
 
 

Delft University of Technology

Computation-in-memory from application-specific to programmable designs based on
memristor devices

Zahedi, M.Z.

DOI
10.4233/uuid:e0a6d2e3-6ec6-4edc-8e6a-5ae931d7dffb
Publication date
2023
Document Version
Final published version
Citation (APA)
Zahedi, M. Z. (2023). Computation-in-memory from application-specific to programmable designs based on
memristor devices. [Dissertation (TU Delft), Delft University of Technology].
https://doi.org/10.4233/uuid:e0a6d2e3-6ec6-4edc-8e6a-5ae931d7dffb

Important note
To cite this publication, please use the final published version (if applicable).
Please check the document version above.

Copyright
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent
of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Takedown policy
Please contact us and provide details if you believe this document breaches copyrights.
We will remove access to the work immediately and investigate your claim.

This work is downloaded from Delft University of Technology.
For technical reasons the number of authors shown on this cover page is limited to a maximum of 10.

https://doi.org/10.4233/uuid:e0a6d2e3-6ec6-4edc-8e6a-5ae931d7dffb
https://doi.org/10.4233/uuid:e0a6d2e3-6ec6-4edc-8e6a-5ae931d7dffb


COMPUTATION-IN-MEMORY FROM
APPLICATION-SPECIFIC TO PROGRAMMABLE

DESIGNS

BASED ON MEMRISTOR DEVICES





COMPUTATION-IN-MEMORY FROM
APPLICATION-SPECIFIC TO PROGRAMMABLE

DESIGNS

BASED ON MEMRISTOR DEVICES

Proefschrift

ter verkrijging van de graad van doctor
aan de Technische Universiteit Delft,

op gezag van de Rector Magnificus Prof. dr. ir. T.H.J.J. van der Hagen,
voorzitter van het College voor Promoties,

in het openbaar te verdedigen op vrijdag 22 December 2023 om 10:00 uur

door

Mahdi ZAHEDI

Master of Science in Electrical Engineering,
Universiteit van Teheran, Teheran, Iran,

geboren te Teheran, Iran.



Dit proefschrift is goedgekeurd door de

promotor: Prof. dr. ir. S. Hamdioui
promotor: Dr. ir. J.S.S.M. Wong

Samenstelling promotiecommissie:

Rector Magnificus, voorzitter
Prof. dr. ir. S. Hamdioui, Technische Universiteit Delft, promotor
Dr. ir. J.S.S.M. Wong, Technische Universiteit Delft, promotor

Onafhankelijke leden:
Prof. dr. ir. G. Gaydadjiev Technische Universiteit Delft
Prof. dr. R.V. Joshi IBM Watson, USA / Technische Universiteit Delft
Prof. dr. F. Catthoor IMEC / KU Leuven, Belgium
Prof. dr. H. Amrouch TU Munich, Germany
Prof. dr. H. Corporaal TU Eindhoven, NL
Prof. dr. ir. W.A. Serdijn, Technische Universiteit Delft, reservelid

Keywords: Computation-in-Memory, Memristor, Computer Architecture, Hard-
ware Design, Instruction Set Architecture

Printed by: Ipskamp Printing, the Netherlands

Front & Back: By M.Zahedi.

Copyright © 2023 by M. Zahedi

ISBN 978-94-6366-789-0

An electronic version of this dissertation is available at
http://repository.tudelft.nl/.

http://repository.tudelft.nl/


Dedicated to my parents and my lovely sister





CONTENTS

Summary xi

Samenvatting xiii

Acknowledgements xv

1 Introduction 1
1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.1.1 Von-Neumann Architecture . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.1.2 Limitations of Traditional Computing Systems . . . . . . . . . . . . . . 4
1.1.3 Computation-in-Memory based on Memristive Devices . . . . . . . . 5

1.2 Challenges of Memristor-based CIM . . . . . . . . . . . . . . . . . . . . . . . . 7
1.2.1 Device level . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
1.2.2 Circuit level . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
1.2.3 Architecture level . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
1.2.4 Compiler level . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
1.2.5 Application level . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

1.3 Research Topics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
1.3.1 Investigating the potential of CIM . . . . . . . . . . . . . . . . . . . . . 10
1.3.2 Exploiting CIM for Application-Specific Design . . . . . . . . . . . . . 10
1.3.3 Architectural solutions for efficient and programmable CIM . . . . . 10

1.4 Thesis Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
1.5 Thesis Organization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2 Background and Classification 15
2.1 Memristive Device Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
2.2 Memristive Device Types . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

2.2.1 Resistive Random-Access Memory . . . . . . . . . . . . . . . . . . . . . 17
2.2.2 Phase change memory . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
2.2.3 Spin transfer torque MRAM . . . . . . . . . . . . . . . . . . . . . . . . . 18
2.2.4 Overview of memory technologies . . . . . . . . . . . . . . . . . . . . . 19

2.3 Memristive Crossbar Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
2.3.1 1R crossbar array . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
2.3.2 1T1R common source-line crossbar array . . . . . . . . . . . . . . . . 22
2.3.3 1T1R dual bit-line crossbar array . . . . . . . . . . . . . . . . . . . . . . 22
2.3.4 2T2R crossbar array . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

2.4 Classification of Memristive Circuits . . . . . . . . . . . . . . . . . . . . . . . . 23
2.4.1 Generic illustration of CIM-tile . . . . . . . . . . . . . . . . . . . . . . . 24
2.4.2 Primitive functions in the crossbar - fX bar (CIM-A) . . . . . . . . . . . 25

VII



VIII CONTENTS

2.4.3 Primitive functions in the sensing step fsens (CIM-P) . . . . . . . . . . 29
2.4.4 Prevalent functions in the digital periphery fout (CIM-P) . . . . . . . 31
2.4.5 Examples of function in the input processing step fi n (CIM-P) . . . . 32

2.5 Potential Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
2.6 CIM Abstract Design Choices . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
2.7 Overview of State-of-The-Art Designs . . . . . . . . . . . . . . . . . . . . . . . 35

2.7.1 Generic Designs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
2.7.2 Application-Specific Designs . . . . . . . . . . . . . . . . . . . . . . . . 37

3 Application Specific Design: Neural Networks 43
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
3.2 Fundamental of Binary Neural Networks . . . . . . . . . . . . . . . . . . . . . 45
3.3 Overview of Existing BNN Implementations . . . . . . . . . . . . . . . . . . . 46
3.4 Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

3.4.1 Myltiply-accumulate based on XNOR operation . . . . . . . . . . . . . 48
3.4.2 State-of-the-art XNOR-based BNN . . . . . . . . . . . . . . . . . . . . . 49
3.4.3 Proposed XNOR-based BNN implementation . . . . . . . . . . . . . . 50
3.4.4 Efficient data movement . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

3.5 Intra-Layer Accuracy Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
3.6 Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

3.6.1 Simulation setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
3.6.2 Result and discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

3.7 Limitations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
3.8 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

4 Application Specific Design: Graph Processing 69
4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
4.2 Graph Fundamentals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
4.3 SparseMEM Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

4.3.1 Overview of SparseMEM . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
4.3.2 Graph mapping and data representation . . . . . . . . . . . . . . . . . 73
4.3.3 Execution flow . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
4.3.4 Sub-graphs streaming and processing . . . . . . . . . . . . . . . . . . . 77

4.4 Evaluation and discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78
4.4.1 Experimental setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78
4.4.2 Experimental Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

4.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

5 Application Specific Design: Bioinformatics 83
5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84
5.2 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

5.2.1 Hyperdimensional Computing . . . . . . . . . . . . . . . . . . . . . . . 85
5.3 Framework . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

5.3.1 Step 1: Define the HD Space . . . . . . . . . . . . . . . . . . . . . . . . 86
5.3.2 Step 2: Build Demeter’s Reference Data Structure . . . . . . . . . . . . 87
5.3.3 Step 3: Demeter’s Read Conversion . . . . . . . . . . . . . . . . . . . . 87



CONTENTS IX

5.3.4 Step 4: Multi-Species Classification per Read . . . . . . . . . . . . . . . 88
5.3.5 Step 5: Species Level Abundance Estimation . . . . . . . . . . . . . . . 88

5.4 Demeter Hardware Implementation . . . . . . . . . . . . . . . . . . . . . . . . 89
5.4.1 Overview of Demeter’s Accelerator . . . . . . . . . . . . . . . . . . . . . 89
5.4.2 Item Memory (IM) Design . . . . . . . . . . . . . . . . . . . . . . . . . . 89
5.4.3 Encoder Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90
5.4.4 Associate Memory (AM) Design . . . . . . . . . . . . . . . . . . . . . . 91
5.4.5 Similarity Check Hardware . . . . . . . . . . . . . . . . . . . . . . . . . 93
5.4.6 Controller Unit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

5.5 Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93
5.5.1 Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93
5.5.2 Accuracy Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94
5.5.3 Demeter’s Performance Analysis . . . . . . . . . . . . . . . . . . . . . . 94
5.5.4 Demeter’s Power and Area Analysis . . . . . . . . . . . . . . . . . . . . 95

5.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

6 Toward Programmable Design: Tile Structure and ISA 97
6.1 CIM Tile Initial Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

6.1.1 Tile Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98
6.1.2 CIM tile (Micro) instruction set architecture . . . . . . . . . . . . . . . 100
6.1.3 Challenges of the initial design . . . . . . . . . . . . . . . . . . . . . . . 103

6.2 CIM Tile Extended Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104
6.2.1 Tile Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104
6.2.2 CIM Tile (Micro) Instruction Set Architecture . . . . . . . . . . . . . . 109

6.3 Pipelining . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114
6.4 Controller . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117

6.4.1 Instruction memory and decoder . . . . . . . . . . . . . . . . . . . . . 117
6.4.2 Stall detection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117
6.4.3 Buffer management . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119
6.4.4 Write verification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119

6.5 CIM Tile Compiler . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120
6.6 CIM Tile Simulator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122
6.7 FPGA Validation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125
6.8 ASIC Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126
6.9 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129

7 Efficient Digital Periphery Design for CIM-Tile 131
7.1 Digital Periphery Design Challenge . . . . . . . . . . . . . . . . . . . . . . . . 132
7.2 Contribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132
7.3 State-of-The-Art designs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133

7.3.1 Signed number representation of array data . . . . . . . . . . . . . . . 134
7.3.2 Signed number representation of input data . . . . . . . . . . . . . . . 135

7.4 Efficient Arithmetic Computation in CIM Tile for Unsigned Data Represen-
tation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136
7.4.1 First stage: analog addition . . . . . . . . . . . . . . . . . . . . . . . . . 137
7.4.2 Second stage: sliding over multiple columns . . . . . . . . . . . . . . . 138



X CONTENTS

7.4.3 Third stage: sliding over input segments . . . . . . . . . . . . . . . . . 140
7.4.4 Instructions related to the addition unit . . . . . . . . . . . . . . . . . 142
7.4.5 Implementation challenge . . . . . . . . . . . . . . . . . . . . . . . . . 144
7.4.6 Evaluation and discussion . . . . . . . . . . . . . . . . . . . . . . . . . . 146

7.5 A Novel Signed Data Representation and Computation . . . . . . . . . . . . . 149
7.5.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149
7.5.2 Efficient signed addition by introducing virtual bit-lines . . . . . . . . 150
7.5.3 Efficient signed multiplication by employing virtual input segments . 151
7.5.4 Asymmetric addition scheme . . . . . . . . . . . . . . . . . . . . . . . . 154
7.5.5 Experimental setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155
7.5.6 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 159
7.5.7 Limitations and Challenges . . . . . . . . . . . . . . . . . . . . . . . . . 163

7.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 163

8 Conclusion 165
8.1 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 165
8.2 Outlook . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 167

Curriculum Vitæ 189

List of Publications 191



SUMMARY

Computation-in-Memory (CIM) is a promising alternative to traditional computing sys-
tems where the storage is conceptually separated from the computing units. Instead, the
CIM paradigm aims to perform the computation where the data resides, alleviating the
memory bottleneck and ultimately leading to higher energy efficiency and performance.
From the memory technology perspective, memristors, emerging non-volatile memory
devices, demonstrate various beneficial characteristics. Although the concept of CIM, in
combination with these emerging memory technologies, is in the infancy stage, it shows
great potential as a future of computing systems. To further understand and quantify the
potential of CIM, more development is required at each abstraction level. In this the-
sis, we first explore the main potentials for memristor-based computation-in-memory.
Then, we study different applications from the CIM perspective to understand different
behaviors and patterns of applications and use this knowledge to develop architectural
solutions for CIM. Based on that, we study the realization of CIM as a generic and flexible
platform at a micro-architecture level.

Investigating the Potential of CIM: In the first step, it is essential to have a com-
plete picture of the key features and trends for memristor-based CIM. In this study, we
gather the main information from the literature about CIM for different abstraction lev-
els. Based on that, we provide a generic illustration of a CIM-tile, which most existing
works can fit into. This can clarify the available design choices as well as the scopes
where more attention is required. Parts of this thesis will focus on developing the differ-
ent components within a CIM-Tile.

Exploiting CIM for Application-Specific Design: A designer should have a good in-
sight into the applications that have the potential to be executed using a memristor-
based CIM system. Each application may have a different data and control flow and may
require different features to be enabled in CIM. We study how the applications should
be mapped into the memory and analyze what the required components next to the
memory array are. In this thesis, we focus on three applications from completely differ-
ent domains (Neural network, Graph processing, and Bioinformatics). The information
and experience achieved from this study are also insightful for further development in a
more generic design approach as well.

Architectural Solutions for Efficient and Programmable CIM: At the two ends of the
spectrum for CIM design methodology, we can have programmable/generic and application-
specific designs. The thesis provides a comprehensive study in both directions. Consid-
ering the more generic approach, we focus on the (micro) architectures of a CIM-Tile.
We design and implement the required components and introduce an instruction set
architecture to bring programmability to a CIM-Tile. Besides, we develop a simulation
platform to perform design space exploration, verify the functionality, and measure the
efficiency of the potential micro-architecture.

XI





SAMENVATTING

Computation-in-Memory (CIM) is een veelbelovend alternatief voor traditionele com-
putersystemen waarbij de opslag conceptueel gescheiden is van de computereenheden.
In plaats daarvan heeft het CIM-paradigma tot doel de berekening uit te voeren waar de
gegevens zich bevinden, waardoor het geheugenknelpunt wordt verlicht en uiteindelijk
leidt tot hogere energie-efficiëntie en prestaties. Vanuit het perspectief van de geheu-
gentechnologie vertonen memristors, opkomende niet-vluchtige geheugenapparaten,
verschillende gunstige eigenschappen. Hoewel het concept van CIM, in combinatie met
deze opkomende geheugentechnologieën, nog in de kinderschoenen staat, vertoont het
een groot potentieel als toekomst voor computersystemen. Om het potentieel van CIM
verder te begrijpen en te kwantificeren, is er meer ontwikkeling nodig op elk abstractie-
niveau. In dit proefschrift onderzoeken we eerst de belangrijkste mogelijkheden voor op
memristor gebaseerde berekeningen in het geheugen. Vervolgens bestuderen we ver-
schillende toepassingen vanuit het CIM-perspectief om verschillende gedragingen en
patronen van toepassingen te begrijpen en deze kennis te gebruiken om architectoni-
sche oplossingen voor CIM te ontwikkelen. Op basis daarvan bestuderen we de realisatie
van CIM als generiek en flexibel platform op micro-architectuurniveau.

Het potentieel van CIM onderzoeken: In de eerste stap is het essentieel om een com-
pleet beeld te hebben van de belangrijkste kenmerken en trends voor op memristor ge-
baseerde CIM. In deze studie verzamelen we de belangrijkste informatie uit de literatuur
over CIM voor verschillende abstractieniveaus. Op basis daarvan geven we een gene-
rieke illustratie van een CIM-tegel, waar de meeste bestaande werken in kunnen passen.
Dit kan de beschikbare ontwerpkeuzes verduidelijken, evenals de scopes waar meer aan-
dacht nodig is. Delen van dit proefschrift zullen zich richten op het ontwikkelen van de
verschillende componenten binnen een CIM-Tile.

CIM benutten voor toepassingsspecifiek ontwerp: Een ontwerper moet een goed in-
zicht hebben in de toepassingen die het potentieel hebben om te worden uitgevoerd met
behulp van een op memristor gebaseerd CIM-systeem. Elke toepassing kan een andere
gegevens- en controlestroom hebben en vereist mogelijk dat verschillende functies in
CIM worden ingeschakeld. We bestuderen hoe de applicaties in het geheugen moeten
worden geplaatst en analyseren wat de benodigde componenten naast de geheugenar-
ray zijn. In dit proefschrift concentreren we ons op drie toepassingen uit totaal verschil-
lende domeinen (neuraal netwerk, grafiekverwerking en bio-informatica). De informa-
tie en ervaringen uit dit onderzoek zijn ook inzichtelijk voor verdere ontwikkeling in een
meer generieke ontwerpaanpak.

Architecturale oplossingen voor efficiënte en programmeerbare CIM: Aan de twee
uiteinden van het spectrum voor CIM-ontwerpmethodologie kunnen we programmeer-
bare/generieke en toepassingsspecifieke ontwerpen hebben. Het proefschrift biedt een
uitgebreid onderzoek in beide richtingen. Gezien de meer generieke aanpak richten we
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ons op de (micro)architecturen van een CIM-Tile. We ontwerpen en implementeren de
benodigde componenten en introduceren een instructiesetarchitectuur om program-
meerbaarheid aan een CIM-Tile te brengen. Daarnaast ontwikkelen we een simulatie-
platform om ontwerpruimteverkenning uit te voeren, de functionaliteit te verifiëren en
de efficiëntie van de potentiële microarchitectuur te meten.
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1
INTRODUCTION

Nowadays, computing systems such as embedded systems, personal computers, and servers
contribute to human life more than ever, becoming necessary for even daily activities. In
the last decades, computing performance was able to keep up with the increasing demands
of applications and requirements thanks to transistor downscaling and technological im-
provement. However, CMOS downscaling is reaching its physical and economic limits.
Hence, researchers are investigating novel architectures and new technologies as an al-
ternative or complement to conventional computing systems. In this chapter, we first de-
scribe the motivation behind computation-in-memory as a novel architectural solution
and emerging memristor devices. Second, we list some opportunities and challenges of
such a design. Third, we explain briefly the research direction of this thesis.
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1.1. MOTIVATION
Modern-day applications such as machine learning, image processing, and encryption
are widely employed on real-time embedded systems as well as back-end data centers.
The amount of data to be processed for these types of applications has increased consid-
erably (e.g., BERT has around 110 million parameters). The main platforms to execute
these applications are based on Von-Neumann architecture, where the storage is sepa-
rated from the processor. Hence, these large amounts of data are far from the process-
ing units. Consequently, the performance and power consumption of the systems that
fulfill these target applications have become crucial. Traditional Von-Neumann-based
architectures have been stretched to attain adequate performance at reasonable energy
levels, but clearly show limitations for further improvements. One of the main limita-
tions is that transporting data between the processing unit(s) and the memory leads to
huge energy consumption and long latencies. This greatly diminishes the usefulness of
Von-Neumann computers. Moreover, the limitations of Von-Neumann architecture are
compounded by the challenges of CMOS transistor downscaling, one of the main drivers
for performance/energy improvement for many years. In the following, we elaborate
more on Von-Neumann computers. Subsequently, we discuss the limitations we cur-
rently face from the Von-Neumann computers and CMOS transistor downscaling before
introducing computation-in-memory using memristor devices.

Control Unit

Arithmetic Unit

Registers

Output 
Devices

Input 
Devices

Main memory

Central Processing Unit

Figure 1.1: Traditional Von-Neumann architecture and conceptual separation of the pro-
cessing unit and its memory

1.1.1. VON-NEUMANN ARCHITECTURE

In general, data processing (within a computer) entails the transformation of data via
computations (performed by processing units). Furthermore, the type and order of com-
putations are controlled by a program. In vN architectures, the data and program (stored
in memory) are separated from the processing units. Accordingly, the architecture con-
ceptually consists of three main blocks as depicted in Figure 1.1: the central process-
ing unit (CPU), memory, and input/output devices. These devices produce input data
or consume the output data, respectively. The CPU is responsible for executing the in-
structions of a program and performing logical/arithmetic operations on data. During
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the execution of a program, the data and instructions are loaded from the main memory,
and the result of the operations is sent back to the memory and/or output devices.

Over the past decades, there has been much work on improving CPUs’ performance
and energy efficiency. This shifts the bottleneck of computing systems in terms of per-
formance and energy into memory. There are two main challenges with respect to the
main memory. First, the cost of data transactions between the main memory and CPU
in terms of latency and power is considerable. For instance, communication between
off-chip DRAM and the processor takes up to 200 CPU cycles [1], and it consumes power
more than two orders of magnitude than a floating-point operation inside the CPU [2,
3]. This resulted in the introduction of a memory hierarchy (see Figure 1.2) that ex-
ploits temporal and spatial locality of data to store recently used data (temporal) and
data close to recently used ones (spatial). As illustrated in the figure, on top of this hi-
erarchy, modern computers employ small SRAM-based cache memory fabricated in the
same chip as the CPU. A key requirement is that the data that is operated on by the
CPU must fit within the different caches at the different levels within the hierarchy to
deliver a high-performance and energy-efficient system. This leads us to the second
challenge concerning memory. Unfortunately, modern-day applications no longer meet
this requirement and thereby making the memory hierarchy obsolete or ineffective for
the type of data they process. Hence, another layer of hierarchy, secondary memory, has
to be employed. The secondary memory is mainly implemented as a flash or a hard disk
drive. Moving the data across memory now involves many steps, which adds up to the
overhead of data communication, thereby making it even slower. For example, the data
transfer between secondary and main memory is managed by an operating system run-
ning on the same CPU. The operating system configures a direct memory access (DMA)
module to transfer the data and alleviate the intervention of the CPU in such transfers.
Modern-day applications should go through all these steps frequently during their ex-
ecution. It should be clear that the current memory hierarchy paradigm (extended to
physical disk) is no longer sufficient for modern applications. In conclusion, new solu-
tions must be sought after to support modern applications.
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Figure 1.2: Memory hierarchy in traditional processors
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1.1.2. LIMITATIONS OF TRADITIONAL COMPUTING SYSTEMS

For decades, technology and architectural improvements were two major drivers for
delivering high-performance and energy-efficient systems. From the technology per-
spective, the feature size of transistors has kept scaling down. The scaling theory pro-
posed (Moore’s law) was the beginning of the flourishing era of electronic devices. Since
then, by scaling the transistor feature size, more and more transistors are integrated into
the circuits, and more complex functionalities are implemented. The transistor scaling
brought higher energy, performance, and area efficiency for the designs for many years.
However, transistor downscaling is now getting close to the end by facing major ‘walls’.
In addition to technology, architectural improvement also has made a big contribution
to the efficiency of computing systems for many years. Similarly, we encountered some
walls that limit the improvements we can expect from the architectural techniques. In
the following, we elaborate on these walls to provide a complete picture of all major lim-
itations.

1. Leakage Wall: As the transistors are scaled down, gate thickness and the length of
the channel between the drain and source are reduced as well. Nowadays, this thickness
comprises only a few layers of atoms. Hence, the probability for quantum mechanical
tunneling growths, which then increases gate leakage current. In addition, shorter chan-
nels could cause high off-state drain leakage. Finally, since the supply voltage should be
reduced in the lower technology nodes, the threshold voltage is also scaled down to keep
the performance the same. However, this reduces the room for gate voltage to swing
below the threshold voltage. Hence, the sub-threshold leakage current increases more
when a transistor is in the off state.

2. Reliability Wall: As the size of transistors scaled down, small deviations due to (fab-
rication) process variations now have a relatively higher probability to (negatively) in-
fluence the transistor’s functionality. Moreover, the dielectric and wiring materials are
unable to provide reliable insulation and conduction with continued scaling.

3. Power Wall: As the size of transistors is scaled down, more transistors can be popu-
lated in a fixed area. Table 1.1 shows the number of transistors used for different gen-
erations of Intel processors. According to Dennard scaling, the power density of the
chip (now with more transistors) stays constant due to voltage and current downscal-
ing. However, due to some other factors, Dennard scaling has stopped. Consequently,
no longer possible to drive in the same area with the same amount of power. This means
more power is needed if more transistors need to be switched per area. Now, considering
the fact that the performance of single-core stagnated, and to explore more parallelism,
the industry chose to design multi-core chips, but with a caveat. Since Dennard scal-
ing has stopped, at some point, not all cores can be switched on all the time. The main
reason is that extracting the generated heat from chips has become technologically im-
possible without costly (thus, commercially unviable) measures. Hence, we faced a new
phenomenon called ’Dark Silicon,’ where more than 50% of the chips are not operational
at the same time due to power limitations [4]. For the same reason, we can also observe
in Figure 1.3(a) that the clock frequency of the processors, which has a direct relation
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with power consumption and the performance of the system, has been saturating in the
past few years. These indicate that we can no longer expect significant performance im-
provement from increasing the number of cores due to the Dark Silicon phenomenon.

4. Cost Wall: The design and fabrication cost increases as the transistor feature size is
reduced. This is contributed by equipment, lithography process, mask, and test costs.

5. ILP Wall: Another source of performance improvement is Instruction Level Paral-
lelism (ILP), where multiple instructions are executed in parallel. This technique can im-
prove the performance until the points where the applications or algorithms inherently
have this degree of parallelism. After this point, providing more levels of parallelism in
the hardware will not result in significant performance improvement. Besides this lim-
itation factor from applications, the impact of the power wall influences the maximum
parallelism that the hardware can enable. Figure 1.3(b) shows the potential performance
improvement expected by Moore’s law against achieved performance improvement as
we downscale the transistor feature size. One of the main reasons for this gap is the ILP
wall.

6. Memory Wall: As the energy efficiency and performance of processors improved,
data communication to and from the processors could not keep up with the same peace.
As mentioned before, the off-chip communication imposes an overhead on performance
and energy up to two orders of magnitude than a single floating-point operation inside
the CPU [2, 3]. The amount of data that can be transferred in parallel is also limited to
the available bandwidth. This memory wall is another reason for the gap we observe in
Figure 1.3(b). We can conclude that the memory wall has a major impact on a system’s
efficiency in terms of energy and performance.

Considering those walls, our main drivers for decades to improve energy and perfor-
mance are no longer available. Hence, finding alternative technologies and architectures
is necessary to realize higher efficient designs demanded by emerging big-data applica-
tions.

Table 1.1: The number of transistors for different generations of Intel processors.
Intel processors Transistor Count Year
Intel 4004 2.300 1971
Intel 8086 29.000 1978
Intel i860 1.000.000 1989
Pentium 1 3.100.000 1993
Pentium 4 112.000.000 2004
Core i7 731,000,000 2008
Quad-core + GPU Core i7 1,160,000,000 2011
Quad-core + GPU Core i7 Ivy Bridge 1,400,000,000 2012
Quad-core + GPU GT2 Core i7 Skylake 1,750,000,000 2015
28-core Xeon Platinum 8180 8,000,000,000 2017

1.1.3. COMPUTATION-IN-MEMORY BASED ON MEMRISTIVE DEVICES

Computation-in-Memory: The memory wall is one major bottleneck for energy and
performance improvement of traditional computing systems. Consequently, it is only
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Figure 1.3: (a) Maximum clock frequency for different processors over the past decades
[5]. (b) Actual performance increase over different technology nodes for PAR-
SEC benchmarks reported for multicore model (CmpM) versus the expecta-
tion based on Moore’s law [4]

logical to move the computing unit as close as possible to the data location, which is
usually the main memory. The closeness can be categorized into "near-memory" and
"in-memory". An example of near-memory computing is 3D stacking technology, in
which computation is performed in the DRAM chip by adding extra logic next to the
memory structure. As we perform the computation closer to the storage, we reduce the
cost of data transfer in terms of performance and energy, and we are expecting to have
even higher bandwidth. Hence, recently, computation-in-memory (CIM), as a concept,
has gained a huge interest from the research community in combining memory storage
and actual computing in the same memory array. Researchers are exploring this concept
for both traditional memory technologies like SRAM, DRAM, and flash memories, as well
as emerging memory technologies.

Memristive Devices: From the technological perspective, memristive devices have the
potential to replace traditional memories in order to address or alleviate some of the
aforementioned walls. The following briefly explains the memristor devices and gives
a general feeling of where these devices stand compared to the leading conventional
technologies, SRAM, DRAM, and Flash. More information is provided in Chapter 2. The
mainstream memristive technologies are Phase Change Memory (PCM), Spin-Transfer
Torque Random Access Memory (STT-MRAM), and Resistive Random access memory
(ReRAM). These memories represent data as different resistance levels rather than the
absence or presence of charge used in conventional memories. Hence, they are non-
volatile in contrast to SRAM-based cache and DRAM-based main memory. This reduces
the static power of the memory (Leakage wall). Regarding area, memristors are smaller
than SRAM, but the same size as DRAM or flash memories. However, since some mem-
ristor technologies allow storing several bits per single device, their density (area effi-
ciency) can potentially surpass DRAM and flash memory. In terms of latency, these de-
vices are comparable to DRAM, but quite faster than flash memory. Another important
factor for memory technologies is programming/write energy. Although memristors are
quite behind SRAM and DRAM, they are still superior to Flash memories [6–8].
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In this thesis, we focus on computation-in-memory based on emerging memristor
devices due to their unique characteristics mentioned before.

1.2. CHALLENGES OF MEMRISTOR-BASED CIM
Although computation-in-memory and memristor devices can potentially bring consid-
erable energy and performance improvement to the system, some challenges and open
questions may arise. They need to be explored and addressed to make CIM a reality.
Figure 1.4 lists some of the challenges and opportunities that are potential research do-
mains for CIM. In the following, we briefly describe some of them for each abstraction
level.

Device

• Non-idealities

- Conductance variation

- Wire parasitic

- Conductance drift

- Read disturb

- Endurance

• Programming energy

• Device modeling

• Device testing

Circuit

• Crossbar structure

• Primitive operations

• Complex operations

• Periphery design

• Mitigating techniques 

for non-idealities

• …

Architecture

• Instruction set

• Controller

• Communication

• System integration

• Simulation platform

• Mitigating techniques 

for non-idealities

• …

Compiler

• Kernel extraction

• Programming 
languages

• Task and data 
mapping

• Automation & tooling

• …

Application

• Application 
identification

• Algorithm 
modification

• Workload 
characterization

• …

Figure 1.4: Example of challenges and open research directions for computation-in-
memory in different abstraction levels.

1.2.1. DEVICE LEVEL

There is much ongoing research in order to explore different materials and technologies
to implement memristor devices. A significant focus of research at this level is address-
ing the non-idealities of the devices. As depicted in Figure 1.4, variation in conductance
both during the programming or read phase (drift) is one of the major challenges. A
severe conductance drift can lead to read disturbance, which means the state of the de-
vice is changed after a few read operations. This gets even more challenging during the
computing phase, where this effect is aggregated from different devices. More informa-
tion can be found in [9] ( 1 non-idealities). Besides non-idealities, another concern is
the high programming energy of these devices. Reducing this energy is another research
challenge ( 2 programming energy). In addition, creating a model of these devices to be
used for circuit simulations is an active study [10] ( 3 device modeling). Finally, finding
a proper method to test these devices based on their unique defects is another challenge
[11] ( 4 device testing).
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1.2.2. CIRCUIT LEVEL

At this level, there are also challenges, mainly regarding how the memristors should be
connected to form a memory array and how the periphery circuits should be designed to
improve the system’s desired metrics. The way the computation is performed depends
on how the memristor devices are connected to each other. Different memory array
structures can enable different operations and impact different system metrics [12] like
energy and accuracy ( 1 crossbar structure). Furthermore, the researchers explore en-
abling more primitive and complex operations in memory [13]. Primitive operations
(e.g., logical operations, VMM) are the building block for complex operations ( 2 primi-
tive/complex operations). Besides array structure and operations, many analog and dig-
ital periphery circuits are required to exploit computation in a memory array, and they
significantly impact the energy/performance efficiency of the system [14] ( 3 periphery
design). Finally, finding techniques to mitigate the effect of device non-idealities is an-
other research topic [15] ( 4 mitigation techniques for non-idealities). Circuit design for
CIM is in the early stages, and more research has to be conducted to find optimum de-
sign choices.

1.2.3. ARCHITECTURE LEVEL

Compared to the device- and circuit-level works, there has been less focus on architec-
ture and higher abstraction levels. Some aspects should be studied when an in-memory
memristor-based architecture has to be designed. Each memristor tile may consist of
different components. A designer should study a tile’s main components, how they are
controlled, and how much flexibility is required for the control system. The system can
deliver a static function or be programmed using a set of ISA [14, 16] ( 1 instruction
set and controller). Real-world applications need to comprise many memristor tiles.
Architects should study communication networks based on the system’s requirement
to orchestrate data among memory arrays efficiently [17] ( 2 communication). The re-
searchers should also study how these memory arrays are integrated into a system and
how they should interface with the outside ( 3 system integration). Finally, as there
might be many parameters in the system, it is essential to develop a simulation platform
to realize the system’s behavior in different scenarios [18, 19] ( 4 simulation).

1.2.4. COMPILER LEVEL

As described before, a circuit designer can enable certain operations in the memory ar-
rays. Based on these operations, we should be able to extract potential parts from an
application to be performed inside the memory [20] ( 1 kernel extraction). To easily
identify these parts, the application should follow specific rules and standards. Then,
the selected parts should be decomposed into sets of understandable operations and in-
structions for the memory [21] ( 2 programming language). Besides, how data should
be mapped into the memory with respect to the requirements and constraints can con-
siderably influence the system’s metric. For example, good mapping can minimize com-
munication among memory arrays [16] ( 3 task and data mapping). Finally, a toolchain
should be developed to automize these steps ( 4 automation). Until now, as CIM is in its
early stage, limited attention is paid to the compiler and programming language.
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1.2.5. APPLICATION LEVEL

Despite general-purpose processors, computation in memory can be performed un-
der specific conditions mainly due to the limited supported operations and how they
should perform. In addition, to exploit maximum efficiency from CIM, the computa-
tions should be able to be performed in a massively parallel way. Therefore, we have to
evaluate different applications to perceive whether they have the potential to be accel-
erated by CIM [22, 23] ( 1 application identification). In some cases, by modifying an
algorithm, we can optimize it for CIM. Hence, an application expert can provide rec-
ommendations to alter algorithms and make them compatible with CIM [24]. This is a
helpful insight for researchers working on compiler and mapping abstraction level ( 2
algorithm modification). Besides, valuable insight can be provided for architects and
circuit designers to optimize control flow, data flow, and essential components around
the memory arrays based on the application behavior. These characterizations can even
influence device-level abstraction. As an example, an application expert can identify
how much inaccuracy a device can inject into a system still to satisfy the final accuracy
requirements for different applications ( 3 workload characterization). In conclusion,
studying different applications is essential to enabling CIM and realizing its merit.

1.3. RESEARCH TOPICS

The previous sections have described the potential of memristive devices and comput-
ing in memory. However, still many challenges mentioned in Section 1.2 have to be ad-
dressed to bring CIM into reality. This thesis mainly focuses on architecture and applica-
tion levels and aims to propose solutions for some of their challenges. Many researchers
in this domain propose different accelerators specifically tailored for an application un-
der certain assumptions and constraints. These studies can clearly show the potential
of memristor-based CIM and can provide a good understanding of CIM, its capabili-
ties, and its limitations. Although these accelerators improve the efficiency of comput-
ing systems, they become obsolete quickly as the applications change or even evolve.
As depicted in Figure 1.5, this imposes a considerable design cost. In this thesis, while
we still think it is worth investigating different applications and designing memristor-
based accelerators for them, we also study a second path where we give flexibility and
programmability to the designs to extend the range of their applications. The thesis pro-
vides a comprehensive study in both directions, 1) Application-specific design approach
and 2) Generic design approach.

In short, the research carried out in this thesis expects to find an answer to the follow-
ing question:

What are the main potentials for memristor-based computation-in-memory, and how
to realize them for generic and application-specific designs to achieve high energy ef-
ficiency and performance?

In the following, we elaborate more on the research question and determine the scope
of the thesis with respect to Figure 1.4.
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(IBS), the increase of design cost for each generation technology has exceeded 50% after 22 nm
process, including EDA, design verification, IP core, tape-out, and so forth. For instance, the total
design cost of 7 nm process is about 300 million dollars, and that of 3 nm process is expected
to increase 5 times up to 1.5 billion dollars [2], as depicted in Figure 1. Thus, the difficulties for
implementing a high-performance chip upgrade based on process improvement are increasing and
the price-performance ratio is increasing. Furthermore, due to the technical limitations in yield (such
as the mask size of lithography machine), the existing monolithic integration becomes unsustainable
with new process for upgrading and expanding the functions and performance.

Figure 1. Chip Design and Manufacturing Cost under Different Process Nodes: Data Source from
IBS [2].

In such a scenario, chiplets provide a feasible way for future chip design. Multi-Chip Modules
(MCM) technology [14], which appeared in the 1980s, has already embodied the concept of
chiplets. MCM technology connects multiple chips on a substrate or other medium for meeting the
performance and functional requirements of complex system chips. MCM could reduce the overhead
of board-level interconnection and the complexity of board-level system design, which saves the cost
of building a system greatly. Recently, Intel, AMD, and other companies have developed a series of
high-performance chip products based on MCM technology. However, MCM mainly focuses on the
underlying packaging technology. And it does not consider the high-level problems on heterogeneous
integration of chip, including multi-level interconnection standards, interfaces, tools, and ecology.

In 2017, DARPA planned the “General Heterogeneous Integration and IP Reuse Strategy [12]”
(CHIPS) in the “Electronic Revival Plan”. This project attempts to utilize the industrial and academic
forces to solve the above problems. The participants consist of the system integration vendors
(Lockheed Martin, Northrop Grumman, Boeing, Intel, Micron, etc.), EDA vendors (Cadence, Synopsys,
etc.) and research institutions (University of Michigan, Georgia Institute of Technology and North
Carolina State University, etc.). This project emphasizes on developing a new technology framework
that incorporates chip dies with different functions, then matches and combines them onto the
interposer. It not only integrates dies into on-chip systems at a lower cost, but also enhances the
overall flexibility and reduces the design time of next-generation products.

The Open Compute Project (OCP) promoted by Facebook and other companies also actively
launched the Open Domain-Specific Architecture (ODSA) [15] research at the end of 2018. It tries to
develop a complete architecture interface stack and to create a chiplet open market. By defining open
standardized interfaces, the die integrated in Chiplet chips could interoperate to support the flexible
combination from different vendors for building more flexible chip systems.

To achieve these above goals, the research and development of software toolchains and the
typical applications will be the important problems to be addressed for further development of
chiplets. To be specific, the software toolchains includes the full-stack feasible interconnection interface

Figure 1.5: Chip design cost under different process nodes [25].

1.3.1. INVESTIGATING THE POTENTIAL OF CIM
During the last few years, many works have been carried out to promote the capabilities
of CIM. We will present several key achievements in the memristor research that mainly
define low-level functionalities combined with high-level abstractions to estimate the
performance and energy (saving) potential. This leaves a large gap that needs to be ex-
plored. In our investigation, coinciding with research at the tile level, we determined
that functionalities within memristor tiles can be categorized according to a model we
developed. Using our model, we can clarify the available design choices as well as the
scopes where more attention is required. This information can help to identify the pos-
sible future directions.

1.3.2. EXPLOITING CIM FOR APPLICATION-SPECIFIC DESIGN

A designer should have a good insight into the applications that have the potential to be
executed using a memristor-based CIM system. Each application may have a different
data and control flow and may require different features to be enabled in CIM. Hence,
to maximize efficiency for each application, we studied how the applications should be
mapped into the memory and whether we need to modify the algorithm to make it suit-
able for CIM. In this thesis, we studied three applications from completely different do-
mains (Neural network, Graph processing, and Bioinformatics). Afterward, we designed
and proposed an energy-efficiency and high-performance memristor-based accelerator
for each. The information and experience achieved from this study are also insightful for
further development in the subsequent part of the thesis.

