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REVIEW

Advanced Diffusion-Weighted MRI
for Cancer Microstructure Assessment in

Body Imaging, and Its Relationship
With Histology

Ella Fokkinga, MSc,1,2 Juan A. Hernandez-Tamames, PhD,3,4 Andrada Ianus, PhD,5

Markus Nilsson, PhD,6 Chantal M. W. Tax, PhD,7,8 Raquel Perez-Lopez, MD, PhD,2*

and Francesco Grussu, PhD2*

Diffusion-weighted magnetic resonance imaging (DW-MRI) aims to disentangle multiple biological signal sources in each
imaging voxel, enabling the computation of innovative maps of tissue microstructure. DW-MRI model development has
been dominated by brain applications. More recently, advanced methods with high fidelity to histology are gaining
momentum in other contexts, for example, in oncological applications of body imaging, where new biomarkers are
urgently needed. The objective of this article is to review the state-of-the-art of DW-MRI in body imaging (ie, not including
the nervous system) in oncology, and to analyze its value as compared to reference colocalized histology measurements,
given that demonstrating the histological validity of any new DW-MRI method is essential. In this article, we review the
current landscape of DW-MRI techniques that extend standard apparent diffusion coefficient (ADC), describing their acqui-
sition protocols, signal models, fitting settings, microstructural parameters, and relationship with histology. Preclinical, clin-
ical, and in/ex vivo studies were included. The most used techniques were intravoxel incoherent motion (IVIM; 36.3% of
used techniques), diffusion kurtosis imaging (DKI; 16.7%), vascular, extracellular, and restricted diffusion for cytometry in
tumors (VERDICT; 13.3%), and imaging microstructural parameters using limited spectrally edited diffusion (IMPULSED;
11.7%). Another notable category of techniques relates to innovative b-tensor diffusion encoding or joint diffusion-
relaxometry. The reviewed approaches provide histologically meaningful indices of cancer microstructure (eg, vasculariza-
tion/cellularity) which, while not necessarily accurate numerically, may still provide useful sensitivity to microscopic
pathological processes. Future work of the community should focus on improving the inter-/intra-scanner robustness, and
on assessing histological validity in broader contexts.
Level of Evidence: NA
Technical Efficacy: Stage 2

J. MAGN. RESON. IMAGING 2023.

Diffusion-weighted (DW) magnetic resonance imaging
(MRI) detects signals that encode water diffusion in

the body. Its ultimate goal is the estimation of the tissue
microstructure that determines diffusion patterns, that is,

statistics of biological properties at the �1–100 μm length
scale, from sets of MRI signal measurements.1,2 Motion-
probing gradients are used to encode salient characteristics of
water diffusion in tissues into the MRI signal. The classical
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DW-MRI experiment is based on the pulsed gradient spin
echo (PGSE) sequence, also known as the Stejskal-Tanner
experiment,3 Single diffusion encoding, or linear tensor
encoding (LTE).4 The idealized PGSE experiment is illus-
trated in Fig. 1, in which motion-probing magnetic field gra-
dients are placed on either side of a spin echo refocusing
pulse. Several approaches have been proposed to enable
microstructure estimation, and the latest methods entail rich
acquisitions coupled with sophisticated signal modeling
(Appendix A).

A number of recent articles have reviewed the state-of-
the-art of DW-MRI applications.5–8 However, these tend to
focus heavily on brain imaging, especially in neurological or
psychiatric disorders, while reviews in the context of other
areas as body imaging in oncology are limited,9–11 despite the
rapidly growing amount of research in this field. Moreover,
while DW-MRI is intimately related to histology, recent
reviews do not typically assess the techniques taking into
account their actual histological validity and histopathological
specificity. Histological validation is a key step in the develop-
ment of any new DW-MRI approach, as it is essential to
assess the implications of the modeling assumptions, and to
confirm that the method is actually sensitive and specific to
the histopathological characteristics that it intends to
measure.2

Given the importance of linking DW-MRI measures
with the underlying tissue histology, the objective of this
paper is to review the state-of-the-art of DW-MRI in the
context of oncological body imaging (beyond the central

nervous system, ie, mainly abdominal and pelvic imaging),
with an emphasis on their value in the assessment of
microstructure as compared to reference histopathology. We
specifically aimed to provide an overview of the landscape of
advanced DW-MRI methods that extend apparent diffusion
coefficient (ADC), focusing on techniques whose indices have
been compared to histology in oncological body imaging. In
doing so, we took a mainly narrative approach, while also
presenting some quantitative information from the articles.
This was related to the application area (anatomical, cancer
type), scanning settings, and level of correlation histology.

Methods
DW-MRI Technique Selection
Given the high number of DW-MRI methods used to assess
microstructure and the variety of approaches followed to
relate DW-MRI and histology, we carried out a literature
search in PubMed to guide the selection of the techniques in
this review. The search aimed to identify techniques that
are relevant to body imaging, and that offer sensitivity to the
underlying tissue histology (search query: Appendix B).
The search adhered to the Preferred Items for Systematic
Reviews and Meta-analyses Extension for Scoping
Reviews (PRISMA-ScR) guidelines12 and was performed on
September 8, 2023.

Inclusion criteria were: 1) primary study; 2) English
language; 3) report an application of DW-MRI; 4) the
DW-MRI technique provides a direct estimate of a micro-
structural property, or offers some markers that extend
routine ADC (so that they rely on a signal model with more
tissue parameters than simple ADC mapping); 4) focused on
preclinical, clinical, in/ex vivo oncology studies (studies that
compared DW-MRI metrics from animal or human cancer
cells or tissue, scanned either in vivo or ex vivo, and then
compared to metrics derived from microscopy performed on
the same specimens after MRI); 5) focused on body imaging
(ie, on applications that do not include imaging of the
nervous system).

Technique Application and MRI-Histology
Correlation Assessments
We screened all included articles and recorded the MRI
scanner used, the tissue condition during MR imaging, the
area of application, as well as correlation coefficients between
any DW-MRI and histological metric, whenever reported.

Narrative Description of the Selected Techniques
For each identified technique, we described 1) signal model or
representation, 2) required diffusion encoding protocol, 3)
fitting methods, 4) main histological correlates, and finally 5)
discussed its strengths and weaknesses. Note that with both sig-
nal “model” and “representation” we mean a functional form
capable of predicting the diffusion MRI signal for a variety of

FIGURE 1: Schematic of the idealized pulsed-gradient spin-echo
(PGSE) sequence. The first and second radiofrequency
(RF) pulses rotate the magnetization vector by 90� and 180�,
respectively. These two pulses are characteristic for a spin-echo
sequence, as they consecutively excite and refocus the
magnetization. After a time TE (the echo time), a spin echo is
formed and the center of the k-space is sampled. The diffusion
encoding gradient consists of two pulsed wave forms on each
side of the 180�, which diffusion-weight the spin echo. The
diffusion gradient is characterized by a gradient magnitude G,
the gradient duration δ, and the separation time in between the
two gradient lobes Δ. Note that the figure represents a
simplified theoretical schematic of PGSE. In real world, the
gradient pulses are not rectangular but rather trapezoidal, due
to technical requirements.
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possible diffusion protocols given a set of tissue parameters.
These can be inferred through fitting to sets of DW-MRI sig-
nal measurements. In the case of models, these parameters typi-
cally refer to histological characteristics, such as cell size or cell
density. Tissue parameters in signal representations instead are
apparent phenomenological properties that are sensitive to dif-
ferent histological characteristics at once, and typically change
when the diffusion encoding gradient timings vary (eg, appar-
ent diffusion coefficient or kurtosis).

Results
DW-MRI Technique Selection
A total of 354 articles were identified. 87 articles were
excluded based on title and abstract. Of the remaining
267 articles, 238 focused on the use of techniques that
compute indirect measures of microstructure and 29 focused
on techniques that provide direct estimates of histological
properties. Of 238 articles, 213 were excluded as they either
did not report any comparison to histology, or, if they did,
only for ADC. Of 267 articles, 54 were finally included in
this review. Figure 2 graphically summarizes the article
screening process.

The following techniques were identified: diffusion
kurtosis imaging (DKI); intravoxel incoherent motion

(IVIM) imaging; vascular, extracellular, and restricted dif-
fusion for cytometry in tumors (VERDICT); imaging
microstructural parameters using limited spectrally edited
diffusion (IMPULSED); stretched exponential model
(SEM); q-space imaging (QSI); MRI-cytometry; restriction
spectrum imaging (RSI); Monte Carlo (MC) simulations
for microstructural mapping from clinical DW-MRI;
multidimensional diffusion MRI (MDD-MRI); hybrid
multidimensional MRI (HM-MRI); diffusion-relaxation
correlation spectrum imaging (DR-CSI); and mpMRI-
based artificial intelligence (AI). Some articles focused on
more than one technique.

A summary of the included techniques is given in
Table 1 and Fig. 3. Techniques are grouped as phenomeno-
logical, when they parametrize the signal to surrogate parame-
ters that do have a direct microstructural counterpart
(eg, diffusion kurtosis), or biophysical models, if they estimate
specific histology features (eg, cell size).

Technique Application and MRI-Histology
Correlation Assessments
Supporting Information Tables S1–S7 report in detail
information on the MRI scanner and DW protocol, tissue
condition during MR imaging, area of application, and

FIGURE 2: Flow chart of the literature search in PubMed. Acronyms stand for: DW = diffusion-weighted; IVIM = intravoxel
incoherent motion; VERDICT = vascular, extracellular, and restricted diffusion for cytometry in tumors; IMPULSED = imaging
microstructural parameters using limited spectrally edited diffusion.
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TABLE 1. Summary of the Diffusion Models and Signal Representations Included in this review.

Model/
Representation Reported by Model Parameters

Salient MR-Acquisition
Protocol Requirements

Main Histological
Correlates Assessed

DKI 13–19 ADCk, K High b-values required to
sample non-Gaussian
diffusion

Cellularity

IVIM 20,21,26–43 Dt, D
*, f Many b-values required,

including low b-values to
sample pseudo-diffusion

Cellularity, vessel
density measures

VERDICT 52–59 cell radius R, fic, fEES, fvasc, dic,
dec, dvasc

PGSE protocol probing
various different TE,
gradient duration, and
separations. Novel non-
PGSE encodings recently
explored

Cellularity,
intracellular
fraction, cell size

IMPULSED 63–69 cell radius R, fic, dic, dec Uses OGSE in addition to
PGSE

Cellularity,
intracellular
fraction, cell size

SEM 17,33,71 DSEM, α PGSE protocol probing
different low and
intermediate b-values at
fixed diffusion time

Cellularity,
heterogeneity

QSI 71,73 Statistics from spin
displacement distribution
profiles

PGSE protocol probing
different q-values required,
with high gradient strength
required

Cellularity, nuclear-
to-cytoplasm ratio

MRI-Cytometry 78 Probability distribution of cell
size radius R, dic, dec, fic,
extracellular DTD factor β

General framework, so can be
applied for multiple
acquisition protocols

Cell size

RSI 22,79 Volume fractions Cn PGSE with high b-values
required, but relatively short
scan time (it can be
performed at fixed diffusion
time)

Indices of intravoxel
tissue
composition

MDD-MRI 85 Statistical descriptors of
diffusion tensor distributions

Uses a variety of anisotropic or
isotropic b-tensor encodings;
for example, gradient
waveforms implementing
isotropic linear encoding
along multiple directions as
well as spherical tensor
encoding

Indices of tissue
composition

HM-MRI 91,92 The volume fractions Vn, the
T2n, and the ADCn-value
for the lumen, stroma, and
epithelium

Part of an mp-MRI protocol
including T2-weighted,
DCE, and diffusion imaging
(PGSE at varying b-values
and TE, with no
requirements on diffusion
time)

Indices of tissue
composition
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information on the correlation of MRI metrics to histology
for all 54 articles. This information is also included as a struc-
tured CSV dataset in Supporting Information Data S2.

