l

We proceed to show that  satisfies Assumption 3.4 (i). By the Fréchet differentiability of 7, it follows from Manca [12], Theorem
4.1, that

(LA)(t,x) = Lh(t,x) + ( F(t,x),D,h(t, %)),

where L is the infinitesimal generator of the Ornstein-Uhlenbeck z-semigroup. By the same arguments as in Lemma 4.2, one shows
that & is harmonic with respect to L, i.e. LA(t,x) = 0 for any t < T. With the Lipschitz continuity of F, it thus follows that
(Lh)(t,x) € C,,([0,S] x H) for any m > 2 with

(LA)(t,x) = (F(t,%), DA, x)).
Likewise, we have that A~! Lk € C,,([0, S]x H) for any m > 2 since

(A 'Lh) @, x) = (F(t,x),D, log h(t, x))
= <F(t, x), Iy _, (Q;—E,y - FT—1x> >

Therefore, 7 satisfies Assumption 3.4(i) and E” is a well-defined continuous P-local martingale given by

h h(t, X (1) ! . -3
Eh(t) = T P <— /0 <F(s, X(s), Ty, <QT;S y— rHX(s)> ) ds> . (61)

It remains to show that E” is a true P-martingale. However, this follows directly from the uniform Lipschitz continuity of
(t,x) » \/OD, log h(, x) and Lemma 3.6. []

By construction we immediately get the following.

Corollary 4.10. The measures P* and P* are absolutely continuous on F,,t < T, with likelihood ratio

dp; h(t, X (1) R0, x) ' . (o2
@(X) = m 70, xg) exp </0 <F(s, X)), I (QT_Sy — FT,SX(S)> > ds) .

Proof. This follows from plugging in the likelihood functions d]P’f’ = E"(t)dP, and d]P’,;’ = E;‘(t)d]P’, as given in (61) into d]P’f’ /d]P’f’ =
dP!/dP, dP,/dPt. O
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Remark 4.11. Corollary 4.10 shows the absolute continuity of the measures P* and P* on any F,,t < T.In other words, the measures
are equivalent as long as we ‘stay away from the conditioning time 7”. However, in order to draw samples from the bridge process
X*, we require absolute continuity of P" and P on Fr, i.e. on the complete interval [0, T].

To demonstrate this, note that P/ ~ P, for any ¢ < T, but under P the event { X(T) = y} has measure zero, implying that samples
of X under P will almost surely not hit the endpoint X(T') = y.

In contrast to this, the additional drift term OD, log j(t, x; T, y) forces the process X° to hit the conditioning point X°(T) = y,
resulting in absolute continuity of the laws of process X* and X° on the complete interval. We postpone the proof of this result,
along with numerical illustrations, to an upcoming article, as it is beyond the scope of this paper.
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Appendix
The complete proofs of the results in the appendices can be found in Pieper-Sethmacher et al. [22].
Appendix A

We give more details on the approximation properties of the exponential test functions £,(R, X H) with respect to z-convergence
in C,,(R, x H). For this, it does not suffice to consider single-indexed sequences. Hence, the results stated in this section rely on
using k-indexed sequences, i.e. sequences (@,, ., Ju,...n, that depend on k indices for some k € N.

A k-indexed sequence (@, )u,....n, i C,(R, X H) is said to be z-convergent to some ¢ in C,,(R, X H) if for any i € {2,..., k}
there exists an (i — 1)-indexed sequence (@, in C,,(R, x H) such that

4.,n,-,1)n14,..4,n,-,1
(Dnl,u.,n,-,l = ”-]ern (pnl,“.,n,
and ¢ = z-lim,, ¢, . We then write z-lim, . @, ., =@

Lemma A.1. Let ¢ € Cy(R, x H) such that D¢ € Cy(R, X H; H). Then there exists a three-indexed sequence (@, u, u)n,nymy
E4(R, x H) such that

”-nll,}'lrzr,ln3 Pnynyny = P (A1)
ﬂ_nll}g}n:‘ Dx(p"IV"ZvV‘S =D.o.
Proof. The proof goes as in Manca [11], Proposition 2.7, where a similar result was shown in Cy(H). [
Lemma A.2. Let ¢ € C,,(R, x H) be such that D¢ € C,,(R, x H; H). Then there exists a four-indexed sequence (@, , nyn,)ny.nymsny C
E4(R, X H) such that
- nl,nlzl’rfrllsm Puynynyng = P (A.2)
”-nl,'};%,w Dx(pnl,nz,n3¢n4 = Dx(p'

Proof. Let ¢ € C,(R, x H) be such that D¢ € C,,(R, X H; H). For any n; € N, define

ny(t, x)

@, (1, %) = —————.
" ny+ [lx]2m

Then lim,,] @, (1, %) = @1, x) pointwise and Sup,,, ||(p,,] I, < ll@ll,,- Furthermore, one can show that lim”1 D, ¢, (t,x) = @(t,x) pointwise
with sup, [ID;@,, I, < (l@ll, + IDselly,,) and in particular it holds that

n-limg, = @,7z-limD,¢, =D,q.
ny 1 ny 1
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Noting that ¢, € Cy(R, x H) with bounded derivative D,p, € Cy(R, X H;H), the claim follows from Lemma A.1 by

approximating ¢,, with a suitable sequence (@, u, s n,)nyyin3m, C E4R4 X H) such that

z-  lim =
11,130y Cimynsng = Py

- lim D
ny,ny,n3,ny

xPnynynzng = wanl' O

Lemma A.3 ( Lemma 2.12 Above). For any m > 1, the space £,(R, x H) is a subset of dom,,(L) with Ly = Ly¢, where

