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Abstract

The connection of offshore wind turbines to the European grid has been growing in the recent
years. Many European countries are adopting this renewable energy and are increasing the
number of wind power plant additions into their electrical transmission networks. Due to the
phase out of conventional power plants (e.g. fossil fuel fired), new challenges are arising in
terms of inertia, frequency stability, voltage stability and power quality, being the latter the
main focus in the present work. It is important to study the harmonic frequencies that the
wind parks are going to introduce in the electrical grid and how the grid is going to respond
to this sustainable energy addition. The classical methods to identify the harmonics frequen-
cies and to assess the stability in an electrical power system are performed by considering
single-input single-output (SISO) systems. Nevertheless, when modelling a power system as
a SISO system, information about the dynamics of the elements in the system is neglected.
To overcome this disadvantage, a representation with more than one input and one output, a
multiple-input multiple-output (MIMO) system, can be considered.

The present works concerns with the development of a method for studying the harmonic
frequencies of any electrical power system. Since the main elements in the grid that con-
tribute to the creation of harmonic frequencies are the inductances and the capacitances of
the transmission lines and underground cables, the present work will focus on these passive
elements and it will represent the transmission lines as PI sections and the underground ca-
bles as “fitted PI” sections. These representations are SISO systems, because the have only a
voltage signal, measured in the sending end of a transmission branch, as input; and a voltage
signal, measured in the receiving end of a transmission branch, as output. Therefore, it is nec-
essary to find an approach to build a MIMO system. This is done via a concatenation of SISO
linear-time-invariant (LTI) systems to create a MIMO system. Afterwards, the MIMO system
is studied with a powerful mathematical tool called the singular value decomposition that not
only will give information about the harmonic frequencies in the system, but it will show it is
also possible to study which input of the system is affecting the system the most and which
output will be the most affected. To finish the research, a sensitivity analysis is performed with
respect to the variation of the capacitances and inductances in the transmission lines and the
underground cables. This analysis will evaluate possible variations in the harmonic response
of the MIMO system.

The proposed method to investigate the harmonic frequencies of an electrical power sys-
tem can be applied to any power system. For sake of illustration of application, two different
power system models are addressed. First, to understand each step in the method a small
size test system is studied. This study shows how to apply the method and illustrates how to
interpret the evaluation outcomes. Subsequently, a synthetic model of the Randstad regional
transmission network is used to test the method in a relatively larger system model. This case
study is of great importance due to the new wind parks that are going to be connected to this
region in the coming years. Therefore, the harmonic frequencies observed in the synthetic
model of the Randstad region will be obtained and an assessment of which transmission line
or underground cable is the most affected by the harmonics in the system will be performed.
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1
Introduction

In the year 2018, Europe put in service 409 new offshore wind turbines to the grid [4]. There-
fore, the new power connected to the grid was 2,649 MW. The main countries contributing
to this offshore wind turbines connection are the United Kingdom (1,312 MW), Germany (969
MW), Belgium (309 MW), Denmark (61 MW), Spain (5 MW) and France (2 MW). The main
location where this wind farms were connected was in the North Sea with 1,651 MW, repre-
senting the 62% of the installations. The Netherlands did not have any offshore wind turbine
connections in this year. However, in the future years, large size wind power plants with
nearly 3.5 GW of production are going to be connected to the Dutch electrical network [5].
Most of this power generation is going to be distributed through the Randstad electrical re-
gion. The Randstad is the territory consisting primarily of the four largest Dutch cities, such
as Amsterdam, Rotterdam, The Hague and Utrecht [6].

All these offshore wind power plants are being built in the North Sea. Two 700 MW wind
power plants are currently being commissioned and will be connected this year (2019) to the
electrical grid in the Borssele substation. Another two wind farms have been planned for im-
plementation in the coming years. The first one, the Hollandse Kust Zuid, will be conformed by
two 700 MW wind farms and it is planned that in the years 2021 to 2022 will be connected to
the Maasvlakte substation. The second one, the Hollandse Kust Noord, will be conformed by a
700 MWwind farm. In the year 2023, it is planned to be connected to the Beverwijk substation.

Due to the particular operating principles of the power electronic devices and variable na-
ture of wind power, the harmonic interactions among wind generators within the same wind
power plant, and between different wind power plants and the electrical transmission network,
pose new challenges to the network stability and power quality [7]. Understanding the mod-
ified dynamic behaviour of the Randstad region is essential to define appropriate mitigation
measures to ensure optimal operation of the wind power plants, as well as optimal compliance
of the network requirements concerning stability and power quality harmonic distortion.

It is of high importance to know the resonance (harmonic) frequencies of the Randstad
region in order to implement appropriate mitigation methods. The approach that was taken
in the present work in order to discover the harmonic frequencies, was the passive one. This
means that only capacitances, inductances and resistances are going to be taken into account
in the modelling of the system. This approach is taken to show the basics of obtaining the har-
monic frequencies. However, a much complex approach, e.g. a frequency dependent model,
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2 1. Introduction

can be explored.

In order to explain the methodology to find the harmonic frequencies of the Randstad
region, a simpler small size test system is going to be studied and developed through each
chapter of the present work. Once this system has been studied, a synthetic Randstad region
model will be analysed and its harmonic frequencies will be found.

The present work will focus on the passive elements of the network. Therefore, the trans-
mission lines are going to be modelled as state-space representations of PI sections and the
underground cables will be modelled as state-space representations of “fitted PI” sections.
The current methods available in the literature related to find the harmonic frequencies of
an electrical system are performed to single-input single-output systems. However, by na-
ture the electrical systems are multiple-input multiple-output systems. Therefore, the first
objective is to find a methodology to represent the small size test system as a multiple-input
multiple-output (MIMO) system. Then, the transfer function of the system is found. The latter
is necessary to use a powerful mathematical tool to discover the harmonic frequencies. This
tool is called Singular Value Decomposition (SVD). The latter, uses the dynamics of the system
in the frequency domain and takes into account how the input(s) of the system affects the
direction(s) and the gain(s) of the output(s) of the system [8]. The SVD can also be used to
analyse the system at a certain harmonic frequency and show which input(s) of the system
will have more influence in the system dynamics and which output(s) will be the most affected
by that input(s).

Once the small size test system has been explained, the 380 kV transmission lines and
underground cables that are part of the synthetic model of the Randstad region are going to
be modelled as a MIMO system and the transfer function of the region will be found. Then,
the latter is going to be analysed to discover the harmonic frequencies of the system and a
study of their inputs and the outputs is going to be performed. Finally, a sensitivity analysis is
going to be implemented to observe how the harmonics of the system change as a function
of the length of the components in the system.

The output of the present work will provide a methodology to model any electrical network
via its passive electrical elements, and to perform a harmonic analysis. The latter, will help
the TSOs to take action in terms of which harmonics must not be injected to the system due
to the voltage magnitude increment that they will produce in a transmission branch.

1.1. State of the art and scientific gap
In [9] an EMT model of the Randstad region was developed. The values for the transmission
lines, generators, wind power plants, loads, DC cables, two-phase transformers, three-phase
transformers, capacitor and inductor banks were taken from the PSS/E software. In this soft-
ware a synthetic European electrical network is modelled. Afterwards, they were converted
to their proper representations in the RTDS software. Then, the correct initialisation of the
dynamic components and the implementation of a three-phase fault were performed. In order
to build only the 380 kV transmission lines existing in the Randstad region, the previous work
was used as a reference. Therefore, the name of the buses, the configuration of the 380
kV network and the connection of the wind power plants were known beforehand. Since the
objective of the present work is to create a methodology to discover the harmonic frequencies
of the network, only the transmission lines and underground cables were taken into account
in the model.
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There are also useful methods to analyse the stability of power systems that are based
on power electronics such as the impedance and eigenvalue-based methods [10]. In the
impedance-based method the system is analysed through the frequency domain Nyquist cri-
terion and the system is separated into the impedance of the source and the load. The source
subsystem is modelled by its Thevenin equivalent circuit and the load subsystem is mod-
elled by its input impedance. Then, the stability of the system is performed based on the
source-load impedance ratio [11]. Nevertheless, the vulnerability of this method is the limited
observability of certain states due to its dependence on the description of the source and
load subsystems. Therefore, it is necessary to investigate the stability of the system in all the
source and load subsystems that the system has, due to the fact that this method only assess
single-input single-output systems. One way to overcome this vulnerability is to implement
the method in the critical locations of the system. Those locations can be selected where a
passive component or a controller gain could affect the stability of the system. By stability
meaning that the the system must produce a bounded output for a given bounded input [12].

The eigenvalue-based method is a global stability analysis method that determines the
stability of the system regardless of the location of the source of instability. Such as in [13],
where it is used to identify the harmonic-frequency oscillation modes of a distributed genera-
tion inverter. However, this method requires a detailed modelling of the system under study
in a state-space point of view. Moreover, the eigenvalues are only suitable for the study of
single-input single-output systems. In a multiple-input multiple-output system they are a poor
measure for the stability of the system [14].

The harmonic resonance is certainly one of the most important consequences of harmon-
ics in the power systems. The cause of harmonic resonance is well understood in electrical
engineering. Nevertheless, the tools to analyse this phenomena are limited. One of the most
used methods to identify the resonance frequencies of a power system is the frequency scan
[15]. The harmonic resonance is caused by the energy exchange between the capacitive and
the inductive elements in the power system [16]. Due to the fact that a power system has
numerous elements of this type it is necessary to develop a method that takes into account
both types of elements as well as the system inputs, either voltages or currents injections,
and the system outputs, such as voltages.

One method to analyse multiple-input multiple-output systems is the singular value de-
composition. It has been recently used in [17] in order to size the voltage-droop gain of a
Multi-Terminal HVDC (MTDC) system considering the AC and the DC system dynamics. In the
latter work, the converters were modelled as current injectors and the DC lines by standard PI
sections. Furthermore, in [18] the authors improved the work in [17] by adding the dynamics
of the DC grid converter control loops and computing again the voltage-droop gain.

In the study performed by [19], the authors used the SVD mathematical tool to minimise
the impact of the disturbances in the AC side via the optimisation of the DC voltage droop
settings in a multiterminal VSC-HVDC.

In [20] the SVD is used to size the voltage-droop parameter of the VSCs of an MTDC sys-
tem and to asses the impact of four DC cable models on the response of the MTDC system.

The SVD has been used in many studies to asses the response of different transmission
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power systems that are MIMO systems by nature. Nevertheless, a methodology to study
the harmonics of a power system modelled as a MIMO system has not been developed. The
classical methods addressed earlier in this section only take into account one current or voltage
injection and only depict one output in the system. However, the physical power systems have
many voltages and current injections and many voltage outputs, e.g. voltage outputs. Thus,
a methodology that can address the system in a multiple-input multiple-output point of view
is necessary.

1.2. Project scope and research questions
Based on the previous sections, the main goal of the present work has been defined and
analysed in two research questions.

The objective of the present work is to develop an analytic method that can be used with
a MIMO representation of the power system. It also has to asses the way the current injec-
tions by different power electronic interfaced generators impact the harmonic performances
observed in different buses of an electrical power system.

Thus, two research questions have been formulated to address this objective,

1. How to derive a model of an electrical transmission power system to asses the harmonic
response by considering a multiple-input multiple-output point of view?

2. How to analytically determine the influence of harmonic voltage injections on the har-
monic performance observed in different buses of an electrical transmission power sys-
tem?

1.3. Research methodology
To comply with the research questions of the present work, the next steps are proposed,

Figure 1.1: Steps followed in the present work

In order to explain in a simpler way the steps of Figure 1.1 are going to be performed to a
small size test system in the next chapters. Afterwards, they will be applied to the synthetic
Randstad transmission power system.

1.4. Project contributions
According to the scientific gap addressed earlier, the project contributions are summarised as
follows,
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• Two state-space representations for depicting the dynamics of the elements in the power
system. The first one, to represent a transmission line and the second, to represent an
underground cable.

• A methodology to concatenate each state-space representation of the elements in the
power system. This methodology is necessary to represent a power system in a multiple-
input multiple-output point of view.

• The necessary steps to obtain the transfer function matrix of the previous state-space
representation of power system. This step is crucial to study the MIMO system with the
singular value decomposition.

• A singular-value-decomposition-based method that asses the analytical relationship be-
tween harmonic voltage injections and the change of the frequency content in the global
transfer function.

1.5. Thesis outline
The thesis is organised as follows, Chapter 2 presents the modelling in state-space represen-
tation of the transmission lines and underground cables that are going to be used throughout
this work. This chapter also addresses the small size test system which is going to be useful
when explaining the theory developed in each chapter.

Chapter 3 presents the steps of the methodology to concatenate linear time invariant sys-
tems represented by state-space models. At the end of this chapter can be seen how this
methodology works using the small size test system.

In Chapter 4 the theory for the singular value decomposition is addressed, followed by
a geometric explanation to have a better understating of how this mathematical tool works.
Again, the small size test system is going to be used in order to explain their benefits.

In Chapter 5 the Randstad region is studied following the theory developed in the previous
chapters. Finally, the conclusions of the present work and future research recommendations
are addressed in Chapter 6.





2
Modelling approach

In this chapter is presented how the electrical passive elements of the transmission lines
and underground cables were obtained. Then, it is explained in detail the derivation of the
differential equations involving the dynamics of both elements and further, it is obtained the
two state-space models. At the end of the chapter, the small size test system is introduced
and it is showed numerically the single state-space representation of its elements.

2.1. Transmission power system in PSS/E
The existent Dutch electrical grid, can be consulted in detail in the map available in [21]. In
this map can be observed the voltage levels of the transmission lines and substations as well
as the power stations all over the Netherlands. It has also the advantage that it indicates the
names of the cities where these components lie.

In the PSS/E software a synthetic European electrical grid has been developed. However,
it is not visible at first sight and further steps need to be implemented to discover the required
area of study. In order to achieve the latter, it is necessary to look for the Network Data
folder located under the Network Tree View in the main window of PSS/E. Then, under the
Bus folder it is necessary to locate the number of the bus. Next, right click on the selected bus
and then click on Draw. The software will locate the bus in the Single Line Diagram. When
the user draw two buses that are connected between them, the transmission line connecting
both buses will appear automatically.

Once the 380kV buses and transmission lines are drawn in the PSS/E Single Line Diagram,
the data of each transmission line can be read by making double click on the selected line.
A window called Branch Data Record will appear on the screen. This window looks similar to
Figure 2.1. Important data can be obtained from the Branch Data Record:

•The values of the resistance R, impedance X and charging B of the line.
•The names and numbers of the buses the transmission line is connected.
•The length of the line.
•The base power of the line.

It is important to point out that the Charging of the line is equal to the susceptance, which
is the imaginary part of the admittance,

7
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𝑌 = 𝐺 + 𝑗𝐵

where,
< is the admittance in Siemens [S].
* is the conductance in Siemens [S].
B is the susceptance in Siemens [S].

Figure 2.1: Branch Data Record in PSS/E

2.2. Transmission line electric values extraction
In order to obtain the values of the resistances, capacitances and inductances of each trans-
mission line of the area of study, it is important to know how PSS/E handles the data for the
transmission lines. According to [22, 23] these values can be obtained in agreement with the
following equation,

𝑍ᑓᑒᑤᑖᑚ =
𝑉Ꮄᑓᑒᑤᑖᑚ
𝑆ᑓᑒᑤᑖᑚ

(2.1)

where,

Vbase is the specified line-to-line voltage in kV.

Sbase is the rated apparent power of the line in MVA.
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For our research the voltage is going to be 380 kV for all transmission lines. The subscript
i indicates one of the transmission lines existing in the area of study.

In order to calculate the impedance of the line it is necessary to extract the values in p.u.
of the resistance, reactance and susceptance of the line. These values can be found following
the steps established in Section 2.1. Then, by using the next equation,

𝑍ᑚ =
(𝑅ᑚ + 𝑗𝑋ᑚ)

𝑙ᑚ
𝑍ᑓᑒᑤᑖᑚ [ Ω𝑘𝑚] (2.2)

It can be obtained the resistance of the line, which is going to be the real part of the
impedance, and the inductance, which is the imaginary part of the impedance.

𝑅ᑚ = 𝑅𝑒𝑎𝑙 {𝑍ᑚ} [ Ω𝑘𝑚]

𝐿ᑚ = 𝐼𝑚𝑎𝑔𝑖𝑛𝑎𝑟𝑦 {𝑍ᑚ} [ 𝐻𝑘𝑚]
(2.3)

In order to find the capacitance of the line it is necessary to take the Charge value,

𝐶ᑝᑚᑟᑖᑚ =
𝐵
𝑙ᑚ
𝑍ᑓᑒᑤᑖᑚ [ 𝐹𝑘𝑚] (2.4)

Finally, it is important to notice that PSS/E takes the parameter Charge as the whole charge
of the line. Therefore, it is necessary to divide the capacitance in 2.4 by two to obtain the
value of each capacitance.

𝐶ᑚ =
𝐶ᑝᑚᑟᑖᑚ
2 [ 𝐹𝑘𝑚] (2.5)

2.3. Transmission line and cable state-space modelling
In PSS/E the modelling approach of the elements that send and receive the power in an elec-
trical power system are represented only by transmission lines. However, as stated earlier
in this chapter, the underground cables are also going to be taken into account in the trans-
mission power system. Therefore, in this thesis two different state-space representations are
used. One to depict the dynamics of the transmission lines and another to represent the un-
derground cables.

2.3.1. Transmission line modelling
The first model is a typical PI section which is going to be used to represent a transmission
line, as can be seen in Figure 2.2.

The first step to express a transmission line in a state-space representation is to obtain
the differential equations for the voltage of the capacitors and the current of the inductor.