Figure 4 graphically visualizes information on the
MRI-histology applications extracted from the selected arti-
cles. The figure shows that in most studies (about 60%), 3 T
MRI scanners were used (Fig. 4a). Human tissue was used in
60% of cases, followed by mouse tissue in almost 30% of the
experiments (Fig. 4b). In the vast majority of the experi-
ments (roughly 80%), tissues were imaged in vivo, while
ex vivo imaging (of either fresh or fixed tissue) was
performed in 13% of the experiments (Fig. 4c). Finally, the
analysis of the included articles reveals that the cancer appli-
cation that were investigated varied considerably (Fig. 4d).
The three most common areas of interest were, in decreasing
order, cancers of the prostate (23% of the experiments),
breast (16.4% of the experiments), and liver (14.8% of the
experiments).

Tables 2 and 3 report correlation coefficients between
DW-MRI metrics and histology (Table 2: DKI and IVIM
metrics; Table 3: all other techniques). Correlations vary from
weak (eg, r = 0.22 for SEM parameter α with nuclear-
to-cytoplasm ratio) to strong (eg, r = 0.92 for IMPULSED
cell diameter d with histology-derived cell size). Moreover,

for some metrics correlations not always consistent across
studies (eg, r = 0.78 and r = �0.41 for IVIM D* and
microvessel density), while for others they are (eg, DKI
ADCK or SEM Dt are consistently negatively correlated
with metrics of cellularity or cell count). Promisingly high
correlations are, for example, those observed in prostate
cancer for diffusion-relaxation methods (r of 0.67 and 0.90
between MRI and histological prostate lumen fraction).

Narrative Description of the Selected Techniques
This section describes the advanced DW-MRI
techniques that were used in the 54 articles included in this
review, discussing the key metrics that each technique
provides.

DIFFUSION KURTOSIS IMAGING. Ten articles report on
DKI13–22 (Supporting Information Table S1 for all but
articles20–22, which are reported in Supporting Information
Table S220,21 and S5,22 being focused on more than one
DW-MRI technique). DKI is a technique based on the diffu-
sion signal cumulant expansion,23 and was proposed by
Jensen et al in 2005 to characterize non-Gaussian diffusion
arising from presence of multiple water pools with different

TABLE 1. Continued

Model/
Representation Reported by Model Parameters

Salient MR-Acquisition
Protocol Requirements

Main Histological
Correlates Assessed

DR-CSI 99,100 Volume fractions fn Part of an mp-MRI protocol
including T2-weighted and
diffusion imaging (PGSE at
varying b-values and TE,
with no requirements on
diffusion time)

Indices of tissue
composition

MC DW-MRI 81 Cell radius and vol. fraction R
and fic, cell diffusivity dic
and apparent cellularity ρapp

Part of a clinical mp-MRI
protocol including
anatomical MRI and clinical
DW-MRI for ADC
mapping (no requirements
on diffusion time)

Ki-67 expression

mpMRI-based AI 101 Cellularity Part of an mp-MRI protocol
including T2-weighted,
DCE, and simple ADC
mapping based on PGSE

Cellularity

Model abbreviations: DKI = diffusion kurtosis imaging; IVIM = intravoxel incoherent motion; VERDICT = vascular, extracellular,
and restricted diffusion for cytometry in tumors; IMPULSED = imaging microstructural parameters using limited spectrally edited
diffusion; SEM = stretched exponential model; QSI = q-space imaging; RSI = restricted spectrum imaging;
MDD-MRI = multidimensional diffusion MRI; HM-MRI = hybrid multidimensional MRI; DR-CSI = diffusion-relaxation correlation
spectrum imaging; mpMRI = multiparametric MRI; MC DW-MRI = Monte Carlo simulations for microstructural mapping from clin-
ical DW-MRI; AI = artificial intelligence.
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diffusivities, restriction, water exchange, or combination of
those.24

Signal model: The DKI signal representation is

S¼ S0 exp �bADCkþ1
6
K bADCkð Þ2

� �
ð1Þ

Above, S is the signal and b is the b-value. Unknown
parameters are the non-DW signal level S0, an ADC metric
ADCk, the excess kurtosis K (K = 0 for Gaussian diffusion),
and the non-DW-signal S0. ADCk is a corrected estimate of
ADC as compared to a first-order description S = S0 exp
(�bADC) (for sufficiently low b-values, ADCk ≈ ADC,
K ≈ 0). K is unitless; the larger jKj, the stronger the departure
from Gaussian diffusion (ie, from mono-exponential signal
decay). Negative K is possible, but rarely measured. In some
articles, a full tensor fit is performed, and Eq. 1 is generalized
to account for anisotropy in apparent diffusivity and apparent
kurtosis across three-dimensional (3D) spatial directions.18,19

In those cases, the authors typically focused their analyses on

mean diffusivity and mean kurtosis, which here were then
taken as proxies for ADCk and K in Table 2.

Required diffusion encoding protocol: Clinical DKI is
based on PGSE (ie, LTE), with 3 mutually orthogonal gradient
directions at b-values up to approximately 1000–2000 seconds/
mm2. The measurement regime where estimating K becomes
relevant depends on the microstructure. Typically, K cannot be
neglected when the estimated ADC starts to become depen-
dent on the maximum b-value. Signals from the three direc-
tions are averaged (either geometrically or arithmetically) and
scalar kurtosis evaluated, rather than full tensors (required in
tissues such as muscles and white matter), due to low anisot-
ropy. To estimate S0, ADCk and K, sampling at least three
b-values up to 1000–2000 seconds/mm2 is required.

Fitting methods: The included articles used voxel-wise,
nonlinear least-squares fitting, which were implemented in
MATLAB.13,14

Main histological correlates: DKI-parameters are not
direct estimates of microstructural properties as cell size/
density. Nonetheless, they are sensitive to several different

FIGURE 3: A visual summary of the techniques found in the literature search and their main histological correlates. PGSE = pulsed
gradient spin echo; DKI = diffusion kurtosis imaging; IVIM = intravoxel incoherent motion; VERDICT = vascular, extracellular, and
restricted diffusion for cytometry in tumors; IMPULSED = imaging microstructural parameters using limited spectrally edited
diffusion; SEM = stretched exponential modeling; QSI = q-space imaging; RSI = restricted spectrum imaging; MDD-
MRI = multidimensional diffusion MRI; HM-MRI = hybrid multidimensional MRI; DR-CSI = diffusion-relaxation correlation spectrum
imaging; MC DW-MRI = Monte Carlo simulations for microstructural mapping from clinical DW; mpMRI = multiparametric MRI;
AI = artificial intelligence.
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biophysical characteristics, and can serve as indirect markers
of microstructure. In four articles, K or full tensorial mean
kurtosis were tested for correlation to cellularity,13,14,18,19

with mixed results. In a study on ovarian cancer,13 cellularity
correlated with K; in hepatocellular carcinoma (HCC)14 and
in a rabbit VX2 bone tumor model,18 it did not. Since
K reflects diffusional heterogeneity, it is possible that such
variable correlations with cellularity reflect, at least in part,
intravoxel heterogeneity in cell density.25 Intracellular fraction
from histology and other tissue component fractions were
compared to K in renal cell carcinoma and prostate,16,17 and
results varied (correlation not always seen).

ADCK or full tensorial mean diffusivity exhibited simi-
lar correlations as K with cellularity, but inverse. It was found
to have a significant inverse correlation with cellularity,13,18,19

and tissue composition fractions.16,17 Combining ADCk

and K resulted in an even stronger correlation to cytoplasm,
cellular, and stromal fraction.17

Rosenkrantz et al14 found weak correlations among
ADC, ADCk, and K, implying that K may offer comple-
mentary information, even if fully biologically specific.

This is supported by the fact that non-Gaussian diffusion
was seen in all HCC cases (K > 0.5). K exhibited a higher
coefficient of variation (CV) than ADC, reflecting higher
sensitivity to diffusion heterogeneity, but also potentially
higher susceptibility to noise.

Grussu et al15 mapped ADCk and K to intracellular
diffusivity and volume-weighted cell size at fixed diffusion
time in fixed mouse livers. Cell size estimates were not
accurate, but captured between-sample contrasts seen on
histology.

Discussion: The main advance of DKI is that it provides
additional information to routine ADC mapping accounting
for non-Gaussian diffusion, which is quantified by the kurto-
sis excess K. DKI enables the description of a wider b-value
range compared to ADC measurement, as it enables account-
ing for departures from mono-exponential signal decay.
Nonetheless, DKI also has several limitations, and its practical
implementation can be challenging. In order to accurately
estimate the kurtosis, higher b-values than those typically
acquired in the clinic are required, resulting in longer echo
times and overall worse signal-to-noise ratio (SNR), as well as

FIGURE 4: Salient statistics regarding the MRI-histology experiments performed in the identified articles. (a) B0 magnetic field
strength used for MRI. (b) Species from which the imaged tissues were obtained. (c) Tissue condition during MRI. (d) Main cancer
application.
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longer diffusion protocols, which may increase the sensitivity
to motion. The higher requirements compared to ADC map-
ping are a limitation of virtually all advanced techniques

described here, and will be given as understood when intro-
ducing the next techniques. Moreover, the estimation of the
kurtosis can be ill-defined as ADCk goes toward zero. Finally,

TABLE 2. The Correlations Observed Between DKI and IVIM Metrics and Histological Indices Reported in the
54 Articles Included in This Review

MRI Metric Correlation With Histology

DKI ADCK r = �0.24 with cellularity14; r = �0.48 with nuclear-to-cytoplasm ratio16; r = �0.73 (Spearman’s)
with cellularity13; r = � 0.77, 0.63 with cellularity and apoptosis rate18; r = �0.40, �0.53,
�0.55, 0.67 with nuclear, cytoplasmatic, cellular, and prostate stromal fractions17; r = �0.83,
0.72 with tumor cell density and CD45 level19; r = 0.24, �0.30 with stromal and nuclear
fractions20; r = � 0.21, 0.36 with tumor area and fraction of interstitium21; r = � 0.51
(Spearman’s) with tumor cellularity71

DKI K r = 0.48 with cellularity14; r = 0.54 with nuclear-to-cytoplasm ratio16; r = 0.49, 0.53 (Spearman’s)
with cellularity and Ki-67 positive cell count13; r = 0.28, �0.23 with cellularity and apoptosis
rate18; r = 0.49, 0.49, �0.42 with cytoplasmatic, cellular, and prostate stromal fractions17;
r = 0.35, �0.24 with tumor cell density and CD45 level19; r = �0.20, 0.26, �0.29 with
cellular, stromal, and nuclear fractions20; r = 0.53, 0.24, 0.38 with cancer cell nuclear area,
lymphocyte area ratio, and cancer cell nucleus size21; r = 0.28 with tumor grade22

IVIM Dt r = �0.33, �0.49, 0.42 with cell count, nuclear and stromal fractions26; r = �0.46 with
percentage of fibrosis30; r = �0.89, �0.87, �0.84 with cell density, cell area fraction, and nuclear
fraction28; r = � 0.39 with tumor cellularity27; r = �0.45 (Spearman’s) with nuclear-to-stromal
ratio31; r = �0.20, 0.26, �0.29 with cellular, stromal, and nuclear fractions20; r = �0.35 with a
fibrosis index34; r = 0.52, �0.20, 0.54 (Spearman’s) with necrosis fraction, microvessel density,
and apoptosis fraction35; r = �0.47, �0.50 (Spearman’s) with microvessel density and area37;
r = 0.51 with microvessel density38; r = 0.84 with necrotic fraction39; r2 = 0.46 (r = �0.68)
with cell density40; r = �0.57 with vasculogenic mimicry41; r = �0.46, �0.31 (Spearman’s) with
necrotic fraction and microvessel density42

IVIM D* r = �0.26 with percentage of fibrosis30; r = 0.33 with microvessel density34; r = �0.38, 0.54,
�0.69 (Spearman’s) with necrosis fraction, microvessel density and apoptosis fraction35; r = 0.78
(Spearman’s) with microvessel density36; r = �0.41, �0.37 (Spearman’s) with microvessel density
and area37; r = 0.71, 0.72 with microvessel density and pericyte coverage index41; r = 0.22 with
microvessel area fraction21; r = 0.33, 0.34 (Spearman’s) with necrotic fraction and microvessel
density42; r = � 0.92, �0.79 with Ki-67-positive cell fraction and diameter43