(Ly@)(t, x) = 0,0(1, X) + {x, A*D,.@(t, x)) + (F(t, x), D, p(t, x)) + % tr (QD2g(t,x)) (A.3)

for any ¢ € 4R, x H). Moreover, £4,(R, X H) is a n-core for (L,dom,, (L)), i.e. for any ¢ € dom,(L) there exists a sequence
(@), C E4R, X H) such that

#-limg, = ¢ and z-lim Lyp, = Le. (A.4)
n n
Furthermore, if ¢ € (L,dom,,(L)) is such that D, ¢ € C,,(R, X H; H), the approximating sequence (¢,,), in (A.4) can be chosen such that

#-1imD, ¢, =D, ¢. (A.5)
n

Proof. Using Lemma A.2, the proof goes just as in Manca [12], Theorem 1.3 after noting that Y (7, (s, x)) is the mild solution to the
noise-degenerate SPDE

{dY(t) = [AY() + F(Y (1) dt + VOAW (1), 120,

(A.6)
Y(0) =(s,x).

Here A(s,x) = (0, Ax) and F(s,x) = (1, F(s,x)) and O = (0, Q) are defined on the product space R x H and it is straightforward to
show that A, F and 0 satisfy Assumption 2.4. []

Appendix B

Lemma B.1. Let G(s, x) be a Lipschitz continuous function in x, uniformly on [0,T], i.e. there exists some constant C > 0 such that
[1G(s,x) = G(s, M| < Cllx =yl

forall s €[0,T] and x,y € H. Let X be the mild solution to (1). Then the process E(t) defined by
E(1) = exp (/07<G(S,X(S)),dW(S)) - %/Ot ||G(SsX(S))||2dS> , t€[0,T],

is a P-martingale.

Proof. This follows from a standard stopping time argument. Defining the stopping times
7,(X) = inf {t e[0,T] : /0’ 1G(s, X ()| ds > n} AT,

it follows that P (lim, 7, =T) = 1. Applying Novikov’s condition on the processes E,(1) = E(t A 7,) as well as the monotone
convergence theorem in » then gives that E[E(T)]=1. [

Appendix C

Lemma C.1. Under Assumption 4.1, for any S < T, the operators I'y_, are uniformly Hilbert-Schmidt on [0, S, i.e.

sup [l ll s < 0.
1€[0,5]

-1 1
Proof. From the Strong Feller Assumption 4.1 it follows that I, = Q, 2 S, is a bounded linear operator and thus S, = Q> T, is a
Hilbert-Schmidt operator for any r > 0. Moreover, it follows from Assumption 4.1 that

1 1
im(Q2) =im(Q?2), r>0,

11 _1
see Proposition 2 in Chojnowska-Michalik and Goldys [25]. From this one concludes that O, > Q2 and Q.>.S, are bounded linear
operators for all r > 0. Now, fix some arbitrary .S < T. Then for any ¢ € [0, S] it holds that

_1 11 1 L1 _L
Ir_ = 02,81 =(0;2,080)(Q0” S7—) = (0;2,05)( Q0 St15-)S7_5-
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1
Noting that (Q Q ) and (O ST +s_) are strongly continuous in ¢, it follows from the uniform boundedness principle that

1 1

S[lép M7 llms < SUP II(QT 00 2Sr+s DSr—sllps <oo. O
te|

Lemma C.2. For any S < T, the random process
QT V= Zq] Av.e)f_e;, t€[0,S5], (c.1)

is well-defined as a limit in L>(H,v; C([0, S1; H)). Moreover, there exists a measurable space Hg with v(Hg) = 1 such that the limit exists
pointwise for v-a.e. y € Hy.

Proof. For any n € N define the process
_1
Y, = z a7 (ve)) Ty

where (¢;r_.¢;); is the eigenbasis of O;_,. From the strong continuity of (Q,), and (I}), it follows that Y, € C((0, S]; H) for any
n € N. Furthermore, it holds that

1
/ 1,12 vidy) = / up 1Y (e eyl vidy)
H H

refo.s1 o
2 * 2

= sip g /|<y,e4>| v(dy)) 1Tl

teOSZITt<H / =

sup Zqﬂ _{Owejre)) IIT7_ e, 11

1€l0,51 1=

= sup Z<QT rQwe/’QT thoeJ>< 7€ Tr .

10,51 171

1 1
2 N2 * 2
sup (llQTf,Qozoll ||rT_,||HS> <o

tel0.

IN

_1
from which we conclude the convergence of Y, — F;_YQT: y in L%*(H,v;C([0, S]; H)). Now, the second claim follows by an
application of the It6-Nisio theorem. []

Corollary C.3. There exists a measurable space Hy, C H with v(H,) = 1 such that

1

[0.T) = H, t = I;_0,%y (€.2)

is well-defined and continuous for any y € H,,.
Proof. Set Hy =), Hr_,;, where Hr_,,, is the measurable space given by Lemma C.2. []
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