1.3.3. ARCHITECTURAL SOLUTIONS FOR EFFICIENT AND PROGRAMMABLE

CIM
Considering the generic direction, we focus on the (micro) architectures of a generic
CIM-Tile. To realize a generic CIM-Tile model, we studied the common essential com-
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ponents required next to a memory array, how the data flows, and what the possible
approaches are to orchestrate these components. It is also essential to comprehend how
a memory array interfaces with the outside and how the data flows in and out. The way
the components next to a memory array are organized and controlled can influence the
efficiency of CIM. Poor architectural implementations can lead to low efficiency. Hence,
in this part of the thesis, we focus on an efficient and flexible structure of a CIM tile, intro-
duce our instruction set architecture, and design some essential periphery components
(e.g., controller) of a generic CIM. Figure 1.6 highlights the parts in a CIM-tile that this
thesis focuses on concerning this design direction. Finally, we need to develop a sim-
ulation platform to verify the functionality and measure the efficiency of the potential
architecture.
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Figure 1.6: Thesis storyline with respect to the thesis chapters

1.4. THESIS CONTRIBUTIONS
The contributions of this thesis are directly related to the research topics discussed in
the previous section. The research topic consists of three parts: 1) Investigating the po-
tential of CIM, 2) Exploiting CIM for Application-Specific Design, and 3) Architectural
solutions for efficient and programmable CIM. We categorized the contributions of this
thesis based on that.
(1) Investigating the potential of CIM:

• Exploring potential architectural directions and applications for CIM: We demon-
strate the CIM concept using a broader and generalized model. Considering this
model, the state-of-the-art CIM-based logic and arithmetic primitive functions,
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which can be the building blocks for complex functions, are investigated. Besides,
we present potential applications of CIM, which provides insights into the chal-
lenges and opportunities of a generic CIM system design. Finally, we highlight the
future directions regarding the construction of CIM-based systems. This work has
been published in [13].

(2) Exploiting CIM for Application-Specific Design:

• Designing a high-performance accelerator for binary neural networks: Neural
Networks (NNs) are leveraged in a variety of applications. With the growth of the
network size for advanced applications, implementing NNs has become challeng-
ing, considering hardware limitations. In this study, we focused on Binary Neural
Networks (BNN) due to their high model compression rate and simplified com-
putations. This work proposes an efficient implementation of XNOR-based BNN
to maximize parallelization. In this implementation, costly analog-to-digital con-
verters are replaced with sense amplifiers with custom reference(s) to generate ac-
tivation values. Besides, a novel mapping is introduced to minimize the overhead
of data communication between convolution layers mapped to different memris-
tor crossbars. This work can be found in [24].

• Presenting a novel data representation and accelerator for sparse graphs: Graph
processing is employed in a wide range of areas, including but not limited to social
media analysis, urban planning, and machine learning. Due to the explosion of
graph size and massive data movement across the memory hierarchy, it is worth
exploring the potential of CIM in this application. In this work, we propose a
novel data representation tailored for spars-based graph processing and target-
ing computing-in-memory designs. This enables the computations over a com-
pressed graph representation. The suggested hierarchical mapping, as well as its
implementation, can significantly improve the resource utilization of the system,
which can lead to considerable energy efficiency. This work has been published in
[22].

• Designing Energy-Efficient food profiler using CIM: Bioinformatics is another
application domain that often works on massive data structures. Hence, it is es-
sential to investigate this domain and its applications as a probable candidate who
can exploit CIM. Food profiling is an essential step in any food monitoring system
needed to prevent health risks and potential fraud in the food industry. In this
study, we propose an accelerated leveraging of the concept of hyperdimensional
computing (HDC) and CIM together. This work actualizes several domain-specific
optimizations and exploits the inherent characteristics of memristors to improve
the overall performance and energy consumption of food profilers. This work has
been published in [23].

(3) Architectural solutions for efficient and programmable CIM:

• Proposing generic in-memory ISA and CIM architectures: We define a new set of
ISA capable of accurately reflecting and flexibly controlling all functional aspects
of a generalized CIM-tile organization while dealing with different constraints,
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configurations, and requirements. The introduced ISA bridges the gap between
high-level programming languages and the CIM-tile architecture and allows for
the definition of a compiler. Based on that, the architecture of a CIM tile, which is
a generalization of the existing works, is designed. This work has been published
in [14].

• Developing a simulator and compiler for CIM: We develop a compiler that is able
to translate higher-level operations (e.g., defined in higher-level programming lan-
guages) into a sequence of instructions in our ISA based on the system config-
uration. Besides, in order to mimic the behavior of the system, we developed a
fully parameterized simulator that is capable of executing the newly introduced
instructions and simulating our CIM tile architecture. This work has been pub-
lished in [21].

• Suggesting an energy-efficient periphery structure to support unsigned integer
MMM: In order to support the unsigned integer datatype, we propose a new adder
structure in the periphery next to the memory crossbar. The proposed design uti-
lizes minimum-sized adders customized based on technology-driven restrictions,
e.g., the number of active crossbar rows per addition. The structure is not re-
stricted to a single fixed integer word size and can flexibly support different word
sizes without hardware changes. This work has been published in [26].

• Proposing a novel scheme to support signed arithmetic operations for CIM: To
broaden the scope of CIM and make it applicable to a wide range of applications,
different data types should be supported. Many applications are often operating
on signed numbers. Hence, without the support of signed numbers, the promise
of CIM for these applications is greatly diminished. Therefore, it is essential for
researchers to enable this feature for CIM-based design. This work advances the
state-of-the-art by proposing a novel mapping solution to support signed and un-
signed MMM based on widely used two’s complement representation. This method
performs signed and unsigned operations with minimum energy, latency, and area
overhead by eliminating the costly sign extension. This work has been published
in [27].

1.5. THESIS ORGANIZATION
The organization of the thesis is illustrated in Figure 1.6. In the following, we give an
overview of the thesis per chapter.

Chapter 2 presents the overview of memristor devices and state-of-the-art CIM de-
signs. First, it presents the background on resistive devices, current operations sup-
ported in the memristive crossbar array, and reputed architectures. Second, we provide
an overview of applications for CIM. Finally, we briefly discuss the possible architectural
choices.

Chapter 3 explores the first application, binary neural networks (BNN), for CIM. We
focus on application-specific design for BNNs. In this chapter, we first provide a back-
ground on BNNs and their XNOR-based implementation. Afterward, we propose our
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implementation, replacing analog-to-digital converters (ADC) with sense amplifiers (SA)
using adjusted reference(s). Then, we discuss how the data should be mapped in order
to reduce the cost of data communication among different layers of the network. There-
after, we study the effect of references for SAs on the accuracy of the network, and we
evaluate the energy and performance of the system.

Chapter 4 studies CIM in the context of graph processing applications. Due to the
considerably large datasets in this domain, these applications are worth to be considered
for CIM. In this chapter, we propose an accelerator based on a hierarchical mapping
of graph data into the crossbar to improve the energy efficiency of sparse-based graph
datasets on the CIM crossbars.

Chapter 5 focuses on another application domain, bioinformatics, which has great po-
tential to leverage the concept of CIM. We first provide background about metagenomic
profilers and, specifically, food profilers. The food profiling problem can be expressed as
a multi-object (multispecies) classification where hyper-dimensional computing (HDC)
can be used. Next, a brief background about HDC is given. Afterward, we propose our
design using both CIM and HDC to implement a fast and energy-efficient food profiler.

Chapter 6 explains the architecture of the CIM tile memory array. The CIM tile is con-
trolled by a set of instruction set. Hence, we discuss the instructions and what they do
in the CIM tile. Afterward, we present the current version of the compiler and how the
instruction sequences are generated. Furthermore, we describe our SytemC CIM tile
simulator. Then, we touch on the concept of multi-tiling and briefly describe our idea of
inter-tile communication. In the end, we describe our first step toward system integra-
tion.

Chapter 7 first describes the digital periphery design to support integer arithmetic op-
erations. This periphery has to take the intermediate results computed in the crossbar
and produces the final result. The proposed design flexibly supports different data sizes
while minimizing the required hardware and maximizing performance and energy effi-
ciency. Second, by introducing the concept of virtual bit-line and virtual input segment,
signed arithmetic operations using two’s complement representation are supported in
the crossbar with minimum energy and performance overhead. This is obtained by
slight modification in the controller of the crossbar.

Chapter 8 concludes this thesis and presents insights on future work.



2
BACKGROUND AND

CLASSIFICATION

This chapter presents a background on computation-in-memory based on memristor de-
vices. First, we explain the theory of memristor devices and their three main technologies.
We compare these emerging memory devices with mainstream memory technologies and
elaborate more on their pros and cons. Subsequently, we present the main crossbar struc-
tures to connect these devices together. Afterward, we provide a generic illustration of a
memristor tile, comprised of a crossbar and its peripheries, and classify all kinds of opera-
tions we can perform in it. Then, we present an overview of potential applications for CIM
and different design strategies we may take to implement it. Finally, the chapter concludes
with an overview of existing designs and accelerators that exploit CIM and memristor de-
vices.

This chapter is partially based on [13].
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Memory is the core part of computing systems, and traditionally, it uses solely to store
information; the information is stored as the presence or absence of charge, such as
static random access memory (SRAM), dynamic random access memory (DRAM), and
flash memories. Besides traditional memories, there is also a new class of memories
where the data is stored as resistance (conductance) levels. This memory class refers as
the memristive device due to manifesting particular relation between electrical param-
eters. In the following, we elaborate more on this.

2.1. MEMRISTIVE DEVICE THEORY

Before 1970, the three fundamental circuit elements, resistance(R), capacitance (C), and
inductance (L) were known and implemented. These elements relate four fundamen-
tal units of electricity (charge, current, voltage, and flux) to each other. The resistance
relates the derivative of voltage to current (d v = Rdi ). The capacitance shows the rela-
tion between charge and voltage (d q = cd v). Finally, the inductance demonstrates the
relation between flux and current (dΦ = Ldi ). This is illustrated in Figure 2.1. In 1971,
Leon Chua identified the characteristics of a fourth fundamental electrical element that
links magnetic flux and charge. This element is called memristor. Equation 2.1 presents
the behavior of this element mathematically. Despite resistor (R), memristor provides
a dynamic relation between current and voltage which means their present behavior is
determined by the voltage, current, and its state.

Figure 2.1: Illustration of four fundamental circuit elements and how they relate to each
other.

M(q) = dΦ/d q => M(q(t )) = (dΦ/d t )/(d q/d t ) =V (t )/I (t ) (2.1)

Equation 2.2 shows a more simplified representation of the memristor device. This
equation model the memristor as state-dependent ohm’s law, where the resistance is a
function of state variable x, voltage, and current. In this equation, R represents the resis-
tance function of the memristive device. The state itself is obtained from Equation 2.3,
where the time derivative of the state variable is a function of the state variable, voltage,
and current. In 2008, HP lab reported the first physical demonstration of the memristor.
The memristive device is implemented as a two-terminal device that exhibits a pinched
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hysteresis at the origin of the current-voltage (I-V) curve. This pinched hysteresis rep-
resents the resistance switching depending on the history of the resistance and the ap-
plied voltage or current. This means we can change the resistance state by a change in
the voltage (or current).

V = R(x,V , I )I (2.2)

d x/d t = f (x,V , I ) (2.3)

Figure 2.2 demonstrates the switching dynamics of (a) bipolar and (b) unipolar mem-
ristors. In bipolar devices, by applying positive and negative voltage, we can alternate be-
tween low and high resistance levels, respectively. This is shown in Figure 2.2(a). Bipolar
switching has been demonstrated by several RRAM [28–38] and MRAM [39–43] devices.
However, unipolar devices depend only on the magnitude of the programming voltage
regardless of its polarity. The unipolar switching has been demonstrated by some RRAM
[44–48], and PCRAM devices [49–51].

Figure 2.2: Memristor switching dynamics for (a) bipolar and (b) unipolar devices.

2.2. MEMRISTIVE DEVICE TYPES

Different technologies and materials can be used to implement memristor devices. In
the following, we briefly discuss three leading technologies of memristor devices, and
then we compare them with conventional memory technologies.

2.2.1. RESISTIVE RANDOM-ACCESS MEMORY

Resistive Random-Access Memory (ReRAM or RRAM) devices consisting of a metal-insulator-
metal stack; the bipolar device is set and reset by changing the polarity of the program-
ming voltage (e.g., 2V) to form or dissolve the conducting filament. To read the device
without disturbance, a small voltage (e.g., 0.2V) is applied, and the current (voltage)
through (across) the device should be sensed while programming the device requires
higher voltage/current and longer latency [21]. The device in LRS and HRS states is illus-
trated in Figure 2.3(a).
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Figure 2.3: Illustration of (a) ReRAM device. The appropriate voltage levels form or dis-
solve conducting filament by repelling or absorbing oxygen vacancies to cre-
ate LRS and HRS, respectively [21]. (b) PCM device. When the pulse is
stopped abruptly, the molten material quenches into the amorphous phase
due to glass transition. When a current pulse of lesser amplitude is applied to
the PCM device in the HRS state, a part of the amorphous region crystallizes.
By fully crystallizing the phase change material, the LRS state is obtained [52].
(c) STT-MRAMs device. The device contained two ferromagnetic layers and
one dielectric tunnel barrier in between. The polarization of the top layer
(free layer) can be rotated during the programming phase by changing the
polarity of the voltage (current). The device will be in LRS (HRS) if the two
ferromagnetic polarizations are parallel (anti-parallel) [53].

2.2.2. PHASE CHANGE MEMORY

Phase change memory (PCM), which also dates back to the 1960s35, is based on the
property of certain types of materials, such as Ge2Sb2Te5, to undergo a Joule heating-
induced, rapid and reversible transition from a highly resistive amorphous phase to a
highly conductive crystalline phase. A typical PCM device has a mushroom shape where
the bottom electrode confines heat and current. This results in a near-hemispherical
shape of the amorphous region in the HRS state. By crystallizing the amorphous region,
the LRS state is obtained [52]. The device in LRS and HRS states is illustrated in Figure
2.3(b).

2.2.3. SPIN TRANSFER TORQUE MRAM
Magnetic tunnel junction (MTJ) is the data-recording element in Spin transfer torque
MRAM (STT-MRAMs); it encodes two bi-stable magnetic states into one-bit data. Funda-
mentally, the MTJ consists of two ferromagnetic layers sandwiching an ultra-thin dielec-
tric tunnel barrier (TB). The top ferromagnetic layer is named as free layer (FL), where
the magnetization can be switched by applying a spin-polarized current going through
it. The bottom ferromagnetic layer is called pinned layer (PL), where the magnetization
is strongly pinned to a certain direction. Therefore, the FL’s magnetization can be either
parallel (P state) or anti-parallel (AP state) to the PL’s [53]. The state of the device in LRS
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and HRS is illustrated in Figure 2.3(c).

2.2.4. OVERVIEW OF MEMORY TECHNOLOGIES

Regardless of the memory technology, there are some essential characteristics that we
always need to consider when it comes to memory. Access time is how fast information
can be stored and retrieved (read and write latency). Cycling endurance is the number
of times a memory device can be programmed (or switched). Finally, the access en-
ergy is the energy consumed to read from or write into the device. Table 2.1 provides
a rough comparison between mainstream memories and emerging memories with re-
spect to some important characteristics.

Table 2.1: Comparison of mainstream and emerging memories [6, 7, 11]
Mainstream Memories Emerging Memories

SRAM DRAM Flash RRAM STT-MRAM PCM
Size (F 2) 120-150 10-30 10-30 10-30 10-30 10-30
Volatality Yes Yes No No No No
Voltage < 1 V < 1 V >10 V < 3 V < 1.5 V < 3 V
Write energy ∼fJ ∼10 fJ ∼100 pJ ∼1 pJ ∼1 pJ ∼10 pJ
Write latency ∼1 ns ∼10 ns ∼1 ms ∼10 ns ∼5 ns ∼10 ns
Read latency ∼1 ns ∼3 ns ∼100 ns ∼10 ns ∼5 ns ∼10 ns
Endurance ∼10^16 ∼10^16 ∼10^4 - 10^6 ∼10^7 ∼10^15 ∼10^12
Scalability Medium Medium Medium High High High

In Table 2.1, F denotes the minimum feature size. According to the table, we can
see emerging memories provide high density. If emerging memories can also support
multi-bit storage, their density would be even higher than mainstream memoirs. Next,
they are non-volatile despite SRAM and DRAM. This leads to lower static energy con-
sumption. They also operate on lower voltage levels than flash memory which makes
them good candidates for embedded applications [11]. The read and write time is worse
than SRAM, comparable to DRAM, and significantly better than Flash. The endurance of
emerging memories is a bit behind volatile memories, but comparable and better than
Flash memories. Finally, these emerging memories often suffer from high programming
energy. This is the main reason that researchers often use these devices for applications
that do not require frequent reprogramming.

Despite the promising characteristics of memristors, their non-idealities are a signifi-
cant concern in the context of reliable computing. These non-ideal behaviors are mainly
due to device imperfection fabrication and inaccurate programming. In the following,
we briefly elaborate more on different types of non-idealities based on the information
provided in [9, 54].

• Programming Noise: In an ideal case, memristors can alternate between certain con-
ductance levels with unique values. However, in reality, each level can have a range
of conductance values with a Gaussian distribution. The variation in the program-
ming voltage (or current) is highly correlated with the programmed value. For the
memristors with high conductance levels, the noise margin between the levels is re-
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duced. Hence, the adverse impact of programming noise is more detrimental. There-
fore, using a large-resolution memristor cell is challenging for a system in terms of
accuracy/functional correctness.

• IR-drop: IR-drop is caused by wire resistance. As the memristor gets far from its driver,
the impact of wire resistance increases. Therefore, the voltage required for program-
ming and reading is dropped from its nominal value. As a result, the memristor is
programmed into the wrong value (programming noise), or a wrong value is read from
the device during a read operation.

• Non-zero Gmi n error: The information is represented by different resistance levels in
the memristors. As an example, logic value ’0’ should be mapped to a high or low re-
sistance level. In both cases, there would be a current where it goes through to the
sensing circuit. In other words, a non-zero output current is produced when a non-
zero input voltage is applied to a memristor with a high resistance level representing
digital zero. This can be challenging when we want to perform mathematical opera-
tions with memristor devices [55].

• Endurance and Retention: The endurance (aging) problem comes from the destruc-
tive nature of the programming operation. For example, in the case of ReRAM device,
this aging might be caused by a change in the oxygen vacancies due to oxygen diffu-
sion. The endurance issue sets a limit on the number of times we can reprogram these
devices. This is why researchers often consider memristors for applications that do
not require frequent reprogramming. Currently, the endurance of memristor devices
is above 106. The retention time for memristor devices can also go up to 10 years [9].

• Conductance drift: The conductance of memristor devices drift during the time. This
happens by even reading the device frequently. Hence, after a certain period of time,
the device has to be reprogrammed to return to its original state.

• Read disturb: Read disturb is a severe conductance drift where the actual value is
flipped after a read operation.

2.3. MEMRISTIVE CROSSBAR STRUCTURE
By placing the memristor devices in a crossbar structure, not only they can be used as
a storage unit, but some functionalities can be enabled in the memory as well. There
have been proposed different crossbar structures. In the following, we describe the most
common structures briefly.

2.3.1. 1R CROSSBAR ARRAY

Figure 2.4(a) depicts a memristive crossbar array where each cell comprises a single
memristive device (1R). The cells are accessed by two lines, word-line (WL) and bit-line
(BL). This type of array structure provides high density compared to other array struc-
tures. In order to read a device, we need to drive the desired WL with ’Vr ead ’ while the
rest are connected to the ground. Then, the value of all the memristors, placed in the
active row, is read by sensing the current flows in the bit-lines. However, the drawback
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Figure 2.4: Common crossbar structures and how they operate during read and write
operations. a) Passive crossbar with high density but suffering from sneak
path current. b) 1T1R common source-line array tailored for VMM. C) 1T1R
dual bit-line array suitable for streaming logical operations. d) 2T2R crossbar
structure achieves high performance and sensing margin.

of this design is its sneak path current. As the figure illustrates, the bit-lines current may
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leak via other memristors in the inactive rows. Hence, the current sensed by a sense
amplifier may not correspond to the value stored in the memristors.

To program the devices, we must perform two steps: 1) initialization and 2) writing. In
the initialization step, the devices of a selected row are reset to HRS (logic ‘0’) by apply-
ing V DD to the WL and GND to all the BLs. In the writing step, GND is applied to the
selected WL, and V DD to only the BLs where we want to program their memristor to LRS
(logic ‘1’). We need to apply 1/2(V DD) to non-selected WLs. This prevents non-selected
devices from switching. According to the figure, the voltage across the selected device in
the first column is V DD (i.e., V DD>Vset ), while V DD −V DD/2 across the deselected
device in the second column (i.e., V DD −V DD/2<Vset ).

2.3.2. 1T1R COMMON SOURCE-LINE CROSSBAR ARRAY

To eliminate the sneak path current, we can use an access transistor next to each mem-
ristor device. Figure 2.4(b) depicts 1T1R crossbar structure where the memristors in a
row share a common source-line. To read the value of a memristor, we apply V DD on
its corresponding word-line to turn on the access transistor. Besides, Vr ead is applied
to the source-line and the current (or voltage) is sensed on the bit-line. To program all
the memristors placed in one row in a single cycle, we need two different voltage levels;
V DD and 2V DD . We drive the source-line with V DD , and depending on whether we
want to set the device to LRS (logic ‘1’) or HRS (logic ‘0’), 2V DD or GN D is applied on
the bit-lines, respectively. This structure is suitable for the vector-matrix multiplication
operation. We will explain this in the following sections.

2.3.3. 1T1R DUAL BIT-LINE CROSSBAR ARRAY

This structure also considers one access transistor for each memristor device. However,
the source-line is shared among the memristors placed in one column of the crossbar.
Figure 2.4(c) shows this structure. Dual bit-line arrays have lower latency and energy.
This is due to the lower voltages during the write operation, meaning thinner oxide ac-
cess transistor, and hence lower transistor effective resistance. On the contrary, this array
structure needs more area compared to the common source-line array due to the parallel
orientation of BLs and SLs. This structure is suitable for ‘streaming’ logical operations.
We will explain this in the following sections.

2.3.4. 2T2R CROSSBAR ARRAY

Figure 2.4(d) shows the structure of the 2T2R crossbar where each cell comprises two
memristors (2R) and two access transistors (2T). For each cell, the actual data and its
complementary value is stored. This structure requires a differential sensing mechanism
(similar to traditional SRAM). The data and its complementary value go through the bit-
line and bit-line bars. A slight difference between the voltage or current of these two
lines is sensed using a differential sense amplifier. This leads to better performance,
higher sensing margin, and more tolerance against variation and non-idealities. This is
achieved at the cost of lower area efficiency. Besides, the efficiency of this structure for
computational operations (e.g., VMM, XOR) has to be further studied. More discussion
on this structure can be found in [12, 56].



2.4. CLASSIFICATION OF MEMRISTIVE CIRCUITS

2

23

Computational cores

Memory System in Package

Memory array

P
er

ip
he

ra
l c

ir
cu

it
s

Peripheral circuits

Extra Logic circuits

CIM-Array (CIM-A)

CIM-Periphery (CIM-P)

COM-Near (COM-N)

COM-Far (COM-F)

Memory core

Low BW

High BW

High-Max BW

Figure 2.5: Illustration of four possible places to preform computation.

2.4. CLASSIFICATION OF MEMRISTIVE CIRCUITS
The architecture of computers consist of (one or more) memories and (one or more)
computational units. A memory core consists of one or more cell arrays and peripheral
circuits. Traditionally, the computing takes place in the computational cores. However,
the notion of CIM aims to enable computation inside the memory. As we perform the
computation closer to the memory, we may acquire higher bandwidth. Figure 2.5 in-
dicates the four possibilities where a computation result can be produced. According to
the classification, if the result of computation is produced outside the memory core, then
it is referred to as Computation-Outside-Memory (COM). In this case, the computation
can take place either in extra logic circuit inside the memory System-in-Packages (SiP) or
like a traditional architecture in computational cores (CPU or GPU), which are referred
to COM-Near (COM-N) or COM-Far (COM-F), respectively. An example of COM-N is 3D-
Stacked Memory where extra logic is placed in memory system to perform some com-
putation. The two main classes of CIM circuit designs using memristive devices where
the results produced inside the memory core are described in the following:

CIM-Array (CIM-A): The result of the computation is produced within the array and
represented by resistances. CIM-A circuit designs have generally the following advan-
tages in common:

• They achieve the maximum bandwidth of “transferring” data between the computa-
tion and storage units, as both computation and storage happen physically within the
same memory array.

• They perform computation independently from the sense amplifiers. This can provide
high parallelism.

• They can potentially enable logic cascading of universal functions.

However, they share some limitations as well such as:

• Frequent write operations can lead to endurance and energy issues.
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• Performance overhead due to the high latency of device programming and logic cas-
cading to achieve complex functions.

• Significant design efforts both for the memory array (e.g., the memory array must sup-
port wider bit-lines to handle the excess of currents when multiple values are writ-
ten simultaneously) and its controller (e.g., the controller requires complex state ma-
chines to apply a long sequence of different control voltages to the memory array).

CIM-Periphery (CIM-P): The result of the computation is produced within the periph-
ery and represented by voltage levels. CIM-P circuit designs generally have the following
advantages in common:

• They do not exacerbate the endurance of the memory array as the memory states do
not change during and after the computation.

• They require relatively less redesign efforts in the memory array; i.e., the currents dur-
ing computation are lower or close to the write current.

• They allow high to maximum bandwidth depending on the complexity and area of the
periphery.

However, they share some limitations such as:

• They may have to share sense amplifiers or analog-to-digital converters per multiple
bit-lines, which can degrade the performance.

• They cannot cascade functions without read/write operations.

In the following, we dive into the detail of a CIM-tile (memory core) to understand how
the data flow in a tile and what the main steps are. Based on that, we collect and classify
main operations we can preform in a CIM-tile. Then, we provide a brief explanation
about the implementation of each operation.

2.4.1. GENERIC ILLUSTRATION OF CIM-TILE

In an attempt to potentially define a generic CIM-tile design, one should first establish a
better understanding of all potential capabilities of memristor-based circuits as well as a
deep understanding of the data flows within a CIM-tile for a wide range of applications.
Hence, we first present a logical breakdown of the data flow within an abstract CIM-tile
and its potential to create complex functions. Second, we investigate the state-of-the-art
memristor CIM-based logic and arithmetic functions.

A CIM-tile comprises a memristor crossbar and its digital as well as analog periph-
eries. Figure 2.6 depicts a generic CIM-tile where the tile receives digital data as well
as instructions [14] (or control signals) as inputs. The controller inside the tile is re-
sponsible to orchestrate all the circuits according to the instructions. The data may pass
through four steps, 1) Input processing fi n 2) Crossbar array fX bar 3) Sensing fsens 4)
Output processing fout . Until now, some novel circuit designs were proposed to expand
the number of functionalities that can be supported in each of these steps. Based on this
knowledge, when an application is intended to be executed using CIM-tiles, the designer
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Figure 2.6: Generic illustration of CIM-tile comprising four steps: 1) input processing 2)
crossbar array 3) sensing 4) output processing.

selects a certain function and its associate circuit for each of those steps. Hence, we will
end up with an accelerator designed just for a certain application. Until now, the main
focus of researchers regarding memristor-based CIM was on designing accelerators that
can only benefit specific applications. However, in order to have an as general as possi-
ble design, a wide range of functionalities should be supported in each of these steps at
the same time, rather than having a different circuit for each function. In the following,
we will describe what primitive functionalities are already supported in these four steps.
Identifying these functions also enables us to build more complex functionalities in the
CIM-tile.

2.4.2. PRIMITIVE FUNCTIONS IN THE CROSSBAR - fX bar (CIM-A)
1. NOR [57]: As illustrated in Figure 2.7, in order to perform the NOR function, two mem-

ristors are used to represent the two input operands and the result is written to a third
memristor. At first, the output memristor should be initialized to Low Resistance State
(LRS) representing a logic 1. Afterward, voltage level V0 is connected to the bit-lines of
the input memristors while the output memristor is connected to the ground. When
one or two inputs are a logic 1, the voltage level V0 should be sufficient enough to
be able to change the resistance of the output memristor without switching the resis-
tance of input memristors.

2. NoT [57, 58]: Figure 2.8 shows two different implementations for NOT based on (a)
Sinder [58] and (b) MGIC [57]. Considering Snider implementation (Figure 2.8 a), one
device holds the input, while the output is produced in the second device. The load
resistor Rg is an integral part of the design, and it is constrained to Ron ≪ Rg ≪ Ro f f .
The required control voltages Vwh and Vω are constrained to 0 < Vwh < Vset < Vω,
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Figure 2.8: Implementation of a NOT function based on (a) Snider and (b) MAGIC.

Vω −Vwh < Vset and Vr eset < Vω. The execution of the NOT function requires two
steps. In the first step, the output device is initialized to Ro f f . In the second step, Vwh

and Vω are applied to the bit-lines according to the figure, while the source-line (SL) is
left floating. When the input is 1 (Ro f f ), a zero voltage is produced on the horizontal
line leading to a voltage Vω across the output device. Therefore, the resistance state
of the output device switches. When the input is 0 (Ron), Vwh is produced on the
horizontal line. Hence, a voltage of Vω −Vwh is produced across the output device,
which is insufficient to switch its resistance state [59]. Figure 2.8(b) shows the MAGIC
implementation. This is the same as the NOR implementation mentioned before.
By programming one input of the NOR gate to logic 1, the NOT function can also be
implemented.

3. OR [60, 61]: The schematic of an OR function depicted in Figure 2.9(a) is similar to the
NOR function. However, the output memristor is initialized to the High resistance
State (HRS). In addition, despite the NOR operation, the bit-lines of input memris-
tors are grounded while the bit-line of the output memristor is connected to voltage
V0. Similar to a NOR, V0 should be determined to fulfill this functionality without be-
ing destructive. Despite the first implementation, the second implementation (Fig-
ure 2.9(b)) receives the inputs both as a voltage and resistance level. The output is
overwritten into the memristor (destructive function). If the memristor has been ini-
tialized to LRS, ( here is logic 1) or Vω applies to the bit-line, the final state of the
memristor will be LRS (logic 1).

4. Minority [60] Considering the NOR function, having one of the input memristors as
a logic ‘1’ is enough to switch the resistance of the output memristor. Accordingly, by



2.4. CLASSIFICATION OF MEMRISTIVE CIRCUITS

2

27

...

BL1=0 BL2=0

WL=active

SL1=Z
.

.

.

.
.

.

BL3=V0

.
.

.
in1 in2 out

Initialized to HRS=logic 0

...

OR ...
.
.

.
in1/out

...

in2

Initialized to ‘in1’

LRS = Logic 1
HRS = Logic 0

𝑉𝜔   = Logic 1
 GND = Logic 0

OR

(a) (b)

Figure 2.9: Two different implementations of OR function.

...
.
.

.

.
.

.

...

.
.

.
in1 in2 out

WL=active

SL1=Z
Minority

Initialized to LRS=logic 1

BL1=V<V0 BL2=V<V0 BL3<V0

.
.

.

BL4=0

in3

Input voltage scales downs

...
.
.

.
in3/out

...

in1

Initialized to ‘in3’

LRS = Logic 1
HRS = Logic 0

𝑉𝜔   = Logic 1
 GND = Logic 0

Majority

in2

(a) (b)

Figure 2.10: (a) Minority and (b) Majority implementation.

reducing the voltage of V0, we can determine the minimum number of ON resistances
to be able to switch the output device. This can effectively implement the minority
function. Figure 2.10(a) illustrates the implementation of this design.

5. Majority [61]: This function has three inputs, IN1, IN2, and IN3, and one output, OUT.
The states of IN1 and IN2 are voltage, while the states of IN3 and OUT are resistive; i.e.,
logic ‘0’ and ‘1’ are represented by Ro f f and Ron , respectively. The execution of the
Majority function requires a single step in which the inputs IN1 and IN2 are applied
to the bit-line and source-line. In addition, the memristor should be programmed
to IN3. Depending on the inputs, the memristor device may or may not switch. The
circuit implements the M a j or i t y(I N 1, I N 2, I N 3) [59].

6. AND [61]: The circuit of the AND function presented in Figure 2.11 is similar to the
Majority function explained before. Here, the select-line is connected to Vω. The two
input operands are presented by the voltage applied to the bit-line and the resistance
level of the memristor. The result is programmed into the memristor. In order to get
logic ‘1’ (LRS) in the output, the device should be initialized to LRS, and Vω should be
applied to the bit-line.

7. NAND [58, 60]: Figure 2.12 shows two implementations for the NAND function. The
execution for both implementations requires the initialization of the output device.
For the first implementation (Figure 2.12(a)), the output device is initialized to Ro f f

representing logic ‘1’. In the second step, Vwh is applied to bit-lines of the first and
second inputs, Vω is applied to the bit-line of output, while the source-line is left float-
ing. When both inputs are 1 (Ro f f ), a zero voltage is produced on the horizontal line.
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This produces a voltage Vw across the output device, switching its resistance from
Ro f f to Ron . On the other hand, when at least one of the inputs is 0 (Ron), Vwh is
produced on the horizontal line. Hence, a voltage difference of Vω−Vwh is produced
across the output device, which is not sufficient to switch its resistance state. The
second implementation (Figure 2.12(b)) is based on the Minority implementation ex-
plained before. By further reducing the voltage V0 for the Minority implementation,
at one point, all the memristor inputs should be RON to be able to switch the output
memristor, which can implement the NAND function.

8. XOR [62]: This function requires five memristor devices, among which two of them
are auxiliary memristors. Figure 2.13 depicts how these memristors should be con-
nected and initialized. In the case memristor devices, representing input operands,
are both either ON or OFF, the common node between memristor devices is virtually
ground, keeping the output memristor at its original state. Otherwise, the voltage on
the common node is V x which switches the output memristor to the LRS state with
the help of auxiliary memristors. The crossbar structure and the way data is mapped
to it to support this function is also demonstrated in Figure 2.13. More information
can be found in [62].

9. Copy [58]: Figure 2.14(a) shows the schematic of the Snider Copy function. As usual,
in the first step, the output device is initialized to Ro f f . Then, GND and Vω are applied
to the bit-lines of input and output devices, while the source-line is left floating. When
the input is 1 (Ro f f ), the voltage divider between the devices ensures voltage drops
of (Vω/2), which is not sufficient to switch their resistance states. However, when the
input is 0 (Ron), almost Vω is applied across the output device. This is sufficient to
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switch the device from Ro f f to Ron .

10. Imply [59]: The material implication is a logic function that implements conditional
statements ( p → q ⇐⇒∼ p ∨ q). Figure 2.14(b) presents the implementation of this
function. In the first step, the memristors are initialized with the input values. Then,
according to the figure, proper voltages are applied to the bit-lines. When the output
device (q) is 1 (Ron), there is no way to switch it to Ro f f . The only way to obtain Ro f f ,
as a result, is to initialize the output to Ro f f and the input to Ron . This implements
material implication.

By cascading the aforementioned functions inside the crossbar, more complex func-
tions such as arithmetic addition or multiplication, can be implemented. However, as
demonstrated before, different functions require different voltages and crossbar struc-
tures. This becomes even more challenging when the sensing step and its functions are
taken into consideration. Therefore, finding a unique solution that can cover most of
these functions with minimum cost is a valuable step toward a generalized memristor-
based CIM-tile. In addition, having a smart tile controller to deal flexibly with different
execution flows and patterns of data mapping is an essential part of this system.

2.4.3. PRIMITIVE FUNCTIONS IN THE SENSING STEP fsens (CIM-P)
Despite the functions mentioned before, here, the results of the functions are generated
by using sense amplifiers (SA) or analog-to-digital converters (ADC). In other words, the
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Figure 2.15: Primitive functions supported inside the sensing step ( fsens ). This figure
presents five operations ( Matching, Hamming distance, Subtract, Logic,
and VMM) that can be supported in an analog way using memristor cross-
bars. The result of these operations is produced in the sensing stage.

current generated by the crossbar is assigned to different logical values, which in turn
can implement different functions.

1. Hamming Distance [63] and Matching [64]: Using a CIM-tile, the Hamming Distance
function can be implemented. To calculate the distance between two vectors, one
vector, and its complementary value have to be programmed to the crossbar. As de-
picted in Figure 2.15, the second vector is given to the select signals of the pair of
multiplexers placed on top of the crossbar. This provides data as well as its comple-
mentary value to the memristors holding the first vector and its complement, respec-
tively. Subsequently, based on the similarity of the two vectors, different current lev-
els flow into the bit-line, which is sensed to determine the distance of the two vectors.
Similarly, a Match function can be performed by just using a SA. A potential crossbar
structure for this function [64] is depicted in Figure 2.15.

2. Subtraction [65]: Element-wise subtraction can be performed in the crossbar. The
proper voltage level has to be provided to the row corresponding to the negative
operand to be able to drain the current from the bit-line. Hence, the remaining cur-
rent on the bit-line represents the result of this function.
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3. Scouting Logic (AND-OR-XOR) [66]: Logical operations can be implemented in the
sensing step. In this approach, both operands as vectors are programmed to the
crossbar. As illustrated in Figure 2.15, depending on where to put a reference(s) of
SA, logical OR, AND, and XOR functions can be implemented. The main advantage
of this approach compared to implementing these functions inside the crossbar is re-
ducing the number of device programming. This is important due to the endurance
problem and high programming energy of memristor devices.

4. Vector-Matrix Multiplication[67]: Vector-Matrix Multiplication is the main function-
ality for which CIM-tile is intended to be employed. To perform this function, first,
the matrix has to be programmed to the crossbar. Subsequently, the vector is applied
to the select line of the crossbar. Finally, all the elements of the output vector are ob-
tained in one shot after converting analog current/voltage levels to their digital value
using ADCs.

Based on the example of functions in the sensing step, when a designer intends to
perform an application using one of those functions, having the competence to do other
functions becomes challenging due to the necessity of different array structures, circuits,
and constraints. As an example, Scouting logic just requires SA with two determined ref-
erences with a constraint on activating two rows at a time. However, in order to gener-
alize the design for other functions like VMM, ADCs have to be placed, and more rows
potentially should be activated.

2.4.4. PREVALENT FUNCTIONS IN THE DIGITAL PERIPHERY fout (CIM-P)
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Figure 2.16: Examples of digital periphery circuits designed to deliver certain function-
ality ( fout ).

Due to the complexity of the application execution flow and the limitation of function-
alities in CIM, some parts of the application should be performed by the host. However,
researchers try to place customized circuits in digital peripheries to expand the func-
tions that can be done in the memory and gain more energy/performance improvement
rather than simply assuming unsupported parts of an application are assigned to the
host processor.

Many circuits have been considered in the digital periphery for different applications.
Figure 4.5 shows two examples: 1) Cascading logic circuit [68] is customized digital pe-
riphery to perform sequential AND and OR logic in the periphery targeting database ap-
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plications. 2) Efficient Addition Scheme [26] is a novel structure to replace conventional
shift and add unit targeting matrix-matrix multiplication kernel. Based on the applica-
tions, some designers also placed subtractor, sigmoid function, vector processing unit,
and register files in the digital periphery. Due to the flexibility that can be provided by
digital design compared to the crossbar and sensing step, more attention should be given
to this step for a generalized CIM-based design. One example of periphery design that
can support a wide range of functionalities is employing Lookup Table (LUT) [65, 69].
However, still more research has to be conducted to have a smart and general solution
with a detailed execution model for a wide range of applications.

2.4.5. EXAMPLES OF FUNCTION IN THE INPUT PROCESSING STEP fi n

(CIM-P)
Despite other steps, this step has not been investigated much yet in the literature. How-
ever, some digital circuits were designed in [14] to carry out some functions. First, a
buffer using parallel-in-serial-out registers is considered to provide a clear separation of
tile from outside and facilitate data communication considering datatype size and lim-
ited resolutions for Digital to Analog Converters (DAC). Second, a digital circuit is placed
to be able to flexibly support different patterns of crossbar row selection. Other exam-
ples of this step could be Address CAlculation (ACA) [70], data quantization, downscal-
ing, and alignment.

2.5. POTENTIAL APPLICATIONS

Table 2.2: List of some potential applications/algorithms/kernels that can be executed
using memristor-based CIM.