IVIM f r = 0.35, �0.42 with cell count and stromal fraction26; r = 0.44 with percentage of fibrosis30;
r = 0.63, 0.61, 0.58 with endothelial area, total vessel area, microvessel count, and f entropy
showed r = �0.55 with a Ki-67 index29; r = �0.24, 0.28, �0.24 with cellular, stromal, and
nuclear fractions20; r2 = 0.40 (ie, r = 0.63) with microvessel density33; r = 0.42 with a fibrosis
index34; r = �0.35, 0.62, �0.55 (Spearman’s) with necrosis fraction, microvessel density, and
apoptosis fraction35; r = 0.75 (Spearman’s) with microvessel density36; r = 0.77, 0.82
(Spearman’s) with microvessel density and area37; r = 0.28 with microvessel density38; r = 0.43,
0.53 with microvessel density and necrotic fraction39; r2 = 0.44 (r = 0.66) with blood vessel
density40; r = 0.52, 0.38 with microvessel density and pericyte coverage index41; r = 0.24, 0.28,
�0.37 with cancer cell area and nuclear fractions, lymphocyte area ratio21; r = 0.40, 0.44
(Spearman’s) with necrotic fraction and microvessel density in mice injected with NCI-H226 cells,
while r = � 0.51, �0.55 in mice injected with MSTO-211H cells42; r = �0.69, �0.61 with
Ki-67-positive cell fraction and diameter43

Weak correlations that in absolute value were lower than 0.2 were not included in the table. Values of r indicate Pearson’s correlation
coefficients, unless otherwise stated. Refer to section Advanced DW-MRI for the mathematical/physical foundations beyond each
metric.
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changes in the kurtosis excess K can be due to several, differ-
ent independent changes in tissue microstructure, which may
be difficult to tell apart, for example, changes in cell size, cell
density, voxel heterogeneity, or water exchange.

Intravoxel Incoherent Motion
IVIM imaging was the focus of 20 articles20,21,26–43

(Supporting Information Table S2). IVIM was originally pro-
posed in 1986 by Le Bihan et al.44

Signal model: IVIM models two water pools
(bi-exponential signal model). One describes signal from per-
fusion within randomly-oriented fluid-filled conduits (eg,

capillaries, blood vessels, tubules), while the other true diffu-
sion in nonvascular tissue.44

The overall magnitude signal attenuation in IVIM is
written as

S¼ S0 1� fð Þe�b Dt þ f e�b D*
� �

ð2Þ

Above, S and S0 are the same as in Eq. 21, f is the
pseudo-diffusion (vascular) signal fraction (intrinsically
relaxation-weighted), Dt is the tissue ADC, and D* is the
pseudo-diffusion ADC (D* � Dt, ranging in 10–100 μm2/msec),
and can be notated as D or Dp, for “pure.” Recently, Eq. (2)

TABLE 3. The Correlations Observed Between DW-MRI Metrics of Techniques Other Than DKI and IVIM and
Histological Indices Reported in the 54 Articles Included in This Review

MRI Metric Correlation With Histology

SEM DSEM r = �0.23, �0.52, �0.50, 0.64 with nuclear, cytoplasmatic, cellular, and prostate
stromal fractions17; r = � 0.57 (Spearman’s) with tumor cellularity71

SEM α r = �0.23, 0.22 with cytoplasmatic fraction and nuclear-to-cytoplasm ratio17

VERDICT fic r = 0.90 with fraction of HE stained area54 (DDE-VERDICT)

VERDICT R r = 0.68 with minimum Feret diameter of cells54 (DDE-VERDICT)

IMPULSED d r = 0.92 with in vitro mean cell diameter64; r = �0.64, 0.52 with percentage of
CD3+ cells and all-cell mean diameter65

IMPULSED cellularity r = 0.81 with histological cellularity66

IMPULSED fic r = 0.83 with nuclear fraction68

QSI mean displacement r = �0.71, �0.67 with nuclear-cytoplasmatic ratio and tumor cellularity73

QSI probability of zero
displacement

r = 0.79, 0.70 with nuclear-cytoplasmatic ratio and tumor cellularity73

QSI propagator kurtosis r = 0.73, 0.74 with nuclear-cytoplasmatic ratio and tumor cellularity73

QSI propagator full-width-at-
half-maximum

r = � 0.51 (Spearman’s) with tumor cellularity71

RSI restricted fraction C1 r = 0.40 with tumor grade22

HM-MRI epithelial fraction r = 0.93 with histological epithelial fraction in the prostate91

HM-MRI lumen fraction r = 0.90 with histological lumen fraction in the prostate91

HM-MRI stroma fraction r = 0.82 with histological stroma fraction in the prostate91

DR-CSI epithelial fraction r = 0.74 (Spearman’s) with epithelial fraction in the prostate99

DR-CSI lumen fraction r = 0.67 (Spearman’s) with lumen fraction in the prostate99

DR-CSI stroma fraction r = 0.80 (Spearman’s) with stroma fraction in the prostate99

DR-CSI component fractions The signal fraction of two components out of a 5-component spectrum correlated
with tumor grade100 (r = 0.55 and r = �0.38)

Weak correlations that in absolute value were lower than 0.2 were not included in the table. Values of r indicate Pearson’s correlation
coefficients, unless otherwise stated. Refer to section Advanced DW-MRI for the mathematical/physical foundations beyond each
metric.
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has been extended to incorporate T2-effects45 or to capture
non-Gaussian diffusion21,46 (joint IVIM-DKI).

Required diffusion encoding protocol: Body IVIM
protocols typically require LTE with three mutually orthogonal
gradient directions at various b-values. Low b-values (up to
approximately 100 seconds/mm2) are densely sampled, and
additional b-values are acquired up to approximately
1000 seconds/mm2. Signals from the three directions are
averaged. The number of b-values used in the included articles
ranged from 5 to 11.

Fitting methods: The choice of the fitting algorithm can
significantly influence the quality of IVIM maps. Barbieri
et al47 compared six algorithms for IVIM fitting in abdominal
imaging (Appendix C and Table 3). Bayesian probability
(BP)-based fitting provides the highest precision and
accuracy, and minimizes inter-reader/-subject variability.
“Two-step fitting” is used in several studies,20,21,37,40 but
without further specifications. Two articles use Levenberg–
Marquardt (LM) fitting.30,35 Hecht et al30 described the
fitting procedure in detail.

Main histological correlates: The IVIM parameters of the
nonvascular diffusion component are often employed as
markers for cellularity, while pseudo-diffusion indices are
used as markers of microvessel characteristics. In five
articles,20,27,31,32,40 a correlation between Dt and cellularity or
related measures was found. However, in three articles,21,29,30

no significant correlation was found. In one study both Dt

and ADC were computed; the correlation with cellularity was
stronger for Dt.

27 These findings were, however, not
supported by four other studies.21,26,29,31

Conversely, f and D* rarely correlated with cellularity,
although some weak correlation with the level of necrosis was
seen in Zhang et al.42 In Xie et al,43 a negative correlation
between both f and D* with liver cell size following hepatec-
tomy was reported. Correlation with measures of vessel den-
sity was tested in 13 articles. In 10 articles, a significant
correlation was reported,29,33–37,39–42 while in three no corre-
lation was found.21,30,31 For example, f and D* correlated
positively with microvessel density (MVD).41,42 D* also cor-
related positively with the pericyte coverage index (PCI),
while Dt correlated negatively with the vasculogenic mim-
icry (VM).41

Discussion: IVIM enables the joint estimation of tissue
diffusion properties as well as characteristics of the local
microvasculature, which may be useful in a variety of onco-
logical applications, being abnormal vasculature a key charac-
teristics of cancer. However, the practical implementation of
IVIM in real-world clinical contexts faces a number
of hurdles.

Firstly, a large number of b-value measurements are
required. If one wants to accurately characterize both true-dif-
fusion/pseudo-diffusion components, very long acquisitions
may be required.

IVIM oversimplifies the true microstructure, as it
models only two compartments, pooling all nonvascular con-
tributions into a surrogate tissue component. Also, it does
not account for intercompartment exchange,48 compartment-
wise relaxation,45 and diffusion time dependence.1 Because of
this, IVIM parameters may be considered semi-quantitative.

Moreover, the included articles demonstrate clearly that
there is currently a lack of standardization of both fitting pro-
cedure and acquisition protocol, which may be one of the
leading factors behind the relatively poor reproducibility of
IVIM metrics.

Finally, several studies30–34 report that IVIM-parameters
do not perform well in terms of repeatability (especially
f, D*). Flow-compensated acquisitions improve IVIM
robustness,49,50 but may not be available in all scanners.
Efforts are also ongoing to optimize the clinical protocol and
facilitate standardization.51

VERDICT
Eight articles reported on VERDICT52–59 (Supporting
Information Table S3). This model was originally proposed
by Panagiotaki et al.55

Signal model: VERDICT is a biophysical, multi-
compartment model fitted on DW-MRI measurements
acquired at varying b-values, diffusion times and gradient
directions with standard linear tensor encoding (PGSE). The
model, developed on colorectal cancer xenograft mice,55 has
shown utility in vivo in prostate imaging60 and in other
contexts (eg, rhabdomyosarcoma).

VERDICT models three nonexchanging water pools:

• water in the intracellular space (restricted diffusion within
spherical cells);

• water in the extracellular extravascular space (EES) (hindered
diffusion in stroma and lumen, outside cells/vessels);

• water in the vascular compartment (pseudo-diffusion
within blood vessels/tubules).

The total signal is written as

S¼ S0 f ic S ic d ic,Rð Þþ f EES SEES d ecð Þþ f vasc Svasc d vascð Þ� �
ð3Þ

Above, b is the b-value; dic,ec,vasc are the intrinsic diffu-
sivity of the intracellular space (dic) and the EES/vascular
ADCs (dec/dvasc). R is cell radius, while the fic,EES,vasc are
relaxation-weighted signal fraction (fic + fEES + fvasc = 1).
A recent article by Palombo et al59 extended the VERDICT
model (relaxation-VERDICT) to account for compartment-
wise relaxation properties.

Required diffusion encoding protocol: VERDICT requires
a rich PGSE protocol with several b-values and diffusion
times (ie, varying Δ/δ). The different diffusion times may be
sampled at the expense of varying the TE, a fact that has been
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exploited in recent relaxation-VERDICT.59 Sampling differ-
ent diffusion times at different diffusion-weighting strengths
provides sensitivity to cell size and cellularity due to restric-
tion (intracellular space) or tortuosity (extracellular space), a
phenomenon known as time-dependent diffusion (TDD).1

Recently, double diffusion encoding (DDE) VERDICT
(made of two consecutive PGSE blocks; Appendix A)
improved fic and R estimation.54

Fitting methods: VERDICT is generally fitted with fEES,
fic, R as free parameters (fvasc = 1 � fic � fEES) and dic,ec,vasc
fixed (and dic = dec), using an iterative optimization proce-
dure.52,55,57 The optimization is nonlinear, via LM algorithm
(see Table C1 in Appendix C). VERDICT can also adopt dif-
ferent compartment-wise anisotropy, depending on the cancer
type55,57,61: optimal compartment shape has been investi-
gated with the Akaike information criterion (AIC).53 Acceler-
ated microstructure imaging via convex optimization
(AMICO) fitting was used to speed up signal processing,
without jeopardizing fitting accuracy.52 An article62 reported
a method based on general adversarial networks (GANs) to
synthesize VERDICT parameters from routinely acquired
DW-MRI, suitable for ADC mapping. Methods of this type
may be useful in clinical settings, but should be interpreted
with care: microstructural information that is not encoded in
the signal cannot be retrieved. The recent relaxation-
VERDICT implementation was instead fitted using deep
neural networks (DNNs),59 resulting in lower metric variabil-
ity, higher scan-rescan repeatability, and higher accuracy in
parameter estimation.

