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Scalable control synthesis for stochastic systems
via structural IMDP abstractions

Frederik Baymler Mathiesen
f.b.mathiesen@tudelft.nl
Delft University of Technology
Delft, The Netherlands

Abstract

This paper introduces a novel abstraction-based framework for
controller synthesis of nonlinear discrete-time stochastic systems.
The focus is on probabilistic reach-avoid specifications. The frame-
work is based on abstracting a stochastic system into a new class
of robust Markov models, called orthogonally decoupled Interval
Markov Decision Processes (odIMDPs). Specifically, an odIMDPs is
a class of robust Markov processes, where the transition probabili-
ties between each pair of states are uncertain and have the product
form. We show that such a specific form in the transition probabil-
ities allows one to build compositional abstractions of stochastic
systems that, for each state, are only required to store the marginal
probability bounds of the original system. This leads to improved
memory complexity for our approach compared to commonly em-
ployed abstraction-based approaches. Furthermore, we show that
an optimal control strategy for a odIMDPs can be computed by solv-
ing a set of linear problems. When the resulting strategy is mapped
back to the original system, it is guaranteed to lead to reduced con-
servatism compared to existing approaches. To test our theoretical
framework, we perform an extensive empirical comparison of our
methods against Interval Markov Decision Process- and Markov
Decision Process-based approaches on various benchmarks includ-
ing 7D systems. Our empirical analysis shows that our approach
substantially outperforms state-of-the-art approaches in terms of
both memory requirements and the conservatism of the results.
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1 Introduction

Modern cyber-physical systems, such as autonomous vehicles or
robotic systems, are often modeled as stochastic dynamical systems
[10, 32], where nonlinear dynamics transform stochastic quanti-
ties over time. Consequently, to deploy cyber-physical systems in
safety-critical applications, it has become of paramount importance
to develop techniques for controller synthesis and verification of
nonlinear stochastic dynamical systems with guarantees of per-
formance and correctness [13]. However, unfortunately, existing
techniques still lack scalability and are commonly limited to low-
dimensional systems [26, 28].

Abstraction-based methods arguably represent the state-of-the-
art for formal analysis of nonlinear stochastic systems [11, 28,
31, 49]. Abstraction-based methods approximate a given complex
system (the “concrete” system) with a simpler one (the “abstrac-
tion”) for the purpose of performing analysis while maintaining
a (bi)simulation relation between the concrete and abstract sys-
tems [11, 31, 50, 51]. Then, by relying on the simulation relation,
controller strategies or verification results can be mapped from
the abstraction to the concrete system with provable correctness
guarantees. In the context of stochastic dynamical systems, the
abstraction model is usually taken to be a variant of a Markov
model with finite state space. In particular, abstractions to robust
Markov models and, especially, Interval Markov Decision Processes
(IMDPs) [17] have recently shown great potential to achieve state-
of-the-art results [5, 11, 12, 22]. However, these approaches are still
limited both in terms of memory and computational requirements
[11, 26, 35].

In this paper, we introduce a novel framework for formal analy-
sis of stochastic dynamical systems based on abstraction to robust
Markov models. Our framework uses compositional reasoning and
relies on the structural properties of the system, namely indepen-
dence of the stochasticity between dimensions, to improve the
tightness and computational efficiency of abstraction-based meth-
ods that use robust finite-state Markov models. In particular, we
introduce a new class of robust Markov models, called orthogonally
decoupled Interval Markov Decision Processes (odIMDPs), where
the transition probabilities between each pair of states lie within a
product of intervals. We show that this form of transition probabil-
ity is particularly suitable to abstract stochastic systems, where each
interval in the product can encode the marginal probabilities of the
system. This approach has two main advantages: (i) for each pair
of state actions, odIMDPs are only required to store the marginal
distributions of the system instead of the transition probabilities
to all the other states in the abstraction. This leads to substantial
improvements in the memory requirement of the method, which is
arguably the main bottleneck of existing abstraction-based methods,


https://www.acm.org/publications/policies/artifact-review-and-badging-current
https://doi.org/10.1145/3716863.3718031
https://creativecommons.org/licenses/by/4.0
https://creativecommons.org/licenses/by/4.0
https://doi.org/10.1145/3716863.3718031
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3716863.3718031&domain=pdf&date_stamp=2025-05-21

HSCC 25, May 6-9, 2025, Irvine, CA, USA

(ii) by encoding constraints on the marginals, the resulting abstrac-
tion model exploits the structural properties of the concrete system,
leading to improved tightness of the resulting error bounds. To
guarantee computational efficiency of our framework, we propose
a novel approach to synthesize robust strategies for an odIMDP
against a probabilistic reach-avoid property based on a divide-and-
conquer algorithm that recursively solves a linear programming
problem and returns upper and lower bounds on the probability
that the odIMDP satisfies the property. Finally, we show that the
resulting strategy can be mapped back on the concrete system and
that the returned bounds are guaranteed to contain the probability
that the concrete system satisfies the property.

To empirically evaluate the framework, we tested it on bench-
marks from the literature [1, 43, 49, 53], including stochastic affine
and nonlinear systems, neural network dynamic models, Gaussian
Processes (GPs), and Gaussian mixture models. We compared our
framework with existing state-of-the-art abstraction-based tools for
verification of stochastic systems based on abstractions to Markov
Decision Processes (MDPs) and IMDPs [49, 53]. As expected, the
experiments show that our approach outperforms the state-of-the-
art both in terms of memory requirement and conservativity of the
results, allowing one to synthesize optimal strategies for systems
that current methodologies cannot handle. For example, on both 6D
and 7D systems, while existing approaches returned trivial results,
our approach would successfully synthesize optimal policies with
a guaranteed lower bound on the satisfaction probability > 0.95. In
summary, the main contributions of the paper are:

e We introduce a new class of robust Markov models called
orthogonally decoupled Interval Markov Decision Processes
(odIMDPs) and show how robust value iteration for o dIMDPs
can be performed by relying on linear programming.

o We show that a large class of stochastic dynamical systems
can be successfully abstracted as odIMDPs and derive effi-
cient and scalable methods to construct the abstraction.

o We performed a large-scale empirical evaluation and com-
pared our approach with state-of-the-art abstraction-based
verification methods for stochastic systems.