Domain Applications/Algorithms/Kernels

Network
Automata processor for
network security [71]

Packet classification [72] SAMCRA [73] IP-routing -

operation AND Matching VMM Matching -

Security
Security primitives
(PUF-RNG) [74]

Encrypted
communication [75]

AES [76] Regular expression
matching [64]

Salsa20/ChaCha20

operation Analogue properties Analogue properties Add-XOR-Multiply Matching Addition - XOR

Approximate computing
Image property
calculation [77]

Approximate matrix
multiplication [78]

Quantum
simulations [79]

- -

operation Addition - Subtraction VMM VMM - -

Mathematics
Partial differential
equation solver [80]

Eigenvector
calculation [81]

Markov chain Vector-cosine similarity -

operation VMM VMM VMM VMM -

Signal and image processing
Compressed
sensing [82]

Discrete Fourier
Transform [83]

Convolutional Image
filtering [84]

Huffman encoding GLCM feature
extraction

operation VMM VMM VMM Matching Addition

Classification and Prediction
Recurrent neural
network [85]

Convolutional neural
network [67]

Hyperdimensional
computing [23]

Reservoir
computing [86]

Auto-regressive models

operation VMM VMM AND - OR - VMM Matching VMM

Database
Query-06 of the
TPC-H [87]

Pattern matching
in databases

Transitive closure Bitmap indices BitWeaving

operation Bitwise XOR Matching VMM OR - AND - XOR OR - AND - XOR

Bioinformatics
DNA sequencing or
allignment [88]

Genome Base-calling [89] Genome Profiling [90] - -

operation XOR - VMM VMM VMM - -

Graph processing
Graph Clustering [63] Breadth first search [91] VLSI routing PageRank All-pair-shortest-path

operation VMM - NOR - HD VMM VMM VMM VMM

Besides the existing operations, a designer should have a good insight into the applica-
tions that have the potential to be executed using a memristor-based CIM system. Table
2.2 presents the list of some applications/algorithms/kernels where a considerable part
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of the program can be performed inside the memristor-based memory and potentially
gain performance and energy from the concept of CIM. The examples in the table cover
a wide range of domains. This helps the designer to expand the generalization of the de-
sign by finding out the corner cases regarding application requirements and constraints.
It should be noted that these applications were evaluated by academic papers. Hence,
further evaluation with more accurate industrial models is required to ensure that CIM-
based implementation for these applications can outperform the digital CMOS-based
counterpart. In the following, some important aspects to be considered for a generic
CIM system design targeting a wide range of applications or even accelerator design are
listed:

1. Different applications require computation over different data types and data type
sizes. A generalized design should enable computation for some basic data types.
Besides, a design that can flexibly and efficiently support computation for different
datatype sizes is valuable since it can potentially lead to energy/performance im-
provement. This is also true in the case of accelerator design. A designer should be
aware of the required data types for the intended application(s) and enable them in
the design.

2. As shown in Table 2.2, different applications consist of different operations. However,
according to what was discussed before, a designer should realize a system to cover
more functionalities. This results in offloading fewer parts of the program into the
host and, in turn, less communication between the host and storage unit.

3. Based on the execution flow of applications, they may require different patterns on
crossbar rows and columns selection. In other words, during the execution time, an
application may operate on different locations of a crossbar. Therefore, this is impor-
tant that a generalized system provides this flexibility and accessibility to a program-
mer.

4. Memristor crossbars have limited dimensions which are usually much less than what
is required for an application. Considering that, the application should be mapped
to several tiles. Hence, a detailed implementation of tile communication, which can
flexibly cope with different data flows, is essential.

5. Variability is one of the challenging aspects of memristor devices, which can end in
accuracy reduction. Some applications can tolerate this inaccuracy, while others
need precise computation. Therefore, supporting algorithms to dynamically adjust
the accuracy of computations based on the application requirements can be another
research direction for a generalized system.

6. Although it is desired to offload more parts of an application on CIM-tiles and reduce
data movement more, there might still be some parts that have to be executed on the
host side. Accordingly, this indicates the necessity of communication and synchro-
nization of CIM-tiles with the host. Based on the existing works in the literature, a
detailed design regarding this aspect is missing and requires more attention from the
community.
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2.6. CIM ABSTRACT DESIGN CHOICES
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Figure 2.17: (a) Possible design choices at different abstraction levels for CIM. (b) Homo-
geneous design where each tile is capable and generalized enough to sup-
port a wide range of functionalities. (c) Heterogeneous design where tiles
are customized to execute different kernels efficiently.

As we can perceive from previous sections, there are two general directions toward
how to employ CIM. The common direction so far is designing accelerators for target
applications. These accelerators are designed only for fixed data-flow and control-flow
with minimal flexibility. Although a designer can heavily optimize the accelerator, this
approach suffers from limited applicability. Any changes from the application level may
require designing a new accelerator. On the other hand, the second direction is going
toward more generic designs. In the following, we scrutinize this direction more. In this
thesis, we follow both directions in parallel.

As discussed before, despite application-specific designs, in order to have a memristor-
based CIM-tile system capable of executing a wide range of applications, more complex-
ity and requirements are raised. To move toward such a system, different strategies can
be applied with respect to different abstraction levels. As illustrated in Figure 2.17 (a),
the system can be broken into at least three levels. Starting from the lowest level, Nano-
level, a CIM-tile can comprise just a primitive function in one of the steps, while no ma-
jor functionalities supported in other steps in the tile. An example of this can be MAGIC
[57] or Scouting [66] where just primitive functions supported in the crossbar fX bar or
sensing steps fsens , respectively. On the other hand, different functionalities can be sup-
ported at different steps of the tile in order to end up with a complex function. In the
second level of abstraction, Intra-Tile/Micro level, a Static or Programmable CIM-tile
can be targeted. In the case of Static, each step of the tile is designed (and Customized)
to provide specific functionality, while in the case of programmable tile, more than one
function is considered for the tile’s steps. Regarding the design choices in the highest
abstraction level and considering a spectrum, on one side, a designer can aim at a ho-
mogeneous CIM-tiles system where the tiles are the same, and each can support a wide
range of functionalities and requirements. On the other side of this spectrum, we will
have a heterogeneous design where CIM-tiles are customized for different purposes, and
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they can all provide this generality for the programmer. Finally, in the middle, we also
may have a hybrid solution where limited heterogeneity is considered while CIM-tiles
are pushed to support different functions as much as possible.

Figure 2.17 (b and c) illustrates the design choices for the inter-tile abstraction level.
Considering a homogeneous design, in order to execute an application, more resources
are available since the tiles are generalized and can cope with different functions. How-
ever, this might come at the cost of an area, energy, and latency overhead. In addition,
due to the complexity of the tile, an advanced controller has to be employed. Instead,
considering heterogeneous design, while fewer resources might be available for a cer-
tain application, the tiles might have higher energy, area, and performance efficiency.
Nonetheless, due to the heterogeneity, a more complex task offloading scheme might
require. Finally, the communication between tiles may impose more overhead when
the tiles selected for an application are far from each other. The design choice heavily
depends on how flexible the circuit in CIM tile will concern the applications’ function-
alities and requirements. No matter which approach is chosen, flexibly controlling this
storage unit both in the granularity of inter- and intra-tiles for different execution flows
is a crucial aspect. This can be achieved either all in hardware or partially at the software
level with the help of a compiler (or scheduler) [21]. This becomes more important for
heterogeneous designs when different workloads have to be mapped and scheduled for
specific CIM-tiles. In conclusion, 1) expanding the functionality of a CIM-tile with a uni-
fied circuit, 2) flexibly interfacing the CIM-tiles to each other as well as the host, and 3)
an advanced controlling system able to flexibly cope with different scenarios, are the key
aspects toward a generalized CIM-tile design.

2.7. OVERVIEW OF STATE-OF-THE-ART DESIGNS
In this section, we briefly explain the main related works to this thesis. We categorize
them into two parts according to what we have discussed before. First, we talk about the
works presenting generic designs for CIM. Then, we go through three main promising
applications and see the main accelerators designed for them.

2.7.1. GENERIC DESIGNS

There are very limited works doe far attempting to enable the concept of CIM for a
generic platform. UPMEM [92] is the first commercialized generic platform for CIM.
This platform is based on computation next to DRAM memory arrays rather than us-
ing emerging non-volatile memories. UPMEM consists of many data processors (DPU)
uniquely positioned within the DRAM memory chips and next to the data, to compute
data-intensive operations while drastically reducing off-chip data movements. Those
DPUs are controlled by the high-level application running on the main CPU that ensures
task orchestration. Similarly, Ambit [93] enables some primitive logical operations again
inside DRAM memory. In the following, we briefly discuss the works aimed at using CIM
in a generic direction using memristor devices.

• PUMA[16]: PUMA is the first design that brings general-purpose CIM with the help of
programmability. The designed architecture has three pipelined stages (fetch, decode,
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Figure 2.18: Core architecture of PUMA [16]. Each core comprises a crossbar and many
peripheral circuits.

and execute). PUMA supplements crossbars with an instruction execution pipeline
and a specialized ISA. The new in-memory instructions defined there are mainly re-
sponsible for communicating data between memory units or performing scalar op-
erations in digital peripheries. Figure 2.18 shows the architecture of PUMA. In this
design, many vector and scalar functional units are placed in the periphery to support
variety of operations next to the crossbar. PUMA also has its own compiler, translating
high-level code to PUMA ISA.

• In-memory data parallel processor[65]: In this promising work, new in-memory in-
structions were proposed. The instructions are complete operations that have to be
performed on crossbars based on the Single Instruction, Multiple Data (SIMD) execu-
tion model to enjoy massive data parallelism. The basic operations supported in the
crossbar are multiplication, addition, and subtraction. In this work, communication
between the crossbars was illustrated behaviorally without detail. Shared buses and
H-Tree networks are chosen to manage the communication.

• ReVAMP[94]: ReVAMP integrates the resistive memory in a pipelined processor in
which the memory replaces both the cache and register file. A new instruction is intro-
duced (Apply) to perform a computation operation (Majority) in the memory crossbar.
However, as we discussed before, emerging memories are slower and age faster than
SRAM. Hence, replacing the cache and the register file with memristors can potentially
slow down the speed of the processors.

Simulators: Many factors have to be considered when an in-memory memristor-based
architecture has to be designed since they can have a non-negligible effect on the per-
formance, energy, area, or even accuracy of the system. Therefore, the necessity of op-
timization and design space exploration at reasonable simulation time derive the re-
searchers to develop high-level simulators for this new type of architecture. There are a
few simulators, among which NVSim [95] and NVMain [96] are the first memory-oriented



2.7. OVERVIEW OF STATE-OF-THE-ART DESIGNS

2

37

simulators designed for non-volatile memories. These tools, which are inspired by CACTI
[97], can estimate the access time, energy, and area of non-volatile memories. Similar
to NVSim, MNSIM [18] proposed a behavioral simulation platform for neuromorphic
accelerators that estimates design parameters using analytical equations. Besides, an-
other system-level simulator [98] was proposed, in which by using probability functions
to capture the accuracy of ReRAM cells, the behavior of an application in terms of accu-
racy can be evaluated. However, still there is a need for cycle-accurate simulators that
actually execute in-memory instructions/operations. This allows the user to track all the
control signals and the content of crossbar/registers and produces more accurate per-
formance and energy consumption results.

2.7.2. APPLICATION-SPECIFIC DESIGNS

NEURAL NETWORK

Machine learning algorithms and specifically neural networks have pushed the state-of-
the-art designs and become prominent in a variety of applications, including, but not
limited to, language processing [99], object recognition [100], and image classification
[101, 102]. Designing larger networks and the ability to train them with advanced algo-
rithms was the main driver to enable performing complex applications for several years.
Besides advanced algorithms, hardware implementation and its challenges play a major
role in the deployment and development of DNN applications specifically for embedded
systems. One of the main hardware challenges of NN is the considerable amount of pa-
rameters (BERT has around 110 million parameters) that has to be stored and performed
computation on (the memory wall). The key computation required in neural networks is
Matrix-Matrix multiplication. Besides, neural networks can typically provide a high de-
gree of parallelism. All these reasons make the applications of neural networks the most
popular use cases for CIM-based designs.

Figure 2.19: Implementation of bi-direction VMM [103].

There are several small-scale fabrications of accelerators for neural network applica-
tions. Authors in [103] fabricate 48 CIM cores, each containing 256× 256 1T1R RRAM
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cells and 256 CMOS neuron circuits, that can perform inference in parallel and sup-
ports various weight-mapping strategies. As illustrated in Figure 2.19, they provide bi-
direction VMM by grouping 16× 16 RRAM and sharing a neuron circuit among them.
This might benefit different dataflow patterns at the cost of a complex crossbar struc-
ture and routing. Another work [104] reports the fabrication of high-performance and
uniform memristor crossbar arrays for the implementation of CNNs. Each memristor
array has an assembly of 128×16 1T1R cells. The design has eight arrays to implement a
CNN with five layers and performs MNIST image recognition with 96% accuracy. HER-
MES [105] present 256×256 in-memory compute core designed and fabricated in 14-nm
CMOS technology and multi-level phase change memory (PCM). The core also contains
a current-controlled oscillator ADC and a local digital processing unit. More information
about existing chips in this domain is provided in [106].

In the following, we classify accelerators based on network structure and highlight a
few works per category. In most designs, the training is performed offline, and the accel-
erator is employed only for inference. However, a few works perform the training phase
within the accelerator as well [107, 108]. Frequent device programming is required dur-
ing the training. In addition, weight updates often require small changes in each iter-
ation. Hence, more complex datatype and data mapping is required to be able to cap-
ture those small changes in the weights. Besides, more complex operations and data
flow should be supported in the accelerators [109]. According to the above reasons, re-
searchers often prefer to use CIM-based accelerators only for inference.

• Convolutional and deep neural network: PRIME [110] provides microarchitecture to
accelerate neural networks using ReRAM devices. In PRIME, a portion of ReRAM cross-
bar arrays can be configured as accelerators for neural networks, while the rest is used
as storage. ISAAC [67] proposes a pipelining mechanism for CIM-based implementa-
tion of convolutional neural networks to reduce the required buffer size between lay-
ers. Two accelerators [69, 111] designed intended for both training and inference. By
analyzing data dependency, Pipelayer [69] exploits inter- and intra-layer parallelism.
The authors in [111] analyze the variations resulting from the inherent characteristics
of memristors and the errors of programming voltages on different networks.

• Spiking neural network (SNN): Memristors may be used for various devices in neural
networks, i.e., neurons and synapses as well as neuronal circuits. Many works [112–
119] in this domain aim to use memristors to model neurons. Traditionally, many tran-
sistors are needed when fabricating neurons by CMOS technology only. Hence, the
goal is to use memristors to simplify the circuit. Authors in [120] harness the stochas-
ticity of memristor devices to emulate the functionality of a spiking neuron. Authors in
[121] propose a novel SNN using memristor-based inhibitory synapses to reduce the
implementation complexity for lateral inhibition and homeostasis mechanism. There
are also some works targeting memristor-based learning, mainly for supervised and
unsupervised Spike Time Dependent Plasticity (STDP) learning [122–126]. More in-
formation about memristor-based SNN can be found in [127–129].

• Recurrent neural network (RNN): Recurrent neural networks are widely used for lan-
guage modeling, speech recognition, translation, and sequence classification. The
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structure and data flow for RNNs differ from other models since the current output
depends on not only the input but also the previous output. Several works attempt
to implement RNNs on memristor crossbars [85, 130–134]. Authors in [131] demon-
strate an experimental implementation. This work shows that LSTM networks using
memristor crossbar arrays can achieve high speed–energy efficiency. Another fabrica-
tion based on PCM devices is presented in [85]. This works demonstrate strategies for
software weight-mapping and programming of hardware analog conductances that
provide accurate weight programming despite significant device variability. More in-
formation on existing designs for memristor-based RNN is provided in [135].

• Binary neural network (BNN): Binary Neural networks, where the weights and activa-
tion values are binarized (-1,+1), receive more attention from researchers due to their
high model compression rate and simplified computations [136]. This is appealing
for edge devices where there are hard constraints on memory capacity, computing re-
sources, and energy budget. Several designs propose different data representations
and weight mappings for BNN [137–141]. In addition, an accelerator is designed in
which memristors are also used as an activation function [142]. To ensure the accu-
racy of XNOR operations against device variation, a new memristor crossbar structure
based on differential sensing is proposed [12]. More information can be found in [136].

GRAPH PROCESSING

Graph processing is employed in a wide range of areas, including but not limited to social
media analysis [143], bioinformatics [144], urban planning [145], and machine learning
[146]. Graph processing is well-known for its three main characteristics [91, 147]: 1)
poor locality or random access pattern to the memory, 2) simple and a small amount of
computation over the accessed data, 3) high sparsity of the graphs which implies that
the computations are frequently performed on zeros operands. Traditionally, the active
portions of the graph are loaded sequentially into the memory hierarchy of the system
while the rest of the graph is stored in the secondary memory. Due to the explosion
of graphs’ size, data movement across the memory hierarchy imposes a considerable
overhead compared to the actual computation time/energy and limits the system’s per-
formance due to the maximum memory bandwidth. The behaviors and characteristics
of graph processing applications make them promising candidates to be accelerated by
exploiting the concept of CIM.
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Figure 2.20: Representation of a graph using Adjacency matrix.

A widely used method of graph representation is an algebraic representation. In this
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method, an adjacency matrix is constructed where each entry (i , j ) represents an edge
from source vertex i to destination vertex j . Figure 2.20 depicts the adjacency matrix
of a simple graph. This representation allows for intuitive calculations using linear al-
gebra operations. However, naive storage of this matrix in memory does not scale. The
storage occupied by a 2D matrix grows quadratically, meaning that large graphs quickly
occupy an impractical amount of memory. Usually, graph algorithms go through many
iterations where a considerable amount of graph information stored in the memory has
to be moved back and forth between the processor and memory. This imposes a signif-
icant overhead on the system, especially considering realistic datasets contain millions
of nodes and edges.

Several hardware accelerators were proposed to enhance the energy efficiency and
performance of graph processing. Some of them have focused on optimizing mem-
ory access [148], others on improving the computational efficiency [149]. To further
improve the system’s efficiency beyond memory bandwidth limitation, near-memory
DRAM-based computing was deployed in some previous works; e.g., TESSERACT [150]
implements a vertex-centric programming model on top of Hybrid Memory Cube (HMC).
To mitigate the communication overhead between different memory cubes, numerous
solutions based on efficient graph partitioning [147], configurable interconnect [151],
and batched-based communication [152] were provided.

Apart from DRAM-based accelerators, several CIM accelerators based on memristor
devices were proposed. GraphR [91] is the first ReRAM-based graph processing acceler-
ator. GraphR divides ReRAM into two parts; ReRAM memory, where the graph informa-
tion is stored, and ReRAM engine, where computation is performed. Graphs are parti-
tioned, and in each step, the ReRAM engines operate on several partitions in parallel. By
exploiting the massive parallelism offered by ReRAM-based CIM as well as its unprece-
dented energy efficiency, they achieved up to 2 × and 9 × speedup and energy efficiency
compared to GPU implementation. Similarly, GRAM [153] proposes a ReRAM-based ac-
celerator for vertex-centric models. They also exploit the parallelism provided by CIM.
Finally, unlike the works mentioned earlier, GraphSAR [154] takes into account graph
sparsity and provides a CIM sparsity-aware design on top of memristor devices. In this
approach, sub-matrices in which all elements are equal to zero are eliminated to im-
prove efficiency in the presence of high data sparsity. Therefore, they incline to reduce
the size of sub-matrices with the hope of eliminating more sub-matrices. This approach
can partially eliminate the sparsity and has a high pre-processing overhead.

METAGENOMICS

In metagenomics, researchers study the behavior of many species altogether in a sample
taken directly from an environment. The results of such a study help researchers to cap-
ture the complex relationship between different species without cultivating or isolating
them individually in a very costly or yet impossible procedure for some species.

There are three key initial steps in a standard genome sequencing and analysis work-
flow [155]. The first step is the collection, preparation, and sequencing of a DNA sam-
ple in the laboratory. Modern sequencing machines are unable to read an organism’s
genome as a single complete sequence; instead, they generate shorter subsequences
sampled randomly from the genome sequence [156, 157]. The second step is basecall-
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ing, which converts the representation of the subsequences generated by the sequenc-
ing machine (e.g., images or electric current, depending on the sequencing technology
[158]) into reads, which are sequences of nucleotides (i.e., A, C, G, and T in the DNA al-
phabet). In order to reproduce the complete genome sequence from the shorter read
sequences, the third step, called read mapping, identifies potential matching locations
of each read with respect to a known reference genome (e.g., a representative genome
sequence for a particular species) [159, 160].

A T G T T A T A

A T C G T C C -

match mismatch

A T - G T T A T A

A T C G T - C - C 

insertion deletion

Reference:

Query:

Non-alignment Alignment

Figure 2.21: An example of a read mapping for non-alignment and alignment-based ap-
proach.

Read mapping can be classified into two approaches: Alignment-based and non-
alignment-based (also known as heuristics). The alignment-based profilers are highly
accurate (especially at the species rank). However, alignment-based profilers are very
slow due to the high computational cost of their alignment. Rather, non-alignment-
based profilers are less componential expensive at the expense of lower accuracy and
providing less information. Figure 2.21 illustrates a read mapping step where differences
between two DNA sequences are evaluated. In the case of alignment profilers, not only
a similarity score is provided, but also it determines what kind of edits (substitutions,
deletions, and insertions) and in which positions in a sequence might be happened. All
these profilers induce large memory requirements for their data structures. For exam-
ple, Kraken2 requires a minimum of 300 GB of memory for its reference data structure.
Even for smaller and less complex reference databases, such as those in the food indus-
try, more than 50 GB of memory is still required. The algorithms often used for read
mapping are mainly simple bitwise logic and addition operations and can enjoy a high
degree of parallelism provided by the underlying hardware. Hence, exploiting CIM for
this application can lead to extensive energy efficiency and speedup due to reducing
the data movement overhead and providing a high level of parallelism.

Accelerating Read Mapping:
There exists a large body of work on accelerating read mapping, which tends to follow
two general directions: 1) non-filtering and 2) filtering approaches [155]. Neither of
these two approaches is designed for processing in storage. Non-filtering approaches
accelerate one or more non-filtering steps of read mapping (e.g., seeding and approxi-
mate string matching) using hardware accelerators. Examples of these accelerators in-
clude CIM architectures [161–163], ASICs [164], GPUs [165, 166], and FPGAs [167]. Fil-
tering approaches accelerate the pre-alignment filtering step of read mapping. These
works provide highly parallel read filtering heuristics that quickly eliminate dissimilar
sequences before invoking computationally expensive alignment algorithms. Examples
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of these accelerators include processing-near-memory architectures [168], FPGAs [169],
GPUs [170], or traditional CPU-based acceleration [171]. GenASM [172] is a novel Near-
memory DRAM-based approximate string-matching acceleration framework for genome
sequence analysis. GenASM is a power- and area-efficient hardware implementation of
our new Bitap-based algorithms. GenASM is a fast, efficient, and flexible framework for
both short and long reads, which can be used to accelerate multiple steps of the genome
sequence analysis pipeline. DARWIN [173] targets approximate string matching and se-
quence alignment. ApHMM [174] accelerate the Baum-Welch algorithms used in pHMM
graphs. Helix [89] and KrakenOnMem [175] accelerate basecalling and metagenomics
profiling on memristor-based systems. BLEND [176] proposes an efficient mechanism
introduced to identify both exact-matching and highly similar seeds through a single
lookup of their hash values, using a technique called SimHash and demonstrating its
effectiveness in read overlapping and read mapping. Demeter [23] proposes a CIM-
enabled architecture and a PCM-based accelerator to improve food profiling.
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APPLICATION SPECIFIC DESIGN:

NEURAL NETWORKS

This chapter focuses on our first application-specific design for Binary Neural
Networks (BNNs) to realize the potential of CIM. Applications of BNNs are promising
for embedded systems with hard constraints on energy and computing power.
Unlike conventional neural networks using floating-point datatypes, BNNs use
binarized weights and activations to reduce memory and computation requirements.
Memristors, emerging non-volatile memory devices, show great potential as a target
implementation platform for BNNs by integrating storage and compute units. However,
the efficiency of this hardware highly depends on how the network is mapped and
executed on these devices. In this chapter, we propose an efficient implementation
of XNOR-based BNN to maximize parallelization. In this implementation, costly
analog-to-digital converters are replaced with sense amplifiers with custom reference(s)
to generate activation values. Besides, a novel mapping is introduced to minimize
the overhead of data communication between convolution layers mapped to different
memristor crossbars. This comes with extensive analytical and simulation-based
analysis to evaluate the implication of different design choices considering the accuracy
of the network. The results show that our approach achieves up to 5× energy-saving
and 100× improvement in latency compared to baselines.

This chapter is based on [24].
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3.1. INTRODUCTION

Neural Networks (NNs) are leveraged in a variety of applications [99–101]. With
the growth of the network size for advanced applications, the implementation of
NNs has become challenging, considering hardware limitations (e.g., BERT has
around 110 million parameters [177]). Binary Neural networks (BNNs), where the
weights and activation values are binarized (-1,+1), receive more attention from
researchers due to their high model compression rate and simplified computations
[136]. This is appealing for edge devices with hard constraints on memory
capacity, computing resources, and energy budget. Although the computations are
simplified, further improvement in the efficiency of BNN implementations relies on
reducing the data transfer cost between memory and computing units (memory
wall). Computation-in-Memory (CIM) and the unique characteristics of emerging
non-volatile memories (memristors) [21, 178, 179] are promising candidates to
deliver the next level of energy-efficiency implementation of BNNs. Hence, there is a
need to design energy-efficient accelerators leveraging the notion of CIM to enable
large-size networks for edge devices.

As discussed in Chapter 2, memristor-based CIM design not only reduces the
overhead of data transfer but also can enhance the performance of VMM operation
as a key kernel in BNNs. However, using memristors to operate on signed numbers
(-1,+1) in BNN is challenging. From this perspective, existing works can be classified
into hardware or algorithmic solutions. As a hardware solution, positive and negative
values can be mapped to different memristors [137–139]. Other approaches consider
one- [140] or two-column reference memristors [141] while converting the weights
and activations to unsigned representation. In general, these approaches require
more devices, increase design complexity, and reduce the energy/performance
efficiency of the system. As an algorithmic solution, a signed VMM can be converted
to XNOR operations [180] where the operands are unsigned (0,1). In this category, an
accelerator is designed in which memristors are also used as an activation function
[142]. This induces endurance, energy, and performance issues due to excessive
memristor programming. To ensure the accuracy of XNOR operations against
device variation, a new memristor crossbar structure based on differential sensing
is proposed [12]. However, XNOR operations must be performed sequentially due
to the sensing mechanism. All these overheads drive researchers to explore new
mappings and implementations of BNNs to enhance their efficiency further for edge
devices.

In this chapter, we present our methodology and design for efficient implementation
of BNNs. The proposed mapping of operands for XNOR operations to the crossbar
allows simultaneous crossbar row activation. This maximizes resource utilization on
the crossbar and enhances performance. Moreover, we mimic the functionality of
an Analog-to-Digital Converter (ADC) and the following digital processing, initially
needed for this mapping, by only a Sense Amplifier (SA) with an adjusted reference.
Furthermore, we minimize data communication between layers by proposing a
novel mapping of the weights and activation values into the crossbar and its input
buffer. We investigate the efficiency of our approach on different network structures
in terms of accuracy, energy, and performance by developing our PyTorch-based
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simulation platform [181]. The platform can mimic the behavior of the crossbar
and allows for more characteristics and non-idealities to be integrated and explored
for different networks. Our approach achieves close to 5× energy-saving and 100×
improvement in latency compared to the state-of-the-art computation-in-memory
designs at the cost of up to 4% accuracy loss. In this chapter, we present the
following main contributions:

• An energy-efficient and highly parallel implementation of XNOR-based BNNs
where the functionality of ADC and the required digital processing after that are
modeled by a SA with an adjusted reference;

• An efficient mapping of the weights and activation values to improve data
utilization and minimize the communication between network layers;

• An extensive analytical and simulation-based analysis where the proposed
implementation behaves as an approximation to comprehend the implication of
SA reference values on the accuracy of the design.

This chapter is organized as follows. Section 3.2 provides background binary
neural networks. Existing accelerators for BNN are explained in Section 3.3. We
discuss our proposal design in Section 3.4. In Section 3.5, we perform analytical
analyses to elaborate more on the implications of the sensing scheme on accuracy.
Finally, section 3.6 evaluates the design.

3.2. FUNDAMENTAL OF BINARY NEURAL NETWORKS
Designing larger networks and the ability to train them with advanced algorithms
were the main drivers to enable neural networks for complex applications.
However, implementing these networks in embedded platforms with limited
storage and computation units is challenging, specifically in consideration of strict
energy/performance constraints. Despite conventional neural networks with high
precision datatypes, in BNNs, weights and activations are binarized to make the
network extremely compact. Equation 3.1 shows a simple binarization rule that can
be applied to both activations (input tensors) and weights where Bω and BI are the
binarized weights and input tensors, respectively. The binarization not only saves
on storage usage, but also reduces the expensive multiply-accumulate operations to
simple additions.

Bω =
{
+1 i f ω≥ 0

−1 i f ω< 0
BI =

{
+1 i f I ≥ 0

−1 i f I < 0
(3.1)

Although binarization enhances the system’s efficiency regarding memory usage,
energy, and performance, it usually comes at the cost of accuracy loss compared
to its high-precision counterpart. Therefore, using proper methods and algorithms
to preserve the accuracy of the network as high as possible is essential. Each
iteration of training a network can be divided into three steps: forward pass,
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Figure 3.1: Accuracy of binarized LeNet5 network and the impact of input/output
layer binarization as well batch normalization (bn) on accuracy loss using
different learning rates (lr).

backward propagation, and parameter update. The weights during the forward pass
and backward propagation are binarized. However, we need to use high-precision
weights during parameter updates. Since parameter changes obtained by gradient
descent are tiny, binarization ignores these changes, and the network cannot be
trained [180, 182]. In addition, binarizing the input and output layers usually results
in a huge accuracy loss. Figure 3.1 depicts the accuracy of the binarized LeNet5
network trained for the MNIST dataset. This clearly shows the impact of binarizing
the input and output layers as well as batch normalization (bn) on the accuracy of
the network. Batch normalization normalizes the contribution of layers’ input. This
helps to stabilize the learning processes during network training.

3.3. OVERVIEW OF EXISTING BNN IMPLEMENTATIONS

To implement BNNs, besides using traditional systems (CPU, GPU, and FPGA) [183–
185], computation-in-memory (CIM) accelerators based on emerging non-volatile
memories (memristors) draw the attention of researchers. Memristor crossbar arrays
are tailored to perform analog VMM with higher energy efficiency compared to
their digital counterpart (CPU/GPU) [186]. Memristor devices usually can alternate
between a few resistance levels (e.g., two levels), while more levels lead to reliability,
stability, and accuracy degradation. Hence, BNN-based applications where the main
kernel (VMM) is binarized are the promising targets to be implemented using
memristor devices. A small-scale demonstration of a BNN on memristor devices
is presented in [187], focusing mainly on device variation and its implication on
accuracy. A new methodology is proposed in [188] to make the design more
tolerant against device variation to be able to activate more word-lines and perform
more computation at the same time. Based on Equation 3.1, BNNs require signed
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representation, but negative numbers cannot be directly stored in memristors.
Accordingly, existing BNN accelerators can fit into two categories based on how they
address the problem.

• Hardware solutions: To deal with signed numbers, both weights and activation
values can be represented as two vectors only holding absolute numbers; one
holds positive and one holds negative values [137]. The two vectors created for
both the weights and activation values are programmed to the corresponding
memristors and sent to the input ports of a crossbar (select-line), respectively.
Subsequently, the four possible partial results are computed and summed up in
an analog manner. This requires a high number of memristor devices, which
translates to low area and energy efficiency. In addition, since the proposed
approach requires input current in both directions, the complexity of input drivers
is increased. A similar approach is mapping positive and negative weights into
different crossbars [138, 139]. In these works, ADC is exploited to compute the
partial result when a BNN layer size is larger than the crossbar size. Then, the
partial result from different crossbars is accumulated and given to an activation
function. However, using ADCs imposes significant energy and area overhead
on the system. Another solution is using one- [140] or two-column reference
memristors [141] while the weights and activations are presented as {0,1}. In this
design, the current flowing through the reference column(s) has to be mirrored
equal to the number of columns in the crossbar. This increases the design
complexity and energy consumption of the system. In addition, when a layer size
cannot fit into a crossbar, it is critical to have a flexible referencing scheme to
avoid accuracy loss. We discuss this more in Section 3.5.

• Algorithmic solutions: Binary multiply and accumulate operation can be replaced
by the following sequence of operations: XNOR, popcount, and post processing
[180]. As a result, the weights and activations for BNN can be presented as
unsigned {0,1} values. This makes the implementation of BNNs on memristor
crossbars simpler. Memristor-based content-addressable memory (CAM) structure
can be used to implement binary XNOR operation and, in turn, BNNs [142]. In
this design, the activation function is implemented by a memristor where its state
determines the input value for the next layer. However, this suffers from an
extremely high number of device programming, which causes challenges in terms
of reliability, performance, and energy. An XNOR-based robust design to device
imperfections is proposed using a differential sensing mechanism [12]. Due to
the structure of the crossbar and the mapping of the weights, this design cannot
exploit maximum parallelism in producing output values for each layer of BNN.
This work is closest to our design and is considered a baseline. We elaborate more
in the following section.

In conclusion, and considering the limitations and challenges of existing works, a
highly parallel and energy-efficient BNN design is needed.
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3.4. METHODOLOGY
In this section, we first explain the principles behind XNOR-based BNNs. This is
used for both the implementation of BCIM and the baseline. Second, we discuss
data mapping and execution of BNNs in the baseline [12]. Third, we present the new
mapping and execution of BNNs in BCIM and compare it with the baseline. Fourth,
we explain how the crossbar’s input buffer, holding activation values, is managed to
minimize data transfer between crossbars implementing different BNN layers.

3.4.1. MYLTIPLY-ACCUMULATE BASED ON XNOR OPERATION

The multiply-accumulate operation between two signed binarized vectors can be
replaced by the sequence of 1) XNOR, 2) popcount, and 3) post-processing (Shift
and Subtract) operations [180]. To achieve that, first, both vectors are converted
from signed to unsigned, where ‘-1’ is replaced by ‘0’. This is helpful considering
memristor devices since it simplifies the mapping of weights to the crossbar without
concern for negative values. Second, by applying Equation 3.2, the final value is
obtained where A’ is the unsigned representation of vector A. Popcount() returns the
number of ones in a bitstream, and ‘vector size’ is the length of the two vectors.

A∗B = 2∗Popcount (A
′ ⊙B

′
)− vector si ze (3.2)

In the following, an example is provided to have better clarification. The result of
the multiply-accumulate operation between vectors A and B from the traditional
approach is:

A = [1,−1,−1,1] B = [−1,1,1,1] ⇒ A∗B =−2

In the new approach, vectors A
′

and B
′

are created by converting A and B from
signed to unsigned representation. First, we perform the XNOR operation between
A

′
and B

′
. Second, the result is given to the Popcount function. Third, the final

processing, including Shift and Subtraction, is performed on the output of the
Popcount function.

A
′ = [1,0,0,1] B

′ = [0,1,1,1] ⇒ A
′ ⊙ B

′ = [0,0,0,1] A ∗ B = 2 ∗ Popcount (A
′ ⊙ B

′
) −

vector si ze = 2∗1−4 =−2

By applying the above method for BNNs, one vector can be considered as an
activation vector (A

′
) while another vector (B

′
) holds the weights. The result is an

activation value for the next layer. The process of generating the activation value for
the next layer can be expressed as:

outm = Si g n(2∗
I∑

k=1
(i nk ⊙ωk,m)− vector si ze) (3.3)

where i nk represents the k th activation value for the current layer; ωk,m is the weight
connecting the k th activation value to the mth output; and I is equal to the number
of activation values of the current layer. The operator Σ performs as the Popcount
function. Using this algorithmic solution to avoid representing negative data can
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Figure 3.2: (a) An illustration of a fully connected layer (b) BNN implementation using
differential sensing and sequential XNOR operation [12] (c) proposed
design where massive XNOR operations are performed in parallel.

reduce the number of memristor devices 2× compared to a hardware solution [137]

In the following, we provide an example of a fully connected layer to explain how
the baseline and BCIM map and execute BNNs based on the above methodology.

3.4.2. STATE-OF-THE-ART XNOR-BASED BNN
Figure 3.2(b) illustrates how a fully connected layer is mapped to a crossbar based on
the approach proposed in [12]. The binary weights (ω) and their complements (ω),
associated with each output channel (indicated by different colors), are programmed
into one row of the crossbar. In order to compute the result for one output channel,
first, its corresponding row is read. Second, the XNOR operation is performed with
the (analog) value on the bit-lines of the crossbar and the input activation vector
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(orange box in Figure 3.2(b)). This operation is done within the sensing stage by
modifying the circuit of Sense Amplifiers (SAs). In this design, the complementary
value for both weights and input vector is required to be able to perform the XNOR
operation in the sensing stage. Finally, the output is given to the digital periphery to
perform Popcount, Shift, and Subtract operations.

3.4.3. PROPOSED XNOR-BASED BNN IMPLEMENTATION

Figure 3.2(c) depicts the mapping of the weights and the crossbar structure in
BCIM. All the weights (ω) and their complementary values (ω), corresponding to
each output channel, are programmed in one column of the crossbar. We provide
the input activation vector and its complement to the word-lines (W L,W L) of the
crossbar. Therefore, two memristors are allocated for each weight (ω and ω) and
two world-lines for each activation value (W L and W L). Hence, the XNOR operation
between one element of the activation vector and the weight vector is computed
as i nk ⊙ωk,m = i nk .ωk,m + i nk .ωk,m where i nk and i nk are the activation values
provided to the W L and W L, respectively. It should be noted that the summation
between the two terms of the above formula is implemented with analog addition
on the bit-line.

The vector resulting from XNOR operations on all the pair elements of activation
and weights vectors should be passed through the Popcount function. This is
indicated in Equation 3.3 by the Σ operator. Since each element contributes to the
current flowing to the same bit-line, the analog sum of contributions represents the
output of Popcount in the analog domain. In the naive approach, this analog value
can be translated to the digital domain by using an Analog-to-Digital Converter
(ADC). Then, we perform other operations (Shift and Subtraction) in the periphery
of the crossbar. However, ADC is a power and area-hungry component [67].
Consequently, using this component not only reduces the energy efficiency of the
design, but also has to be time multiplexed between several bit-lines, which in
turn reduces the performance. However, according to Equation 3.3, the output
of Popcount can be directly compared with a reference noted in Equation 3.4 to
obtain the final output. Hence, the bit-line’s analog output can be given to a SA
with a customized reference to generate the output value. This also eliminates the
remaining processing (Shift and Subtraction) in the digital periphery.

S Ar e f er ence =
vector si ze

2
(3.4)

Based on this approach, we first maximized the number of parallel output
activation values that can be computed for a BNN layer. All the bit-lines can be
activated in parallel to compute the result for several output channels. Second, to
avoid reducing the performance and energy efficiency by utilizing a high-resolution
ADC, a simple analog SA with a customized referencing value is deployed. This
not only performs the sign operation, but also omits extra digital processing in the
periphery, thereby achieving considerable energy and performance improvement.
Third, in this method, when vectors cannot fit into one column of the crossbar, they
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Figure 3.3: (a) Example of a CNN layer and (b) details of a convolution operation
with 5×5 and 28×28 kernel and input size.

have to be broken and mapped to several columns. This may lead to approximate
computing. In Section 3.5, we scrutinize this interesting scenario analytically.

3.4.4. EFFICIENT DATA MOVEMENT

Data movement between the BNN layers may influence the performance and energy
of the system [67], but is often overlooked by the existing works. In this subsection,
we focus on how the data should be transferred from one convolutional layer to the
next one to minimize the number of transactions and the size of a buffer placed
between layers. This approach can be utilized for both binary and non-binary
datatypes.

Figure 3.3(a) depicts an example of a convolution layer where the kernel matrix is
convolved into the “i” input channels to generate data for the “j” output channels.
In this example, the input size for each channel and the kernel size are 28×28 and
5×5, respectively. Figure 3.3(b) illustrates the details of the convolution operation
where each kernel slides on a corresponding input channel to produce the partial
result. The kernels are programmed to the crossbar while the data of input channels
corresponding to the current operating window (highlighted by light orange) are
buffered and sent to the word-lines of the crossbar. When the operating window
slides, the data has to be sent and reorganized in the buffer to be matched to the
weights of the kernel programmed into the crossbar. However, bringing the whole
data again for the following operating window is not an efficient way since most
of it already exists in the input buffer of the crossbar from the previous operating
window.
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Figure 3.4: Mapping of the activation values to the input buffer and kernels to the
crossbar based on the proposed approach to minimize data transmission
between layers by only streaming the newly computed activation values
into the input buffer.

To provide better data utilization and reduce the number of transactions, Figure
3.4 demonstrates an efficient mapping of kernels in the crossbar as well as activation
value in the input buffer. In this approach, the kernels and the input data within
the operating window are sliced into columns. The same columns for different input
channels are packed together and placed in the input buffer. The next columns
are stacked on top of each other as highlighted by the light orange color in Figure
3.4. The kernels are also treated the same way. By doing that, when the operating
window slides to the right (assuming stride is one), the left-most columns for all
the input channels are shifted out and new data corresponding to the right-most
columns are streamed into the buffer. There is no need to change the mapping
of the kernels in the crossbar and they always reside in front of the right inputs.
When the operating window reaches the last columns, it has to be shifted down and
start from the most left column again. Therefore, the input buffer is refreshed and
filled with data highlighted by the blue window in 3.3(b). As a result, maximum
data is utilized when the operating window slides while the input buffer can be
implemented as simply as possible.