Main histological correlates: All included articles were on
prostate cancer, except for one on rhabdomyosarcoma54 and
one on colorectal cancer.55 In the included articles, low/high
fic was found to mirror areas of low/high cellularity,53 a
promising finding for potential applications in clinical trials.
R was shown to be highly variable in areas of high lumen
density. The quantitative comparison between VERDICT
parameters and histology showed that VERDICT parameters
are correlated with their histological counterparts,55 and the
level of agreement increases when tissue shrinkage due to his-
tology processing is taken into account. Importantly, it can
discriminate Gleason grades. The classical VERDICT imple-
mentation distinguishes benign prostate lesions from Gleason
grade 3 + 3, and 3 + 3 from 3 + 4. In additional,
relaxation-VERDICT also distinguishes 3 + 4 from 4 + 3 or
higher.59

Discussion: In three studies, a comparison was executed
between VERDICT, ADC, IVIM, and DKI.55,57,60 The
most important benefit of VERDICT over the other tech-
niques is that VERDICT describes specific histological factors,
while the others provide surrogate indices of tissue microstruc-
ture.60 Nonetheless, a joint quantitative benchmarking of these
techniques against histology was executed in only one study,
and further validation of VERDICT is required.

In VERDICT, a tailored acquisition is required to sam-
ple high b-values (up to ≈ 3000 seconds/mm2) and various
Δ, δ, and potentially TE in recent VERDICT extensions.59

This results in demanding acquisitions, as for DKI.55,62

Concluding, VERDICT is a promising technique
providing sensitive markers of specific histological properties,
and variations in the acquisition/analysis (AMICO, DDE,
GANs, DNN-fitting, joint diffusion-relaxation modeling),
may strengthen its clinical feasibility. Its main advantage is
that it attempts to disentangle independent factors that can
contribute to the diffusion contrast, striving to provide quan-
titative estimates of relevant biophysical properties such as cell
size or density. Its main disadvantage is that it relies on a
biophysical model that makes strong assumptions on the
underlying characteristics of the diffusion process (eg, it neglects
water exchange; it assumes a fixed diffusivity in the intracellular
compartment), which has not been fully validated yet. Moreover,
it relies on a long acquisition protocol, which may be impractical
in certain clinical contexts where scan time is limited.

IMPULSED
Seven articles report on IMPULSED63–69 (Supporting Information
Table S4), which is based on temporal diffusion spectroscopy
(TDS), a framework that exploits TDD to resolve restriction
lengths combining PGSE and oscillating gradient spin echo
(OGSE). This method was proposed by Jiang et al.66

Signal model: IMPULSED models two nonexchanging
compartments, describing intra-/extracellular water, that is,

S¼ S0 f ic S icþ 1� f ic
� �

Sec
� � ð4Þ

where fic (also known as vin) is the relaxation-weighted intra-
cellular signal fraction, Sic/Sec intra-/extracellular signals. Sic is
modeled by diffusion within spheres of diameter d, with
intrinsic cytosol diffusivity dic. Sec is modeled as

Sec ¼ exp �b d ecð Þ ð5Þ

dec is approximately linear as a function of the OGSE
frequency f63–66 (dec = dec,0 + βf ), while it does not depend
on δ/Δ in PGSE. A cellularity index can be obtained by com-
bining d and fic,

66 similarly to Panagiotaki et al.60

In the original IMPULSED, signal contributions from
perfusion are ignored and intra-/extracellular exchange
assumed to be negligible. In a study of Jiang et al,63 a third
compartment is added to describe the effect of vasculature.
Li et al67 investigate the influence of water exchange,
suggesting that it can be ignored if the diffusion time is at
least one order of magnitude smaller than the intracellular
water lifetime τin (≥ 30 msec). Recently, water exchange was
incorporated by Jiang et al69 in IMPULSED. This improved
fitting accuracy and provided additional τin and cell mem-
brane permeability Pm estimates.
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Required diffusion encoding protocol: IMPULSED utilizes
LTE with both OGSE, probing ultra-short diffusion times
maximizing sensitivity to cell size66,68, and routine PGSE
wave forms. To obtain microstructural information for
common cell types, diffusion times in the range of approxi-
mately 1–70 msec are required.63 Also, b-values up to
approximately 1000 seconds/mm2 are used.

Fitting methods: Fitting is performed via constrained
nonlinear least square optimization. dic (intrinsic intracellular
cytosol diffusivity) is fixed in most studies (eg, 3 μm2/msec63)
to increase precision.63,64,68

Main histological correlates: Comparisons to histological
references were found for fic and d. fic is underestimated with
respect to histology,63,64,66,67,69 potentially due to unac-
counted water exchange.66,69 The cell size estimate d is less
influenced by exchange and is moderately or strongly corre-
lated with histology.63–67,69

Discussion: Similarly to VERDICT, IMPULSED relies
on a multi-compartment model to disentangle key properties
of intra-/extracellular diffusion, providing metrics of
cytometry designed to be highly specific to histology.
Practically, IMPULSED combines OGSE and PGSE to
probe a wide range of diffusion times tdiff (approximately
1.7–52 msec) as this improves microstructural inference of
cell size. However, such a requirement can hinder the practi-
cal implementation of the technique. The tdiff range that can
be probed depends on the maximum available gradient
strength,65 and by the fact that OGSE may not be readily
available in commercial scanners.68

In conclusion, IMPULSED is potentially clinically feasi-
ble, as long as the required gradient magnitudes are achievable
and OGSE sequences are available. It provides histologically
meaningful cell size indices (d), while accurate fic estimates
are more difficult to obtain, especially if water exchange is
not accounted for.

Stretched Exponential Model
In three papers, SEM, a technique developed by Bennett
et al,70 was mentioned,17,33,71 despite not being the primary
focus of the study (see Supporting Information Tables S1
and S5).

Signal model: SEM, a special case of fractional order
diffusion, attempts to quantify diffusion heterogeneity by
introducing a heterogeneity index α, such that

S¼ S0 exp � bDSEMð Þαð Þ ð6Þ

S, S0, and b have the same meaning as described earlier,
while α ranges from 0 to 1. α close to 1 implies low diffusion
heterogeneity (ie, diffusion approximately Gaussian; mono-
exponential decay). Conversely, the closer α to 0, the more
heterogeneous the diffusion process. DSEM is the mean
intravoxel diffusion coefficient.

Required diffusion encoding protocol: The protocol
requirements are similar to those of DKI, namely, standard
LTE with at least two nonzero b-values plus one or more
non-DW images. In body imaging, three directions per
b-value are typically acquired and averaged, and the diffusion
time and TE are generally fixed for all b-values. The maxi-
mum b-value used in SEM is around 2000 seconds/mm2.

Fitting methods: SEM parameter maps are typically
obtained via nonlinear least squares fitting.

Main histological correlates: Two papers compared SEM
to histological indices.17,71 DSEM shows similar negative
histological correlation with cellularity. Correlation figures for
α are weaker. Nonetheless, linear regressions that include
both DSEM and α predict histological cellularity better than
DSEM alone,17 implying that α may carry sensitivity to
microstructure.

Discussion: SEM provides a framework that enables the
characterization of departures from Gaussian diffusion and
mono-exponential decay through diffusion heterogeneity.
SEM provides useful information on microstructure that
generalizes routine ADC. However, it suffers from similar
issues as the techniques described above. Firstly, its metrics
are only semi-quantitative, as they may vary with varying dif-
fusion protocols (eg, due to changes in the diffusion times).
Moreover, SEM has an unphysical nature, as the exponent
parameter α does not have any biophysical meaning.72

Finally, it requires longer acquisition protocols and higher
b-values than routine ADC mapping, due to its higher num-
ber of parameters. This comes at the price of reductions in
SNR, as well as potentially higher susceptibility to motion.

Q-SPACE IMAGING. The q-space imaging (QSI) was the
focus of two articles.71,73 QSI is a phenomenological
technique that recovers the spin displacement distribution
due to diffusion, developed by the seminal work of Callaghan
et al.74

Signal model: QSI enables the estimation of the
probability density of diffusion displacement r due to diffu-
sion over a time t (p(r,t)), known as diffusion propagator. The
estimation of the propagator is made possible by the fact that
the DW-signal measured as a function of the q-value q = γ δ
Gbg (with G, δ, and bg being the gradient strength, duration,
and direction) at a fixed gradient separation Δ in the short

gradient pulse limit (δ� L2
D0
�Δ, 75 where L is the compart-

ment size and D0 the intrinsic diffusivity), is the Fourier trans-
form of p(r,t=Δ). This can be estimated by inverse Fourier-
transforming DW measurement sets S(q,Δ),3,76 that is,

p r,Δð Þ¼ F�1 S q,Δð Þf g ð7Þ

Required diffusion encoding protocol: For QSI, rich proto-
cols based on LTE PGSE are typically required. A high
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number of measurements is required to sample the q-space
and enable accurate inverse Fourier transformation. For exam-
ple, in earlier studies,71,73 32 b-values up to 7163 seconds/
mm2 were used.

Fitting methods: The propagator in Eq. 7 is estimated
via practical numerical implementations of inverse Fourier
transformation, such as the fast inverse Fourier transform.71

Ad hoc methods have also been proposed in the literature for
the estimation of the propagator and of its salient properties,
such as diffusion spectrum imaging (DSI, 2005),77 or mean
apparent propagator MRI (MAP-MRI, 2013).76 Multiple
metrics can be used to characterize p(r,Δ), for example, mean
displacement (MD) or mean squared displacement (MSD),73

measurement of displacement probability (such as the proba-
bility of zero displacement (PZD73), or the return-to-origin/
axis/plane probabilities (RTOP, RTAP, RTPP) from MAP-
MRI76), or the kurtosis73 of the full-width-at-half-maximum
(FWHM) of the propagator itself.71

Main histological correlates: In an earlier study,73 MD
correlated negatively with nuclear cytoplasmatic ratio and
tumor cellularity, while PZD and kurtosis correlated posi-
tively with both features. In another study,71 the FWHM
and its skewness correlated negatively with cellularity and
skewness of cellularity, respectively.

Discussion: QSI offers the advantage of reconstructing in
full the diffusion propagator, enabling the characterization of
several different features of non-Gaussian diffusion. The
included articles demonstrate that QSI is sensitive to changes
in microstructure.71,73 Specifically, measures of water dis-
placements derived from the propagator correlate with cellu-
larity/cell density. Potential drawbacks of QSI are that its
metrics are surrogate markers with limited biological specificity,
since several different, independent factors can cause alterations
of the propagator. Moreover, the propagator is intrinsically
diffusion-time dependent, implying that QSI metrics are semi-
quantitative, being protocol dependent. Finally, QSI acquisi-
tions are more demanding than those required for ADC
measurement.

MRI-CYTOMETRY. MRI-cytometry is a two-pool intra-/
extracellular biophysical framework for mapping cell size dis-
tributions, proposed by Xu et al,78 which is one of the articles
selected in this review (see also Supporting Information
Table S5).

Signal model: The MRI-cytometry model is a two-
compartment model that describes the signal as arising from
the sum of intracellular and extracellular, extravascular com-
ponents, without intercompartment exchange, that is,

S¼ S icþSec ð8Þ

Both intra-/extracellular signals are described as the sum
of a continuous distribution of spin packets with fixed

properties. For a b-value b and a diffusion time τ, the these
are written as

S ic ¼
ð
d ic

ð
R
ρic

8π
3

R3 aic d ic,Rð ÞP d ic,Rð Þ dd ic dR ð9Þ

for intracellular signal and

Sec ¼
ð
d ec,0

ð
β
ρec e

�b d ec,0þβ=τð Þ P d ec,0,βð Þ dd ec,0 dβ ð10Þ

for the extracellular signal. Above, dic is the intrinsic intracel-
lular diffusivity, dec,0 is the asymptotic extracellular ADC,
R is the cell radius, β is the extracellular TDD factor, ρic and
ρec are the unit signal per unit volume coming from the intra-
cellular and extracellular compartment, respectively, and
aic(dic,R) is the characteristic signal of a cell with radius R and
cytosol diffusivity dic.

