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Abstract
This paper introduces a novel abstraction-based framework for

controller synthesis of nonlinear discrete-time stochastic systems.

The focus is on probabilistic reach-avoid specifications. The frame-

work is based on abstracting a stochastic system into a new class

of robust Markov models, called orthogonally decoupled Interval

Markov Decision Processes (odIMDPs). Specifically, an odIMDPs is

a class of robust Markov processes, where the transition probabili-

ties between each pair of states are uncertain and have the product

form. We show that such a specific form in the transition probabil-

ities allows one to build compositional abstractions of stochastic

systems that, for each state, are only required to store the marginal

probability bounds of the original system. This leads to improved

memory complexity for our approach compared to commonly em-

ployed abstraction-based approaches. Furthermore, we show that

an optimal control strategy for a odIMDPs can be computed by solv-

ing a set of linear problems. When the resulting strategy is mapped

back to the original system, it is guaranteed to lead to reduced con-

servatism compared to existing approaches. To test our theoretical

framework, we perform an extensive empirical comparison of our

methods against Interval Markov Decision Process- and Markov

Decision Process-based approaches on various benchmarks includ-

ing 7D systems. Our empirical analysis shows that our approach

substantially outperforms state-of-the-art approaches in terms of

both memory requirements and the conservatism of the results.

CCS Concepts
•Mathematics of computing→Markov processes; •Theory of
computation → Stochastic control and optimization; • Computer
systems organization→ Embedded systems.
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1 Introduction
Modern cyber-physical systems, such as autonomous vehicles or

robotic systems, are often modeled as stochastic dynamical systems

[10, 32], where nonlinear dynamics transform stochastic quanti-

ties over time. Consequently, to deploy cyber-physical systems in

safety-critical applications, it has become of paramount importance

to develop techniques for controller synthesis and verification of

nonlinear stochastic dynamical systems with guarantees of per-

formance and correctness [13]. However, unfortunately, existing

techniques still lack scalability and are commonly limited to low-

dimensional systems [26, 28].

Abstraction-based methods arguably represent the state-of-the-

art for formal analysis of nonlinear stochastic systems [11, 28,

31, 49]. Abstraction-based methods approximate a given complex

system (the “concrete” system) with a simpler one (the “abstrac-

tion”) for the purpose of performing analysis while maintaining

a (bi)simulation relation between the concrete and abstract sys-

tems [11, 31, 50, 51]. Then, by relying on the simulation relation,

controller strategies or verification results can be mapped from

the abstraction to the concrete system with provable correctness

guarantees. In the context of stochastic dynamical systems, the

abstraction model is usually taken to be a variant of a Markov

model with finite state space. In particular, abstractions to robust

Markov models and, especially, Interval Markov Decision Processes

(IMDPs) [17] have recently shown great potential to achieve state-

of-the-art results [5, 11, 12, 22]. However, these approaches are still

limited both in terms of memory and computational requirements

[11, 26, 35].

In this paper, we introduce a novel framework for formal analy-

sis of stochastic dynamical systems based on abstraction to robust

Markov models. Our framework uses compositional reasoning and

relies on the structural properties of the system, namely indepen-

dence of the stochasticity between dimensions, to improve the

tightness and computational efficiency of abstraction-based meth-

ods that use robust finite-state Markov models. In particular, we

introduce a new class of robust Markov models, called orthogonally

decoupled Interval Markov Decision Processes (odIMDPs), where

the transition probabilities between each pair of states lie within a

product of intervals. We show that this form of transition probabil-

ity is particularly suitable to abstract stochastic systems, where each

interval in the product can encode the marginal probabilities of the

system. This approach has two main advantages: (i) for each pair

of state actions, odIMDPs are only required to store the marginal

distributions of the system instead of the transition probabilities

to all the other states in the abstraction. This leads to substantial

improvements in the memory requirement of the method, which is

arguably themain bottleneck of existing abstraction-basedmethods,
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(ii) by encoding constraints on the marginals, the resulting abstrac-

tion model exploits the structural properties of the concrete system,

leading to improved tightness of the resulting error bounds. To

guarantee computational efficiency of our framework, we propose

a novel approach to synthesize robust strategies for an odIMDP

against a probabilistic reach-avoid property based on a divide-and-

conquer algorithm that recursively solves a linear programming

problem and returns upper and lower bounds on the probability

that the odIMDP satisfies the property. Finally, we show that the

resulting strategy can be mapped back on the concrete system and

that the returned bounds are guaranteed to contain the probability

that the concrete system satisfies the property.

To empirically evaluate the framework, we tested it on bench-

marks from the literature [1, 43, 49, 53], including stochastic affine

and nonlinear systems, neural network dynamic models, Gaussian

Processes (GPs), and Gaussian mixture models. We compared our

framework with existing state-of-the-art abstraction-based tools for

verification of stochastic systems based on abstractions to Markov

Decision Processes (MDPs) and IMDPs [49, 53]. As expected, the

experiments show that our approach outperforms the state-of-the-

art both in terms of memory requirement and conservativity of the

results, allowing one to synthesize optimal strategies for systems

that current methodologies cannot handle. For example, on both 6D

and 7D systems, while existing approaches returned trivial results,

our approach would successfully synthesize optimal policies with

a guaranteed lower bound on the satisfaction probability > 0.95. In

summary, the main contributions of the paper are:

• We introduce a new class of robust Markov models called

orthogonally decoupled Interval Markov Decision Processes

(odIMDPs) and show how robust value iteration for odIMDPs

can be performed by relying on linear programming.

• We show that a large class of stochastic dynamical systems

can be successfully abstracted as odIMDPs and derive effi-

cient and scalable methods to construct the abstraction.

• We performed a large-scale empirical evaluation and com-

pared our approach with state-of-the-art abstraction-based

verification methods for stochastic systems.

Related Works. Abstraction-based approaches for stochastic sys-

tems generally rely on abstracting the concrete system to either

MDPs or IMDPs [28]. odIMDPs shares many features with IMDPs

[17] and abstraction of stochastic systems to IMDPs has been exten-

sively studied, including stochastic hybrid systems [11], neural net-

works [3], and Gaussian Processes [21, 43], and using data-driven

construction methods [5, 20]. Furthermore, many tools support

value iteration over IMDPs, including: PRISM [23], bmdp-tool [24],

Storm [19], IntervalMDP.jl [35], and IMPaCT
1
[53]. However, a

common limitation of these approaches is in the memory require-

ments in building the abstraction, which is generally quadratic in

|𝑆 |, the size of the IMDP, which is, in turn, exponential in 𝑛, the

dimension of the state space of the concrete system. In contrast,

our approach based on odIMDPs guarantees an improved memory

complexity (see Subsection 4) of a factor
𝑛
√︁
|𝑆 |. Furthermore, we

also show how our approach generally returns tighter bounds com-

pared to IMDP-based approaches. To the best of our knowledge,

1
IMPaCT includes functionality for the abstraction of stochastic systems to IMDPs.

the only paper that has considered compositional reasoning for

IMDPs [18], which, however, focuses on the parallel composition

of given IMDPs, while in this paper, we focus on compositional

construction of the abstraction. Approaches based on abstractions

to (non-robust) MDPs have also been widely employed in the lit-

erature [2, 28, 47]. To scale to larger-dimensional systems, various

works [9, 16, 29, 40, 49] have devised frameworks that precede a

gridding approach, such as the one introduced in our paper, with

model order reductions or other modular approaches. However,

in these approaches, gridding is still the limiting factor. Conse-

quently, our approach is complementary to these order-reducing

approaches and should lead, when combined with these methods,

to abstractions of even higher-dimensional systems.

In parallel to abstraction-based methods, various works have

focused on abstraction-free methods based on Stochastic Barrier

Functions (SBFs) [42, 45]. The idea is to construct a function that

allows one to upper-bound the probability that the system exits

a given safe set without directly studying the evolution of the

system over time. The synthesis of SBFs has been formulated as

sum-of-squares optimization [38, 45], with neural networks [33],

and as linear programming [37]. Furthermore, data-driven synthesis

techniques have also been developed [36, 44]. However, compared

to abstraction-based methods, SBFs tend to be conservative [26].

Structure of the paper. In Section 2, we formally state our problem

of verifying probabilistic reach-avoid for stochastic systems and

outline our approach. Then in Section 3, we briefly review IMDPs

and how stochastic systems are abstracted to IMDPs.We also review

weaknesses of this approach that leads us to introduce our new

Markov model, orthogonally decoupled Interval Markov Decision

Processes (odIMDPs), which is introduced in Section 4. Section 4

also discusses the space complexity required to store an odIMDPs

and analyse their ambiguity set and compare them to those of

state-of-the-art abstraction methods. In Section 5, we show how

a stochastic system can be successfully abstracted to odIMDPs.

Then, in Section 6 we derive algorithms for robust value iteration

of odIMDPs based on linear programming. Finally, in Section 7, we

empirically benchmark the proposed methodology.