In order to maximize the performance, we can exploit parallelization and
pipelining. In case the crossbar dimension is large enough, the computation for the
current and next operating windows can be performed in parallel. As illustrated in
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Figure 3.3(b) and 3.4, an extra column (highlighted by bright orange) required for
the next operating window is placed into the input buffer of the crossbar. Besides,
we have to consider another column in the crossbar to be able to generate the
value for both operating windows simultaneously. It has to be taken into account
that this extra input set should not contribute to the computation of the current
window. Therefore, the memristors located in the first column and in front of this
extra input set should be programmed to logic value ‘0’. It is worth mentioning
that the kernels for other output channels are programmed to different columns of
the crossbar to maximize parallelization. However, in case the crossbar has a lower
number of columns, we need to deploy more crossbars to avoid an excessive number
of reprogrammings. Besides parallelization, the same pipelining approach presented
in [67] can be applied in this work. Depending on the kernel size of the next layer
in the network, when enough elements are produced for the output channels of the
current layer, the operation can be started for the next layer.

3.5. INTRA-LAYER ACCURACY ANALYSIS

In Section 3.4, the proposed implementation was presented where a single SA can
generate the activation value for the next BNN layer (see Figure 3.2). However, if the
weights that are supposed to be in a single column of a crossbar cannot fit into it,
they have to be split and mapped to more columns. In other words, if there are not
enough memristors in a column of a crossbar to store a kernel (e.g., the blue kernel
in Figure 3.2(c)), this kernel has to be broken into several parts each mapped to
different columns. Therefore, the final activation value has to be calculated from the
intermediate activation values obtained from different sets of columns. This is where
inaccuracy is injected into the network with a particular probability distribution.
In the following, the ideal situation is formulated where the crossbar size is equal

to or greater than the vector size.
−→
A and

−→
B are the two input binary vectors,

−→
R is

the result of XNOR operation between the two input vectors, and Σ(
−→
R ) produces the

output of Popcount function on the binary vector
−→
R .

Vector size = ν, Crossbar size = C , and C ≥ ν
input 1:

−→
A , input 2:

−→
B

−→
R =−→

A
⊙−→

B

outg olden(
−→
R ) =

{
1 if Σ(

−→
R ) > ν/2

0 otherwise

In case the crossbar size is not big enough, the formulation is changed as
presented below. As an example, we assume the crossbar size is half of the vector
size. Therefore, each vector has to be split into two parts and mapped to two
columns of the crossbar.

Vector size = ν, Crossbar size: C = ν/2

input 1:
−→
A |ν/2

0 ,
−→
A |νν/2 where

−→
A = [

−→
A |ν/2

0 ,
−→
A |νν/2]
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Figure 3.5: Illustration of the regions where logical AND and OR cascading functions
inject inaccuracy into the network.

input 2:
−→
B |ν/2

0 ,
−→
B |νν/2 where

−→
B = [

−→
B |ν/2

0 ,
−→
B |νν/2]

−→
R |ν/2

0 =−→
A |ν/2

0

⊙−→
B |ν/2

0
−→
R |νν/2 =

−→
A |νν/2

⊙−→
B |νν/2

outp1(
−→
R |ν/2

0 ) =
{

1 if Σ(
−→
R |ν/2

0 ) > (ν/2)/2
0 otherwise

outp2(
−→
R |νν/2) =

{
1 if Σ(

−→
R |νν/2) > (ν/2)/2

0 otherwise

Since we mapped the vector into two columns, two intermediate activation values
(outp1,outp2) are obtained. The final value depends on the cascading function,
which receives intermediate activation values (outp1,outp2) as input and produces
the final activation value. This function can be a simple logical AND or OR function.
The following is an example of AND (∧) cascading function.

out (
−→
R |νν/2,

−→
R |ν/2

0 ) = outp2(
−→
R |νν/2)∧outp1(

−→
R |ν/2

0 )

In the case of logical AND as an example, the following conditions show the
scenarios where the output of the cascading function differs from the golden output.
This is also illustrated in Figure 3.5. The y and x axes are the output of Popcount (Σ)

obtained from the result of the first (
−→
R |νν/2) and second parts (

−→
R |ν/2

0 ) of the output
vector. The red and blue regions indicate inaccurate results by the AND and OR
functions.
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out (
−→
R |ν/2

0 ,
−→
R |νν/2) ̸= outg olden(

−→
R ) if:{

Σ(
−→
R |ν/2

0 )+Σ(
−→
R |νν/2) =Σ(

−→
R |ν0 ) > ν/2

Σ(
−→
R |ν/2

0 ) < ν/4 ∨ Σ(
−→
R |νν/2) < ν/4

According to the aforementioned conditions, the output of AND cascading function
does not generate the expected results only if 1) the final activation value is expected

to be ‘1’ (Σ(
−→
R |ν0 ) > ν/2) and 2) one of the intermediate activation values regarding

the partial output vectors (
−→
R |ν/2

0 or
−→
R |νν/2) is ‘0’. Hence, the final result, which is

generated using logical AND between the output of the two intermediate activation

values from
−→
R |ν/2

0 and
−→
R |νν/2 vectors would be ‘0’. We illustrate these two conditions

in Figure 3.5. The region above the m +n = ν/2 line satisfies the first condition. In
this region, the data points that fall into the two triangles, highlighted in red, meet
the second condition. It should be noted that the condition where the expected final
activation value is ‘0’, but both partial activation values would be ‘1’ never happens.
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Figure 3.6: Maximum accuracy loss simulated for all possible input vectors for
different vector sizes (V), crossbar size (C), and cascading functions.

The combinations of input vectors for a given (m,n) in these regions (blue for OR
and red for AND cascading function in Figure 3.5) is calculated based on Equation
3.5. m and n are the outputs of Popocount function for the two partial output
vectors resulting from XNOR operations. Accordingly, Equation 3.6 calculates all the
possible combinations of input vectors that fall into the ‘Solution Set’. The solution
set for AND cascading function is highlighted in red in Figure 3.5. According to these
two equations, Figure 3.6 depicts the maximum accuracy loss for two cascading
functions considering two boundary conditions. The boundary condition determines
the output of SA in case the data is the same as the reference. This is done by
generating all the combinations of input sets to verify the Equation 3.5. We observe
that the accuracy loss does not have considerable changes over vector sizes as the
relative area associated with inaccurate region remains the same (Figure 3.5). It
should be noted that this accuracy loss in Figure 3.6 should not be confused with
the accuracy of an entire BNN.
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N (m,n) = (mCν/2 ∗2m ∗2ν/2−m)∗
(nCν/2 ∗2n ∗2ν/2−n) = 2ν∗ (mCν/2 ∗nCν/2)

(3.5)

T N(AN D) =
∑

(m,n)∈Soluti on Set
N (m,n) (3.6)
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Figure 3.7: Illustration of the scenario where there are two references for each partial
output vector. The value of references (or ∆x) should be defined in a way
that the cascading function covers more area above m +n = ν/2 line.

In the aforementioned example (see Figure 3.6), the activation value for each

partial output vector (
−→
R |ν/2

0 and
−→
R |νν/2) are obtained by only employing one reference

(i.e., ν/4). In order to reduce the accuracy loss, more references can be considered.
This leads to more intermediate results, which provide us with more information as
well as the flexibility to have advanced cascading functions. However, we should
take into account that adding references increases the hardware complexity of SA.
Next, we investigate a scenario where SAs have two references.
Two references: Figure 3.7 illustrate the scenario where SAs have two references.
This figure provides insight into the impact of references and their value on accuracy.
Similar to Figure 3.5, m and n are the outputs of the Popocount function for
the two partial output vectors resulting from XNOR operations. The goal is to
determine where to put the references (or determine ∆x) to minimize the accuracy
loss (or minimize highlighted red region in Figure 3.7). We assume the references
are placed symmetrically around the center point to simplify the analysis. As
mentioned before, we need a cascading function to receive intermediate activation
values (S Aout1,S Aout2), generated by the SAs, and produce the final activation value.
In the following, we describe one example of a cascading function.
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Figure 3.8: Data points for two partial output vectors obtained from a real network.
The size of each vector (ν/2) is 360. The figure clearly shows a
non-uniform distribution of data points.
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Figure 3.9: Accuracy loss based on the value of ∆x presented relative to the crossbar
size (C).

F= [(S Aout2 > Re f 2)∧ (S Aout1 > Re f 1)]∨ [(S Aout2 > Re f 1)∧ (S Aout1 > Re f 2)]

According to the above cascading function, the final activation value would be 1
only if one of the outputs is higher than Re f2 while the other one is higher than
Re f1. In Figure 3.7, the area covered by this function is highlighted in gray and green.
As we can see, this function cannot cover the entire area above the m +n = ν/2 line.
The uncovered part is highlighted in red. Compared to the scenario where we have
only one reference (see Figure 3.5), some new regions are covered (highlighted in
green) while one region is left out (highlighted in yellow). Depending on the value of
∆x, the size of these regions changes. If the data points were distributed uniformly,
we could easily obtain the optimum ∆x where the area covered by this cascading
function is maximum. However, according to Equation 3.5 (or Figure 3.8), the data
is not uniformly distributed. Hence, simulation can help to find the optimum ∆x.
Figure 3.9 shows the accuracy of this cascading function over different ∆x. In this
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figure, the value of ∆x is presented relative to the crossbar size (’C’), which is equal
to ν/2. According to this figure, using two references can lead to better accuracy
than one reference (dashed blue line) if we can find the optimum values for the
references. In addition, it is worth clarifying that accuracy results in Figure 3.9 are
not the final BNN accuracy.

It should be noted that when we have two references, putting one reference in the
center does not make sense since the area covered by the second reference would
be either a subset or superset of the first reference. However, this is not the case
when we have three references. In the following, we elaborate on the scenario where
we have three references.

0 V
Ref =V/2

0 V/2 0 V/2

Ref1=V/4 Ref4=V/4

x x
x x

Ref0 Ref2 Ref3 Ref5

0 V/2 0 V/2

Ref1=V/4 Ref4=V/4

x x
x x

Ref0 Ref2 Ref3 Ref5

Cascading 
function 1

Cascading 
function 2

1
2

3

1
2 3 4

SA1 SA2

Figure 3.10: Illustration of two cascading functions where two auxiliary references
are added to the main reference.

Three references: Figure 3.10 presents an example where three references (Ref0,
Ref1, Ref2) are considered to generate an activation value. In the ideal scenario
where there is no need to split the vectors, the reference, obtained from Equation
3.4, is equal to ν/2. However, for the scenario where we have to split the vector
into two parts, the reference for the two partial output vectors, based on the same
equation, should be ν/4. This is called primary reference and indicated by “Ref1”
in Figure 3.10. In this example, next to the primary reference, we utilize two more
-auxiliary references- to improve accuracy. Next, we investigate the implication of
the number of auxiliary references as well as their actual values on accuracy loss.

Considering the aforementioned scenario where three references are employed, we
can produce three intermediate values for each of the partial output vectors. Hence,
the final activation value should be decided based on these six binary values. In
the following, we describe two possible cascading functions to produce the final
activation value. They are also illustrated in Figure 3.10.

Prime implicant of cascading function 1:
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F1= [(S Aout2 > Re f 5)∧(S Aout1 > Re f 0)]∨[(S Aout2 > Re f 4)∧(S Aout1 > Re f 1)]∨[(S Aout2 >
Re f 3)∧ (S Aout1 > Re f 2)]

Prime implicant of cascading function 2:
F2= [(S Aout2 > Re f 5)] ∨ [(S Aout1 > Re f 2)] ∨ [(S Aout2 > Re f 3) ∧ (S Aout1 > Re f 1)] ∨
[(S Aout2 > Re f 4)∧ (S Aout1 > Re f 0)]

The numbers in Figure 3.10 indicate the different conditions where the cascading
function produces logic 1 as the final activation value. As an example, the first
cascading function comprises three conditions, where meeting each can set the final
activation value to 1. Each number in Figure 3.10 illustrates one term in the prime
implicant of cascading function 1. These are based on the fact that the summation
of two Popcount functions (Σ) obtained from two output vectors should be greater
than half of the original vector size (Equation 3.4). This function always sets the
activation value to one accurately (true positive), but it misses to set it to one in
some cases (false negative). Considering that, the second cascading function makes
the conditions more relaxed. The probability of accuracy loss for these two functions
is computed in the following.
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Figure 3.11: (a) Accuracy loss based on the distance of two auxiliary references to
the main reference (b) effect of the number of auxiliary references on
accuracy.

PLoss (F 1) =
P([S Aout2 > Re f 5 ∧ S Aout1 < Re f 0] ∧ [S Aout2 + S Aout1 > ν/2]) + P([S Aout2 < Re f 3 ∧
S Aout1 > Re f 2]∧[S Aout2+S Aout1 > ν/2])+P([Re f 4 < S Aout2 < Re f 5]∧[Re f 0 < S Aout1 <
Re f 1]∧[S Aout1+S Aout2 > ν/2])+P([Re f 3 < S Aout2 < Re f 4]∧[Re f 1 < S Aout1 < Re f 2]∧
[S Aout1 +S Aout2 > ν/2])

PLoss (F 2) =
P([S Aout2 > Re f 5]∧ [S Aout2 +S Aout1 < ν/2])+P([S Aout2 > Re f 5]∧ [S Aout2 +S Aout1 <
ν/2])+P([Re f 4 > S Aout2 > Re f 3]∧ [Re f 2 > S Aout1 > Re f 1]∧ [S Aout2+S Aout1 < ν/2])+
P([Re f 5 > S Aout2 > Re f 4]∧ [Re f 1 > S Aout1 > Re f 0]∧ [S Aout2 +S Aout1 < ν/2])

An important parameter that has a remarkable impact on the accuracy loss is the
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Figure 3.12: Impact of the two cascading functions illustrated in Figure 3.10 on
accuracy loss.

distance of auxiliary references to the main reference (“x” in Figure 3.10). This is quite
dependent on the distribution of data. Hence, the designer can analyze the network
and, based on that, find the proper value for the references where the accuracy loss
is minimized. Figure 3.11(a) demonstrates the impact of this parameter for cascading
function 2 assuming a normal distribution. This is presented for different crossbar
sizes (“c”). The distance to the main reference is shown relative to the crossbar
size. The figure indicates the importance of the values for the references and how
considerably they can change the accuracy loss. Another important parameter is
the number of references. The implication on accuracy can be comprehended from
Figure 3.11(b). It is observed that by keep adding more references, an improvement
in accuracy is reduced while more complexity is added to the hardware. Finally,
the impact of the cascading functions on accuracy is evaluated in Figure 3.12 over
a different number of references. The same two methods presented in Figure 3.10
are also used for the situation where we have more than three references. The
figure indicates that choosing a proper function can help the accuracy of the system
remarkably.

3.6. EVALUATION

3.6.1. SIMULATION SETUP

Our simulation results are obtained by creating our PyTorch-based platform [181].
This platform is able to evaluate the accuracy, energy, and latency of different
networks containing binarized and non-binarized layers. The software is written in
a modular way to flexibly change network structure as well as different circuit-level
parameters. The system runs at a clock frequency of 1GHz. The width of the
databus transferring data between the crossbars is 32 bits. This is required for
communication between layers. Based on the 32nm technology node, transferring
data to store it in an input buffer consumes 5mW [14, 16]. The energy and latency
number of the “Shift and Add” unit required for non-binarized layers taken from
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Table 3.1: Typologies of the BNNs and their software accuracy
Name Topology Dataset Accuracy

LeNet-5
5x5,6 - 2x2 Pool - 5x5,16 - 2x2 Pool - FC(120)
- FC(84) - FC(10)

MNIST 98%

CNN-1 5x5,5 - 2x2 Pool - FC(720) - FC(70) - FC(10) MNIST 97%
CNN-2 7x7,10 - 2x2 Pool - FC(1210) - FC(1210) - FC(10) MNIST 98%
MLP-S FC(784) - FC(500) - FC(250) - FC(10) MNIST 97%
MLP-M FC(784) - FC(1000) - FC(500) - FC(250) - FC(10) MNIST 98.2%
MLP-L FC(784) - FC(1500) - FC(1000) - FC(500) - FC(10) MNIST 98.4%

AlexNet
11x11,96 - 3x3 Pool/2 - 5x5,256 - 3x3 Pool/2
- 3x3, 384 - 3x3,384 - 3x3,256 - 3x3 Pool/2
- 3x3 AvgPool/2 - FC(4096) - FC(4096) - FC(10)

(enlarged)
CIFAR-10

80%

[14]. In all the simulations, the crossbar size is 512×512 [189]. We use an analytical
model based on a small ReRAM memristor prototype and extend the memory to the
required size. The LRS and HRS for the memristors are 5k and 1G, respectively.
The read voltage is 0.2V and the latency of the crossbar to charge the bit-lines is
considered to be 10 ns. The model is acquired from the results of the EU project
MNEMOSENE [19].

The specification of the sensing mechanism is taken from [190]. The energy per
ADC read is 12 pJ, and its latency is 3 ns. Besides, the energy of SA is assumed to be
10 fJ with 1 ns latency. In case our SA needs more references (e.g., 3 references),
its energy and latency get increased linearly by the number of references [66]. A
maximum of 3 references for a SA are considered in the simulations. The energy and
latency numbers are parameterized in the simulation platform and can be changed
based on different circuit designs.

Our benchmark (MlBench) comprises 7 BNNs for machine learning applications.
The structure of each network is listed in Table 3.1. LeNet-5, CNN-1, CNN-2,
and AlexNet are convolutional networks, and MLP-S/M/L are multilayer perceptrons
(MLPs) with different network scales [110]. We use MNIST and CIFAR-10 datasets
to evaluate our networks. The input images for CIFAR-10 are enlarged to 256×256
required for AlexNet. We compare our design with a recent work published in one
of the leading journals in this field [12]. For this work, we instantiate the digital
post-processing units (popcount) for every 16 columns of the crossbar instead of
sequentially operating over all the columns (see Figure 3.2(a)). This diminishes the
latency overhead of digital processing for the baseline.

3.6.2. RESULT AND DISCUSSION

In the following, first, we present the total accuracy loss for different networks.
Second, we evaluate the design in terms of energy and performance and elaborate
more on our observations.

Accuracy analysis
Figure 3.13 depicts the accuracy loss using our proposed approach compared to
the software implementation. The figure presents the results for the benchmarks
considering different cascading functions (see Figure 3.10). Depending on the size of
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Figure 3.13: Accuracy reduction for different network structures due to the crossbar
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Figure 3.14: Impact of auxiliary references and their distance from the main reference
on accuracy loss. The simulation is performed for the CNN2 network
employing cascading function F2 which is described in Figure 3.10.

the layers in a network, we can see whether we have an accuracy loss or not.
1) Small-size network layers (LeNet5): Since the size of layers in the LeNet-5 network
is within the range of crossbar size, no accuracy loss is observed. To clarify more, we
can consider one of the fully connected layers -FC(84)- where there are 84 output
activations. This layer receives 120 inputs. Hence, the number of memristor devices
we need for a single column in order to accommodate this vector is 120×2 (see
Figure 3.2(c)). Therefore, considering the crossbar size, there is no need to break the
vector and reduce the accuracy.
2) Medium- and large-size network layers: The rest of the networks used in our
simulations have larger layers to fit in one crossbar. Therefore, each layer has to
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be broken and mapped into several crossbars. This is where inaccuracy is injected
into the network. Figure 3.13 shows that accuracy reduction using SA with only
1 reference is up to 14%. This accuracy loss is much less for MLP networks.
Considering CNNs (CNN1, CNN2, and AlexNet), adding two more references to the
SA can improve the accuracy by up to 12%. This means that only using three
references in the SA can provide a decent accuracy loss of around 2%. It is worth
mentioning that in case we want to perform computation “precisely”, an ADC should
be used in the design. One can interpret an 8-bit ADC as a SA with 256 reference
levels. Therefore, Figure 3.13 shows that with a smart selection of three references
out of those 256 references, only 2% accuracy loss can be observed. In the case of
AlexNet, since the size of layers is extremely large, layers are broken and mapped
into more crossbars. Therefore, more options are available on how to perform the
cascading function. The detail of the cascading function used for AlexNet can be
found in [181].

Besides the number of references, another important parameter that can have a
remarkable impact on accuracy is the actual value of references. Figure 3.14 depicts
the implication of positioning the references on the accuracy loss. The simulation
is performed for the CNN2 network with three references by changing the distance
of auxiliary references to the main reference (“x” in Figure 3.10). The distance is
relative to the crossbar size (“C”). Placing the references far from or too close to each
other reduces their efficiency in eliminating the cases where inaccurate activation
values are generated. Therefore, the designer should find the optimal value for the
references by profiling the network.

Energy analysis
Figure 3.15 presents the energy numbers of different networks for the classification
of one input image. The figure shows the energy number for 1) the baseline, 2)
BCIM, and 3) the design where we want to do exact computing using ADC. The
result indicates BCIM can achieve around 40% energy improvement compared to
the baseline. Besides, BCIM can reduce the energy 5× compared to the design
where exact computing is performed. In addition, we show the energy breakdown of
AlexNet as well as its total energy in Figure 3.16. It is clear that energy consumption
has a strong correlation with layer size and the amount of computation that has
to be done in a layer. In addition, although the last layer is not binarized, its
contribution to the total energy is very limited. This is due to the size of this
layer compared to other layers (impact of output binarization on accuracy shown in
Figure 3.1).

Comparing BCIM with the baseline in terms of energy, there are two factors that
contribute to this energy improvement. First, the number of transactions required
between the layers (or crossbars) is 3 times less in BCIM compared to the baseline.
We present this relative comparison in Figure 3.17(a). This improvement is due
to the mapping of activations and weights into the input buffer and the crossbar,
respectively (see Figure 3.3). Second, the number of times SA is activated in BCIM is
less than the baseline. We show this in Figure 3.17(b). It is worth mentioning that
in both designs, the major contributor to the energy is the crossbar rather than the
periphery or the data transfer between the crossbar. Hence, this is the reason BCIM
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Figure 3.15: Energy consumption of BCIM compared to the baseline as well the
design performing precise computing using ADC.
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Figure 3.16: Energy breakdown as well as total energy consumption of AlexNet for
BCIM, baseline, and exact computing designs.

archives marginal improvement in terms of energy compared to the baseline. In the
future, if the energy consumption of memristor devices improves, then these two
factors will play a major role in the energy.

In case we aim for exact computing using ADC, the total energy consumption
significantly increases. The Major contributor to this energy rise is the costly ADC
component. As mentioned in the Simulation setup section, ADC consumes 12 pJ per
conversion. Considering the number of conversions required per crossbar activation,
this imposes significantly more energy consumption on the system than a SA with
around 10 fJ energy per sensing.

Latency analysis
Figure 3.18 shows the relative latency improvement for our different networks
normalized to the baseline. BCIM achieves up to 100× improvement compared to
the baseline. Besides, compared to the design where we perform exact computing,
BCIM improves the latency by more than 3×.

There are two major factors involved in BCIM latency improvement compared to
the baseline. We explain them in the following.
1) Mapping of weights into the crossbar: As illustrated in Figure 3.2(b), due to the
way weights are mapped to the crossbar as well as the way computation is performed
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Figure 3.17: (a) Number of transactions between crossbars and (b) number of SA
activation for entire networks (normalized to BCIM).

in the baseline, the output activation values are produced sequentially. This means
at each time step, one row of the crossbar associated with one output value is
activated. However, because of the weight mapping and the way we performed
XNOR operations, the output activation values are produced in parallel (see Figure
3.2(c)). This improves the total latency of the network considerably. Figure 3.19(a)
presents the contribution of different parts of the design for the baseline to the total
latency. As we can see, the crossbar has a major contribution. However, in BCIM, by
changing the mapping of the weights, the contribution of the crossbar was reduced
significantly. We can observe this in Figure 3.19(b). In addition to the crossbar, the
total latency of the periphery is high in the baseline, as we can see in Figure 3.19(b).
This is because every time a crossbar row is activated, the sensing and all the digital
peripheries should be conducted.

2) Mapping of activation value into the input buffer: Figure 3.19(b) shows that
by changing the weight mapping and reducing the contribution of crossbar and
periphery in the total latency, data communication becomes dominant in most
cases. Hence, this is critical to have an optimized mapping of activation value
into the input buffer in order to minimize the data communication overhead. As
we can see in Figure 3.19(b), even after the optimization of the input buffer, the
communication overhead is still dominant.

BCIM improves the latency by more than 3× compared to the exact computing
design (see Figure 3.18). First, ADC imposes more latency in the periphery compared
to SA in order to perform a conversion. Second, due to the high area consumption
of ADC compared to a SA, more bit-lines in the crossbar should be shared by an
ADC. Hence, this also increases the latency of this design.

Figure 3.19 presents the contribution of three major latency consumers (transaction,
crossbar, and periphery) for (a) the baselines, (b) and BCIM. Considering the
baseline, crossbars contribute more to the latency than other contributors. This is
due to the large amount of sequential computation that has to be performed in
the crossbar. However, in the case of BCIM, we can observe that the crossbar has
the highest latency only for CNNs. In a convolution layer, a kernel (mapped to a
crossbar) has to slide over the entire input data in order to produce output activation
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values. This means more computation is performed on each crossbar with one input
set than in an MLP network. Figure 3.20 (left) shows the latency breakdown per
layer for AlexNet. The figure again demonstrates that the convolution layers have
more contributions than fully connected layers within a network. This means in case
we have to satisfy higher performance requirements in our design, more resources
should be dedicated to these layers. Considering Figure 3.20(right), where we provide
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Figure 3.20: Latency breakdown for different layers of AlexNet (left) and MLP-L (right)

the breakdown of the MLP-L network, the last layer has the major contribution to
the latency since this layer is not binarized, and ADCs have to be employed. Using
ADC increases the contribution of periphery circuits in latency considerably. This is
the reason that the periphery contributes more to the latency in our MLP networks
(see Figure 3.19(b)).

3.7. LIMITATIONS
The applications of BNNs are limited since these networks provide lower accuracy
(around 10% [180]) than their full precision counterparts. However, it should be
noted that in this work, we avoided binarizing the entire network. Instead, the first
and the last layers, which seem to have the most contributions to the accuracy
loss, are kept as a non-binarized layer. This helped us to preserve the accuracy as
much as possible. As we saw in Table 3.1, our binarized AlexNet network provides
80% accuracy, which is very close to the full precision network. This has to be
evaluated in the future for other large networks as well. Furthermore, the approach
presented in this paper can be applied to non-binary (e.g., 2-bit) weights with some
assumptions. In case each memristor device can hold a weight (e.g., 2-bit) and if
values are represented in the two’s complement format (to be able to have both
negative and positive), the same approach can be used. This can be further explored
and elaborated in our future work. Hence, if a binary network suffers from huge
accuracy loss, more precision weights can be potentially employed.

3.8. CONCLUSION
In this chapter, we focused on binary neural networks as a promising application
for CIM. We proposed a novel in-memory memristor-based design that substantially
improves both the latency and energy efficiency of BNN networks on CIM. The
proposed XNOR-based BNN design replaces the ADC and digital post-processing
functionality with a SA with adjusted reference(s) while maximizing parallelization
and resource utilization in the design using a novel mapping of weights and
activation values in the crossbar and its input buffer. The impact of SA references on
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the accuracy has been evaluated at the crossbar and network levels. The design was
also evaluated in terms of energy and latency for different networks and datasets.
This work is able to improve energy and latency up to 5× and 100× compared to
the baselines with marginal accuracy loss.

By Studying this application domain, we have learned the following:

1. CIM can potentially lead to considerable energy/performance improvement for
neural networks.

2. In the case of more generic designs, flexibly supporting different datatype
sizes is important. Different networks and accuracy constraints may require
different datatype sizes. As we saw for BNNs, even within a network, we may
have different datatype sizes (e.g., 8 bits for the first and last layer and 1 bit
for intermediate layers). We discuss this more in Chapter 7.

3. Supporting multi-tiling is a must for real-world applications. A network-on-chip
(NoC) is required to connect CIM-tiles and flexibly navigate data among them.
Based on the NoC topology and the structure of the neural network, a mapper
is required to minimize the communication overhead among the tiles.

4. Neural networks often have layers and operations that cannot be implemented
in the crossbar array. For example, a pooling layer or sigmoid function
should be implemented in the periphery. In the case of a more generic
approach where we intend to support a wider range of neural networks or even
applications, the designer should be aware of these required functionalities.
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APPLICATION SPECIFIC DESIGN:

GRAPH PROCESSING

Performing analysis on large graph datasets in an energy-efficient manner has posed
a significant challenge; not only due to excessive data movements and poor locality,
but also due to the non-optimal use of high sparsity of such datasets. The latter
leads to a waste of resources as the computation is also performed on zero’s operands,
which do not contribute to the final result. In this chapter, we focus on graph
processing applications and design a novel accelerator, SparseMEM, targeting sparse
datasets by leveraging the computing-in-memory (CIM) concept. CIM is a promising
solution to alleviate the overhead of data movement and the inherent poor locality of
graph processing. The proposed solution stores the graph information in a compressed
hierarchical format inside the memory and adjusts the workflow based on this
new mapping. This vastly improves resource utilization, leading to higher energy
and permanence efficiency. The experimental results demonstrate that SparseMEM
outperforms a GPU-based platform and two state-of-the-art in-memory accelerators
on speedup and energy efficiency by one and three orders of magnitude, respectively.

This chapter is based on [22].
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4.1. INTRODUCTION
Graph processing is employed in a wide range of areas, including but not limited to
social media analysis [143], bioinformatics [144], urban planning [145], and machine
learning [146]. Graph processing is well-known for its three main characteristics
[91, 147]: 1) poor locality or random access pattern to the memory, 2) simple
and a small amount of computation over the accessed data, 3) high sparsity of
the graphs which implies that the computations are frequently performed on zeros
operands. Traditionally, the active portions of the graph are loaded sequentially into
the memory hierarchy of the system while the rest of the graph is stored in the
secondary memory. Due to the explosion of graphs’ size, data movement across
the memory hierarchy imposes a considerable overhead compared to the actual
computation time/energy and limits the system’s performance due to the maximum
memory bandwidth. Moreover, some of this latency and energy is wasted due
to the sparsity of the graph. Clearly, there is a need for new architectures and
methodologies to address the challenges mentioned above.

Several hardware accelerators were proposed to enhance the energy efficiency
and performance of graph processing. Some of them have focused on optimizing
memory access [148], others on improving the computational efficiency [149].
To further improve the system’s efficiency beyond memory bandwidth limitation,
near-memory computing was deployed in some previous works; e.g., TESSERACT
[150] implements a vertex-centric programming model on top of Hybrid Memory
Cube (HMC). To mitigate the communication overhead between different memory
cubes, numerous solutions based on efficient graph partitioning [147], configurable
interconnect [151], and batched-based communication [152] were provided. To
further reduce the memory bandwidth limitation, GraphR [91], GRAM [153], and
GraphSAR [154] proposed promising designs by exploiting computing-in-memory
(CIM) based on emerging non-volatile memristors. Unlike the works mentioned
earlier, GraphSAR [154] takes into account graph sparsity and provides a CIM
sparsity-aware design on top of memristor devices in which sub-graphs with low
density are divided into smaller ones. This approach can partially eliminate the
sparsity and has a high pre-processing overhead. Hence, there is still a need for
energy-efficient solutions that minimize the data movement overhead while taking
the data sparsity into consideration.

In this chapter, we propose SparseMEM, an energy-efficient design leveraging
CIM; the design obtains maximum benefit from data sparsity. SparseMEM presents
graph information in a hierarchical compressed format and comprises two key
components: 1) Destination-Weight (DW) Crossbar, where the graph information
is stored in a novel compressed representation; 2) Translation-Table (TT) Crossbar,
which helps to navigate through the DW Crossbar. We implement the design using
ReRAM memristor technology; memristor devices have great scalability, high density,
near-zero standby power, and non-volatility [13, 21]. We compare SparseMEM with
software implementation on a GPU platform as well as two CIM designs [91, 154].
The results show that we achieve 18× speed up and 2000× energy efficiency on
average compared to the baselines. In short, our main contributions are:

• A novel data representation tailored for spars-based graph processing and
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targeting computing-in-memory designs. This enables the computations over
a compressed graph representation (stored inside the memory) irrespective of
the used memory technology;

• An optimized and scalable end-to-end ReRAM-based computing-in-memory
accelerator that makes use of the proposed data representation for several
widely used graph algorithms. The efficiency of the accelerator is studied over
the different levels of graph sparsity;

• Case studies of different workloads to evaluate the design for different
performance metrics. The design is compared with a software implementation
on a high-end GPU platform and two in-memory state-of-the-art designs.

This chapter is organized as follows. Section 4.2 provides background graph
processing. We discuss our SparseMEM proposal in Section 4.3. Section 4.4 evaluates
the design, while Section 4.5 concludes this chapter.

4.2. GRAPH FUNDAMENTALS
A widely used method of graph representation is an algebraic representation. In
this method, an adjacency matrix is constructed where each entry (i , j ) represents
an edge from source vertex i to destination vertex j . This representation allows
for intuitive calculations using linear algebra operations. However, naive storage of
this matrix in memory does not scale. The storage occupied by a 2D matrix grows
quadratically, meaning that large graphs quickly occupy an impractical amount of
memory. However, by monitoring the graph information stored in the memory,
we observe that most of the matrix elements do not contribute to the result
of the computation since they represent an edge that does not exist between
destination and source nodes. Figure 4.1 presents the sparsity of some well-known
datasets [191]; this illuminates the intensity of sparsity in adjacency representation.
Operating on sparse data not only increases the memory requirements, but also
brings the computational efficiency down. The solution in this paper aims to
maximize computational efficiency and resource utilization while performing over
sparse datasets.

4.3. SparseMEM Architecture
4.3.1. OVERVIEW OF SPARSEMEM
Figure 4.2 shows the workflow of SpraseMEM compared to one of our baselines
GraphR [91]. As stated before, real-world graph datasets are extremely large, even
using compressed representations. However, the size of the storage unit, ReRAM
memory, is practically limited due to the current technology restrictions. Therefore,
we need to store the entire preprocessed graph dataset on disk. In the GraphR
approach (as shown in Figure 4.2), the computation and storage are distinguished
even within the ReRAM crossbars. While the first part (ReRAM Memory) holds the
graph information loaded from the disk, the second part (ReRAM Graph engines)
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performs the computation over the uncompressed information. Nevertheless, the
following challenges are faced: (a) Considerable data movement between ReRAM
memory and Graph engines reduces the performance and energy efficiency of the
system; (b) Conversion from the coordinate list (a compressed representation) to the
adjacency representation (used for processing) imposes extra processing overhead
on ReRAM engines in each iteration; and (c) Mapping the adjacency matrix to the
graph engines leads to poor resource utilization due to high data sparsity. It is worth
mentioning that increasing the number of memristor device programming reduces
the endurance and energy efficiency.

SparseMEM presents the graph information in a new compressed hierarchical
format inside the ReRAM crossbars. The design comprises two main components:
1) Destination-Weight (DW) Crossbar, where the graph information is stored in
compressed representation 2) Translation-Table (TT) Crossbar, which decodes the
information in the DW Crossbar and guides to extract information regarding the
positioning of vertices which is needed for computation. This allows us to perform
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the computation exactly where the data is stored inside the ReRAM memory. Hence,
there is no separation between ReRAM memory and the ReRAM processing unit. The
SparseMEM major differentiators are: (a) it alleviates the number of data loading
from disk due to the efficient use of ReRAM memory; (b) it uses computational
resources efficiently by performing computation over compressed information; and
(c) it eliminates the data conversion from compressed to adjacency representation.
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4.3.2. GRAPH MAPPING AND DATA REPRESENTATION

In this section, we explain our compressed hierarchical representation by providing
a simple example based on a toy graph depicted in Figure 4.3(a). To clarify more on
SparseMEM and identify the differences, we compare it with the GraphR design [91],
where the adjacency matrix is directly mapped to the crossbar (similar to GraphSAR
[154]).

In the case of GraphR (below part of Figure 4.3), where the adjacency matrix
is directly mapped to the crossbar, the storage of edge weights encodes more
information than just the weight. Since the entries are expanded, the location of the
edge in the crossbar also encodes the source and destination vertex of this edge.
Figure 4.3(b) shows the mapping used in GraphR. As an example, the first row of the
crossbar shows which vertices of the graph are connected to vertex 1, the second row
in the crossbar gives the vertices connected to vertex 2, etc. For example, vertex 1 is
connected to vertices 2 and 3; entities in the matrix give the weight of connections
(1 and 2) and “M” denotes no connection. However, this information is lost when
the edges are stored in a compressed format. Thus, a proper mapping to preserve
this information is required.

In the case of SparseMEM design (top part of Figure 4.3), optimal use of storage
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is made. Each graph’s vertex gets a sub-array in the Destination-Weight (DW)
Crossbar; each of these sub-arrays consists of two rows: one for the index of
destination vertices and one for the weights of the edges connecting the source
to destination vertices; the number of columns in a sub-array depends on the
connectivity of a vertex to other vertices. In Figure 4.3(b), each color in the DW
Crossbar represents a sub-array for a vertex. For example, the pink color presents
the sub-array associated with vertex 1. As vertices 2 and 3 are connected to vertex 1,
we store the index of these vertices in the first row (being 2 and 3) and their weights
(being 1 and 2 respectively) in the second row. Note that, in SparseMEM, only the
non-sparse data is stored, which is required for computation. E.g., for vertex 1,
only four values are stored in DW Crossbar. However, in the GraphR design, the
entire row 1, which represents the collection of edges with source vertex 1, has to be
stored. All these devices contribute to the execution, even though only two hold the
data of interest, and the rest hold a predefined value representing no connection.

The key question is now how to preserve the information regarding the location of
edges belonging to a vertex in the DW Crossbar. In order to encode this information,
a separate Translation Table (TT) Crossbar is used. This crossbar is employed to
encode the location of the edges of a particular source vertex (being stored in the
DW Crossbar) and navigates through it. In the TT Crossbar, we store the information
for each vertex as ‘start address’ and ‘end address’; these refer to the first and last
location, respectively, occupied by a vertex in the DW Crossbar. Figure 4.4 illustrates
an example of 4×4 TT Crossbar; it assumes the addressing is performed in an
increment manner from left to right (i.e., fast column addressing). The first two
addresses are reserved for vertex 1, the second two addresses for vertex 2, etc. For
example, the start and end addresses of vertex 3 stored in the TT Crossbar are 6 and
7, respectively. To translate the address to the DW Crossbar addresses, the following
formula is used: ADW = AT T +⌊AT T /C⌋×C where C denotes the number of columns
in the DW Crossbar and ⌊⌋ denotes the floor of division. In the example of Figure
4.4, C=5; hence, for vertex 3, ADW is 11 (start) and 12 (end), assuming also fast
column addressing of DW Crossbar. Note that, the translation of AT T to ADW skips
the even rows as they always store the weights corresponding to ADW addresses
(vertices). This hierarchical storage format eliminates sparsity, while still preserving
edge source and destination. TT Crossbar is operating in parallel with DW Crossbar
and can provide information to multiple DW Crossbars regarding the address of
active vertices for the next iteration. Several DW Crossbars together with their TT
Crossbar form a cluster. A design may contain several clusters.

4.3.3. EXECUTION FLOW

In this subsection, we explain the execution flow of SpraseMEM by providing an
example based on Single-Source Shortest-Path (SSSP) algorithm (see Algorithm 1). In
graph algorithms, the execution can be divided into two steps: a) compute and b)
update. Considering the SSSP algorithm, we take a single start vertex and compute
the distances “d” to every other vertex in the graph. The vertices whose distance
values are updated in the current iteration are activated for the next iteration. The
algorithm continues until there are no active vertices. When we access the edge that
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connects an active source vertex to a destination vertex, the edge weight has to be
added to the current distance value of the source vertex (compute step). At the
end, we need to update the destination registers (update step) where we store the
distance value of vertices to the source vertex. This is usually a simple mathematical
operator and varies across algorithms. In the case of the SSSP algorithm, this
operator is a Min function that gives the minimum of the current computed distance
value as well as the old value for a vertex. Next, we illustrate the algorithm for
SparseMEM and GraphR implementation.

