
The Metropolis-Hastings Method
De Metropolis-Hastings Methode

Ravish Gangapersad 4627369

August 24, 2020

Thesis Committee Members:
Dr. ir. L.E. Meester
Dr. H.N. Kekkonen

Delft University of Technology
Department of Electrical Engineering, Mathematics and Computer Science

Abstract

In this report, our goal is to find a way to get some information such as the mean out of high dimensional densities.
If we want to calculate the mean we need to calculate integrals, which are difficult to do for high dimensional
densities. We cannot use the analytical or classical (deterministic) numerical rules for high dimensional problems
for which we want to calculate the mean. These methods take a lot of computational time. To solve this problem
we introduced the Markov Chain Monte Carlo (MCMC) method, the method samples from the distribution, and
with these samples, we can approximate the mean. Then we explain the theory behind these methods and how
we can use it. Then we introduced one MCMC method, in particular, the Metropolis-Hastings Algorithm. We
explain how this method works and the theory behind it. From this, we see that the method is very easy to
implement and can be used to approximate the mean. Then we approximate the mean for some examples using
this method.

1

Contents

1 Introduction 3

2 General definitions 4

3 Markov Chain Monte Carlo method 5
3.1 Markov Chain . 6
3.2 Properties of the Markov chain . 7
3.3 Convergence of the Markov Chain . 8

4 The Metropolis-Hastings Algorithm 11

5 Examples 13
5.1 Finding the mean . 17
5.2 Contraction of the algorithm . 18

6 Conclusion 21

7 Appendix 22
7.1 Code of the Multivariate Gaussian . 22
7.2 Code of the Horse Shoe . 26

2

1. Introduction

If we make a photo for example of size 900×1500 pixels with a camera but shake our hand by accident the photo
which we took will be a little bit blurry. In every photo, we take there will also be a little bit of noise. So our
photo will have noise in it and be blurred. Now we want to try making the photo a little less blurry, so we want
to make the photo sharper to resemble the reality of which we took the photo. This means we want to find the
unknown sharp image θ. Note that the picture which we took is very large so we will have a high-dimensional
data set y (blurred image). We would think that this is good because the more data you have the more detail we
can have in our pictures (higher resolution). But we will run into computational problems, because of this high
dimensional data. Lets now assume that the noise ε in the picture is Gaussian distributed and let us introduce
the forward operator A which describes the blurring by smoothing the sharp image θ which we are trying to find.
So from all of this, we get the following model

y = Aθ + ε. (1)

Now to find θ we will use some terminology of Bayesian statistics. In Bayesian statistics we have a ’prior’
density, this describes our knowledge of the unknown before the measurement. Let us note this density as p(θ)
with θ ∈ Rn the parameter we want to estimate. Furthermore, we have the likelihood, lets note this as L(y|θ)
with y the data that we have. Then from the Bayes theorem we get, the ’posterior’ distribution πy(θ) of θ given
y is

πy(θ) =
L(y|θ)p(θ)

N
with N =

∫
Rn

L(y|θ)p(θ)dθ, the normalisation constant.

Note that N is a constant with respect to θ, the unknown that we want to find, that’s why we introduce the
following, the posterior is proportional to

πy(θ) ∝ L(y|θ)p(θ).

With this we can calculate the posterior mean of function f , this is done in the following way

E[f(X)] =

∫
Rn f(x)πy(x)dx∫

Rn πy(x)dx
. (2)

If we go back to the example of the picture, we see that this is a Bayesian inverse problem. The prior is our
belief of how the picture will look like before we have taken the picture. The prior we choose in our example
depends on the specific situation, this means we will choose a prior that is best suited to our example. We assumed
that the noise in our image is Gaussian distributed, with this and equation (1) we can calculate the likelihood
for our image. The solution that Bayesian statistics gives us for this problem is the posterior distribution. This
means we don’t know the specific values of each of the pixels but only how they are distributed. But we are
interested in finding the best possible (sharp) image, which means we need to find the best possible value for
each of the pixels. That’s why we use a point estimator such as the mean to find this image. Now the problem
that we face is if we want to use the mean as the point estimator then equation (2) tells us that this will be a
very high dimensional integral which we need to solve.

We can’t calculate these integrals analytically, so we can then try to use numerical methods such as the
numerical quadrature rules (a numerical approximation of a definite integral) or we can try using the m-point
rules (Simpson’s rule) to solve these integrals. With the use of quadrature rules, we face 2 problems. If the
dimension of the region on which we integrate is too high we can’t use these rules, because we get the so-called
curse of dimensionality. This means the cost to compute an approximation with a prescribed accuracy α depends
exponentially on the dimension n of the problem. This means we will need a lot of computational time for very
high dimensions. Furthermore, we have to know the non zero elements of our probability distribution (support)
which can even be the whole of Rn, but this is part of the information that we are looking for. Then we have the
m-point rule, this has the drawback that for very high dimensions we will get very big computations that exceed
the computational capacity of most computers.

This is where the Markov Chain Monte Carlo (MCMC) method comes in. It would be great if we would have
samples from the desired target distribution. Then we could use the sum of these samples to approximate the
mean of the target distribution. The MCMC method gives us a practical way to get these samples without much
difficulty. We do this by constructing a Markov chain which is our sample so that the distribution of our sample
approaches the target distribution

3

In this report, we will look at one particular MCMC method namely the Metropolis-Hastings (MH) algorithm.
The MH method is heavily used in Bayesian statistics. The MH method is a practical way of creating samples
that can then be used to approximate the mean of densities. What makes this method useful is that we don’t need
to know the normalization factor of our density, which is also often extremely difficult to calculate in practice.

The method was first introduced by Metropolis (1953) and later generalized by Hastings (1970). The article
of Chib and Greenberg [1] gives us an introduction and explanation of the MH algorithm. The article by Roberts
and Rosenthal [2] gives us the convergence results of the MCMC algorithms. In the book of Kaipio and Somersalo
[3] we can find an example of an implementation of the MH algorithm. Furthermore, we can find examples of
Bayesian inverse problems in this book. As we can see we already have a few articles and books which talk about
this algorithm but there are many more. The introduction of MCMC algorithms has changed the way we look
at Bayesian inverse problems, by allowing users to sample from posterior distributions of complicated statistical
models. So there is a lot of attention being paid to MCMC methods and of which the MH algorithm is one of
the most popular.