Notation. R and N represent the set of real and natural numbers

with N0 = N ∪ {0}. The set S𝑛++ is the set of symmetric positive-

definite matrices of size 𝑛 ∈ N. For a finite set 𝑆 , |𝑆 | is its cardinality.
A probability distribution 𝛾 over a finite set 𝑆 is a function 𝛾 : 𝑆 →
[0, 1] satisfying ∑

𝑠∈𝑆 𝛾 (𝑠) = 1. D(𝑆) is the set of all probability
distributions over 𝑆 . For 𝑝, 𝑝 : 𝑆 → [0, 1] such that 𝑝 (𝑠) ≤ 𝑝 (𝑠) for
each 𝑠 ∈ 𝑆 and ∑

𝑠∈𝑆 𝑝 (𝑠) ≤ 1 ≤ ∑
𝑠∈𝑆 𝑝 (𝑠), an interval ambiguity

set Γ ⊂ D(𝑆) is the set of distributions such that Γ = {𝛾 ∈ D(𝑆) :

𝑝 (𝑠) ≤ 𝛾 (𝑠) ≤ 𝑝 (𝑠) for each 𝑠 ∈ 𝑆}. 𝑝, 𝑝 are often referred to as

the interval bounds of the interval ambiguity set. The set of all

interval ambiguity sets over 𝑆 is denoted by int amb(𝑆). For 𝑛 finite

sets 𝑆1, . . . , 𝑆𝑛 we denote by 𝑆1 × · · · × 𝑆𝑛 their Cartesian product.

Given 𝑆 = 𝑆1 × · · · × 𝑆𝑛 and 𝑛 ambiguity sets Γ𝑖 ∈ D(𝑆𝑖 ), 𝑖 =

1, . . . , 𝑛, the product ambiguity set Γ ⊆ D(𝑆) is defined as Γ ={
𝛾 ∈ D(𝑆) : 𝛾 (𝑠) = ∏𝑛

𝑖=1
𝛾𝑖 (𝑠𝑖 ), 𝛾𝑖 ∈ Γ𝑖

}
, where 𝑠 = (𝑠1, . . . , 𝑠𝑛) ∈

𝑆 . In what follows, with a slight abuse of notation, we denote the

product ambiguity set as Γ =
⊗𝑛

𝑖=1
Γ𝑖 . Each Γ𝑖 is called a marginal
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or component ambiguity set. 1𝑋 (𝑥) denotes the indicator function
for the set 𝑋 , that is, 1𝑋 (𝑥) = 1 if 𝑥 ∈ 𝑋 and 0 otherwise.

2 Problem Statement
Consider a stochastic process described by the following stochastic

difference equation

𝑥𝑘+1
= 𝑓 (𝑥𝑘 , 𝑢𝑘 , 𝑣𝑘 ) (1)

where 𝑥𝑘 ∈ R𝑛 and 𝑢𝑘 ∈ 𝑈 ⊆ R𝑚 are respectively state of the

system and input at time 𝑘 . We assume that |𝑈 | is finite. 𝑣𝑘 ∈ 𝑉 ⊆
R𝑛𝑣 is an independent and identically distributed (i.i.d.) random

variable for all time 𝑘 ∈ N0 that represents the noise that affects

the system at each time step. The vector field 𝑓 : R𝑛 ×𝑈 ×𝑉 → R𝑛

represents the controlled stochastic dynamics of the system.

To define a probability measure for System (1), we introduce the

one-step stochastic kernel 𝑇 (𝑋 | 𝑥,𝑢) that defines the probability
that System (1) from state 𝑥 will transition to region 𝑋 ⊆ R𝑛 in

one time step under action 𝑢. For this work, we assume that the

transition kernel is a mixture of 𝐾 Gaussians for 𝐾 > 0, each with

diagonal covariance. That is,

𝑇 (𝑋 | 𝑥,𝑢) :=

𝐾∑︁
𝑟=1

𝛼𝑟 (𝑥,𝑢)
∫
𝑋

N(𝑥 ′ | 𝜇𝑟 (𝑥,𝑢), Σ𝑟 (𝑥,𝑢))𝑑𝑥 ′, (2)

where 𝜇𝑟 (𝑥,𝑢) ∈ R𝑛 and Σ𝑟 (𝑥,𝑢) ∈ S𝑛++ are action and state-

dependent mean and covariance functions of the 𝑟 -th Gaussian in

the mixture. 𝛼𝑟 (𝑥,𝑢) is a weighting function such that 𝛼𝑟 (𝑥,𝑢) ≥ 0

and

∑𝐾
𝑟=1

𝛼𝑟 (𝑥,𝑢) = 1 for each source-action pair (𝑥,𝑢). We assume

𝜇𝑟 , Σ𝑟 , and 𝛼𝑟 are continuous in 𝑥 for each 𝑢. When 𝐾 = 1, we omit

𝑟 from the weighting probability function, mean, and covariance.

Remark 2.1. Note that, while the assumption of diagonal covari-
ance for each distribution in Eqn. (2) introduces independence of the
stochasticity at different dimensions, the resulting model still encom-
passes a large class of models of practical interest. In fact, Eqn. (2)
includes linear and nonlinear systems with additive Gaussian noise
[3, 4, 11] and systems learned via Gaussian process regression [52].
Furthermore, we should stress that mixtures of Gaussians with diago-
nal covariance can arbitrarily well approximate any distribution [39,
Proposition 4.1].

Given an initial condition 𝑥0 ∈ R𝑛 and a control policy
2 𝜋𝑥 :

R𝑛 × N0 → 𝑈 , the stochastic kernel 𝑇 induces a unique and well-

defined probability measure 𝑃𝑥0,𝜋𝑥
[7, Prop. 7.45], such that for sets

𝑋0, 𝑋𝑘+1
⊆ 𝑋 it holds that

𝑃𝑥0,𝜋𝑥 [𝑥0 ∈ 𝑋0] = 1𝑋0
(𝑥0),

𝑃𝑥0,𝜋𝑥 [𝑥𝑘+1
∈ 𝑋𝑘+1

| 𝑥𝑘 = 𝑥,𝑢𝑘 = 𝜋𝑥 (𝑘, 𝑥)] = 𝑇 (𝑋𝑘+1
| 𝑥, 𝜋𝑥 (𝑥, 𝑘)).

With the definition of 𝑃𝑥0,𝜋𝑥
, we can now make probabilistic state-

ments on the trajectories of System (1).

Definition 2.2 (Probabilistic reach-avoid). Consider a compact

region of interest 𝑋 ⊂ R𝑛 . Let 𝑅 ⊂ 𝑋 and 𝑂 ⊂ 𝑋 be closed sets

with 𝑅 ∩ 𝑂 = ∅, 𝑥0 ∈ 𝑋 be the initial state, and 𝐻 ∈ N be the

2
For the class of systems and problem considered in this paper time-dependent Markov

policies suffices for optimality [26].

time horizon. Then, for a given control strategy 𝜋𝑥 , probabilistic
reach-avoid is defined as

𝑃ra (𝑅,𝑂, 𝑥0, 𝜋𝑥 , 𝐻 ) = 𝑃𝑥0,𝜋𝑥 [∃𝑘 ∈ {0, . . . , 𝐻 }, 𝑥𝑘 ∈ 𝑅,
∀𝑘′ ∈ {0, . . . , 𝑘}, 𝑥𝑘 ′ ∉ 𝑂 ∧ 𝑥𝑘 ′ ∈ 𝑋 ] .

Note that the assumption of a given region of interest is standard

[11, 49] and allows one to only focus on the behavior of the system

in a bounded set. The problem we consider in this work is then

formally defined as follows.

Problem 2.3 (Verification and controller synthesis). Consider a
compact region of interest 𝑋 ⊂ R𝑛 . Then, for sets 𝑅,𝑂 ⊂ 𝑋 , initial
state 𝑥0 ∈ 𝑋 , and time horizon 𝐻 , synthesize a control strategy 𝜋∗𝑥
such that 𝜋∗ ∈ arg max𝜋𝑥 𝑃ra (𝑅,𝑂, 𝑥0, 𝜋𝑥 , 𝐻 ).

Problem 2.3 requires one to compute the strategy 𝜋𝑥 that maxi-

mizes the probability that a trajectory of System (1) starting from

𝑥0 enters 𝑅 within 𝐻 time steps and avoids 𝑂 until 𝑅 is reached.

Maximizing the probability is without loss of generality as, as we

will show in Section 6, the case min follows similarly. Note that

focusing on probabilistic reach-avoid in Problem 2.3 is not limiting.

In fact, certifying reach-avoid properties enables verification of

more complex temporal logic specifications [6, Alg. 11].

Approach. To solve Problem 2.3, in Section 4, we introduce a

class of robust Markov models, called orthogonally decoupled In-

terval Markov Decision Processes (odIMDPs), where transition

probabilities lie in some product ambiguity set. To abstract System

(1) into an odIMDP, we first partition the region of interest into

a grid of discrete regions. Then, in Section 5, we show that one

can take advantage of the product form of an odIMDP and, for

each region, simply store the marginal probabilities of the original

system. This allows us to construct the abstraction for System (1) in

a compositional manner, with improved memory complexity and

guaranteeing tighter error bounds compared to existing methods.