Using Kirchhoff law, the equation of the first loop of Figure 2.2 can be written as,
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ዅ

+

𝑉ᑚ

𝐼ᑚ
𝑟ᑚ 𝐼Ꮄ

𝑅 𝐿

𝐼Ꮃ

𝐶Ꮃ

𝐼Ꮅ

𝐶Ꮄ

ዅ

+

𝑉ᑠ

A

Figure 2.2: PI section

𝑉ᑚ = 𝑟ᑚ𝐼ᑚ + 𝑉ᐺᎳ (2.6)

At node A the sum of the currents is,

𝐼ᑚ = 𝐼Ꮃ + 𝐼Ꮄ (2.7)

It can be seen in Figure 2.2 that I1 = ic1 and I2 = iL. Therefore, 2.7 becomes,

𝐼ᑚ = 𝑖ᐺᎳ + 𝑖ᑃ (2.8)

Substituting 2.8 in 2.6 yields,

𝑉ᑚ = 𝑟ᑚ𝑖ᐺᎳ + 𝑟ᑚ𝑖ᑃ + 𝑉ᐺᎳ (2.9)

From the equation of the current of a capacitor iC = C
dV

dt
, 2.9 becomes,

𝑑𝑉ᐺᎳ
𝑑𝑡 = − 1𝐶Ꮃ

𝑖ᑃ −
1
𝑟ᑚ𝐶Ꮃ

𝑉ᐺᎳ +
1
𝑟ᑚ𝐶Ꮃ

𝑉ᑚ (2.10)

Using again Kirchhoff law, the equation of the second loop of Figure 2.2 can be written as,

𝑉ᐺᎳ − 𝑅𝑖ᑃ − 𝑉ᑃ − 𝑉ᐺᎴ = 0 (2.11)

From the equation of the voltage of an inductor VL = L
di

dt
, 2.11 becomes,

𝑑𝑖ᑃ
𝑑𝑡 = −

𝑅
𝐿 𝑖ᑃ +

1
𝐿𝑉ᐺᎳ −

1
𝐿𝑉ᐺᎴ (2.12)

The current that goes through the second capacitor is,

𝑖ᐺᎴ = 𝐶Ꮄ
𝑑𝑉ᐺᎴ
𝑑𝑡 (2.13)
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So, from Figure 2.2 it can be observed that iL = iC2
. Therefore, 2.13 becomes,

𝑑𝑉ᐺᎴ
𝑑𝑡 = 1

𝐶Ꮄ
𝑖ᑃ (2.14)

Finally, it can be observed that,

𝑉ᐺᎴ = 𝑉ᑠ (2.15)

The second step is to chose the states of the system as the elements that store energy in
the system. In this case, the current of the inductor iL, and the voltages of both capacitors
VC1

and VC2
are going to be chosen as the state variables. Thus, the state-space vector

becomes,

𝑥 =
⎡
⎢
⎢
⎢
⎣

𝑖ᑃ

𝑉ᐺᎳ

𝑉ᐺᎴ

⎤
⎥
⎥
⎥
⎦

(2.16)

And the input and the output of the PI section are going to be the voltages,

𝑢 = 𝑉ᑚ (2.17) 𝑦 = 𝑉ᑠ (2.18)

Hence equations 2.10, 2.12, 2.14 and 2.15 become,

�̇�Ꮃ = −
𝑅
𝐿 𝑥Ꮃ +

1
𝐿𝑥Ꮄ −

1
𝐿𝑥Ꮅ (2.19)

�̇�Ꮄ = −
1
𝐶Ꮃ
𝑥Ꮃ −

1
𝑟ᑚ𝐶Ꮃ

𝑥Ꮄ +
1
𝑟ᑚ𝐶Ꮃ

𝑢 (2.20)

�̇�Ꮅ =
1
𝐶Ꮄ
𝑥Ꮃ (2.21)

𝑦 = 𝑥Ꮅ (2.22)

Finally, the state-space representation for the transmission line is,

�̇� =

⎡
⎢
⎢
⎢
⎢
⎢
⎣

−𝑅ᑚ𝐿ᑡ
1
𝐿ᑡ

− 1𝐿ᑡ

− 1
𝐶Ꮃᑡ

− 1
𝑟ᑚᑡ𝐶Ꮃᑡ

0

1
𝐶Ꮄᑡ

0 0

⎤
⎥
⎥
⎥
⎥
⎥
⎦⏝⎵⎵⎵⎵⎵⎵⎵⏟⎵⎵⎵⎵⎵⎵⎵⏝

ᐸᑡ

𝑥 +
⎡
⎢
⎢
⎢
⎣

0
1

𝑟ᑚᑡ𝐶Ꮃᑡ
0

⎤
⎥
⎥
⎥
⎦⏝⎵⏟⎵⏝

ᐹᑡ

𝑢

𝑦 = [0 0 1]⏝⎵⎵⏟⎵⎵⏝
ᐺᑡ

𝑥 + [0]⏟
ᐻᑡ

𝑢

(2.23)
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Where p can be any of the transmission lines in the transmission power system.

It can be seen from 2.23 that each transmission line will have tree states and one input
and one output,

𝑥 ∈ ℝᎵ×Ꮃ, 𝑢 ∈ ℝᎳ×Ꮃ, 𝑦 ∈ ℝᎳ×Ꮃ

Thus, this is a SISO (Single-Input Single-Output) system.

The state-space matrices have the following dimensions:

𝐴ᑡ ∈ ℝᎵ×Ꮅ, 𝐵ᑡ ∈ ℝᎵ×Ꮃ, 𝐶ᑡ ∈ ℝᎳ×Ꮅ, 𝐷ᑡ ∈ ℝᎳ×Ꮃ

2.3.2. Underground cable modelling

The second model is a ”fitted PI”. This model is basically a PI section with more branches
in parallel [24], as it can be seen in Figure 2.3. The elements of the parallel branches have
been computed using a fitting algorithm to meet the frequency response of the frequency-
dependent elements of a wide-band cable [25].

ዅ

+

𝑉ᑚ

𝐼ᑚ
𝑟ᑚ 𝐼ᑒ

𝑅ᑫᎴ𝑖ᑫᎴ
𝐿ᑫᎴ

𝐼Ꮃ

𝐶Ꮃ

𝐼Ꮅ

𝐶Ꮄ

ዅ

+

𝑉ᑠ

𝑅ᑫᎳ𝑖ᑫᎳ
𝐿ᑫᎳ

𝑅ᑫᎵ𝑖ᑫᎵ
𝐿ᑫᎵ

A

B

C

Figure 2.3: Fitted PI

Using Kirchhoff law, the equation of the first loop of Figure 2.3 can be written as,

𝑉ᑚ = 𝑟ᑚ𝐼ᑚ + 𝑉ᐺᎳ (2.24)

At node A the sum of the currents is,

𝐼ᑚ = 𝐼Ꮃ + 𝐼ᑒ (2.25)
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And at node B the sum of the currents is,

𝐼ᑒ = 𝑖ᑫᎳ + 𝑖ᑫᎴ + 𝑖ᑫᎵ (2.26)

Substituting 2.26 in 2.25 yields,

𝐼ᑚ = 𝑖ᐺᎳ + 𝑖ᑫᎳ + 𝑖ᑫᎴ + 𝑖ᑫᎵ (2.27)

From the equation of the current of a capacitor iC = C
dV

dt
, 2.27 becomes,

𝐼ᑚ = 𝐶Ꮃ
𝑑𝑉ᐺᎳ
𝑑𝑡 + 𝑖ᑫᎳ + 𝑖ᑫᎴ + 𝑖ᑫᎵ (2.28)

Substituting 2.28 in 2.24 yields,

𝑑𝑉ᐺᎳ
𝑑𝑡 = 1

𝑟ᑚ𝐶Ꮃ
[𝑉ᑚ − 𝑟ᑚ𝑖ᑫᎳ − 𝑟ᑚ𝑖ᑫᎴ − 𝑟ᑚ𝑖ᑫᎵ − 𝑉ᐺᎳ] (2.29)

Using again Kirchhoff law, the equation of the second loop of Figure 2.5 can be written as,

𝑉ᐺᎳ − 𝑉ᐹᐺ − 𝑉ᐺᎴ = 0 (2.30)

Since, the three branches of the ”fitted PI” representation are in parallel it is necessary to
study the voltages at each branch separately. Therefore, from top to bottom the first voltage
equation can be written as,

𝑉ᐺᎳ − 𝐿ᑫᎳ
𝑑𝑖ᑫᎳ
𝑑𝑡 − 𝑅ᑫᎳ𝑖ᑫᎳ − 𝑉ᐺᎴ = 0 (2.31)

Solving for
diz1
dt

, equation 2.31 becomes,

𝑑𝑖ᑫᎳ
𝑑𝑡 = 1

𝐿ᑫᎳ
[𝑉ᐺᎳ − 𝑅ᑫᎳ𝑖ᑫᎳ − 𝑉ᐺᎴ] (2.32)

Subsequently, for the second and third branch the voltage equations can be written as,

𝑑𝑖ᑫᎴ
𝑑𝑡 = 1

𝐿ᑫᎴ
[𝑉ᐺᎳ − 𝑅ᑫᎴ𝑖ᑫᎴ − 𝑉ᐺᎴ] (2.33)

𝑑𝑖ᑫᎵ
𝑑𝑡 = 1

𝐿ᑫᎵ
[𝑉ᐺᎳ − 𝑅ᑫᎵ𝑖ᑫᎵ − 𝑉ᐺᎴ] (2.34)

The current that goes through the second capacitor is,

𝑖ᐺᎴ = 𝐶Ꮄ
𝑑𝑉ᐺᎴ
𝑑𝑡 (2.35)

So, from Figure 2.3 it can be observed that Ia = iC2
. Therefore, 2.35 becomes,
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𝑑𝑉ᐺᎴ
𝑑𝑡 = 1

𝐶Ꮄ
[𝑖ᑫᎳ + 𝑖ᑫᎴ + 𝑖ᑫᎵ] (2.36)

Finally, it can be observed that,

𝑉ᐺᎴ = 𝑉ᑠ (2.37)

Next, by choosing the states of the system as the elements that store energy in the system
the state-space vector becomes,

𝑥 =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

𝑖ᑫᎳ

𝑖ᑫᎴ

𝑖ᑫᎵ

𝑉ᐺᎳ

𝑉ᐺᎴ

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

(2.38)

And the input and the output of the PI section are going to be the voltages,

𝑢 = 𝑉ᑚ (2.39) 𝑦 = 𝑉ᑠ (2.40)

Hence equations 2.29, 2.32, 2.33, 2.34, 2.36 and 2.37 become,

�̇�Ꮃ = −
𝑅ᑫᎳ
𝐿ᑫᎳ

𝑥Ꮃ +
1
𝐿ᑫᎳ

𝑥Ꮆ −
1
𝐿ᑫᎳ

𝑥Ꮇ (2.41)

�̇�Ꮄ = −
𝑅ᑫᎴ
𝐿ᑫᎴ

𝑥Ꮄ +
1
𝐿ᑫᎴ

𝑥Ꮆ −
1
𝐿ᑫᎴ

𝑥Ꮇ (2.42)

�̇�Ꮅ = −
𝑅ᑫᎵ
𝐿ᑫᎵ

𝑥Ꮅ +
1
𝐿ᑫᎵ

𝑥Ꮆ −
1
𝐿ᑫᎵ

𝑥Ꮇ (2.43)

�̇�Ꮆ = −
1
𝐶Ꮃ
𝑥Ꮃ −

1
𝐶Ꮃ
𝑥Ꮄ −

1
𝐶Ꮃ
𝑥Ꮅ −

1
𝑟ᑚ𝐶Ꮃ

𝑥Ꮆ +
1
𝑟ᑚ𝐶Ꮃ

𝑢 (2.44)

�̇�Ꮇ =
1
𝐶Ꮄ
𝑥Ꮃ +

1
𝐶Ꮄ
𝑥Ꮄ +

1
𝐶Ꮄ
𝑥Ꮅ (2.45)

𝑦 = 𝑥Ꮇ (2.46)

Finally, the state-space representation for the underground cable is,



2.4. Introduction to the small size test system 15

�̇� =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

−
𝑅ᑫᎳ
𝐿ᑫᎳ

0 0 1
𝐿ᑫᎳ

− 1
𝐿ᑫᎳ

0 −
𝑅ᑫᎴ
𝐿ᑫᎴ

0 1
𝐿ᑫᎴ

− 1
𝐿ᑫᎴ

0 0 −
𝑅ᑫᎵ
𝐿ᑫᎵ

1
𝐿ᑫᎵ

− 1
𝐿ᑫᎵ

− 1𝐶Ꮃ
− 1𝐶Ꮃ

− 1𝐶Ꮃ
− 1
𝑟ᑚ𝐶Ꮃ

0

1
𝐶Ꮄ

1
𝐶Ꮄ

1
𝐶Ꮄ

0 0

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦⏝⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⏟⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⏝

ᐸᑢ

𝑥 +

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎣

0
0
0
1
𝑟ᑚ𝐶Ꮃ
0

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎦⏝⎵⏟⎵⏝

ᐹᑢ

𝑢

𝑦 = [0 0 0 0 1]⏝⎵⎵⎵⎵⏟⎵⎵⎵⎵⏝
ᐺᑢ

𝑥 + [0]⏟
ᐻᑢ

𝑢

(2.47)

Where q can be any of the underground cable in the transmission power system.

It can be seen from 2.47 that each underground cable will have five states and one input
and one output,

𝑥 ∈ ℝᎷ×Ꮃ, 𝑢 ∈ ℝᎳ×Ꮃ, 𝑦 ∈ ℝᎳ×Ꮃ

Thus, this is also a SISO (Single-Input Single-Output) system.

The state-space matrices have the following dimensions:

𝐴ᑢ ∈ ℝᎷ×Ꮇ, 𝐵ᑢ ∈ ℝᎷ×Ꮃ, 𝐶ᑢ ∈ ℝᎳ×Ꮇ, 𝐷ᑢ ∈ ℝᎳ×Ꮃ

2.4. Introduction to the small size test system
As stated earlier in this chapter, a transmission power system is going to be developed with
the theory previously derived. For that matter, the system of Figure 2.4 is presented. It can
be noticed that there are two wind parks connected to two transmission lines, L1 and L2.
Then, both lines are connected to an underground cable C1. Finally, C1 is connected to an
external grid. The inputs of the three systems, 𝑢Ꮃ, 𝑢Ꮄ and 𝑢Ꮅ, are voltage inputs and the
outputs, 𝑦Ꮃ, 𝑦Ꮄ and 𝑦Ꮅ are voltage outputs.

2.5. SISO state-space representations of the small size test sys-
tem

Following the research methodology of Figure 1.1, first is necessary to obtain the SISO state-
space representations of the elements in the system.
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Figure 2.4: Small size test system

The electrical parameters for the transmission lines L1 and L2 are shown in Table 2.1.
These parameters were extracted from the PSS/E software following the steps in Section 2.2,
where two 380kV transmission lines existing in the Dutch electrical network were chosen.

Table 2.1: Small size test system. Transmission lines parameters

From To Length [km] R [Ω/km] L [H/km] 𝐶Ꮃ = 𝐶Ꮄ [𝜇F/km]
𝑢Ꮃ 𝑦Ꮃ 15.9 0.0012 0.0143 39.26
𝑢Ꮄ 𝑦Ꮄ 12.1 0.0010 0.0130 135.34

The parameters in Table 2.1 can be used to represent the transmission lines L1 and L2 in
a state-space model, as it can be seen in 2.48 and 2.49 respectively.

�̇�Ꮃ =
⎡
⎢
⎢
⎢
⎣

−0.08 4.38 −4.38

−1.60 × 10Ꮅ −1.60 × 10Ꮈ 0

1.60 × 10Ꮅ 0 0

⎤
⎥
⎥
⎥
⎦

𝑥Ꮃ +
⎡
⎢
⎢
⎢
⎣

0
1.60 × 10Ꮈ

0

⎤
⎥
⎥
⎥
⎦

𝑢Ꮃ

𝑦Ꮃ = [0 0 1] 𝑥Ꮃ

(2.48)

�̇�Ꮄ =
⎡
⎢
⎢
⎢
⎣

−0.07 6.35 −6.35

−610.63 −610.63 × 10Ꮅ 0

610.63 × 10Ꮅ 0 0

⎤
⎥
⎥
⎥
⎦

𝑥Ꮄ +
⎡
⎢
⎢
⎢
⎣

0
610.63 × 10Ꮅ

0

⎤
⎥
⎥
⎥
⎦

𝑢Ꮄ

𝑦Ꮄ = [0 0 1] 𝑥Ꮄ

(2.49)
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For the underground cable state-space representation, the parameters were taken from
[20] and they can be seen in Tables 2.2 and 2.3.

Table 2.2: Small size test system. Underground cable parameters (1)

From To Length [km] 𝑅ᑫᎳ [Ω/km] 𝑅ᑫᎴ [Ω/km] 𝑅ᑫᎵ [Ω/km]
𝑢Ꮅ 𝑦Ꮅ 50 0.11724 0.082072 0.011946

Table 2.3: Small size test system. Underground cable parameters (2)

𝐿ᑫᎳ [mH/km] 𝐿ᑫᎴ [mH/km] 𝐿ᑫᎵ [mH/km] 𝐶Ꮃ = 𝐶Ꮄ [𝜇F/km]
0.22851 1.5522 3.2942 0.19083

With these parameters, the state-space representation for the cable C1 can be seen in
2.50.

�̇�Ꮅ =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

−513.06 0 0 89.85 −89.85

0 −52.87 0 13.22 −13.22

0 0 3.62 6.23 −6.23

−107.60 × 10Ꮅ −107.60 × 10Ꮅ −107.60 × 10Ꮅ −107.60 × 10Ꮈ 0

107.60 × 10Ꮅ 107.60 × 10Ꮅ 107.60 × 10Ꮅ 0 0

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

𝑥Ꮅ

+

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎣

0
0
0

107.60 × 10Ꮈ

0

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎦

𝑢Ꮅ

𝑦Ꮅ = [0 0 0 0 1] 𝑥Ꮅ

(2.50)

Equations 2.48 to 2.50 represent the SISO state-space representations for the elements in
the small size test system. However, this power system is a MIMO system. It has two voltage
inputs, 𝑢Ꮃ and 𝑢Ꮄ, and three voltage outputs 𝑦Ꮃ, 𝑦Ꮄ and 𝑦Ꮅ. Therefore, in the next chapter
the methodology used to concatenate several linear time invariant systems such as the ones
in this example is developed.





3
Multiple-input multiple-output

state-space representation

In the present chapter the concatenation of single (SISO) state-space representations is ad-
dressed. The objective of this chapter is to develop a MIMO linear time invariant system
that depicts the dynamics of an entire transmission power system. At the end of this chap-
ter the theory is applied to the small size test system to have a better overview of how this
methodology works.

3.1. Concatenation of Linear Time Invariant (LTI) models
For the sake of explaining the theoretical state-space association, two independent (LTI) mod-
els are going to be considered [26]. Both of these systems are depicted in the state-space
form. As can be seen in 3.1 and 3.2 these systems are linked by an input and an output
relationship.

�̇�Ꮃ = 𝐴Ꮃ𝑥Ꮃ + 𝐵Ꮃ𝑢Ꮃ
𝑦Ꮃ = 𝐶Ꮃ𝑥Ꮃ + 𝐷Ꮃ𝑢Ꮃ

(3.1)
�̇�Ꮄ = 𝐴Ꮄ𝑥Ꮄ + 𝐵Ꮄ𝑢Ꮄ
𝑦Ꮄ = 𝐶Ꮄ𝑥Ꮄ + 𝐷Ꮄ𝑢Ꮄ

(3.2)

The LTI model with subscript 1 has the next characteristics:

• 𝑛Ꮃ states that integrate the vector x1.

• 𝑚Ꮃ inputs that are part of the vector u1.

• 𝑝Ꮃ outputs forming the vector y1.

In the same way, the LTI model with subscript 2, has:

• 𝑛Ꮄ states that integrate the vector x2.

• 𝑚Ꮄ inputs that are part of the vector u2.

• 𝑝Ꮄ outputs forming the vector y2.

As for their matrices, the LTI model with subscript 1 has:

19



20 3. Multiple-input multiple-output state-space representation

• A state-space matrix A1 with dimension 𝑛Ꮃ × 𝑛Ꮃ.

• A 𝑛Ꮃ ×𝑚Ꮃ matrix B1.

• A 𝑝Ꮃ × 𝑛Ꮃ matrix C1.

• A 𝑝Ꮃ ×𝑚Ꮃ matrix D1.

In a similar fashion, the matrices in the LTI model with subscript 2 has:

• A state-space matrix A2 with dimension 𝑛Ꮄ × 𝑛Ꮄ.

• A 𝑛Ꮄ ×𝑚Ꮄ matrix B2

• A 𝑝Ꮄ × 𝑛Ꮄ matrix C2

• A 𝑝Ꮄ ×𝑚Ꮄ matrix D2.