The rest of the paper is organized as follows. In Section 2 we first introduce the main definitions that we
will need throughout this report. Then in Section 3 we introduce the Markov chain with all of the relevant
definitions furthermore we talk about the properties of the Markov chain and then introduce and prove one of
the main theorems which we will need to create the MH algorithm. In Section 4 we look at the MH algorithm,
here we introduce and prove that the MH algorithm satisfies the conditions which are required in the theorems
that provide convergence. In Section 5 we look at two example densities on which we implement the MH method.
Then we introduce the step size, which is important for the implementation of the MH method. Furthermore,
we talk about calculating the mean of these examples. To do this we make use of the different step sizes to look
at the differences and then plot and show our results.

2. General definitions

We will start by introducing a few definitions that are frequently used in this report.

Definition 2.1. The collection F of subsets of the sample space Ω is called an event space or σ-algebra if

1. F is non-empty,

2. if A ∈ F then Ω \A ∈ F,

3. if A1, A2, · · · ∈ F then
∞⋃
i=1

Ai ∈ F.

Definition 2.2. The Borel σ-algebra B(Rn) is the smallest σ-algebra containing all open sets in Rn. The sets
in B(Rn) are called Borel sets.

Definition 2.3. A mapping P : F→ Rn is called a probability measure on (Ω,F) if

1. P(A) ≥ 0 for A ∈ F,

2. P(Ω) = 1 and P(∅) = 0,

3. if A1, A2, . . . are disjoint events in F (in that Ai ∩Aj = ∅ whenever i 6= j) then

P

(∞⋃
i=1

Ai

)
=

∞∑
i=1

P(Ai).

Definition 2.4. A probability space is a triple (Ω,F,P) of objects such that

1. Ω is a non-empty set,

2. F is an event space of subsets of Ω,

3. P is a probability measure on (Ω,F).

Definition 2.5. A random variable X on the probability space (Ω,F,P) is a mapping X : Ω→ Rn such that for
all A ⊆ Rn we have that X−1(A) := {ω ⊆ Ω|X(ω) ⊆ A} ⊆ Ω.

4

From here of on we will assume in this report that our σ-algebra F = B(Rn)

Definition 2.6. Any function π which satisfies

π(x) ≥ 0 for x ∈ Rn,

and ∫
Rn

π(x)dx = 1,

is the density function of some random variable.

Definition 2.7. The indicator or characteristic function of a subset A of a set S is a function χA : S → {0, 1}

defined as χA(x) :=

{
1 if x ∈ A,
0 if x /∈ A.

Definition 2.8. The total variation distance between two probability measures µ1(·) and µ2(·) is:

||µ1(·)− µ2(·)|| = sup
A
|µ1(A)− µ2(A)|,

where the supremum is taken over every set A ⊆ B(Rn).

Definition 2.9. A probability measure µ is dominated by π (µ << π) if π(A) = 0 implies µ(A) = 0 for every
set A ⊆ B(Rn).

3. Markov Chain Monte Carlo method

Now if we have a high dimensional (posterior) density we want a way to extract specific information from it,
just like in the case of the example of the picture. In statistics, we have different kinds of point estimators. For
example, we have the mean and mode of a probability density. The mode is defined as the following:

Definition 3.1. The mode of a continuous probability distribution is the point at which the probability density
function π(x) attains a maximum value. We have that

X̂mode = arg max
x

π(x).

If π is assumed to be a posterior density πy then this is called the maximum a posteriori (MAP) estimator.
Note that a probability density can attain more than one maximum, so the mode is not necessarily unique. To
find the mode of a density we can make use of optimization algorithms. There are a few optimization algorithms
available. Most of these algorithms iteratively try to find the maximum or minimum of a function. One of the
drawbacks of such algorithms is that the iteration process can take a lot of computational time if we have a
complex density. Another drawback is that these algorithms can get stuck at a local maximum, which we aren’t
interested in. That’s why we are going to take a look at a different point estimator, the mean.

Definition 3.2. The mean X̂mean of a continuous random variable X with probability density function π(x) is

X̂mean = E(X) =

∫
Rn

xπ(x)dx.

If π is assumed to be a posterior density πy then this is called the conditional mean in Bayesian statistics.
Now if we look at this definition we see that we have to calculate an integral. This can also be very complicated
to do if we have very high dimensional probability densities. The numerical quadrature rules (and the m-point
rules) are all methods we can not use to calculate these specific integrals. They work in the following manner let
µ be probability measure over Rn and we want to integrate f with respect to µ. Then define a set of support
points 1 ≤ j ≤ N and a set of corresponding weights wj to get an approximation∫

Rn

f(x)µ(dx) ≈
N∑
j=1

wjf(xj).

5

These methods have a few problems, with one of the biggest problems being that it takes a lot of computational
time if we have a high dimensional density. In Section 1 we briefly talked about the curse of dimensionality,
this usually refers to what happens if we keep on adding more dimensions. This means it becomes more difficult
to attain certain quantities such as the mean because the computational time increases exponentially with each
added dimension. Furthermore, we explained that in the numerical quadrature rules (and the m-point rules) we
evaluated the probability density at some points to calculate the integrals. This is not a good way of calculating
the integrals because we don’t know the support of the density. To solve this we can let the density itself give us
a set of points (sample) that supports the distribution. To illustrate this better let’s introduce a function π, on
a state space S, with S an open subset of Rn, with π possibly unnormalised and satisfying 0 <

∫
S
π <∞. From

this, we define a probability measure Π(·) on S,

Π(A) =

∫
A
π(x)dx∫

S
π(x)dx

.

We want to estimate the expectation of function f : S→ Rn with respect to Π(·) we get

E[f(X)] =

∫
S
f(x)π(x)dx∫
S
π(x)dx

.

If π is a complicated function and S is high-dimensional we will get very difficult to calculate integrals. That’s why
we introduce the classical Monte Carlo simulations to use for this problem we will simulate x1, x2, . . . , xN ∼ Π(·),
and then estimate the mean of f with respect to Π(·) by

E[f(X)] ≈ 1

N

N∑
i=1

f(xi). (3)

Here we directly simulate from Π(·), but if the π is very complicated this is very difficult to do. That’s why
we use the MCMC methods, these algorithms generate a group of samples that can be used for Monte Carlo
simulation. In Section 4 we will introduce the MH algorithm one of the most used MCMC methods.

3.1. Markov Chain
Here we are going to introduce the Markov chain.

Definition 3.3. Let B = B(Rn) denote the Borel sets over Rn. A mapping P : Rn × B → [0, 1] is called a
probability transition kernel, if

1. for each B ∈ B, the mapping Rn → [0, 1], x 7→ P (x,B) is a measurable function.

2. for each x ∈ Rn, the mapping B→ [0, 1], B 7→ P (x,B) is a probability distribution.

Now let x ∈ Rn and B a measurable set in B then P (x,B) = P(Xn ∈ B|Xn−1 = x) is a probability transition
kernel.