Related Works. Abstraction-based approaches for stochastic sys-
tems generally rely on abstracting the concrete system to either
MDPs or IMDPs [28]. odIMDPs shares many features with IMDPs
[17] and abstraction of stochastic systems to IMDPs has been exten-
sively studied, including stochastic hybrid systems [11], neural net-
works [3], and Gaussian Processes [21, 43], and using data-driven
construction methods [5, 20]. Furthermore, many tools support
value iteration over IMDPs, including: PRISM [23], bmdp-tool [24],
Storm [19], IntervalMDP.jl [35], and IMPaCT! [53]. However, a
common limitation of these approaches is in the memory require-
ments in building the abstraction, which is generally quadratic in
|S|, the size of the IMDP, which is, in turn, exponential in n, the
dimension of the state space of the concrete system. In contrast,
our approach based on odIMDPs guarantees an improved memory
complexity (see Subsection 4) of a factor {/|S|. Furthermore, we
also show how our approach generally returns tighter bounds com-
pared to IMDP-based approaches. To the best of our knowledge,

IMPaCT includes functionality for the abstraction of stochastic systems to IMDPs.
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the only paper that has considered compositional reasoning for
IMDPs [18], which, however, focuses on the parallel composition
of given IMDPs, while in this paper, we focus on compositional
construction of the abstraction. Approaches based on abstractions
to (non-robust) MDPs have also been widely employed in the lit-
erature [2, 28, 47]. To scale to larger-dimensional systems, various
works [9, 16, 29, 40, 49] have devised frameworks that precede a
gridding approach, such as the one introduced in our paper, with
model order reductions or other modular approaches. However,
in these approaches, gridding is still the limiting factor. Conse-
quently, our approach is complementary to these order-reducing
approaches and should lead, when combined with these methods,
to abstractions of even higher-dimensional systems.

In parallel to abstraction-based methods, various works have
focused on abstraction-free methods based on Stochastic Barrier
Functions (SBFs) [42, 45]. The idea is to construct a function that
allows one to upper-bound the probability that the system exits
a given safe set without directly studying the evolution of the
system over time. The synthesis of SBFs has been formulated as
sum-of-squares optimization [38, 45], with neural networks [33],
and as linear programming [37]. Furthermore, data-driven synthesis
techniques have also been developed [36, 44]. However, compared
to abstraction-based methods, SBFs tend to be conservative [26].

Structure of the paper. In Section 2, we formally state our problem
of verifying probabilistic reach-avoid for stochastic systems and
outline our approach. Then in Section 3, we briefly review IMDPs
and how stochastic systems are abstracted to IMDPs. We also review
weaknesses of this approach that leads us to introduce our new
Markov model, orthogonally decoupled Interval Markov Decision
Processes (odIMDPs), which is introduced in Section 4. Section 4
also discusses the space complexity required to store an odIMDPs
and analyse their ambiguity set and compare them to those of
state-of-the-art abstraction methods. In Section 5, we show how
a stochastic system can be successfully abstracted to odIMDPs.
Then, in Section 6 we derive algorithms for robust value iteration
of odIMDPs based on linear programming. Finally, in Section 7, we
empirically benchmark the proposed methodology.

Notation. R and N represent the set of real and natural numbers
with Ng = N U {0}. The set S}, is the set of symmetric positive-
definite matrices of size n € N. For a finite set S, |S] is its cardinality.
A probability distribution y over a finite set S is a functiony : S —
[0, 1] satisfying Disesy(s) = 1. D(S) is the set of all probability
distributions over S. For p,p : S — [0, 1] such that p(s) < p(s) for
eachs € Sand Yscgp(s) <1< Yesp(s), an interval ambiguity
set T C D(S) is the set of distributions such that T’ = {y e D(S) :
p(s) < y(s) < p(s) for each s € S}. p,p are often referred to as
the interval bounds of the interval a?nbiguity set. The set of all
interval ambiguity sets over S is denoted by int amb(S). For n finite
sets S1,...,S, we denote by S1 X - - - X Sy, their Cartesian product.
Given § = S1 X --- X S, and n ambiguity sets I; € D(S;), i =
1,...,n, the product ambiguity set I C D(S) is defined as T =
{y € D(S) : y(s) =1, YiGsh, vl e I‘i}, where s = (s1,...,5,) €
S. In what follows, with a slight abuse of notation, we denote the
product ambiguity set as T = (X)_, I;. Each T} is called a marginal
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or component ambiguity set. 1x (x) denotes the indicator function
for the set X, that is, 1x(x) = 1 if x € X and 0 otherwise.

2 Problem Statement

Consider a stochastic process described by the following stochastic
difference equation

X1 = f (X, g, 0k) (1)

where x; € R" and up € U C R™ are respectively state of the
system and input at time k. We assume that |U]| is finite. vp. € V C
R is an independent and identically distributed (i.i.d.) random
variable for all time k € Ny that represents the noise that affects
the system at each time step. The vector field f : R" XU XV — R"
represents the controlled stochastic dynamics of the system.

To define a probability measure for System (1), we introduce the
one-step stochastic kernel T(X | x, u) that defines the probability
that System (1) from state x will transition to region X € R" in
one time step under action u. For this work, we assume that the
transition kernel is a mixture of K Gaussians for K > 0, each with
diagonal covariance. That is,

K
T(X | x,u) := ;ar(x, u) ./XN(XI | 1" (x,u), 2" (x,u))dx’, (2)

where p"(x,u) € R" and 2" (x,u) € S}, are action and state-
dependent mean and covariance functions of the r-th Gaussian in
the mixture. a, (x, u) is a weighting function such that a, (x,u) > 0
and 2521 ar(x,u) = 1for each source-action pair (x, u). We assume
4", 3", and a, are continuous in x for each u. When K = 1, we omit
r from the weighting probability function, mean, and covariance.

REMARK 2.1. Note that, while the assumption of diagonal covari-
ance for each distribution in Eqn. (2) introduces independence of the
stochasticity at different dimensions, the resulting model still encom-
passes a large class of models of practical interest. In fact, Eqn. (2)
includes linear and nonlinear systems with additive Gaussian noise
[3, 4, 11] and systems learned via Gaussian process regression [52].
Furthermore, we should stress that mixtures of Gaussians with diago-
nal covariance can arbitrarily well approximate any distribution [39,
Proposition 4.1].

Given an initial condition xp € R” and a control policy? 7y :
R" x Ny — U, the stochastic kernel T induces a unique and well-
defined probability measure P**x [7, Prop. 7.45], such that for sets
Xo, X4+1 € X it holds that

pXo-Tx [x0 € Xo] = 1x, (x0),

PY7 [xp 4y € Xppr | X = X up = mx (K, x)] = T(Xqq | X, 70 (3, k).

With the definition of PX0-"™x | we can now make probabilistic state-
ments on the trajectories of System (1).