We then show how an optimal strategy for an odIMDP can be found

via linear programming and mapped back to the original system,

guaranteeing efficiency. Before formally introducing odIMDPs, in

the next Section, we start by reviewing IMDPs and the standard

approach to abstracting stochastic systems to IMDPs.

3 Preliminaries on abstractions to Interval
Markov Decision Processes

Interval Markov Decision Processes (IMDPs) (also called bounded-

parameter MDPs) are a generalization of MDPs in which the transi-

tion probability distributions between states lie within some inde-

pendent intervals [17].

Definition 3.1. An Interval Markov Decision Process (IMDP) is a

tuple𝑀 = (𝑆,𝐴, Γ) where
• 𝑆 is a finite set of states,

• 𝐴 is a finite set of actions assumed to be available at each

state, and

• Γ = {Γ𝑠,𝑎}𝑠∈𝑆,𝑎∈𝐴 are sets of feasible transition probability

distributions with Γ𝑠,𝑎 ∈ int amb(𝑆).

IMDPs are commonly used as the abstraction model for complex

stochastic systems [5, 11, 12, 22, 25, 46]. In particular, the standard

approach to abstract systems of the form of Eqn. (1) to an IMDPs is
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first to assign to𝐴 the actions in𝑈 . Then, the region of interest𝑋 is

partitioned into regions {𝑠1, . . . , 𝑠 |𝑆 | } and each region is associated

with a state in 𝑆 . In what follows, for the sake of simpler notation,

with an abuse, we will denote by 𝑠 and 𝑡 , that is, for a transition

𝑠
𝑎−→ 𝑡 , both the abstract states in 𝑆 and the corresponding regions

of 𝑋 . Then, for a state 𝑠 ∈ 𝑆 and action 𝑎 ∈ 𝐴, Γ𝑠,𝑎 is defined as

Γ𝑠,𝑎 = {𝛾𝑠,𝑎 ∈ D(𝑆) : ∀𝑡 ∈ 𝑆,
min

𝑥∈𝑠
𝑇 (𝑡 | 𝑥, 𝑎) ≤ 𝛾𝑠,𝑎 (𝑡) ≤ max

𝑥∈𝑠
𝑇 (𝑡 | 𝑥, 𝑎)}. (3)

Once the abstraction is built, then one can rely on existing poly-

nomial time algorithms for IMDPs to compute reach-avoid proba-

bilities and optimal strategies on the abstraction IMDP, which can

then be mapped back to the concrete system [11, 25]. However, the

abstraction approach outlined above, while general and sound, has

the following drawbacks:

• Memory consumption is often the main bottleneck. In fact,

to perform value iteration on an IMDP 𝑀 , for each pair

of regions 𝑠, 𝑡 ∈ 𝑆 and 𝑎 ∈ 𝐴 we need to store 𝑝
𝑠,𝑎

(𝑡) =

min𝑥∈𝑠 𝑇 (𝑡 | 𝑥, 𝑎) and 𝑝𝑠,𝑎 (𝑡) = max𝑥∈𝑠 𝑇 (𝑡 | 𝑥, 𝑎), leading
to a memory complexity of 𝑂 ( |𝑆 |2 |𝐴|).

• For any 𝑠, 𝑡 ∈ 𝑆 , the computation of min𝑥∈𝑠 𝑇 (𝑡 | 𝑥, 𝑎) and
max𝑥∈𝑠 𝑇 (𝑡 | 𝑥, 𝑎) generally requires approximations, which

lead to conservatism. For instance, in the case of Gaussian ad-

ditive noise 𝑥𝑘+1
= 𝑓 (𝑥𝑘 , 𝑢𝑘 ) + 𝑣𝑘 , where 𝑣𝑘 ∼ N(0, Σ) with

diagonal covariance matrix Σ ∈ S𝑛++, under the assumption

that to each 𝑠 ∈ 𝑆 is associated a hyperrectangular region,

i.e., 𝑠 = [𝑠
1
, 𝑠1] × · · · × [𝑠𝑛, 𝑠𝑛], the state-of-the-art approach

[3, 11, 27] is to rely on the following under-approximation

for the min case (similar reasoning holds for the max case):

min

𝑥∈𝑠
𝑇 (𝑡 | 𝑥, 𝑎) =min

𝑥∈𝑠

∫
𝑡

N(𝑦 | 𝑓 (𝑥, 𝑎), Σ) 𝑑𝑦 ≥

𝑛∏
𝑖=1

min

𝑥∈𝑠

∫ 𝑡𝑖

𝑡𝑖

N(𝑦𝑖 | 𝑓 (𝑥, 𝑎)𝑖 , Σ𝑖𝑖 ) 𝑑𝑦𝑖 ,
(4)

which introduces conservatism by allowing each marginal

to be optimized independently.

• The abstraction process does not exploit any structural prop-

erty of the system to reduce the size of the resulting ambigu-

ity set Γ. For instance, if the noise is independent across the
various dimensions (as is the case for System (1)), one may

want to account for this information to reduce the size of

the resulting feasible set of distributions in the abstraction.

In Section 4, we will introduce a new subclass of robust MDPs,

called odIMDP, where the feasible set of probabilities has a product

form and requires only storing the marginal ambiguity sets, i.e. the

right-hand side of Eqn. (4) without the product operator. We will

show that by abstracting System (1) to an odIMDP one can alleviate

the issues identified above and obtain state-of-the-art performance.

4 Orthogonally Decoupled Interval Markov
Decision Processes

Merging ideas from IMDPs [17] and compositional analysis ofMDPs

[40], we propose a new subclass of robust MDPs, which we call

orthogonally decoupled Interval Markov Decision Processes (odIMDPs).
Intuitively, in an odIMDPs for each transition, the ambiguity set

γ2s,a

γ1s,a

States

Source

Probability

Figure 1: An example of an odIMDP where, given a source-
action pair (𝑠, 𝑎) (the green state), the ambiguity set for the
transition probability can be decomposed into the product
between two independent interval ambiguity sets, Γ1

𝑠,𝑎, Γ
2

𝑠,𝑎 .
In this example, it is only necessary to store 9 transitions
(per source-action pair) in contrast to 20 transitions for a
traditional IMDP.

of the transition probabilities is a product of marginal interval

ambiguity sets. In what follows, in this section, we first formally

introduce odIMDPs. Then, we show how the memory requirements

for this class of models are generally orders of magnitude lower

compared to those of IMDPs. Furthermore, we also prove that they

can produce tighter ambiguity sets compared to IMDPs. These

properties will be employed in Section 5 to efficiently abstract

System (1) into an odIMDPs and solve Problem 2.3.

Definition 4.1. An orthogonally decoupled Interval Markov De-

cision Process (odIMDP) with 𝑛 marginals, also called components,

is a tuple𝑀 = (𝑆,𝐴, Γ) where
• 𝑆 = 𝑆1 × · · · × 𝑆𝑛 is a finite set of joint states with 𝑆𝑖 being

the set of states in marginal 𝑖 ,

• 𝐴 is a finite set of actions assumed to be available in each state,

and

• Γ = {Γ𝑠,𝑎}𝑠∈𝑆,𝑎∈𝐴 are sets of feasible transition probability

distributions where Γ𝑠,𝑎 =
⊗𝑛

𝑖=1
Γ𝑖𝑠,𝑎 with Γ

𝑖
𝑠,𝑎 ∈ int amb(𝑆𝑖 ).

Similarly to IMDPs [25], a path of an odIMDP is a sequence of

states and actions 𝜔 = (𝑠0, 𝑎0), (𝑠1, 𝑎1), . . . , where (𝑠𝑘 , 𝑎𝑘 ) ∈ 𝑆 ×𝐴.
We denote by 𝜔 (𝑘) = 𝑠𝑘 the state of the path at time 𝑘 ∈ N0 and

by Ω the set of all paths. A strategy or policy for an odIMDP is a

function 𝜋 : 𝑆 × N0 → 𝐴 that assigns an action to a given state

of an odIMDP. We note that since the ambiguity set is indepen-

dent for each source-action pair, also called (𝑠, 𝑎)-rectangularity,
any optimal policy is time-varying and deterministic [26, 48]. An

adversary is a function that assigns a feasible distribution 𝛾 ∈ Γ to

a given state [17]. Given a strategy and an adversary, an odIMDP

collapses to a finite Markov chain, with the transition probability

matrix specified by marginal distributions.

Analysis of space complexity. Before proceeding further, we now

discuss the memory requirements to store an odIMDP. To simplify

the presentation, we assume without loss of generality that the

number of states in each marginal is equal, that is, |𝑆𝑖 | = |𝑆𝑖+1 | for
all 𝑖 = 1, . . . , 𝑛 − 1. Hence, we have that the number of states along

each marginal is |𝑆𝑖 | = 𝑛
√︁
|𝑆 |. To store an odIMDP, we need to store
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[0.4, 0.5]

[0.5, 0.6]

[0.6, 0.8]
[0.2, 0.4]

[0.24, 0.4]
[0.08, 0.2]

[0.3, 0.48]
[0.1, 0.24]

States Source

1

2

3

4

Figure 2: On the left, for the green state, we report two mar-
ginal interval ambiguity sets, i.e. an interval ambiguity set
for each marginal of a product ambiguity set, with outgo-
ing transitions to all other states. On the right, an IMDP is
constructed by multiplying the interval bounds of the mar-
ginal ambiguity sets. By this multiplication of bounds, joint
distributions are introduced that cannot be represented as a
product of distributions from the marginal ambiguity sets.

the bounds on the transition probability. Then, for each source-

action pair, we must store bounds for the ambiguity set along each

marginal. That is, the upper and lower bound for |𝑆𝑖 | states for each
marginal. In total, this requires storing 2|𝑆 | |𝐴|𝑛 𝑛

√︁
|𝑆 | scalar values.