Once the components of both systems have been explained, the next steps need to be
followed in order to achieve the concatenation of the systems:

Step 1. A sort of stack is going to be considered for both systems represented by the state-
space representation without taking into consideration any feedback between the in-
puts and the outputs among the systems. This new state-space representation will
be called open loop. Therefore, it will have the subscript ol,

�̇�ᑠᑝ = 𝐴ᑠᑝ𝑋ᑠᑝ + 𝐵ᑠᑝ𝑈ᑠᑝ
𝑌ᑠᑝ = 𝐶ᑠᑝ𝑋ᑠᑝ + 𝐷ᑠᑝ𝑈ᑠᑝ

(3.3)

The elements of the state vector, the input vector and the output vector are,

𝑋ᑠᑝ = [
𝑥Ꮃ
𝑥Ꮄ
] ∈ ℝ(ᑟᎳᎼᑟᎴ)×Ꮃ, 𝑈ᑠᑝ = [

𝑢Ꮃ
𝑢Ꮄ
] ∈ ℝ(ᑞᎳᎼᑞᎴ)×Ꮃ, 𝑌ᑠᑝ = [

𝑦Ꮃ
𝑦Ꮄ
] ∈ ℝ(ᑡᎳᎼᑡᎴ)×Ꮃ

The matrices are build as,

𝐴ᑠᑝ = [
𝐴Ꮃ 0
0 𝐴Ꮄ

] ∈ ℝ(ᑟᎳᎼᑟᎴ)×(ᑟᎳᎼᑟᎴ), 𝐵ᑠᑝ = [
𝐵Ꮃ 0
0 𝐵Ꮄ

] ∈ ℝ(ᑟᎳᎼᑟᎴ)×(ᑞᎳᎼᑞᎴ),

𝐶ᑠᑝ = [
𝐶Ꮃ 0
0 𝐶Ꮄ

] ∈ ℝ(ᑡᎳᎼᑡᎴ)×(ᑟᎳᎼᑟᎴ), 𝐷ᑠᑝ = [
𝐷Ꮃ 0
0 𝐷Ꮄ

] ∈ ℝ(ᑡᎳᎼᑡᎴ)×(ᑞᎳᎼᑞᎴ)

The graphical representation of this step can be seen in Figure 3.1
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Figure 3.1: Step 1, LTI concatenation [1]

Step 2. In this step is going to be assumed that some of the inputs of the system are connected
to some of the outputs. The latter are going to be considered as internal inputs and
will be associated with the matrix Uint. The inputs that are not going to be connected
to any output are going to be called external inputs and will be associated with the
matrix Uext. The new input vector will be formed as shown in 3.4. This new state-
space representation will be called closed loop. Therefore, it will have the subscript
cl. The graphical representation of this step can be seen in Figure 3.2.

𝑈ᖤᑠᑝ = 𝑈ᑚᑟᑥ + 𝑈ᑖᑩᑥ (3.4)

Figure 3.2: Step 2, LTI concatenation [1]

The matrices 𝑈ᑚᑟᑥ and 𝑈ᑖᑩᑥ are given by,

𝑈ᑚᑟᑥ = 𝑀ᑚᑟᑥ𝑌ᑠᑝ, 𝑈ᑖᑩᑥ = 𝑀ᑖᑩᑥ𝑈ᑠᑝ

On one hand, the matrixMint is known as the interconnection matrix and relates
some outputs of the open-loop LTI model Yol which are linked internally to some
outputs. On the other hand, the matrixMext relates the inputs of the open-loop LTI
model Uol which are not being looped back into the stacked LTI model. Therefore,
3.4 becomes,
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𝑈ᖤᑠᑝ = 𝑀ᑚᑟᑥ𝑌ᑠᑝ +𝑀ᑖᑩᑥ𝑈ᑠᑝ (3.5)

Replacing 3.5 in Uol of 3.4 yields,

�̇�ᑠᑝ = 𝐴ᑠᑝ𝑋ᑠᑝ + 𝐵ᑠᑝ(𝑀ᑚᑟᑥ𝑌ᑠᑝ +𝑀ᑖᑩᑥ𝑈ᑠᑝ)
𝑌ᑠᑝ = 𝐶ᑠᑝ𝑋ᑠᑝ + 𝐷ᑠᑝ(𝑀ᑚᑟᑥ𝑌ᑠᑝ +𝑀ᑖᑩᑥ𝑈ᑠᑝ)

(3.6)

The system in 3.6 can be further developed. In the first line, the term containing the
matrix Bol can be expanded. And in the second line the equation can be solved for
Yol, since it appears on both sides of the equation. Therefore, 3.6 can be rewritten
as,

�̇�ᑠᑝ = 𝐴ᑠᑝ𝑋ᑠᑝ + 𝐵ᑠᑝ𝑀ᑚᑟᑥ𝑌ᑠᑝ + 𝐵ᑠᑝ𝑀ᑖᑩᑥ𝑈ᑠᑝ
𝑌ᑠᑝ = (𝐼 − 𝐷ᑠᑝ𝑀ᑚᑟᑥ)ᎽᎳ(𝐶ᑠᑝ𝑋ᑠᑝ + 𝐷ᑠᑝ𝑀ᑖᑩᑥ𝑈ᑠᑝ)

(3.7)

For the sake of simplicity, the matrix (I −DolMint)Ꮍ1 will be named Eol for the
rest of the derivation. Thus, Eol ≜ (I −DolMint)Ꮍ1 and further introduced in the
output equation as Yol = EolColXol +EolDolMextUol. Therefore, replacing this
last equation of Yol in 3.7 yields,

�̇�ᑠᑝ = (𝐴ᑠᑝ + 𝐵ᑠᑝ𝑀ᑚᑟᑥ𝐸ᑠᑝ𝐶ᑠᑝ)𝑋ᑠᑝ + (𝐵ᑠᑝ + 𝐵ᑠᑝ𝑀ᑚᑟᑥ𝐸ᑠᑝ𝐷ᑠᑝ)𝑀ᑖᑩᑥ𝑈ᑠᑝ
𝑌ᑠᑝ = 𝐸ᑠᑝ𝐶ᑠᑝ𝑋ᑠᑝ + 𝐸ᑠᑝ𝐷ᑠᑝ𝑀ᑖᑩᑥ𝑈ᑠᑝ

(3.8)

Step 3. The last step consists in obtaining the closed-loop state-space representation of the
LTI model from 3.8 as,

�̇�ᑔᑝ = 𝐴ᑔᑝ𝑋ᑔᑝ + 𝐵ᑔᑝ𝑈ᑔᑝ
𝑌ᑔᑝ = 𝐶ᑔᑝ𝑋ᑔᑝ + 𝐷ᑔᑝ𝑈ᑔᑝ

(3.9)

And by comparison, the vectors of the closed-loop state-space in 3.9 are given by,

𝑋ᑔᑝ = 𝑋ᑠᑝ
𝑈ᑔᑝ = 𝑈ᑖᑩᑥ = 𝑀ᑖᑩᑥ𝑈ᑠᑝ
𝑌ᑔᑝ = 𝑌ᑠᑝ

(3.10)

And the matrices as,

𝐴ᑔᑝ = 𝐴ᑠᑝ + 𝐵ᑠᑝ𝑀ᑚᑟᑥ𝐸ᑠᑝ𝐶ᑠᑝ
𝐵ᑔᑝ = 𝐵ᑠᑝ + 𝐵ᑠᑝ𝑀ᑚᑟᑥ𝐸ᑠᑝ𝐷ᑠᑝ
𝐶ᑔᑝ = 𝐸ᑠᑝ𝐶ᑠᑝ
𝐷ᑔᑝ = 𝐸ᑠᑝ𝐷ᑠᑝ

(3.11)
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The graphical representation of this step can be seen in Figure 3.3. It is important
to notice that the vector Xcl contains all the states of that integrates the closed-loop
system. In the same way, the vector Ycl contains all the outputs of the systems con-
catenated. Finally, the inputs of the new system are only the external inputs, those
who were not fed back internally.

Figure 3.3: Step 3, LTI concatenation [1]

3.2. State-space concatenation of the small size test system

In this section the second step of the methodology presented in Figure 1.1 is going to be
addressed. In order to explain the steps for the concatenation of LTI systems, the small size
test system from Section 2.4 is going to be used.

The small size test system is going to be represented in a simpler manner to have a better
overview of how the concatenation methodology works. In Figure 3.4 can be seen a simplified
diagram of the small size test system. Some important points need to be discussed in detail:

• The circles represent each transmission line and underground cable state-space repre-
sentation. In the Figure 3.4, three circles can be found, corresponding to each state-
space representation.

• The arrow(s) that point to a certain circle are the inputs that a particular system has.

• The arrow(s) that come out of a certain circle are the outputs that a particular system
has.

• The system is considered disconnected form the external grid.

First, in the Step 1 of the methodology and based on the topology of Figure 3.4 it can be
observed that the open loop state-space representation will have the following dimensions,
where the number of systems to be concatenated is three,
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Figure 3.4: Simplified small size test system

𝑋ᑠᑝ = [
𝑥Ꮃ
𝑥Ꮄ
𝑥Ꮅ
] ∈ ℝᎳᎳ×Ꮃ, 𝑈ᑠᑝ = [

𝑢Ꮃ
𝑢Ꮄ
𝑢Ꮅ
] ∈ ℝᎵ×Ꮃ, 𝑌ᑠᑝ = [

𝑦Ꮃ
𝑦Ꮄ
𝑦Ꮅ
] ∈ ℝᎵ×Ꮃ

Where the elements of the 𝑋ᑠᑝ vector are the state-space vectors of each state-space
representation. Therefore,

𝑥Ꮃ =
⎡
⎢
⎢
⎢
⎣

𝑖ᑃᎳ

𝑉ᐺᎳᎳ
𝑉ᐺᎴᎳ

⎤
⎥
⎥
⎥
⎦

∈ ℝᎵ×Ꮃ, 𝑥Ꮄ =
⎡
⎢
⎢
⎢
⎣

𝑖ᑃᎴ

𝑉ᐺᎳᎴ
𝑉ᐺᎴᎴ

⎤
⎥
⎥
⎥
⎦

∈ ℝᎵ×Ꮃ, 𝑥Ꮅ =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

𝑖ᑃᑫᎳ
𝑖ᑃᑫᎴ
𝑖ᑃᑫᎵ
𝑉ᐺᎳᎵ
𝑉ᐺᎴᎵ

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

∈ ℝᎷ×Ꮃ

From these vectors it can be observed that two correspond to the transmission lines L1
and L2, and one vector corresponds to the underground cable C1. The respective matrices
have the next dimensions,

𝐴ᑠᑝ = [
𝐴Ꮃ 0Ꮅ×Ꮅ 0Ꮅ×Ꮇ
0Ꮅ×Ꮅ 𝐴Ꮄ 0Ꮅ×Ꮇ
0Ꮇ×Ꮅ 0Ꮇ×Ꮅ 𝐴Ꮅ

] ∈ ℝᎳᎳ×ᎳᎳ, 𝐵ᑠᑝ = [
𝐵Ꮃ 0Ꮅ×Ꮃ 0Ꮅ×Ꮃ
0Ꮅ×Ꮃ 𝐵Ꮄ 0Ꮅ×Ꮃ
0Ꮇ×Ꮃ 0Ꮇ×Ꮃ 𝐵Ꮅ

] ∈ ℝᎳᎳ×Ꮅ,

𝐶ᑠᑝ = [
𝐶Ꮃ 0Ꮃ×Ꮅ 0Ꮃ×Ꮇ
0Ꮃ×Ꮅ 𝐶Ꮄ 0Ꮃ×Ꮇ
0Ꮃ×Ꮅ 0Ꮃ×Ꮅ 𝐶Ꮅ

] ∈ ℝᎵ×ᎳᎳ, 𝐷ᑠᑝ = [
𝐷Ꮃ 0Ꮃ×Ꮃ 0Ꮃ×Ꮃ
0Ꮃ×Ꮃ 𝐷Ꮄ 0Ꮃ×Ꮃ
0Ꮃ×Ꮃ 0Ꮃ×Ꮃ 𝐷Ꮅ

] ∈ ℝᎵ×Ꮅ

It is important to note that the dimensions of the matrices 𝐴Ꮃ, 𝐴Ꮄ, 𝐴Ꮅ in the main diagonal
of the matrix 𝐴ᑠᑝ are 3 × 3, 3 × 3 and 5 × 5, respectively. The dimensions of the matrices 𝐵Ꮃ,
𝐵Ꮄ, 𝐵Ꮅ in the main diagonal of the matrix 𝐵ᑠᑝ are 3 × 1, 3 × 1 and 5 × 1, respectively. The
dimensions of the matrices 𝐶Ꮃ, 𝐶Ꮄ, 𝐶Ꮅ in the main diagonal of the matrix 𝐶ᑠᑝ are 1 × 3, 1 × 3
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and 1× 5, respectively. Finally, the matrices 𝐷Ꮃ, 𝐷Ꮄ and 𝐷Ꮅ in the main diagonal of the matrix
𝐷ᑠᑝ are zero matrices with dimension 1 × 1.

In the Step 2 of the methodology, it is necessary to define the internal inputs and the
external inputs of the system. In the electrical small size test system, there are two exter-
nal inputs, which are the inputs of the systems L1 and L2, 𝑢Ꮃ and 𝑢Ꮄ; as it can be seen in
Figure 3.4. The input 𝑢Ꮅ is going to be internal.

In order to build the interconnection matrix 𝑀ᑚᑟᑥ, and the external matrix 𝑀ᑖᑩᑥ two
tables depicting the inputs and outputs of the system were built. In Table 3.1 can be seen
the dynamics of the interconnection matrix for the transmission lines L1 and L2 and the cable
C1. It can be observed that when the output of a certain system is the input of a complete
different system a number 1 appears, depicting the interaction among those systems. Only a
few elements in the interconnection matrix will have an internal interaction, these dynamics
will depend on how the system is connected.

It can be noticed that the elements of the matrix 𝑀ᑚᑟᑥ that will be internally connected
are:

𝑀ᑚᑟᑥ(3, 1) 𝑀ᑚᑟᑥ(3, 2)

In Table 3.2 can be seen the external matrix 𝑀ᑖᑩᑥ of the electrical small size test system.
This matrix 𝑀ᑖᑩᑥ shows a 1 the intersection of the input and the output of the indicated
systems. To summarise, the elements of the 𝑀ᑖᑩᑥ which are external inputs are:

𝑀ᑖᑩᑥ(1, 1) 𝑀ᑖᑩᑥ(2, 2)

Table 3.1: Interconnection matrix ፌᑚᑟᑥ. Electrical small size test system

𝑦Ꮃ 𝑦Ꮄ 𝑦Ꮅ
𝑢Ꮃ 0 0 0
𝑢Ꮄ 0 0 0
𝑢Ꮅ 1 1 0

Table 3.2: External matrix ፌᑖᑩᑥ. Electrical small size test system

𝑦Ꮃ 𝑦Ꮄ 𝑦Ꮅ
𝑢Ꮃ 1 0 0
𝑢Ꮄ 0 1 0
𝑢Ꮅ 0 0 0

Therefore, the components of the input vector in the open loop U
ᖤ
ol
= Uint +Uext are,

𝑈ᑚᑟᑥ = 𝑀ᑚᑟᑥ𝑌ᑠᑝ = [
0
0

𝑦Ꮃ + 𝑦Ꮄ
] ∈ ℝᎵ×Ꮃ, 𝑈ᑖᑩᑥ = 𝑀ᑖᑩᑥ𝑈ᑠᑝ = [

𝑢Ꮃ
𝑢Ꮄ
0
] ∈ ℝᎵ×Ꮃ

It can be noticed that Uint contains only the dynamics of the internal inputs. Thus, from
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Figure 3.4, the output of the transmission lines L1 and L2 are inputs of the cable C1. Hence, in
Uint can be seen that those outputs are added. Since the inputs of the transmission lines L1
and L2 does not receive any output form other system the elements Uint(1,1) and Uint(2,1)
are zero.

For Uext, only the inputs that are not fed back to other system are shown. Thus, only the
inputs of lines L1 and L2 have a value in this vector, while the other elements are zero.

Once definedMint andMext and the elements of the input vector U
ᖤ
ol
the matrix for the

open loop in the Step 2, Eol, can be calculated.

In the Step 3, the matrices for the closed loop are obtained by identification. Therefore,
the state vector as well as the input and output vectors of the global space-state representation
are,

𝑋ᑔᑝᑡᑤᑖ = 𝑋ᑠᑝ = [
𝑥Ꮃ
𝑥Ꮄ
𝑥Ꮅ
] ∈ ℝᎳᎳ×Ꮃ, 𝑈ᑔᑝᑡᑤᑖ = 𝑀ᑖᑩᑥ𝑈ᑠᑝ = [

𝑢Ꮃ
𝑢Ꮄ
0
] ∈ ℝᎵ×Ꮃ, 𝑌ᑔᑝᑡᑤᑖ = 𝑌ᑠᑝ = [

𝑦Ꮃ
𝑦Ꮄ
𝑦Ꮅ
] ∈ ℝᎵ×Ꮃ

And the closed-loop matrices dimensions of the global space-state representation are,

𝐴ᑔᑝᑡᑤᑖ ∈ ℝᎳᎳ×ᎳᎳ, 𝐵ᑔᑝᑡᑤᑖ ∈ ℝᎳᎳ×Ꮅ,
𝐶ᑔᑝᑡᑤᑖ ∈ ℝᎵ×ᎳᎳ, 𝐷ᑔᑝᑡᑤᑖ ∈ ℝᎵ×Ꮅ

Finally, the state-space representation can be expressed as,

�̇�ᑔᑝᑡᑤᑖ = 𝐴ᑔᑝᑡᑤᑖ𝑋ᑔᑝᑡᑤᑖ + 𝐵ᑔᑝᑡᑤᑖ𝑈ᑔᑝᑡᑤᑖ
𝑌ᑔᑝᑡᑤᑖ = 𝐶ᑔᑝᑡᑤᑖ𝑋ᑔᑝᑡᑤᑖ + 𝐷ᑔᑝᑡᑤᑖ𝑈ᑔᑝᑡᑤᑖ

Where the subscript pse stands for small size test system. The system in this case is a
multiple-input multiple-output (MIMO) system. The advantage to follow this methodology is
that all of the outputs of the system can be observed.





4
Singular Value Decomposition (SVD)

analysis

In this chapter, theory regarding the singular value decomposition is addressed. Then, this
mathematical tool is applied to the small size test system to discover its harmonic frequencies.
Finally, an assessment of the inputs and outputs of the system is performed.

4.1. Singular value decomposition theory
Let a matrix Λ ∈ ℂᑝ×ᑞ, then Λ can be decomposed into its singular value decomposition [14].
It can be decomposed into three matrices. Thus, it exists a matrix Σ ∈ ℝᑝ×ᑞ and two unitary
matrices 𝑈 ∈ ℂᑝ×ᑝ and 𝑉 ∈ ℂᑞ×ᑞ such that,

Λ = 𝑈Σ𝑉ᐿ (4.1)

Where Σ is a rectangular diagonal matrix with the singular values 𝜎Ꮃ…𝜎ᑢ as elements in
its main diagonal and in descending order, with 𝑞 = min{𝑙, 𝑚}. The columns of the matrix
𝑈, 𝑈 = [𝑢Ꮃ…𝑢ᑝ], and the matrix 𝑉, 𝑉 = [𝑣Ꮃ…𝑣ᑞ], contain, respectively, the left and right
singular vectors. This vectors are orthonormal, hence they are orthogonal and with length
equal to the unity. The superscript 𝐻 denotes the conjugate transpose of the matrix 𝑉.

The matrix Λ can be rewritten as,

Λ =
ᑣ

∑
ᑜᎾᎳ

𝜎ᑜ𝑢ᑜ𝑣ᐿᑜ (4.2)

Where 𝑟 = 𝑟𝑎𝑛𝑘(Λ) ≤ min{𝑙, 𝑚}, since 𝜎ᑜ = 0 𝑘 > 𝑟.