Required diffusion encoding protocol: As IMPULSED,
MRI-cytometry utilizes LTE with both OGSE and PGSE
wave forms. The technique has been demonstrated in vivo on
a clinical system using diffusion times τ of 70, 10, and
5 msec, with the highest b being of 1800, 1000,
and 300 seconds/mm2 for each τ.

Fitting methods: The MRI-cytometry model is fitted after
constructing a discrete dictionary of candidate intra-/extracellular
signals, following a two-step regularized nonlinear least square
procedure.78 This provides estimates of the joint probability
density functions P(dic,R) and P(dec,0,β) in each voxel. Integrat-
ing P(dic,R) over dic enables mapping the cumulative cell size dis-
tribution, whose peaks can be used to identify different cell
populations with remarkably different average cell sizes.

Main histological correlates: The authors report a good
match between cell size estimates and references from cell cul-
tures in vitro. However, correlation coefficients were not cal-
culated, owing to the small sample size.

Discussion: MRI-cytometry is essentially a more complex
implementation of IMPULSED. The technique can poten-
tially provide more in-depth information on the different cell
types present in a voxel (eg, small lymphocytes vs. larger can-
cer cells), as it enables recovering a full cell size distribution,
rather than a single cell size index per voxel, as IMPULSED.
However, the more complex model comes at the expenses of
more complex parameter estimation, which is even more
prone to instabilities, and requires regularization. Finally,
similarly to IMPULSE, the technique requires combining
LTE with OGSE and PGSE wave forms. The former are
typically not available in vendor-provided diffusion sequences,
and may therefore be a hurdle for its practical clinical
implementation.

RESTRICTION SPECTRUM IMAGING. Restriction spectrum
imaging (RSI) was the focus of two articles included in this
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review22,79 (Supporting Information Table S5). RSI was pro-
posed in brain imaging by White et al.80

Signal model: The method models the DW-signal as
arising from a distribution of diffusion tensor components.
The components with the slowest diffusion are used as proxies
for water restricted within cells. Different RSI implementations
vary depending on the number/characteristics of the compo-
nents. One of the RSI articles included in this review used
three-component for discriminating rectal cancer grades,22

that is,

S¼ S0 C1e�b D1 þC2e�b D2 þC 3e�b D3
� �

s:t :D1 <D2 <D3

ð11Þ

where C1,2,3 are relaxation-weighted signal fractions for
restricted, hindered, and free water, while D1,2,3 (Di < Di+1)
their ADCs.

Required diffusion encoding protocol: RSI can be per-
formed at fixed diffusion time and it has been implemented
with protocols as short as 5 minutes. The method has been
demonstrated using LTE PGSE with maximum b-values
as low as 1000 seconds/mm2 in Yamin et al79 and
2000 seconds/mm2 in Xiong et al,22 that is, using the same
protocols that one could employ for DKI.

Fitting methods: Equation 11 is typically fitted using
nonlinear least square approaches. During fitting, the ADCs
of the different diffusion components are not estimated, but
rather fixed to characteristics values. For example, in Xiong
et al22 the following values were used: D1 = 0.5 μm2/msec
(restricted diffusion), D2 = 1.3 μm2/msec (hindered
diffusion), D3 = 3.0 μm2/msec (free water diffusion). After
fitting, signal fraction maps can be standardized in the form
of z-scores using reference values from healthy tissue, for
example, from the healthy prostate, as in Yamin et al.79

Main histological correlates: Yamin et al79 used RSI to
estimate cellularity in prostate cancer, detecting variations of
Gleason grade within a single tumor. Similarly, in Xiong
et al,22 the restricted signal fraction C1 correlated with rectal
cancer grade.

Discussion: RSI is a promising technique that attempts
to disentangle different sub-voxel signal sources, providing
signal fraction maps designed to be specific to characteristics
cellular components. The technique is based on a multi-
component representation that can fitted more easily than
multi-compartment models such as IMPULSED, being the
properties of such components fixed (ie, prespecified Di

values). However, this comes at the price of potential biases
in the signal fraction maps, since the characteristics ADCs of
the different sub-voxel components are likely to vary on a
voxel-by-voxel basis. Moreover, RSI modeling does not take
into account explicitly the diffusion time, implying that its
metrics are likely to be protocol dependent. Regarding the
acquisition, RSI requires more complex protocols than

routine ADC measurement. Nonetheless, it has been demon-
strated with compact scan times under 10 minutes, which
offer promise for clinical translation.

MC SIMULATIONS FOR MICROSTRUCTURAL MAPPING
FROM CLINICAL DW-MRI. One article81 (see also
Supporting Information Table S5) investigated microstruc-
tural parameter estimation from clinical DW-MRI informed
by MC simulations in skull-base chordoma cases treated with
radiotherapy.

Signal model: The technique essentially aims to map
several ADC values obtained from different sub-protocols of
multi b-value clinical DW-MRI, to microstructural parame-
ters that are more specific to the underlying tissue histology:
cellular radius R, cell volume fraction fic, cell diffusivity dic,
and apparent cellularity ρapp.

Fitting methods: The mapping (ADC1, …, ADCN) !
(fic, R, dic, ρapp) is achieved by comparing voxel-wise ADC
maps to sets of synthetic, candidate ADCs values generated
via Monte Carlo simulations. The comparison involves multi-
ple steps, and accounts explicitly the uncertainty of the esti-
mation of each microstructural parameter due to noise.
Monte Carlo simulations were performed within synthetic
cancer micro-environments in the form of 3D meshes.

Required diffusion encoding protocol: The approach has
been demonstrated with routine PGSE LTE, which included
three b-values (50, 400, and 1000 seconds/mm2).

Main histological correlates: Microstructural maps were
related to the cancer aggressiveness as measured by Ki-67
immunohistochemistry. All estimated tissue parameters
differed between more vs. less proliferative tumors (ie, high
Ki-67 vs. low Ki-67 immunostain).81 Moreover, statistical
survival models that combined all microstructural parameters
could predict the risk of progression following radiotherapy
with high accuracy.

Discussion: The approach presented by Morelli et al81 is
promising in that it enables clinically feasible estimation of
microstructure metrics without any further assumptions than
those that go into the simulations.82 The framework relies on
simulations of diffusion that can be performed on synthetic
cancer micro-environments, and that can therefore incorpo-
rate unprecedented levels of microstructural details. On the
one hand, this removes the need for developing analytical
expressions of the signal based on over-simplified geometric
models of the tissue (eg, modeling cells as spheres, as in VER-
DICT or IMPULSED). On the other hand, the approach
can potentially enable the mapping of indices of cell heteroge-
neity, for example, measures of dispersion in cell size or mor-
phology. Despite its potential, the method remains complex
to be deployed in practice, since most centers may not have
the capabilities to run Monte Carlo simulations of the
very specific DW-MRI sequences being used at the center.
The approach has shown potential clinical utility, but the
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microstructural parameters have still to be validated by com-
parisons to their direct counterparts from histology.

MULTIDIMENSIONAL DIFFUSION MRI. Multidimensional
diffusion (MDD) MRI, also known as b-tensor encoding or
q-space trajectory imaging, makes use of generalized diffusion
gradient wave forms.4 The approach, pioneered in vivo by
Westin et al4 after preclinical development by Topgaard
et al,83,84 was investigated by Naranjo et al,85 an article
included in this review (Supporting Information Table S5).

Signal model: In MDD, diffusion-weighting is described
in terms of a b-tensor B, rather than by scalar b-values. B is
defined as

B¼
ðTE
0

q tð Þq tð ÞTdt ð12Þ

where q tð Þ¼ γ
Ðt
0
g ξð Þdξ, with the diffusion gradient g(t) free

to change its direction during encoding. This sensitizes
measurements to different diffusion directions at once, prob-
ing a new contrast that is not accessible to PGSE,86–88 and
disentangling heterogeneity in isotropic diffusivity from diffu-
sion heterogeneity caused by anisotropy. Different methods
have been proposed to analyze data acquired with b-tensor
encodings beyond standard LTE PGSE or OGSE. These typ-
ically express the DW signal in terms of a continuous distri-
bution of microscopic domains, each characterized by a
specific diffusion tensor,89 that is,

S Bð Þ¼ S0

ð
P Dð Þ e�B:DdD ð13Þ

Above, B is the acquisition b-tensor, D is the diffusion
tensor of the generic diffusion component, P(D) is the diffu-
sion tensor distribution (DTD), and: denotes the double
inner product between the diffusion-/b-tensors.

Required diffusion encoding protocol: MDD-MRI
protocols typically entail a variety of b-values sampled with
different b-tensor encoding shapes, for example combinations
of LTE, spherical tensor encoding (STE), and planar tensor
encodings (PTE). While STE and PTE may not be available
off-the-shelf in vendor-provided DW-MRI sequences, several
works have now developed robust implementations across
multiple system platforms and manufactures, which have
shown excellent stability and reproducibility.90

Fitting methods: The b-tensor encoding parametric maps
are typically recovered by parametrizing the signal as a func-
tion of different features of the DTD, depending on the
tissue of interest. For example, the signal can be parametrized

as function of the overall mean diffusivity (D) and the aniso-
tropic and isotropic diffusional variance (VA and VI),

90 or via

cumulant expansions of the DTD.4 Fitting is then performed
via nonlinear least square optimization, and once the DTD
parameters have been recovered, other microstructural param-
eters of interest can be derived analytically, for example,
microscopic fractional anisotropy.

Main histological correlates: Naranjo et al85 used LTE
and spherical-tensor encoding to obtain metrics as Diso

(isotropic diffusivity) or DΔ2 (shape parameter of diffusion
anisotropy, similar to VA) of the various tensors making up
the DTD. Cancer and healthy tissue differed according to
nearly all DTD metrics. However, histological data were only
assessed mainly qualitatively, as also done, for example, in the
prostate.86

Discussion: MDD MRI has expanded the capabilities
on in vivo DW-MRI, giving access to new diffusion con-
trasts that cannot be probed with conventional diffusion
imaging. These may enable disentangling subtle microstruc-
tural differences that would be indistinguishable in conven-
tional PGSE, ultimately providing useful biomarkers in
several types of body cancer. Despite its potential, at present
the practical clinical use of MDD is challenged by the lim-
ited availability of b-tensor encoding as an off-the-shelf
product sequence. Moreover, b-tensor DTD metrics, while
surely promising, are phenomenological indices that are sen-
sitive to different features of the underlying microstructure.
Histological validation is ongoing in a variety of clinical con-
texts25 to confirm their specificity, and to rule out con-
founding factors that have not been account for yet. Finally,
it should be noted that MDD also comes with some chal-
lenges. For example, it has proven difficult define exactly
the sequence effective diffusion time in presence of irregular,
oscillatory gradient wave forms, as those required for the
efficient implementation of STE and/or PTE. This implies
that strong differences in diffusion time across different b-
tensor implementations, if not accounted for, may confound
the values of DTD metrics across scanners, and could there-
fore hinder the deployment of these metrics as quantitative
markers in clinical settings.

HYBRID MULTIDIMENSIONAL MRI. Two papers used
HM-MRI,91,92 proposed by Chatterjee et al93 (see
Supporting Information Table S6).