This is a crucial difference compared to traditional IMDP, where, as

discussed in Section 3, for each state-action pair, we need to store

2|𝑆 |2 |𝐴| scalar values. An example to clarify the different memory

requirements between odIMDP and IMDP is reported in Fig. 1.

4.1 Comparison of ambiguity sets
At first glance, the ambiguity set of an odIMDPs may appear equiva-

lent to that of an IMDP obtained by multiplying the interval bounds

of the interval ambiguity sets of each marginal for each source-

action pair, as, for instance, is done in Eqn. (3) using the approxi-

mation step in Eqn. (4). Remarkably, this is, however, a fallacy. In

fact, multiplying the interval bounds of the marginal ambiguity

sets introduces distributions that are not part of the product am-

biguity set, as they may not satisfy the additional constraints on

the marginals present in odIMDPs. To better understand why this

theoretical quirk occurs, consider the following example.

Example 4.2. Fig. 2 shows an odIMDP represented by an IMDP

for each marginal. The states are numbered to index into the joint

probability distribution as [0, 1]4
. Furthermore, on the right, an

interval ambiguity set is constructed from the odIMDP by multi-

plying the marginal bounds together corresponding to the joint

transition. If we consider a distribution [0.4, 0.3, 0.08, 0.22]⊤, we
see that it is clearly contained in the joint interval ambiguity set

on the right of Fig. 2. However, since the value 0.4 in the first entry

is equal to the upper bound for that entry in the ambiguity set,

it forces [0.5, ·] and [0.8, ·] in the distribution for the vertical and

horizontal marginals, respectively (because 0.4 = 0.5 · 0.8). For

the vertical marginal to sum to one, we must have [0.5, 0.5]. The
marginal decomposition of the last element 0.22 thus needs to be

0.5𝑝 = 0.22, i.e. 𝑝 = 0.22/0.5 = 0.44, which is not contained in the

horizontal marginal ambiguity set (upper bound 0.4). Hence, the

distribution contained in the joint interval ambiguity set cannot be

factored into two distributions from the marginal ambiguity sets.

The intuition provided in Example 4.2 is formalized in Theorem

4.3 below, where we show that the ambiguity set of an odIMDP is

contained in that of an IMDP obtained by multiplying the inter-

val bounds of the interval ambiguity sets of each marginal of the

odIMDPs. This result will allow us to build abstractions for System

(1) that not only require less memory to be stored compared to

those described in Section 3, but are also guaranteed to provide

tighter error bounds for the same partition size of the state space.

Theorem 4.3. For 𝑆 = 𝑆1 × · · · × 𝑆𝑛 , consider the interval am-
biguity sets Γ1 ∈ int amb(𝑆1), . . . , Γ𝑛 ∈ int amb(𝑆𝑛), where Γ𝑖 =

{𝛾 ∈ D(𝑆𝑖 ) : 𝑝𝑖 (𝑠𝑖 ) ≤ 𝛾 (𝑠𝑖 ) ≤ 𝑝
𝑖 (𝑠𝑖 ) for each 𝑠𝑖 ∈ 𝑆𝑖 } . Call

Γ =
⊗𝑛

𝑖=1
Γ𝑖 . Then, it holds that Γ ⊆ Γ̄, where

Γ̄ =

{
𝛾 ∈ D(𝑆) :

𝑛∏
𝑖=1

𝑝𝑖 (𝑠𝑖 ) ≤ 𝛾 (𝑠) ≤
𝑛∏
𝑖=1

𝑝
𝑖 (𝑠𝑖 ) for each 𝑠 ∈ 𝑆

}
.

Proof. It is sufficient to show that any distribution 𝛾 ∈ Γ is also

contained in Γ̄, that is, it satisfies the interval bounds
∏𝑛
𝑖=1

𝑝𝑖 (𝑠𝑖 ) ≤
𝛾 (𝑠) ≤ ∏𝑛

𝑖=1
𝑝
𝑖 (𝑠𝑖 ) for each 𝑠 ∈ 𝑆 . By multiplying the (nonneg-

ative) inequalities 𝑝𝑖 (𝑠𝑖 ) ≤ 𝛾𝑖 (𝑠𝑖 ) ≤ 𝑝
𝑖 (𝑠𝑖 ) for each component

𝑖 = 1, . . . , 𝑛, it holds for each 𝑠 ∈ 𝑆 that∏𝑛
𝑖=1

𝑝𝑖 (𝑠𝑖 ) ≤ ∏𝑛
𝑖=1

𝛾𝑖 (𝑠𝑖 ) ≤∏𝑛
𝑖=1

𝑝
𝑖 (𝑠𝑖 ). Therefore, we can conclude that the product distribu-

tion 𝛾 =
⊗𝑛

𝑖=1
𝛾𝑖 is contained in Γ̄. □

5 Abstraction
In order to describe the abstraction process of System 1 into an

odIMDP, we first start from the case where the transition kernel is

Gaussian and then move to the more general case. In what follows,

we assume that the region of interest 𝑋 ⊂ R𝑛 is hyperrectangular
3
,

that is, 𝑋 = [𝑥
1
, 𝑥1] × · · · × [𝑥𝑛, 𝑥𝑛]. To abstract a system to an

odIMDP, we start by partitioning 𝑋 into a grid 𝑆 = 𝑆1 × · · · × 𝑆𝑛𝑥
and associate with each (hyperrectangular) region 𝑠 = [𝑠

1
, 𝑠1] ×

· · · × [𝑠𝑛, 𝑠𝑛] ∈ 𝑆 an abstract state in 𝑆 . Similarly to Section 3, we

abuse the notation and denote by 𝑠 both the abstract state in 𝑆 and

the corresponding region in 𝑋 . The decomposed abstract state is

denoted by 𝑠 = (𝑠1, . . . , 𝑠𝑛) ∈ 𝑆 . In addition, we add one sink state

𝑠𝑖 for each axis 𝑖 to represent exiting the set [𝑥𝑖 , 𝑥𝑖 ] and denote

𝑆𝑖 = {𝑠𝑖 } ∪ 𝑆𝑖 . The reach and avoid states of the abstract model,

𝑅 and 𝑂4
are respectively the set of states satisfying 𝑠 ⊆ 𝑅 and

𝑠 ∩ 𝑂 ≠ ∅ [11, Section 4]. All sink states are classified as avoid

states. Finally, we assign an abstract action 𝑎 ∈ 𝐴 to each 𝑢 ∈ 𝑈 .

In the following subsections, we focus on computing bounds on

the transition probability starting with the Gaussian case.

5.1 Gaussian case
We start by considering the case of a Gaussian transition kernel:

𝑇 (𝑋 | 𝑥,𝑢) =
∫
𝑋

N(𝑥 ′ | 𝜇 (𝑥,𝑢), Σ(𝑥,𝑢))𝑑𝑥 ′ . (5)

To define the marginal interval ambiguity sets Γ𝑖𝑠,𝑎 , we first need
to introduce some notation. In particular, for each (𝑠, 𝑎) we define
3
Note that if the region of interest is not hyperrectangular, but bounded, one can

always over-approximate it with a hyperrectangular region.

4
We abuse notation slightly by denoting both the concrete reach/avoid regions and

the abstract reach/avoid states by 𝑅 and𝑂 respectively.
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intervals [𝜇𝑖
𝑠,𝑎

, 𝜇𝑖𝑠,𝑎] and [Σ𝑖𝑠,𝑎, Σ
𝑖
𝑠,𝑎] such that for all 𝑥 ∈ 𝑠:

𝜇𝑖
𝑠,𝑎

≤ 𝜇 (𝑥, 𝑎)𝑖 ≤ 𝜇𝑖𝑠,𝑎 and Σ𝑖𝑠,𝑎 ≤ Σ(𝑥, 𝑎)𝑖𝑖 ≤ Σ
𝑖
𝑠,𝑎 . (6)

That is, [𝜇𝑖
𝑠,𝑎

, 𝜇𝑖𝑠,𝑎] and [Σ𝑖𝑠,𝑎, Σ
𝑖
𝑠,𝑎] represent interval bounds for

the mean and variance of the 𝑖-th marginal of System (1) starting

from region 𝑠 . Then, computation of Γ𝑖𝑠,𝑎 reduces to computing for

each 𝑡𝑖 ∈ 𝑆𝑖 the following transition probabilities

𝑝𝑖
𝑠,𝑎

(𝑡𝑖 ) = min

𝜇𝑖 ∈[𝜇𝑖
𝑠,𝑎
,𝜇𝑖𝑠,𝑎 ], Σ𝑖 ∈{Σ𝑖𝑠,𝑎,Σ

𝑖

𝑠,𝑎 }

∫ 𝑡𝑖

𝑡𝑖

N(𝑦𝑖 | 𝜇𝑖 , Σ𝑖 )𝑑𝑦𝑖 , (7)

𝑝
𝑖
𝑠,𝑎 (𝑡𝑖 ) = max

𝜇𝑖 ∈[𝜇𝑖
𝑠,𝑎
,𝜇𝑖𝑠,𝑎 ], Σ𝑖 ∈{Σ𝑖𝑠,𝑎,Σ

𝑖

𝑠,𝑎 }

∫ 𝑡𝑖

𝑡𝑖

N(𝑦𝑖 | 𝜇𝑖 , Σ𝑖 )𝑑𝑦𝑖 . (8)

Remark 5.1. Note that analytical solutions for Eqn. (7) and (8)

exist [3, 11]. Furthermore, we stress that the computation of the bounds
on mean and variance in Eqn. (6) is a well-studied problem for which
there exist tools based on convex optimization [3, 11, 30, 51] that can
also be applied in the context of Gaussian process regression [41].