In order to explain in a simple and brief manner how the SVD works, in Figure 4.1 an
example can be found. It can be noticed in Figure 4.1a two vectors, 𝑉Ꮃ and 𝑉Ꮄ, that exist
within a circle of radius equal to one. These vectors have a specific angle with respect to
the horizontal axis. When the rotational matrix 𝑉ᐿ is applied to this system, the vectors will
rotate with a certain angle 𝜃Ꮄ. In this new system the vectors are called 𝑒Ꮃ and 𝑒Ꮄ,as it can
be seen in Figure 4.1b. The result of the rotation will cause the vectors to have a different
orientation than in the beginning. When the diagonal matrix Σ is applied to the system, the

27
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vectors will modify their length 𝜎Ꮃ and 𝜎Ꮄ times, respectively. Thus, the shape of the space
in where these two vectors exist is going to be modified. In this specific example the shape
of the new space is going to be an ellipse as can be seen in Figure 4.1c. Finally, when the
last rotation matrix 𝑈 is applied to the system, the vectors will change again their orienta-
tion. In this case the effect of the rotation is more visible, since the ellipsoid space is going to
rotate the same angle 𝜃Ꮃ as the vectors. The effect of this rotational can be seen in Figure 4.1d.

This example can be extrapolated to an 𝑛 × 𝑛 Euclidean system. Thus, by using the SVD
it is possible to study how the inputs of a determined MIMO system affect certain outputs of
the same system.

Figure 4.1: SVD representation of 2 vectors

4.2. Obtaining a transfer function from a state-space represen-
tation

In Chapter 3, a state-space representation for a MIMO system was obtained. That represen-
tation with its respective matrices and vectors can be observed in 4.3 and 4.4.

�̇�ᑔᑝ = 𝐴ᑔᑝ𝑋ᑔᑝ + 𝐵ᑔᑝ𝑈ᑔᑝ (4.3)

𝑌ᑔᑝ = 𝐶ᑔᑝ𝑋ᑔᑝ + 𝐷ᑔᑝ𝑈ᑔᑝ (4.4)
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The objective is to transform 4.3 and 4.4 from a representation in the time domain to the
frequency domain. Thus, a transfer function of the system is going to be obtained. Since the
state-space representation is a MIMO system the resultant transfer function is going to be a
transfer function matrix, whose elements are transfer functions that relates the inputs with
the outputs of the system.

Thus, applying the Laplace transform to 4.3,

𝑠𝑋ᑔᑝ(𝑠) − 𝑥ᑔᑝ(0) = 𝐴ᑔᑝ𝑋ᑔᑝ(𝑠) + 𝐵ᑔᑝ𝑈ᑔᑝ(𝑠)

Where,

xcl(0) is the initial value of the state vector in the time domain.

s is the Laplace transform.

Therefore,

𝑠𝑋ᑔᑝ(𝑠) − 𝐴ᑔᑝ𝑋ᑔᑝ(𝑠) = 𝑥ᑔᑝ(0) + 𝐵ᑔᑝ𝑈ᑔᑝ(𝑠)
(𝑠𝐼 − 𝐴ᑔᑝ)𝑋ᑔᑝ(𝑠) = 𝑥ᑔᑝ(0) + 𝐵ᑔᑝ𝑈ᑔᑝ(𝑠)

𝑋ᑔᑝ(𝑠) = (𝑠𝐼 − 𝐴ᑔᑝ)ᎽᎳ𝑥ᑔᑝ(0) + (𝑠𝐼 − 𝐴ᑔᑝ)ᎽᎳ𝐵ᑔᑝ𝑈ᑔᑝ(𝑠)

Assuming that the initial conditions are equal to zero xcl(0) = 0,

𝑋ᑔᑝ(𝑠) = (𝑠𝐼 − 𝐴ᑔᑝ)ᎽᎳ𝐵ᑔᑝ𝑈ᑔᑝ(𝑠) (4.5)

Following the same approach, the Laplace transform is applied to 4.4. Thus,

𝑌ᑔᑝ(𝑠) = 𝐶ᑔᑝ(𝑋ᑔᑝ(𝑠) − 𝑥ᑔᑝ(0)) + 𝐷ᑔᑝ𝑈ᑔᑝ(𝑠)

And assuming initial conditions equal to zero,

𝑌ᑔᑝ(𝑠) = 𝐶ᑔᑝ𝑋ᑔᑝ(𝑠) + 𝐷ᑔᑝ𝑈ᑔᑝ(𝑠) (4.6)

Then, substituting 4.5 in 4.6 yields,

𝑌ᑔᑝ(𝑠) = 𝐶ᑔᑝ(𝑠𝐼 − 𝐴ᑔᑝ)ᎽᎳ𝐵ᑔᑝ𝑈ᑔᑝ(𝑠) + 𝐷ᑔᑝ𝑈ᑔᑝ(𝑠)
𝑌ᑔᑝ(𝑠) = [𝐶ᑔᑝ(𝑠𝐼 − 𝐴ᑔᑝ)ᎽᎳ𝐵ᑔᑝ + 𝐷ᑔᑝ]𝑈ᑔᑝ(𝑠)

Finally,

𝐻ᑔᑝ(𝑠) =
𝑌ᑔᑝ(𝑠)
𝑈ᑔᑝ(𝑠)

= 𝐶ᑔᑝ(𝑠𝐼 − 𝐴ᑔᑝ)ᎽᎳ𝐵ᑔᑝ + 𝐷ᑔᑝ (4.7)
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Where 4.7 is transfer function matrix whose columns represents the inputs of the system
and their rows are the outputs of the system.

4.3. Singular value decomposition of a transfer function
If Λ is substituted by 𝐻ᑔᑝ(𝑠) in 4.1. the linearised transfer function is given by,

𝐻ᑔᑝ(𝑠) =
ᑣ

∑
ᑜᎾᎳ

𝜎ᑜ(𝑠)𝑢ᑜ(𝑠)𝑣ᐿᑜ (𝑠) (4.8)

And the frequency response at a selected frequency is given by evaluating 𝐻ᑔᑝ at 𝑠 = 𝑗𝜔.

The maximum 𝜎(𝐻ᑔᑝ(𝑗𝜔)) and minimum 𝜎(𝐻ᑔᑝ(𝑗𝜔)) system gains (singular values), are
given by

𝜎(𝐻ᑔᑝ(𝑗𝜔)) ⩽
‖𝐻ᑔᑝ(𝑗𝜔)𝑑‖Ꮄ

‖𝑑‖Ꮄ
⩽ 𝜎(𝐻ᑔᑝ(𝑗𝜔)) (4.9)

With,

𝐻ᑔᑝ(𝑗𝜔)𝑣 = 𝜎 𝑢 (4.10)

𝐻ᑔᑝ(𝑗𝜔)𝑣 = 𝜎 𝑢 (4.11)

Where 𝑑 is any input direction, not in the null space of 𝐻ᑔᑝ, and ‖·‖Ꮄ is the Euclidean norm.

On one hand, the vector 𝑣 corresponds to the input direction with the largest amplification,
and 𝑢 is the corresponding output direction in which the inputs are most effective. On the
other hand, the least effective input direction which is associated with 𝑣, corresponds to the
output 𝑢. With 𝑞 = min{𝑙, 𝑚}, the maximum and the minimum system gains, respectively 𝜎
and 𝜎, are given by,

𝜎 = 𝜎Ꮃ (4.12)

𝜎 = {𝜎ᑢ 𝑙 ⩾ 𝑚
0 𝑙 < 𝑚 (4.13)

4.4. Obtaining the frequency response from a transfer function
In order to visualise the impact of the first singular value (𝜎Ꮃ) on the response of the transfer
function matrix, a sinusoidal signal with a critical harmonic is injected in the inputs of the
system in the next manner:

Considering a system 𝐻ᑔᑝ(𝑠) with input 𝑑(𝑠) and 𝑦(𝑠) such that,

𝑦(𝑠) = 𝐻ᑔᑝ(𝑠)𝑑(𝑠) (4.14)
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Where 𝑑 is the input of the system. ℎᑔᑝᑚᑛ(𝑗𝜔) represents the sinusoidal response from
input 𝑗 to output 𝑖. Therefore, it is applied to input 𝑗 a scalar sinusoidal given by,

𝑑ᑛ(𝑡) = 𝑑ᑛᎲ𝑠𝑖𝑛(𝜔𝑡 + 𝛼ᑛ) (4.15)

The input signal has been applied since 𝑡 = −∞. Then the persistent output in 𝑖 is also a
sinusoidal curve with the same frequency,

𝑦ᑚ(𝑡) = 𝑦ᑛᎲ𝑠𝑖𝑛(𝜔𝑡 + 𝛽ᑚ) (4.16)

Where the gain and phase shift may be obtained from the complex number ℎᑔᑝᑚᑛ(𝑗𝜔) hence,

𝑦ᑚᎲ
𝑑ᑛᎲ

= |ℎᑔᑝᑚᑛ(𝑗𝜔)|, 𝛽ᑚ − 𝛼ᑛ = ∠ℎᑔᑝᑚᑛ(𝑗𝜔) (4.17)

In phasor notation, the sinusoidal time response described by 4.15, 4.16 and 4.17 can be
written as,

𝑦ᑚ(𝜔) = ℎᑔᑝᑚᑛ(𝑗𝜔)𝑑ᑛ(𝜔) (4.18)

Where,

𝑑ᑛ(𝜔) = 𝑑ᑛᎲ𝑒ᑛᒆᑛ , 𝑦ᑚ(𝜔) = 𝑦ᑚᎲ𝑒ᑛᒇᑚ (4.19)

The use of 𝜔 as the argument in 𝑑ᑛ(𝜔) and 𝑦ᑚ(𝜔) implies that they are complex numbers,
representing at each frequency the magnitude and the phase of sinusoidal signals in 4.15 and
4.16. The total response to simultaneous input injections of the same frequency in various
inputs of the system is, by the superposition principal for linear systems, equal to the sum of
the individual responses. Hence, from 4.18,

𝑦ᑚ(𝜔) = ℎᑔᑝᑚᎳ(𝑗𝜔)𝑑Ꮃ(𝜔) + ℎᑔᑝᑚᎴ(𝑗𝜔)𝑑Ꮄ(𝜔) + … =∑
ᑛ
ℎᑔᑝᑚᑛ(𝑗𝜔)𝑑ᑛ(𝜔) (4.20)

Or in matrix form,

𝑦(𝜔) = 𝐻ᑔᑝ(𝑗𝜔)𝑑(𝜔) (4.21)

Where,

𝑑(𝜔) =
⎡
⎢
⎢
⎣

𝑑Ꮃ(𝜔)
𝑑Ꮄ(𝜔)
⋮

𝑑ᑞ(𝜔)

⎤
⎥
⎥
⎦

, 𝑦(𝜔) =
⎡
⎢
⎢
⎣

𝑦Ꮃ(𝜔)
𝑦Ꮄ(𝜔)
⋮

𝑦ᑝ(𝜔)

⎤
⎥
⎥
⎦

(4.22)

Represent the vectors of sinusoidal input and output signals.
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4.5. Singular value decomposition analysis of the small size test
system

In this section the third and fourth steps of the methodology of Figure 1.1 is addressed.
The transfer function matrix of the small size test system is obtained following the theory of
Section 4.3. Therefore, the resultant transfer function matrix can be expressed as,

𝐻ᑔᑝᑡᑤᑖ(𝑠) =
𝑌ᑔᑝᑡᑤᑖ(𝑠)
𝑈ᑔᑝᑡᑤᑖ(𝑠)

(4.23)

Hclpse is a 3 × 3 matrix, which links a certain input with a certain output of the system.
However, not all the elements of the transfer function matrix are different from zero, some of
them are zero due to the topology of the system. In Table 4.1 can be seen which elements of
Hclpse have a non-zero value and which ones have a transfer function. The letter n indicates
the degree of the characteristic polynomial of that specific transfer function.

Table 4.1: Small size test system transfer function matrix ፇᑔᑝ

𝑢Ꮃ 𝑢Ꮄ 𝑢Ꮅ

𝑦Ꮃ
ᑪᎳ(ᑤ)
ᑦᎳ(ᑤ)
𝑛 = 3

0 0

𝑦Ꮄ 0
ᑪᎴ(ᑤ)
ᑦᎴ(ᑤ)
𝑛 = 3

0

𝑦Ꮅ
ᑪᎵ(ᑤ)
ᑦᎳ(ᑤ)
𝑛 = 8

ᑪᎵ(ᑤ)
ᑦᎴ(ᑤ)
𝑛 = 8

ᑪᎵ(ᑤ)
ᑦᎵ(ᑤ)
𝑛 = 5

The transfer function matrix 𝐻ᑔᑝᑡᑤᑖ which has all the information of the small size test
system is going to be studied using the SVD. The next steps were followed,

1. A range of frequencies is previously defined. Within this range it is going to be observed
the critical (harmonic) frequencies the system has. Thus, the selected frequency vector
was 𝑓 = 1 𝐻𝑧 to 𝑓 = 1 𝑘𝐻𝑧, which is equally spaced.

2. The transfer function matrix 𝐻ᑔᑝᑡᑤᑖ is going to be evaluated in each of these frequencies.
Since 𝐻ᑔᑝᑡᑤᑖ(𝑠) = 𝐻ᑔᑝᑡᑤᑖ(𝑗𝜔), the elements in this matrix are going to show a complex
behaviour. Therefore, it is necessary to obtain the absolute value of each complex com-
ponent in 𝐻ᑔᑝᑡᑤᑖ(𝑗𝜔).

3. The SVD is performed for every matrix 𝐻ᑔᑝᑡᑤᑖ(𝑗𝜔) evaluated in the frequency vector.
Thus, it is obtained a vector of matrices Σ containing the singular values for each fre-
quency 𝜔 in the frequency vector.

The resultant singular values can be seen in Figure 4.2. As it was expected there are three
singular values curves. The points of these curves corresponds to each singular value matrix
Σ evaluated at a certain frequency 𝜔.
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Figure 4.2: Small size test system singular value decomposition

As it was seen earlier in this chapter, the first singular value 𝜎Ꮃ has the highest gain and
therefore it will have the bigger impact in the inputs and outputs of the system. In Figure 4.3
can be seen the curve of the first singular value (𝜎Ꮃ). It can be noticed that there are three
maximum peaks at certain frequencies. The frequencies where these peaks occur are of great
interest for this research, since the vectors of the rotational matrices 𝑈 and 𝑉ᐿ associated with
the first singular value can be studied and determine which inputs affect more the behaviour
of certain outputs. These frequencies can be observed in Table 4.2.
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Figure 4.3: Small size test system first singular value

Table 4.2: Small size test system harmonic frequencies

𝜎Ꮃ (dB) Frequency (Hz)

60.33 9.91
57.14 13.34
18.11 550
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The frequencies where the peaks of Figure 4.3 occur, belong to the harmonic frequencies
of the small size test system. These frequencies appear due to the energy exchange between
the inductances and capacitances in the PI section and “fitted PI” representations. Using
control theory these harmonics can be calculated using the natural frequency of the complex
poles of the system [12]. In Table 4.3 can be seen the real and complex poles of the small size
test system. It can be observed that the harmonic frequencies of the system are calculated
from the three complex poles that the system has. They are calculated following the next
equation,

𝜔ᑙᑗ = 𝜔ᑟ√1 − 𝜁Ꮄ

Where the subscript hf stands for harmonic frequency.
Table 4.3: Small size test system damping factors

Pole Order Damping ratio
Natural frequency 𝜔ᑟ

(rad/s)
Harmonic frequency

(rad/s)
Harmonic frequency

(Hz)

-9.31 3 1 9.307 - -
-0.0417±𝑗62.289 2 6.701× 10ᎽᎶ 62.289 62.289 9.9137
-0.0448±𝑗83.810 2 5.348× 10ᎽᎶ 83.810 83.810 13.3388

-125.42 3 1 125.423 - -
-213.84±𝑗3418.2 3 0.0624 3424.863 3418.18 550
-6.106× 10Ꮇ 2 1 6.106× 10Ꮇ - -
-1.601× 10Ꮈ 2 1 1.601× 10Ꮈ - -
-1.076× 10Ꮊ 3 1 1.076× 10Ꮊ - -

4.6. Input and output assessment of the small size test system

In this section the fifth step of the methodology of Figure 1.1 is addressed. In order to assess
which input is going to affect the system the most, and which output is going to be the most
affected by the latter, in Tables 4.4 and 4.5, the left and right singular vectors associated with
the first singular value for the frequencies listed in Table 4.2 are shown. In order to analyse
these vectors, the frequency 𝑓Ꮃ is going to be taken as an example. The right singular vector
or the vector associated with the inputs of the system for the frequency 𝑓Ꮃ is 𝑉ᐿᎳ . It can be no-
ticed that the second element of this vector (𝑉ᐿᎳ (2, 1)) has the highest absolute value among
the other components in the vector. This means that the input number 2, 𝑢Ꮄ is going to have
the biggest direction and will affect the system in a greater manner. On the other hand, when
looking at the left singular vector or the vector associated with the outputs of the system 𝑈Ꮃ, it
can be seen that the third element (𝑈Ꮃ(3, 1)) has the highest absolute value among the other
components in the vector. Therefore, the output that will be more affected by the input 𝑢Ꮄ is
going to be the third output 𝑦Ꮅ, which corresponds to the output of the underground cable, C1.

A similar analysis can be performed with the corresponding singular vectors at frequency
𝑓Ꮅ. The right singular value vector shows a maximum absolute value in its third component
(𝑉ᐿᎵ (3, 1)), followed by the first component (𝑉ᐿᎵ (1, 1)). However, the system only has inputs
different from zero in the first (𝑢Ꮃ) and second (𝑢Ꮄ) components, and since the other direc-
tions are zero, the direction that affects more the outputs is the one in the first component
(𝑉ᐿᎵ (1, 1)). From the corresponding left singular vector (𝑈Ꮅ) it can be clearly seen that the
direction that affect the most the input 𝑢Ꮃ, is the one in the third component (𝑈Ꮅ(3, 1)). There-
fore, the most affected output is again, output 𝑦Ꮅ.
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Table 4.4: Small size test system left singular vectors associated to the outputs of the system

Frequency (Hz)

𝑓Ꮃ 𝑓Ꮄ 𝑓Ꮅ
9.91 13.34 550

Left singular vector

𝑈Ꮃ 𝑈Ꮄ 𝑈Ꮅ
0.000 -0.7065 0.0000
-0.7067 0.0000 0.0000
-0.7075 -0.7077 1.0000

Table 4.5: Small size test system right singular vectors associated to the inputs of the system

Frequency (Hz)

𝑓Ꮃ 𝑓Ꮄ 𝑓Ꮅ
9.91 13.34 550

Right singular vector

𝑉ᐿᎳ 𝑉ᐿᎴ 𝑉ᐿᎵ
-0.0015 -1.0000 -0.0006
-1.0000 -0.0012 -0.0003
-0.0007 -0.0010 -1.0000

In this part of the In order to visualise the impact of the first singular value (𝜎Ꮃ) on the re-
sponse of the small size test system, a sinusoidal signal with the critical harmonic frequencies
are injected at the inputs.