Signal model: HM-MRI models the signal as the sum of
lumen, stroma, and epithelium components:

S¼ S0
X3
n¼1

V n e
�b ADCn� TE

T 2n

 !
ð14Þ

Above, Vn, T2n, and ADCn are signal fractions, T2,
and ADC of lumen, stroma, and epithelium water
(n = 1,2,3), which are fitted by imposing upper/lower
bounds.93

15

Fokkinga et al.: Diffusion MRI and Histology in Cancer

 15222586, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/jm

ri.29144 by T
echnical U

niversity D
elft, W

iley O
nline L

ibrary on [12/12/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



Required diffusion encoding protocol: HM-MRI requires
standard LTE PGSE acquisitions. Images at multiple b-values
and multiple echo times TE are used, with three or more
directions per unique (b,TE) value, which are averaged. The
maximum b-value required for HM-MRI is around
1500 seconds/mm2. Regarding TE, values as high as
200 msec or more are needed to appreciate the T2-decay of
lumen water, known to feature a much longer T2 than the
stromal or epithelial components. HM-MRI has been demon-
strated using at least nine unique (b,TE) acquisitions.93

Fitting methods: Equation14 is fitted via nonlinear least
square optimization, imposing upper/lower bounds on
compartment-wise ADC and T2 values.93 For example, the
lumen signal component is assigned the highest ADC and lon-
gest T2, while the epithelial signal component the lowest ADC.

Main histological correlates: Tissue composition changes
were observed in presence of prostate cancer and reflected dif-
ferent histological grades. For instance, an increased epithe-
lium and reduced lumen fractions were found in tumors.91

HM-MRI fractions of lumen, epithelial, and stromal signal
agree excellently with counterparts derived from histology,91

and matched well with expert interpretation.92

Discussion: HM-MRI is a diffusion-relaxometry method,
which aims to resolve diffusion and relaxation properties
jointly in each voxel through multi-contrast readouts.94,95

Joint diffusion-relaxometry imaging may be beneficial when
TR or TE are changed as part of the diffusion encoding
protocol (eg, due to restrictions imposed by MRI manufac-
turers60), or to account for the TE-dependence of multi-
compartment signal fractions.45 Results from the papers
included in this review suggest that HM-MRI offers promise
from clinical translation, given its excellent agreement with
histology and its easy-to-implement protocol, requiring
approximately 10 minutes. However, HM-MRI suffers from
similar issues as methods such as DKI or RSI: its metrics may
be protocol-dependent, since they 1) do not take into account
sequence parameters such as the diffusion time (which may
vary across b-values due to changes in TE), and 2) rely on
assumption on the characteristics ADC and T2 of the differ-
ent prostate components, which are unlikely to hold across all
prostate voxels. Finally, the long TE required by HM-MRI
jeopardizes the overall SNR, and acquisition protocols are
more demanding than those required for ADC measurement.

DIFFUSION-RELAXATION CORRELATION SPECTRUM
IMAGING. Diffusion-relaxation correlation spectrum imaging
(DR-CSI) was proposed by Kim et al96 and de Almeida
Martins and Topgaard,97 after pioneering DR-CS work in
spectroscopy in the early 2000s.98

Two papers included in this review focused on DR-
CSI99,100 (Supporting Information Table S6).

Signal model: In DR-CSI, no predefined number of
compartments has to be defined,99 being the signal

dependent on a continuous ADC-T2 distribution p(ADC, T2),
that is,

S b,TEð Þ¼ S0

ð∞
0

ð∞
0

p ADC,T2ð Þ e�b ADC�TE
T2 dADC dT2 ð15Þ

Required diffusion encoding protocol: DR-CSI is similar
to HM-MRI, in that it requires multiple LTE with PGSE
wave forms, acquired at varying b-values and TE. In body
imaging the technique has been demonstrated on ex vivo
prostate scanned on a clinical system with 16 unique (b,TE)
encodings,99 for a maximum b of 1500 seconds/mm2 and
maximum TE of 120 msec.

Fitting methods: p(ADC, T2) (the ADC-T2 spectrum)
can be recovered via inverse-Laplace transformation or related
numerical approaches.94 In a previous study,99 p(ADC, T2)
non-negative nonlinear least square regression with total varia-
tion spatial regularization was used. Peaks in p(ADC, T2)
provide component fraction maps and characteristic
ADC/T2.94,99 Other fitting approaches are based on defining
a prespecified number of normative spectral component, for
example drawing regions-of-interest in tumors and/or normal
tissue. The fraction of each component is then mapped voxel-
wise using regularized spectral analysis with cross-subject
spectral standardization.100

Main histological correlates: In Zhang et al,99 which
focused on prostate imaging, three signal components were
detected, and found to correspond to histological epithelium,
stroma, and lumen, with promising significant positive corre-
lations. The study only focused on ex vivo data, and in vivo
confirmation is required. Conversely, Dai et al100 tested
whether DR-CSI enables the noninvasive grading of clear cell
renal cell carcinoma. The authors identified five different
ADC-T2 spectra in the kidney, and mapped the signal frac-
tion of these spectra voxel-by-voxel. Two of these signal
fraction maps correlated with cancer grade from histopatho-
logical assessment of HE-stained sections obtained from
nephrectomy.

Discussion: Considerations for DR-CSI are essentially
equivalent to those discussed above for HM-MRI. The
method is promising as it enables disentangling different
water pools within a voxel. As compared to HM-MRI,
DR-CSI does not make any assumption on the number and
characteristics of ADC-T2 component, and can therefore
provide higher specificity to biology: peaks in the ADC-T2
spectrum can be assigned to specific components (eg, to
stroma, rather than epithelium) by means of pilot MRI-
histology correlation analyses. However, resolving a full ADC-
T2 spectrum is inherently more challenging, so this could
come at the expenses of higher metric variability and/or blur-
ring of information due to the strong regularization required
for stable fitting. Finally, as for HM-MRI, DR-CSI requires
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very long TE, which reduce SNR, and does not take into
account changes in diffusion time during the acquisition (likely
to happen in clinical systems owing to changes in TE).
Ultimately this may confound at least in part the recovered
ADC-T2 spectra, and lead to sub-optimal protocol-dependent
metrics. However, this is merely a practical limitation owing to
current practices in sequence design, which could be easily
mitigated by scanner software upgrades.

mpMRI-Based AI
Finally, one paper reported on methods predicting histology
indices from multi-parametric MRI (mp-MRI)101 with AI
(Supporting Information Table S7).

Signal model: This approach is general and flexible, in
that it relies on training AI systems that predict histological
properties directly from mpMRI images and, potentially,
easy-to-get parametric maps, as for example routine ADC as
provided by the MRI scanner as part of any clinical mpMRI
implementation.

Required diffusion encoding protocol: The approach has
been demonstrated on prostate mpMRI, which includes high-
resolution anatomical T2-weighted images, DW-MRI with at
least one nonzero b-value for ADC calculation, plus, poten-
tially, other contrasts, such as T1-weighted anatomical imag-
ing and/or dynamic contrast-enhanced (DCE) MRI.

Fitting methods: Histological images were coregistered to
MRI and AI algorithms such as DNNs were trained to map
MRI directly to histology. The user potentially does not
require to perform any DW-MRI signal model fitting, since
simple parametric maps such as ADC provided by the scanner
in clinical mpMRI can be stacked as inputs of the DNNs.

Main histological correlates: Sun et al101 estimated pros-
tate cell density from mp-MRI with a generalized additive
model (GAM).

Discussion: The study shows promising MRI-histology
correlations, with minimal requirements in terms of the diffu-
sion protocol. Nevertheless, the approach is challenged by several
issues that are typically encountered in AI-based methods. First
of all, large, high-quality datasets of colocalized mpMRI and
histology data—per se very difficult to obtain—are needed to
robustly train the AI systems. These should include mpMRI
protocols acquired with a variety of approaches, field strengths,
resolutions, contrasts, and others, and in a variety of clinical con-
texts, to ensure generalizability of the results. Secondly, extensive
validation is needed to ensure that the trained AI system do not
provide histology predictions with hallucinated features.

Discussion
Summary
We reviewed systematically the state-of-the-art of advanced
DW-MRI in body imaging in cancer (beyond the central ner-
vous system, ie, mainly abdominal/pelvic imaging; and

beyond routine ADC), analyzing its value in tissue
microstructure assessment. Many different techniques were
found, with the most common being IVIM, DKI,
VERDICT, and IMPULSED, and other gaining momentum,
for example, MDD or diffusion-relaxation MRI. All these
methods add additional degrees of freedom to routine diffu-
sion protocols, increasing the measurement space so that
more microstructural information can be encoded in the
signal, as illustrated in Fig. 5. This is done by acquiring extra
b-values (eg, IVIM, DKI, RSI), by varying diffusion times
(eg, VERDICT, IMPULSED) or TE (eg, HM-MRI), or by
using new gradient wave forms (eg, MDD). These approaches
have their own strengths and limitations, and their clinical fea-
sibility depends on requirements for nonstandard sequences,
maximum b, or scan time. A practical example of a rich acqui-
sition in this high-dimensional measurement space is provided
in Fig. 6. The figure shows a breast cancer liver metastasis
imaged at 3 T with a diffusion-relaxation protocol, where four
different b-values are acquired with LTE at three different echo
times TE. The images reveal faster signal decay with increasing
b-value within the tumor core, likely indicative of necrotic
areas, which are surrounded by active tumor.

FIGURE 5: Illustration of the acquisition space exploited in
advanced DW-MRI techniques. The figure illustrates the main
acquisition parameters that can be varied to generate high-
dimensional multi-contrast image sets in advanced diffusion
imaging, that is, changes in b-value (overall diffusion-weighting
strength), b-tensor encoding shape (eg, planar, spherical, or
routine linear encoding), diffusion time, as well as potential
changes in echo, inversion, or repetition times for joint diffusion-
relaxation imaging. Changes in b-value, diffusion time and echo
time are illustrated with a hepatocellular carcinoma (primary
liver cancer) case, scanned at 1.5 T. Changes in b-tensor
encoding shape are instead illustrated with a prostate cancer
case, scanned at 3 T. The prostate images have been adapted
from fig. 2 of reference 86 which was published in open access
form under a CC-BY Attribution 4.0 International license.
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Routine DW-MRI: ADC Mapping
ADC mapping was not included in this review, as it is
extensively covered elsewhere. Our article focuses explicitly
on methods that go beyond routine ADC measurement, and
for which histological validation has been carried out.

This explains the number of articles included in the
review, that is, 54.

ADC is, by construction, a surrogate, semi-quantitative
metric that pools into one number several microstructural
sources of diffusion contrast. Moreover, its actual numerical
value depends strongly on the interaction between the
DW-MRI acquisition protocol and the underlying micro-
structure, making it a semi-quantitative, protocol-dependent
index. Despite these well-known limitations, ADC has also
shown some potential clinical utility in several oncological
applications, some of which are briefly discussed below for
the benefit of the readership. For example, DW sequences are
now routinely included in genitourinary system imaging, with
applications in the female pelvis, imaging of uterus and ovary,
as well as prostate, bladder, penis, testis, and kidney.102 DW
acquisitions routinely come with scanner-computed ADC
maps; these aid the visual interpretation of the expert radiolo-
gist beyond anatomical sequences, and are used, in some
cases, to calculate cut-off values that can aid the differentia-
tion of different types of cancers (eg, leiomyomas from
uterine sarcomas102). Useful ADC cut-offs have also been pro-
posed to distinguish metastatic vs. nonmetastatic lymph nodes
in breast cancer with high reliability,103 while the detection of
early ADC increases following chemo-/radiotherapy in esopha-
geal cancer were predictive of response.104 In prostate imaging,
DW imaging and ADC maps are now routinely included as
part of the Prostate Imaging Reporting and Data System

(PI-RADS),105 a structured mpMRI report used in the
treatment-naive prostate to study potentially malignant lesions.
ADC has been found to be moderately correlated with cancer
grade as assessed by the Gleason score,106 although at present
there are still no, widely accepted ADC cut-offs that can be
used to classify prostate lesions as malignant.107 Such associa-
tions with Gleason score are in line with related findings on
cancer cellularity: ADC has been widely reported to correlate
with tumor cellularity.108 However, while characteristics
beyond cell density should be taken into account when inter-
preting ADC changes,109 since ADC has been reported to
correlate to a variety of histological properties, such as tumor-
stroma ration, cell count, proliferation indices from Ki-67
immunostains, or number of tumor-infiltrating lymphocytes in
several types of cancer of the liver.110 From the more practical
point of view of the MRI acquisition, efforts are also ongoing
in terms of standardization of protocols for ADC calculation:
guidelines in term of b-value choice, for example, are provided
as part of structured reports such as PI-RADS105 for the
prostate or Oncologically Relevant Findings Reporting and
Data System (ONCO-RADS) for whole-body imaging.111