Definition 2.2 (Probabilistic reach-avoid). Consider a compact
region of interest X ¢ R". Let R ¢ X and O C X be closed sets
with RN O = 0, xyp € X be the initial state, and H € N be the

For the class of systems and problem considered in this paper time-dependent Markov
policies suffices for optimality [26].
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time horizon. Then, for a given control strategy 7y, probabilistic
reach-avoid is defined as
Pra(R, O, x0, 7, H) = PO [Tk € {0,...,H},xx € R,

vk’ € {0,...,k}xpr ¢ O Axpr € X].

Note that the assumption of a given region of interest is standard
[11, 49] and allows one to only focus on the behavior of the system
in a bounded set. The problem we consider in this work is then
formally defined as follows.

Problem 2.3 (Verification and controller synthesis). Consider a
compact region of interest X C R™. Then, for sets R, O C X, initial
state xo € X, and time horizon H, synthesize a control strategy 7}
such that 7* € argmax,;_ Pra(R, O, xq, 71x, H).

Problem 2.3 requires one to compute the strategy 7, that maxi-
mizes the probability that a trajectory of System (1) starting from
xo enters R within H time steps and avoids O until R is reached.
Maximizing the probability is without loss of generality as, as we
will show in Section 6, the case min follows similarly. Note that
focusing on probabilistic reach-avoid in Problem 2.3 is not limiting.
In fact, certifying reach-avoid properties enables verification of
more complex temporal logic specifications [6, Alg. 11].

Approach. To solve Problem 2.3, in Section 4, we introduce a
class of robust Markov models, called orthogonally decoupled In-
terval Markov Decision Processes (0dIMDPs), where transition
probabilities lie in some product ambiguity set. To abstract System
(1) into an odIMDP, we first partition the region of interest into
a grid of discrete regions. Then, in Section 5, we show that one
can take advantage of the product form of an odIMDP and, for
each region, simply store the marginal probabilities of the original
system. This allows us to construct the abstraction for System (1) in
a compositional manner, with improved memory complexity and
guaranteeing tighter error bounds compared to existing methods.
We then show how an optimal strategy for an odIMDP can be found
via linear programming and mapped back to the original system,
guaranteeing efficiency. Before formally introducing odIMDPs, in
the next Section, we start by reviewing IMDPs and the standard
approach to abstracting stochastic systems to IMDPs.

3 Preliminaries on abstractions to Interval
Markov Decision Processes

Interval Markov Decision Processes (IMDPs) (also called bounded-
parameter MDPs) are a generalization of MDPs in which the transi-
tion probability distributions between states lie within some inde-
pendent intervals [17].

Definition 3.1. An Interval Markov Decision Process (IMDP) is a
tuple M = (S, A,T) where
e S is a finite set of states,
e A is a finite set of actions assumed to be available at each
state, and
o I' = {Ts a}ses.qcA are sets of feasible transition probability
distributions with I , € intamb(S).

IMDPs are commonly used as the abstraction model for complex
stochastic systems [5, 11, 12, 22, 25, 46]. In particular, the standard
approach to abstract systems of the form of Eqn. (1) to an IMDPs is
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first to assign to A the actions in U. Then, the region of interest X is
partitioned into regions {s1,...,s|s|} and each region is associated
with a state in S. In what follows, for the sake of simpler notation,
with an abuse, we will denote by s and ¢, that is, for a transition
s <5 t, both the abstract states in S and the corresponding regions
of X. Then, for a state s € S and action a € A, I 4 is defined as

Tsa=A{ysa € D(S):Vt €S,
minT(t | x,a) < ysq(t) <maxT(t|x,a)}. 3)
XES XES

Once the abstraction is built, then one can rely on existing poly-
nomial time algorithms for IMDPs to compute reach-avoid proba-
bilities and optimal strategies on the abstraction IMDP, which can
then be mapped back to the concrete system [11, 25]. However, the
abstraction approach outlined above, while general and sound, has
the following drawbacks:

e Memory consumption is often the main bottleneck. In fact,
to perform value iteration on an IMDP M, for each pair
of regions s,t € S and a € A we need to store Esa(t) =
minyes T(t | x, a) and p; ,(t) = maxxes T(t | x, @), feading
to a memory complexity of O(|S|?|A]).

For any s,t € S, the computation of minyes T(¢ | x,a) and
maxyxes T(t | x, a) generally requires approximations, which
lead to conservatism. For instance, in the case of Gaussian ad-
ditive noise xg,1 = f(xg, ug) + vk, where vp ~ N(0, 2) with
diagonal covariance matrix ¥ € S}, under the assumption
that to each s € S is associated a hyperrectangular region,
ie,s=[s;,51] x---x [gn,En], the state-of-the-art approach
[3, 11, 27] is to rely on the following under-approximation
for the min case (similar reasoning holds for the max case):

minT(¢ | x, a) =min/N(y | f(x,a),2)dy >
XES XES t

n 2 (4)
g glelgl/; N (i | f(x, a)i, %i;) dyi,

which introduces conservatism by allowing each marginal
to be optimized independently.

The abstraction process does not exploit any structural prop-
erty of the system to reduce the size of the resulting ambigu-
ity set I'. For instance, if the noise is independent across the
various dimensions (as is the case for System (1)), one may
want to account for this information to reduce the size of
the resulting feasible set of distributions in the abstraction.

In Section 4, we will introduce a new subclass of robust MDPs,
called odIMDP, where the feasible set of probabilities has a product
form and requires only storing the marginal ambiguity sets, i.e. the
right-hand side of Eqn. (4) without the product operator. We will
show that by abstracting System (1) to an odIMDP one can alleviate
the issues identified above and obtain state-of-the-art performance.

4 Orthogonally Decoupled Interval Markov
Decision Processes

Merging ideas from IMDPs [17] and compositional analysis of MDPs

[40], we propose a new subclass of robust MDPs, which we call

orthogonally decoupled Interval Markov Decision Processes (odIMDPs).
Intuitively, in an odIMDPs for each transition, the ambiguity set
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Figure 1: An example of an odIMDP where, given a source-
action pair (s, a) (the green state), the ambiguity set for the
transition probability can be decomposed into the product
between two independent interval ambiguity sets, I} ,, T2,
In this example, it is only necessary to store 9 transitions
(per source-action pair) in contrast to 20 transitions for a

traditional IMDP.

of the transition probabilities is a product of marginal interval
ambiguity sets. In what follows, in this section, we first formally
introduce odIMDPs. Then, we show how the memory requirements
for this class of models are generally orders of magnitude lower
compared to those of IMDPs. Furthermore, we also prove that they
can produce tighter ambiguity sets compared to IMDPs. These
properties will be employed in Section 5 to efficiently abstract
System (1) into an odIMDPs and solve Problem 2.3.