GraphR: Figure 4.3(c) illustrates the first two iterations (line 3 in Algorithm 1) of
the SSSP algorithm where we want to find out the distance of vertex 1 to other
vertices. To clarify more on the implementation, we consider the second iteration
of the algorithm in Figure 4.3(c) as an example where we want to find the distance
from vertex 1 to the rest of the vertices through vertex 2 and 3 (they got activated
after the first iteration). When we get access to the edges belonging to vertex 2 (i.e.,
wei g ht2[4] = 3), the current distance from vertex 1 to vertex 2 (d [2]), which was
computed in the first iteration, has to be added up (New_d [4] = d [2]+wei g ht2(4)).
In the GraphR implementation, this addition is performed in an analog manner
where the current distance of the active vertex d [2] is given to the crossbar as input,
as shown in the bottom part of Figure 4.3(c). Note that the last row is programmed
to value 1. This is because d [2] has to be first multiplied by 1 and then added to
the second row storing the edge weights belonging to vertex 2 (e.g., wei g ht2[4]).
Due to the limited resolution of the input drivers, input data has to be sliced and
applied to the crossbar in several steps. As a consequence, the implementation of
such addition requires costly peripheral components like power-hungry ADC and
Shift-and-Add units, as shown in Figure 4.5(a). After the compute step, the update
step takes place in the periphery of the DW Crossbar using a digital circuit (Min in
Figure 4.5), and stores the result in the destination register dedicated to this vertex.

SparseMEM: To demonstrate how SparseMEM performs computing, we consider
the same case as we did for GraphR; i.e., the second iteration of Algorithm 1
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Algorithm 1 SSSP algorithm
1: Acti veV er t i ces[st ar t ] ← True
2: d [st ar t ] ← 0
3: while Acti veV er t i ces ̸= ; do
4: for v ∈ Acti veV er t i ces do
5: for each neighbour u of v do
6: New_d [u] ← d [v]+wei g ht(v)(u) // compute
7: d [u] ← min(New_d [u],d [u]) // update
8: if d [u] changed then
9: Acti veV er t i ces[u] ← True

10: end if
11: end for
12: end for
13: end while
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Figure 4.5: Periphery design for (a) GraphR and (b) SparseMEM

where we aim at finding the distance from vertex 1 to vertex 4 through vertex 2.
The compute step (i.e., New_d [4] = d [2]+wei g ht2(4)) is calculated by first reading
wei g ht2(4) from DW Crossbar (see iteration 2 in Figure 4.3) and then adding it to
d [2], which is provided as input to the periphery of the crossbar. The addition
is done with a digital adder as shown in Figure 4.5(b). This approach avoids
activating the crossbar several times and using Shift-and-Add units. This also helps
to replace expensive ADCs with simple Sense Amplifiers (SAs). However, SparseMEM
needs a bus or an interconnect component. Due to the compressed representation
in SparseMEM, the crossbar no longer encodes vertex location. Therefore, a bus
is placed in order to navigate data to the target destination register. As already
mentioned, before computing the new distance value (e.g., New_d [4]), the index of
the vertex where this value belongs (e.g., 4) is read from the DW crossbar. This
information is used to configure the bus and navigate the new distance value to its
destination register.
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Figure 4.6: (a) Partitioning the adjacency matrix into sub-matrices (b) column-major
execution model for streaming the sub-matrices (each square is a
sub-matrix)

4.3.4. SUB-GRAPHS STREAMING AND PROCESSING

To process graphs much larger than the available memory size provided by the
crossbars, it is necessary to stream the graph data into the crossbar from another
source, such as secondary memory storage. This is considered for GraphR,
GraphSAR, and SparseMEM. To stream a graph, we split it up into “sub-graphs”. To
be more specific, the adjacency matrix is partitioned into sub-matrices which either
represent the connectivity within a sub-graph or between two sub-graphs. Figure
4.6(a) shows an example of graph partitioning. In the case of GraphSAR [154] design,
sub-matrices in which all elements are equal to zero are eliminated from the process
to improve efficiency in the presence of high data sparsity. In SparseMEM, while the
sub-matrices are streamed from the disk to the DW Crossbars, we program the TT
Crossbar as well. This information is known at compile time and does not require
extra processing during the execution. Such a format of graph streaming allows
for processing graphs much larger than the available memory size provided by the
crossbars.

Figure 4.6(b) shows the processing order of sub-matrices. There are two main
approaches: 1) column-major and 2) row-major. Selecting the right approach may
enhance the performance and energy efficiency of the design. In column-major
(row-major) order, sub-matrices with the same destination (source) vertices are
processed in each iteration. We indicate the iterations in Figure 4.6(b) with black
circles. Considering row-major order, the content of all destination registers has
to be loaded from the disk into the crossbar for each iteration. Similarly, in
column-major order, the content of source registers has to be loaded together with
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the corresponding sub-matrices in sequence (red circles) to obtain new distance
values. However, in column-major order, we only need to load the current distance
to the “active source vertices” which are usually less than the total number of source
vertices. Therefore, there is no need to load all the source registers. Hence, it leads to
less communication to the disk during the execution. It should be noted that, due to
the current technological limitations, limited crossbars can be employed in realistic
design. Hopefully, as the limitations fade away in the future, memristor crossbars
can be replaced with the secondary memory storage; hence there would be no/less
concern regarding the communication overhead between these two memories.

4.4. EVALUATION AND DISCUSSION

4.4.1. EXPERIMENTAL SETUP

Our simulation results are obtained by creating a platform for SparseMEM written in
C++ [181], which takes graph datasets and performs the same steps as the hardware.
These steps include the various operations performed on the crossbar, such as
reading and writing to the crossbar. The parameters for ReRAM technology are taken
from [192]. We assume each memristor cell can hold one bit (two resistance levels)
for all the simulations. The parameters for ADCs are taken from [193] given in 32
nm technology, and the resolution of the input drivers for the crossbars are 1-bit
[194]. We summarize the parameters regarding the crossbar technology in Table 4.1.
Digital peripheries are synthesized in Cadence Genus targeting standard cell 15 nm
Nangate library. Finally, we use 16-bit integer data size in all experiments.

Table 4.1: Memristor tile specification

Crossbar - ReRAM (128x128 @1bit)
Energy (Single Cell) Latency

Read 40fJ 10ns
Write 20pJ 100ns

ADC (8-bit)
Energy 2pJ per sample
Latency 1ns per sample
Shared with 32 columns

SA
Energy 0.01pJ per sample
Latency 1ns per sample
Shared with 4 columns

We evaluate SparseMEM in terms of speedup and energy while comparing the
solution with GraphR [91], GraphSAR [154], and Nvidia Geforce RTX2080 GPU
platform. We use Nvidia-smi to obtain the power consumption of the GPU platform.
Our experiments concern three algorithms (application): 1) SSSP, 2) Breadth First
Search (BFS), and 3) PageRank on real-world graph data sets, which are retrieved
from the SNAP graph repository [191]. Datasets (workload) used for the experiments
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Table 4.2: List of graph datasets
Dataset Average Degree #Vertices #Edges Domain

wiki-Vote (WV) 29 7k 104k Social
amazon0302 (AZ) 9 262k 1.23M Co-purchasing

soc-Slashdot0902 (SD) 23 82k 948k Social
soc-Epinions1 (EP) 13 75k 508k Social

com-Orkut (OK) 39 3M 117M Communities
web-Stanford (WS) 16 281k 2.3M Web

are summarized in Table 4.2.

4.4.2. EXPERIMENTAL RESULTS

Figures 4.7,4.8, and 4.9 depict speedup and energy improvements of SparseMEM
w.r.t the baselines for SSSP, BFS, and PageRank algorithms, respectively. It shows the
following:

1. Speedup is strongly application and workload-dependent. E.g., SparsMEM archives
minimum speedup for PageRank, and minimum speedup for ’WV’ workload.

2. SparseMEM systematically outperforms in terms of energy efficiency irrespective
of the workload and application.

3. On the average, SparseMEM achieves 18× speedup and 2000× energy improvement
compared to CIM baselines.

Speedup: Sparsity is the main factor determining the speedup in SparseMEM
compared to the baselines. Figure 4.10 depicts the utilization of memristor devices
in SparseMEM and GraphR implementations; this represents the total number of
(re)programming memristor devices during the execution of two algorithms. Less
reprogramming devices in SparseMEM leads to significant improvement in speedup.
According to the results, the minimum speedup improvement is for the Wiki-Vote
(WV) workload with the lowest sparsity (see Figure 4.1); as sparsity reduces, the
overhead of hierarchical mapping used in SparseMEM increases. Note that even if
graphs have similar sparsity (e.g., ‘AZ’ and ‘SD’ workloads in Figure 4.1), the speedup
can be different (see Figures 4.7,4.8, and 4.9); this is due to the distribution of data
over sub-graphs (graph connectivity). If the data is scattered over many sub-graphs,
there would be fewer sub-graphs whose all elements are zero. Consequently,
there are fewer sub-graphs to be eliminated from the process, which increases the
overhead in the baselines. Among applications, SparseMEM achieves similar (or
less) performance to the baselines for the PageRank algorithm. Since the baselines
directly map the adjacency matrix to the crossbar, analog matrix multiplication can
be supported inside the crossbar. Therefore, they can achieve more parallelization
for PageRank, where matrix multiplication is an essential kernel.

Energy: Sparsity and the periphery design are also major factors influencing
energy consumption. As stated in sub-section 4.3.3, the input drivers and ADCs
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Figure 4.7: Speedup and energy improvement of SparseMEM compared to the
baselines for SSSP algorithm (normalized to GPU)
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Figure 4.8: Speedup and energy improvement of SparseMEM compared to the
baselines for BFS algorithm (normalized to GPU)
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Figure 4.10: Relative number of memristor programmings required by SparseMEM
and GraphR (normalized to SparseMEM)

are major energy consumers. In GraphR implementation, feeding a data operand
(e.g., 16 bits size) to the input driver requires several (e.g., 16) iterations due to the
limited driver resolution [26]. This increases both energy and latency. In addition,
using ADC in the periphery consumes more energy. Hence, higher energy overhead
is imposed on the system. SparseMEM, however, is a read-driven design where the
computation (e.g., addition) is performed in the periphery. This reduces the energy
required for computation in the crossbar as well as its periphery.

4.5. CONCLUSION
This chapter proposes SparseMEM, an in-memory graph processing accelerator
tailored for sparse workloads. The key idea is the compressed and hierarchical
mapping of the graph information into memristor-based crossbars to efficiently
perform the computation inside the memory. The design requires less reprogramming
of memristor devices (i.e., read-driven), while performing data-centric computing
(CIM). The result implies the importance of hardware/mapping co-design for
energy-efficient CIM design.
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The knowledge of bioinformatics is used in a wide range of applications. Food
industries, as high-risk enterprises that are directly associated with human health,
are leveraging this knowledge in their food monitoring systems to increase the
quality and nutritional value of foods. Food profiling is an essential step in any food
monitoring system needed to prevent health risks and potential fraud in the food
industry. Food profilers work on massive data structures and incur considerable data
movement for a real-time monitoring system. To this end, we propose Demeter,
the first platform-independent framework for food profiling. Demeter overcomes the
first limitation through the use of hyperdimensional computing (HDC) and efficiently
performs the accurate few-species classification required in food profiling. We
overcome the second limitation by the use of an in-memory hardware accelerator
for Demeter (named Demeter) based on memristor devices. Demeter actualizes
several domain-specific optimizations and exploits the inherent characteristics of
memristors to improve the overall performance and energy consumption of Demeter.
We compare Demeter’s accuracy with other industrial food profilers using detailed
software modeling. We synthesize Demeter’s required hardware using UMC’s 65nm
library by considering an accurate PCM model based on silicon-based prototypes.
Our evaluations demonstrate that Demeter achieves a (1) throughput improvement
of 192× and 724× and (2) memory reduction of 36× and 33× compared to Kraken2
and MetaCache (2 state-of-the-art profilers), respectively, on typical food-related
databases. Demeter maintains an acceptable profiling accuracy (within 2% of existing
tools) and incurs a very low area overhead.

This chapter is based on [23].
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5.1. INTRODUCTION
This chapter focuses on food profiling as the third and last application in this thesis.
Food profiling is the first step and the only computationally expensive task in a food
monitoring system. The food profiling task entails the functionality of determining
the existing species in a food sample and their relative abundance [195, 196]. Today’s
food profilers work with sequenced data as we can capture a more accurate profile
using the sequences of a food sample. The rapid drop in the cost of DNA sequencing
in the past decades and the expectation for a continual trend [197, 198] is expected
to lead the way for profiling to become the main bottleneck of this pipeline.

We pinpoint two critical sources of inefficiency in state-of-the-art (SOTA) profilers
currently used for food monitoring, collectively called food profilers or profilers
hereafter. First, all current (food) profilers work with significantly large working data
structures, e.g., humongous hash tables or sorted lists, that require high-end servers
with extensive storage and memory capabilities to be handled. Second, current
profiling techniques incur a significant number of random accesses to large working
datasets, and as a result, unnecessary data movement between their storage and
memory plus their memory and compute units which cannot be otherwise done
where the data resides due to (1) the size of the final data structures and (2) the
required operations for tasks in hand. This directly translates to massive energy
consumption and latency. For example, as shown in our evaluations, a widely used
SOTA profiler takes ∼1 minute to profile one high-coverage sequenced food sample.
However, it requires a super machine or cluster with at least 300 GB of memory and
proportionally scaled-up compute power. Therefore, a healthy economy regarding
the food industry cannot keep using these profilers and demands cheaper, faster,
more energy-efficient, and more accurate food profilers for the years to come.

Our goal in this chapter is to solve both limitations of previous profilers, namely
(1) reliance on high-end servers and scaling problem due to required massive data
structures and (2) incurring unnecessary data movement. To this end, we propose
Demeter, an CIM-based hardware/software co-designed food profiling accelerator
that efficiently profiles species of a food sample. The key idea of Demeter is to
reduce the food profiling problem to a multi-object (multi-species) classification
problem using hyperdimensional computing (HDC) followed by an abundance
estimation step. We provide the necessary background information about HDC in
the following section.

This chapter makes the following main contributions:

• The first framework that enables food profiling via HDC. Our CIM-enabled
hardware accelerator uses memristor devices (Demeter) to extract Demeter’s
full potentials and solve the data movement problem. We propose several
optimization techniques for Demeter based on domain-specific knowledge
of food profiling and our background on PCM cell characteristics and HDC
operations. To our knowledge, Demeter is the first (in-memory) hardware
accelerator for a food profiler (Section 5.4).

• We rigorously compared Demeter and Demeter to four SOTA food profilers. We
show that Demeter provides an accuracy level comparable with previous food
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profilers and within the accepted level of food monitoring systems. The default
setting of Demeter enables a (1) throughput improvement of ∼192× and 724×
and (2) reduction in the required memory of ∼36× and 33× compared to
Kraken2 [199] and MetaCache [195], respectively, when querying on a typical
food-related reference genome database, i.e., AFS20 [195]. Our design requires
only ∼8.9 mm2 die area and can process ∼9.45 Mbp per joule for our largest
food-related database AFS31 [195] (Section 5.5).

5.2. BACKGROUND
This section discusses the necessary background on HDC. For more detailed
background information, we refer the reader to the original paper [23] and
comprehensive reviews on other required topics [200–203].

5.2.1. HYPERDIMENSIONAL COMPUTING

Hyperdimensional computing (HDC) [204, 205] is a brain-inspired computing
paradigm that has been demonstrated to be effective in reference-based learning
domains, such as text classification [206], gesture recognition [207], and latent
semantic analysis [208]. Elements of HDC are presented using high-dimensional
vectors, hereafter called HD vectors. HD vectors can be composed of real, binary,
bipolar, or complex numbers. Previous works show that binary representations
of HD vectors are more practical and efficient for classification problems or
one-shot reinforcement learning. This representation is also more hardware-friendly.
Therefore, we proceed with binary HD representations. HD vectors also come with
other powerful features, such as robustness to random errors, holistic representation,
and randomness. We refer the enthusiastic readers to previous works for more
details on these features [204, 209]. In addition, some theoretical background on
HDC can be found in [210]. Finally, a complete overview of recent works on HDC,
their implementation, and applications is presented in [211].

Like other reference-based classifiers, an HDC-based system also takes two steps:
(1) training and (2) classification. An encoding mechanism is used in both steps.
One famous example is the N-gram encoding mechanism that follows a two-step
approach for encoding a string of size L to an HD vector of size D. Step 1: It
combines N consecutive alphabets of the string and builds an HD vector that is
orthogonal to them all and can preserve their relative order. This operation is
called binding and is represented in Equation 5.1, where ρi (X ) represents the i th

permutation of vector X and Bi are once randomly-generated representative HD
vectors (also referred to as atomic or basis HD vectors) for the i th character of the
string Ci . In the equation, “Sh” is a shift operation. The string is a DNA sequence in
Demeter.

N − g r am(C1,C2, ...,CN ) = Sh[. . .Sh[Sh[B1]⊕ρ(B2)]⊕ . . . ]⊕ρN−1(BN ) (5.1)

Step 2: The encoder performs an element-wise addition between all HD vectors
corresponding to consecutive N-gram, called bundling, to present the entire input
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sequence. To binarize the final HD vector, the encoder applies a majority function
over each position. This final vector is stored in associate memory (AM) and is
called a prototype HD vector if the input was a reference genome. Otherwise, it is
called query HD vector and will use it for classification.

The most common approach for classifying whether the sequence query belongs
to any of the classes in AM after using N-gram encoding mechanism is to measure
the hamming distance between the query HD vector (Q) and each of the prototype
HD vectors (Ps) and decide based on a fixed distance or threshold (T). This can
be easily performed with an XNOR of Q and each P followed by a pop-count and
thresholding operation, as shown in Equation 5.2.

C l assi f i cati on(i ) =

1, if
D∑

j=1
Q( j )⊕̄Pi ( j ) ≥ T

0, otherwise
(5.2)

5.3. FRAMEWORK
Although the current food profilers are accurate, they are neither memory- nor
energy-efficient. The primary sources of high cost and inefficiency in current food
profilers are their large reference data structures and, consequently, the significant
overhead of data movement. To address this challenge, we propose a framework for
food profiling, Demeter, in this chapter. The framework stands at the intersection
of HDC, CIM, and bioinformatics. Figure 5.1 provides an overview of the five key
steps in Demeter: 1 defining an HD space, 2 building an HD reference database
(HD-RefDB), 3 converting sample reads into HD space, 4 determining the possible
species assignment per sample read, and 5 performing abundance estimation. We
describe each step in more detail next. The hardware implementation of the
accelerator is provided in the next section.

5.3.1. STEP 1: DEFINE THE HD SPACE

As the first step, Demeter defines an HD space for all subsequent operations and
steps. This is a crucial step as it determines the operations in the remaining steps.
Unfortunately, many previous HDC-based proposals did not support the user’s input
for determining the HD space and designed their space statically. Hence, such
designs are more limited.

We define the HD space in 4 stages. Stage 1: We fixe two hyperparameters: (1)
The dimension of the HD space; i.e., the dimensionality of the HD vectors (element
representations), and (2) The sparsity of each element (HD vector). Stage 2: We
generate a few atomic HD vectors and store them in memory (commonly called Item
Memory (IM)). These vectors can be (1) the HD vectors that represent our genome
alphabets or (2) the one-time randomly generated HD vectors that some encoding
mechanisms use, for example, to introduce the concept of order between alphabets
of one input. Stage 3: We decide on the encoding mechanism to build the space
with. This encoding mechanism will be used throughout Steps 2 and 3 of Demeter.
Stage 4: We fix the similarity metric and any other associated parameters (such
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Figure 5.1: Overview of Demeter framework.

as thresholds) based on the user’s input or a common choice considering previous
stages.

5.3.2. STEP 2: BUILD DEMETER’S REFERENCE DATA STRUCTURE

We have two sets of inputs in step 2 : (1) HD space parameters defined in the first
step and (2) a reference genome database. Subsequently, we build a new reference
database in HD space out of all the considered reference genomes. This new
database called HD-RefDB, consists of one (or few) prototype HD vector(s) from any
given reference genome in the original reference database and is stored in AM. This
step has to be done only once for the reference data. Hence, we perform this offline.

5.3.3. STEP 3: DEMETER’S READ CONVERSION

Demeter takes two inputs in Step 3 : (1) HD space configuration and (2) read
sequences of the food sample under study. Demeter translates each of these read
sequences into one query HD vector. To prevent any extra storage cost and to
pipeline computations of the third and fourth step, Demeter forwards each query HD
vector to the next step instead of storing them inside a memory unit while waiting
for all of them to be constructed first. Query HD vectors created in this step can
require larger or smaller space than a read, depending on the initial length of the
read sequences and the dimension of the HD space. Therefore, although Steps 2 and
3 share the encoding mechanism, their input and how Demeter treats the outcome
are pretty different. Step 3 neither introduces a new operation nor a procedure
other than those that already exist from the second step. Therefore, it enjoys similar
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benefits as the second step, namely high parallelization and in-memory suitability.
Demeter runs Step 3 every time it profiles a new read of a food sample.

5.3.4. STEP 4: MULTI-SPECIES CLASSIFICATION PER READ

In this step, Demeter takes (1) the query HD vector (Step 3 ), (2) prototype HD
vectors from the reference database (Step 2 ), and (3) similarity function and its
corresponding parameters (Step 1 ) as inputs. To determine the specie(s) that each
read belongs to, Demeter performs a similarity check between the query HD vector
and each of the prototype HD vectors. Usually, this step can be implemented only
with simple operations. It also enjoys high parallelization, similar to the previous
steps.

Demeter may find out that the query HD vector is close to one, multiple, or
none of the prototype HD vectors in the database. This variety in possible outputs
differentiates Demeter from many previous HDC-based designs [63, 190]. In such
works, mostly due to the characteristics of applications under study, researchers
always assume that (1) the query HD vector can only belong to one of the prototype
HD vectors, and (2) the class of the query HD vector will exist in the AM. However,
none of these assumptions hold for a food profiler. One read from the food sample
can be related to one, multiple, or none of the reference genomes in the original
reference genome database. This is because the read sequences are mostly short
strings with a reasonably high probability of existence in longer reference genome
sequences. It is also not uncommon that the query HD vector does not belong
to any of the reference genomes in the initial reference genome database. This
case can happen when, for example, (1) there is either an unknown species in the
food sample, (2) one incorrectly excludes the corresponding reference genome in
the initial reference genome database, or (3) an uncorrected sequencing error has
happened. This difference between how many prototype HD vectors in the database
can be assigned to one query HD vector is a key difference that affects both the
following abundance estimation step and final results. It also distinguishes this work
further from previous HDC-based proposals for different applications. Step 4 also
enjoys high parallelization and in-memory suitability features similar to previous
steps.

5.3.5. STEP 5: SPECIES LEVEL ABUNDANCE ESTIMATION

In Step 5 , we need to perform a relative abundance estimation based on the
results of the fourth step. This step is particularly needed for a food profiler
where one query HD vector can be similar to one or more classes/species. We
categorize each query HD vector into (1) uniquely-mapped, (2) multi-mapped, and
(3) unmapped. Step 5 can be extended to support different assignment policies for
the multi-mapped reads. We leave investigating the effect of such methods for future
work.
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5.4. DEMETER HARDWARE IMPLEMENTATION
We focus on the hardware implementation of Demeter in this section.

5.4.1. OVERVIEW OF DEMETER’S ACCELERATOR
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Figure 5.2: Overview of Demeter’s in-memory accelerator.

Figure 5.2 shows an overview of the proposed CIM-enabled hardware accelerator
for Demeter. The hardware consists of 5 key elements: 1 Item Memory (IM), 2
Encoder, 3 Associate Memory (AM), 4 Distance calculator, and 5 Controller. IM
and AM units are memory units, and we implement them as PCM arrays with their
control circuitry. However, the encoder and distance calculator units are computing
units implemented as the periphery. The controller is a simple FSM designed to
harmonize the required steps of Demeter. The CPU initiates Demeter by gathering
the user’s input and then booting the controller; i.e., it sends the start command,
initializes the registers, and sets the addresses to consider for food samples and/or
reference genomes in the controller. The controller returns the results of the distance
calculator to the CPU for final processing and performing the relative abundance
estimation. We discuss these units in more detail next.

5.4.2. ITEM MEMORY (IM) DESIGN

We implement our IM using PCM arrays and corresponding circuits, such as
decoders. IM stores the atomic HD vectors. Binary “0” and binary “1” in an HD
vector translate to amorphous and crystalline states, respectively. Initially, the user
(or Demeter) generates HD vectors for each DNA alphabet and its every permutation
in an N-gram in Step 1 of Demeter and stores them in the IM. Demeter reads these
atomic HD vectors from IM every time it meets a new symbol. Once Demeter fixes
the HD space, IM becomes a read-only memory. This allows us to prevent unwanted
changes to the atomic vectors.
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Figure 5.3-(A) presents the IM design. The gate enabler provides access to cells
that the row decoder activated. This way, the design of an entire array is achieved
much easier, and the write/read disturbance effect is also mitigated to a great
extent. However, this design also blocks the write on a row basis and only allows
column-wise programming of IM. This does not complicate IM in any way because
the atomic vectors are generated once in the beginning by the host CPU and then
stored in the IM for a long time. Note that random number generators are already
well-optimized in CPUs. In addition, randomly generated values inside memristors
are still in the early stages, and Demeter can be modified later to benefit from a
non-intrusive (compatible) random number generator in the future.
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Figure 5.3: (A) IM design. (B) Data Mapping and placement of atomic HD vectors in
IM.

Figure 5.3-(B) presents (1) data mapping and (2) placement of HD vectors in the
IM unit. IM enjoys row-major data mapping. A row-major data mapping of HD
vectors allows Demeter to read the cells written in one row in one cycle. This
is helpful as IM is used in the encoding procedure, which is the bottleneck. An
important design choice regarding IM is related to the limited size of PCM arrays
(512×2048 [190]). This limitation of array size prevents us from fitting an entire
large HD vector in one row or column. Therefore, one needs to break such an HD
vector into smaller chunks and store them in separate rows. Three options exist:
(1) putting the chunks in the same array, (2) putting them in different arrays, (3) a
hybrid approach. To prevent exacerbating the overhead of the encoding procedure,
as the encoder is already the bottleneck of the system, IM breaks a HD vector to
the largest power of two that is smaller than the number of columns available in
an array and stores different chunks on different arrays. This is a direct tradeoff
between the used area (#arrays) and performance.

5.4.3. ENCODER DESIGN

The encoder is the main compute unit of Demeter. The encoder is implemented
in the periphery of arrays and executes the binding and bundling operations via
a sequence of commands determined by the controller. In this setup, the N-gram
encoding mechanism is the most common one, which Demeter supports. We
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suspect that other choices are also possible with the same hardware or minimal
changes. We leave the exploration of those designs for future work.

IM

. . .

. . .

. . .

Encoder

Binder

Bundler

Encoder

Binder

Bundler

Figure 5.4: Encoder components and schematic.

Based on Equation 5.1, building an N-gram requires only simple XOR and shift
operations. This bitwise XOR operation can be computed in the periphery. For the
binding, the SA reads out the value from IM to one input of an XOR gate and uses
the previously stored value of neighbor FFs as the second input. This means the
previous value should be shifted first and then sent to the input of the XOR gate.
The encoder then stores the results in a buffer and repeats the procedure N times.
After it finishes creating one N-gram, it passes the N-gram to the bundler unit, resets
the buffer, and starts building the next N-gram until it hits either the last character
of the input or set limit per final HD vector.

The bundler takes N-grams and adds them to a global HD vector that presents
each position with a counter instead of only one bit per position. It then repeats this
operation for M N-grams. Finally, the bundler applies a threshold (T) and makes
a final binary HD vector representing all the processed characters while building
this vector. At this point, the encoder is done. It passes the results to be stored
as prototype HD vectors or used as query HD vector in AM and resets both the
integer-based and binary HD vectors.

5.4.4. ASSOCIATE MEMORY (AM) DESIGN

The AM unit is implemented using PCM arrays and their corresponding circuitry,
similar to the IM unit. This unit takes the output of the encoding mechanism
(an HD vector) as input. Equation 5.2 shows that for the classification, we need
to count the differences between the query HD vector and each prototype HD
vector and then decide whether or not it can belong to the corresponding class.
Although one can realize this in hardware by performing XNOR operation between
the two vectors followed by a pop-count operation all in the periphery, such
design requires the pop-count operation even after the XNOR, which introduces
an enormous area cost and significant delay (log2D +1 cycles). However, Demeter
proposes a new column-major data mapping and intelligent data duplication for
this unit and exploits the characteristics of the PCM substrate to solve all these
problems for HDC-based classification. It is well-known that memristor-based
memory technologies can perform vector-matrix multiplication. Therefore, Demeter
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implements the required XNOR and following pop-count operations in Equation 5.2
in four steps.

Step 1: Demeter stores one prototype HD vector (or a chunk of one HD vector)
in one column and its complement in the same column number of a second array.
Figure 5.5-A shows their placement in the AM unit. Step 2: Demeter applies the
query HD vector (Q) to the rows of the first array and the complement of the query
HD vector (Q̄) to the rows of the second array with complement prototype HD
vectors (Ps), shown in Figure 5.5-B. Step 3: Demeter enables columns consecutively
and effectively read out the number of ones in Q.P and Q̄.P̄ in ADCs of each array.
This way, it performs two vector-matrix multiplications using Kirchhoff’s law, one
between Q and all Ps in the first array and one between Q̄ and all P̄ s. Section 5.4.5
describes Step 4 that realizes XNOR and pop-count operation simultaneously. Figure
5.5-B presents a high-level illustration of AM design.
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Figure 5.5: (A) Data mapping and placement of prototype HD vectors in , (B)
High-level design, and (C) Partial hardware for Similarity Check unit.

Similar to the case in IM, the limited array size of PCM substrates also prevents
Demeter from storing a full HD vector in one row or column of AM. To reduce the
required area, and since the encoding is the bottleneck and not the classification
(Section 5.5), in the AM, unlike IM, Demeter stores the chunks of HD vectors in the
same array. Figure 5.5-A takes a color-coding approach and depicts the way Demeter
breaks prototype HD vectors into multiple chunks and stores them in columns of
AM in and among tiles. It is worth noting that Demeter only writes to the PCM cells
once in both IM and AM units unless either the configuration file in Step 1 or the
user the default reference genome database in Step 2 changes. This prevents many
writes to the devices, which still have limited endurance compared to traditional



5.5. EVALUATION

5

93

memory technologies.

5.4.5. SIMILARITY CHECK HARDWARE

The similarity check unit is a small computing unit that takes the two ADCs’ output
of similar columns from the two crossbars and adds them together (Step 4). Figure
5.5-C depicts all the logic for this unit. The output of this unit is the results of XNOR
and pop-count together. At this stage, the similarity check unit sends the results out
to the host CPU to determine whether the similarity is close to the threshold and
should be considered in the abundance estimation ( 4 -b, and 5 ).

5.4.6. CONTROLLER UNIT

The controller orchestrates all the operations of Demeter by generating control
signals for other components. The controller is designed as a simple FSM machine
and operates based on parameters set in Step 1 .

5.5. EVALUATION

5.5.1. METHODOLOGY

We emulate the execution of Demeter using a cycle-accurate RTL model and
synthesized it using UMC 65 nm technology node. PCM prototypes and analytical
models used for validation and further simulations are based on the results of EU
project MNEMOSENE [19], led and concluded by TU Delft in 2020. Table 5.1 shows
the other parameters of our PCM crossbars.

Technology PCM (512*2048 @1bit), Cell Size = 50 F 2

Current on Conducting Devices 0.1 µA
Read Voltage 0.1 V
Read/Write Latency Read=2.8 ns, write=100 ns
ADC 9 bits resolution, 2 ns, 4 pJ per sample

Table 5.1: PCM configuration.

Accuracy Metrics. We capture the four fundamental rates from a (food) profiler
when considering the presence and absence of each species in the output, i.e.,
True Positive (TP), False Positive (FP), False Negative (FN), and True Negative (TN)
Rate. Based on these rates, Demeter reports two standard metrics of Precision and
Recall [199, 212, 213] to assess the accuracy of our (food) profilers.

Performance Metrics. Performance analysis consists of three experiments: (1) Query
time, and (2) Query throughput or speed. We should emphasize that build time is
normally a one-time job and does not affect the overall profiler’s performance. Query
time is simply the required time for profiling one single read. However, throughput
is measured by million reads per minute ( MR

m ) and should be differentiated as it can
get affected easily by other factors such as the size of the data structure, or the
classifier’s parallelization capability.
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Datasets. We have two sets of datasets. (1) Genome sequences used as a reference
database. (2) Genome sequences used as food samples and input queries. We
consider AFS20 and AFS31 [195, 196] as our reference genome datasets. These
datasets are two-commonly used datasets consisting of 20 and 31 food-related
reference genomes related to animals whose sizes vary from 12 MB to 14 GB.

Baselines. We compare Demeter against MetaCache [195] (the most accurate
food profiler) Kraken2 [199], Kraken2+Bracken [214], and CLARK [215], the top 3
alignment-free and fastest metagenomic profilers that are also commonly used for
food profiling.

5.5.2. ACCURACY ANALYSIS

We have evaluated the baselines and Demeter on the species levels over AFS20 for
Kylo and Kal food samples for both the precision and recall accurcy metrics. This
accuracy is obtained assuming there are not any non-idealities in the hardware. We
observe that Demeter stands very close to the most accurate profiler, MetaCache,
and has only 1.4% and 2.6% less precision and recall, respectively, for KLyo samples.
Moreover, Demeter achieves similar results on AFS31 and Kal samples. Note that
accuracy is very much data-dependent, and indeed this accuracy drop is acceptable
for a food profiler. We conclude that Demeter is accurate and achieves high
precision and recall for food samples. These results show that Demeter’s HDC-based
classification approach followed by our abundance estimation technique does not
hurt the accuracy of the profiler compared to baselines.

5.5.3. DEMETER’S PERFORMANCE ANALYSIS

This section compares the performance of SOTA profilers compared to our
CIM-enabled accelerator design of Demeter.

QUERY TIME.

Figure 5.6 presents the time that each profiler takes to query one (short) read from
the query food sample and classify its specie(s) over AFS20 and AFS31. We make
two key observations. Demeter improves the query time by ∼74x/88x and 272x/350x
compared to Kraken2 and MetaCache, respectively, on AFS20/AFS31. This shows that
the acceleration of Demeter pays off and finally makes Demeter not only an accurate
but also a fast food profiler. Second, the query time for Demeter remains almost
the same for both databases and does not change much. We further investigate
this and realize a bottleneck shift: Step 5 or abundance estimation that is being
performed inside the CPU is now the bottleneck of Demeter. This happens because
of the high-frequency Demeter achieved. However, this contrasts with other profilers
that spend most of their time querying their massive data structure. For the sake
of completeness and comparison, we should mention the build time on average, is
around 4 minutes.
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Figure 5.6: Query time on (a) AFS20 and (b) AFS31.

5.5.4. DEMETER’S POWER AND AREA ANALYSIS

Table 5.2 provides the area and energy consumption breakdown of different
components in Demeter per query on AFS31. We make two observations. First, the
logic for the encoder unit is the most energy and area-hungry unit among all others,
more than 90% and 78% energy and area of the whole Demeter. This is expected
because (1) the encoder consists of many CMOS circuits, whereas AM and IM are
small memory units with PCM technology, and (2) the encoder is in the heart of all
operations in Demeter, and we spend most of our time in this unit. We argue that
this amount of logic around our array is still justifiable. Second, compared to the
die area in an Intel Xeon E5-2697 CPU [216], Demeter only has an area overhead of
less than 2%. We conclude that Demeter is low-cost in terms of die area.

Unit Area (mm2) Area (%) Energy (n j ) Energy (%)

IM 0.07 3.1 1.179E-06 7.4
Encoder 1.375 78.3 1.43E-05 90.6

AM 0.15 8.4 2.47E-07 1.56
Similarity 0.1815 10.2 6.91E-08 0.4

Table 5.2: Area and power breakdown of Demeter.

Our evaluations show that Demeter is capable of performing 9.45Mbp query
per joule. Unfortunately, measuring the energy consumption of other profilers
and having an apple-to-apple comparison between the energy consumption of this
method with other ones is hard. However, Merelli et al. [217, 218] show that running
Kraken2 with querying an even smaller data structure built from a reduced reference
genome dataset, minikraken [217, 219], can incur more energy (maximum of

0.6 Mbp
j ). This considerable difference happens because of three reasons: (1) Kraken2

queries a more complex data structure compared to Demeter and requires more
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complex operations, (2) Kraken2 queries a bigger data structure for its query, and (3)
Kraken2 incurs significant data movement between the memory and the processing
unit. All of these limitations exist in similar forms in CLARK and MetaCache. We
conclude that Demeter is more energy-efficient than all four SOTA baselines.

5.6. CONCLUSION
In this chapter, we focus on bioinformatics and designing a CIM-based accelerator
for food profilers. Exploiting the concept of CIM, a PCM-baed hardware accelerator
is designed. While Demeter maintains the accuracy of state-of-the-art profilers, it
improves the energy efficiency and latency by one and two orders of magnitude.
This application demonstrates a new dataflow as the communication between the
memristor crossbars was minimum compared to the applications discussed in the
previous chapter. The output of crossbars is mainly giving back as input to itself,
considering the encoding mechanism. We learned that there is no access pattern to
the rows of IM. Instead, the rows of crossbars are selected randomly. Besides, we see
the necessity of new operations in the periphery, logical XOR, shift, and thresholding.
These are important lessons when we want to move toward a generic approach and
design a programmable CIM-based accelerator.



6
TOWARD PROGRAMMABLE DESIGN:

TILE STRUCTURE AND ISA
To move toward a more flexible and generic approach to memristor-based CIM, we
present a new (micro) instruction-set architecture (ISA) to control a single CIM-Tile
comprising the analog memory array and all necessary analog and digital periphery.
The newly introduced ISA provides flexibility in programming new CIM functionalities
by simply rescheduling the instructions from the ISA. We defined our own compiler
that can translate CIM-tile operations to a sequence of instructions from our ISA
based on the system configuration. Besides, we discuss the detailed implementation of
the CIM-Tile to see how they are controlled by the (micro) instructions. To simulate
the CIM-Tile and perform design space exploration considering different technologies
and parameters, we also introduce our fully parameterized first-of-its-kind CIM tile
simulator.

This chapter is based on [21], [14], and [220].
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In this chapter, we study the CIM-Tile, the essential components, and their
orchestration. We bring programmability into perspective by introducing instructions.
This is an important step toward a generic CIM platform. Figure 6.1 shows the focus
of this chapter.
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Figure 6.1: In this chapter, we mainly focus on the highlighted parts in our generic
illustration of a CIM-tile.

6.1. CIM TILE INITIAL STRUCTURE
In our perspective, a CIM tile can be seen as an off-/on-chip component from
the CPU. In this way, CIM tiles are not integrated into the memory hierarchy
of the system and are allocated into different address spaces. This simplifies
system integration (in the future) since the designer is not concerned with memory
coherency. In this section, we focus on the structure of a singel CIM tile and how it
is organized. First, we describe the initial version and its limitation. To address that,
we explain the extended version. Finally, we elaborate on possible ways to perform
pipelining inside a tile.

6.1.1. TILE OVERVIEW

Figure 6.2 depicts the architecture of the CIM-tile, including digital and analog
components as well as control and data signals. The operations that can be
executed on the crossbar are divided into two main categories: 1) write and 2)
read/computational operations. The computational operations include addition,
multiplication, and logical operations. In the following, we will describe our tile
architecture and its main modules considering these two categories: (the discussion
of the control signals is left to the subsequent section).

1. Write operation
Before doing any computation on the crossbar, the memristors in the crossbar(s)
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Figure 6.2: The overall tile architecture.

have to be programmed. In the case of the 1T1R crossbar structure, the memristors
located in the same row can be programmed in parallel. Otherwise, sequential
programming is required. Figure 2.4 provides more detailed information on
programming memristors in different crossbar structures. In order to write data
to the memristor crossbar, we have to specify the location in the crossbar (based
on the index of row and column) where the data has to be written to. Therefore,
three registers are employed to capture this information. 1) The data itself has to
be written to the Write Data (WD) register, whose length depends on the width
of the crossbar as well as the number of levels supported by the memristor cells.
Considering endurance issues and potential energy savings, it is not always necessary
to write data to all the array columns. 2) For this purpose, the Write Data Select
(WDS) register is used to select which columns should be activated. This is especially
relevant when considering implementing a write-verify operation. 3) Finally, the
Row Select (RS) register is employed to activate the row in which data has to be
written. In this version, the data required to fill these registers is embedded into the
institutions. A more detailed description is presented in the following.

Voltages that have to be applied to the crossbar depend on the crossbar technology,
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and they are usually different than the voltage used for the digital part of the
system. Therefore, we need a device to convert the information from the digital to
analog domain called Digital Input Modular (DIM). Selecting a row requires that two
different voltage levels have to be provided for both the source and world-line of the
target row as depicted in Figure 2.4(b), which means two DIMs (Source/Gate DIM)
are required to drive both of them. Therefore, considering one DIM for the crossbar
columns (Write DIM), we need three DIMs in this architecture in total. Based on the
operation and the data stored in the RS and WD registers, DIMs can apply proper
voltage levels to the crossbar. In addition, the data in the WDS register is used by
the Mask unit to prevent extra switches for the cells that the data has not to be
written into them.