For the transition to the sink state, we observe that this is equiv-

alent to the complement of transitioning to inside 𝑋 . Hence, we

may compute the interval bounds via the complement probability.

𝑝𝑖
𝑠,𝑎

(𝑡𝑖 ) = 1 − max

𝜇𝑖 ∈[𝜇𝑖
𝑠,𝑎
,𝜇𝑖𝑠,𝑎 ]

Σ𝑖 ∈{Σ𝑖𝑠,𝑎,Σ
𝑖

𝑠,𝑎 }

∫ 𝑥𝑖

𝑥𝑖

N(𝑦𝑖 | 𝜇𝑖 , Σ𝑖 )𝑑𝑦𝑖 , (9)

𝑝
𝑖
𝑠,𝑎 (𝑡𝑖 ) = 1 − min

𝜇𝑖 ∈[𝜇𝑖
𝑠,𝑎
,𝜇𝑖𝑠,𝑎 ]

Σ𝑖 ∈{Σ𝑖𝑠,𝑎,Σ
𝑖

𝑠,𝑎 }

∫ 𝑥𝑖

𝑥𝑖

N(𝑦𝑖 | 𝜇𝑖 , Σ𝑖 )𝑑𝑦𝑖 . (10)

Finally, the sink states are absorbing, that is, for all states 𝑠 =

(𝑠1, . . . , 𝑠𝑖−1, 𝑠𝑖 , 𝑠𝑖+1, . . . , 𝑠𝑛), we define 𝑝𝑖
𝑠,𝑎

(𝑠𝑖 ) = 𝑝𝑖
𝑠,𝑎

(𝑠𝑖 ) = 1 and

𝑝𝑖
𝑠,𝑎

(𝑡𝑖 ) = 𝑝𝑖
𝑠,𝑎

(𝑡𝑖 ) = 0 for any 𝑡𝑖 ∈ 𝑆𝑖 . From the computation of

all interval bounds, we can define Γ as the product of marginal

interval ambiguity sets Γ𝑖𝑠,𝑎 for each source-action pair (𝑠, 𝑎). Then
the odIMDP is𝑀 = (𝑆,𝐴, Γ).

5.2 Mixture Models
Eqn. (2) is a generalization of the Gaussian case with 𝐾 > 1. How-

ever, a key additional technical difficulty is that even if the covari-

ance matrix of each Gaussian in the mixture is diagonal, then the

covariance matrix for the mixture distribution is not necessarily di-

agonal. Specifically, the joint covariance of the mixture distribution

in Eqn. (2), omitting the dependence on (𝑥,𝑢), is

Σ =

𝐾∑︁
𝑟=1

𝛼𝑟Σ
𝑟 +

𝐾∑︁
𝑟=1

𝛼𝑟 (𝜇𝑟 − 𝜇) (𝜇𝑟 − 𝜇)⊤ (11)

Due to the second term of Eqn. (11), the joint covariance Σ is gen-

erally not diagonal. Consequently, we cannot directly abstract the

model to odIMDPs as it does not have the required product form.

To solve this issue, in what follows, we build an odIMDPs for each

Gaussian in the mixture following the approach in Section 5.1 and

then abstract System (1) into a mixture of odIMDPs.

Definition 5.2. A mixture of 𝐾 odIMDPs with 𝑛 marginals is a

tuple𝑀 = (𝑆,𝐴, Γ, Γ𝛼 ) where
• 𝑆 = 𝑆1 × · · · × 𝑆𝑛 is a finite set of joint states with 𝑆𝑖 being

the set of states in marginal 𝑖 ,

• 𝐴 is a finite set of actions,

• Γ = {Γ𝑟,𝑠,𝑎}𝑟 ∈𝐾,𝑠∈𝑆,𝑎∈𝐴 are a set of𝐾 product ambiguity sets,

where Γ𝑟,𝑠,𝑎 =
⊗𝑛

𝑖=1
Γ𝑖𝑟,𝑠,𝑎 with Γ𝑖𝑟,𝑠,𝑎 ∈ int amb(𝑆𝑖 ), and

• Γ𝛼 = {Γ𝛼𝑠,𝑎}𝑠∈𝑆,𝑎∈𝐴 are sets of feasible weightings distribu-

tions, where Γ𝛼𝑠,𝑎 ∈ int amb(𝐾). A feasible weighting distri-

bution for a source-action pair (𝑠, 𝑎) is denoted by 𝛼𝑠,𝑎 ∈ Γ𝛼𝑠,𝑎 .

𝑀 = (𝑆,𝐴, Γ, Γ𝛼 ) can be interpreted as a set of 𝐾 odIMDPs shar-

ing the same (decomposed) states 𝑆 and the same set of actions

𝐴, but that can have different individual ambiguity sets Γ𝑟,𝑠,𝑎 for

each source-action pair (𝑠, 𝑎). The weighting 𝛼𝑠,𝑎 ∈ Γ𝛼𝑠,𝑎 defines the

probability of selecting a component from the mixture. Thus, a fea-

sible distribution for𝑀 is any distribution 𝛾𝑠,𝑎 =
∑
𝑟 ∈𝐾 𝛼𝑠,𝑎 (𝑟 )𝛾𝑟𝑠,𝑎 ,

where 𝛼𝑠,𝑎 ∈ Γ𝛼𝑠,𝑎 and 𝛾𝑟𝑠,𝑎 ∈ Γ𝑟,𝑠,𝑎 for each 𝑟 ∈ 𝐾 .
The process of abstracting System (1) to a mixture of odIMDPs,

is as follows:

(1) 𝑆 and𝐴 are computed similarly to Section 5.1 and are shared

among all Gaussians in the mixture,

(2) for the 𝑟 -th Gaussian in the mixture follow the approach in

Section 5.1 to compute Γ𝑟,𝑠,𝑎 for any 𝑠 ∈ 𝑆 and 𝑎 ∈ 𝐴 , and

(3) for each source-action pair (𝑠, 𝑎), the interval ambiguity set

Γ𝛼𝑠,𝑎 ∈ int amb(𝐾) is constructed such that for all 𝑥 ∈ 𝑠 there
exists 𝛼𝑠,𝑎 ∈ Γ𝛼𝑠,𝑎 with 𝛼𝑟 (𝑥, 𝑎) = 𝛼𝑠,𝑎 (𝑟 ), for all 𝑟 ∈ 𝐾.

Similar to the marginal interval ambiguity sets case, we

do that by constructing Γ𝛼𝑠,𝑎 such that for each 𝑟 ∈ 𝐾 for

all 𝛼𝑠,𝑎 ∈ Γ𝛼𝑠,𝑎 it holds that min𝑥∈𝑠 𝛼𝑟 (𝑥, 𝑎) ≤ 𝛼𝑠,𝑎 (𝑟 ) ≤
max𝑥∈𝑠 𝛼𝑟 (𝑥, 𝑎) .