Definition 4.1. An orthogonally decoupled Interval Markov De-
cision Process (odIMDP) with n marginals, also called components,
is a tuple M = (S, A, T) where

e S =35 X--- XS, is a finite set of joint states with S; being
the set of states in marginal i,

e Aisafinite set of actions assumed to be available in each state,
and

o I' = {Ts a}ses.qeA are sets of feasible transition probability
distributions where Ty o = )1, Il , withT{ ;, € intamb(S;).

Similarly to IMDPs [25], a path of an odIMDP is a sequence of
states and actions w = (s, a9), (51, a1), - . ., where (sg, ar) € S X A.
We denote by w(k) = si the state of the path at time k € Ny and
by Q the set of all paths. A strategy or policy for an odIMDP is a
function 7 : S X Ny — A that assigns an action to a given state
of an odIMDP. We note that since the ambiguity set is indepen-
dent for each source-action pair, also called (s, a)-rectangularity,
any optimal policy is time-varying and deterministic [26, 48]. An
adversary is a function that assigns a feasible distribution y € T to
a given state [17]. Given a strategy and an adversary, an odIMDP
collapses to a finite Markov chain, with the transition probability
matrix specified by marginal distributions.

Analysis of space complexity. Before proceeding further, we now
discuss the memory requirements to store an odIMDP. To simplify
the presentation, we assume without loss of generality that the
number of states in each marginal is equal, that is, |S;| = |Si41| for
alli=1,...,n— 1. Hence, we have that the number of states along
each marginal is |S;| = {‘/m . To store an odIMDP, we need to store
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[0.6,0.8] [0.2,0.4) B States B Source
[0.4,0.5] [0.08,0.2]
g e [0.24,0.4]
[0.5,0.6] [0.3,0.48] 01,024

Figure 2: On the left, for the green state, we report two mar-
ginal interval ambiguity sets, i.e. an interval ambiguity set
for each marginal of a product ambiguity set, with outgo-
ing transitions to all other states. On the right, an IMDP is
constructed by multiplying the interval bounds of the mar-
ginal ambiguity sets. By this multiplication of bounds, joint
distributions are introduced that cannot be represented as a
product of distributions from the marginal ambiguity sets.

the bounds on the transition probability. Then, for each source-
action pair, we must store bounds for the ambiguity set along each
marginal. That is, the upper and lower bound for |S;| states for each
marginal. In total, this requires storing 2|S||A|n \"/E scalar values.
This is a crucial difference compared to traditional IMDP, where, as
discussed in Section 3, for each state-action pair, we need to store
2|S|2|A| scalar values. An example to clarify the different memory
requirements between odIMDP and IMDP is reported in Fig. 1.

4.1 Comparison of ambiguity sets

At first glance, the ambiguity set of an odIMDPs may appear equiva-
lent to that of an IMDP obtained by multiplying the interval bounds
of the interval ambiguity sets of each marginal for each source-
action pair, as, for instance, is done in Eqn. (3) using the approxi-
mation step in Eqn. (4). Remarkably, this is, however, a fallacy. In
fact, multiplying the interval bounds of the marginal ambiguity
sets introduces distributions that are not part of the product am-
biguity set, as they may not satisfy the additional constraints on
the marginals present in odIMDPs. To better understand why this
theoretical quirk occurs, consider the following example.

Example 4.2. Fig. 2 shows an odIMDP represented by an IMDP
for each marginal. The states are numbered to index into the joint
probability distribution as [0, 1]*. Furthermore, on the right, an
interval ambiguity set is constructed from the odIMDP by multi-
plying the marginal bounds together corresponding to the joint
transition. If we consider a distribution [0.4,0.3,0.08,0.22] T, we
see that it is clearly contained in the joint interval ambiguity set
on the right of Fig. 2. However, since the value 0.4 in the first entry
is equal to the upper bound for that entry in the ambiguity set,
it forces [0.5, -] and [0.8, -] in the distribution for the vertical and
horizontal marginals, respectively (because 0.4 = 0.5 - 0.8). For
the vertical marginal to sum to one, we must have [0.5,0.5]. The
marginal decomposition of the last element 0.22 thus needs to be
0.5p = 0.22, i.e. p = 0.22/0.5 = 0.44, which is not contained in the
horizontal marginal ambiguity set (upper bound 0.4). Hence, the
distribution contained in the joint interval ambiguity set cannot be
factored into two distributions from the marginal ambiguity sets.
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The intuition provided in Example 4.2 is formalized in Theorem
4.3 below, where we show that the ambiguity set of an odIMDP is
contained in that of an IMDP obtained by multiplying the inter-
val bounds of the interval ambiguity sets of each marginal of the
odIMDPs. This result will allow us to build abstractions for System
(1) that not only require less memory to be stored compared to
those described in Section 3, but are also guaranteed to provide
tighter error bounds for the same partition size of the state space.

THEOREM 4.3. For S = S; X - -+ X S, consider the interval am-
biguity sets T! € intamb(S;),..., I € intamb(S,), where T} =
{y € D(S) : pi(s) < y(s') < P'(s)) foreachs' € S;} . Call
T'= ®?:1 T'i. Then, it holds that T C T, where

r= {}’ € D(S): ngi(si) <y(s) < l_[ﬁi(si) foreachs € S}.
i=1 i=1

Proor. It is sufficient to show that any distribution y € T is also
contained in T, that is, it satisfies the interval bounds [}, p*(s") <

y(s) <
ative) inequalities p’(s’) < y'(s?) < p'(s?) for each component
i=1,...,n,itholds foreachs € S that [T, pi(sh < [, YiGsh <

T ﬁi(si). Therefore, we can conclude that the product distribu-

o ﬁi(si) for each s € S. By multiplying the (nonneg-

tiony = Q)1 y' is contained in T. a

5 Abstraction

In order to describe the abstraction process of System 1 into an
odIMDP, we first start from the case where the transition kernel is
Gaussian and then move to the more general case. In what follows,
we assume that the region of interest X C R" is hyperrectangular?,
that is, X = [x,%1] X - -+ X [x,,,X,]. To abstract a system to an
odIMDP, we start by partitioning X into a grid § = §; x - - - X S~"x
and associate with each (hyperrectangular) region s = [s;,51] X
X [s,,5n] € S an abstract state in S. Similarly to Section 3, we
abuse the notation and denote by s both the abstract state in § and
the corresponding region in X. The decomposed abstract state is
denoted by s = (si,....,s") € S. In addition, we add one sink state
§! for each axis i to represent exiting the set [x;,x;] and denote
S; = {§'} U S;. The reach and avoid states of the abstract model,
R and O* are respectively the set of states satisfying s C R and
s N O # 0 [11, Section 4]. All sink states are classified as avoid
states. Finally, we assign an abstract action a € A to each u € U.