Following the analysis derived in Section 4.4, a sinusoidal input of the form,

𝑑 = 𝑑Ꮂ(cos (𝜔𝑡 + 𝛼) + 𝑗 sin (𝜔𝑡 + 𝛼)) (4.24)

is applied at the inputs 𝑢Ꮃ and 𝑢Ꮄ of the small size test system transfer function matrix. The
magnitude 𝑑Ꮂ is chosen as 1, the phase shift is 0 and the frequency 𝜔 will take the frequency
values of Table 4.2.

When a sinusoidal signal with the first frequency 𝑓Ꮃ = 9.91 𝐻𝑧 is applied to the small size
test system, the most affected output is the output voltage of the underground cable C1, 𝑦Ꮅ.
As it can be seen in Figure 4.4, the voltage increment is of approximately 7.00 𝑝.𝑢., which is
the higher voltage increment the system will have when a sinusoidal with this frequency is
injected at the inputs.

A similar behaviour the output 𝑦Ꮅ is going to present, when a sinusoidal signal with the sec-
ond frequency 𝑓Ꮄ = 13.34𝐻𝑧 is injected. In this case the voltage increment is of approximately
5.00 𝑝.𝑢., as it can be seen in Figure 4.5. In both time-domain simulations, the response of
the output 𝑦Ꮅ has a gradual increment at the beginning of the simulation, and in the end, the
oscillations are sustained.
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The time-domain response for the highest frequency, 𝑓Ꮅ = 550𝐻𝑧, is shown in Figure 4.6.
In this case the voltage increment at the beginning is higher than in the previous time-domain
simulations, but the voltage is lower, approximately 0.80 𝑝.𝑢., when the oscillations are sus-
tained. In Table 4.6 is summarised the injected sinusoidal with the respective critical frequency
and the name of the most affected elements of the small size test system.
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Figure 4.4: Small size test system first frequency injected at inputs ፮Ꮃ and ፮Ꮄ
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Figure 4.5: Small size test system second frequency injected at inputs ፮Ꮃ and ፮Ꮄ
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Figure 4.6: Small size test system third frequency injected at inputs ፮Ꮃ and ፮Ꮄ

Table 4.6: Small size test system most affected elements

Injected frequency
𝑓ᑚ

Input affecting the system the most
𝑢ᑚ

Most affected output
𝑦ᑚ

Transmission line or
underground cable

9.91 𝑢Ꮄ 𝑦Ꮅ 𝐶1
13.34 𝑢Ꮃ 𝑦Ꮅ 𝐶1
550 𝑢Ꮃ 𝑦Ꮅ 𝐶1

For the computation of the SVD and the input and output assessment of the small size
test systemsmall size test system, a routine in Matlab was created and it can be consulted in
Appendix B.1.

4.7. Small size test system sensitivity analysis

In the next subsections two sensitivity analysis are performed to observe the system behaviour
to the increase or decrease in the length of the small size test system elements and the use
of lumped PI sections instead of a single PI section.

4.7.1. Length variation

In this subsection an analysis on the variation of the length of the transmission lines and the
underground cables is performed.

It can be seen in Figures 4.7 and 4.8 the harmonic response of the small size test system
when the length of the transmission lines is varied. At first sight, it can be noticed that the
frequencies induced by the transmission lines, which are those in the range from 0𝐻𝑧 to 50𝐻𝑧,
shift to higher frequencies when the lines is shorter. Meaning that the shorter the line, the
higher the frequencies the system is going to present. Then, when the length is increased the
harmonic frequencies shift to lower frequencies. The frequencies related to the under-ground
cables, which are those in the range from 200 𝐻𝑧 to 800 𝐻𝑧, does not present any change at
all. In both cases the magnitude of the frequencies does not increase nor decrease.
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Figure 4.7: Transmission line length variation (1)

Figure 4.8: Transmission line length variation (2)

In Figures 4.9 and 4.10 can be seen the small size test system harmonic response when
the length of the underground cables is varied. It can be observed that the frequencies related
to the transmission lines do not present any perceptible change. However, the frequencies
related to the underground cables does present a change. First, when the length is decreased
the frequencies tend to move to lower frequencies. Then, when the length is increased the
frequencies tend to move to higher values. Moreover, they increase their magnitude a little, as
it can be seen in Figure 4.10, where the magnitude of the frequencies presents a light yellow
colour.
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Figure 4.9: Underground cable length variation (1)

Figure 4.10: Underground cable length variation (2)

4.7.2. Lumped PI sections

In this subsection the use of lumped PI sections to represent a transmission line is addressed.
The next steps were performed to observe the harmonic response of the system to this new
representation:

1. The transmission line L1 is going to be represented as three PI sections connected in
series (lumped PI section). The new small size test system can be seen in Figure 4.11.
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Figure 4.11: New small size test system

The values of the inductances and capacitances of L11, L12, L13 PI sections will take
the values of L1.

2. The new dimensions of the state-space vector and matrices are,

𝑋ᑔᑝᑟᑡᑤᑖ =

⎡
⎢
⎢
⎢
⎢
⎣

𝑥ᎳᎳ
𝑥ᎳᎴ
𝑥ᎳᎵ
𝑥Ꮄ
𝑥Ꮅ

⎤
⎥
⎥
⎥
⎥
⎦

∈ ℝᎳᎳ×Ꮃ, 𝑈ᑔᑝᑟᑡᑤᑖ =

⎡
⎢
⎢
⎢
⎢
⎣

𝑢Ꮃ
0
0
𝑢Ꮄ
0

⎤
⎥
⎥
⎥
⎥
⎦

∈ ℝᎵ×Ꮃ, 𝑌ᑔᑝᑟᑡᑤᑖ =

⎡
⎢
⎢
⎢
⎢
⎣

𝑦ᎳᎳ
𝑦ᎳᎴ
𝑦ᎳᎵ
𝑦Ꮄ
𝑦Ꮅ

⎤
⎥
⎥
⎥
⎥
⎦

∈ ℝᎵ×Ꮃ

And the closed-loop matrices dimensions are,

𝐴ᑔᑝᑟᑡᑤᑖ ∈ ℝᎳᎹ×ᎳᎹ, 𝐵ᑔᑝᑟᑡᑤᑖ ∈ ℝᎳᎹ×Ꮇ,
𝐶ᑔᑝᑟᑡᑤᑖ ∈ ℝᎷ×ᎳᎹ, 𝐷ᑔᑝᑟᑡᑤᑖ ∈ ℝᎷ×Ꮇ

3. The elements of the new transfer function 𝐻ᑟᑔᑝ can be seen in Table 4.7
Table 4.7: New small size test system transfer function matrix ፇᑟᑔᑝ

𝑢Ꮃ 𝑢ᎳᎴ 𝑢ᎳᎵ 𝑢Ꮄ 𝑢Ꮅ

𝑦ᎳᎳ
ᑪᎳ(ᑤ)
ᑦᎳ(ᑤ)
𝑛 = 3

0 0 0 0

𝑦ᎳᎴ 0
ᑪᎴ(ᑤ)
ᑦᎴ(ᑤ)
𝑛 = 3

0 0 0

𝑦ᎳᎵ 0 0
ᑪᎵ(ᑤ)
ᑦᎵ(ᑤ)
𝑛 = 3

0 0

𝑦Ꮄ 0 0 0
ᑪᎶ(ᑤ)
ᑦᎶ(ᑤ)
𝑛 = 3

0

𝑦Ꮅ 0 0 0 0
ᑪᎷ(ᑤ)
ᑦᎷ(ᑤ)
𝑛 = 5
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4. When performing the SVD to 𝐻ᑟᑔᑝ the critical frequencies obtained can be seen in Fig-
ure 4.12.
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Figure 4.12: New small size test system first singular value

It can be observed that the critical frequencies, when representing the transmission line
L1 as lumped PI sections, match the critical frequencies of the single PI section used
before. Therefore, it can be concluded that this method does not recognise the critical
frequencies of several transmission lines when they have the same parameters.





5
Synthetic Randstad transmission

system. Harmonic response analysis

In this chapter the Randstad region is discussed in detail. Through the next sections it is
depicted where the Randstad region lies geographically and which are the important cities
that delimit the region. It is also showed the electric parameters of the transmission lines
and underground cables that are going to be used in the present work. Then the research
methodology of Chapter 1 is going to be used to find the harmonic frequencies of the region
and assess the influence of the inputs in the outputs of the system.

5.1. Geographic location
Within the Randstad region can be found four of the biggest cities in the Netherlands. To have
a better overview of where the Randstad lies within the country, in Figure 5.1a this region is
delimited by the red contour over the Netherlands territory. It can be observed that it is a vital
region in the territory and in the coming years will become even more important due to the
new wind power plants that are going to be connected to it. In Figure 5.1b can be observed
with more detail the primary cities that represent this region.

5.2. Randstad power transmission system
The Dutch transmission system has four main voltage levels, 110, 150, 220 and 380 kV. The
transmission lines, underground cables and buses at 380 kV that integrate the Randstad re-
gion can be seen in Figure 5.2 in red. It can be noticed that two rings are formed. The first
ring is integrated by the substations located in Beverwijk, Diemen, Bleiswijk and Krimpen aan
den IJssel in the north of the region. While in the south, the second ring is integrated by the
substations located in Westerlee, Maasvlakte, Bleiswijk and Krimpen aan den IJssel.

These two rings are connected by double-circuit transmission lines as well as XLPE un-
derground cables. The locations of the underground cables are between the substations
Wateringen and Bleiswijk and the substations Vijfhuizen and Beverwijk, where underground
cables with a length of 10.8 km and 9.3 km respectively, are implemented.

The substations mentioned before as well as those in between are the matter of study of
the present work.

43
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(a) (b)

Figure 5.1: Randstad region [2]

Figure 5.2: 380 kV buses in the Randstad [3]

5.3. Randstad SISO state-space representations
In order to model the SISO state-space representations of the elements within the Randstad
region, first of all, it is necessary to delimit the area of study.
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Table 5.1: Buses tags in PSS/E

City Voltage [kV]
Name in
PPS/E

Bus number
in PPS/E

Diemen 380 DIM 11113
Oostzaan 380 OZN 11192
Beverwijk 380 BVW 11105
Vijfhuizen 380 VHZ 11213
Bleiswijk 380 BWK 11107
Wateringen 380 WTR 11221
Westerlee 380 WL 11217
Terminal SP 380 TERMINAL SP 11208
Maasvlakte 380 MVL 11177
Simonshaven 380 TERMINAL SMH 11201
Crayestein 380 CST 11110

Krimpen aan den Ijssel 380 KIJ 11161
Breukelen Kortrijk 380 BKK 11100

Figure 5.3: Randstad region single line diagram
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Therefore, it is necessary to choose the buses that are going to be part of the Randstad
area in order to extract their electrical parameters from the PSS/E software. In Table 5.1 can
be seen the names and the numbers that the buses have in the PSS/E software.

The area delimited by these buses can be seen in Figure 5.3. Within this area lie twelve
transmission lines and two underground cables, and the values of their respective electrical
components are enlisted in Appendix A in Table A.1. With this information it is possible to
build the fourteen SISO state-space representations that lie in the Randstad region. For that
matter, a routine in Matlab was created and it can be consulted in Appendix B.2.

5.4. Randstad state-space concatenation

The steps explained in Section 3.1 are going to be followed to concatenate the twelve state-
space representations for the transmission lines and the two state-space representations for
the underground cables.

A simpler representation of the Randstad region can be seen in Figure 5.4. A few important
points need to be pointed out:

• The circles represent the state-space representations of each element in the Randstad
region. It can be seen that there are fourteen of them.

• The arrow(s) that point to a certain circle are the inputs that a particular system has.

• The arrow(s) that come out of a certain circle are the outputs that a particular system
has.

For Step 1 of the methodology presented in Section 3.1 and based on the topology of
Figure 5.4 it can be observed that the open loop state-space representation will have the
following dimensions, where the number of systems to be concatenated is fourteen,

𝑋ᑠᑝ =

⎡
⎢
⎢
⎢
⎢
⎣

𝑥Ꮃ
𝑥Ꮄ
⋮
𝑥ᎳᎵ
𝑥ᎳᎶ

⎤
⎥
⎥
⎥
⎥
⎦

∈ ℝᎶᎸ×Ꮃ, 𝑈ᑠᑝ =

⎡
⎢
⎢
⎢
⎢
⎣

𝑢Ꮃ
𝑢Ꮄ
⋮
𝑢ᎳᎵ
𝑢ᎳᎶ

⎤
⎥
⎥
⎥
⎥
⎦

∈ ℝᎳᎶ×Ꮃ, 𝑌ᑠᑝ =

⎡
⎢
⎢
⎢
⎢
⎣

𝑦Ꮃ
𝑦Ꮄ
⋮
𝑦ᎳᎵ
𝑦ᎳᎶ

⎤
⎥
⎥
⎥
⎥
⎦

∈ ℝᎳᎶ×Ꮃ

Where the elements of the state-space vectors for the transmission lines are of the form,

𝑥ᑚ =
⎡
⎢
⎢
⎢
⎣

𝑖ᑃᑚ

𝑉ᐺᎳᑚ
𝑉ᐺᎴᑚ

⎤
⎥
⎥
⎥
⎦

∈ ℝᎵ×Ꮃ

It is important to point out that the transmission lines have the subscripts 1, 2, 3, 4, 5, 7,
8, 9, 10, 12, 13, 14. The elements of the state-space vectors for the underground cables are
of the form,
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Figure 5.4: Randstad simplified electrical system

𝑥ᑚ =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

𝑖ᑃᑫᎳ,ᑚ
𝑖ᑃᑫᎴ,ᑚ
𝑖ᑃᑫᎵ,ᑚ
𝑉ᐺᎳᑚ
𝑉ᐺᎴᑚ

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

∈ ℝᎷ×Ꮃ

The underground cables have the subscripts 6 and 11. The respective matrices have the
next dimensions,

𝐴ᑠᑝ =

⎡
⎢
⎢
⎢
⎢
⎣

𝐴Ꮃ 0Ꮅ×Ꮅ ⋯ 0Ꮅ×Ꮅ 0Ꮅ×Ꮅ
0Ꮅ×Ꮅ 𝐴Ꮄ ⋯ 0Ꮅ×Ꮅ 0Ꮅ×Ꮅ
⋮ ⋮ ⋱ ⋮ ⋮

0Ꮅ×Ꮅ 0Ꮅ×Ꮅ ⋯ 𝐴ᎳᎵ 0Ꮅ×Ꮅ
0Ꮅ×Ꮅ 0Ꮅ×Ꮅ ⋯ 0Ꮅ×Ꮅ 𝐴ᎳᎶ

⎤
⎥
⎥
⎥
⎥
⎦

∈ ℝᎶᎸ×ᎶᎸ, 𝐵ᑠᑝ =

⎡
⎢
⎢
⎢
⎢
⎣

𝐵Ꮃ 0Ꮅ×Ꮃ ⋯ 0Ꮅ×Ꮃ 0Ꮅ×Ꮃ
0Ꮅ×Ꮃ 𝐵Ꮄ ⋯ 0Ꮅ×Ꮃ 0Ꮅ×Ꮃ
⋮ ⋮ ⋱ ⋮ ⋮

0Ꮅ×Ꮃ 0Ꮅ×Ꮃ ⋯ 𝐵ᎳᎵ 0Ꮅ×Ꮃ
0Ꮅ×Ꮃ 0Ꮅ×Ꮃ ⋯ 0Ꮅ×Ꮃ 𝐵ᎳᎶ

⎤
⎥
⎥
⎥
⎥
⎦

∈ ℝᎶᎸ×ᎳᎶ,

𝐶ᑠᑝ =

⎡
⎢
⎢
⎢
⎢
⎣

𝐶Ꮃ 0Ꮃ×Ꮅ ⋯ 0Ꮃ×Ꮅ 0Ꮃ×Ꮅ
0Ꮃ×Ꮅ 𝐶Ꮄ ⋯ 0Ꮃ×Ꮅ 0Ꮃ×Ꮅ
⋮ ⋮ ⋱ ⋮ ⋮

0Ꮃ×Ꮅ 0Ꮃ×Ꮅ ⋯ 𝐶ᎳᎵ 0Ꮃ×Ꮅ
0Ꮃ×Ꮅ 0Ꮃ×Ꮅ ⋯ 0Ꮃ×Ꮅ 𝐶ᎳᎶ

⎤
⎥
⎥
⎥
⎥
⎦

∈ ℝᎳᎶ×ᎶᎸ, 𝐷ᑠᑝ =

⎡
⎢
⎢
⎢
⎢
⎣

𝐷Ꮃ 0Ꮃ×Ꮃ ⋯ 0Ꮃ×Ꮃ 0Ꮃ×Ꮃ
0Ꮃ×Ꮃ 𝐷Ꮄ ⋯ 0Ꮃ×Ꮃ 0Ꮃ×Ꮃ
⋮ ⋮ ⋱ ⋮ ⋮

0Ꮃ×Ꮃ 0Ꮃ×Ꮃ ⋯ 𝐷ᎳᎵ 0Ꮃ×Ꮃ
0Ꮃ×Ꮃ 0Ꮃ×Ꮃ ⋯ 0Ꮃ×Ꮃ 𝐷ᎳᎶ

⎤
⎥
⎥
⎥
⎥
⎦

∈ ℝᎳᎶ×ᎳᎶ

It is important to note that the size of the matrices 𝐴Ꮈ and 𝐴ᎳᎳ in the main diagonal of 𝐴ᑠᑝ
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is 5 × 5. The size of the rest of the matrices is 3 × 3. The size of the matrices 𝐵Ꮈ and 𝐵ᎳᎳ in
the main diagonal of 𝐵ᑠᑝ is 5×1. The rest has a size of 3×1. The size of the matrices 𝐶Ꮈ and
𝐶ᎳᎳ in the main diagonal of 𝐶ᑠᑝ is 1 × 5. The rest has a size of 1 × 3. Finally, the size of the
matrices in the main diagonal of 𝐷ᑠᑝ is 1 × 1 and they are zero matrices.

In Step 2 of the methodology, it is necessary to define the internal inputs and the ex-
ternal inputs. In our system there are only two external inputs, which are the inputs of the
systems L1 and L8 as can be seen in Figure 5.4. The rest of the inputs are going to be internal.

In order to build the interconnection matrix 𝑀ᑚᑟᑥ, and the external matrix 𝑀ᑖᑩᑥ two
tables depicting the inputs and outputs of the system were built. In Appendix A in Tables A.2
and A.3 can be seen the dynamics of the interconnection matrix for systems 1 to 7 and 8 to
14, respectively. It can be observed that when the output of a certain system is the input
of a complete different system a number 1 appears, depicting the interaction among those
systems. Only a few elements in the interconnection matrix will have an internal interaction,
these dynamics will depend on the topology of the power system.