Definition 3.4. A discrete time stochastic process is an ordered set {Xj}∞j=1 of random variables Xj ∈ Rn.

Definition 3.5. A discrete time process X = {X0, X1, X2, . . . } is called a Markov chain if and only if the state
at time t merely depends on the state at time t− 1. More precisely, the transition probabilities

P[Xt = at|Xt−1 = at−1, . . . , X0 = a0] = P[Xt = at|Xt−1 = at−1],

for all values a0, a1, . . . , at and all t ≥ 1

This means that the Markov chains are ”memoryless” discrete time processes.

Definition 3.6. Let µ denote a probability measure over Rn. A time- homogeneous Markov chain with the
transition kernel P is a stochastic process {Xj}∞j=1 with the properties

µXj+1
(Bj+1|x1, . . . , xj) = µXj+1

(Bj+1|xj) = P (xj , Bj+1).

The first equality means that the probability of Xj+1 ∈ Bj+1 conditioned on observations X1 = x1, . . . , Xj =
xj is equal to the probability conditioned on Xj = xj . This means that for any given time, the conditional
probability distribution of the future state of the process, given present and past states, depends only on the
present state and not at all on the past states (Markov property). The second equality states that the dependence
of adjacent moments do not vary in time, so kernel P does not depend on time j.

6

3.2. Properties of the Markov chain
We have introduced the Markov chain in the previous section, now we are going to look at the properties of the
Markov chain.

Definition 3.7. Let µ denote a probability measure over Rn. Then the transition kernel that propagates k steps
forward in time is defined as the following:

P (k)(xj , Bj+k) = µXj+k
(Bj+k|xj) =

∫
Rn

P (xj+k−1, Bj+k)P (k−1)(xj , dxj+k−1), k ≥ 2,

where P 1(xj , Bj+1) = P (xj , Bj+1).

So if we have that µXj
is the probability distribution of Xj , then the distribution of Xj+1 is given by

µXj+1(Bj+1|xj) = µXjP (Bj+1) =

∫
Rn

P (xj , Bj+1)µXj (dxj).

Definition 3.8. Let µ denote a probability measure over Rn. The measure µ is an invariant measure of
P (xj , Bj+1) if

µP (B) =

∫
Rn

P (x,B)µ(dx) =

∫
B

µ(dx) = µ(B),

that is the distribution of the random variable Xj, before the time step j → j+1 is the same as the variable Xj+1

after the step.

This means that if Xj ∼ µ then Xj+1 ∼ µP = µ.

Definition 3.9. We define τA = inf{n ≥ 1;Xn ∈ A} to be the first return time to A.

Now if we start at point x ∈ Rn we note the transition kernel as Px. If we have a Markov chain with a
invariant distribution Π and a set A ⊂ B(Rn) and suppose that Px(τA < ∞) > 0, this means there is a chance
that we will end up in A in finite time if we begin at point x. (The τA <∞ means that we will eventually return
to A.). From this we introduce the following lemma. For every invariant distribution Π almost everywhere and
x ∈ Rn we can make the stronger statement that Px(τA < ∞) = 1, this means we will always end up in A in
finite time.

Lemma 3.10. Consider a Markov Chain on Rn, having invariant distribution Π(·). Suppose that for some
A ⊆ B(Rn), we have Px(τA <∞) > 0 for all x ∈ Rn. Then for all Π a.e x ∈ Rn, Px(τA <∞) = 1.

Proof. Suppose the contrary that the the conclusion does not hold, i.e. that

Π{x ∈ Rn : Px(τA =∞) > 0} > 0. (4)

This means that if we start at x ∈ Rn we will never end up in A in finite time.
With equation (4), we can find δ1 > 0 and a subset B1 ⊆ B(Rn) with Π(B1) > 0, such that Px(τA < ∞) ≤

1 − δ1 for all x ∈ B1. Since Px(τA < ∞) > 0 for all x ∈ Rn, we can find lo ∈ N and δ2 > 0 and B2 ⊆ B1 with
Π(B2) > 0 and with P l0(x,A) ≥ δ2 for all x ∈ B2. Set η = #{k ≥ 1;Xkl0 ∈ B2}. Then for any r ∈ N and
x ∈ Rn, we have Px(τA = ∞, η = r) ≤ (1 − δ2)r. In particular, Px(τA = ∞, η = ∞) = 0. Hence, for x ∈ B2,
we have

Px(τA =∞, η <∞) = 1−Px(τA =∞, η =∞)−Px(τA <∞)

≥ 1− 0− (1− δ1) = δ1.

Hence, there is l ∈ N, δ > 0, and B ⊆ B2 with Π(B) > 0, such that

Px(τA =∞, sup{k ≥ 1;Xkl0 ∈ B2} < l) ≥ δ, x ∈ B.

Since B ⊆ B2, we have
sup{k ≥ 1;Xkl0 ∈ B2} ≥ sup{k ≥ 1;Xkl0 ∈ B}.

7

So from this we get that

Px(τA =∞, sup{k ≥ 1;Xkl0 ∈ B} < l) ≥ δ, x ∈ B (5)

Let B, l, l0 and δ be as above. Let L = ll0, and S = sup{k ≥ 1;Xkl ∈ B}, using the convention that S = −∞
if the set {k ≥ 1;Xkl ∈ B} is empty. Now by using the definition of invariant and equation (5) we get the
following computation∫

x∈Rn

Px[s = r, XjL /∈ A]Π(dx) =

∫
x∈Rn

∫
y∈B

Py[S = −∞, X(j−r)L /∈ A]P rL(x, dy)Π(dx)

=

∫
y∈B

∫
x∈Rn

Py[S = −∞, X(j−r)L /∈ A]Π(dx)P rL(x, dy)

=

∫
y∈B

Py[S = −∞, X(j−r)L /∈ A]Π(dy)

≥
∫
y∈B

δΠ(dy) = δΠ(B).

This shows that for all integers 1 ≤ r ≤ j,∫
x∈Rn

Px[S = r,XjL /∈ A]Π(dx) ≥ δΠ(B). (6)

Now using the definition of invariant and equation (6) we have that for any j ∈ N,

Π(AC) =

∫
x∈Rn

P jL(x,AC)Π(dx) =

∫
x∈Rn

Px[XjL /∈ A]Π(dx)

≥
j∑
r=1

∫
x∈Rn

Px[S = r,XjL /∈ A]Π(dx) ≥
j∑
r=1

δΠ(B) = jδΠ(B).

For j > 1
δΠ(B) , this gives Π(AC) > 1, which is impossible. This gives a contradiction, and hence completes the

proof of Lemma 3.10.