In the following subsections, we focus on computing bounds on
the transition probability starting with the Gaussian case.

5.1 Gaussian case

We start by considering the case of a Gaussian transition kernel:
T(X | % u) = / NG ). Sxw)ds. ()
X

To define the marginal interval ambiguity sets l"s’; o we first need
to introduce some notation. In particular, for each (s, a) we define

3Note that if the region of interest is not hyperrectangular, but bounded, one can
always over-approximate it with a hyperrectangular region.

4We abuse notation slightly by denoting both the concrete reach/avoid regions and
the abstract reach/avoid states by R and O respectively.
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intervals [ ] such that for all x € s:

o Asal and [Z 5

i

pooSpai <, and 2, <E@au < (6)

That is, [E;a ﬁ; o) and [} 2, a,fi’a] represent interval bounds for
the mean and variance of the i-th marginal of System (1) starting
from region s. Then, computation of T} , reduces to computing for
each t' € §; the following transition probabilities

Ph=  mn / Ny | 5dyi, ()
HeElp Hgal 2Pe{Zi, Srat
o t; o
Pia(t)=  max N(yi | p', 2 dy;. (8)
pre [E;a»ﬁ;,u]’ Zle{;;aszs,a}

REMARK 5.1. Note that analytical solutions for Eqn. (7) and (8)
exist [3, 11]. Furthermore, we stress that the computation of the bounds
on mean and variance in Eqn. (6) is a well-studied problem for which
there exist tools based on convex optimization [3, 11, 30, 51] that can
also be applied in the context of Gaussian process regression [41].

For the transition to the sink state, we observe that this is equiv-
alent to the complement of transitioning to inside X. Hence, we
may compute the interval bounds via the complement probability.

S X o
P =1-  max NGy | i Sy, ()
_’ Help Hoal /%,
sie(st 5,)
Bl =1- / NGy | i 5y, (10)
uEﬂ ﬂsa x

P {;;,arzs,a}

Finally, the sink states are absorbing, that is, for all states s =
(s1 ’_1,§l,s’+1 ...,s™), we define p’ (§’) = (§’) =1land

(t By = (t ") = 0 for any ¢ € §;. From the computatlon of

all 1nterval bounds we can define I' as the product of marginal
interval ambiguity sets Iy , for each source-action pair (s, a). Then
the odIMDP is M = (S, A, r).

5.2 Mixture Models

Eqn. (2) is a generalization of the Gaussian case with K > 1. How-
ever, a key additional technical difficulty is that even if the covari-
ance matrix of each Gaussian in the mixture is diagonal, then the
covariance matrix for the mixture distribution is not necessarily di-
agonal. Specifically, the joint covariance of the mixture distribution
in Eqn. (2), omitting the dependence on (x, u), is

K K
B a4 ) (W — )T (an
r=1 r=1

Due to the second term of Eqn. (11), the joint covariance ¥ is gen-
erally not diagonal. Consequently, we cannot directly abstract the
model to odIMDPs as it does not have the required product form.
To solve this issue, in what follows, we build an odIMDPs for each
Gaussian in the mixture following the approach in Section 5.1 and
then abstract System (1) into a mixture of odIMDPs.
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Definition 5.2. A mixture of K odIMDPs with n marginals is a
tuple M = (S, A, T,T%) where

® S =51 X+ XSy is a finite set of joint states with S; being
the set of states in marginal i,

e Ais a finite set of actions,

o I'={Trsalrek ses, aEA are a set of K product ambiguity sets,
where Ty 50 = Q1 T}, with I} ; € intamb(S;), and

o T'% = {I{,}ses,aca are sets of feasible weightings distribu-
tions, where I, € intamb(K). A feasible weighting distri-
bution for a source-action pair (s, a) is denoted by as 4 € I,

= (S,A,T,T'%) can be interpreted as a set of K odIMDPs shar-
ing the same (decomposed) states S and the same set of actions
A, but that can have different individual ambiguity sets I} s 4 for
each source-action pair (s, a). The weighting as 4 € T, defines the
probability of selecting a component from the mixture. Thus, a fea-
sible distribution for M is any distribution ys 4 = ek ®s,a(1)¥< 00
where a5 q € T, and y( , € Ty 5, for each r € K.
The process of abstracting System (1) to a mixture of odIMDPs,
is as follows:

(1) S and A are computed similarly to Section 5.1 and are shared
among all Gaussians in the mixture,

(2) for the r-th Gaussian in the mixture follow the approach in
Section 5.1 to compute I 5 , forany s € Sand a € A, and

(3) for each source-action pair (s, a), the interval ambiguity set
I, € intamb(K) is constructed such that for all x € s there
exists a5 € T, with a’(x,a) = as4(r), forallr € K.
Similar to the marginal interval ambiguity sets case, we
do that by constructing I'{%, such that for each r € K for
all asq € T, it holds that minyes @ (x,a) < asq(r) <
maxyes @ (x, a).

6 Synthesis of Optimal Policies for odIMDPs

Once an abstraction of System (1) into an odIMDPs or a mixture
of odIMDPs is built, what is left to do is to synthesize an opti-
mal strategy, which can then be mapped back on the original
system. In what follows, we consider the odIMDPs case; the mix-
ture case follows similarly as we will illustrate in Eqn. (16). For
an odIMDPs M = (S, A T) synthesizing an optimal strategy for
Pra(R, O, xg, m, H), reduces to the following optimization problem:

maxminP;y[w € Q| Tk €{0,...,K}, w(k) €R,
Ty
. (12)
k' €{0,....,k},w(k') €0 A w(k’) €S].
where P,y is the probability of the Markov chain induced by strat-
egy « and distribution y. In particular, similar to the IMDPs case
[17, 25], Eqn. (12) can be computed by solving the following pes-
simistic robust value iteration:

Vo(s) = 1r(s)

min Z Vi1 (0)ys, a(t))

Ysa€lsa
D Vi 1<r>1_[ysa<r >)

teS

Vi(s) = r;leazg( 13)

=maxg|s min
acA Ys,a Ersl,a’ i=1,...,n

where g(s,0) = 1r(s) + 1s\7(s)o with T = RU O and the last equal-
ity is due to the fact that for odIMDPs Iy, = X7, I ,. That is,
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42 eT? Assign
7 e WER(t, 1) — Vi (t],£3)
Wﬁ;ﬁ(tb{z WAL ) —w Via (1.)
Yoa €T i WEHH, 88)— Vit (t1,13)
Via €T3, .
WES(t3,63) —= Vi1 (t3,13)
wh W&fUQ<EEEEIW£fu;ﬁ944>l@_mnxx
WE(t3,65) — Via (15, 13)