To summarise, the elements of 𝑀ᑚᑟᑥ that will be internally connected are:

𝑀ᑚᑟᑥ(2, 1) 𝑀ᑚᑟᑥ(7, 1) 𝑀ᑚᑟᑥ(3, 2)
𝑀ᑚᑟᑥ(4, 3) 𝑀ᑚᑟᑥ(5, 4) 𝑀ᑚᑟᑥ(6, 5)
𝑀ᑚᑟᑥ(6, 7) 𝑀ᑚᑟᑥ(9, 8) 𝑀ᑚᑟᑥ(12, 8)
𝑀ᑚᑟᑥ(10, 9) 𝑀ᑚᑟᑥ(11, 10) 𝑀ᑚᑟᑥ(6, 11)
𝑀ᑚᑟᑥ(13, 12) 𝑀ᑚᑟᑥ(14, 13) 𝑀ᑚᑟᑥ(5, 14)

The external matrix has a simpler construction due to the nature of the system depicted
in Figure 5.4. As it can be seen in Tables A.4 and A.5, only the inputs 𝑢Ꮃ and 𝑢Ꮊ are external
inputs, meaning that they do not receive any output from other system. The matrix𝑀ᑖᑩᑥ shows
a 1 in the intersection of the input and the output of the indicated systems. To summarise,
the elements of 𝑀ᑖᑩᑥ which are external inputs are:

𝑀ᑖᑩᑥ(1, 1) 𝑀ᑖᑩᑥ(8, 8)

It is important to notice that both matrices have the following dimensions,

𝑀ᑚᑟᑥ ∈ ℝᎳᎶ×ᎳᎶ, 𝑀ᑖᑩᑥ ∈ ℝᎳᎶ×ᎳᎶ,

Then, the components of the input vector in the open loop U
ᖤ
ol
= Uint +Uext are,
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𝑈ᑚᑟᑥ = 𝑀ᑚᑟᑥ𝑌ᑠᑝ =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

0
𝑦Ꮃ
𝑦Ꮄ
𝑦Ꮅ

𝑦Ꮆ + 𝑦ᎳᎶ
𝑦Ꮇ + 𝑦Ꮉ + 𝑦ᎳᎳ

𝑦Ꮃ
0
𝑦Ꮊ
𝑦Ꮋ
𝑦ᎳᎲ
𝑦Ꮊ
𝑦ᎳᎴ
𝑦ᎳᎵ

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

∈ ℝᎳᎶ×Ꮃ, 𝑈ᑖᑩᑥ = 𝑀ᑖᑩᑥ𝑈ᑠᑝ =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

𝑢Ꮃ
0
0
0
0
0
0
𝑢Ꮊ
0
0
0
0
0
0

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

∈ ℝᎳᎶ×Ꮃ

It can be noticed that Uint contains only the dynamics of the internal inputs. As an exam-
ple, from Figure 5.4, the output of the lines L4 and L14 are inputs of the line L5. Therefore, in
the element (5, 1) of Uint, it can be seen that those outputs are added. In the same manner,
the output of lines L5, L7, L11 are the inputs to the line L6 and this dynamics can be observed
in the element (6, 1). Since the inputs of the lines L1 and L8 does not receive any output form
other system the elements Uint(1,1) and Uint(8,1) are zero.

For Uext, only the inputs that are not fed back to other system are shown. Thus only the
inputs of lines L1 and L8 have a value in this vector, while the other elements are zero.

Once definedMint andMext and the elements of the input vector U
ᖤ
ol
the matrix for the

open loop in the Step 2, Eol, can be calculated.

In the Step 3, the last step of the methodology, the matrices for the closed loop are
obtained by identification. Therefore, the state, input and output vectors of the global space-
state representation are,

𝑋ᑔᑝᑉᑤ = 𝑋ᑠᑝ =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

𝑥Ꮃ
𝑥Ꮄ
𝑥Ꮅ
𝑥Ꮆ
𝑥Ꮇ
𝑥Ꮈ
𝑥Ꮉ
𝑥Ꮊ
𝑥Ꮋ
𝑥ᎳᎲ
𝑥ᎳᎳ
𝑥ᎳᎴ
𝑥ᎳᎵ
𝑥ᎳᎶ

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

∈ ℝᎶᎸ×Ꮃ, 𝑈ᑔᑝᑉᑤ = 𝑀ᑖᑩᑥ𝑈ᑠᑝ =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

𝑢Ꮃ
0
0
0
0
0
0
𝑢Ꮊ
0
0
0
0
0
0

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

∈ ℝᎳᎶ×Ꮃ, 𝑌ᑔᑝᑉᑤ = 𝑌ᑠᑝ

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

𝑦Ꮃ
𝑦Ꮄ
𝑦Ꮅ
𝑦Ꮆ
𝑦Ꮆ
𝑦Ꮈ
𝑦Ꮉ
𝑦Ꮊ
𝑦Ꮋ
𝑦ᎳᎲ
𝑦ᎳᎳ
𝑦ᎳᎴ
𝑦ᎳᎵ
𝑦ᎳᎶ

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

∈ ℝᎳᎶ×Ꮃ

And the closed-loop matrices dimensions of the global space-state representation are,
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𝐴ᑔᑝᑉᑤ ∈ ℝᎶᎸ×ᎶᎸ, 𝐵ᑔᑝᑉᑤ ∈ ℝᎶᎸ×ᎳᎶ,
𝐶ᑔᑝᑉᑤ ∈ ℝᎳᎶ×ᎶᎸ, 𝐷ᑔᑝᑉᑤ ∈ ℝᎳᎶ×ᎳᎶ

Finally, the MIMO system of the Ranstad region can be expressed in a state-space repre-
sentation point of view as,

�̇�ᑔᑝᑉᑤ = 𝐴ᑔᑝᑉᑤ𝑋ᑔᑝᑉᑤ + 𝐵ᑔᑝᑉᑤ𝑈ᑔᑝᑉᑤ
𝑌ᑔᑝᑉᑤ = 𝐶ᑔᑝᑉᑤ𝑋ᑔᑝᑉᑤ + 𝐷ᑔᑝᑉᑤ𝑈ᑔᑝᑉᑤ

(5.1)

Where the subscript Rs stands for Randstad.

5.5. Randstad singular value decomposition

In the previous section, a state-space representation for the Randstad region was obtained an
can be seen in 5.1. In order to obtain the transfer function matrix of the system, the theory
of Section 4.3 is used. Therefore, the resultant transfer function matrix can be expressed as,

𝐻ᑔᑝᑉᑤ(𝑠) =
𝑌ᑔᑝᑉᑤ(𝑠)
𝑈ᑔᑝᑉᑤ(𝑠)

(5.2)

HclRs
is a 14 × 14 matrix, which links a certain input with a certain output of the system.

However, not all the elements of the transfer function matrix are different from zero, some of
them are zero due to the topology of the system. In Table A.6 can be seen which elements of
HclRs

have a non-zero value and which ones have a transfer function. The letter n indicates
the degree of the characteristic polynomial of that specific transfer function.

The transfer function matrix 𝐻ᑔᑝᑉᑤ which has all the information of the Randstad region is
going to be studied using the SVD. The next steps were followed,

1. A range of frequencies is previously defined. Within this range it is going to be observed
the critical (harmonic) frequencies the system has. Thus, the selected frequency vector
was 𝑓 = 1 𝐻𝑧 to 𝑓 = 10 𝑘𝐻𝑧, which is equally spaced.

2. The transfer function matrix 𝐻ᑔᑝᑉᑤ is going to be evaluated in each of these frequencies.
Since 𝐻ᑔᑝᑉᑤ(𝑠) = 𝐻ᑔᑝᑉᑤ(𝑗𝜔), the elements in this matrix are going to show a complex
behaviour. Therefore, it is necessary to obtain the absolute value of each complex com-
ponent in 𝐻ᑔᑝᑉᑤ(𝑗𝜔).

3. The SVD is performed for every matrix 𝐻ᑔᑝᑉᑤ(𝑗𝜔) evaluated in the frequency vector. Thus,
it is obtained a vector of matrices Σ containing the singular values for each frequency 𝜔
in the frequency vector.

The resultant singular values can be seen in Figure 5.5. As it was expected there are
fourteen singular values curves that corresponds to each singular value matrix Σ.
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Figure 5.5: Randstad region singular value decomposition

As stated earlier in this chapter, the first singular value 𝜎Ꮃ has the highest gain and there-
fore it will have the bigger impact in the inputs and outputs of the system. In Figure 5.6 can
be seen the curve of the first singular value. It can be noticed that there are twelve maximum
peaks at certain frequencies. The frequencies where these peaks occur are of great interest
for this research, since the vectors of the rotational matrices 𝑈 and 𝑉ᐿ associated with the
first singular value can be studied and determine which inputs affect more the behaviour of
certain outputs. These frequencies can be observed in Table 5.2.
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Figure 5.6: Randstad region first singular value

5.6. Randstad input and output assessment
In this section, an analysis of which input is going to have more influence in the system and
which output is going to be the most affected is addressed. For that matter in Tables A.7
and A.8, the left and right singular vectors associated with the first singular value for the
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frequencies listed in Table 5.2 are shown. In order to analyse these vectors, the frequency 𝑓Ꮃ
is going to be taken as an example. The right singular vector or the vector associated with
the inputs of the system for the frequency 𝑓Ꮃ is 𝑉ᐿᎳ . It can be noticed that the eighth element
of this vector (𝑉ᐿᎳ (8, 1)) has the highest absolute value among the other components in this
vector. This means that the input number 1, 𝑢Ꮊ is going to have the biggest direction and will
affect the system in a greater manner. On the other hand, when looking at the left singular
vector or the vector associated with the outputs of the system, 𝑈Ꮃ, it can be seen that the
fifth element (𝑈Ꮃ(5, 1)) has the highest absolute value among the other components in the
vector. Therefore, the output that will be more affected by the this input is going to be the
fifth output, 𝑦Ꮇ.

Table 5.2: Randstad region harmonic frequencies

𝜎Ꮃ (dB) Frequency (Hz)

82.8058 5.1432
67.9747 5.4795
83.2872 5.6071
70.6988 7.9971
68.1276 9.9148
112.3707 11.2536
85.8286 13.3497
87.6124 13.9522
85.9835 29.3222
83.9243 30.6455
22.0145 550
25.9352 1300

A similar analysis can be done with the corresponding singular vectors at frequency 𝑓ᎳᎴ.
The right singular value vector shows a maximum absolute value in its eleventh component
(𝑉ᐿᎳᎴ(11, 1)), followed by the sixth component (𝑉ᐿᎳᎴ(6, 1)). However, the system only has inputs
different from zero in the first (𝑢Ꮃ) and eighth (𝑢Ꮊ) components, and since the other direc-
tions are zero the direction that affects more the outputs is the one in the first component
(𝑉ᐿᎳᎴ(1, 1)). From the corresponding left singular vector (𝑈ᎳᎴ), it can be clearly seen that the
direction that affect the most the input is the one in the eleventh component (𝑈ᎳᎴ(11, 1)).
Therefore, output 𝑦ᎳᎳ is the most affected.

In order to visualise the impact of the first singular value (𝜎Ꮃ) on the response of the Rand-
stad region, a sinusoidal signal with the critical harmonic frequencies are injected at the inputs.

Following the analysis derived in Section 4.4, a sinusoidal input of the form,

𝑑ᑉᑕ = 𝑑Ꮂ(cos (𝜔𝑡 + 𝛼) + 𝑗 sin (𝜔𝑡 + 𝛼)) (5.3)

is applied as input in 𝑢Ꮃ and 𝑢Ꮊ of the Randstad region transfer function matrix. The magni-
tude 𝑑Ꮂ is chosen as 1, the phase shift is 0 and the frequency 𝜔 will take the frequency values
of Table 5.2.

When a sinusoidal signal with the first frequency 𝑓Ꮃ = 5.14 𝐻𝑧 is injected to the system at
the first and eighth inputs corresponding to the Hollandse Kust Nord and South wind parks,
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the output that will be the most affected in terms of voltage increment is the output 𝑦Ꮇ, that
corresponds to the voltage at the Krimpen aan den IJssel (KIJ) substation. In Figure 5.7 can
be seen that when injecting a voltage with a magnitude of 1 𝑝.𝑢., the voltage at output 𝑦Ꮇ
increases to approximately 7.6 𝑝.𝑢. and the oscillation behaviour that presents is persistent.
The same behaviour will present the outputs 𝑦Ꮇ, 𝑦Ꮅ and 𝑦Ꮈ when injecting a sinusoidal with a
frequency of 𝑓Ꮅ = 5.60 𝐻𝑧, 𝑓Ꮉ = 13.34 𝐻𝑧, 𝑓ᎳᎲ = 30.64 𝐻𝑧, respectively.

Another frequency of interest is 𝑓Ꮆ = 7.99𝐻𝑧, if a sinusoidal with this frequency is injected
to the Randstad system, the output voltage that presents the higher increment is 𝑦 = 6, that
corresponds to the voltage at the Beverwijk substation. In Figure 5.8 can be seen that the
increment has a maximum of 1.4 𝑝.𝑢., and the oscillation behaviour is sustained. A similar be-
haviour present the output voltages 𝑦Ꮇ, 𝑦Ꮈ when is injected a sinusoidal with the frequencies
𝑓Ꮄ = 5.4 𝐻𝑧, 𝑓Ꮇ = 9.91 𝐻𝑧, respectively.
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Figure 5.7: Randstad first frequency injected in inputs ፮Ꮃ and ፮Ꮊ
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Figure 5.8: Randstad fourth frequency injected in inputs ፮Ꮃ and ፮Ꮊ

The most critical frequency is 𝑓Ꮈ = 11.25 𝐻𝑧. At this frequency the singular value de-
composition presents the higher magnitude, as it can be seen in Figure 5.6. When injecting
a sinusoidal with this frequency at the inputs of the system, the most affected output is 𝑦Ꮈ,
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which is the voltage at the Krimpen aan den IJssel (KIJ) substation. The increment of the
voltage is 27.8 𝑝.𝑢..

In Figure 5.6 can be seen two frequencies beyond 50𝐻𝑧, this two frequencies corresponds
to the two underground cables that exists in the Randstad region. The time-domain simulation
for these frequencies have a different behaviour than those below 50 𝐻𝑧. In Figure 5.10 can
be seen the time-domain simulation when a sinusoidal with a frequency of 𝑓ᎳᎳ = 550 𝐻𝑧 is
injected to the system. In this case, the most affected output is 𝑦Ꮈ, that corresponds to the
voltage at the Beverwijk substation. It can be noticed that the voltage amplification increases
really fast in the first seconds of the simulations, in contrast to the previous time-domain sim-
ulations where the voltage increases gradually with time. Then, the voltage starts to decrease
and after a while it settles to 0.71 𝑝.𝑢. and maintains this value through the rest of the simu-
lation.

In Table 5.3 are summarised the injected sinusoidal signals with the respective harmonic
frequency and the substation of the most affected transmission line or underground cable.
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Figure 5.9: Randstad sixth frequency injected in inputs ፮Ꮃ and ፮Ꮊ
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Figure 5.10: Randstad eleventh frequency injected in inputs ፮Ꮃ and ፮Ꮊ
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Table 5.3: Randstad region most affected elements

Injected frequency
𝑓ᑚ

Input affecting the system the most
𝑢ᑚ

Most affected output
𝑦ᑚ

Transmission line or
underground cable

5.1432 𝑢Ꮊ - HKZ 𝑦Ꮇ BWK to KIJ - Voltage at KIJ
5.4795 𝑢Ꮃ - HKN 𝑦Ꮇ BWK to KIJ - Voltage at KIJ
5.6071 𝑢Ꮊ - HKZ 𝑦Ꮇ BWK to KIJ - Voltage at KIJ
7.9971 𝑢Ꮊ - HKZ 𝑦Ꮈ VHZ to BWK - Voltage at BWK
9.9148 𝑢Ꮃ - HKN 𝑦Ꮈ VHZ to BWK - Voltage at BWK
11.2536 𝑢Ꮃ - HKN 𝑦Ꮈ VHZ to BWK - Voltage at BWK
13.3497 𝑢Ꮃ - HKN 𝑦Ꮅ DIM to BKK - Voltage at BKK
13.9522 𝑢Ꮃ - HKN 𝑦Ꮅ DIM to BKK - Voltage at BKK
29.3222 𝑢Ꮊ - HKZ 𝑦Ꮈ VHZ to BWK - Voltage at BWK
30.6455 𝑢Ꮊ - HKZ 𝑦Ꮈ VHZ to BWK - Voltage at BWK
550 𝑢Ꮃ - HKN 𝑦Ꮈ VHZ to BWK - Voltage at BWK
1300 𝑢Ꮃ - HKN 𝑦ᎳᎳ WTR to BWK - Voltage at BWK

5.7. Randstad sensitivity analysis
In this section, an analysis on the variation of the length of the transmission lines and the
underground cables is performed. The first task to achieve is to variate only the length of the
transmission lines in order to observe if the frequencies induced by the underground cables
are influenced by this variation. The second task is to do the opposite, the length of the
underground cables are going to be varied, in order to observe if the frequencies induced by
the transmission lines are affected.

On one hand, in Figure 5.11 and 5.12 can be seen the harmonic response of the Randstad
region when the length of the transmission lines is varied. At first sight, it can be noticed that
the frequencies induced by the transmission lines, which are those in the range from 0 𝐻𝑧 to
50𝐻𝑧, shift to higher frequencies when the lines is shorter. Meaning that the shorter the line,
the higher the frequencies the system is going to present. Then, when the length is increased
the harmonic frequencies shift to lower frequencies. The frequencies related to the under-
ground cables, which are those in the range from 100 𝐻𝑧 to 1500 𝐻𝑧, does not present any
change at all. In both cases the magnitude of the frequencies does not increase nor decrease.

Figure 5.11: Transmission line length variation (1)

On the other hand, in Figure 5.13 and 5.14 can be seen the Randstad harmonic response
when the length of the underground cables is varied. It can be observed that the frequen-
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cies related to the transmission lines do not present any perceptible change. However, the
frequencies related to the underground cables does present a change. First, when the length
is decreased the frequencies tend to move to lower frequencies. Then, when the length is
increased the frequencies tend to move to higher values. Moreover, they increase their magni-
tude a little, as it can be seen in Figure 5.14, where the magnitude of the frequencies present
a light green colour.

Figure 5.12: Transmission line length variation (2)

Figure 5.13: Underground cable length variation (1)

Performing this analysis can be observed that the transmission line that shows the highest
impact in the observed harmonics, in terms of magnitude, is the transmission line that lies
between the Diemen and the Breukelen Kortrijk substations. This transmission line has the
input 𝑢Ꮅ and the output 𝑦Ꮅ. To this transmission line is associated the frequency number
eleven 𝑓ᎳᎳ, which in Table 5.2 depicts the highest magnitude in the system. It was seen in
this sensitivity analysis that the frequencies associated to this transmission line always depicts
the highest amplitude. Therefore, this is the most critical frequency in the Randstad region
because it will present the highest voltage increment when injected to the system.
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Figure 5.14: Underground cable length variation (2)





6
Conclusions and recommendations

This chapter contains the main conclusions that can be drawn from the research developed
in the previous chapters. It also contains the answers to the research questions presented in
Chapter 1. Finally, recommendations and future work are also discussed.

6.1. Conclusions
In the present work the harmonic frequencies of an electrical power system were obtained
when the system is modelled in a MIMO point of view. A representation of the system in
this way is necessary because a power system has many voltage injections and injects many
voltage signals. The classical methods are not suitable for the study of a MIMO system since
they only take into account SISO representations of a power system.

It was seen that the singular value decomposition is useful to find the harmonic frequencies
of the system. Moreover, this tool is helpful to asses the voltage input that affect the system
the most and the voltage output that is the most affected by that input. This can be seen
in the time-domain simulations when a certain harmonic frequency is injected to the system.
The most affected output will present an increment in terms of voltage magnitude and will
show sustained oscillations.

The main conclusions derived from the present work are:

1. It is possible to represent the elements of a transmission power system as linear-time-
invariant systems and represent them in a state-space representation.

2. A methodology can be developed to concatenate the state-space representation of each
element in the transmission power system, and represent it as a multiple-input multiple-
output system.

3. The dynamics of the multiple-input multiple-output system can be expressed in time
domain via the state-space representation and in frequency domain via the transfer
function matrix of the system.

4. It is possible to obtain the harmonic frequencies of the transmission power system rep-
resented as a MIMO system, using the singular value decomposition.