3.3. Convergence of the Markov Chain
Here we are going to introduce a few theorems which are very important for the MCMC methods. These
theorems give us the result that the Markov chains converge to the invariant distribution, given it satisfies
certain conditions.

Definition 3.11. Let µ denote a probability measure over Rn. Then the transition kernel P is irreducible (with
respect to µ) if for each x ∈ Rn and B ∈ B(borel set) with µ(B) > 0 there exists an integer k such that
P(k)(x,B) > 0.

This means that the transition kernel P can visit every set of positive measure (we can reach every point in
our measure probability distribution). This is the same as writing Px(τB <∞) > 0.

Definition 3.12. Let P be an irreducible kernel. We say that P is periodic if, for some integerm ≥ 2, there is a set
of disjoint nonempty sets {E1, . . . , Em} ⊂ Rn such that for all j = 1, . . . ,m and all x ∈ Ej, P (x,Ej+1(mod m)) =
1.

This means that the periodic transition kernel gives us a Markov chain that is in an infinite periodic loop.

Definition 3.13. A kernel P is an aperiodic kernel if it is not periodic.

We see that the aperiodic kernel does not give us an infinite periodic loop of Markov chains.

8

Theorem 3.14. Let µ be a probability measure in Rn and {Xj} a time-homogeneous Markov chain with a
transition kernel P. Assume further that µ is an invariant measure of the transition kernel P, and that P is
irreducible and aperiodic. Then for all µ a.e x ∈ Rn

lim
N→∞

||P (N)(x, ·)− µ(·)|| = 0.

In particular, lim
N→∞

PN (x,B) = µ(B) for all B ∈ B with B the Borel sets over Rn.

Theorem 3.15. Let µ, X and P be as in Theorem 3.14. Then for f ∈ L1(µ(dx)),

lim
N→∞

1

N

N∑
j=1

f(Xj) =

∫
Rn

f(x)µ(dx),

almost certainly. This is called the ergodicity property.

We will prove Theorem 3.14, but to do this we will first need to introduce some lemmas. The proof of Theorem
3.15 can be found at [4].

Now we are going to introduce the concept of coupling. We are going to do this because the proof becomes
a lot less difficult and technical than the other proofs that do not make use of this.

Lemma 3.16. Suppose we have two random variables X and Y , defined jointly on Rn. If we write µ(X) and
µ(Y) for their respective probability distributions, then we can write

||µ(X)− µ(Y)|| = sup
A
|P(X ∈ A)− P(Y ∈ A)|

= sup
A
|P(X ∈ A,X = Y) + P(X ∈ A,X 6= Y)

− P(Y ∈ A, Y = X)− P(Y ∈ A, Y 6= X)|
= sup

A
|P(X ∈ A,X 6= Y)− P(Y ∈ A, Y 6= X)|

≤ P(X 6= Y)

That is, the total variation distance between the two random variables is bounded by the probability that they are
unequal.

Definition 3.17. A subset C ⊆ Rn is small (or, (n0, ε, µ)-small) if there exists a positive integer n0, ε > 0, and
a probability measure µ(·) on Rn such that the following minorisation condition holds:

Pn0(x, ·) ≥ εµ(·) x ∈ C,

i.e. Pn0(x,A) ≥ εµ(A) for all x ∈ C and all measurable A ⊆ Rn.

Now suppose we have a small set C. We will implement a coupling construction on this set. The construction
has the following idea, we run two copies {Xn} and {X ′n} of the Markov chain, with each marginally following
the updating rules P (x, ·). Then their joint construction (using C) gives them the highest probability possible of
becoming equal to each other. Note that one of the copies X ′n starts with the invariant measure Π.

9

THE COUPLING CONSTRUCTION.
1 Start with X0 = x and X ′0 ∼ Π(·), and n = 0, and repeat the following loop forever. Beginning of

Loop. Given Xn and X ′n:
2 If Xn = X ′n, choose Xn+1 ∼ P (Xn, ·), and replace n by n+ 1
3 Else, if (Xn, X

′
n) ∈ C × C, then:

4 (a) with probability ε > 0, choose Xn+n0
= X ′n+n0

∼ µ(·).
5 (b) else, with probability 1− ε, conditionally independently choose

Xn+n0
∼ 1

1− ε
[Pn0(Xn, ·)− εµ(·)], X ′n+n0

∼ 1

1− ε
[Pn0(X ′n, ·)− εµ(·)].

In the case of n0 > 1, for completeness go back and construct Xn+1, . . . , Xn+n0−1 from their correct
conditional distributions given Xn and Xn+n0 , and similarly (and conditionally independently)
construct X ′n+1, . . . , X

′
n+n0−1 from their correct conditional distributions given X ′n and X ′n+n0

. In any
case, replace n by n+ n0.

6 Else, conditionally indpendently choose Xn+1 ∼ P (Xn, ·) and X ′n+1 ∼ P (X ′n, ·), and replace n by n+ 1.
7 Then return to Beginning of Loop.

We then use Lemma 3.16 to find bounds. For example if we are in small set C we have probability ε of at least
making Xn ∼ Pn(x, ·) and X ′n ∼ Π(·) equal. From this we would get that P(Xn 6= X ′n) ≤ (1 − ε). This could
then be used to bound ||Pn(x, ·)−Π||.

Theorem 3.18. Every irreducible Markov chain, with probability measure Π, on the Borel sets over Rn, contains
a small set C ⊆ B(Rn) with Π(C) > 0. (In fact, each B ⊆ B(Rn) with Π(B) > 0 in turn contains a small set
C ⊆ B with Π(C) > 0). Furthermore, the minorisation measure µ(·) may be taken to satisfy µ(C) > 0.

This theorem ties everything together it brings Markov chains, the coupling construction and small sets into
one theorem. To see the proof of Theorem 3.18 see [5].

Lemma 3.19. Consider an aperiodic Markov chain on Rn, with invariant distribution Π(·). Let µ(·) be any
probability measure on Rn. Assume that µ(·) << Π(·), and that for all x ∈ Rn, there is n = n(x) ∈ N and
δ = δ(x) > 0 such that Pn(x, ·) ≥ δµ(·) (for example, this always holds if µ(·) is a minorisation measure for a
small set which is reachable from all states). Let T = {n ≥ 1;∃δn > 0 s.t.

∫
Pn(x, ·)µ(dx) ≥ δnµ(·)}, and assume

that T is non-empty. Then there is n∗ ∈ N with T ⊃ {n∗, n∗ + 1, n∗ + 2, . . . }.

For the proof of Lemma 3.19 see [2] Lemma 35. Now with all of the lemmas and definitions above we will
prove Theorem 3.14.