Consensus guidelines have also been published, as for renal
and breast DW-MRI.112,113

Advanced DW-MRI
Given the limitations of standard ADC mapping discussed
above, current efforts of the DW-MRI community focus on
developing novel techniques capable of providing metrics that
are not only sensitive, but also highly specific to tissue fea-
tures relevant in cancer. For this purpose, different
biophysical signal models and/or phenomenological signal
representations have been developed in a variety of body

FIGURE 6: Example of a rich, advanced DW-MRI acquisition in body cancer. The figure shows a diffusion-relaxation acquisition
performed at the level of the abdomen with a 3 T system, to image a breast cancer liver metastasis. The diffusion protocol features
the acquisitions of multiple b-values b with LTE, each acquired independently at several echo times TE.
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imaging contexts (see Fig. 4 as well as Appendix A for some
basics principles of DW-MRI physics and signal modeling).
These are typically based on analytical expressions that
parametrize the signal as a function of the diffusion-encoding
gradient timing and amplitude, as well as of tissue parameters
of interest. DW-MRI then attempts to solve an inverse prob-
lem, that is, to infer the unknown tissue parameters in each
voxel from sets of signals measured at varying diffusion
encodings. To solve this task, several different estimation
techniques are used, such as nonlinear least squares fitting.
However, the solution of this inverse problem is generally
ill-posed: different combinations of tissue parameters can
explain the DW measurements equally well. This issue is
exacerbated by scarce acquisition protocols, which lead to
degeneracy (measurement sets effectively lack specificity
toward all microstructure parameters114,115). To cope with
this problem, the go-to solution has been to fix some tissue
parameters to predetermined values. While this may increase
estimation robustness, it also leads to biases when the micro-
structure does not conform to modeling assumptions. The
bias is unlikely to prevent a correlation between model
parameters and a wide range of microstructures. However,
subtle, pathological changes may produce a response in the
constrained parameters that does not reflect the actual micro-
structural alteration. Ultimately, this can lead to inflated
believes in the validity of constrained models. Recently,
DNNs are becoming increasingly popular to solve this inverse
problem.59,62,116 Nonetheless, even with AI it is not possible
to retrieve the microstructural information that is not
encoded in the signal.117 This implies that DW-MRI
parametric maps obtained through DNNs should always be
interpreted with care: unless specific strategies to map predic-
tion uncertainty are implemented, DNNs always produce
confidently an output, which could then exhibit hallucinated
features in presence of unexpected inputs, as these will be
mapped to the closest examples seen during the training
stage.

MRI-Histology Agreement
Histological validation is imperative to demonstrate the
sensitivity and biological specificity of any new DW-MRI
metric. To this end, the voxel-by-voxel comparison of
spatially matched MRI and histology is ideal. However,
obtaining this type of data in vivo is challenging, as it would
require access to entire slabs of excised tissue, for example fol-
lowing surgery.118 Alternatively, tissue can also be imaged
ex vivo, following excision. Nonetheless, in this case it would
lack perfusion, and in both cases, microstructural changes
occur as a consequence of fixation. Importantly, DW-MRI
maps are typically compared to tiny two-dimensional sections
of histological material (MRI slice thickness �0.5–2.5 mm;
histology sectioning of �4–20 μm). As a consequence,
portions of tissues that contributed to the MRI signal are not

included in histological analyses. This may explain, at least in
part, why within-sample MRI variations are not always mir-
rored by histology, despite overall strong MRI-histology
between-sample agreement.

Another challenge is the fact that distributions of micro-
structural domains exist within a voxel. As a consequence,
some MRI metrics may depend on the image resolution119

(the lower the resolution, the more heterogeneous the voxel
content). Also, this means that nontrivial histological features
can be encoded in the DW signal. For example, DW-MRI
cell size estimates are biased toward the largest cells, as these
feature stronger time dependence, contain more water than
smaller cells, and since the smallest cells may not even be
distinguishable (4–8 μm is the intrinsic cell size resolution
limit with clinical systems120). For this reason, comparing
DW-MRI cell size maps to the arithmetic mean of histology
cell sizes l (ie, <l>) may provide lower agreements than com-
parisons to other statistics emphasizing the largest cells, for

example, < l7 >
< l3 >

� �1
4
.15

Nevertheless, all in all the articles in this review suggest
that measuring key cancer properties throughout the body in
clinical setting may be feasible, that is, vascularization
through IVIM-like approaches, and cell size/cellularity with
VERDICT, IMPULSED, MDD, and more. The analyzed
methods, while not always accurate, retain sensitivity to key
microstructural properties, and may provide noninvasive read-
outs useful in oncology.

Challenges
Despite the potential of the reviewed methods, challenges
remain.

Firstly, the variety of acquisition protocols encompassed
in the review highlights the lack of standardization of
advanced DW-MRI. While a truly quantitative MRI method
should provide metrics that are invariant to the acquisition
protocol, in practice the number of microstructural parame-
ters that can be estimated depends on the measurements
available. As a consequence, harmonization (either prospec-
tive, or retrospective121) may be required before the new
biomarkers can be considered truly quantitative. In this
respect, we point out that certain interscanner differences are
intimately related to the specifics of the acquisition, and are
not only expected, but they actually encode microstructural
information. For example, the overall ADC is approximately
equal to the average of the ADCs of the different intravoxel
compartments, weighted by a TE-dependent fraction, that is,
ADC TEð Þ≈P i f i TEð ÞADCi. Therefore, two ADCs
obtained at two very different TE may also be very different
between each other, due to inherently different T2-weighting.
Harmonizing these types of differences requires extra care, as
it could blur information about disease processes.
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Another challenge is related to scan times being longer
than what is feasible in hospital settings. DW-MRI is only
one of the several contrasts that are probed during an imaging
session, where each contrast typically takes no more than
10 minutes. Future work is required to make the latest DW
techniques feasible with ultra-short acquisitions, potentially
exploiting AI.

Furthermore, the review has highlighted that DW-MRI
suffers from high levels of variability,116 implying that some
of the approaches presented in this paper may not work well
on a patient-by-patient basis. Methodological development to
improve the intrinsic quality of images should therefore go
hand-by-hand with signal model development,122 and should
focus on: image quality enhancement via AI or machine
learning; development of novel signal readouts that increase
the robustness to motion; hardware improvements (eg, stron-
ger field/gradient strengths), to make acquisitions faster and
increase SNR.

Finally, we stress that it is not yet known how the mini-
mum, clinically feasible DW protocol that enables resolving
the microstructure exactly looks like. Research is still ongoing
to understand which microstructural features can be encoded
in the signal. The newest diffusion encodings, coupled with
the latest estimation techniques, ever-faster acquisitions, and
protocol optimization may soon increase the fidelity of DW
MRI with respect to histopathology, and help us find answers
to key questions such as: How can we improve the validity of
our DW-MRI models? How can we ensure generalizability across
protocols and model types? Are there specific applications where
one model is more suitable than another?, as this could pave the
way to personalized medicine in oncology.

Limitations
We acknowledge two main limitations in the compilation of
this review.

The search was restricted using several tailored inclu-
sion criteria. While this ensured a reproducible and com-
plete compilation, it may have caused some articles to be
left out of the selection for various reasons. For example,
some methods may have only been tested in the brain (eg,
pulsed and oscillating gradient MRI for assessment of cell
size and extracellular space (POMACE)123); others may have
lacked comparisons with histology124; and finally, some
might have been missed due to variations in nomenclature,
for example, a study by Iąnus et al125 on mesorectal lymph
nodes.

Lastly, we classified techniques as phenomenological or
biophysical (see Fig. 3) to provide a general overview of the
DW-MRI landscape. However, we acknowledge that some
techniques may in fact fit both categories, for example,
“partial volume” methods such as RSI or HM-MRI, here
classified as biophysical.

Conclusions
Several DW-MRI techniques, including DKI, IVIM,
VERDICT, IMPULSED, MDD, HM-MRI, and other have
the potential to enable the noninvasive estimation of distinc-
tive microstructural properties of cancer in the body, such as
its vascularization or cellularity. These techniques provide
histologically meaningful indices which, while not necessarily
accurate, may still equip oncologists with useful noninvasive
biomarkers. However, further research is needed before these
innovative approaches can fully enter the clinic. Efforts are
needed to harmonize acquisition and analysis, to strengthen
inter-/intrascanner robustness, and to demonstrate histopath-
ological validity in broader contexts.
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Appendix A

Diffusion MRI Physics Fundamentals
This appendix presents the physical fundamentals of diffusion
MRI, providing context to the literature review. In the fol-
lowing, the terms water molecules, protons, and spins will be
used interchangeably to refer to the motion of them.

A.1. Diffusion Encoding
Time-varying magnetic field gradients are used to sensitize
the MRI signal to diffusion. The classical DW-MRI experi-
ment is based on the pulsed-gradient spin-echo (PGSE)
approach, also known as the Stejskal-Tanner experiment, single
diffusion encoding, or, more recently, as linear b-tensor encoding.
The schematic of a PGSE sequence is shown in Fig. 1.

The PGSE approach is based on the spin echo experi-
ment, in which two radiofrequency (RF) pulses, of flip angle
90� and 180�, separated by a time TE/2 are used to irradiate
the sample. The first pulse excites the tissue, creating a com-
ponent of magnetization orthogonal to the static field. The
second pulse refocuses the magnetization by cancelling out
the effect of field inhomogeneities. The signal is sampled at a
time TE, that is, when the refocusing is complete, and the
signal is weighted by the underlying T2 relaxation constant,

that is, proportional to e�
TE
T 2. In PGSE, two magnetic field

gradient lobes (known as diffusion-encoding gradients) are
added on either side of the refocusing pulse. The first gradi-
ent lobe effectively tags water molecule’s phases depending on
their spatial position, so that their phases will now depend
on their position along the gradient direction. Conversely, the
effect of the combination of the refocusing pulse and of
the second gradient lobe is that of cancelling out the phase
distribution modulation caused by the previous lobe, for
those molecules that do not move. If all spins were perfectly
static during diffusion-encoding, one would measure the same
T2-weighted signal that one would have obtained without
diffusion encoding. However, due to diffusion, water mole-
cules change their position in between the two gradient lobes,
as well as during the application of each lobe itself. This
implies that a full phase coherence over the spin ensemble
will not be re-established at the echo time t=TE, so that the
signal measured will be smaller than the one obtained without
diffusion-weighting, leading to signal attenuation. The
amount of attenuation increases as the degree of diffusion
taking place increases, resulting in DW images of lower inten-
sity. b-value and diffusion time.

The amount of signal loss caused by diffusion-weighting
depends on several factors. Some depend on the tissue being
imaged, such as the underlying intrinsic diffusion coefficient
and the characteristics of the microstructure, for example,
type and features of the biological structures that restrict or
hinder diffusion. These features include, for example, the
density and size of cells. Other factors depend instead on
the acquisition, and are: the gradient magnitude G, the gradi-
ent duration δ, and the gradient separation Δ (see Fig. 1).
The total DW-signal S is the ensemble average of the signals
from all spins, that is,

S¼ S0 < eiϕ > ð16Þ

where S0 is the T2-weighted, non-DW-reference signal and ϕ
is the phase accrued by a generic spin. ϕ depends on the
interaction between a spin’s random walk over time r(t) and
the temporal evolution of the diffusion encoding gradient g
(t), that is,

ϕ¼�γ

ðTE
0
g tð Þ � r tð Þdt ð17Þ

For free water self-diffusion without any barriers,
Eq. 16 simplifies to

S¼ S0 exp �bDwaterð Þ ð18Þ

Above, S0 is the non-DW signal (proton density-, T2-,
and potentially T1-weighted), whereas Dwater is the intrinsic
diffusivity of water at the experiment temperature, and
b provides a general indication of the overall strength of the
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diffusion-weighting. This factor depends on the acquisition
settings, and is routinely known as b-value. It can be
calculated as:

b¼ γ2G2δ2 Δ�δ=3ð Þ ð19Þ

where γ is the proton gyromagnetic ratio, and G, δ, and Δ
the gradient parameters. Another useful sequence parameter is
the overall diffusion time tdiff = Δ � δ/3. This provides an
indication of the amount of time that diffusing water mole-
cules are allowed to experience the microstructure, before the
MRI signal is acquired.