Figure 3: An example of the recursive structure for the pro-
posed algorithm for value iteration over odIMDPs. The ex-
ample is for an odIMDP with two marginals of three states
each. Notice going right-to-left that we optimize over ysz’a
three times, as for each subproblem, we assume ¢! is given.

the ambiguity set is the product of the marginal ambiguity sets. If
a strategy is given, we denote the value function by Vk” (s) and if
furthermore the inner minimization is replaced by a maximization,
we use the notation Vlf (s). As a consequence of the product struc-
ture, solving Eqn. (13) reduces to iteratively solving the following
optimization problem:

o gwnoﬂnm> (14)
5.a€l5a =100 2

Because of its multilinear structure, Eqn. (14) cannot be solved
directly using standard linear programming approaches for IMDPs,
e.g. O-maximization [17]. To solve this issue, we develop a divide-
and-conquer approach in which we recursively compute a lower
bound on Eqn. (14) by decomposing the problem into a set of linear
programming. Specifically, we compute an under-approximation

of Eqn. (14), Wka defined recursively as follows:

WER, ") = Vi1 (1)

Wea T = ming W ()
)/Sa Sﬂtles
(15)
fori=2,....,n
k k,0 k,l 1,1 1
Wea=Wso = mln Z sa (1 )Ys,a(t )

Ysa sa tes;

Fig. 3 gives an example of Eqn. (15) for a 2-marginals odIMDP with
three states in each marginal. The intuition is that we derive a bound
for Eqn. (14) by solving a set of simpler optimization problems, one
marginal at a time. In particular, Wslfgzi_l(tl, ..., ti71) optimizes
the expectation of Wslf;zi , which is itself a bound of Vj_;, for the
marginal i, while keeping the values of the other marginals fixed to
t1 ..., 71 Note that, as illustrated in Fig. 3, the resulting algorithm
is exponential in n. However, as each of the optimization problems
is a particularly simple linear problem that can be solved efficiently
using, e.g., the O-maximization algorithm [17, 25] and as we will
show in Section 6, the resulting computational time complexity
will still be lower compared to the approach described in Section 3
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based on IMDPs. First, in the rest of this Section, in Theorem 6.1
and Proposition 6.2 we show, respectively, that the approach in Eqn.
(15) is sound and guaranteed to improve the tightness of the results
compared to the approach described in Section 3.

THEOREM 6.1. For any source-action pair (s,a) € S X A, it holds

that
anmFMAm

ol pes

Wsk 0 min
Via€liai=1

Proor.

V\/slf(’lo = m1n Z

Ysa ‘SatIGS

min Z Z W2t )yl o (ty2 o (1) <

Ys‘aers‘atl S Ysa rs‘atzes

k2,1 .2y 1 1y,,2 2
mml mm Z Ws o (.t )Ys,a(t )Ys,a(t ) <
YSaersaYSa satles tZESz

k
We (P)yeq(th) =

n
k. o
Comin > Wl L [ e =
Ysaer.sal L... tIES t"esS, i=1
min ZwmuﬂlﬁAw
Ysaersla,l 1,...n =

O

Note that an alternative option to the divide-and-conquer algo-
rithm considered here would be to simply multiply the interval
bounds of the marginal ambiguity sets for each source-action pair,
obtaining an ambiguity set identical to the one in Eqn. (3). As al-
ready mentioned, we do not do that because it would increase the
conservativism of the resulting approach. This is proved in the fol-
lowing proposition that guarantees that our approach in Eqn. (15)
is guaranteed not to be more conservative than the one described
in Section 3. In practice, in the experimental section, we show how
our approach consistently returns substantially tighter bounds.

PROPOSITION 6.2. For an odIMDPs M = (S, A, T') consider the func-
tion Vi._1 : S — R and define the interval ambiguity set associated to

MasTyq = {y €D(S):p, (1) < Ysalt) < Pyo(t) foreacht € s},
wherep (1) =TT, p} (") and g ,(t) = TT1L, PLa(t!) Then, for .
any (s, a) € SXA it holds thatha 2 min,  cf Yires Ve—1(t)ys,a(th).

Proor. To conclude the proof, it suffices to show that for any
source-action pair (s,a) € S X A, the joint distribution ys 4(t) ob-
tained by optimizing Eqn. (15) is contained T 4. By definition of sets
Iy ; in Eqn. (15) it holds that the i-th marginal of y5 4 (¢) must be con-
tained within [pi a(ti),ﬁ;a(ti)]. This implies that [T}, pi a(ti) <
Vsa() < T, Poa(t): o

The proposed divide-and-conquer algorithm extends readily to
mixtures of odIMDPs by executing the algorithm in Eqn. (15) for

each element of the mixture and optimizing for the worst mixture
distribution. That is, by solving:

k . k,0
= min E a(r)W, ., 16
s,a « ( ) r,s,a ( )
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Table 1: A summary of the benchmarks and their characteristics. Note that the number of states for the different experiments

is the specified amount unless otherwise stated.

Name Dimension Dynamics type Property #inputs  # states
Car parking [49] 2 Additive linear Reach-avoid 9 1600
Robot reachability [53] 2 Additive linear (non-linear control) Reachability 121 400
Robot reach-avoid [53] 2 Additive linear (non-linear control) Reach-avoid 441 1600
Building automation system [53] 4 Additive affine Safety 4 1225
Van der Pol [49] 2 Additive polynomial Reachability 11 2500
NNDM Cartpole 4 Additive Neural Network Dynamic Model (NNDM) Safety 2 192000
6D linear model 6 Additive linear Safety 0 262144
7D linear model 7 Additive linear Safety 0 2097152
Dubin’s car GP [43] 3 Gaussian process with deep kernel learning Reach-avoid 7 25600
Stochastic switched linear 2 Gaussian mixture, each linear Reach-avoid 0 1600

where W,If;?a is computed as in Eqn. (15). As [, is an interval
ambiguity set, the above is a linear program that can be efficiently
solved using O-maximization [17].

Analysis of time complexity. Similarly to the analysis of the space
complexity (see Subsection 4), we assume that the number of states
in each marginal is equal, i.e. |S;| = %/|S|. Since value iteration is
performed independently for each source-action pair, to compute
the time complexity of the algorithm, we can analyze each pair sep-
arately. To do this, we start by observing the number of (branching)
internal nodes in the recursion tree required to solve Eqn. (15) (see
Fig. 3) is a geometric series with base |S;| up to exponent n — 1. The
complexity of the geometric series is O ((|S,~|)”_l) [14]. At each
internal node of the tree, the O-maximization algorithm [25] is
executed once on a set of size |S;|. O-maximization is limited by the
required sorting, which is of complexity O(|S;|1g|S;|). Now, since
|Si] = (’/E =|S I% the complexity for each source-action pair is
O(|S|1g|S:]), and the full complexity is thus O(|S|?|A|lg {‘/m) In
contrast, value iteration for a regular IMDP [17] has a time com-

plexity of O(|S|?|A|1g |S]).