5. Using this mathematical tool, an input-output analysis can be performed to assess which
element of the MIMO system is the most affected by a certain harmonic frequency.

59
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6.2. Answers to research questions
The answers to the research questions of Chapter 1 are summarised as follows:

1. How to derive a model of a transmission electrical power system to asses the
harmonic response by considering a multiple-input multiple-output point of
view?

There are two ways of building a MIMO system. The first one, is to obtain each differ-
ential equation describing the dynamics of the system under study. Then, choose the
relevant states of the system and build the state-space matrices. It is important to point
out that the more inputs and outputs the system has, the more difficult is to obtain
the differential equations. The second way is to obtain the single-input single-output
(SISO) representation of each element in the transmission power system and then, con-
catenate each representation to obtain a MIMO system. In order to perform the latter
a methodology to connect each SISO state-space representation is needed. The last
approach was used in this research, not only to concatenate the SISO representations,
but to depict the system in time domain and frequency domain. The latter is necessary
to answer the next research question.

2. How to analytically determine the influence of harmonic voltage injections
on the harmonic performance observed in different buses of a transmission
electrical power system?

In order to obtain the harmonic performance of a transmission power system which is
modelled as a MIMO system, a mathematical tool called singular value decomposition can
be used. As stated earlier in this chapter, this tool has been used in many transmission
power related studies, and in the present work is discussed whether it can be useful to
show the harmonic response of a determined transmission system or not. The analysis
developed in the chapters of the present work has shown that not only the harmonic
response of a transmission power system can be easily extracted, this tool is also useful
to determine which output of the system is being affected the most, and which input
has more influence in the dynamics of the system.

6.3. Future work recommendations
Although a lot of researchers have used the singular value decomposition for the study of
transmission power systems, the use of this tool to analyse their harmonic response is still
under study. Therefore, some suggestions that can be followed to improve the study of this
topic can be pointed out:

1. Include a state-space representation of the harmonic elements of a certain wind turbine.
This can be achieved by performing a Fourier analysis of the voltage signal extracted
from the turbine and find a linear-time-invariant representation of the harmonic content
found by the Fourier analysis.

2. A more detailed state-space representation of the elements of the transmission power
system can be used. In the present work, PI sections and fitted PI sections were used to
describe the transmission lines and underground cables, respectively. However, transient
and frequency-dependent models can also be studied and used [27].
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3. Consider more elements of the transmission power system to concatenate, such as,
three phase transformers, generators, stabilisers, governors. However, it is important to
point out that the higher the elements to be concatenated, the bigger the computational
effort is.

4. An unbalanced transmission line or underground cable representation can be used to
study the harmonic response of the system.





A
Relevant information tables

In this appendix the tables that contain an enormous amount of relevant information from the
chapters included in this thesis are presented.
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Table A.2: Interconnection Matrix ፌᑚᑟᑥ. Systems 1 to 7

BVW to OZN
L1

OZN to DIM
L2

DIM to BKK
L3

BKK to KIJ
L4

KIJ to BWK
L5

BWK to VHZ
L6

VHZ to BVW
L7

𝑦Ꮃ 𝑦Ꮄ 𝑦Ꮅ 𝑦Ꮆ 𝑦Ꮇ 𝑦Ꮈ 𝑦Ꮉ
BVW to OZN

L1 𝑢Ꮃ 0 0 0 0 0 0 0

OZN to DIM
L2 𝑢Ꮄ 1 0 0 0 0 0 0

DIM to BKK
L3 𝑢Ꮅ 0 1 0 0 0 0 0

BKK to KIJ
L4 𝑢Ꮆ 0 0 1 0 0 0 0

KIJ to BWK
L5 𝑢Ꮇ 0 0 0 1 0 0 0

BWK to VHZ
L6 𝑢Ꮈ 0 0 0 0 1 0 1

VHZ to BVW
L7 𝑢Ꮉ 1 0 0 0 0 0 0

MVL to SP
L8 𝑢Ꮊ 0 0 0 0 0 0 0

SP to WL
L9 𝑢Ꮋ 0 0 0 0 0 0 0

WL to WTR
L10 𝑢ᎳᎲ 0 0 0 0 0 0 0

WTR to BWK
L11 𝑢ᎳᎳ 0 0 0 0 0 0 0

MVL to SMH
L12 𝑢ᎳᎴ 0 0 0 0 0 0 0

SMH to CST
L13 𝑢ᎳᎵ 0 0 0 0 0 0 0

CST to KIJ
L14 𝑢ᎳᎶ 0 0 0 0 0 0 0

Table A.3: Interconnection Matrix ፌᑚᑟᑥ. Systems 8 to 14

MVL to SP
L8

SP to WL
L9

WL to WTR
L10

WTR to BWK
L11

MVL to SMH
L12

SMH to CST
L13

CST to KIJ
L14

𝑦Ꮊ 𝑦Ꮋ 𝑦ᎳᎲ 𝑦ᎳᎳ 𝑦ᎳᎴ 𝑦ᎳᎵ 𝑦ᎳᎶ
BVW to OZN

L1 𝑢Ꮃ 0 0 0 0 0 0 0

OZN to DIM
L2 𝑢Ꮄ 0 0 0 0 0 0 0

DIM to BKK
L3 𝑢Ꮅ 0 0 0 0 0 0 0

BKK to KIJ
L4 𝑢Ꮆ 0 0 0 0 0 0 0

KIJ to BWK
L5 𝑢Ꮇ 0 0 0 0 0 0 1

BWK to VHZ
L6 𝑢Ꮈ 0 0 0 1 0 0 0

VHZ to BVW
L7 𝑢Ꮉ 0 0 0 0 0 0 0

MVL to SP
L8 𝑢Ꮊ 0 0 0 0 0 0 0

SP to WL
L9 𝑢Ꮋ 1 0 0 0 0 0 0

WL to WTR
L10 𝑢ᎳᎲ 0 1 0 0 0 0 0

WTR to BWK
L11 𝑢ᎳᎳ 0 0 1 0 0 0 0

MVL to SMH
L12 𝑢ᎳᎴ 1 0 0 0 0 0 0

SMH to CST
L13 𝑢ᎳᎵ 0 0 0 0 1 0 0

CST to KIJ
L14 𝑢ᎳᎶ 0 0 0 0 0 1 0
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Table A.4: External Matrix ፌᑖᑩᑥ. Systems 1 to 7

BVW to OZN
L1

OZN to DIM
L2

DIM to BKK
L3

BKK to KIJ
L4

KIJ to BWK
L5

BWK to VHZ
L6

VHZ to BVW
L7

𝑦Ꮃ 𝑦Ꮄ 𝑦Ꮅ 𝑦Ꮆ 𝑦Ꮇ 𝑦Ꮈ 𝑦Ꮉ
BVW to OZN

L1 𝑢Ꮃ 1 0 0 0 0 0 0

OZN to DIM
L2 𝑢Ꮄ 0 0 0 0 0 0 0

DIM to BKK
L3 𝑢Ꮅ 0 0 0 0 0 0 0

BKK to KIJ
L4 𝑢Ꮆ 0 0 0 0 0 0 0

KIJ to BWK
L5 𝑢Ꮇ 0 0 0 0 0 0 0

BWK to VHZ
L6 𝑢Ꮈ 0 0 0 0 0 0 0

VHZ to BVW
L7 𝑢Ꮉ 0 0 0 0 0 0 0

MVL to SP
L8 𝑢Ꮊ 0 0 0 0 0 0 0

SP to WL
L9 𝑢Ꮋ 0 0 0 0 0 0 0

WL to WTR
L10 𝑢ᎳᎲ 0 0 0 0 0 0 0

WTR to BWK
L11 𝑢ᎳᎳ 0 0 0 0 0 0 0

MVL to SMH
L12 𝑢ᎳᎴ 0 0 0 0 0 0 0

SMH to CST
L13 𝑢ᎳᎵ 0 0 0 0 0 0 0

CST to KIJ
L14 𝑢ᎳᎶ 0 0 0 0 0 0 0

Table A.5: External Matrix ፌᑖᑩᑥ. Systems 8 to 14

MVL to SP
L8

SP to WL
L9

WL to WTR
L10

WTR to BWK
L11

MVL to SMH
L12

SMH to CST
L13

CST to KIJ
L14

𝑦Ꮊ 𝑦Ꮋ 𝑦ᎳᎲ 𝑦ᎳᎳ 𝑦ᎳᎴ 𝑦ᎳᎵ 𝑦ᎳᎶ
BVW to OZN

L1 𝑢Ꮃ 0 0 0 0 0 0 0

OZN to DIM
L2 𝑢Ꮄ 0 0 0 0 0 0 0

DIM to BKK
L3 𝑢Ꮅ 0 0 0 0 0 0 0

BKK to KIJ
L4 𝑢Ꮆ 0 0 0 0 0 0 0

KIJ to BWK
L5 𝑢Ꮇ 0 0 0 0 0 0 0

BWK to VHZ
L6 𝑢Ꮈ 0 0 0 0 0 0 0

VHZ to BVW
L7 𝑢Ꮉ 0 0 0 0 0 0 0

MVL to SP
L8 𝑢Ꮊ 1 0 0 0 0 0 0

SP to WL
L9 𝑢Ꮋ 0 0 0 0 0 0 0

WL to WTR
L10 𝑢ᎳᎲ 0 0 0 0 0 0 0

WTR to BWK
L11 𝑢ᎳᎳ 0 0 0 0 0 0 0

MVL to SMH
L12 𝑢ᎳᎴ 0 0 0 0 0 0 0

SMH to CST
L13 𝑢ᎳᎵ 0 0 0 0 0 0 0

CST to KIJ
L14 𝑢ᎳᎶ 0 0 0 0 0 0 0
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B
Matlab routines

In the next lines, the routines for the small size test system and the synthetic Randstad region
system is presented.

B.1. Small size test system routine
1 c l c ; c l e a r v a r i a b l e s ;
2 %% Common va lues
3 s i z e s y s = 3;
4 Vbase = 380e3 ;
5 r i = 1e−3;
6

7 %% Transmiss ion l i n e s − TL1
8 Sbase1 = 1908.7e6 ;
9 Zbase1 = ( Vbase^2) / Sbase1 ;
10

11 l _1 = 15.9;
12

13 Z1 = ((0.000257+0.003014* i )*Zbase1 ) /15 .9 ;
14 B1 = (0.094470/ Zbase1 ) /15 .9 ;
15

16 R1 = rea l (Z1 )* l _1 ;
17 L1 = imag (Z1 )* l _1 ;
18 C1_1 = (B1 /2)* l _1 ;
19 C2_1 = (B1 /2)* l _1 ;
20

21 A1 = [−R1/ L1 1/ L1 −1/L1 ; −1/C1_1 −1/( r i*C1_1) 0; 1/C2_1 0 0] ;
22 B1 = [0; 1/( r i*C1_1) ; 0] ;
23 C1 = [0 0 1] ;
24 D1 = 0;
25

26 syms u1 y1 i_L_1 V_C1_1 V_C2_1
27

28 x1 = [ i_L_1 ; V_C1_1 ; V_C2_1 ] ;
29

30 %% TL2

71
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31 Sbase2 = 1974.5e6 ;
32 Zbase2 = ( Vbase^2) / Sbase2 ;
33

34 l _2 = 12.1;
35

36 Z2 = ((0.000166+0.002152* i )*Zbase2 ) /12 .1 ;
37 B2 = (0.239530/ Zbase2 ) /12 .1 ;
38

39 R2 = rea l (Z2 )* l _2 ;
40 L2 = imag (Z2 )* l _2 ;
41 C1_2 = (B2 /2)* l _2 ;
42 C2_2 = (B2 /2)* l _2 ;
43

44 A2 = [−R2/ L2 1/ L2 −1/L2 ; −1/C1_2 −1/( r i*C1_2) 0; 1/C2_2 0 0] ;
45 B2 = [0; 1/( r i*C1_2) ; 0] ;
46 C2 = [0 0 1] ;
47 D2 = 0;
48

49 syms u2 y2 i_L_2 V_C1_2 V_C2_2
50

51 x2 = [ i_L_2 ; V_C1_2 ; V_C2_2 ] ;
52

53 %% Underground cab le − C1
54 l _3 = 48.7;
55 rz1_3 = (1.1724e−1)* l _3 ; rz2_3 = (8.2072e−2)* l _3 ; rz3_3 = (1.1946e

−2)* l _3 ;
56 Lz1_3 = (2.2851e−4)* l _3 ; Lz2_3 = (1.5522e−3)* l _3 ; Lz3_3 = (3.2942e

−3)* l _3 ;
57 Cc_3 = (1.9083e−7)* l _3 ;
58

59 A3 = [− rz1_3 / Lz1_3 0 0 1/ Lz1_3 −1/Lz1_3 ; . . .
60 0 −rz2_3 / Lz2_3 0 1/ Lz2_3 −1/Lz2_3 ; . . .
61 0 0 rz3_3 / Lz3_3 1/ Lz3_3 −1/Lz3_3 ; . . .
62 −1/Cc_3 −1/Cc_3 −1/Cc_3 −1/( r i*Cc_3 ) 0 ; . . .
63 1/Cc_3 1/Cc_3 1/Cc_3 0 0] ;
64 B3 = [0; 0; 0; 1/ ( r i*Cc_3 ) ; 0] ;
65 C3 = [0 0 0 0 1] ;
66 D3 = 0;
67

68 syms u3 y3 i_L1_3 i_L2_3 i_L3_3 V_C1_3 V_C2_3
69

70 x3 = [ i_L1_3 ; i_L2_3 ; i_L3_3 ; V_C1_3 ; V_C2_3 ] ;
71

72 %% Concatenat ion − Open loop
73 Adiag = {A1 , A2 , A3};
74 Bdiag = {B1 , B2 , B3};
75 Cdiag = {C1 , C2 , C3};
76 Ddiag = {D1 ,D2 ,D3};
77
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78 Xol = [ x1 ; x2 ; x3 ] ;
79 Uol = [u1 ; u2 ; u3 ] ;
80 Yol = [ y1 ; y2 ; y3 ] ;
81

82 Mint = zeros ( s i z e s y s ) ;
83 Mint (3 ,1) = 1; Mint (3 ,2) = 1;
84

85 Mext = zeros ( s i z e s y s ) ;
86 Mext (1 ,1) = 1; Mext (2 ,2) = 1;
87

88 Aol = b lkd iag ( Adiag { : } ) ;
89 Bol = b lkd iag ( Bdiag { : } ) ;
90 Col = b lkd iag ( Cdiag { : } ) ;
91 Dol = b lkd iag ( Ddiag { : } ) ;
92

93 Uolp = ( Mint*Yol )+(Mext*Uol ) ;
94 Eol = inv ( eye ( s i z e s y s )−Dol*Mint ) ;
95

96 %% Closed Loop
97 Ac l = Aol+(Bol*Mint*Eol*Col ) ;
98 Bc l = Bol+(Bol*Mint*Eol*Dol ) ;
99 Cc l = Eo l*Col ;
100 Dcl = Eol*Dol ;
101

102 Xc l = Xol ;
103

104 Ucl = Mext*Uol ;
105

106 Yc l = Yol ;
107

108 %% State space & t r an s f e r func t i on
109 ssT = ss ( Acl , Bc l , Ccl , Dc l ) ;
110 H = t f ( ssT ) ;
111

112 %% Singu la r va lue decomposit ion
113 W = logspace (0 ,5 ,6000) ;
114 [SV] = sigma (H,W) ;
115 [ pk , pkindx ] = f indpeaks (SV (1 , : ) ) ;
116 pkdb = 20* log10 ( pk ) ;
117 f reqrad = W( pkindx ) ;
118 freqdeg = freqrad /(2* p i ) ;
119 %% Eva lua t i on in t ime domain
120 f1 = 1300;
121 w1 = f1*2*p i ;
122 T = 1/ f1 ; per iod = 100000; ns = 1e−2;
123 t = 0:T*ns :T*per iod ;
124 u = s i n (w1* t ) ;
125 zer = zeros ( s i z e (u) ) ;
126
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127 U = [u ; u ; zer ] ;
128 y = l s im (H,U, t ) ;

B.2. Synthetic Randstad region system routine

1 f unc t i on [SV ,W] = t l i n e s y c a b l e s ( d i s t l i n e , d i s c ab l )
2 %% Common va lues
3 s i z e s y s = 14;
4 Vbase = 380e3 ;
5 r i = 1e−3;
6

7 %% BVW380/A to OZN3/CUB_0.3
8 Sbase1 = 1908.7e6 ;
9 Zbase1 = ( Vbase^2) / Sbase1 ;
10

11 l _1 = 15.9* d i s t l i n e ;
12

13 Z1 = ((0.000257+0.003014* i )*Zbase1 ) /15 .9 ;
14 B1 = (0.094470/ Zbase1 ) /15 .9 ;
15

16 R1 = rea l (Z1 )* l _1 ;
17 L1 = imag (Z1 )* l _1 ;
18 C1_1 = (B1 /2)* l _1 ;
19 C2_1 = (B1 /2)* l _1 ;
20

21 A1 = [−R1/ L1 1/ L1 −1/L1 ; −1/C1_1 −1/( r i*C1_1) 0; 1/C2_1 0 0] ;
22 B1 = [0; 1/( r i*C1_1) ; 0] ;
23 C1 = [0 0 1] ;
24 D1 = 0;
25

26 syms u1 y1 i_L_1 V_C1_1 V_C2_1
27

28 x1 = [ i_L_1 ; V_C1_1 ; V_C2_1 ] ;
29

30 %% OZN3/CUB_0.3 to DIM380/A
31 Sbase2 = 1908.7e6 ;
32 Zbase2 = ( Vbase^2) / Sbase2 ;
33

34 l _2 = 15.2* d i s t l i n e ;
35

36 Z2 = ((0.000246+0.002882* i )*Zbase2 ) /15 .2 ;
37 B2 = (0.090310/ Zbase2 ) /15 .2 ;
38

39 R2 = rea l (Z2 )* l _2 ;
40 L2 = imag (Z2 )* l _2 ;
41 C1_2 = (B2 /2)* l _2 ;
42 C2_2 = (B2 /2)* l _2 ;
43

44 A2 = [−R2/ L2 1/ L2 −1/L2 ; −1/C1_2 −1/( r i*C1_2) 0; 1/C2_2 0 0] ;



B.2. Synthetic Randstad region system routine 75

45 B2 = [0; 1/( r i*C1_2) ; 0] ;
46 C2 = [0 0 1] ;
47 D2 = 0;
48

49 syms u2 y2 i_L_2 V_C1_2 V_C2_2
50

51 x2 = [ i_L_2 ; V_C1_2 ; V_C2_2 ] ;
52

53 %% DIM380/A to BKK380/A
54 Sbase3 = 1645.4e6 ;
55 Zbase3 = ( Vbase^2) / Sbase3 ;
56

57 l _3 = 18.830* d i s t l i n e ;
58

59 Z3 = ((0.000305+0.003570* i )*Zbase3 ) /18.830;
60 B3 = (0.111890/ Zbase3 ) /18.830;
61

62 R3 = rea l (Z3 )* l _3 ;
63 L3 = imag (Z3 )* l _3 ;
64 C1_3 = (B3 /2)* l _3 ;
65 C2_3 = (B3 /2)* l _3 ;
66

67 A3 = [−R3/ L3 1/ L3 −1/L3 ; −1/C1_3 −1/( r i*C1_3) 0; 1/C2_3 0 0] ;
68 B3 = [0; 1/( r i*C1_3) ; 0] ;
69 C3 = [0 0 1] ;
70 D3 = 0;
71