2. Read and computational operations
In this category, the operations generate an output and it has to be read by the
periphery circuits in the architecture. The generated output can be the outcome of
either a normal memory read or computational operation. In contrast to the write
operation, there is no need to fill the WD and WDS registers. The RS register is again
used for row activation. However, among computation operations, matrix-matrix
multiplication (MMM) is different than others in the sense that the RS not only has
to indicate the active rows, but also can be considered as the data for one of the
matrices. When the operation is performed inside the crossbar, the generated analog
output has to be captured by the Sample & Hold (S&H) unit. This allows for a clear
separation of the execution within the array and the read-out circuitry, which can be
used for the pipelining of the system.

When the S&H module has captured the result from the array, the ADCs (or the
sense amplifiers) can be used to convert the analog results into the digital domain.
Since ADCs consume much energy and area, usually, it is not possible to allocate one
ADC per column. Therefore, we need analog multiplexers to share several columns
with one ADC. Besides, certain high-level operations, e.g., the integer MMM, require
additional processing steps and these are performed in the Addition Units that are
specific to the integer MMM. Our scheme for this unit is described in Chapter 7
where the design utilizes minimum size adder to impose as less latency/power as
possible to the system. The design considers technology/circuit/application-driven
restrictions such as the maximum number of active crossbar rows, number of ADCs,
and datatype size. When other (high-level) operations are needed in the future, this
unit can be altered or substituted with others.

6.1.2. CIM TILE (MICRO) INSTRUCTION SET ARCHITECTURE

As discussed before, a complex sequence of steps needs to be performed in the CIM
tile that can be different depending on the (higher-level) CIM tile operation, e.g.,
read/write, dot-matrix multiplication, Boolean operations, and integer matrix-matrix
multiplication [221]. Similar to the concept of microcode, we introduce a (micro)
instruction-set architecture (ISA) for our CIM tile that would allow for different
schedules for different CIM tile operations. Despite conventional instruction, these
newly-defined instructions expose the hardware of a CIM-Tile to the programmer to
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Table 6.1: List of initial instructions.

Instruction Semantic Operand
Row select RS data to fill RS register
Write data WD data to fill WD register

Write data select WDS data to fill WDS register
Function select FS data to configure the drivers/ADCs

Do array DoA -
Do sample DoS -

Columns select CS data for the select of MUX
Do read DoR -

provide high flexibility in the execution of a variety of operations. The “Controller"
in Figure 6.2 is responsible for translating these instructions to the actual control
signals (highlighted in green). The list of instructions is presented in Table 6.1. In
the following, we discuss each instruction:

• Row Select (RS): The RS instruction is responsible for setting up the RS register
(see Figure 6.2) that is subsequently used to correctly control the source and gate
drivers to provide the right voltage levels for the crossbar. At this moment, the
number of bits to set the RS register is as large as the height of the crossbar (which
means the input precision is 1 bit). As the size of the crossbar increases, this is
impractical for hardware implementations and will be addressed in the extended
version of instructions. However, for simulation purposes, the impact is negligible
and actually allows us to investigate the utilization patterns for the RS register.

• Write Data (WD): The WD instruction is responsible for setting up the WD register
that is used to write data into the crossbar. Similar to the RS instruction and
with the same reasoning, the instruction size (excluding the opcode) is as large
as the size of the WD register. We envision that this instruction to be replaced
when another mechanism is chosen to load data into the crossbar that is more
hardware-friendly. For simulation purposes and in the initial version, it is now the
only way to load data into the crossbar.

• Write Data Select (WDS): The WDS instruction sets up the WDS register to control
which bits of the WD register need to be written. This allows for a flexible manner
to write data into the crossbar in light of potential endurance issues associated
with current-day memristor technologies. It is especially useful when a write-verify
operation needs to be performed where the written data into the crossbar is
compared with the golden data. With the help of this register, correctly written
bits can be masked out, which helps to improve the endurance of the crossbar.

• Function Select (FS): The FS instruction is needed for several reasons. Functionally,
the DIMs need to be set up differently when writing data into the crossbar,
or when reading out data, or performing compute operations in the crossbar.
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Furthermore, it is envisioned that the future periphery needs additional control
signals. These are now conceptually captured in the FS instruction. For example,
the control signals needed to control the “Addition units" are more than one,
i.e., more than one instruction is needed to control these units. The instructions
related to this unit are provided in the extended version.

• Do Array (DoA): The DoA instruction is used to actually initiate the DIMs after
they have been set up using the RS, WD, and FS instructions. This instruction
will have a variable latency depending on the operation that is performed in
the crossbar. These delays are specified as parameters in our simulator. In the
hardware implementation, this latency (of the crossbar) can be captured by a
(programmable) counter or by a ‘done’ signal issued from the crossbar itself. More
importantly, this instruction allows for a clear (conceptual) separation between the
different pipeline stages within the CIM tile. This will be discussed later.

• Do Sample (DoS): The DoS instruction is used to signal the S&H module to start
copying the result from the crossbar into its own internal storage. It must be noted
that this module still operates in the analog domain. The introduction of the DoS
instruction allows for a conceptual separation of the execute stage (crossbar) and
read stage (ADC). After the values are copied into the S&H module, the crossbar
can basically be activated by the next DoA instruction.

• Column Select (CS): The CS instruction is used to set up the CS register that
controls the multiplexers (in the MUX module) in the read stage. In case each
column of the crossbar can be associated with its own ADC/SA, there is no need
to have the CS instruction. In all other cases, the CS register flexibly controls
which column (in the S&H module) is connected to an ADC/SA. The length of the
CS instruction is related to the number of columns of the crossbar. For the same
reasons as with the RS and WDS (and WD) instructions, it is purposely defined as
it is now in this initial version and implemented as such in the simulator to allow
for further investigation in the future. It is expected to be optimized or replaced
when a hardware implementation is considered.

• Do Read (DoR): The DoR instruction initializes the modules “ADC/SA" to
start converting the output of the S&H module (via the MUX) into a digital
representation. It is expected that multiple iterations of the CS and DoR
instructions need to be issued in order to completely read out all the columns
of the crossbar. It should be noted that when none of the columns allocated to
an ADC/SA are selected, the sensing unit in is not activated. Depending on the
complexity of the module, the latency can vary, and thus, a ‘done’ signal is needed
(see Figure 6.2) to signal the end of the readout before the next DoR instruction
can be issued. This instruction might also be quite practical when we have ADCs
with configurable resolution. The resolution of ADC is directly related to how
many times it gets activated for an input signal.

It is important to note that the crossbar, the S&H modules, and the ADC modules
(related to the DoA, DoS, DoR instructions, respectively) need to be able to signal
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to the controller that their operation is finished. It is only after this signal that
subsequent instructions can be issued by the controller. If this turns out to be
impossible in an actual hardware implementation, we envision the need to set
up counters that are initialized to the specific operations to achieve the same
functionality. Both approaches are already supported in our simulator.

6.1.3. CHALLENGES OF THE INITIAL DESIGN

Although the ISA defined before brings programmability and flexibility into the
design, they impose significant challenges when it comes to their hardware
implementation. In the following, we elaborate on the main limitations of the
proposed ISA. Based on that, we present the extension of the CIM-tile structure and
its ISA.

• The initial set of instructions embeds all of the data that has to be fed to the
crossbar into the instruction. For example, in the case of MMM, while one
operand is programmed into the crossbar, the second operand is given to the RS
register to be fed to the crossbar as input. This data is embedded into the ‘RS’
instruction. Similarly, the data that has to be programmed into the crossbar is
embedded into the ‘WD’ instruction. However, for real applications, the data may
not be known at compile time and produced during execution. We can consider
a deep neural network as an example here, where the input to the intermediate
layers is generated during the execution time. Hence, assuming the data is always
present in the instruction is unrealistic. Therefore, when designing the instructions
set, it should be taken into account that compile-time unknown data is fed to the
CIM-tile at run-time.

• The CIM-tile would be a part of a micro-architecture. From the system perspective,
the data for a CIM-tile is provided either from another Tile or an external
component (e.g., CPU). This data is transferred via a databus. In a realistic
assumption, the bandwidth of this databus limits the amount of data that can be
read per instruction. Since we have not considered any hard constraints on the
size of databus, the current design is not conditioned by the fact that the databus
might be too small to provide all required data in a single cycle. Hence, a proper
mechanism should be defined when interfacing the tile with the outside.

• The instructions generated for an application/kernel should be stored in memory
to be executed during run-time. Since the storage of the instructions is assumed
to happen at compile time, the instruction memory sets an upper limit for the size
of a program. Therefore, it is essential to have a reasonable size for each (micro)
instruction to use available instruction memory size more efficiently. Considering
the initial version of the instructions, the implementation for some of them,
such as row selection, write data, write data selection, and column selection
instructions, would be data-intensive. Even a small-sized MMM operation is
translated to an instruction size between 0.49 and 3.4 MB, depending on the ADC
precision and the number of ADCs. Hence, the instruction should be revisited



6

104 6. TOWARD PROGRAMMABLE DESIGN: TILE STRUCTURE AND ISA

with this aspect in mind.

Table 6.2: Instruction file exploration for the Gemm benchmark
#ADC ADC resolution Instruction size (MB) %RDS %WD/WDS %CS

8 5 13.75 3.08 0.06 96.8
8 8 1.74 3.44 0.45 95.67

32 5 3.8 11.25 0.21 88.34
32 8 0.5 12.17 1.59 84.66

To get an indication regarding the total instruction file size as well as the
contribution of each instruction, we have compiled the ‘Gemm’ benchmark,
consisting of a single matrix-matrix multiplication, preceded by storing the
multiplicand matrix in the crossbar. Table 6.2 shows the contribution of the
individual data-intensive instructions to the instruction file size. The exploration
is done assuming the crossbar size of 256×256. As we discussed, ‘RDS’, ‘WD’,
‘WDS’, and ‘CS’ are the main contributors to the instruction file size. While all of
the mentioned instructions implementations should be modified in order to attain
hardware feasibility, the main data reduction can thus be expected in the change
of the CS instruction implementation. It should be noted that the sequence of
instruction depends on many parameters, including the number of ADC and their
resolution. We explain this later. This information provides insight to steer toward
the extended CIM-tile structure and (micro) ISA.

6.2. CIM TILE EXTENDED STRUCTURE

6.2.1. TILE OVERVIEW

The overall CIM-tile architecture presented throughout this section is depicted in
Figure 6.3. The CIM-tile is expected to interact with external devices and therefore,
a clear interface needs to be defined. The interface comprises two input buffers
(Write-Data (WD) and Row-Data (RD)) and an output buffer. This allows independent
CIM-tile operation without needing an external controller knowledgeable of the
CIM-tile internals. Specifically, the external components can be agnostic about the
CIM-Tile instructions and their status. These buffers are explained in the following:

• WD buffer:

This buffer serves as intermediate storage to alleviate the timing constraints of
sending data to the CIM-tile when the (bus) bandwidth is insufficient to transfer
all required data in one shot - i.e., to the WD register. Therefore, each WD buffer
row corresponds to a chunk of data received from the outside controller. This data
is going to be programmed into the crossbar, ultimately. The WD buffer has been
sized such that an entire (array) row of data can be stored inside it. Consequently,
after transfer to the WD register during a write operation, the WD buffer is ready
to receive the next set of data. There would be instructions to stream the data out
of this buffer. We will discuss this in the following subsection. Using this buffer,
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Figure 6.3: Overview of CIM-tile extended structure.

a mismatch between crossbar size and bus width can be handled. The two main
architectural parameters that impact this buffer are 1) the bus width provides
input to the buffer from outside and 2) the number of crossbar columns. Based
on that, there would be two scenarios:

In the best scenario, the bandwidth is large enough to provide all the required
data to be written into one row of the crossbar in a single cycle. This means
the data is written into this buffer in a single cycle, and then the tile controller
copies the data to the WD register for the next write operation. However, in a
more realistic scenario, the bandwidth is small to be able to transfer all the data in
one cycle. Therefore, a new design parameter is introduced for the WD buffer size.
The buffer size can be either 1) equal to the available bandwidth (minimum size



6

106 6. TOWARD PROGRAMMABLE DESIGN: TILE STRUCTURE AND ISA

buffer) or 2) equal to the crossbar width to save all the information for a single
row. In the following, we discuss these two cases.

The main advantage of having a minimum size buffer is the lower area cost.
However, this leads to timing constraints for filling the buffer. To clarify, consider
an example where a crossbar width is 256 columns (each column one bit), and
the bandwidth is 128 bits. During the first cycle, the outside unit provides the
first 128-bit to the WD buffer. During the second cycle, this data will be put in
the correct position of the WD register by the tile controller. In the third cycle,
the outside unit will write the second 128-bit to the WD buffer. During the fourth
cycle, the second 128-bit can be put in the WD register, meaning the register is
full, and the tile can thus perform its write operation. Now, we consider the case
of a WD buffer of size equal to the width of the crossbar (so 256-bit). We still need
to spend two cycles for outside to transfer the data to the RD buffer. However, this
can be two subsequent cycles as the CIM-tile does not need to process the first
half. Hence, the larger the WD buffer is, the fewer timing constraints are between
the outside unit and the tile controller.
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Figure 6.4: Execution flow for three tiles considering two WD buffer sizes. In this
example, all tiles arrive at the WD instruction at cycle 6.

Figure 6.4 illustrates the aforementioned example where there are three different
tiles. In this example, the WD instruction arrives at the same time for all three
tiles. Despite the possible performance overhead of the first case (buffer size
equal to the bandwidth), the major challenge is the synchronizations between
the outside and the CIM-tile. The actual performance impact is dependent on a
number of factors, such as the number of tiles serviced by the outside unit, the
application (Number of write operations and their position in the program) and
the available bandwidth for writing to the WD buffer, and the cycle latencies of
other pipeline stages of the tile. Hence, in our design, we considered the WD
buffer to be equal to the crossbar width. Now that the buffer size has been
determined, two implementations of the buffer can be considered.



6.2. CIM TILE EXTENDED STRUCTURE

6

107

1) In the first implementation, a buffer based on the FIFO shift register may be
employed, of which the width is equal to the bandwidth for writing to the buffer
and the height is such that the product of width and height equal the size of the
crossbar width. This solution has two drawbacks. First, as only the topmost row of
the buffer can be accessed by the outside unit, a fixed number of shifts is required
for the first set of data to arrive at the bottom of the buffer. Secondly, shifting the
data through the entire register leads to extra switches in the buffer, leading to
energy usage overhead.

2) In the second implementation, a counter that increments on a write from the
outside unit, decrement on a read from the tile, and remains constant when both
happen during the same cycle is placed. It can be ensured the data from the
outside is written to the bottom-most free row of the buffer. The data present in
the filled rows of the buffer is shifted downwards one row when the tile reads
a row from the buffer. An obvious drawback of this third solution is the extra
hardware that is required to allow for the individually addressable rows of the
buffer and the simultaneous reading and writing. Figure 6.5 shows the design of
this buffer.

Figure 6.5: Implementation of the WD buffer.

• RD buffer:

In the case of computation operations, the RD buffer holds one operand of
operations and feeds it to the crossbar. Since the crossbar drivers (DAC) have
limited resolutions (usually one bit), the data must be split and given to the driver
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in several cycles. As this buffer feeds data into the crossbar bit-by-bit, starting
from LSB to MSB during a Matrix-Matrix Multiplication (MMM) operation, this
buffer is implemented using a parallel-in-serial-out (PISO) register per crossbar
row. By having the width of the buffer sized to fit the maximum supported
datatype size (e.g., 32-bit), the buffer only has to be filled once for each of the
element dot-product operations. The height of the buffer is equal to the number
of crossbar rows. After shifting the MSB out of the buffer, the next set of data
can be loaded into the buffer to reduce the overhead of data transfer. It should
be noted that after each shift to the right, the output of the buffer is written back
to the input. This is needed when computing on a datatype size lower than the
one the system is designed for. This relates to the ‘Addition Scheme’ and how this
periphery unit works, which is discussed in Chapter 7.

In some scenarios, the data for the RD buffer is loaded from external memory
(e.g., DRAM or Flash). This data is a vector of elements, and in each cycle, one
(or a few) bit(s) should be given to the crossbar (due to DAC resolution). In case
there is no RD buffer, when this (vector) data is loaded from external memory,
it needs to be processed to extract and combined the bits required from each
element and send them to the crossbar. Hence, it needs temporary storage as
well as extra processing. This indicates another advantage of this RD buffer which
makes the outside completely unaware of the tile limitations (e.g., DAC resolution)
and removes the extra processing and the temporary storage.

• Output buffer:

This buffer is employed only for temporarily storing the result data until the
data has been transferred to other tiles or processors. As the output of the
crossbar should be stored in this buffer, its size determines the amount of parallel
computation that can be performed. Without this buffer, the outside world
should be synchronized with the execution of instructions in the tile, which can
increase the complexity on both sides. The output buffer also has to be sized
properly. The size of the output buffer depends on the datatype size. Table 6.3
shows the size of each element generated by a crossbar and the required output
buffer size based on different datatype sizes. This number is brought for MMM
operation and the crossbar and assuming both operands have the same datatype
size. While the result of a single element for a smaller datatype is smaller than
for the maximum datatype size, more elements can be stored in the crossbar, and
thus more computation can be performed. Therefore, based on the datatype sizes
intended to support, a designer has to place a proper output buffer. In addition,
to flexibility support different datatype sizes, more consideration has to be taken
into account. Chapter 7 focus on this part.

In addition to the buffers, other digital components (depicted in Figure 6.3) are:
Tile registers: Same as the initial version, (i) the Write Data (WD) register contains
the data that has to be written into the crossbar. The data loads from the WD
buffer in several steps depending on the WD buffer row size. The register length
depends on the width of the crossbar as well as the number of levels supported by
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Table 6.3: Required output buffer sizes assuming 256×256 crossbar and 1 bit per
each memristor.

Datatype size Element size (bit) Output buffer (bit)
32 72 576
16 40 640
8 24 768
4 16 1024
2 12 1536
1 8 2048

the memristor cells. However, due to the flexibility attained by our instructions, we
can opt to only partially fill the register if the kernel does not intend to write into
all of the columns. (ii) The Write Data Select (WDS) register indicates to the write
drivers which columns should be written to. The data for this register is embedded
in its instruction to provide more flexibility for kernels. Finally, (iii) the Row Data
Select (RDS) register is employed for the activation of crossbar rows and used for all
operations, including write, read, logic, and VMM. In addition, in the case of VMM,
if the ADC resolution does not support the activation of all the rows, this register is
used to activate batches of rows in several steps. Similar to the WDS register, the
data for this register is embedded into its instruction. To clarify more, the data in
the RDS register shows which region of the crossbar should be active, while the RD
buffer stores the data for one operand of compute operations.

The other two main components are the tile controller and the ‘Addition Scheme’.
The controller will be discussed in this chapter, but the discussion regarding the
addition unit is left for Chapter 7.

6.2.2. CIM TILE (MICRO) INSTRUCTION SET ARCHITECTURE

To execute a kernel on the tile, a complex sequence of steps has to be carried
out considering different operations, the patterns of column and row selections,
datatype sizes, and read-out circuitry specifications. An extension of in-memory
(micro) instructions is defined with the objective of keeping the hardware simple and
generic by moving the complexity to the compiler, reducing the instruction file size,
and maintaining high flexibility. The list of instructions is presented in Table 6.4.
The instructions are explained shortly in the following.

• Row Data (RDxx): The first group of instructions is related to the crossbar rows.

Row Data Selection: In the initial version of this instruction, we dedicated one
bit for each row of the crossbar to indicate whether that row should be activated
or not. This causes an issue in terms of the instruction size. To address this,
two solutions can be provided. In the first solution, which is called row-wise row
selection, we only pass the index of a few rows into the instruction. In case the
instruction allows us to embed 24 bits of data into it (excluding opcode) and the
crossbar size of 256, we can only address three rows at a time (3 = 24/log 2(256)).
Hence, multiple of this instruction should be used to activate more rows. The
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Table 6.4: Overview of the new ISA
Opcode Op 1 Op 2 Function description
RDSb Index Mask Place ‘Mask’ into RDS reg at ‘Index’
RDSc Clear the entire RDS register
RDSs Set the entire RDS register
RDsh Shift RD buffer contents
WDb Index Copy data to for WD buffer to WD reg. at ‘Index’
WDSb Index Mask Place ‘Mask’ into WDS reg at ‘Index’
WDSc Clear the entire WDS register
WDSs Set the entire WDS register
FS Function Select crossbar functionality
DoA Activate the crossbar function
DoS Sample the crossbar output
CS Index Activation Select column to be read by ADC
DoR Activate the ADC
jal Address Jump to ‘Address’ and store PC.
jr Jump to the PC stored in return reg.
BNE Branch to PC stored in branch reg.
LS Indicate the last section of rows to reads
IADD Activate third stage of the addition unit
CP Copy result per ADC to output buffer
AS Selection Select adders for addition between ADCs
CB Copy the result of addition between ADC to output buffer

advantage of this is activating any random rows in case the application does not
follow any pattern. However, this solution would be inefficient for selecting a large
number of rows as the instruction count will scale linearly with the number of
rows to be selected. In addition, the implementation of this row-wise solution
would lead to multiple large decoders.

The second solution of row selection aims to group the rows and indicate which
rows are activated within a specific row. This solution is called block-wise row
selection. As an example, the crossbar with 256 rows can be grouped into 16
parts; each contains 16 rows. The instruction first identifies the group index
(4bi t s = log 2(16)) and then provides 16 bits of data for each group. We refer to this
instruction as RDSb. This solution is more efficient if consecutive rows have to be
selected. For example, if only rows from index 0 to 16 should be selected, this can
be done by clearing the RDS register and executing a single RDSb instruction. To
allow for clearing the register, a new instruction is introduced; RDS-clear (RDSc).
In case most rows have to be activated, we can set the entire RDS register and use
RDSb instruction to deselect the rows that should not be activated. To enable
setting the entire RDS register, another instruction is introduced; RDS-set (RDSs).
Being able to select and deselect the rows in the crossbar is quite essential,
especially when the precision of ADC is not enough to activate the entire crossbar
rows. In this case, we use this instruction to split the rows into groups and
activate them sequentially. It should be noted that ADC precision is an important
parameter, and it even has a consequence on the program’s size.

Finally, RDsh will shift the RD buffer to the right to present the next bit for a
new compute operation. This instruction is quite useful, especially when we are
dealing with datatype sizes smaller than what the system is designed for. When
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the datatype size in the crossbar is smaller than what a system is designed for,
the same input data has to be given to the crossbar for several iterations due to
the resource limitation in the periphery (Chapter 7). This is why, after each shift,
the output of the RD buffer is written back to its input. Figure 6.6 depicts the
state of the RD buffer after each shift. Since the data size (highlighted in blue)
is half the system datatype size, the same data has to be given two times to the
crossbar. However, at time step T4, we need to shift the data 4 times to the right to
position it correctly. This is done by executing 4 RDsh instructions in a sequence.
Employing this instruction, we can move around the data in the RD buffer with
high flexibility. Figure 6.7 illustrates the overview of the underlying hardware for
all the instructions related to the row data.

d0d1d2d3

RD buffer

To DAC

d0 d1d2d3

RD buffer

To DAC

RD buffer

To DAC

d0d1d2d3

…

T1 T2 T4

Figure 6.6: The state of RD buffer when the datatype is smaller than the maximum
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• Write Data (WDxx): The WDb instruction indicates that the data present in the
last register of WD buffer has to be moved to a section of WD register determined
in the instruction by ‘index’. If we only want to program part of a crossbar row,
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this instruction helps us to navigate this information from the WD buffer to the
correct location in the WD register. Like row selection, WDSb instructions load the
data to the WDS register. Similar reasoning as for the RDSb solution applies to
the write data selection, leading to a block-wise solution for the WDS instructions
as well, introducing two new instructions to clear and set the entire WDS register;
Write-Data-Select-clear (WDSc) and Write-Data-Select-set (WDSs), respectively.

• Crossbar (FS, DoA): To operate on the crossbar, first, we need to configure the
drivers to provide proper voltage levels based on the desired operation. This is
done using the Function Select (FS) instruction. This instruction is also used to
configure the read-out circuitry as well as bypassing the RD buffer data in the
case of read/write/logical operations. By decoding the DoA instruction, drivers are
activated, and the operation is started on the crossbar.

• Read Out (DoS, CS, DoR): Due to the overhead of Analog-to-Digital Converters
(ADCs), they need to be shared between several columns, which translates to the
necessity for a Sample-and-Hold unit to save the crossbar’s output. The DoS
instruction activates this unit at the right time. The data can be sampled when
the second stage is already done with the prior sampled data.

The initial implementation of CS offers large flexibility at the cost of huge
instruction size. Figure 6.8 depicts how this initial version works. In this example,
the compiler generates the code for a small crossbar size of 32 × 32 with 4 ADCs.
This means each ADC shares 8 columns. In each cycle, one column from each
group is read by an ADC. Due to the instruction size and its frequent recurrence,
column select instruction makes up for about 88% of the data in the benchmark.
To address this, in the new version of CS instruction, we pass a single index in
the CS instruction, which will set all ADCs to that specific index and use a set of
activation bits to indicate whether an ADC should read the column at that index.
Considering the above example, the size of CS instruction (excluding opcode) is
reduced from 32 bits down to 7 bits (l og 2(8)+4). Finally, similar to the initial
version DoR instruction activates the conversion.

• Jump instructions (jal, jr, BNE): As the read stage often performs identical sets of
instructions (e.g., when performing a MMM, the same set of columns has to be
read for every dot-product operation), a jump instruction is introduced to save a
large portion of the instruction file size. Similarly to MIPS, jump-and-link (jal) and
jump-register (jr) instructions are introduced, allowing for re-using the same block
of instructions for every read. The ‘jal’ instruction stores the current program
counter and jumps to the set of instructions (often readout). In order to correctly
resume the instructions after branching, a ‘jr’ instruction should be introduced,
which allows for returning to the program counter stored by the ‘jal’ instruction.
Branch Not Equal (BNE) instruction is used for write verification. Due to the
memristor non-idealities, sometimes we need to verify what we programmed into
it to ensure its correctness. This instruction performs this task for us and jumps
back to repeat the programming if the operation is not verified.
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RS 11111111111111110000000000000000
FS VMM
DoA
DoS
CS 00100000 10000000 10000000 00000000
DoR
CS 00010000 01000000 01000000 00000000
DoR
CS 00001000 00100000 00100000 00000000
DoR
CS 00000100 00010000 00010000 00000000
DoR
CS 00000010 00001000 00001000 00000000
DoR
CS 00000001 00000100 00000100 00000000
DoR
CS 00000000 00000010 00000000 00000000
DoR
CS 00000000 00000001 00000000 00000000

Figure 6.8: An example of instructions generated by the compiler using the initial
version of the CS instruction.

• Addition unit (LS, IADD, CP, AS, CB): According to the structure of the addition
unit, which will be discussed in Chapter 7, in the case of low ADC resolution, the
LS instruction indicates the last section of rows (multiplier) that are activated. The
IADD instruction performs an addition between different bits of the multiplier. If
a number is distributed over more than one ADC, AS instructions carry out the
addition between the results taken per ADC. Finally, CP and CB load the result to
the output buffer obtained either per ADC or between ADCs, respectively.

Compared to the initial instructions, we could also reduce the instruction size,
which is achieved by a more efficient definition of our instructions. Table 6.5
compares the total instruction size for our initial definition and the new version.
This improvement is achieved mainly due to two reasons: 1) A more compact
definition of column select instruction and 2) Introducing the Jump instruction to
reduce the repetition in the code. It should be noted that the numbers in the table
are for Gemm benchmark consisting of many VMM operations. The current version
of the compiler cannot detect whether the sequence of VMM operations follows the
same pattern. However, if it can, only the instruction needed for one VMM with an
approximate size of a few hundred Bytes can be stored and reused for other VMM
operations.
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Table 6.5: Instruction file exploration for the Gemm benchmark
#ADC ADC resolution Initial instruction size (MB) Final instruction size (MB)

8 5 13.75 0.28
8 8 1.74 0.11

32 5 3.8 0.28
32 8 0.5 0.11

6.3. PIPELINING
In order to improve the performance, the CIM-tile can break into a few stages which
can be active in parallel. This means that the instructions associated with them can
be executed in parallel, which leads to higher performance. In the following, we
elaborate more on four possible stages in the tile (indicated by different colors in
Figure 6.9).
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Figure 6.9: Pipelining of the crossbar CIM-tile.

1. Set up stage (digital): all the control registers (and write data register) are
initialized

2. Execution stage (analog): perform the actual operation in the analog array



6.3. PIPELINING

6

115

3. Read out stage (analog): convert the analog results into digital values

4. Addition stage (digital): perform the necessary operations for the integer
matrix-matrix multiplication

These stages sequentially follow each other while performing higher-level
operations translated to a sequence of instructions in our ISA. It should be clear that
the pipelining described here is different from the traditional instruction pipelining.
In the latter, the latency of each stage should be matched with each other in
order to have a balanced pipeline. In the CIM tile, the latency of the operation
performed in the analog array is expected to be much longer than the latency of
a single clock cycle in the digital periphery. Therefore, it is important that the
right signaling is performed between the stages in order to enable pipelining. The
introduced execution model to pipeline the operations within the CIM tile will allow
for trade-off investigations between different NVM technologies and the (speed of
the) digital periphery. Considering the aforementioned stages, the designer should
evaluate the latency of each stage (which depends on the configuration of the tile,
memristor technology, etc.) to realize the contribution of each stage to the total
latency of the tile and merge some of them in the case there is a stage which
has by far less latency than others. This analog/digital behavior of the CIM-tile
restricts the choices and their effectiveness regarding the pipelining stages. It is
worth mentioning that the two analog stages (Execution and Read out stages) cannot
be split into more stages. This is the same for the Set up Stage as well since the
registers initialized here cannot be changed before activating the crossbar to ensure
the correct functionality of the system.
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Figure 6.10: Performance improvement due to the unbalanced pipelining of tile used
ReRAM/PCM device for GEMM benchmark

In the following, we provide an initial investigation of the CIM-Tile pipelining. First,
we evaluate the effect of clock frequency in a CIM-Tile comprised of analog-digital
circuits. The latency of the operations in the (analog) crossbar array is a constant
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Figure 6.11: Contribution of each pipeline stage on the latency of the tile considering
different clock frequencies

number. Therefore, it is interesting to determine how fast the digital periphery
should be clocked in order to ‘match’ this latency in order to make the pipeline
more balanced. In the following investigation, we have fixed the number of ADCs
to 16 and ran the GEMM benchmark at different frequencies. Figure 6.10 clearly
shows that performance improvements can be gained by raising the frequency of the
digital periphery. However, increasing the clock frequency beyond 1 GHz does not
result in much better execution times as the analog circuits (relatively) are becoming
the bottleneck. In addition, the performance improvement due to the pipelining
will be reduced since the stages are more unbalanced. A positive side-effect
is that pipelining more balanced stages will usually lead to better performance
improvements over a non-pipelined design.

Second, Figure 6.11 depicts the latency breakdown consumed in each of the 4
stages against the clock frequency. Since several columns share an ADC, reading
all the columns should be performed in multi-steps. In addition, after each ADC
activation, digital processing is required in ‘addition unit’. Therefore, we can clearly
observe that with a low frequency, the read and addition stages are completely
dominant in the total latency. Using an efficient structure and minimum-sized adder,
the latency of the addition unit is no longer than the read stage. With low clock
frequency, the latency of the analog circuits is hidden in one clock period. However,
As the clock frequency increases, the latency of the analog components starts to rise
(relatively). Consequently, we can observe that the latency of the read stage, which
is composed of analog (latency of ADC) and digital (decoding latency) latency, as
well as the execute stage impose more latency. This information can be used to
determine the number of pipeline stages for the actual implementation.

Third, Figure 6.12 depicts the latency breakdown in each of the 4 stages against
the number of utilized ADCs. It should be clear that with increasing the number
of ADCs, the number of cycles spent in the readout stage is greatly reduced.
Consequently, we can observe that the relative contribution of the setup stage to the
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total latency grows accordingly. The contribution of the other stages to the total
latency is almost negligible. With the advent of advanced ADC design to have more
ADCs per tile, this figure brings insight into its implications and helps future design
decisions.
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Figure 6.12: Effect of number of ADCs on the latency of pipeline stages in 100 MHz
clock frequency

6.4. CONTROLLER
This section describes the design of the tile controller. The controller serves
two main purposes, namely 1) executing the nano-instructions from the compiled
program, and 2) communicating with the outside unit when the WD/RD buffers
need to be filled or the output buffer should be read. Figure 6.13 depicts the
overview of the tile controller assuming two pipeline stages (by merging the first and
second stages into one as well as the third and fourth stages into another).

6.4.1. INSTRUCTION MEMORY AND DECODER

As discussed before, despite traditional pipelining, here, each stage is associated
with some instructions, and they are executed in parallel. Considering two pipeline
stages, two instruction decoders are required. As the different stages correspond
to separate, non-overlapping subsets of the ISA, the two decoders do not have to
support all different instructions but just the instructions that correspond to their
respective pipeline stage. This simplifies the hardware complexity of the decoder.
Figure 6.14 shows how the instructions are stored in the instruction memory.

6.4.2. STALL DETECTION

The CIM-Tile may consist of two or more pipeline stages. These stages depend
on each other and have unbalanced latency. Hence, there should be a unit to
synchronize these stages. The stall detection uses the information provided by the
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Figure 6.13: High-level CIM-tile controller to support two stages.

Figure 6.14: The overview of instruction memory.

opcode of the instruction at the current PC of each stage to synchronize the stages
to allow for proper program execution. Considering the two pipeline stage example,
the first stage should be stalled in a few cases, such as 1) when valid data is not
available in RD/WD buffer or 2) when the second stage is not ready to receive new
data (still busy with reading from S&H), or 3) when stage 2 is performing a read for
write verification. Similarly, the second stage should be stalled when 1) the first
stage has not yet finished its operation instructions (indicated by DoS) or 2) a value
should be written to the output buffer while the outside unit should still read the
current values present in that buffer. The stall detection unit should be designed
carefully to consider all possible scenarios.
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6.4.3. BUFFER MANAGEMENT

The buffer management block sends signals to the stall detection and the outside
unit providing information on whether there is valid data present in each of the
buffers. The way the state of the buffers is monitored differs for each of the three
buffers.

• Output buffer: The content of this buffer is valid after the execution of instructions
that activate this buffer. This is either the CP or CB instruction for an architecture
without or with the addition between the ADCs stage of the addition unit,
respectively. For the read and logic operations, the output buffer is activated after
the final read has been performed. The buffer management receives a signal from
outside when the content of the buffer is read. Then it notifies the stall detection
unit to allow for the next computation result can be stored in the buffer. This
unit also sends a signal to the outside whenever the buffer is written with new
information.

• WD buffer: We track the state of the WD buffer using a counter, indicating how
many valid elements are present in the buffer. If there is no valid element in this
buffer, the buffer management sets up a flag to prevent the execution of any WD
instruction. When new data is written into the WD buffer from the outside, the
flag is reset.

• RD buffer: Controlling the RD buffer is more complex than other buffers. The
number of valid bits in the RD buffer depends on the datatype size. The outside
unit can provide a valid datatype size. Since there is an instruction to shift the
buffer, the buffer management can explicitly deduce from the number of RDsh
instructions that are executed when the buffer is empty.

6.4.4. WRITE VERIFICATION

Figure 6.15: Implementation of write verification.
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The write verification block only has to compare the crossbar output (stored in the
read/logic register) to the data present in the WD register, setting the write-verify
flag when one or more bits do not match. This comparison can be made by using a
logical XOR gate. As only the output of the columns to which values were written
should be verified, the comparison output is combined with the masking data from
the WDS register through an AND gate. Finally, the logical OR operation can be
used on the output produced for each of the columns to generate the verification
flag, resulting in a logical ‘1’ when a writing error has occurred. Figure 6.15 shows
the implementation schematic per each crossbar column.

6.5. CIM TILE COMPILER
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Figure 6.16: The overall system flow from tensor comprehensions down to fine-
grained in-memory instructions

The compiler translates high-level operations intended for the CIM-Tile into a
sequence of instructions to be executed within the tile. The high-level operations
(e.g., MMM) are provided by the front-end compiler, which is responsible for
searching for the operations within the application program that can be performed
using the memristor crossbar (see Figure 6.16). The front-end compiler receives
the application in Tensor Comprehensions representation. This is then converted
to a polyhedral representation in order to identify computational patterns suitable
for acceleration by employing Loop Tactics. The front-end compiler is written
by our partners in MNEMOSENE project and more information can be found in
[20, 222]. Based on the requirements or constraints that come from either the
tile architecture or technology side, our back-end compiler translates high-level
operations to in-memory instructions. As depicted in Figure 6.16, this information
is written to the configuration file and passed to the compiler. For example, there
might be a constraint on the number of rows that can be activated at once. This
constraint can come either from the precision of ADCs or even technology capability.
Therefore, if an operation wants to activate more rows, the compiler splits it into
several steps and takes care of other changes that might be needed. The flexibility
brought by our in-memory instructions helps to overcome constraints, requirements,
and sparse patterns. Figure 6.8 illustrates an example for VMM operation where
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four ADCs have to read columns in a special pattern (each 8 bit-lines share one
ADC). This example demonstrates how the instructions deal with these kinds of
patterns. It is important to note that the sequence of instructions generated by the
compiler changes whenever the tile configuration changes. Therefore, by putting this
complexity into the compiler, we try to keep the tile controller as simple as possible.

Table 6.6: Set of high-level operations and their semantics currently supported by
the compiler.

Operation Description Semantic

MMM
Perform matrix-matrix multiplication between a matrix
stored in the crossbar and an externally available matrix

MMM &A[d1][d2] - i - j - e - q - p - row - column

Store Store a matrix at a specified location in the crossbar Store &A[d1][d2] - i - j - p - q

Read
Read a matrix from a specified location from the
crossbar

Read i - j - p - q

AND
Perform a logical AND operation on a specified set of
rows and columns

AND v - j - q

OR
Performa logical OR operation on a specified set of
rows and columns

OR v - j - q

XOR
Perform a logical XOR operation on a specified set of
rows and columns

XOR v - j - q

Memory outside 
the crossbar

Crossbar

a1 a2 a(q)

b1 b2 b(q)
…

…
a1
a2

a(q)

…

p

e p

q
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d2

i
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column
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Figure 6.17: Illustration of parameters passed to the compiler for MMM operation.

Table 6.6 lists the high-level operations and their parameters passed to the
(back-end) compiler. The input data provided to the crossbar comes from a memory
where its address is embedded into the parameters. The implementation of this is
left for the future, where multi-tiling and communication among tiles and host is
supported. In the current version, the compiler creates two files for RD and WD
buffers where the CIM-Tile receives its input from outside. The compiler fills these
two files with the correct data according to the address provided in the parameters
of high-level operations. In the future, this data should come from other tiles or
external storage.

To clarify more on the parameters passed into the high-level operations, Figure
6.17 depicts an example of MMM operation. In this operation, we assume the
multiplicand matrix is already stored in the crossbar by a ‘store’ operation. The data
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of multiplayer is provided from memory outside the crossbar. The first parameter
&A[d1][d2] provides the address to the first element of this matrix. Besides, ‘i’ and
‘j’ shows the coordination of the first element of multiplicand in the crossbar. ‘P’
represents the number of elements we have in one row of the multiplier, which
should be equal to the number of elements in one column of the multiplicand. To
clarify more, ’p’ represents the number of active rows in the crossbar. It should be
noted that the data from the multiplier matrix is provided to the crossbar row by
row. Each row is copied to the RD buffer of the crossbar. We need to keep in mind
each element may be represented by several bits. The RD buffer manages this for
the crossbar. Finally, ‘e’ shows the number of rows in the multiplayer matrix, and
’q’ represents the columns where the multiplicand matrix is stored. There are two
other parameters that show the dimension of the external memory. This is required
when we want to find the address of the first element in a new row in the multiplier
matrix. However, for now, the compiler assumes a predefined size and ignores this
information.

Similar to MMM, for the store operation, we identify the region in the crossbar
where we want to write data by using ‘i’, ‘j’, ‘p’, and ‘q’ parameters. For now, we
assume the data in the crossbar and outside memory are represented in the same
way. We have to clarify that ‘q’ is the number of columns in the crossbar. If we
store one bit per memristor and the datatype size is 8 bits, the number of elements
we have in one row of crossbar or outside memory is q/8. Finally, for the logical
operations, we want to activate two or more rows, and then, with a specialized sense
amplifier, we compute the result of the operation. Based on what we observed from
different applications, these activated rows (mainly two rows) are not necessarily
next to each other and can be anywhere in the crossbar. In the current version,
we pass a parameter ‘v’ to the compiler, which is a vector sized to the number of
crossbar rows indicating which rows are selected.