6.1 Correctness

In this subsection, we map the strategy = to a switching strategy
7y : R" X Ng — U for System (1), ensuring the correctness of our
aproach. To this end, define the function J : R" — S that maps
each concrete state to an abstract state and its corresponding region.
That is, J(x) = s if and only if x € s. Then the switching strategy
for System (1) is defined as 7y (x, k) = 7(J(x),k) for all x € R"™.
The following theorem ensures the correctness of 7y.

THEOREM 6.3. Let M be an odIMDP abstraction of System (1). Then,
for any strategy m, it holds that for any x, € X

Pra(R O, x0, 7, H) € [V (J(x0)), Vi (J (x0))],

where V] (s), \A/;If(s) are the lower and upper bounds on the satisfac-
tion probability for M, as introduced in Section 6.

The proof follows similarly to [26, Theorem 4] by induction on
Eqn. (13) and relying on Theorem 6.1 to guarantee the soundness
of our approach at any time step. Note that if the regions R and
O do not align with the partitioning, then extra care is needed for
computing the upper bound on satisfaction [11, Section 7].

7 Experiments

To show the efficacy of our approach, we conducted a wide range of
empirical studies with benchmarks ranging from linear 2D systems
to nonlinear systems, linear 7D systems, Neural Network Dynamic
Models (NNDMs), and Gaussian mixture models. A summary of
the benchmarks can be found in Table 1 and extended descriptions
are provided in Appendix A of [34]. All benchmarks are verified
for a time horizon H = 10 unless otherwise specified. We compare
our results against state-of-the-art tools for abstractions to IMDPs
and MDPs. In particular, for IMDPs, we compare with the method
in [3, Theorem 1], as well as IMPaCT [53], which uses nonlinear
optimization and Monte Carlo integration to compute the transition
probabilities needed to compute the abstraction as illustrated in
Section 3. Furthermore, we also compare with SySCoRe [49], which
is based on model reduction and abstractions to MDPs. To run value
iteration for both the proposed method and the method of [3], we
use IntervalMDP.jl [35], which is our package for parallelized
value iteration over IMDPs and odIMDPs written in Julia [8]. The
experiments are all run on the TU Delft supercomputer, DelftBlue
[15], on one memory partition node with an Intel Xeon E5-6248R
CPU (12 cores allocated) and 200 GB memory. We stress that despite
recent advances in performing value iteration on GPUs [35, 53],
the experiments are all conducted on CPUs.

7.1 Comparison with IMDP-based approaches

To compare abstraction approaches based on odIMDPs and IMDPs,
for each method, we report abstraction and certification time and
memory usage. Furthermore, to quantify the conservatism of the
results, we consider the following metrics: (i) the mean lower
bound mean({V/[(s) : s € S\ T}) and (ii) the mean error, ¢ =
mean({Vg(s) — V[ (s) :s € S\ T}) where T is the set of terminal
states and 7 is the optimal strategy for Eqn. (15). Vg and V] are the
lower and upper bounds on the satisfaction probability returned by
our approach. That is, the solution of Eqn. (12) using the approach
in Eqn. (15). Furthermore, we report the (aggregated) difference in V
between the methods as agg({VﬁdIMDP(s) - VI‘_}ther(s) :se€S\T}H
where the aggregation functions are agg € {min, max, mean} and
the methods are other € {IMDP,IMPaCT} (IMDP refers to the
method in [3, Theorem 1]). We consider the same discretization
size in the abstraction process for all methods, reported in Table 1.
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The results of the comparison with IMDP-based approaches can
be found in Table 2 and Table 3 for computation performance and
satisfaction probability, respectively. Comparing the computation
time of [3, Theorem 1] and IMPaCT [53] with that of our method
based on odIMDPs, the abstraction time of odIMDPs is at least 5x
faster, up to 80x faster, for 2D benchmarks, and at least two orders
of magnitude faster for >3D benchmarks. The certification time
is comparable to or faster than both [3, Theorem 1] and IMPaCT.
As expected, the memory requirements are considerably lower for
0odIMDPs: Compared to IMPaCT, odIMDPs use at least an order of
magnitude less memory. Most remarkably, for the 6D and 7D linear
models, odIMDPs uses 4682x and 30476x less memory, respectively,
compared to IMPaCT. If we compare the satisfaction probability
results in Table 3, the proposed method is at least as good as the
method [3, Theorem 1] for all states in all examples. This ranges
from almost the same satisfaction probability for the 2D robot with
a reach-avoid specification to 17.33 percentage points better on
average for the 4D building automation system. A similar analysis
holds for IMPaCT, with the caveat that IMPACT uses non-linear
optimization to compute Eqn. (3), thus its results are generally
tighter compared to those of [3, Theorem 1].

7.2 Comparison with SySCoRe (MDP-based
approach)

We now also compare with SySCoRe® [49], which represents a
state-of-the-art tool for control and verification of stochastic sys-
tems based on abstractions to MDPs. Note that, as SySCoRe only
supports gridding of 2D systems, we cannot compare on systems
of higher dimension. In particular, in Fig. 4, we consider the car
parking benchmark introduced in Table 1, and for various sizes of
the abstraction, we report the error ¢, as introduced in the previous
subsection. From the figure, we have three key observations:

o SySCoRe requires a relatively large number of regions in the
partition before its mean error decreases with larger time
horizons.

e 0odIMDPs tends to obtain substantially tighter bounds for the
same abstration size. For example, the mean error at time
100 of SySCoRe with an MDP of size 90k is larger than that
of our approach with an odIMDPs of 2.5k states.

e The mean error for odIMDPs first increases with time hori-
zons to a level slightly above SySCoRe with the same number
of regions and then decreases for longer horizons.