6 Synthesis of Optimal Policies for odIMDPs
Once an abstraction of System (1) into an odIMDPs or a mixture

of odIMDPs is built, what is left to do is to synthesize an opti-

mal strategy, which can then be mapped back on the original

system. In what follows, we consider the odIMDPs case; the mix-

ture case follows similarly as we will illustrate in Eqn. (16). For

an odIMDPs 𝑀 = (𝑆,𝐴, Γ) synthesizing an optimal strategy for

𝑃ra (𝑅,𝑂, 𝑥0, 𝜋, 𝐻 ), reduces to the following optimization problem:

max

𝜋
min

𝛾
P𝜋,𝛾 [𝜔 ∈ Ω | ∃𝑘 ∈ {0, . . . , 𝐾}, 𝜔 (𝑘) ∈ 𝑅,

∀𝑘′ ∈ {0, . . . , 𝑘}, 𝜔 (𝑘′) ∉ 𝑂 ∧ 𝜔 (𝑘′) ∈ 𝑆] .
(12)

where P𝜋,𝛾 is the probability of the Markov chain induced by strat-

egy 𝜋 and distribution 𝛾 . In particular, similar to the IMDPs case

[17, 25], Eqn. (12) can be computed by solving the following pes-

simistic robust value iteration:

𝑉0 (𝑠) = 1𝑅 (𝑠)

𝑉𝑘 (𝑠) = max

𝑎∈𝐴
𝑔

(
𝑠, min

𝛾𝑠,𝑎∈Γ𝑠,𝑎

∑︁
𝑡 ∈𝑆

𝑉𝑘−1
(𝑡)𝛾𝑠,𝑎 (𝑡)

)
= max

𝑎∈𝐴
𝑔

(
𝑠, min

𝛾𝑖𝑠,𝑎∈Γ𝑖𝑠,𝑎, 𝑖=1,...,𝑛

∑︁
𝑡 ∈𝑆

𝑉𝑘−1
(𝑡)

𝑛∏
𝑖=1

𝛾𝑖𝑠,𝑎 (𝑡𝑖 )
)
,

(13)

where 𝑔(𝑠, 𝑣) = 1𝑅 (𝑠) + 1𝑆\𝑇 (𝑠)𝑣 with𝑇 = 𝑅 ∪𝑂 and the last equal-

ity is due to the fact that for odIMDPs Γ𝑠,𝑎 =
⊗𝑛

𝑖=1
Γ𝑖𝑠,𝑎 . That is,
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Figure 3: An example of the recursive structure for the pro-
posed algorithm for value iteration over odIMDPs. The ex-
ample is for an odIMDP with two marginals of three states
each. Notice going right-to-left that we optimize over 𝛾2

𝑠,𝑎

three times, as for each subproblem, we assume 𝑡1 is given.

the ambiguity set is the product of the marginal ambiguity sets. If

a strategy is given, we denote the value function by 𝑉 𝜋
𝑘
(𝑠) and if

furthermore the inner minimization is replaced by a maximization,

we use the notation 𝑉 𝜋
𝑘
(𝑠). As a consequence of the product struc-

ture, solving Eqn. (13) reduces to iteratively solving the following

optimization problem:

min

𝛾𝑖𝑠,𝑎∈Γ𝑖𝑠,𝑎, 𝑖=1,...,𝑛

∑︁
𝑡 ∈𝑆

𝑉𝑘−1
(𝑡)

𝑛∏
𝑖=1

𝛾𝑖𝑠,𝑎 (𝑡𝑖 ) (14)

Because of its multilinear structure, Eqn. (14) cannot be solved

directly using standard linear programming approaches for IMDPs,

e.g. O-maximization [17]. To solve this issue, we develop a divide-

and-conquer approach in which we recursively compute a lower

bound on Eqn. (14) by decomposing the problem into a set of linear

programming. Specifically, we compute an under-approximation

of Eqn. (14),𝑊 𝑘
𝑠,𝑎 defined recursively as follows:

𝑊
𝑘,𝑛
𝑠,𝑎 (𝑡1, . . . , 𝑡𝑛) = 𝑉𝑘−1

(𝑡)

𝑊
𝑘,𝑖−1

𝑠,𝑎 (𝑡1, . . . , 𝑡𝑖−1) = min

𝛾𝑖𝑠,𝑎∈Γ𝑖𝑠,𝑎

∑︁
𝑡𝑖 ∈𝑆𝑖

𝑊
𝑘,𝑖
𝑠,𝑎 (𝑡1, . . . , 𝑡𝑖 )𝛾𝑖𝑠,𝑎 (𝑡𝑖 ),

for 𝑖 = 2, . . . , 𝑛

𝑊 𝑘
𝑠,𝑎 :=𝑊

𝑘,0
𝑠,𝑎 = min

𝛾1

𝑠,𝑎∈Γ1

𝑠,𝑎

∑︁
𝑡1∈𝑆1

𝑊
𝑘,1
𝑠,𝑎 (𝑡1)𝛾1

𝑠,𝑎 (𝑡1).

(15)

Fig. 3 gives an example of Eqn. (15) for a 2-marginals odIMDP with

three states in eachmarginal. The intuition is that we derive a bound

for Eqn. (14) by solving a set of simpler optimization problems, one

marginal at a time. In particular, 𝑊
𝑘,𝑖−1

𝑠,𝑎 (𝑡1, . . . , 𝑡𝑖−1) optimizes

the expectation of𝑊
𝑘,𝑖
𝑠,𝑎 , which is itself a bound of 𝑉𝑘−1

, for the

marginal 𝑖 , while keeping the values of the other marginals fixed to

𝑡1, . . . , 𝑡𝑖−1
. Note that, as illustrated in Fig. 3, the resulting algorithm

is exponential in 𝑛. However, as each of the optimization problems

is a particularly simple linear problem that can be solved efficiently

using, e.g., the O-maximization algorithm [17, 25] and as we will

show in Section 6, the resulting computational time complexity

will still be lower compared to the approach described in Section 3

based on IMDPs. First, in the rest of this Section, in Theorem 6.1

and Proposition 6.2 we show, respectively, that the approach in Eqn.

(15) is sound and guaranteed to improve the tightness of the results

compared to the approach described in Section 3.

Theorem 6.1. For any source-action pair (𝑠, 𝑎) ∈ 𝑆 ×𝐴, it holds
that

𝑊
𝑘,0
𝑠,𝑎 ≤ min

𝛾𝑖𝑠,𝑎∈Γ𝑖𝑠,𝑎,𝑖=1,...,𝑛

∑︁
𝑡 ∈𝑆

𝑉𝑘−1
(𝑡)

𝑛∏
𝑖=1

𝛾𝑖𝑠,𝑎 (𝑡𝑖 ) .

Proof.

𝑊
𝑘,0
𝑠,𝑎 = min

𝛾1

𝑠,𝑎∈Γ1

𝑠,𝑎

∑︁
𝑡1∈𝑆1

𝑊
𝑘,1
𝑠,𝑎 (𝑡1)𝛾1

𝑠,𝑎 (𝑡1) =

min

𝛾1

𝑠,𝑎∈Γ1

𝑠,𝑎

∑︁
𝑡1∈𝑆1

min

𝛾2

𝑠,𝑎∈Γ2

𝑠,𝑎

∑︁
𝑡2∈𝑆2

𝑊
𝑘,2
𝑠,𝑎 (𝑡1, 𝑡2)𝛾1

𝑠,𝑎 (𝑡1)𝛾2

𝑠,𝑎 (𝑡2) ≤

min

𝛾1

𝑠,𝑎∈Γ1

𝑠,𝑎

min

𝛾2

𝑠,𝑎∈Γ2

𝑠,𝑎

∑︁
𝑡1∈𝑆1

∑︁
𝑡2∈𝑆2

𝑊
𝑘,2
𝑠,𝑎 (𝑡1, 𝑡2)𝛾1

𝑠,𝑎 (𝑡1)𝛾2

𝑠,𝑎 (𝑡2) ≤

min

𝛾𝑖𝑠,𝑎∈Γ𝑖𝑠,𝑎,𝑖=1,...,𝑛

∑︁
𝑡1∈𝑆1

...
∑︁
𝑡𝑛∈𝑆𝑛

𝑊
𝑘,𝑛
𝑠,𝑎 (𝑡1, ..., 𝑡𝑛)

𝑛∏
𝑖=1

𝛾𝑖𝑠,𝑎 (𝑡𝑖 ) =

min

𝛾𝑖𝑠,𝑎∈Γ𝑖𝑠,𝑎,𝑖=1,...,𝑛

∑︁
𝑡 ∈𝑆

𝑉𝑘−1
(𝑡)

𝑛∏
𝑖=1

𝛾𝑖𝑠,𝑎 (𝑡𝑖 ).

□

Note that an alternative option to the divide-and-conquer algo-

rithm considered here would be to simply multiply the interval

bounds of the marginal ambiguity sets for each source-action pair,

obtaining an ambiguity set identical to the one in Eqn. (3). As al-

ready mentioned, we do not do that because it would increase the

conservativism of the resulting approach. This is proved in the fol-

lowing proposition that guarantees that our approach in Eqn. (15)

is guaranteed not to be more conservative than the one described

in Section 3. In practice, in the experimental section, we show how

our approach consistently returns substantially tighter bounds.

Proposition 6.2. For an odIMDPs𝑀 = (𝑆,𝐴, Γ) consider the func-
tion𝑉𝑘−1

: 𝑆 → R and define the interval ambiguity set associated to

𝑀 as Γ̄𝑠,𝑎 =

{
𝛾 ∈ D(𝑆) : 𝑝

𝑠,𝑎
(𝑡) ≤ 𝛾𝑠,𝑎 (𝑡) ≤ 𝑝𝑠,𝑎 (𝑡) for each 𝑡 ∈ 𝑆

}
,

where 𝑝
𝑠,𝑎

(𝑡) = ∏𝑛
𝑖=1

𝑝𝑖
𝑠,𝑎

(𝑡𝑖 ) and 𝑝𝑠,𝑎 (𝑡) =
∏𝑛
𝑖=1

𝑝
𝑖
𝑠,𝑎 (𝑡𝑖 ) Then, for

any (𝑠, 𝑎) ∈ 𝑆×𝐴 it holds that𝑊 𝑘
𝑠,𝑎 ≥ min𝛾𝑠,𝑎∈ Γ̄𝑠,𝑎

∑
𝑡 ∈𝑆 𝑉𝑘−1

(𝑡)𝛾𝑠,𝑎 (𝑡𝑖 ).