72 syms u3 y3 i_L_3 V_C1_3 V_C2_3
73

74 x3 = [ i_L_3 ; V_C1_3 ; V_C2_3 ] ;
75

76 %% BKK380/A to KIJ380 /A
77 Sbase4 = 1645.4e6 ;
78 Zbase4 = ( Vbase^2) / Sbase4 ;
79

80 l _4 = 1* d i s t l i n e ;
81

82 Z4 = ((0.000626+0.007336* i )*Zbase4 ) /1 ;
83 B4 = (0.229920/ Zbase4 ) /1 ;
84

85 R4 = rea l (Z4 )* l _4 ;
86 L4 = imag (Z4 )* l _4 ;
87 C1_4 = (B4 /2)* l _4 ;
88 C2_4 = (B4 /2)* l _4 ;
89

90 A4 = [−R4/ L4 1/ L4 −1/L4 ; −1/C1_4 −1/( r i*C1_4) 0; 1/C2_4 0 0] ;
91 B4 = [0; 1/( r i*C1_4) ; 0] ;
92 C4 = [0 0 1] ;
93 D4 = 0;
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94

95 syms u4 y4 i_L_4 V_C1_4 V_C2_4
96

97 x4 = [ i_L_4 ; V_C1_4 ; V_C2_4 ] ;
98

99 %% KIJ380 /A to BWK380/A
100 Sbase5 = 2632.7e6 ;
101 Zbase5 = ( Vbase^2) / Sbase5 ;
102

103 l _5 = 18.560* d i s t l i n e ;
104

105 Z5 = ((0.000196+0.003131* i )*Zbase5 ) /18.560;
106 B5 = (0.128490/ Zbase5 ) /18.560;
107

108 R5 = rea l (Z5 )* l _5 ;
109 L5 = imag (Z5 )* l _5 ;
110 C1_5 = (B5 /2)* l _5 ;
111 C2_5 = (B5 /2)* l _5 ;
112

113 A5 = [−R5/ L5 1/ L5 −1/L5 ; −1/C1_5 −1/( r i*C1_5) 0; 1/C2_5 0 0] ;
114 B5 = [0; 1/( r i*C1_5) ; 0] ;
115 C5 = [0 0 1] ;
116 D5 = 0;
117

118 syms u5 y5 i_L_5 V_C1_5 V_C2_5
119

120 x5 = [ i_L_5 ; V_C1_5 ; V_C2_5 ] ;
121

122 %% BWK380/A to VHZ380/B
123 l _6 = 48.7* d i s c ab l ;
124 rz1_6 = (1.1724e−1)* l _6 ; rz2_6 = (8.2072e−2)* l _6 ; rz3_6 = (1.1946e

−2)* l _6 ;
125 Lz1_6 = (2.2851e−4)* l _6 ; Lz2_6 = (1.5522e−3)* l _6 ; Lz3_6 = (3.2942e

−3)* l _6 ;
126 Cc_6 = (1.9083e−7)* l _6 ;
127

128 A6 = [− rz1_6 / Lz1_6 0 0 1/ Lz1_6 −1/Lz1_6 ; . . .
129 0 −rz2_6 / Lz2_6 0 1/ Lz2_6 −1/Lz2_6 ; . . .
130 0 0 −rz3_6 / Lz3_6 1/ Lz3_6 −1/Lz3_6 ; . . .
131 −1/Cc_6 −1/Cc_6 −1/Cc_6 −1/( r i*Cc_6 ) 0 ; . . .
132 1/Cc_6 1/Cc_6 1/Cc_6 0 0] ;
133 B6 = [0; 0; 0; 1/ ( r i*Cc_6 ) ; 0] ;
134 C6 = [0 0 0 0 1] ;
135 D6 = 0;
136

137 syms u6 y6 i_L1_6 i_L2_6 i_L3_6 V_C1_6 V_C2_6
138

139 x6 = [ i_L1_6 ; i_L2_6 ; i_L3_6 ; V_C1_6 ; V_C2_6 ] ;
140
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141 %% VHZ380/B to BVW380/A
142 Sbase7 = 1974.5e6 ;
143 Zbase7 = ( Vbase^2) / Sbase7 ;
144

145 l _7 = 12.1* d i s t l i n e ;
146

147 Z7 = ((0.000166+0.002152* i )*Zbase7 ) /12 .1 ;
148 B7 = (0.239530/ Zbase7 ) /12 .1 ;
149

150 R7 = rea l (Z7 )* l _7 ;
151 L7 = imag (Z7 )* l _7 ;
152 C1_7 = (B7 /2)* l _7 ;
153 C2_7 = (B7 /2)* l _7 ;
154

155 A7 = [−R7/ L7 1/ L7 −1/L7 ; −1/C1_7 −1/( r i*C1_7) 0; 1/C2_7 0 0] ;
156 B7 = [0; 1/( r i*C1_7) ; 0] ;
157 C7 = [0 0 1] ;
158 D7 = 0;
159

160 syms u7 y7 i_L_7 V_C1_7 V_C2_7
161

162 x7 = [ i_L_7 ; V_C1_7 ; V_C2_7 ] ;
163

164 %% MVL3/CUB_0.4 to Terminal SP
165 Sbase8 = 2632.7e6 ;
166 Zbase8 = ( Vbase^2) / Sbase8 ;
167

168 l _8 = 1* d i s t l i n e ;
169

170 Z8 = ((0.000184+0.003309* i )*Zbase8 ) /1 ;
171 B8 = (0.487350/ Zbase8 ) /1 ;
172

173 R8 = rea l (Z8 )* l _8 ;
174 L8 = imag (Z8 )* l _8 ;
175 C1_8 = (B8 /2)* l _8 ;
176 C2_8 = (B8 /2)* l _8 ;
177

178 A8 = [−R8/ L8 1/ L8 −1/L8 ; −1/C1_8 −1/( r i*C1_8) 0; 1/C2_8 0 0] ;
179 B8 = [0; 1/( r i*C1_8) ; 0] ;
180 C8 = [0 0 1] ;
181 D8 = 0;
182

183 syms u8 y8 i_L_8 V_C1_8 V_C2_8
184

185 x8 = [ i_L_8 ; V_C1_8 ; V_C2_8 ] ;
186

187 %% Terminal SP to WL380/W
188 Sbase9 = 2650.0e6 ;
189 Zbase9 = ( Vbase^2) / Sbase9 ;
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190

191 l _9 = 1* d i s t l i n e ;
192

193 Z9 = ((0.000007+0.005886* i )*Zbase9 ) /1 ;
194 B9 = (0 .01/ Zbase9 ) /1 ;
195

196 R9 = rea l (Z9 )* l _9 ;
197 L9 = imag (Z9 )* l _9 ;
198 C1_9 = (B9 /2)* l _9 ;
199 C2_9 = (B9 /2)* l _9 ;
200

201 A9 = [−R9/ L9 1/ L9 −1/L9 ; −1/C1_9 −1/( r i*C1_9) 0; 1/C2_9 0 0] ;
202 B9 = [0; 1/( r i*C1_9) ; 0] ;
203 C9 = [0 0 1] ;
204 D9 = 0;
205

206 syms u9 y9 i_L_9 V_C1_9 V_C2_9
207

208 x9 = [ i_L_9 ; V_C1_9 ; V_C2_9 ] ;
209

210 %% WL380/W to WTR380/A
211 Sbase10 = 2632.7e6 ;
212 Zbase10 = ( Vbase^2) / Sbase10 ;
213

214 l_10 = 6.8* d i s t l i n e ;
215

216 Z10 = ((0.000072+0.001151* i )*Zbase10 ) /6 . 8 ;
217 B10 = (0.046920/ Zbase10 ) /6 . 8 ;
218

219 R10 = rea l ( Z10 )* l_10 ;
220 L10 = imag (Z10 )* l_10 ;
221 C1_10 = (B10 /2)* l_10 ;
222 C2_10 = (B10 /2)* l_10 ;
223

224 A10 = [−R10/ L10 1/ L10 −1/L10 ; −1/C1_10 −1/( r i*C1_10 ) 0; 1/C2_10 0
0] ;

225 B10 = [0; 1/( r i*C1_10 ) ; 0] ;
226 C10 = [0 0 1] ;
227 D10 = 0;
228

229 syms u10 y10 i_L_10 V_C1_10 V_C2_10
230

231 x10 = [ i_L_10 ; V_C1_10 ; V_C2_10 ] ;
232

233 %% WTR380/A to BWK380/A
234 l_11 = 20.1* d i s c ab l ;
235 rz1_11 = (1.1724e−1)* l_11 ; rz2_11 = (8.2072e−2)* l_11 ; rz3_11 =

(1.1946e−2)* l_11 ;



B.2. Synthetic Randstad region system routine 79

236 Lz1_11 = (2.2851e−4)* l_11 ; Lz2_11 = (1.5522e−3)* l_11 ; Lz3_11 =
(3.2942e−3)* l_11 ;

237 Cc_11 = (1.9083e−7)* l_11 ;
238

239 A11 = [−rz1_11 / Lz1_11 0 0 1/ Lz1_11 −1/Lz1_11 ; . . .
240 0 −rz2_11 / Lz2_11 0 1/ Lz2_11 −1/Lz2_11 ; . . .
241 0 0 −rz3_11 / Lz3_11 1/ Lz3_11 −1/Lz3_11 ; . . .
242 −1/Cc_11 −1/Cc_11 −1/Cc_11 −1/( r i*Cc_11 ) 0 ; . . .
243 1/Cc_11 1/Cc_11 1/Cc_11 0 0] ;
244 B11 = [0; 0; 0; 1/( r i*Cc_11 ) ; 0] ;
245 C11 = [0 0 0 0 1] ;
246 D11 = 0;
247

248 syms u11 y11 i_L1_11 i_L2_11 i_L3_11 V_C1_11 V_C2_11
249

250 x11 = [ i_L1_11 ; i_L2_11 ; i_L3_11 ; V_C1_11 ; V_C2_11 ] ;
251

252 %% MVL3/CUB_0.4 to TERMINAL SMH
253 Sbase12 = 2632.7e6 ;
254 Zbase12 = ( Vbase^2) / Sbase12 ;
255

256 l_12 = 26* d i s t l i n e ;
257

258 Z12 = ((0.000275+0.004364* i )*Zbase12 ) /26;
259 B12 = (0.181450/ Zbase12 ) /26;
260

261 R12 = rea l ( Z12 )* l_12 ;
262 L12 = imag (Z12 )* l_12 ;
263 C1_12 = (B12 /2)* l_12 ;
264 C2_12 = (B12 /2)* l_12 ;
265

266 A12 = [−R12/ L12 1/ L12 −1/L12 ; −1/C1_12 −1/( r i*C1_12 ) 0; 1/C2_12 0
0] ;

267 B12 = [0; 1/( r i*C1_12 ) ; 0] ;
268 C12 = [0 0 1] ;
269 D12 = 0;
270

271 syms u12 y12 i_L_12 V_C1_12 V_C2_12
272

273 x12 = [ i_L_12 ; V_C1_12 ; V_C2_12 ] ;
274

275 %% TERMINAL SMH to CST380 /A
276 Sbase13 = 2632.7e6 ;
277 Zbase13 = ( Vbase^2) / Sbase13 ;
278

279 l_13 = 40.430* d i s t l i n e ;
280

281 Z13 = ((0.000428+0.006786* i )*Zbase13 ) /40.430;
282 B13 = (0.282160/ Zbase13 ) /40.430;
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283

284 R13 = rea l ( Z13 )* l_13 ;
285 L13 = imag (Z13 )* l_13 ;
286 C1_13 = (B13 /2)* l_13 ;
287 C2_13 = (B13 /2)* l_13 ;
288

289 A13 = [−R13/ L13 1/ L13 −1/L13 ; −1/C1_13 −1/( r i*C1_13 ) 0; 1/C2_13 0
0] ;

290 B13 = [0; 1/( r i*C1_13 ) ; 0] ;
291 C13 = [0 0 1] ;
292 D13 = 0;
293

294 syms u13 y13 i_L_13 V_C1_13 V_C2_13
295

296 x13 = [ i_L_13 ; V_C1_13 ; V_C2_13 ] ;
297

298 %% CST380/A to KIJ380 /A
299 Sbase14 = 2632.7e6 ;
300 Zbase14 = ( Vbase^2) / Sbase14 ;
301

302 l_14 = 14.840* d i s t l i n e ;
303

304 Z14 = ((0.000157+0.002490* i )*Zbase14 ) /14.840;
305 B14 = (0.103530/ Zbase14 ) /14.840;
306

307 R14 = rea l ( Z14 )* l_14 ;
308 L14 = imag (Z14 )* l_14 ;
309 C1_14 = (B14 /2)* l_14 ;
310 C2_14 = (B14 /2)* l_14 ;
311

312 A14 = [−R14/ L14 1/ L14 −1/L14 ; −1/C1_14 −1/( r i*C1_14 ) 0; 1/C2_14 0
0] ;

313 B14 = [0; 1/( r i*C1_14 ) ; 0] ;
314 C14 = [0 0 1] ;
315 D14 = 0;
316

317 syms u14 y14 i_L_14 V_C1_14 V_C2_14
318

319 x14 = [ i_L_14 ; V_C1_14 ; V_C2_14 ] ;
320

321 %% Open loop
322 Adiag = {A1 , A2 , A3 , A4 , A5 , A6 , A7 , A8 , A9 , A10 , A11 , A12 , A13 , A14};
323 Bdiag = {B1 , B2 , B3 , B4 , B5 , B6 , B7 , B8 , B9 , B10 , B11 , B12 , B13 , B14};
324 Cdiag = {C1 , C2 , C3 , C4 , C5 , C6 , C7 , C8 , C9 , C10 , C11 , C12 , C13 , C14};
325 Ddiag = {D1 ,D2 ,D3 ,D4 ,D5 ,D6 ,D7 ,D8 ,D9 ,D10 ,D11 ,D12 ,D13 ,D14};
326

327 Xol = [ x1 ; x2 ; x3 ; x4 ; x5 ; x6 ; x7 ; x8 ; x9 ; x10 ; x11 ; . . .
328 x12 ; x13 ; x14 ] ;
329 Uol = [u1 ; u2 ; u3 ; u4 ; u5 ; u6 ; u7 ; u8 ; u9 ; u10 ; u11 ; . . .
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330 u12 ; u13 ; u14 ] ;
331 Yol = [ y1 ; y2 ; y3 ; y4 ; y5 ; y6 ; y7 ; y8 ; y9 ; y10 ; y11 ; . . .
332 y12 ; y13 ; y14 ] ;
333

334 Mint = zeros ( s i z e s y s ) ;
335 Mint (2 ,1) = 1;
336 Mint (7 ,1) = 1;
337 Mint (3 ,2) = 1;
338 Mint (4 ,3) = 1;
339 Mint (5 ,4) = 1;
340 Mint (6 ,5) = 1;
341 Mint (6 ,7) = 1;
342 Mint (9 ,8) = 1;
343 Mint (12 ,8) = 1;
344 Mint (10 ,9) = 1;
345 Mint (11 ,10) = 1;
346 Mint (6 ,11) = 1;
347 Mint (13 ,12) = 1;
348 Mint (14 ,13) = 1;
349 Mint (5 ,14) = 1;
350

351 Mext = zeros ( s i z e s y s ) ;
352 Mext (1 ,1) = 1;
353 Mext (8 ,8) = 1;
354

355 Aol = b lkd iag ( Adiag { : } ) ;
356 Bol = b lkd iag ( Bdiag { : } ) ;
357 Col = b lkd iag ( Cdiag { : } ) ;
358 Dol = b lkd iag ( Ddiag { : } ) ;
359

360 Uolp = ( Mint*Yol )+(Mext*Uol ) ;
361 Eol = inv ( eye ( s i z e s y s )−Dol*Mint ) ;
362

363 %% Closed Loop
364 Ac l = Aol+(Bol*Mint*Eol*Col ) ;
365 Bc l = Bol+(Bol*Mint*Eol*Dol ) ;
366 Cc l = Eo l*Col ;
367 Dcl = Eol*Dol ;
368

369 Xc l = Xol ;
370 Ucl = Mext*Uol ;
371 Yc l = Yol ;
372

373 %% State space & Trans fe r func t i on
374 ssT = ss ( Acl , Bc l , Ccl , Dc l ) ;
375 H = t f ( ssT ) ;
376

377 %% Singu la r va lue decomposit ion
378 W = logspace (0 ,5 ,1000) ;
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379 [SV] = sigma (H,W) ;
380 [ pk , pkindx ] = f indpeaks (SV (1 , : ) ) ;
381 pkdb = 20* log10 ( pk ) ;
382 f reqrad = W( pkindx ) ;
383 freqdeg = freqrad /(2* p i ) ;

1 c l c ; c l e a r v a r i a b l e s ;
2 % d i s t l i n e = 1; d i s c ab l = 1;
3 % d i s t l i n e = 0 .5 :0 . 01 :1 . 5 ; d i s c ab l = ones ( s i z e ( d i s t l i n e ) ) ;
4 d i s c ab l = 0 .5 :0 . 01 :1 . 5 ; d i s t l i n e = ones ( s i z e ( d i s c ab l ) ) ;
5

6 f o r n = 1: length ( d i s t l i n e )
7 [SV ( : , : , n ) ,W( : , : , n ) ] = t l i n e s y c a b l e s ( d i s t l i n e (n) , d i s c ab l (n ) ) ;
8 end
9

10 f o r n = 1: length ( d i s t l i n e )
11 sv (n , : ) = SV (1 , : , n ) ;
12 omeg(n , : ) = W( : , : , n ) ;
13 d i s (n , : ) = ones (1 , length (W) )*d i s c ab l (n ) ;
14 end
15

16 f i g u r e (1) ; c l f
17 su r f (omeg/(2* p i ) , d is ,20* log10 ( sv ) , ’ FaceColor ’ , ’ i n t e r p ’ , . . .
18 ’ EdgeColor ’ , ’ none ’ , . . .
19 ’ FaceL igh t ing ’ , ’ gouraud ’ ) ;
20 caml ight l e f t
21 h = co lo rba r ;
22 set (h , ’ y l im ’ , [0 120])
23 z l im ([0 120])
24 set ( gca , ’ XScale ’ , ’ log ’ ) ;
25 x l im ([3 80])
26 t i t l e ( ’ Transmiss ion L ine Length Va r i a t i o n ’ )
27 x l abe l ( ’ Frequency (Hz ) ’ )
28 y l abe l ( ’ L ine length (p . u . ) ’ )
29 z l a b e l ( ’ F i r s t S i ngu l a r Value ’ )
30

31 f i g u r e (2) ; c l f
32 su r f (omeg/(2* p i ) , d is ,20* log10 ( sv ) , ’ FaceColor ’ , ’ i n t e r p ’ , . . .
33 ’ EdgeColor ’ , ’ none ’ , . . .
34 ’ FaceL igh t ing ’ , ’ gouraud ’ ) ;
35 caml ight l e f t
36 h = co lo rba r ;
37 set (h , ’ y l im ’ , [0 120])
38 z l im ([0 40])
39 set ( gca , ’ XScale ’ , ’ log ’ ) ;
40 x l im ([200 4000])
41 t i t l e ( ’ Cable L ine Length Va r i a t i o n ’ )
42 x l abe l ( ’ Frequency (Hz ) ’ )
43 y l abe l ( ’ Cable length (p . u . ) ’ )
44 z l a b e l ( ’ F i r s t S i ngu l a r Value ’ )
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