6.6. CIM TILE SIMULATOR

The proposed CIM architecture is generalized, making it capable of targeting
different technologies with different configurations of the peripheral circuit. The
simulator, written in SystemC, models the architecture presented and generates
performance and energy numbers by executing applications. The simulator takes as
input the program generated by the compiler, which is currently stored as simple
(human-readable) text. In our HDL implementation, they are translated into binary
bits. Besides the program, to simplify design space exploration, the configuration of
architecture has to be sent to the simulator via a configuration file in which the user
is able to specify many parameters. The simulator produces as output the following:
(1) energy and performance numbers, (2) content of the crossbar (over time), (3)
waveforms of all control signals, and (4) the computational results. All outputs
are written into text files to be used for further evaluation. Figure 6.18 illustrates
the control and data flow of the simulator considering just 2-stage pipelining. By
decoding an instruction, the data embedded in it along with the control signals,
are passed to the corresponding component related to that specific instruction in
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the data path. Then, the status will be returned to the controller to indicate the
execution of the instruction is finished.

Table 6.7: List of parameters used in the configuration file
crossbar drivers/analog peripheries digital peripheries

- number of rows/columns
- cell levels

- number of ADCs
- precision of ADCs

- clock frequency
- datatype size

- cell resistances
- cell read/write voltages

- ADC power
- read/write drivers power

- energy per adder in addition
unit

- write latency
- read latency

- ADC latency per conversion
- SH latency

- RS/WD/WDS/CS filling cycle
- instruction decoding cycle
- latency per adder

Stage 1
Instruction 

fetch

Stage 2
Instruction 

fetch

Stage 1 
instruction

decode

Stage 2
instruction

decode

Stall 
detection

tile controller

Registers 
filling 

Crossbar 
activation
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unit 
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Input data filedata

control

status

data path

Output files

Instruction file

Figure 6.18: Simplified flowchart of the simulator comprising control flow and data
path

The simulator has been written in a modular way, which helps us to easily modify
or replace the components shown in the tile architecture with new designs/circuits.
Moreover, new attributes can be easily added to the components model, and their
impacts are captured at the kernel level (e.g., read/write variability for the crossbar).
In this fully parameterized simulator, each component has its own characteristics
like energy, latency, and precision written into the configuration file. Table 6.7
shows all the parameters that can be set in the file to be used for the early-stage
design space exploration. Furthermore, the first-of-its-kind feature of our simulator
is the ability to calculate energy numbers according to the data provided by the
application. Existing simulators estimate average energy numbers regardless of
data. Our simulator considers the data stored in the array to estimate the energy
consumption in the crossbar and its drivers. This is achieved by taking into account
the data stored in the crossbar cell resistance level, the number of activated rows,
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and the equivalent resistance of the crossbar.
The power consumption of the crossbar and read drivers regarding read/compute

operations is given in Equation 6.1 where Rr c is the resistance level of the memristor
cell located in row “r” and column “c”, PD I Mr ead is the read drivers power, and
V (r ead) is the read voltages. In general, Rr c and V (r ead) are members of two
sets containing possible resistance and voltage levels, respectively. Furthermore,
acti vati onr is a binary value that indicates whether row “r” is activated and
contributes to the power of the crossbar or not. Considering read and compute
operations, the summation is performed for the selected rows and all the columns.
In addition, for simplicity, the resistance of access transistors, as well as bit-lines, are
ignored. The power consumption of write operations is shown in Equation 6.2 where
PD I Mwr i te is the write drivers’ power. V (wr i te) and I (wr i te) are the write voltage
and programming current, respectively. In general, V (wr i te) is a member of a set
including different write voltage levels. Finally, acti vati onc determines whether the
column “c” is activated and would contribute to the crossbar energy or not. The
summation is performed over the selected columns in just one activated row. The
energy consumption of read/computational as well write operations are shown in
Equations 6.3 and 6.4, respectively, in which TX bar (wr i te) as well as TX bar (r ead) are
the latency of the crossbar for write and read/computational operations. The latency
of the crossbar for read/computational operations also depends on the peripheral
circuits used to capture or read the analog values generated by the crossbar (S&H).
Using S&H unit to capture the result, its capacitance is charged with different
gradient according to the equivalent resistance of the crossbar. Therefore, the result
should be captured at the right time when there is a maximum voltage difference on
the capacitance of S&H unit for different crossbar equivalent resistances, which helps
to be distinguished by the ADC easily (implies that the crossbar latency also depends
on ADC capability). It is worth mentioning that the equations are data-dependent
and provide the worst-case energy numbers for the crossbar and its drivers.

P(r ead ,compute) =
#r ow s∑

r=1
[(

#columns∑
c=1

V 2(r ead)

Rr c
)+PD I Mr ead ]∗acti vati onr

Rr c ∈ {L1,L2, ...,Ln} acti vati onr ∈ {0,1}

V (r ead) ∈ {V (r 1),V (r 2), ...,V (r n)}

(6.1)

P(wr i te)r =
#columns∑

c=1
(V (wr i te)∗ I (wr i te)∗acti vati onc +PD I Mwr i te )

V (wr i te) ∈ {V (w1),V (w2), ...,V (wn)}

(6.2)

E(r ead ,compute) = P(r ead ,compute) ∗TX bar (r ead ,compute) (6.3)

E(wr i te) = P(wr i te) ∗TX bar (wr i te) (6.4)
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6.7. FPGA VALIDATION
Before any simulation, the functionality of the design should be verified first. To this
end, we have implemented the CIM-Tile on the Xilinx Zynq ZC702 board, where
analog components are modeled with digital circuits. In this side experiment, the
correct execution of the instructions and the generated final output were evaluated
to validate the functionality of the architecture. Similar to the simulator, the HDL
has been written in a parametrized way. This also allows for exploring and directly
comparing the characteristics of different configurations of the design. The following
parameters can be swept in the HDL design: 1) crossbar size, 2) maximum datatype
size, 3) the number of available ADCs (its implication on the ‘Addition Unit’), 4)
block size for the block-wise masking register filling, and 5) bus bandwidth to
communicate with outside. It should be noted that the compiler generates the
program, and this is stored in the FPGA before the execution. In the following, we
provide the initial results of our FPGA implementation.
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Figure 6.19: LUTs consumed by the digital CIM-Tile components.
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Figure 6.20: Power consumption of the digital CIM-Tile components implemented in
FPGA.

In theory, most digital components of the CIM-tile architecture, such as the
buffers, registers, and the addition unit, scale linearly with the crossbar size as
long as a constant ratio between the crossbar size and the number of ADCs is
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Figure 6.21: Energy comparison of Digital circuitry implemented in FPGA and analog
components in 90 MHz clock frequency.

maintained. Figure 6.19 and 6.20 show the LUTs and power consumption reported
by Vivado. In these reports, we only included the resources/power consumed by the
digital parts of the CIM-Tile (excluding the crossbar model, ADC, S&H, and Drivers).
The simulation is done for three different datatype sizes, showing almost a linear
increase in area usage and power consumption for each as we increase the crossbar
size. In addition, the effect of supporting different datatypes can be seen. Clearly,
as we increase the datatype size, more area and larger power are consumed due to
mainly a larger RD buffer as well as an ‘Addition Unit’.

Using the simulator, accurate numbers for energy consumption, taking actual
data, and analog component activation into account can be obtained. The ‘GEMM’
benchmark is used to obtain these numbers. Figure 6.21 compares the energy
consumption of the analog components and the digital circuitry for executing
the benchmark at a clock frequency of 90MHz. It can be seen that the energy
consumption for running the benchmark is significantly higher. This is because the
analog components are not activated during the entire program. It should be kept
in mind that the presented power and energy figures of the digital circuitry only
represent the actual FPGA implementation of the circuitry. An ASIC implementation
of the circuitry shows way lower power consumption, as seen in the following
section.

6.8. ASIC EVALUATION
Despite the previous section, we evaluate the ASIC implementation of the proposed
architecture in terms of power, energy, and area compared with analog components.
As a benchmark, the linear-algebra kernel “GEMM” from the Polybench benchmark
suite was chosen. In this kernel, first, the multiplicands are written into the
crossbar (write operation), and then the actual multiplication is performed. The
values regarding the CIM-tile analog components are summarized in Table 6.8. The
parameters for ReRAM and PCM technologies are taken from [223] and [82] validated
for actual devices. The same ADC values used in [67] are considered for our setups.
To obtain the power consumption and area for the CIM-tile digital circuits, they
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were synthesized in Cadence Genus targeting standard cell 15 nm Nangate library.
Since all the information and control signals can be tracked using our simulator, a
typical activity factor and performance number are extracted. These numbers are
incorporated to obtain accurate energy consumption for the digital as well as analog
components of the tile.

Table 6.8: Value of parameters used for the analog components.
Component Parameters Spec

Memristive
devices

ReRAM PCM
cell levels 2 2

LRS 5k 20k
HRS 1M 10M

read voltage 0.2V 0.2V
write voltage 2V 1V
write current 100 µA 300 µA

read time 10 ns 10 ns
write time 100 ns 100 ns

Crossbar
structure

num. columns
num. rows

1T1R
256
256

S&H

number
hold time

latching energy
latency

256
9.2 ms
0.25 pJ
0.6 ns

DIM
read DIM write DIM

number
power

256
3.9 µW

256
3.9 µW

ADC
power

precision
latency

2.6 mW
8 bits

1.2 GSps

As we mentioned before, the energy consumption of the crossbar depends on
the input and programming data. As more devices are programmed to LRS, and
more rows are activated, clearly more energy is consumed during the computation.
Since the simulator can actually execute kernels, the energy number obtained for
the crossbar is data-dependent. Figure 6.22 depicts the energy consumption of the
crossbar with different levels of sparsity. This figure illustrates the sparsity of logic
value 1 for matrix-matrix multiplication. For this experiment, it is considered that
the multiplier (input) and the multiplicand (programmed) matrix have the same
sparsity. In addition, logic value 1 (0) as an input implies the corresponding row is
activated (deactivated) and as programming data indicates, the memristive device
is programmed to LRS (HRS). The simulation is performed for ReRAM and PCM
devices, and an interesting observation is that although the ratio of HRS to LRS is
lower in ReRAM devices, since PCM devices have higher LRS compared to ReRAM,
the sparsity leads to less variation in the energy consumption of the crossbar made
with PCM.

Considering our CIM-tile architecture, digital circuits have different contributions
to power consumption. Figure 6.23, depicted for 8-bit maximum supported datatype
size in the tile, gives an insight into how much power each of these circuits
consumes (8-bit datatype size means that in the case of MMM, each element of
the multiplicand is distributed over 8 cells and each element of the multiplier is
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Figure 6.22: Energy consumption of the crossbar with respect to the percentage of
sparsity for both input and programming data.

fed to the crossbar over 8 steps). As we expected, the RD buffer due to its size
(feeding 8-bit data to 256 crossbar rows) and addition unit due to its high number of
instances consume more power than others. However, since the buffer is not always
switching (dynamic power), the average power is much less. The imposed power
consumption on the system is the cost of the flexibility of row selection brought by
the RD buffer and RDS register and their associate instructions.
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Figure 6.23: Power breakdown of digital circuits.

The overhead of digital circuits in terms of energy is depicted in Figure 6.24 (a)
and (b) to quantify the expense of high flexibility for programming the tile. In this
figure, the overhead of the digital parts of our tile is compared with the analog
parts. The comparison was performed for both ReRAM and PCM technologies with
256*256 crossbar size considering different datatype sizes. First, it is observed that
as the datatype size increases, due to more computations, the overall energy is
increasing as well. Second, by increasing the number of computations, the overhead
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of crossbar programming reduces (see striped blue bar) since more computations
are performed before reprogramming the crossbar. Third, digital circuits impose
more overhead while moving from 16-bit to 32-bit datatype size (see orange bars as
well as energy per VMM). As the datatype size increases, fewer adders and registers
must be instantiated (fewer numbers produced per crossbar activation). These units
are essential to accomplish digital post-processing on the crossbar’s output to deliver
the final result. However, as the data type size increased, each of these adders and
registers individually is of a larger size (see 7). Accordingly, although this customized
unit utilizes minimum-size adders and registers, supporting larger datatype size
resulted in more overhead for this unit. Fourth, the overhead of the digital circuit
for the PCM case is higher compared to ReRAM since the PCM crossbar consumes
less energy due to its higher value of low resistance state. While the device level
researchers are working on devices with a higher value of low resistance, this graph
gives a good insight into how much this value contributes to the energy consumption
of the system.

0

2

4

6

8

10

0

3

6

9

12

15

18

8 16 32

en
er

gy
 p

er
 V

M
M

 (
n

J)

en
er

gy
 (

u
J)

data type size (bit) 

Analog energy Analog energy (no pr)

Digital energy Energy per VMM

0

2

4

6

8

10

0

2

4

6

8

10

12

8 16 32

en
er

gy
 p

er
 V

M
M

 (
n

J)

en
er

gy
 (

u
J)

data type size (bit) 

Analog energy Analog energy (no pr)

Digital energy Energy per VMM

(a) (b)

Figure 6.24: (a) Energy number for different datatype sizes considering ReRAM and
(b) PCM with crossbar size of 256×256. It is assumed the entire crossbar
contributes to the computation.

Finally, the area comparison of digital and analog circuits is depicted in Figure 6.25.
For this experiment, the area of each cell in 1T1R crossbar structure is taken from
[178], where it was fabricated with 22 nm technology. Although our digital circuits
were synthesized with 15 nm technology, the result shows their area is around 6
times less than the analog counterpart, regardless of the crossbar dimension.

6.9. CONCLUSION
In this chapter, we presented our programmable CIM-tile architecture for which, by
exploiting our ISA, high flexibility is achieved. In addition, the architecture provides
a clear interface and independence from external devices. Considering different
CIM-tile configurations, we developed our compiler and simulator to facilitate design
space exploration. By synthesizing the digital part of the CIM-tile, its overhead
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Figure 6.25: Area comparison of digital/analog circuits for ReRAM.

compared to the analog counterpart was demonstrated in terms of power, energy,
and area. The result will give a remarkable insight into future research to realize
which customizations have to be applied for different configurations and application
requirements. In addition, in the future, the proposed CIM-Tile should be compared
with advanced digital counterparts that provide a similar level of flexibility (e.g.,
GPUs or TPUs).



7
EFFICIENT DIGITAL PERIPHERY

DESIGN FOR CIM-TILE

Another critical component in the CIM-Tile is the ’Addition Unit’, where we perform
additional processing on the memristor crossbar output. We enable signed and
unsigned arithmetic operations in the CIM-Tile by employing our proposed energy
and area-efficient ’Addition Unit’. Our approach combines a) the mapping of the
signed operands on the 1T1R crossbar, and b) the augmentation of the periphery with
customized circuits to support the execution of shift and accumulate needed for the
arithmetic operations. The operand mapping is performed without the need for sign
extension; hence, reducing the required memory size. This unit is controlled with our
(micro) ISA discussed in the previous chapter. The flexibility of the design allows
applications to dynamically switch between signed and unsigned computation as well
as different datatype sizes without changing the hardware or mapping of data. This is
another step toward a generic CIM-Tile design.

This chapter is based on [26], [27], and [220].
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7.1. DIGITAL PERIPHERY DESIGN CHALLENGE

In this chapter, we are focusing on a critical component, ‘Addition Unit’, in the
CIM-tile organization. Figure 7.1 illustrates the focus of this chapter in our generic
image of the tile. As we discussed, performing the computation in memory using a
memristor device can reduce the cost of communication in traditional computers.
However, inefficient periphery circuits can completely alleviate the gains. As an
example, many applications such as Neural Networks (NNs) and Convolutional
Neural Networks (CNN) at least require integer (number) computations. However,
since only limited levels can be stored in one memristor cell, the (bit-)vector
representing the number should be distributed over multiple cells, which requires
some extra processing outside the crossbar to get a meaningful result. Therefore,
great care must be taken in the design of these peripheral circuits to really deliver
efficient in-memory computing systems. Besides, from the application perspective,
mapping the operands to the memory unit, comprising emerging devices and their
peripheries, is a critical step toward enabling energy-efficient CIM; it includes
choosing the appropriate datatype structure and supporting signed numbers. These
applications are often operating on signed numbers and require different data type
sizes. Hence, without the support of signed numbers, the promise of CIM for
these applications is greatly diminished. Therefore, it is essential for researchers to
enable this feature for CIM-based design as well. Since memristor devices store
the information as different (positive) conductance levels, additional considerations
are required when the computation has to be performed on signed numbers. This
enforces more complexity in the way the data is mapped to the crossbar as well as
the way the computation should be performed in the periphery. Therefore, simple
yet energy-efficient digital periphery are needed to perform operations on both
unsigned and signed numbers.

7.2. CONTRIBUTION

In this chapter, we propose a novel mapping solution to support signed and unsigned
MMM based on widely used two’s complement representation. In this method,
signed and unsigned operations are performed with minimum energy, latency, and
area overhead by eliminating the costly sign extension. The proposed periphery
architecture utilizes minimum-sized adders customized based on technology-driven
restrictions. The structure is not restricted to a single fixed integer word size and
can flexibly support different word sizes without hardware changes. In short, this
chapter presents the following main contributions:

1. A novel scheme to support widely used two’s complement arithmetic operations:
This is accomplished by exploiting the behavior of the memristor crossbar
without the costly sign extension. This eventuates to efficient support of
signed integer/fix-point computations in terms of energy, latency, and area.
The flexibility of the design allows applications to dynamically switch between
signed and unsigned computation without changing the hardware or mapping
of data.
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Figure 7.1: We focus on the ‘Addition Unit’ in this chapter, where the crossbar output
is processed in a way to support unsigned and signed integer computing.
This part is highlighted in the figure.

2. An energy and area efficient digital periphery architecture for MMM : The
periphery fulfills additional processing required for MMM using minimum-sized
adders and registers. The proposed solution allows applications to dynamically
change the data size without changing the hardware or the mapping scheme
of data to the crossbar.

3. Evaluation of the proposed solution using two memristor technologies (RRAM
and PCM) and different benchmarks: The design is validated and evaluated in
terms of energy (for both computation and programming phases), execution
time, and area while considering RRAM and PCM technologies.

7.3. STATE-OF-THE-ART DESIGNS
There are limited works focusing on data representation and periphery design for the
CIM crossbars. Supporting unsigned integer numbers is the fundamental step to be
able to execute limitted applications. Since the memristor devices can hold limited
bits, traditionally, the unsigned integer data is distributed over several memristor
devices. This distribution can be balanced [224] or unbalanced [15] if we want to
allocate more devices to the most significant bits. The periphery is assumed to be
a simple ‘shift and Add’ unit to integrate all intermediate results and produce the
final output. We discuss this in detail in Section 7.4. To the best of our knowledge,
CASCADE [225] is the only work that took a different approach and also provided
implementation details to support integer numbers for MMM. In this work, by
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employing analog buffers, some parts of partial sum and accumulation happen in
an analog way, which helps to reduce the number of ADC conversions. Although the
number of conversions is decreased by leveraging this approach, the resolution of
ADCs should be increased, which imposes energy overhead that grows exponentially
[67]. Furthermore, as the number of columns contribute to the analog partial sum
and accumulation increased, the relative difference between voltage/current levels
of output reduced, which requires more complex ADCs. Equations 7.1 and 7.2
demonstrate a set of equivalent resistance for one column as well as several columns
when they are attached to each other, respectively.

Req ∈ L = {Ro f f ,Ron ,Ron/2, ...,Ron/n} n : number o f cr ossbar r ow s (7.1)

Req ∈ L = {Ro f f ,Ron ,Ron/2, ...,Ron/(m ∗n)} n : number o f cr ossbar r ow s

m : number o f connected col umns
(7.2)

To enable CIM even for more applications, we need to support signed
representation for both (1) the data programmed into the crossbar –array data– and
(2) the data provided as input to the crossbar –input data. However, to the best of
our knowledge, there are only a few works that partially look into this problem and
propose some solutions. In the following, we discuss the existing solutions on how
they represent signed numbers for both array data and input data.

Figure 7.2: Supporting signed array data by (a) subtraction of cells’ value (b) mapping
negative and positive values to different crossbars.

7.3.1. SIGNED NUMBER REPRESENTATION OF ARRAY DATA

In order to support negative numbers, ISAAC [67] brings the array data into a
positive range by using a bias value. This imposes two types of extra processing.
First, additional pre-processing if the data has to be programmed to the crossbar on
the fly to bring them into the positive range. Second, mandatory post-processing
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to subtract the bias value several times equal to the number of array data that are
added up. This has to be performed for every output element. Another approach
represents a number as a difference of two or more cells [226, 227]. Figure 7.2(a)
illustrates this approach assuming that the data is presented as a subtraction of two
numbers, each residing in a single cell. PRIME [110] and PipeLayer [69] map positive
and negative numbers into different crossbars (as unsigned numbers). Figure
7.2(b) depicts how a matrix with positive and negative numbers is mapped to two
crossbars. In both cases, the result is obtained based on subtraction. Besides having
more cells to represent a number, which leads to more energy/area consumption,
more complexity is imposed on mapping data to the crossbars, especially when it
is required to incorporate more cells for large datatype sizes. Another approach is
using two’s complement representation [65]. However, due to the necessity of sign
extension, a big overhead is imposed in terms of area and energy (more details are
in Section 7.5). Finally, FloatPIM [228] uses the IEEE standard floating-point to store
data as a floating-point number in the crossbar. Using a sign bit to indicate the sign
of a number, as well as the way of computation in the crossbar, limits this approach
to perform multiplication and addition between only two numbers. This inherently
differs from fulfilling vector-matrix-multiplication (and, in turn, MMM) at once by
exploiting Kirchhoff and Ohm’s laws.

7.3.2. SIGNED NUMBER REPRESENTATION OF INPUT DATA

A few works have studied how the input data to the crossbar can be represented.
ISAAC [67] provides 16-bit data to the crossbar in 16 cycles (one bit per cycle) in
2’s complement format. As mentioned for array data, a big overhead is imposed
due to the sign extension. Another approach is to reverse the direction of the
current for negative input as depicted in Figure 7.3(a); this is only employed for
subtract operation in [65]. Considering this approach, the analog input voltage
levels that have to be supported by the Digital-to-Analog Converters (DACs) should
be doubled. Consequently, more voltage/current levels should be distinguished by
ADCs. Therefore, not only the system becomes more sensitive and error-prone,
but also its power consumption/energy increase exponentially as the resolution of
DACs and ADCs increase. This is shown in Figure 7.3(b) and 7.3(c), presenting the
power and energy per sample for a DAC and an ADC, respectively, by increasing the
resolution [193, 194]. It should be noted that the minimum required ADC resolution
is based on the DAC resolution and the number of array data contributing to the
analog addition (in this case, 256). As an example, if we have 2-bit DAC, the ADC
resolution is calculated as log 2(256)+2 = 10 bits.

In conclusion, considering the limitations and overhead of existing solutions to
support sign and unsigned arithmetic computation in the crossbar, it is essential
to reduce this overhead with an efficient crossbar periphery architecture. Any
architectural solution for the digital periphery should take into account the following
restrictions as well: 1) ADC resolution; this limits the maximum number of crossbar
rows to be activated. 2) Limited resistance levels on a memristor device; if a number
cannot be represented by these few levels in a single device, it has to be distributed
over several devices. 3) Input drivers (DACs) resolution; due to the limitation on
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Figure 7.3: (a) Bi-directional input current to support signed input data and its
implication on power/energy consumption of (b) DACs and (c) ADCs in
different resolutions (assuming 256 × 256 crossbar with 1-bit per cell).

the number of voltage/current levels provided by the drivers to the crossbar, input
data has to be split and fed to the crossbar in several steps. Considering the
aforementioned limitations, more processing steps have to be performed on the
output of the crossbar to achieve the final result for arithmetic operations.

7.4. EFFICIENT ARITHMETIC COMPUTATION IN CIM TILE

FOR UNSIGNED DATA REPRESENTATION

In this section, we propose an efficient structure for the digital periphery required
next to a memristor crossbar to execute a complete unsigned addition and MMM
operations. We first focus on unsigned data representation and computation. The
presented structure forms the basis for supporting signed computations, which we
will describe in Section 7.5.

Our proposed design consists of three stages: 1) Analog Addition; this stage
addresses the first limitation mentioned before (ADC resolution). 2) Sliding over
multiple columns; the hardware designed for this stage addresses the second
limitation (limited memristor resistance levels) 3) Sliding over input segments; this
stage takes into account the third limitation (DACs resolution). These three stages
are executed consecutively for several iterations in order to produce a final result
for arithmetic operations. We explain each stage in the following subsections. The
proposed design utilizes minimum size adders to lessen the energy and latency
overhead of periphery circuits. Our approach is flexible and can be applied to a
system with a different configuration (e.g., ADC/DAC resolution, resistance levels,
datatype size).

Figure 7.4(a) depicts an example of a MMM operation where each element is
assumed to have three bits. Considering this operation, the elements of the
multiplicand matrix (array data) have to be programmed into the crossbar while the
multiplier’s elements (input data) are provided to the crossbar as input. Figure 7.4(b)
depicts how an element of the output matrix can be calculated and mapped to the
crossbar, assuming 1) elements of the multiplicand matrix have to be distributed
over three memristor cells (due to the restriction on the number of resistance levels
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– second limitation) and 2) the elements of multiplier matrix have to be sliced into
three segments as well (due to the restriction on the number of voltage/current
levels provided by DACs – third limitation). The segments are given to the DACs
sequentially (e.g., the first segment is a0, b0, and c0).
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Figure 7.4: (a) An example of MMM operation where the elements of the array and
input data are expanded (b) mapping of data to the crossbar considering
limited resistance levels as well as limited input voltage/current levels.
The coefficients colored gray are not part of the crossbar output.

7.4.1. FIRST STAGE: ANALOG ADDITION

The first stage of computation is performed in an analog manner. As depicted in
Figure 7.4(b), elements with the same significant bit are summed up. The analog
addition is performed on the bit-lines as soon as the DACs are activated and proper
voltage levels are provided to the crossbar inputs. In an ideal case, all the crossbar
rows can be activated. Therefore, all the required elements can contribute to the
analog addition. However, due to some limitations, this may not be realized.

Figure 7.5 illustrates a scenario where all the input drivers (DACs) cannot be
activated at the same time. This can be due to either technology restrictions or
limited ADC resolution (first limitation). Hence, the analog addition should be
performed among smaller sets of rows, and the intermediate results need to be
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Figure 7.5: First stage: Activating rows in multi-steps and its required hardware when
there is a limitation on ADC resolution or crossbar technology.

summed up together in the digital domain. In the example illustrated in this figure,
the first two rows (green box) are activated in the first step. Afterward, the bit-lines
are scanned by the ADC in sequence, and the intermediate results are stored in the
registers dedicated for each column (R1,R2,R3). In the second step, the third row
(blue box) gets activated. The results in this step have to be accumulated with
the previous step. We present the required hardware to deal with this restriction
in Figure 7.5. Based on which bit-line is read by the ADC, control signals are
sent to the demultiplexer and multiplexer to load and store data from and into
a proper register, respectively. This hardware is only required when this limitation
exists. The size of the registers employed for each column should be equal to
l og 2(number o f r ow s)+log 2(r esi st ance l evel s). The second term in the equation
is added when the number of resistance levels is more than two.

7.4.2. SECOND STAGE: SLIDING OVER MULTIPLE COLUMNS

The intermediate results obtained from each column of the crossbar in the first stage
just contain one bit-position of array data (it can be more if memristor devices can
hold more than one bit). In order to achieve the final results related to one segment
of the input data (e.g., a0,b0, and c0), the intermediate results of the first stage
obtained from different columns, have to be summed up (e.g., column 1, 2, and 3).
This is due to deploying several memristor devices to represent a number (second
limitation). In the following, we explain the traditional and proposed approach to
perform the required processes in this stage.

As depicted in Figure 7.6, in each time step, the result of analog addition obtained
from a column of the crossbar is stored in the ADC register. In the traditional
approach, the data stored in this register has to be shifted to take into account the
coefficients associated with each column (see Figure 4.3(b)). Then, the result is
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Figure 7.6: Second stage: accumulation of partial result obtained from columns
representing a number. The size of adders and registers are minimized in
this stage.

accumulated to the values obtained from other columns in the previous time steps.
Considering that approach, the number of shift operations is variable and depends on
to which column the value of the ADC register belongs. In addition, as more columns
contribute to the result, the data size gets increased. Therefore, the adder which
performs this accumulation should be sized for the worst-case scenario. This size is
equal to log 2(number o f r ow s)+ log 2(r esi st ance l evel s)+ col l ect i ve col umns.
The collective columns are the number of columns that represents a single value
(e.g., in this example, 3). In short, this approach requires a variable number of shift
operations and large-size adders, which in consequence, reduce the performance
and energy efficiency of the crossbar periphery.

In contrast to the traditional approach, our proposed design does not require shift
operation and minimizes the size of adders as well as registers that are placed in
this stage. Considering Figure 7.6, the value of the ADC register has to be shifted
and added up to the value of R1temp register where the intermediate result obtained
from the previous columns is stored. In the proposed design, when performing
addition between these two registers, the least significant bit (or bits when more
than one bit is stored in a single memristor cell) can be directly sent to the next
level register (R1temp ) since it will not contribute to the later additions. As an
example, in the first time step, the value of the ADC register is added to the value
of R1temp (initialized to 0) and stored again in R1temp . In the second time step,
since the value of the ADC register, which currently stores the value of the second
column, has to be shifted once to the left, the least significant bit of R1temp does
not contribute to the addition. Therefore, it can be directly passed to the R1temp

where we store the final result of this stage. As a consequence, the shift operation
is implicitly implemented in the design without dedicating extra hardware to it. In
addition, the size of R1temp register and the adder module are held as minimum
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as possible equal to l og 2(number o f r ow s)+ l og 2(r esi st ance l evel s). When the
addition is performed for the last column (associated with the most significant bit(s)
of multiplicand’s elements), the entire content of R1temp register is copied to R2temp

register, and the result of this stage is ready to be used for the next stage.
We perform the processing in this stage, assuming that the datatype size for array

data (e.g., j0, J1, and J2) does not exceed the number of columns that share an ADC.
Loosening this assumption leads to additional logic (extra stage) required to add up
the intermediate results obtained from the columns representing one element of the
multiplicand, but are shared among more than one ADC. To avoid complexity, this
will not be discussed in detail.

M24 project Meeting WP4MNEMOSENE M24 project Meeting WP4MNEMOSENE 8

𝒛𝟏 =
𝟐𝟐 𝒂𝟐 ∗ 𝒋𝟐 𝒋𝟏 𝒋𝟎 + 𝟐𝟏 𝒂𝟏 ∗ 𝒋𝟐 𝒋𝟏 𝒋𝟎 + 𝟐𝟎 𝒂𝟎 ∗ 𝒋𝟐 𝒋𝟏 𝒋𝟎

+𝟐𝟐 𝒃𝟐 ∗ 𝒎𝟐𝒎𝟏𝒎𝟎 + 𝟐𝟏 𝒃𝟏 ∗ 𝒎𝟐𝒎𝟏𝒎𝟎 + 𝟐𝟎 𝒃𝟎 ∗ 𝒎𝟐𝒎𝟏𝒎𝟎

+𝟐𝟐 𝒄𝟐 ∗ 𝒑𝟐 𝒑𝟏 𝒑𝟎 + 𝟐𝟏 𝒄𝟏 ∗ 𝒑𝟐 𝒑𝟏 𝒑𝟎 + 𝟐𝟎 𝒄𝟎 ∗ 𝒑𝟐 𝒑𝟏 𝒑𝟎

+
𝐑𝟑𝐭𝐞𝐦𝐩

𝐑𝟐𝐭𝐞𝐦𝐩

𝐑𝟑𝐭𝐞𝐦𝐩
+

𝐑𝟐𝐭𝐞𝐦𝐩

𝐑𝟒𝐭𝐞𝐦𝐩

𝐑𝟏𝐭𝐞𝐦𝐩

R2temp

𝐑𝟑𝐭𝐞𝐦𝐩

R4temp

ADC register

nn-1

Third stage

Figure 7.7: Third stage: performing addition between the higher partial results which
are obtained from the input segments representing a number. The same
technique applied in the second stage is used here to optimize the
hardware.

7.4.3. THIRD STAGE: SLIDING OVER INPUT SEGMENTS

In this stage, the partial sum related to input segments has to be summed. Due to
the input driver resolution (third limitation), the input data has to be segmented and
provided to the crossbar in several iterations. Therefore, the design should be able to
integrate the result of each iteration and produce the output of the MMM operation.

We illustrate this using an example in Figure 7.7 where the partial sum relating to
the (a0,b0,c0), (a1,b1,c1), and (a2,b2,c2) segments have to be integrated. The partial
sum obtained from each input segment has to be shifted and added up to the value
of R3temp register, where we store the result related to previous input segments. The
design utilizes the same approach, deployed for the second stage, in order to avoid
shift operations while minimizing the size of adders and registers. As an example, in
the first iteration, the value of the first input segment (orange box) is available in
R2temp register and will be added to the value of R3temp register, which is initialized
to zero. The least significant bit of the result is directly stored in R4temp register,
while the rest of the bits are again stored in R3temp register. Since the result of the
second input segment (blue box) has to be shifted (theoretically) once to the left,
the least significant bit of the result from the previous iteration is not contributing
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to the result of the current iteration. Therefore, we improve performance, area, and
energy efficiency by omitting variable shift operators as well as minimizing adder
and register sizes.
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R4temp3 R4temp4
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Figure 7.8: The possible organization required between ADCs.

What we discussed so far was based on the assumption that the size of integer
numbers stored in the crossbar matches the number of columns shared by an ADC.
However, two other possible scenarios have to be considered. First, by increasing
the number of ADCs, a number stored in the crossbar might be split and distributed
over multiple ADCs. To clarify this further, Figure 7.8 illustrates this scenario in
which 32-bit numbers are distributed over 4 ADCs. Accordingly, to obtain the final
result, the values stored in all the R4temp registers, employed for each ADC, have
to be summed up. Although more hardware is required as the number of ADCs
increases, the length of the registers and adders employed for processes per ADC
are decreased. The second scenario is when two or more sets of data (due to a
small datatype size) can be distributed and stored in the columns shared by one
ADC. Considering this scenario, the first solution is replicating all the registers in
the ‘Addition Unit’ to store the intermediate results per set of data that share an
ADC. However, since we need to be prepared for the worst-case scenario (smallest
datatype size), the overhead of extra registers would be considerable. The second
solution is computing the (final) result sequentially for each set of data placed in the
same columns. As an example, if we can store two elements residing in the columns
that share an ADC, we first finalize the computation for the first half. Then, we start
the computation for the second half of the columns. In our implementation, we
follow the second solution.

In summary, using the aforementioned organization leads to energy (and possibly
performance) improvement specially when considering a large number of crossbars
with hundreds of columns computing in parallel. Controlling this structure can be
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performed by designing a state machine. Alternatively, the entire system can also be
controlled by employing an instruction set to exploit the maximum flexibility for the
design (considering ADC resolution, cell levels, and datatype size).

7.4.4. INSTRUCTIONS RELATED TO THE ADDITION UNIT

Similar to other components in the CIM-tile, the ‘Addition Unit’ also has its
own instruction to control this unit and provide flexibility in supporting different
configurations. Table 7.1 highlights the instructions associated with this unit. In the
following, we explain each instruction:

Table 7.1: The highlighted instructions are used for the ‘Addition Unit’
Opcode Op 1 Op 2 Function description
RDSb Index Mask Place ‘Mask’ into RDS reg at ‘Index’
RDSc Clear the entire RDS register
RDSs Set the entire RDS register
RDsh Shift RD buffer contents
WDb Index Copy data to for WD buffer to WD reg. at ‘Index’
WDSb Index Mask Place ‘Mask’ into WDS reg at ‘Index’
WDSc Clear the entire WDS register
WDSs Set the entire WDS register
FS Function Select crossbar functionality
DoA Activate the crossbar function
DoS Sample the crossbar output
CS Index Activation Select column to be read by ADC
DoR Activate the ADC
jal Address Jump to ‘Address’ and store PC.
jr Jump to the PC stored in return reg.
BNE Branch to PC stored in branch reg.
LS Indicate the last section of rows to reads
IADD Activate third stage of the addition unit
CP Copy result per ADC to output buffer
AS Selection Select adders for addition between ADCs
CB Copy the result of addition between ADC to output buffer

• LS: This instruction controls the first stage of the addition unit (see Figure 7.5).
The instruction is defined to indicate whether this is the Last Section (LS) of
row selection for this stage or not. In case this is the last iteration, the result in
each of the registers considered for this stage (e.g., R0,R1,R2) has to be added
with R1temp in the second stage.

• IADD: This instruction is defined to demonstrate that this is the last bit
or column that we are processing for the second (or Intermediate) stage of
ADDition (IADD). For example, if the datatype size is 8-bit, this instruction
is placed after reading eight columns (assuming memristors in each column
hold one bit). This is also illustrated in Figure 7.9, where a sample code was
compiled for 8-bit datatype size. In this code, after eight ‘CSR’ (CS + DoR)
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instructions, there is one ‘IADD’ instruction. After executing this instruction,
the content of R1temp is copied to R2temp .

• CP: Similar to IADD, CP shows that the last bit of input data was given to the
crossbar (e.g., a2,b2,c2. By executing this instruction, the content of R3temp is
copied to R4temp , and the final result of the third stage will be ready.

• AS: This instruction was defined to support an addition between the final
results generated per different ADCs. This instruction controls the multiplexer
illustrated in Figure 7.8 to select proper registers. This helps us to support
datatype sizes lower than the maximum datatype size that the system is
designed for. It should be noted that this instruction and its associated
hardware are only used when data has to be distributed over the columns
assigned to different ADCs. In case the maximum datatype size can fit
within the columns shared by an ADC, this hardware is not placed, and the
instruction is not used anymore.

• CB: Similar to CP, this instruction indicates that the last iteration for the
addition between the R4temp registers assigned to different ADCs is performed.
By executing this instruction, the content of R5temp is copied to R6 register
(see Figure 7.8).

1. FS VMM 

2. RDsh 

3. RDSs 

4. DoA 

5. DoS 

6. LS 

7. CSR 000 11111111111111111111111111111111 

8. CSR 001 11111111111111111111111111111111 

9. CSR 010 11111111111111111111111111111111 

10. CSR 011 11111111111111111111111111111111 

11. CSR 100 11111111111111111111111111111111 

12. CSR 101 11111111111111111111111111111111 

13. CSR 110 11111111111111111111111111111111 

14. CSR 111 11111111111111111111111111111111 

15. jr  

16. IADD 

17. … 

18. jal 7 

19. IADD 

20. CP 

Figure 7.9: An example of instruction sequence generated by the compiler with
highlighted instructions related to the ‘Addition Unit’.
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7.4.5. IMPLEMENTATION CHALLENGE

As mentioned before, the least significant bit can be directly sent to the next level
register. However, the hardware implementation for positioning the LSB in the right
place in the next-level register might be challenging. Since the number of required
shifts depends on the datatype size, a regular shift register cannot address this issue.
As an example, assume the system is designed for 32-bit data with a crossbar size of
256×256. Then, the R2temp size would be 8+32 = 40 bits. However, if we perform
the computation on an 8-bit datatype size, the LSB is shifted only seven times,
meaning that the result will be stored in position 39 down to 23 instead of position
15 down to 0 in the register. The same problem can happen for R4temp . In the
following we present three solutions for this [220]:
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Figure 7.10: Implementation solution for positioning the LSB by using (a) a counter
or (b) multiplexer to support flexible starting point [220].
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Figure 7.11: The overhead imposed by the first solution for different configurations
[220].

• The first solution relies on always shifting enough times to ensure proper
result positioning. As the size of the registers is fixed, this can be implemented
by having a counter keep track of the number of times the result has been
shifted. Once the computation has finished (indicated by the IADD, CP, and CB
instructions for the different intermediate registers), the result can be shifted
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the remaining number of times. The high-level implementation can be seen
in Figure 7.10(a). While this solution offers low implementation complexity,
it compromises the performance of the addition scheme heavily for smaller
datatypes as the addition scheme now has a fixed latency rather than a latency
scaling linearly with the datatype size. The overhead cycles would add directly
to the latency of the second pipeline stage, which is already the critical stage
due to the read-out part of the stage. Assuming the system is designed for
32-bit, Figure 7.11 shows the number of overhead cycles this solution imposes
on each element computation for different numbers of ADCs (corresponding
to different temporary register sizes). For each ADC configuration, there is an
optimal datatype size for which there is no cycle overhead due to the addition
scheme. This corresponds to the datatype size where the computation result
fits exactly in the R4temp register and can then be directly copied to the output
buffer. For smaller datatype sizes, the overhead comes from the extra shifts
required in the R2temp and R4temp registers. For larger datatype sizes, the
overhead is due to the required addition between different R4temp registers.