Proof. To conclude the proof, it suffices to show that for any

source-action pair (𝑠, 𝑎) ∈ 𝑆 × 𝐴, the joint distribution 𝛾𝑠,𝑎 (𝑡) ob-
tained by optimizing Eqn. (15) is contained Γ̄𝑠,𝑎 . By definition of sets
Γ𝑖𝑠,𝑎 in Eqn. (15) it holds that the 𝑖-th marginal of𝛾𝑠,𝑎 (𝑡) must be con-

tained within [𝑝𝑖
𝑠,𝑎

(𝑡𝑖 ), 𝑝𝑖𝑠,𝑎 (𝑡𝑖 )]. This implies that

∏𝑛
𝑖=1

𝑝𝑖
𝑠,𝑎

(𝑡𝑖 ) ≤
𝛾𝑠,𝑎 (𝑡) ≤

∏𝑛
𝑖=1

𝑝
𝑖
𝑠,𝑎 (𝑡𝑖 ) . □

The proposed divide-and-conquer algorithm extends readily to

mixtures of odIMDPs by executing the algorithm in Eqn. (15) for

each element of the mixture and optimizing for the worst mixture

distribution. That is, by solving:

𝑊 𝑘
𝑠,𝑎 := min

𝛼∈Γ𝛼𝑠,𝑎

∑︁
𝑟 ∈𝐾

𝛼 (𝑟 )𝑊 𝑘,0
𝑟,𝑠,𝑎, (16)
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Table 1: A summary of the benchmarks and their characteristics. Note that the number of states for the different experiments
is the specified amount unless otherwise stated.

Name Dimension Dynamics type Property # inputs # states

Car parking [49] 2 Additive linear Reach-avoid 9 1600

Robot reachability [53] 2 Additive linear (non-linear control) Reachability 121 400

Robot reach-avoid [53] 2 Additive linear (non-linear control) Reach-avoid 441 1600

Building automation system [53] 4 Additive affine Safety 4 1225

Van der Pol [49] 2 Additive polynomial Reachability 11 2500

NNDM Cartpole 4 Additive Neural Network Dynamic Model (NNDM) Safety 2 192000

6D linear model 6 Additive linear Safety 0 262144

7D linear model 7 Additive linear Safety 0 2097152

Dubin’s car GP [43] 3 Gaussian process with deep kernel learning Reach-avoid 7 25600

Stochastic switched linear 2 Gaussian mixture, each linear Reach-avoid 0 1600

where 𝑊
𝑘,0
𝑟,𝑠,𝑎 is computed as in Eqn. (15). As Γ𝛼𝑠,𝑎 is an interval

ambiguity set, the above is a linear program that can be efficiently

solved using O-maximization [17].

Analysis of time complexity. Similarly to the analysis of the space

complexity (see Subsection 4), we assume that the number of states

in each marginal is equal, i.e. |𝑆𝑖 | = 𝑚
√︁
|𝑆 |. Since value iteration is

performed independently for each source-action pair, to compute

the time complexity of the algorithm, we can analyze each pair sep-

arately. To do this, we start by observing the number of (branching)

internal nodes in the recursion tree required to solve Eqn. (15) (see

Fig. 3) is a geometric series with base |𝑆𝑖 | up to exponent 𝑛 − 1. The

complexity of the geometric series is 𝑂

(
( |𝑆𝑖 |)𝑛−1

)
[14]. At each

internal node of the tree, the O-maximization algorithm [25] is

executed once on a set of size |𝑆𝑖 |. O-maximization is limited by the

required sorting, which is of complexity 𝑂 ( |𝑆𝑖 | lg |𝑆𝑖 |). Now, since
|𝑆𝑖 | = 𝑛

√︁
|𝑆 | = |𝑆 |

1

𝑛 , the complexity for each source-action pair is

𝑂 ( |𝑆 | lg |𝑆𝑖 |), and the full complexity is thus 𝑂 ( |𝑆 |2 |𝐴| lg 𝑛
√︁
|𝑆 |). In

contrast, value iteration for a regular IMDP [17] has a time com-

plexity of 𝑂 ( |𝑆 |2 |𝐴| lg |𝑆 |).

6.1 Correctness
In this subsection, we map the strategy 𝜋 to a switching strategy

𝜋𝑥 : R𝑛 × N0 → 𝑈 for System (1), ensuring the correctness of our

aproach. To this end, define the function 𝐽 : R𝑛 → 𝑆 that maps

each concrete state to an abstract state and its corresponding region.

That is, 𝐽 (𝑥) = 𝑠 if and only if 𝑥 ∈ 𝑠 . Then the switching strategy

for System (1) is defined as 𝜋𝑥 (𝑥, 𝑘) = 𝜋 (𝐽 (𝑥), 𝑘) for all 𝑥 ∈ R𝑛 .
The following theorem ensures the correctness of 𝜋𝑥 .

Theorem 6.3. Let𝑀 be an odIMDP abstraction of System (1). Then,
for any strategy 𝜋 , it holds that for any 𝑥𝑜 ∈ 𝑋

𝑃ra (𝑅,𝑂, 𝑥0, 𝜋𝑥 , 𝐻 ) ∈ [𝑉 𝜋
𝐻
(𝐽 (𝑥0)),𝑉 𝜋𝐻 (𝐽 (𝑥0))],

where 𝑉 𝜋
𝐻
(𝑠),𝑉 𝜋

𝐻
(𝑠) are the lower and upper bounds on the satisfac-

tion probability for𝑀 , as introduced in Section 6.

The proof follows similarly to [26, Theorem 4] by induction on

Eqn. (13) and relying on Theorem 6.1 to guarantee the soundness

of our approach at any time step. Note that if the regions 𝑅 and

𝑂 do not align with the partitioning, then extra care is needed for

computing the upper bound on satisfaction [11, Section 7].

7 Experiments
To show the efficacy of our approach, we conducted a wide range of

empirical studies with benchmarks ranging from linear 2D systems

to nonlinear systems, linear 7D systems, Neural Network Dynamic

Models (NNDMs), and Gaussian mixture models. A summary of

the benchmarks can be found in Table 1 and extended descriptions

are provided in Appendix A of [34]. All benchmarks are verified

for a time horizon 𝐻 = 10 unless otherwise specified. We compare

our results against state-of-the-art tools for abstractions to IMDPs

and MDPs. In particular, for IMDPs, we compare with the method

in [3, Theorem 1], as well as IMPaCT [53], which uses nonlinear

optimization andMonte Carlo integration to compute the transition

probabilities needed to compute the abstraction as illustrated in

Section 3. Furthermore, we also compare with SySCoRe [49], which

is based on model reduction and abstractions to MDPs. To run value

iteration for both the proposed method and the method of [3], we

use IntervalMDP.jl [35], which is our package for parallelized

value iteration over IMDPs and odIMDPs written in Julia [8]. The

experiments are all run on the TU Delft supercomputer, DelftBlue

[15], on one memory partition node with an Intel Xeon E5-6248R

CPU (12 cores allocated) and 200 GBmemory. We stress that despite

recent advances in performing value iteration on GPUs [35, 53],

the experiments are all conducted on CPUs.

7.1 Comparison with IMDP-based approaches
To compare abstraction approaches based on odIMDPs and IMDPs,

for each method, we report abstraction and certification time and

memory usage. Furthermore, to quantify the conservatism of the

results, we consider the following metrics: (i) the mean lower

bound mean({𝑉 𝜋
𝐻
(𝑠) : 𝑠 ∈ 𝑆 \ 𝑇 }) and (ii) the mean error, 𝜀 =

mean({𝑉 𝜋
𝐻
(𝑠) −𝑉 𝜋

𝐻
(𝑠) : 𝑠 ∈ 𝑆 \𝑇 }) where 𝑇 is the set of terminal

states and 𝜋 is the optimal strategy for Eqn. (15).𝑉 𝜋
𝐻

and𝑉 𝜋
𝐻

are the

lower and upper bounds on the satisfaction probability returned by

our approach. That is, the solution of Eqn. (12) using the approach

in Eqn. (15). Furthermore, we report the (aggregated) difference in𝑉

between the methods as agg({𝑉 odIMDP

𝐻
(𝑠) −𝑉 other

𝐻
(𝑠) : 𝑠 ∈ 𝑆 \𝑇 })

where the aggregation functions are agg ∈ {min,max,mean} and
the methods are other ∈ {IMDP, IMPaCT} (IMDP refers to the

method in [3, Theorem 1]). We consider the same discretization

size in the abstraction process for all methods, reported in Table 1.
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The results of the comparison with IMDP-based approaches can

be found in Table 2 and Table 3 for computation performance and

satisfaction probability, respectively. Comparing the computation

time of [3, Theorem 1] and IMPaCT [53] with that of our method

based on odIMDPs, the abstraction time of odIMDPs is at least 5x

faster, up to 80x faster, for 2D benchmarks, and at least two orders

of magnitude faster for >3D benchmarks. The certification time

is comparable to or faster than both [3, Theorem 1] and IMPaCT.