Proof of Theorem 3.14. We want to show that the pair Xn, Yn ends in C × C with C a small set, infinitely
many times, which means that the pair has infinitely many times to couple with probability ε > 0 so it will do so
with probability 1. Let C be a small set as in Theorem 3.18 and consider the coupling construction {(Xn, Yn)}.
Let G ⊆ Rn×Rn be the set of (x, y) for which P(x,y)(∃n ≥ 1;Xn = Yn) = 1. From the coupling construction, we
see that if (X0, Y0) ≡ (x, Y0) ∈ G, then limn→∞P[Xn = Yn] = 1, so that limn→∞ ||Pn(x, ·)−Π(·)|| = 0, proving
Theorem 3.14. Hence it suffices to show that for all Π-a.e. x ∈ Rn, we have that P[(x, Y0) ∈ G] = 1.

Let G be as above, let Gx = {y ∈ Rn; (x, y) ∈ G} for x ∈ Rn, and let Ḡ = {x ∈ Rn; Π(Gx) = 1}. So we want
to prove that Π(Ḡ) = 1. Indeed since µ(C) > 0 by Theorem 3.18 it follows from Lemma 3.19 that, from any
(x, y) ∈ Rn×Rn, the joint chain has positive probability of eventually hitting C×C. It then follows by applying
Lemma 3.10 to the joint chain, that the joint chain will return to C × C with probability 1 from (Π × Π)-a.e
(x, y) /∈ C × C. Once the joint chain reaches C × C, the chain could leave C × C without coupling they will by
Lemma 3.10 again return to C × C with probability 1. Hence, the joint chain will repeatedly return to C × C
with probability 1, until such time as Xn = Yn . And by the coupling construction, each time the joint chain is
in C ×C, it has probability ≥ ε of then forcing Xn = Yn. Hence, eventually we will have Xn = Yn, thus proving
that (Π×Π)(G) = 1. Now, if we had Π(Ḡ) < 1, then we would have

(Π×Π)(GC) =

∫
Rn

Π(GCx)Π(dx) =

∫
ḠC

[1−Π(Gx)]Π(dx) > 0,

contradicting the fact that (Π×Π)(G) = 1.

10

We will not prove Theorem 3.15 in this report. From the theorems above we see, that we need to create
an invariant, aperiodic, and irreducible transition kernel P and then draw a sequence of sample points from P .
Then we will be able to calculate the integrals using the Monte Carlo integration method.

4. The Metropolis-Hastings Algorithm

The Metropolis-Hastings (MH) Algorithm is an MCMC method, this method is mostly used to approximate
multidimensional distributions and to determine the integral of a distribution. This method can also be used
for one-dimensional distributions but there are easier MCMC methods that we can use for these distributions.
To construct this algorithm we need a few ingredients. First, let µ be the target measure in Rn and let µ be
absolutely continuous with respect to the Lebesgue measure so that there exists π such that µ(dx) = π(x)dx.
Then we want to create a transition kernel P (x,B) with B ∈ B (Borel set) such that µ is its invariant measure.
Let’s assume P as any transition kernel, then if we apply P on a point x ∈ Rn then the kernel either goes to
another point y ∈ Rn or stays in its place. So then we can split our kernel P (x,B) into two parts in the following
manner

P (x,B) =

∫
B

K(x, y)dy + r(x)χB(x), (7)

with χB the characteristic function of the set B ∈ B. The K(x, y) ≥ 0 gives us the probability of moving from
point x to the point y. Note that this K is not necessarily a density, because K does not always integrate to one.
The r(x) ≥ 0 tells us the probability of the chain staying in its place at x. We use the characteristic function χB
because if x /∈ B, then the MH algorithm goes to B only through a move. Then we have the condition that

P (x,Rn) = P(Xn ∈ Rn|Xn−1 = x) = 1,

this is always true, because {Xj}∞j=1 ∈ Rn and we know that P is a probability measure so it means that this
must be equal to 1. Then we make use of characteristic function χRn . We know that x ∈ Rn, so this means that
χRn = 1. From these two conditions we get the following

P (x,Rn) =

∫
Rn

K(x, y)dy + r(x)χRn(x) =⇒

1 =

∫
Rn

K(x, y)dy + r(x) =⇒

r(x) = 1−
∫
Rn

K(x, y)dy. (8)

If we look at Theorem 3.14 we see that we must have an invariant measure µ(dx)(= π(x)dx) of P in order for
the kernel P to satisfy this theorem, we must have the following identity

µP (B) =

∫
Rn

P (x,B)π(x)dx =

∫
Rn

([∫
B

K(x, y)dy

]
+ r(x)χB(x)

)
π(x)dx

=

∫
Rn

[∫
B

K(x, y)dy

]
π(x)dx+

∫
Rn

r(x)χB(x)π(x)dx

=

∫
B

[∫
Rn

K(x, y)π(x)dx

]
dy +

∫
B

r(x)π(x)dx

=

∫
B

[∫
Rn

K(x, y)π(x)dx

]
dy +

∫
B

r(y)π(y)dy

=

∫
B

([∫
Rn

K(x, y)π(x)dx

]
+ r(y)π(y)

)
dy

=

∫
B

π(y)dy.

For the above to be true for all B ∈ B we assume∫
Rn

K(x, y)π(x)dx+ r(y)π(y) = π(y) =⇒
∫
Rn

K(x, y)π(x)dx = (1− r(y))π(y) (9)

11

Now if we use equation (8) we see that

r(y) = 1−
∫
Rn

K(y, x)dx.

Then if we fill this in equation (9) we get the following

(1− r(y))π(y) =

(∫
Rn

K(y, x)dx

)
π(y) =

∫
Rn

π(y)K(y, x)dx.

With all of these ingredients we get the following condition∫
Rn

π(y)K(y, x)dx =

∫
Rn

π(x)K(x, y)dy. (10)

This is called the balance equation. In practice equation (10) is difficult to work with, because we have to work
with a lot of integrals. To avoid this problem we make a stronger assumption

π(y)K(y, x) = π(x)K(x, y),

which is called the detailed balance equation. To construct the Metropolis-Hastings Algorithm we assume that
the transition kernel K satisfies the detailed balance condition. To do this we first introduce the function
q : Rn × Rn → R+ with the property

∫
q(x, y)dy = 1. This q is called the proposal distribution or candidate-

generating kernel. With this function q we define transition kernel,

Q(x,A) =

∫
A

q(x, y)dy.

If q satisfies the detailed balance equation we can simply set K(x, y) = q(x, y) and r(x) = 0 and we are done. If
that is not the case we define

K(x, y) = α(x, y)q(x, y).