• The second solution does not require any overhead of shifting. In this design,
we insert the data in the correct starting position of the intermediate register.
The datatype that is being processed is used to select the proper position
in which the data should be inserted in the intermediate register. After the
number of shifts required for the addition, the data will be in the correct
position in the register without any overhead cycles. While this solution does
not compromise the addition scheme performance at all, it leads to huge
amounts of multiplexing required to select the proper starting position if the
CIM-Tile should support any random datatype. To eliminate this unreasonable
multiplexing, a constraint can be set on the datatypes that the tile can process.
By having the tile only process datatypes, which are multiples of bytes, only
four different starting points in the shift register are required to support up
to 4-byte datatypes. Figure 7.10(b) illustrates the principle of this solution.
The ‘adder config’ signal sets up the multiplexing to select the proper starting
point.

• If the constraint on the datatypes turns out to be a significant issue for future
applications, we can consider the third solution. This solution allows for
computation on all random datatypes (thus omitting the constraint imposed
by solution 2) without imposing large numbers of overhead cycles by using a
hybrid design of the first and second solutions. If, for example, computation
should be performed on a 10-bit datatype, the multiplexing of solution two
can set the starting point in the shift register at 16. Then, after computation,
the shifting described in solution one can be used to shift the remaining six
positions. This solution allows processing any datatype with a maximum of 7
overhead shifts at the cost of more complex control. As there are, at the time
of writing this report, no reasons to believe that the constraint on datatypes
is an issue for applications, the second solution is deemed sufficient for the
hardware implementation. For every solution, it is required that the ‘Addition
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Unit’ is set up properly to perform computation on the desired datatype.
Depending on how the tiles will be deployed, this can be done by either setting
up the addition unit before executing a program or allowing for a change of
the set-up at run-time with the help of the compiler by introducing a new
nano-instruction.

7.4.6. EVALUATION AND DISCUSSION

In this subsection, we evaluate our design against a reference design. First, we
introduce the reference design and the target technology. Subsequently, the results
regarding the performance and energy of our proposed method will be discussed.

EXPERIMENTAL SETUP

Reference architecture. In the reference design, we assume that a single adder to
perform accumulation between shared columns and different bit positions of the
multiplier are connected to each ADC. The size of the adder is fixed and must be
chosen based on the largest possible value resulting from the MMM - it is specified
in Equation 7.3. This means that the value produced by the ADC is merely an
intermediate result that must be summed up into the accumulator - remember that
only a single bit of the multiplier is multiplied with the multiplicand and each ADC
read-out corresponds only to a single bit-position of the multiplicand. Due to the
previously stated manner of summation, the intermediate results must be shifted by
the correct number of positions (based on the bit-positions of the multiplier and the
multiplicand) before entering the adder.

Adder si ze =int si ze(mul ti pl i er )+ int si ze(mul ti pl i cand)

+ log2(cr ossbar hei g ht )
(7.3)

Table 7.2: Tile configuration
Crossbar

Technology
Read energy
Write energy

Read/Write latency

ReRAM (256x256 @1bit)
0.4pj per cell
40pj per cell

100ns
ADC (8-bit)

Energy
Latency

2pj per sample
1ns per sample

Carry-lookahead Adder
Size Energy (per computation) Latency
8-bit

16-bit
24-bit
40-bit
72-bit

0.01pj
0.03pj
0.08pj
0.25pj
0.78pj

1ns
2.2ns
3.2ns
5.6ns
9.8ns
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In order to evaluate our design (against the reference design), we have synthesized
both using Cadence Genus with standard cell 90nm UMC library. The latency and
energy numbers related to the crossbar (assumed to use ReRAM for now) and (SAR)
ADCs are taken from [192] and [193], respectively. These numbers are summarized
in Table 7.2, and more detailed information about the ReRAM device can be found
in [192]. Subsequently, these numbers serve as input to our in-house tile simulator.
Our simulator is capable of executing programs and capturing the behavior of the
crossbar and peripheral circuit. As a benchmark, we have chosen the linear-algebra
kernel “gemm” from the Polybench/C benchmark suite. In this kernel, first the
multiplicands are written into the crossbar and then the actual multiplication is
performed. We utilized our in-house developed compiler to translate the gemm
benchmark into a sequence of in-memory instructions controlling the crossbar and
its peripheral circuits.

EXPERIMENTAL RESULT

Reading data from the crossbar’s columns (the read-out phase) is inherently slow
mainly because of the shared ADC between multiple columns and can be considered
as the bottleneck of the architecture. However, as the size of the adder grows,
its latency can be dominant over the latency imposed by ADC. Considering the
proposed design in our experiment, since the crossbar has 256 rows, the maximum
size of the first two adders is always 8-bit regardless of datatype size. Therefore,
there is no extra overhead on the latency of the read-out phase. Rather, in the
reference design and according to Equation 7.3, the required size of the adder is
much larger. Accordingly, considering a 1 ns latency for the ADC, as the size of the
adder increased more than 8-bit, it became the bottleneck of the system and made
the read-out phase more costly.
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Figure 7.12: Execution time for different integer datatype sizes.

Figure 7.12 depicts the execution time of the kernel (including writing to the
crossbar). In this experiment, we assume that the size of the integer numbers
matches the number of columns shared by one ADC. According to the figure, the
size of the first two adders for the proposed design is always constant (here 8-bit).
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Instead, as the datatype size increases, a larger adder has to be employed for
the reference design. Considering an 8-bit datatype size in Figure 7.12, a 24-bit
adder has to be used for the reference design, which imposes a 3 times bigger
latency than an ADC. However, due to the abundance of ADCs, the entire readout
phase is not the bottleneck of the system (see Table 7.2 for the crossbar latency).
Therefore, there is no performance improvement at this point. Figure 7.13 shows
the energy improvement achieved by the proposed design. Although the number of
computations is always the same, they are performed with smaller adders, which has
a positive impact on the energy consumption of the addition unit. Finally, the impact
of the number of ADCs on the execution time and energy of the addition unit using
32-bit datatype size are presented in Figure 7.14. As the number of ADCs increases,
the performance is improved. In addition, although more adders are employed (see
Figure 7.8), their size is decreased, which leads to less energy consumption.
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Figure 7.13: Energy consumption of addition unit for different datatype sizes.
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7.5. A NOVEL SIGNED DATA REPRESENTATION AND

COMPUTATION
In this section, we propose our optimized design to support two’s complement
representations in a CIM tile. The design uses the same hardware discussed for
unsigned representation with some changes in the execution flow.

7.5.1. MOTIVATION

M24 project Meeting WP4MNEMOSENE 11
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Figure 7.15: Example of sign extension required for two’s complement representation
when the size of the output is larger than the input data.

Despite other representations, the primitive arithmetic operations in two’s
complement representation are identical to unsigned numbers. This is particularly
helpful when operating on many operands at once. However, considering the
crossbar structure, the sign extension required for this representation imposes a big
overhead on the system. Figure 7.15 shows an example where the range of data is
from -4 up to +3 which can be represented in 3 bits. Assuming each memristor
device can hold one bit, 3 devices can represent one number. As we show in this
figure, by performing an addition among the numbers programmed to the crossbar,
the result is different than expected. Although each number individually can be
presented in 3 bits, more bits are required to present the output result since several
numbers are summing up. Accordingly, input operands have to be sign-extended
to be the same size as the output. In general and in the case of addition
operation, the number of bits that have to be considered for sign extension is equal
to log 2 (number o f cr ossbar r ow s). Clearly, these extra bits degrade energy,
performance, and area efficiency. Therefore, it is essential to address this challenge
and improve the efficiency of signed arithmetic computation in the crossbar.

The sign extension causes an overhead on both array data and input data. In
Subsection 7.5.2, we address the challenge of sign extension on array data using a
simple arithmetic addition operation as an example. Subsequently, in Subsection
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7.5.3, we consider the MMM operation as a more complex operation where the
overhead of sign extension exists on both array data and input data. Considering
this operation, we extend our solution to address the overhead of sign extension on
input data as well.

7.5.2. EFFICIENT SIGNED ADDITION BY INTRODUCING VIRTUAL

BIT-LINES

To address the overhead of sign extension on array data, a new method is proposed
based on what is named virtual bit-lines. We illustrate our solution in Figure 7.16
using a simple arithmetic addition example where we want to obtain the result of
addition between three signed numbers stored in the crossbar.
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Figure 7.16: Low-cost implementation of signed addition by introducing virtual
bit-lines.

Instead of programming more memristor devices to capture the effect of sign
extension, we propose a novel method to incorporate the impact of sign extension
in the crossbar periphery. As demonstrated in Figure 7.16, the values obtained
from the fourth and fifth columns, used to represent sign extension values, are
the same as the third column. This is based on the fact that the values of the
sign-extended bits are equal to the most significant bit before the sign extension.
By recalling how unsigned computation is performed, in each time step, the value
of one column is stored in the ADC register. In the third time step, the value of
the third column is stored in the ADC register and has to be summed up with the
intermediate result obtained from previous columns (columns 1 and 2), which are
(partially) stored in the R1temp register. Since the values of the virtual bit-lines
are equal to the value of the third column, and this already exists in the ADC
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register, only the loop is required to be performed extra rounds. The loop has to be
performed more times equal to the number of virtual bit-lines (in the worst-case
log 2(number o f cr ossbar r ow s). By doing this, 1) a fewer number of bit-lines
have to be programmed (crossbar programming energy), 2) a fewer number of
bit-lines are contributing to the computation ( crossbar computation energy), and
3) a fewer number of bit-lines read by ADCs (ADC energy). This leads to a huge
improvement in terms of area, performance, and energy efficiency.

7.5.3. EFFICIENT SIGNED MULTIPLICATION BY EMPLOYING VIRTUAL

INPUT SEGMENTS

In the previous subsection, we discussed how to eliminate the overhead of sign
extension on array data by only considering its contribution to the result in the
periphery. In this subsection, we consider the execution model for a complete MMM
operation where the overhead of sign extension exists both on array data and input
data. We explain how this affects the number of virtual bit-lines and how we can
optimize this operation further.
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Figure 7.17: Introducing virtual input segments besides virtual bit-lines to reduce the
overhead of signed MMM (b) applying small modifications on execution
flow to support signed MMM while employing the same hardware used
for unsigned computation.

Figure 7.17(a) illustrates an example of the MMM operation where the elements of
both multiplier and multiplicand are presented in two’s complement format bound
for three bits. The size of elements for the output matrix (Sout ), as well as the
number of sign extension bits for both multiplicand (Empd ) and multiplier (Empr ),
are computed according to Equation 7.4, 7.5, and 7.6. Since the range of elements
for the output matrix (8 bits) is larger compared to an addition operation (5 bits),
more overhead is imposed due to the sign extension even using the aforementioned
technique. However, to reduce this overhead, we propose two optimizations as
follows.
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Sout = (multiplicand datatype size) +
(multiplier datatype size)+ log2 (active rows)

(7.4)

Empd = Sout − (multiplicand datatype size)

= number of virtual bit-lines
(7.5)

Empr = Sout − (multiplier datatype size)

= number of virtual input segments
(7.6)

1 Similar to computation over unsigned numbers (Section 7.4), here, input segments,
including the sign-extended bits, are given to the crossbar one at a time. In this
example, since the output needs to be presented in 8 bits, we have to have 5 bits
sign extension for each input operand to bring them into the same size as the
output. The bits for the sign extension are indicated with red color in Figure 7.17(a).
The result of each segment has to be summed up with the preceding segments to
get the final value. Considering this example, Figure 7.17(b) shows the intermediate
result obtained by applying each segment (here one bit at a time) to the crossbar.
Due to the sign extension, the intermediate results of applying the fourth until the
eighth bit of the multiplier are the same as the third bit. Similar to virtual bit-lines,
we call these input segments as virtual input segments. Therefore, since the result
by applying the virtual input segments already computed in the previous rounds
and exists in the R2temp register, these segments are not given to the crossbar as
input. Looking back on the proposed hardware for unsigned numbers, there are
three stages, 1) analog addition, 2) sliding over multiple columns, and 3) sliding over
input segments. Therefore, as depicted in Figure 7.17(b), the third stage, which is
in charge of sliding over input segments, has to be performed five additional times
(equal to the number of virtual input segments). Accordingly, this attains energy and
performance improvement due to the fewer activations for the crossbar as well as
periphery circuits.

2 While the first optimization was focused on the input data and the virtual input
segments, here we focus on the size of the adders and registers.
According to the aforementioned optimization techniques proposed in Section 7.4,
the size of the adder associated with the third stage can be reduced down to the
length of an intermediate result obtained for one input segment. However, due to
the sign extension of the array data, one can think a larger adder size (e.g., 8 bits) is
required since each input segment produces 8 bits as a result. By considering the
example in Figure 7.17(b), it can be realized that from the 8-bit value resulting for
each bit of input data, the last three (gray color digits) are the same as the fifth
bit. This is due to the fact that giving an input bit (in general input segment) to
the crossbar is like an add operation (discussed before) where the number of sign
extended bits is proportional to only the number of active rows (crossbar rows in
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the worst-case) and the extra sign extended bits imposed by the MMM operation
results to the bits with the same value. In this example, among five sign extended
bits for the array data, two bits (or two virtual bit-lines) are due to the number of
active rows (or the number of array data elements that are summed up), and the
rest are imposed due to the input data in the MMM operation (see Equation 7.5).
Hence, in order to get the first five bits of the result related to each bit of the
multiplier elements, the second stage of the addition scheme requires performing
only two extra rounds like what was mentioned for an add operation (more rounds
lead to repeating the MSB). Consequently, we minimize 1) the number of extra
rounds required in the second stage and 2) the length of output generated in the
second stage, which leads to downsized adders and registers in the third stage.

1  0  1  0  0

0  0  0  0  0

0  0  1  0  0  1  0  0
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1st bit of multiplier 

2nd bit of multiplier 

3rd bit of multiplier 

4th bit of multiplier 

5th bit of multiplier 

6th bit of multiplier 

7th bit of multiplier 

8th bit of multiplier 

Figure 7.18: Sign extending the output of second stage adder only for one-bit (red
digit). This is enough for correct execution and also minimizes the size
of adders/registers in the second stage.

After obtaining the intermediate values from the second stage of the addiction
scheme (e.g., 5 bits in this example), the third stage has to sum them up. Figure 7.18
depicts how to perform this summation while using the same adder size employed
for unsigned operations (in this example 5-bit adder rather than 8-bit adder). As we
can see, after each addition, the LSB is directly stored in the R4temp register, and the
rest with a one-bit sign extension will be stored in the R3temp register. This one-bit
sign extension captures the contribution of sign-extended bits at the output of the
second stage when we downsize it from 8 to 5 bits (gray digits in Figure 7.17(b)).
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Therefore, using this one-bit sign extension, we ensure the correct functionality of
the third stage while reducing the size of the adder from 8-bit to 5-bit.

In order to generalize our discussion, the following equations are provided. The
Equations 7.7 and 7.8 calculate the number of extra rounds required for stages 2
and 3. In addition, the size of the adders, as well as the registers for both stages,
are shown in Equations 7.9 and 7.10 where Adder1 and Adder2 are the adders
employed for stage 2 and 3, respectively. It is worth mentioning that the second term
in Equation 7.9 is added when the number of resistance levels is more than two.

Second Stage Extra Rounds =
log2 (active rows) ≤ number of virtual bitlines

(7.7)

Third Stage Extra Rounds =
Empr = number of virtual input segments

(7.8)

Size(Adder1) = Size(ADC register) = Size (R1temp )

= l og 2(number of rows)+ log 2(resistance levels)
(7.9)

Size(Adder2) = Size (R2temp ) = Size (R3temp ) =
multiplicand datatype size+ log 2(number of rows)

(7.10)

7.5.4. ASYMMETRIC ADDITION SCHEME

Until now, we assumed that the array data datatype size is aligned or can be fit
within the number of columns shared by an ADC. However, the proposed solution is
valid even when the assumption does not hold. By increasing the number of ADCs
per crossbar, the numbers which are stored in the crossbar might be distributed
over several ADCs depending on the application and its datatype size. Figure 7.19
illustrates this scenario by employing a simple example where both input data and
array data have 6 bits size and three columns shared by an ADC. As can be seen,
while virtual bit-lines have only an implication on the addition unit operating on
the most significant bits, the virtual input segments influence both units. Since
three rows are considered, two extra rounds– l og 2(number o f r ow s)– are imposed
to the second stage of the addition unit on the left side. Besides, due to the eight
segments of virtual input (here each segment is one bit), eight extra rounds have to
be performed on the third stage of both units. It must be highlighted that since the
virtual bit-lines are not associated with the addition unit on the right side, there is
no 1-bit sign extension when storing the intermediate result in the R3temp register,
while the addition unit on the left side requires this as explained before (see Figure
7.18.

Considering the aforementioned scenario, when the final result associated with an
ADC is achieved and stored in the R4temp , they have to be summed up considering
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Figure 7.19: Asymmetric procedure for addition scheme when a number is split over
several ADCs.

their positions. The same structure explained in section 7.4 is employed here in
order to minimize the size of the adder and register in this fourth stage. Figure 7.20
depicts an example where the values of the R4temp registers related to each addition
unit are summed up in sequence. In each step, the first three bits of the adder’s
output are directly stored in the R f i nal register since the values in R4temp registers
have three bits positional difference. Consequently, this reduces the size of the
intermediate register as well as the adder which in turn improves performance and
energy. It is worth mentioning that the processing in this stage can be carried out in
parallel with the lower stages. Therefore, performing the computation sequentially in
this stage does not induce performance overhead on the system since the previous
stages require more time.

7.5.5. EXPERIMENTAL SETUP

In this section, we explain how we evaluate energy, performance, and area as the
main metrics in our simulation. The design is compared with two baselines on three
different benchmarks which cover different scenarios when executing arithmetic
operations on the crossbar.

SIMULATION PLATFORM

The result is based on our SystemC simulator [13, 19], which is parameterized by
incorporating power and timing characteristics for the memristor devices, digital, and
analog circuits. First, we profile the application to decompose it into sets of MMM
operations. In the next step, MMM operations are decomposed again into sets of
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Figure 7.20: Extra stage to sum up the result obtained from addition scheme per
ADC. This is illustrated for a simple addition operation, and we only
require this hardware when a number is split into multiple ADCs.

in-memory instructions. This is done automatically by our in-memory compiler. The
instructions give us programmability and controllability over memristor crossbars.
The instructions are then executed by our in-memory simulators, which mimic the
behavior of the hardware, including the crossbar and its analog as well as digital
peripheries. The simulator reports the simulation time and energy numbers based
on the activity factors of different components. The energy and latency numbers
for each digital component (e.g., decoder, addition scheme) are obtained by a
synthesis tool (Cadence Genus) and then exported into the simulator. The code for
our compiler and simulator is available online [229]. All the values for the analog
components of the CIM-tile are summarized in Table 7.3. The parameters for ReRAM
and PCM technologies are taken from [223] and [82] validated for the actual device.
For all the simulations, it is considered each memristor cell can hold one bit (two
resistance levels).

Performance:
The simulator executes the in-memory instructions generated by our compiler to
control the CIM tile, program the devices, and perform the computations. The
instructions are decoded and executed in 1 GHz clock frequency. Assuming one bit
stored in each cell, in order to activate all the crossbar rows at the same time, an
8-bit ADC at 32 nm is employed [193]. For all the simulations, each ADC is shared
between 8 bit-lines, which directly influences the performance of the system.

Area:
The area of each ReRAM cell in the 1T1R crossbar structure is taken from [178]. The
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Table 7.3: Value of parameters used for the analog components.

Component Parameters Spec
clock frequency 1GHz

Memristive
devices

ReRAM PCM
cell levels 2 2

LRS 5k 20k
HRS 1M 10M

read voltage 0.2 V 0.2 V
write voltage 2 V 1 V
write current 100 µA 300 µA

read time 10 ns 10 ns
write time 100 ns 100 ns

Crossbar
structure

num. columns
num. rows

1T1R
256
256

S&H

number
hold time

latching energy
latency

256
9.2 ms
0.25 pJ
0.6 ns

DAC
read DAC write DAC

number
power

256
3.9 µW

256
3.9 µW

ADC
power

precision
latency

2.6 mW
8 bits

1.2 GSps

digital peripheries are synthesized in Cadence Genus targeting standard cell 15 nm
Nangate library to obtain the area consumption. The number of required CIM tiles
depends on the benchmarks.
Energy:
Since all the information and control signals can be tracked by employing our
simulator, a typical activity factor and performance number are extracted. These
numbers are incorporated to achieve accurate energy consumption for the digital
as well as analog components of the tile. The power consumption for ADC was
obtained from [193]. Besides, the power consumption of 1-bit DAC is taken
from [194]. However, in the simulations where more bits are required, the power
consumption is taken from the equations provided in [194]. The power consumption
related to the digital periphery is taken from the Cadence Genus report targeting
standard cell 15 nm Nangate library.

BENCHMARKS

When we execute arithmetic matrix-matrix multiplication on the crossbar, there
would be two scenarios in the perspective of the signed computation: 1) only one
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operand or 2) both operands (input and programming data) have to be expressed
as a signed number. The benchmarks are selected to be able to assess the behavior
of both scenarios. Considering the first scenario, a neural network is employed to
classify the MNIST database. The network has two hidden layers with 80 and 60
neurons, respectively. The network trained, providing around %97 accuracy, and the
weights are obtained using MATLAB. The programming weights are presented in
8-bit signed fix-point whereas the input data (pixels) is considered as 8-bit unsigned
number. It is worth mentioning that the intermediate values generated by the hidden
layers are considered binary numbers. For the second scenario, we take two kernels
from the Polybench/C benchmark suite. The first kernel is linear-algebra “gemm”
where the input matrix size is 1000×1200, and the programming data matrix size is
1200×1100. Similarly, the second kernel, “3m”, has the problem size of 800×1000
and 1000×900 for the input and programming data, respectively. The datatype size
for the aforementioned kernels is 8-bit, and despite the first benchmark, both input
and programming data are presented as signed numbers. Since we only focus on
the crossbar and its periphery circuit in this paper and not a full system simulation,
considering more benchmarks will not add more insight to our study, and a similar
pattern will be repeated.

BASELINES

The proposed design is compared against two baselines to quantify its efficiency in
performing signed computations in terms of energy, performance, and area. The
baselines are as follows:

• Baseline1:
In this baseline, both the inputs [67] and the programming data [65] are
presented as a standard two’s complement representation where the sign
extension is required for both multiplier and multiplicand in the case of MMM
operation. Furthermore, in order to have a fair comparison, we employ
the same efficient structure proposed for the addition unit (see Section 7.4)
rather than conventional Shift-and-add structure. Therefore, the result will
completely focus on the way signed computation is performed. This addition
unit with the proposed structure is solely evaluated in previous section against
conventional Shift-and-add structure.

• Baseline2:
In this approach, the positive and negative programming data are mapped into
two different crossbars where the data on each crossbar is treated as unsigned
value [69, 110]. Furthermore, in order to support signed input, the current
is provided in two directions to represent negative and positive numbers (see
Figure 7.3(a)). For all the simulations regarding this baseline, we consider 2-bit
DACs to provide three voltage levels corresponding to logical -1, 0, and 1
values. Finally, the same addition unit considered for the first baseline is also
employed here.
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7.5.6. RESULTS

In this section, we evaluate the proposed design in terms of execution time, area,
and computation, as well as programming energy. In the following, the result
regarding each of the aforementioned aspects of the design is discussed to provide a
good insight into its pros and cons.
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Figure 7.21: Relative execution time of the baselines normalized to the proposed
design. No distinction between the two memristor technologies
(According to Table 7.3, the two memristor technologies have similar
latency numbers).

EXECUTION TIME

Figure 7.21 depicts the relative execution time for the two baselines normalized with
the proposed scheme. As can be seen in this figure, due to the extra rounds of
addition required in the proposed scheme (see Figure 7.17), a small overhead is
imposed on the execution time compared to Baseline 2. According to the description
of Baseline 2, since the drivers have to generate three voltage levels, they may have
more latency than the drivers employed for the proposed design as well as Baseline
1. This may have an adverse impact on the performance of Baseline 2 and reduce
the gap between this scheme and the proposed design. Considering MNIST, Baseline
1 and the proposed scheme attain a similar performance since either eight extra
crossbar columns (Baseline 1) or eight extra rounds in the addition unit (proposed
design) has to be performed. This is due to the sign extension. However, if the
digital clock frequency gets bigger than the ADC conversion rate, the overhead of
extra rounds in the addition unit will be reduced. Regarding GEMM and 3m, since
the inputs are also signed, the execution time for the Baseline 1 is increased due to
the costly sign extension of input data. It is worth mentioning that the overhead
of data communication to provide input data to the crossbar is considered for all
the designs. Based on the architecture proposed in [14], in order to provide a
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clear separation of tile from outside and minimize the number of synchronizations,
a buffer called Row Data Buffer with the width equal to the maximum supported
datatype size, and the heights equal to the number of crossbar rows is placed next
to the crossbar. This buffer provides input data for the crossbar. Filling each row of
this buffer with the elements of the multiplier matrix takes one clock cycle.

As mentioned before, when we execute arithmetic matrix-matrix multiplication
on the crossbar, there would be two scenarios in the perspective of the signed
computation: 1) only one operand or 2) both operands (input and programming
data) have to be expressed as a signed number. As can be seen in Figure 7.21, for
the scenario where the inputs are unsigned (MNIST), the proposed design cannot
outperform Baseline 2 in terms of performance. Baseline 2 maps positive and
negative weights into two different crossbars. Hence, the required computations
are performed in parallel in two crossbars and their peripheries. However, this
computation is performed sequentially in the periphery of the proposed design.
Although this could significantly improve energy and area consumption (we discuss
it in the following), it brings marginal performance loss. It should be noted that this
only happens in the scenario where the inputs are unsigned numbers.
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Figure 7.22: Area comparison of the Baselines with the proposed design for ReRAM
crossbars taking into account the digital and analog components.

Figure 7.22 depicts the area consumed by the three designs. Regarding the first
baseline, since we stored the sign-extension bits in the crossbar, more crossbars
have to be employed, and in consequence, more area is consumed. In the second
baseline, we do not need this costly sign extension, but since positive and negative
elements in a matrix have to be assigned to different crossbars, it consumes more
area than the proposed design. Finally, the actual area number for each design
depends on the problem size of the benchmarks. However, the ratio between these
designs remains constant for different benchmarks. It should be noted that the area
of digital peripheries is also considered in this figure for both the proposed design
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as well as the baselines. These numbers are based on the 15 nm Nangate library.

ENERGY

Computation energy:
Figure 7.23(a) demonstrates the computation energy for the aforementioned
benchmarks considering the baselines and the proposed design. The results are
presented for PCM and ReRAM technologies without considering the programming
energy.

MNIST : For the MNIST benchmark, the experiment is performed for 10k input
images, and as can be seen, more than 3× energy improvement is obtained
compared to the baselines. In the following, we analyze the results obtained for each
baseline.

• Regarding the first baseline and considering the 8-bit datatype size, the
programming weights should be sign-extended to 24 bits (only the programming
weights are signed, not inputs). This is because the inputs are 8 bits unsigned,
and the total number of elements on each column of the crossbar is 256. Hence,
the output size would be 24 = log 2(256)+8. According to the output size, the
weights should be sign extended to 24 bits. The implication is the necessity of
more crossbar arrays together with their peripheries to encompass the weights.
This leads to more energy consumption, as shown in Figure 7.23(a).

• Considering the second baseline, the number of crossbar arrays is doubled due
to allocating positive and negative weights into different crossbars. Although
the inputs for this application are not signed, the platform considered for this
baseline has a higher precision of DACs and ADCs to support negative inputs,
which imposes energy overhead on the system. It should be taken into account
that the ADCs need to be sensitive enough in this baseline to detect finer
current/voltage values in order to keep the accuracy as high as required. In
conclusion, for this baseline, both the crossbar and peripheries contribute more to
energy consumption than the proposed design.

Furthermore, we perform the analysis for two memristor technologies, ReRAM
and PCM. According to Table 7.3, PCM has higher resistance values for both low
(LRS) and high (HRS) states. Therefore, having the same ‘read voltage’, the energy
consumed by this device is less than ReRAM during the computation. We can
observe this in Figure 7.23(a), where we report the energy consumption for these
two technologies.

GEMM and 3m: The problem sizes for these two kernels are larger than MNIST. In
addition, the inputs and programming weights are 8-bit signed numbers. Therefore,
considering the first baseline, both the inputs and programming weights should be
sign-extended to 24 bits. Hence, not only more crossbars are required, but more
input segments should be given to the crossbars as well. This leads to around
8× more energy consumption compared to the proposed design. Despite the first
baseline, the approach used in the second baseline can deal with signed inputs with



7

162 7. EFFICIENT DIGITAL PERIPHERY DESIGN FOR CIM-TILE

less overhead. Comparing the proposed design with the second baseline and similar
to MNIST, the improvement is mainly obtained from employing fewer crossbars as
well as lower DACs and ADCs precision.
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Figure 7.23: Energy consumption for (a) computation and (b) programming phase
achieved for the two baselines and the proposed design. The energy
comparison among different designs is performed for PCM and ReRAM
technology.

Programming energy:
Besides the high energy consumption of programming the memristive devices, the
endurance of these devices is a critical feature [230], which persuades the users to
program them as minimum as possible. Therefore, usually, it is simply considered
that the crossbar is programmed once before the execution of the application
without (or with minimum) reprogramming during the execution. However, it is
necessary for the designer to have insight into the overhead of crossbar programming
compared to the actual computation phase. Hence, Figure 7.23(b) provides the
programming energy as well as the ratio of energy consumption for the computation
over the programming phase.

Considering MNIST and after the classification of 10K input images, the result
shows that the overhead of programming is getting negligible compared to the
computation phase. However, this overhead is a bit higher for PCM devices
due to the higher programming current. In addition, since the proposed design
requires fewer crossbars, the energy overhead imposed by device programming is
lessened compared to the baselines. This might also have positive implications on
performance and aging which has not been considered in this paper. Since GEMM
and 3m kernels have a larger problem size (require more crossbars) and relatively
less computation, the overhead of programming is increased more. It should be
noted that, similar to MNIST, these two kernels can also be executed multiple times
for different input matrices. Therefore, based on the system requirements and the
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application data flow, the designer should evaluate when and for how many times
the devices can be reprogrammed.

7.5.7. LIMITATIONS AND CHALLENGES

The proposed design achieves 8× and 3× energy and area efficiency. However, this
comes with two main drawbacks. In the following, we provide a short explanation
for each of them.

1. Performance limitation:
The proposed design has marginally lower performance compared to baseline 2
where positive and negative weights are mapped into two different crossbars. This
is because the required computations are broken into two parts and performed in
parallel. However, more sequential operations are performed in the peripheries of
the proposed design. This performance loss also depends on the clock frequency
of digital circuits. If the clock frequency is high enough, the latency of the
crossbar can hide the latency of digital peripheries.

2. Complexity of the controller:
The proposed design can flexibly support different datatype sizes. This comes
at the cost of a more complex controller. There are two approaches to control
this design 1) implementing a state machine or 2) using instructions. The
second approach relies more on the compiler and reduces the complexity of the
hardware. However, more complex hardware is still required compared to the
baselines, with no flexibility in supporting different data sizes.

7.6. CONCLUSION
In this chapter, we focused on the digital periphery of the crossbar which is
responsible to get the crossbar output and generate the final result for arithmetic
multiplication and addition operations. First, we proposed a new organization for
a memristor-based crossbar periphery to support unsigned integer matrix-matrix
multiplication at the tile level. Besides the analog additions in the crossbar, digital
additions are performed in a way that minimum adder sizes are required. Second,
we proposed a new scheme based on two’s complement representation to perform
signed arithmetic matrix multiplication tailored for memristor-based crossbar array
structure. The key insight of this novel scheme is that with the help of an innovative
digital periphery design, the required sign extension can be avoided. The design
provides flexibility to perform computation over different datatype sizes as well as
switching between sign and unsigned computation at run time.
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CONCLUSION

This chapter first gives the summary of the thesis. Then, we discuss the future
directions.

8.1. SUMMARY
• Chapter 1: Introduction This chapter first described the traditional computing

systems based on Von-Neuman architecture. We explained the memory hierarchy
as well as the limitations and the walls we are facing both from the technology and
architecture levels. We presented the concept of memristor-based computation-
in-memory, which is considered a promising candidate for future computing
platforms. Afterward, we discussed the limitations and challenges of the CIM
concept arising at different levels. Considering CIM, we explained there would
be two different approaches at two ends of a spectrum where we either have
a generic or application-specific CIM-based design. Then, we formulated the
general research topic of this thesis to investigate both directions. After that, we
summarized the thesis contributions, followed by the thesis organization.

• Chapter 2: Background and Classification In this chapter, we first explained
the fundamental of memristor devices and three main technologies (ReRAM,
PCM, and STT-MRAM). We provided an overview of different memory technology
to understand better where the memristor technologies stand with respect to
conventional memory technologies. Then, we reviewed on main memory structures
proposed for memristor devices. Afterward, we proposed our generic illustration of
CIM-Tile, which comprises a memory crossbar and peripheries where the existing
works are classified based on that. Thereafter, we explained different system
design approaches when it comes to CIM. We observed two general trends: 1)
Application-Specific design, where we use CIM for an application under certain
assumptions and limitations, and 2) A more generic approach where CIM can be
employed for a wider range of applications. Based on this discussion, we explained
and elaborated on some existing works.

• Chapter 3: Application-Specific Design: Neural Networks This chapter and the
following chapters focused on application-specific designs for memristor-based

165
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CIM. This enhances our understanding of CIM, and the behavior of different
applications, which ultimately helps us to move further toward our generic path
for CIM. We focused on Binary Neural Networks (BNNs) since this is a promising
application for embedded systems with hard constraints on energy and computing
power. In this chapter, we proposed a novel in-memory memristor-based
design that substantially improves both the latency and energy efficiency of BNN
networks on CIM. The proposed XNOR-based BNN design replaces the ADC and
digital post-processing functionality with a SA with adjusted reference(s) while
maximizing parallelization and resource utilization in the design using a novel
mapping of weights and activation values in the crossbar and its input buffer. The
impact of SA references on the accuracy has been evaluated at the crossbar and
network levels. The design was also evaluated in terms of energy and latency for
different networks and datasets. This work is able to improve energy and latency
up to 5× and 100× compared to the baselines with marginal accuracy loss.

• Chapter 4: Application-Specific Design: Graph Processing We studied the
potential of CIM for graph processing. Graph processing is employed in a wide
range of areas. Poor locality or random access pattern to the memory, in addition
to a simple and small amount of computation over the accessed data, make them
a good candidate to use CIM. However, the non-optimal use of high sparsity of
such datasets leads to a waste of resources as the computation is also performed
on zero’s operands which do not contribute to the final result. In this chapter,
we focused on graph processing applications and designed a novel accelerator,
SparseMEM, targeting sparse datasets by leveraging the computing-in-memory
(CIM) concept. The proposed solution stores the graph information in a
compressed hierarchical format inside the memory and adjusts the workflow
based on this new mapping. This vastly improves resource utilization, leading to
higher energy and permanence efficiency. The experimental results confirmed the
potential of CIM for this application domain.

• Chapter 5: Application-Specific Design: Bioinformatics The third and last
application domain that we studied is Bioinformatics. The knowledge of
bioinformatics is used in a wide range of applications. Food industries are
leveraging this knowledge for food profiling which is an essential step in any food
monitoring system. Food profilers work on massive data structures and incur
considerable data movement for a real-time monitoring system. We translated the
problem of food profiling into hyperdimensional computing representation, which
makes it easy to be implemented using CIM. Based on that, we proposed our
accelerator. We synthesized the required hardware for our accelerator using UMC’s
65nm library by considering an accurate PCM model. Our evaluations demonstrate
that our CIM-based implementation achieves a (1) throughput improvement of
192× and 724× and (2) memory reduction of 36× and 33× compared to two
state-of-the-art profilers (Kraken2 and MetaCache).

• Chapter 6: Tile Architecture and Simulator This chapter focused on how to
move toward a generic CIM-Tile. We discussed our proposed (micro) instructions
to bring programmability into perspective. We provided an overview of the
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CIM-Tile and its components associated with different instructions. The detailed
implementation of the tile and its controller was described. Besides, to improve
the performance, we investigated the possible ways to pipeline the CIM-Tile.
Afterward, we briefly explained the compiler, which generates the instruction from
higher-level kernels, as well as the simulator. We verified the functionality of the
design on FPGA. Finally, the design is evaluated regarding energy and area for an
ASIC implementation.

• Chapter 7: Efficient Digital Periphery Design for CIM-Tile To proceed with
our generic approach toward CIM-Tile, we focused on the digital periphery of
the crossbar, ’Addition Unit’, in this chapter. This unit performs additional
processing to get the crossbar output and generate the final result for arithmetic
multiplication and addition operations. The first half of the chapter focused on
supporting unsigned computation. The developed structure not only provides a
high level of flexibility for us, but also performs the operations in a very optimized
manner. This structure forms the base for the second half of the chapter, where
we talked about signed computation. we proposed a new scheme based on two’s
complement representation to perform signed arithmetic matrix multiplication
tailored for memristor-based crossbar array structure. The operand mapping is
performed without the need for sign extension; hence, reducing the required
memory size. This unit is controlled with our (micro) ISA discussed in Chapter
6. The flexibility of the design allows applications to dynamically switch between
signed and unsigned computation as well as different datatype sizes without
changing the hardware or mapping of data. This is aligned with our approach for
a generic CIM-Tile design.

8.2. OUTLOOK
Until now, the main challenges that hinder CIM from being utilized for a large-scale
platform are concerned with technology and device abstraction levels. However,
scientists from higher abstraction levels can still continue their research with more
focus on the two following points:

• System Design: During this thesis, we have studied several applications and have
designed an accelerator for each. Each accelerator is designed based on several
assumptions. Any deviation from them or any changes to the applications may
need a new design, which can question the applicability of this approach. A
more applicable approach is moving toward more generic and flexible designs by
creating some room for changes. As an example, a flexible and generic design can
focus on neural network applications while still being able to deal with different
network structures and different dataflows. The approach taken during Chapters
6 and 7 to make a programmable design seems promising. This helps us to
deal with different technology constraints, applications, and assumptions, while
not imposing a big overhead on the system. However, what was presented in this
thesis was only one step toward a complete system. The following might be a
concern for future research direction.
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1) Multi CIM-Tile: To realize CIM for real applications, the system should consist
of many CIM-Tiles. However, it should be studied how the data flows from tiles;
what would be the proper network structure, and how the system is controlled at
this level.
2) Integration to general-purpose processing: The functionality of the CIM-Tile is
limited. Considering real-world applications, some parts of them may or cannot
be efficient to be executed on CIM-Tiles. Besides, based on our study of different
applications, there might be some ‘auxiliary’ operations within the program that
can be offloaded on CIM-Tile that are generally not supported by CIM-Tiles (e.g.,
Sigmoid function in NN, Min, and Max in Graph, Shift in Bioinformatics). Hence,
a researcher should find a solution to address this problem. One possible direction
is to consider a general-purpose CPU to support these extra functionalities that
are not supported by CIM-Tiles, or another alternative is tightly coupling FPGA
with CIM-Tiles. In any case, researchers should define how these generic compute
units are integrated and how they interface with CIM-Tiles. The researchers should
determine to what extent we can rely on these generic compute units since
frequent execution of operations on them may increase the cost of data movement
and diminish the benefit of CIM.

• Simulation platform: The current simulation platform is able to mimic the
behavior of a single CIM-Tile. This supports many parameters and tends to model
everything accurately. This is very beneficial, especially when the device technology
is not mature, which helps us to bring its impact up to the micro-architecture level
and perform design space exploration. However, scaling up this simulator and
running a real-world application may not be applicable due to the high simulation
time. Therefore, researchers may think of two levels of simulation platforms.
A low-level simulation platform where we accurately model a single CIM-Tile
regarding energy, latency, accuracy, or any other concerned metrics. A high-level
simulation platform where we model the entire system and execute the entire
application while a detail of a single CIM-Tile is abstracted away by receiving
the input from a low-level simulator. Moreover, more development should be
performed on the compiler. A compiler should extract parts of the application that
can be accelerated by CIM-Tiles and map them efficiently into the platform.
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