A.2. Intravoxel Heterogeneity Mapping
With PGSE
The voxel size of in vivo MRI in humans is of the order of a
few cube millimeters. The observed MR-signal in a voxel
arises from contributions of various diffusion processes taking
place within different cellular components, since the voxel
size is much larger than the scale of the microstructure where
diffusion takes place (�1 � 100 μm). As a consequence,
in vivo DW-MRI measurements are characterized by intrin-
sic, intravoxel partial volume effects, and the signal entangles
the contribution of multiple water pools in one measurement.
Different techniques have been proposed to disentangle such
contributions, with the ultimate aim of obtaining sensitive
and specific biomarkers of tissue microstructure. The solu-
tions proposed in the literature span phenomenological signal
representations (eg, estimation of apparent diffusion and kur-
tosis coefficients, stretched exponential, anomalous diffusion),
multicompartment biophysical models, and include recent
approaches based on innovative diffusion acquisitions such as
double diffusion encoding and b-tensor encoding.4,86

The section below provides a general overview of
the techniques available for microstructure inference in
DW-MRI. The section aims to provide some context for
the detailed description of the methods found in our sys-
tematic literature search. Importantly, we point out that
the inference of microstructure from signal measurements
is a challenging task: different combinations of microstruc-
tural parameters can provide virtually indistinguishable sig-
nals in certain measurement regimes and in the presence of
noise, making microstructure estimation an ill-posed
inverse problem.114

A.2.1. PHENOMENOLOGICAL SIGNAL REPRESENTATIONS.
It can be shown that the signal in Eq. (16) can be expanded
as a function of increasing powers of the b-value, that is,

ln Sð Þ�Pk¼1ak b
k (the cumulant expansion23), where coeffi-

cients ak are related to the cumulants of the spin displace-
ment distribution within a voxel. Expanding Eq. (16) up to
the second power of b (that is, with an approximation error
proportional to O(b3)), provides

S¼ S¼ S0 exp �bADCþ1
6
K bADCð Þ2

� �
ð20Þ

In Eq. (20) above, ADC and K are, respectively, the
apparent diffusion and excess kurtosis coefficients along
the direction of the diffusion encoding gradient. ADC pro-
vides a measurement of the overall amount of diffusion taking
place during the measurement along the gradient direction,
so that higher ADC implies stronger signal decay. Conversely,
K gives an indication of how much the diffusion process
departs from Gaussian, free diffusion. While K = 0 would
imply perfectly Gaussian diffusion, that is, mono-exponential
signal decay, a nonzero K can arise when 1) multiple Gauss-
ian water pools with different intrinsic diffusivities are found
inside the same voxel, 2) diffusion is restricted by geometric
confinements, 3) orientation dispersion of microscopic
domains exists within the voxel, 4) different water compartment
exchange water during the MRI signal encoding, or by a combi-
nation of all of these. Signal representations as those in Eq. (20)
are sometimes referred to as phenomenological: they provide a
description of the signal and link this to the statistical moments
of the spin displacement distribution, but without seeking to
estimate the biophysical causes of the observed diffusion phe-
nomenon (eg, without trying to estimate biophysical properties
such as cell size, cell density, etc). On the one hand, phenome-
nological representations do not make any assumptions on the
geometry of the tissue (eg, modeling cells as spheres60). On the
other hand, measures such as ADC or K may be difficult to
interpret, being surrogate indices that entail contributions from
multiple biological factors in one number.

When the b-value is not too high (generally, not exceeding
400–800 seconds/mm2 in body imaging or 1000–1500 seconds/
mm2 in the brain), the first-order term in the b-value (cumulant)
expansion is dominant, and the expansion reduces to

S¼ S0 e�b ADC ð21Þ

where S0 is the non-DW-signal, b the b-value and ADC is
the apparent diffusion coefficient. ADC is a sensitive marker
of tissue microstructure, but has relatively poor biological
specificity, since contributions from different water compart-
ments within the same voxel (eg, intra-/extracellular water)
are pooled together in one, average number. This implies that
ADC measurements do not describe the complicated diffu-
sion process in heterogeneous microstructures accurately: sig-
nal contributions from different processes within a voxel,
including pseudo-diffusion due to perfusion, are integrated
and modeled by one single diffusion coefficient, which also
depends on the particular diffusion times used for the acquisi-
tion (eg, gradient duration δ and gradient separation Δ). Due
to this, the ADC is defined as an “apparent” coefficient.
Nonetheless, ADC is easy to obtain (ADC maps can be com-
puted with as few as two images), and offers sensitivity to
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alterations in tissue microstructure due to pathology, classifi-
cation or grading of tumors, and therapy response assessment.

A.2.2. MULTI-COMPARTMENT BIOPHYSICAL MODELING.
Multi-compartment biophysical models describe the DW-signal
as arising from the contribution of multiple water pools located
in different cellular compartments, as for example intracellular or
extracellular water. Fitting such models to sets of DW measure-
ments may provide voxel-wise estimates of salient biophysical
properties, as for example intracellular water fraction or charac-
teristic restriction size, effectively reflecting intravoxel cell size
statistics.

The number and characteristics of the tissue parameters
that can be estimated depends on the assumptions made
when building the geometric representation of the biophysical
model—for example, spherical vs. elongated cells, characteris-
tics of the cell size distribution, etc— as well as on the acqui-
sition protocol. The most common tissue parameters that are
estimated in biophysical modeling are:

• compartment-wise signal fractions, for example, fvasc, fic, or
fEES, which, respectively, represent the fraction of signal
coming from vascular water, intracellular water and extra-
cellular extravascular water;

• cell size radius R or diameter d in μm;
• cellularity indices C, that is, with units in cells/mm2 or cells/
mm3. A common way of estimating C is to combine metrics

such as fic and d in one number, for example, C / f ic
d3.

55

A.3. Other Approaches Beyond PGSE
PGSE is the most common diffusion MRI acquisition imple-
mentation, and is available in virtually all clinical scanners.
However, several other implementations of the DW-MRI
experiment exist. Some of the latest implementations probe
new diffusion contrasts that are not physically accessible with
standard PGSE, and therefore offer great promise for the
development of new biomarkers of cancer. Nevertheless, these
more advanced implementations often come at a price, as for
example the need for strong gradient systems, longer echo
times TE, and may not yet be available as vendor-provided
implementations on clinical systems.

Oscillating gradient spin echo (OGSE) is similar to
PGSE, in that two diffusion gradient wave forms are inserted
on either side of the refocusing pulse of a spin echo sequence.
However, in OGSE, the gradient is not pulsed, but it is
rather made of an oscillating waveform at a specific frequency
f.123 A key characteristic of OGSE is that it enables probing
much shorter effective diffusion times tdiff than PGSE, at a
given b-value.

Double-diffusion encoding (DDE) combines in one
acquisition two diffusion encoding blocks, separated by a
mixing time.54 The two diffusion encoding gradients are con-
secutively applied with two different orientations, separated

by a relative angle ψ . DDE enables probing diffusion correla-
tions, resolving properties of microscopic domains (eg, anisot-
ropy and/or eccentricity of pores where restricted diffusion
takes place) without the confounding effect of the macro-
scopic, orientational arrangement of the ensemble of the
microscopic domains.

DDE also finds application in filter-exchange imaging
(FEXI).48 In FEXI, a first diffusion encoding block acts as a
filter that suppresses the signal from fast diffusing components.
The signal read at the end of the second block will be modulated
by the amount of water exchange between water compartments
taking place during the mixing time. FEXI has been used to
measure the apparent exchange rate (sensitive to cell membrane
permeability, but it is not a measure of permeability as such) and
other exchange processes, as for example in breast cancer.48

Multidimensional diffusion (MDD) MRI is an innova-
tive diffusion MRI framework that relies on a new diffusion
encoding paradigm (also known as b-tensor encoding, or
q-space trajectory imaging).4,83,84,88 MDD generalizes the tra-
ditional approach based on PGSE (which is, in fact, a special
case of b-tensor diffusion gradient), sensitizing the measurements
to different diffusion directions at once and thus probing new
diffusion contrasts that are not accessible to standard PGSE.

Appendix B
Search Query
(”cellsize*”[tiab]OR”intra-cellularfraction*”[tiab]ORcellularity
[tiab]ORcytometry[tiab]OR”CellSize”[Mesh]

OR ”cell density”[tiab] OR ”volume fraction*” OR
”component fraction*”[tiab] OR ”perfusion fraction*”[tiab]
OR ”vascular fraction*”[tiab] OR ”fractional volume*”[tiab]
OR ”tissue component*”[tiab] OR ”tissue composition*”[tiab])

AND (histolog*[tiab] OR histologic[tiab] or histologi-
cally[tiab] OR histology[tiab] OR histopatholog*[tiab] OR
patholog*[tiab] OR microstructur*[tiab])

AND (oncology[tiab] OR tumor[tiab] OR tumour[tiab]
OR abdominal[tiab] OR liver[tiab] OR pelvic[tiab] OR
hepato*[tiab] OR musc*[tiab] OR cancer[tiab] OR pros-
tate*[tiab])

AND (”DW-MRI”[tiab] OR ”diffusion MRI”[tiab]
OR ”dMRI”[tiab] OR ”diffusion weighted imaging”[tiab]
OR ”DWI”[tiab] OR ”Diffusion Magnetic Resonance
Imaging”[tiab] OR ”Diffusion Magnetic Resonance
Imaging”[Mesh] OR ”Diffusion-relaxometry”[tiab] OR
”Diffusion Relaxometry”[tiab] OR DWI[tiab] OR ”multi-
dimensional MRI”[tiab] OR ”multiparametric MRI”[tiab]
OR mpMRI[tiab] OR bpMRI[tiab] OR mp-MRI[tiab] OR
”multi-parametric MRI”[tiab])

AND (estimat*[tiab] OR predict*[tiab] OR correlat*
[tiab] OR validat*[tiab])

NOT (neuro*[tiab] OR cerebral*[tiab] OR
”Neurology”[Mesh] OR ”Brain”[Mesh] OR brain[tiab])
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Appendix C
Fitting Algorithms

TABLE C1. Different Fitting Algorithms That Can Be Used to Fit the IVIM-Model to Measure DW-MR Signal
Data47,116

Algorithm Type Estimated Parameters Method Description

Levenberg–Marquardt (LM) Least-squares Dt, f, D
* • Determines values of the three

parameters simultaneously in each
voxel

• No boundary constraints possible

Trust region (TR) based Least-squares Dt, f, D
* • Determines values of the three

parameters simultaneously in each
voxel

• Uses restricted search space, boundary
constraints easily incorporated

Fixed D* Least-squares f, Dt • Same as TR, but now with D*
fixed to

a value defined a priori

Segmented unconstrained (SU) Multi-step In first step: Dt and f • Most frequently used algorithm for
IVIM analysis

In second step: D* • Uses assumption that Dt is dominant
at high b-values and that D* is
negligible here

• Uses TR based algorithm in the
second step

Segmented constrained (SC) Multi-step In first step: Dt and f • Similar to SU

In second step: D* • Now assumes that the intercept of S is
equal to S0

Bayesian probability (BP) BP-based Dt, f, D
* • Does not fit each voxel independently

• Fits using a kind of spatial similarity
additional information incorporated

Deep neural network (DNN) Auto-encoder Dt, f, D
* • Unsupervised network with three

hidden layers

• Constraint: the input signal should be
encoded by the three IVIM parameters

• Increased fitting speed in comparison
with LM and BP algorithms

The algorithm that is used the most for both IVIM fitting and VERDICT fitting is LM.
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