We should, however, stress that SySCoRe requires significantly less
memory compared to our approach for the same partition size. The
memory usage compared to the mean error at convergence for
both SySCoRe and odIMDPs is reported in Table 4. Nevertheless,
especially for longer time horizon, because of the fewer regions
per dimension required by our approach to achieve a similar level
of error, we expect our approach based on odIMDPs to be substan-
tially more scalable for higher dimensions. In fact, this has already
been observed in [11] for IMDP-based approaches compared to

SWe only compare with the finite-state abstraction of SySCoRe, i.e. without model
order reductions, to assess the impact of the model choice. As mentioned in Section 1,
model order reductions are also interesting in the context of IMDP-based abstractions
and is subject to future work.
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Figure 4: Comparing ¢ for a varying number of regions on the
abstraction (assuming a uniform partition of the state space)
and time horizons for both SySCoRe [49] and odIMDPs.
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Figure 5: Mean error and 95% confidence interval, with re-
spect to a uniform distribution of initial conditions, for vari-
ous sizes of partitions for the car parking and building au-
tomation system benchmarks.

MDP-based approaches and, as illustrated in Table 2, our approach
substantially outperforms that of [11] in terms of scalability.

7.3 Empirical convergence analysis

As hinted in Fig. 4, the error of our approach is reduced with finer
partitioning of the region of interest X. To analyze this behavior in
more detail, in Fig. 5 we report the mean error and 95% confidence
interval as a function of the number of regions per axis for the
car parking and building automation system benchmarks. In both
cases, the mean error decreases with more regions for both systems.
The slight increase at various points for the car parking benchmark
is attributed to a misalignment of the reach and avoid regions
with the partitioning of X (see Section 6.1 for more details). The
confidence interval for the car parking benchmark suggests that
while a larger number of regions quickly reach low errors, some
hardly converge. Future work will study the convergence from a
theoretical perspective.
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Table 2: Computation time and memory requirements for IMDP-based approaches across different benchmarks. Time is
measured in seconds, and memory is measured in MB. OOM denotes out of memory. To compare the memory requirements for
the benchmarks with OOM, we have calculated the amount of memory required to store the transition interval bounds (as a

dense matrix) using the formula for IMDPs in Subsection 4.

Our method Adams et al. [3] IMPaCT [53]
Benchmark Abs. time  Cert. time  Mem. | Abs.time Cert. time Mem. | Abs.time Cert. time Mem.
Car parking 0.150 0.146 19.2 13.497 0.255 138.1 19.570 0.846 304.9
Robot reachability 0.665 0.168 21.6 12.659 0.129 88.0 20.611 0.765 306.7
Robot reach-avoid 14.259 7.641 547.2 1136.720 6.739 4143.8 918.856 37.526 16388.0
Building automation system 0.023 0.237 3.1 7.273 0.285 105.1 17.564 0.318 96.0
Van der Pol 1.658 0.257 455 27.255 0.827 353.6 113.235 3.233 1093.4
NNDM Cartpole 236.154 550.747  610.8 | 42326.400 3.751 15909 Incompatible dynamics
6D linear model 8.959 359.887 237.3 OOM OOM (~ 1.1TB)
7D linear model 66.231  13903.540 2310.8 Timeout (24h) OOM (= 70.4TB)
Dubin’s car GP 13.816 19.562  352.2 336.940 31.333  14265.8 Incompatible dynamics
Stochastic switched linear 0.033 0.045 4.5 3.391 0.038 41.0 NLopt failure

Table 3: Satisfaction probabilities for IMDP-based approaches. V denotes the lower bound satisfaction probability and € the
mean error. For Adams et al. [3] and IMPaCT [53], we also report the (minimum, maximum, and mean over regions) difference §
in V to our method, where positive means that our method yields a higher satisfaction probability and vice versa. The unreliable
result for IMPaCT with the Van der Pol benchmark is due to it returning NaN for every state.

Our method Adams et al. [3] IMPaCT [53]
Benchmark Mean V e | MeanV & Mind MaxS Meand | Mean V & Mind Maxd Meand
Car parking 0.269 0.3885 0.213 0.5315 0.0040 0.1428 0.0560 0.213 0.5183 0.0040 0.1422 0.0556
Robot reachability 0.889 0.1108 0.881 0.1186 0.0060 0.0119 0.0079 0.890 0.1098 -0.0058 0.0022 -0.0010
Robot reach-avoid 0.980 0.0199 0.979 0.0208 0.0005 0.0027 0.0008 0.980 0.0202 -0.0001 0.0018 0.0003
Building automation system 0.263  0.7336 0.090 0.9076 0.0510 0.2297 0.1733 0.174 0.8237 0.0304 0.1131 0.0897
Van der Pol 0.069  0.3367 0.051 0.4178 0.0000 0.0529 0.0177 Unreliable results
NNDM Cartpole 0.004 0.7634 0.000 0.7184 0.0000 0.4101 0.0037 Incompatible dynamics
6D linear model 0.958  0.0419 OOM OOM
7D linear model 0.952  0.0433 Timeout OOM
Dubin’s car GP 0.362  0.3461 0.216  0.5046  0.0000 0.8383  0.1458 Incompatible dynamics
Stochastic switched linear 0.411  0.2828 0.366  0.3605 0.0000 0.0979  0.0456 NLopt failure

Table 4: The memory usage and the mean error ¢ at 100 time
steps for SySCoRe [49] and odIMDPs on the car parking
benchmark (see Table 1).

# regions ‘ SySCoRe ‘ odIMDPs

‘ Mem. (MB) £ ‘ Mem. (MB) £
2500 0.80 0.2650 35.55 0.0204
10000 3.20 0.1568 279.51 0.0107
22500 7.20 0.1254 937.86 0.0070
90000 28.81 0.0288 7459.02 0.0028
360000 115.21 0.0060 59499.08 0.0014

8 Conclusion

We presented a novel approach for control synthesis of non-linear

stochastic systems against probabilistic reach-avoid specifications.

Our approach is based on abstractions to orthogonally decoupled
Interval Markov Decision Process (odIMDP), which is a new class
of robust Markov models with uncertain transition probabilities

having the product form. We showed how such a structure on the
transition probabilities allows one to abstract a large class of sto-
chastic systems by obtaining substantial improvements both in
terms of memory requirements and tightness of the results com-
pared to state-of-the-art. The theoretical findings are supported by
experimental results, showing how our new approach can success-
fully outperform existing competing methods in various tasks.

Naturally, our proposed approach is not without limitations. First,
our framework only applies to systems with independence in the
stochasticity across dimensions. As discussed, this includes various
systems commonly used in practice. However, if there is dependence
across the marginals, then the transition probabilities do not have
the product form. Consequently, our framework cannot be applied.
How to extend our approach to this setting is an important future
direction. Secondly, exactly and efficiently solving the multi-linear
problem of Eqn. (14) is still an open problem for which we employed
relaxations. Finally, our approach assumes on a grid-partitioning of
the region of interest, although the literature [3, 43] on refinement
has shown that heterogeneous abstractions can be beneficial.
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