As expected, the memory requirements are considerably lower for

odIMDPs: Compared to IMPaCT, odIMDPs use at least an order of

magnitude less memory. Most remarkably, for the 6D and 7D linear

models, odIMDPs uses 4682x and 30476x less memory, respectively,

compared to IMPaCT. If we compare the satisfaction probability

results in Table 3, the proposed method is at least as good as the

method [3, Theorem 1] for all states in all examples. This ranges

from almost the same satisfaction probability for the 2D robot with

a reach-avoid specification to 17.33 percentage points better on

average for the 4D building automation system. A similar analysis

holds for IMPaCT, with the caveat that IMPACT uses non-linear

optimization to compute Eqn. (3), thus its results are generally

tighter compared to those of [3, Theorem 1].

7.2 Comparison with SySCoRe (MDP-based
approach)

We now also compare with SySCoRe
5
[49], which represents a

state-of-the-art tool for control and verification of stochastic sys-

tems based on abstractions to MDPs. Note that, as SySCoRe only

supports gridding of 2D systems, we cannot compare on systems

of higher dimension. In particular, in Fig. 4, we consider the car

parking benchmark introduced in Table 1, and for various sizes of

the abstraction, we report the error 𝜀, as introduced in the previous

subsection. From the figure, we have three key observations:

• SySCoRe requires a relatively large number of regions in the

partition before its mean error decreases with larger time

horizons.

• odIMDPs tends to obtain substantially tighter bounds for the

same abstration size. For example, the mean error at time

100 of SySCoRe with an MDP of size 90𝑘 is larger than that

of our approach with an odIMDPs of 2.5𝑘 states.

• The mean error for odIMDPs first increases with time hori-

zons to a level slightly above SySCoRe with the same number

of regions and then decreases for longer horizons.

We should, however, stress that SySCoRe requires significantly less

memory compared to our approach for the same partition size. The

memory usage compared to the mean error at convergence for

both SySCoRe and odIMDPs is reported in Table 4. Nevertheless,

especially for longer time horizon, because of the fewer regions

per dimension required by our approach to achieve a similar level

of error, we expect our approach based on odIMDPs to be substan-

tially more scalable for higher dimensions. In fact, this has already

been observed in [11] for IMDP-based approaches compared to

5
We only compare with the finite-state abstraction of SySCoRe, i.e. without model

order reductions, to assess the impact of the model choice. As mentioned in Section 1,

model order reductions are also interesting in the context of IMDP-based abstractions

and is subject to future work.
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Figure 5: Mean error and 95% confidence interval, with re-
spect to a uniform distribution of initial conditions, for vari-
ous sizes of partitions for the car parking and building au-
tomation system benchmarks.

MDP-based approaches and, as illustrated in Table 2, our approach

substantially outperforms that of [11] in terms of scalability.

7.3 Empirical convergence analysis
As hinted in Fig. 4, the error of our approach is reduced with finer

partitioning of the region of interest 𝑋 . To analyze this behavior in

more detail, in Fig. 5 we report the mean error and 95% confidence

interval as a function of the number of regions per axis for the

car parking and building automation system benchmarks. In both

cases, the mean error decreases with more regions for both systems.

The slight increase at various points for the car parking benchmark

is attributed to a misalignment of the reach and avoid regions

with the partitioning of 𝑋 (see Section 6.1 for more details). The

confidence interval for the car parking benchmark suggests that

while a larger number of regions quickly reach low errors, some

hardly converge. Future work will study the convergence from a

theoretical perspective.
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Table 2: Computation time and memory requirements for IMDP-based approaches across different benchmarks. Time is
measured in seconds, and memory is measured in MB. OOM denotes out of memory. To compare the memory requirements for
the benchmarks with OOM, we have calculated the amount of memory required to store the transition interval bounds (as a
dense matrix) using the formula for IMDPs in Subsection 4.

Our method Adams et al. [3] IMPaCT [53]

Benchmark Abs. time Cert. time Mem. Abs. time Cert. time Mem. Abs. time Cert. time Mem.

Car parking 0.150 0.146 19.2 13.497 0.255 138.1 19.570 0.846 304.9

Robot reachability 0.665 0.168 21.6 12.659 0.129 88.0 20.611 0.765 306.7

Robot reach-avoid 14.259 7.641 547.2 1136.720 6.739 4143.8 918.856 37.526 16388.0

Building automation system 0.023 0.237 3.1 7.273 0.285 105.1 17.564 0.318 96.0

Van der Pol 1.658 0.257 45.5 27.255 0.827 353.6 113.235 3.233 1093.4

NNDM Cartpole 236.154 550.747 610.8 42326.400 3.751 1590.9 Incompatible dynamics

6D linear model 8.959 359.887 237.3 OOM OOM (≈ 1.1𝑇𝐵)

7D linear model 66.231 13903.540 2310.8 Timeout (24h) OOM (≈ 70.4𝑇𝐵)

Dubin’s car GP 13.816 19.562 352.2 336.940 31.333 14265.8 Incompatible dynamics

Stochastic switched linear 0.033 0.045 4.5 3.391 0.038 41.0 NLopt failure

Table 3: Satisfaction probabilities for IMDP-based approaches. 𝑉 denotes the lower bound satisfaction probability and 𝜖 the
mean error. For Adams et al. [3] and IMPaCT [53], we also report the (minimum, maximum, and mean over regions) difference 𝛿
in𝑉 to our method, where positive means that our method yields a higher satisfaction probability and vice versa. The unreliable
result for IMPaCT with the Van der Pol benchmark is due to it returning NaN for every state.

Our method Adams et al. [3] IMPaCT [53]

Benchmark Mean𝑉 𝜀 Mean𝑉 𝜀 Min 𝛿 Max 𝛿 Mean 𝛿 Mean𝑉 𝜀 Min 𝛿 Max 𝛿 Mean 𝛿

Car parking 0.269 0.3885 0.213 0.5315 0.0040 0.1428 0.0560 0.213 0.5183 0.0040 0.1422 0.0556

Robot reachability 0.889 0.1108 0.881 0.1186 0.0060 0.0119 0.0079 0.890 0.1098 -0.0058 0.0022 -0.0010

Robot reach-avoid 0.980 0.0199 0.979 0.0208 0.0005 0.0027 0.0008 0.980 0.0202 -0.0001 0.0018 0.0003

Building automation system 0.263 0.7336 0.090 0.9076 0.0510 0.2297 0.1733 0.174 0.8237 0.0304 0.1131 0.0897

Van der Pol 0.069 0.3367 0.051 0.4178 0.0000 0.0529 0.0177 Unreliable results

NNDM Cartpole 0.004 0.7634 0.000 0.7184 0.0000 0.4101 0.0037 Incompatible dynamics

6D linear model 0.958 0.0419 OOM OOM

7D linear model 0.952 0.0483 Timeout OOM

Dubin’s car GP 0.362 0.3461 0.216 0.5046 0.0000 0.8383 0.1458 Incompatible dynamics

Stochastic switched linear 0.411 0.2828 0.366 0.3605 0.0000 0.0979 0.0456 NLopt failure

Table 4: The memory usage and the mean error 𝜀 at 100 time
steps for SySCoRe [49] and odIMDPs on the car parking
benchmark (see Table 1).

# regions SySCoRe odIMDPs

Mem. (MB) 𝜀 Mem. (MB) 𝜀

2500 0.80 0.2650 35.55 0.0204

10000 3.20 0.1568 279.51 0.0107

22500 7.20 0.1254 937.86 0.0070

90000 28.81 0.0288 7459.02 0.0028

360000 115.21 0.0060 59499.08 0.0014

8 Conclusion
We presented a novel approach for control synthesis of non-linear

stochastic systems against probabilistic reach-avoid specifications.

Our approach is based on abstractions to orthogonally decoupled

Interval Markov Decision Process (odIMDP), which is a new class

of robust Markov models with uncertain transition probabilities

having the product form. We showed how such a structure on the

transition probabilities allows one to abstract a large class of sto-

chastic systems by obtaining substantial improvements both in

terms of memory requirements and tightness of the results com-

pared to state-of-the-art. The theoretical findings are supported by

experimental results, showing how our new approach can success-

fully outperform existing competing methods in various tasks.

Naturally, our proposed approach is not without limitations. First,

our framework only applies to systems with independence in the

stochasticity across dimensions. As discussed, this includes various

systems commonly used in practice. However, if there is dependence

across the marginals, then the transition probabilities do not have

the product form. Consequently, our framework cannot be applied.

How to extend our approach to this setting is an important future

direction. Secondly, exactly and efficiently solving the multi-linear

problem of Eqn. (14) is still an open problem for which we employed

relaxations. Finally, our approach assumes on a grid-partitioning of

the region of interest, although the literature [3, 43] on refinement

has shown that heterogeneous abstractions can be beneficial.
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