This α is a correction term which must be determined and is also referred to as the probability of move. Let’s
assume there are x, y ∈ Rn which don’t satisfy the detailed balance equation, so we assume that we have the
following inequality

π(y)q(y, x) < π(x)q(x, y). (11)

This means that we move from x to y too often and from y to x less frequently. This means we want to choose
an α so that we can get the following expression

π(y)α(y, x)q(y, x) = π(x)α(x, y)q(x, y),

this is achieved if we fix
α(y, x) = 1 and α(x, y) =

π(y)q(y, x)

π(x)q(x, y)
< 1. (12)

Now we reverse the x and y see that we must have that

α(x, y) = 1 and α(y, x) =
π(x)q(x, y)

π(y)q(y, x)
< 1. (13)

Now if we look at the α(x, y) in expressions (12) and (13) we see that we can define

α(x, y) = min

(
1,
π(y)q(y, x)

π(x)q(x, y)

)
. Now if we have a normalisation constant in our probability distribution π, then we see that in the way we have
defined our α this constant vanishes. Now if we take everything we have defined and fill this in equation (7) we
get the following

P (x,B) =

∫
B

α(x, y)q(x, y)dy +

(
1−

∫
Rn

α(x, y)q(x, y)dy

)
χB(x).

12

This P is called the Metropolis-Hastings kernel. This transition kernel satisfies all of the properties needed for
Theorem 3.14 that we discussed in section 2, so the MH method converges asymptotically. Now with this kernel
we get the following implementation of the MH algorithm.

Implementation of the Metropolis-Hastings Algorithm.
1 First we choose an initial value x0.
2 Then we iterate for i = 1, . . . , ndraws the following:
3 First we simulate y from the candidate (proposal) distribution q(xi−1, y).
4 Then we compute the acceptance probability

α = min

{
π(y)q(y, xi−1)

π(xi−1)q(xi−1, y)
, 1

}
,

with target density π(x).
5 We simulate U ∼ U(0, 1), and check the following:
6 If u ≤ α, then accept. So xi = y.
7 And if u > α, then reject. So xi = xi−1.

If we look into the implementation of the algorithm we see that in the α there is a q(y, xi−1) and q(xi−1, y). If
we choose q(xi−1, y) symmetric, we will have

q(xi−1, y) = q(y, xi−1).

From this we get the following simplification

α(x, y) = min

{
π(y)q(y, xi−1)

π(xi−1)q(xi−1, y)
, 1

}
= min

{
π(y)

π(xi−1)
, 1

}
. (14)

5. Examples

We will now consider two examples, we will use the MH method to sample from them. Then we will approximate
the mean by using the samples and look a bit into how the algorithm depends on the candidate distribution q

and a so-called step size γ. Note that we will be working in R2, so x =

(
x1

x2

)
.

Example 1. We have the target density π1(x) ∝ 1
3φ(x, θ1,Σ) + 2

3φ(x, θ2,Σ), with

φ(x, θ,Σ) =
1√

2π det(Σ)
exp

(
− (x− θ)TΣ−1(x− θ)

2

)
,

θ1 =

(
0
0

)
, θ2 =

(
0.4
5

)
and Σ =

(
1 0
0 1

)
.

(a) Contour plot of target density π1(x). (b) The 3-D plot of target density π1(x).

Figure 1: Here we plot the 3-D image and contour plot of π1 side by side.

13

Then we will implement and look at the psuedo code of the MH algorithm on this example with the candidate
distribution

q(x, y) ∝ exp

(
− 1

2γ2
||x− y||2

)
.

If we look at q we see that it is Gaussian distributed with mean 0 and that it is symmetric. Furthermore the γ
tells us how wide the q is.

Psuedo code of MH for the function π1(x).

1 Pick initial value x0. Set x = x0

2 For k = 2 : K do
3 Calculate π1(x)
4 Draw W ∼ N(0, γ2I), set y = x+ w
5 Calculate π1(y)

6 Calculate α(x, y) = min
(

1, π1(y)
π1(x)

)
7 Draw U ∼ U([0, 1])
8 if u < α(x, y)
9 Accept: Set x = y, xk = x, else

10 Reject: Set xk = x,
11 end
12 end

In the code we see a K this is the total number of iterations we want to do, in our case K = 5000. In the
pseudo-code above we also see that there is a γ, this γ works as a step size in the MH algorithm. The MH
algorithm depends on the step size γ through q, because the variance of our q is equal to γ. Now if we take the γ
very large, this means the multivariate normal distribution from which we take our w will give us a high chance
that the candidate y that we choose will be further away from the previous value that the algorithm accepted.
This is true because the value which was accepted by the MH algorithm, is now the mean of the multivariate
normal distribution from which we will now sample our next candidate, so if you have a high variance you will
automatically have a high chance of picking a candidate that is further away from the mean and this mean is
the latest accepted draw of the MH algorithm. And if we take γ very small the opposite is true, then we have a
high chance of picking a candidate that is close to the latest accepted draw.

Example 2. We will now use the pseudo-code to sample from the target density

π2(x) = π2(x1, x2) ∝ exp

(
−10(x2

1 − x2)2 −
(
x2 −

1

4

)4
)
,

with the same candidate density q.

(a) Contour plot of target density π2(x). (b) The 3-D plot of target density π2(x).

Figure 2: Here we plot the 3-D image and contour plot of π2 side by side.

14

Now that we have introduced the two examples above, we will study Examples 1 and 2 by plotting the
accepted draws of the MH algorithm in the contour plot of each example. To do this we first choose an initial
value for each example, which we then use for the MH method. Furthermore we will choose different step sizes
and apply the MH algorithm on target distribution π1(x) and π2(x).

Figure 3: The outcome of the MH algorithm with different step sizes for target density π1(x) with initial value

x0 =

(
−3
0

)
and K = 5000.

15

Figure 4: The outcome of the MH algorithm with different step sizes for target density π2(x) with initial value

x0 =

(
1.5
0.8

)
and K = 5000.

If we look at Figures 3 and 4 we see that the subplot with γ = 0.01 and γ = 10 gives us very bad coverage of
the the target distribution. The second subplot with γ = 0.1, has the same problem here we see that in Figure
3 one of the peaks is not covered and in Figure 4 that the hands are not equally covered. Now in Figure 3 and
4 we see that at γ = 1 the whole target distribution is covered, so we can say this seems to be the best choice.
Furthermore we see that there is a tail in the subplot for γ = 0.01 and γ = 0.1 in Figures 3 and 4, starting from
the initial value x0. This happens because the MH method needs a few iteration before it arrives at the region
of high probability of the desired target distribution. We want to get rid of this tail, because the tail skews the
results of the calculation of the mean in the direction of the initial value, because we have more weight there. We
do a process called burn-in. Which states that we just remove a few of the accepted (or repeated) draws at the
beginning of the MH method. So in our example we removed the first 500 draws. But this value is dependent
on each individual target distribution and step size (So it’s not set in stone).

Figure 5: The outcome of the MH algorithm with different step sizes for target density π1(x) after burn-in.

16

Figure 6: The outcome of the MH algorithm with different step sizes for target density π2(x) after burn-in.

Now we have cut off the beginning of the chain to remove the burn-in phase of the chain and have gotten
Figure 5 and 6. We see that the tail has been removed in all of the figures except in Figure 5a. We took a burn-in
length of 500, for all of the other figures this was sufficient but for Figure 5a this was not. This can be attributed
to the fact that the step size γ = 0.01 that we have chosen performs very bad. This has only been done for step
sizes γ = 0.1 and γ = 0.01 because the other step sizes don’t have a tail.

5.1. Finding the mean
Now we want to calculate the mean of a general example with target density π(x). We know if we want to
calculate the mean for our example we have the following formula with X ∼ Π(·)

E(X) =

∫
R2

xπ1(x)dx.

Here we will show how we calculate the mean with the MH method for target distribution π(x). We can
approximate this integral with the mean of the sum of the draws

(
1
K

∑K
k=1 xk

)
, because of Theorem 3.15. From

Figure 3 and 4 we see that for step size γ = 1 the MH method makes a good approximation of the target
distribution. That’s why we will use γ = 1 as our step size to calculate the mean.

(a) Mean of target density π1(x). (b) Mean of target density π2(x).

Figure 7: The mean for Example 1 and 2 with K = 5000 and γ = 1, calculated using method 2.

In Figure 7 we see a graphical representation of the mean of the MH method for γ = 1 for both target densities.
We used two methods to find the mean. The first method we used to find the mean, was to run the code a few
times while taking a larger number of iterations K. In our case we ran the code 5 times with K = 100000 and
found that for the target density π1(x) the mean is varying in the x1-coordinate between [0.0907, 0.1235] and
in the x2-coordinate is varying between [1.5121, 1.9311]. Furthermore for target density π2(x) we did the same
and found that the mean in the x1-coordinate is varying between [−0.0035, 0.0182] and in the x2-coordinate is

17

varying between [0.3817, 0.3913]. The second method we used to get the mean was to run the code 100 times
with K = 5000 and then take the average of the means that we got. After doing this we found for the target
density π1(x) the mean in the x1-direction was 0.1251 and in the x2-direction 1.6341 and for target density π2(x)
the mean in the x1-direction was 0.0006 and in the x2-direction 0.3849. Now we see that both methods are very
close to each other, the values of Method 2 are in the intervals of Method 1 except for 0.1251. Both methods are
very use full because they give you different ways of estimating the mean.

5.2. Contraction of the algorithm
We know that the MH method asymptotically converges to the target density, seen in Theorem 3.14 and 3.15,
but we also want to get a good approximation on a finite sample. If the step size is too big we will reject almost
everything, so we won’t get a good approximation of our target density (it moves around inefficiently). But if our
step size is too small we will accept almost everything and will need a lot of iteration before we can get a good
approximation of our target density. This would also mean that the computational time will increase significantly
which is precisely what we don’t want. Furthermore, the accepted points are mostly packed around one specific
part of the distribution, which is not very good, because we get poor coverage of the target distribution. This
means if we want to calculate the mean it would give us a bad approximation, because all the points are clustered
together and not spread evenly. So we want to find the best possible step size, such that we can get a relatively
good amount of acceptance and with this a good approximation of our target density.

If we now look at Figure 3, we get the following acceptance percentage for each individual step size. For
step size γ = 0.01 we get an 99% acceptance rate, at γ = 0.1 we get an 98% acceptance rate, at γ = 1 we have
an acceptance rate of 56% and at γ = 10 we have an acceptance rate of 3%. And if we look at Figure 4 the
acceptance ratio at γ = 0.01 is 96%, at γ = 0.1 we get an 80% acceptance rate, at γ = 1 we have an acceptance
rate of 16% and at γ = 10 we have an acceptance rate of 0.2%

Furthermore we see in Figures 3 and 4, that for γ = 0.01 the MH method needs a lot of iteration before it
arrives at the density. For γ = 0.1, we see that it covers a part of the support of the density, but not everything.
At γ = 1, we see that the MH method covers the whole density. And for γ = 10 in figure 4 we see that it covers
the target density good, but the problem is more that there aren’t many points, which is what we want.

We see that the step size γ has a lot of influence on the MH method. To get a better understanding we will
make trace plots of our parameters and look if it makes sense what is happening.

18

Figure 8: Trace plots with different step sizes of the target density π1(x) of the first component x1.

Figure 9: Trace plots with different step sizes of the target density π2(x) of the first component x1.

In Figure 8 and 9 we have plotted the first 5000 accepted and possibly repeated draws of the first component
x1 of our MH method. Note that to get these trace plots we did another simulation of our algorithm so it does

19

not precisely correspond to Figure 3 and 4. If we look at these figures we see for γ = 0.01 that the MH method
goes rather slow through the parameter space, so it will accept a lot but won’t cover a large part of the target
density and here we also have a very high correlation .This means our candidate density is too narrow.

When γ = 0.1 we see that the method goes faster than for γ = 0.01, but it still moves very slowly through
the parameter space. This means we still have a very high acceptance rate and a very high correlation.

For γ = 1 in Figure 8 and 9 we see that the method goes very smoothly through the parameter space. This
means we have a reasonable amount of accepted draws and reasonable correlation in our draws.

When γ = 10 the method gets stuck at a few values, so this means we reject a lot and we also have a very
high correlation in the draws. Furthermore, we also get very few (separate) points, which we really want. So our
candidate density is too wide.

If we look at Figure 8 and 9, it would seem that γ = 1 would be the best choice, but we still want to know
if we can do better. From articles [1] and [6] we find that at an 23% acceptance percentage we will have an
accurate description of a target and candidate density which is Gaussian distributed. Furthermore we will also
get reasonably low correlation in the draws. Note that this percentage is optimal if the dimension goes to infinity.
In our example we have dimension equal to 2, but we still want to see if it gives us good coverage and whether
the results we get are very far off, of what we already have. Furthermore we must note that this percentage is
attained only for Gaussian target and candidate densities. This means that for Example 2 this percentage might
not work so well. If we take this percentage in to consideration then we must take a step size γ = 2.7 for the
target density π1(x) and a γ = 0.8 for target density π2(x) . Then we get the following trace plots and plots for
the outcome of the MH method.

(a) Target density π1(x). (b) Target density π2(x).

(c) Trace plot of target density π1(x). (d) Trace plot of target density π2.

Figure 10: Outcome of the MH method for target density π1(x) and π2(x).

In Figure 10 we see that the first component goes smoothly through the parameter space in both cases. In
Figures 3 and 4 we saw that the best choice for γ was γ = 1 for both target distributions. So we see that we
were not very far from the optimal γ. This means that if the trace plot looks like the one we saw at γ = 1 in
Figure 8 and 9, then the chosen γ is very accurate.

20

6. Conclusion

Our objective was to find a way to easily calculate the mean of high dimensional densities by circumventing the
problems of integration, so we then found the MH method which gave us samples from the distribution, which
could then be used to approximate the mean. Theorem 3.14 shows that the Markov chains converge to the
invariant distribution and Theorem 3.15 shows us how we can approximate integrals with a sum. We then use
these theorems to construct the MH algorithm, this method gives us a practical way of approximating integrals
using the samples. Then we introduced two examples, on which we used the MH algorithm to approximate their
respective mean. We used two ways of calculating the mean with the MH method. The first method we used
was by running our code 5 times while taking a larger number of iterations K = 100000. The second method
we used was by running the code 100 times with K = 5000 and then taking the average of the results. Both
methods gave us very similar approximations of the mean of the example target distributions.

If we have a look at the MH method we see that the candidate distribution q that we used in the examples has
variance γ, this γ is also referred to as the step size. If we take the wrong step size the MH algorithms perform
poorly. This can be seen in both examples. If we take a very big step size we will have a very low acceptance
rate while if our step size is too small we will accept almost everything and will need a lot of iteration before we
can get a good approximation of our target density.

The trace plots can give us an indication if we have chosen the right step size. In the trace plots, we can see
how the first component x1 from the sample behaves in its sample space. If the γ is too small it goes very slow
through the sample space. Whereas if the γ is too large we will see that the same value is repeated constantly so
here we see that it get stuck at certain values. Then we took a look at the 23% acceptance rate which we found
in article [1] and was further expanded on in article [6]. This acceptance rate is the most ideal in the case of
a Gaussian target, proposal density and the dimensions going to infinity. In our examples, we used a Gaussian
proposal density. Furthermore we have only 2 dimensions but we still wanted to look if this accepted percentage
gave us very different results. For Example 1 the we got a step size around γ = 0.8 and for Example 2 around
γ = 2.7. These results showed us that they were not really far of our γ = 1, which we stated to be the best step
size for our examples.

Further, we can also conclude that a high acceptance percentage does not necessarily mean we will get a good
approximation of the target density, this is easily seen in the graphs we get for our examples. Small γ’s give us
high acceptance ratio’s but do not really cover the whole area well of the example target distribution.

Now if we look at the correlation we see by choosing the wrong step size we will attain very high correlations.
We want this to be as small as possible because a high auto-correlation means we will have to have more draws
which means we will need more computational time. But we must stress that the MH method is not only
dependent on the step size. If we take a wrong initial value for example it could take a very long time before
the MH gives us an accurate description of our target density. This would mean that we would have a very high
burn-in. That’s why we should always try to find an initial value that is in the region of high probability of the
target density. The choice of the candidate distribution also plays a role in our examples, we chose the Gaussian
distribution, but there are also other possibilities that would have a lot of influence on the MH algorithm. So from
all this, we can conclude that the MH algorithm can be used to efficiently sample from the example distributions,
and with these samples, we get a good approximation of the mean.

21

7. Appendix

7.1. Code of the Multivariate Gaussian
The implementation of the MH method is done in a function at the end of this section.

1 % Mul t i va r i a t e Guassian
2

3 %Plots o f the MH on g without burn−in
4 K = 5000 ; % Number o f i t e r a t i o n s
5

6 a = f i g u r e ;
7 h1 = 0 . 1 ;
8 x = (−3:h1 : 3) ;
9 y = (−3:h1 : 1 0) ;

10 subplot (2 , 2 , 1)
11 [X,Y, Z , ~] = g (x , y) ;
12 contour (X,Y,Z)
13 hold on ;
14 [~ ,~ , x1 , acce1 ,~ ,~] = mp2(0 . 0 1 ,K) ;
15 b1 = x1 ;
16 a1_x = autocor r (x1 (: , 1) , 1) ;
17 p lo t (x1 (: , 1) , x1 (: , 2) , ’ . ’)
18 xlim ([−3 .5 , 3])
19 x l ab e l (’ \gamma = 0.01 ’) ;
20 hold on ;
21 subplot (2 , 2 , 2)
22 [X,Y, Z , ~] = g (x , y) ;
23 contour (X,Y,Z)
24 hold on ;
25 [~ ,~ , x1 , acce2 ,~ ,~] = mp2(0 . 1 ,K) ;
26 m2_x = mean(x1 (: , 1)) ;
27 a2_x = autocor r (x1 (: , 1) , 1) ;
28 b2 = x1 ;
29 p lo t (x1 (: , 1) , x1 (: , 2) , ’ . ’)
30 xlim ([−3 .5 , 3])
31 x l ab e l (’ \gamma = 0.1 ’) ;
32 hold on ;
33 subplot (2 , 2 , 3)
34 [X,Y, Z , ~] = g (x , y) ;
35 contour (X,Y,Z)
36 hold on ;
37 [~ ,~ , x1 ,~ ,~ ,~] = mp2(1 ,K) ;
38 m3_x = mean(x1 (: , 1)) ;
39 b3 = x1 ;
40 p lo t (x1 (: , 1) , x1 (: , 2) , ’ . ’)
41 xlim ([−3 .5 , 3])
42 x l ab e l (’ \gamma = 1 ’) ;
43 hold on ;
44 subplot (2 , 2 , 4)
45 [X,Y, Z , ~] = g (x , y) ;
46 contour (X,Y,Z)
47 hold on ;
48 [~ ,~ , x1 , acce4 ,~ ,~] = mp2(10 ,K) ;
49 m4_x = mean(x1 (: , 1)) ;
50 b4 = x1 ;

22

51 p lo t (x1 (: , 1) , x1 (: , 2) , ’ . ’)
52 xlim ([−3 .5 , 3])
53 x l ab e l (’ \gamma = 10 ’) ;
54 hold on ;
55 f i g u r e (a)
56

57 %Plots o f the MH on g with burn−in
58 K = 5000 ;
59 h1 = 0 . 1 ;
60 x = (−3:h1 : 3) ;
61 y = (−3:h1 : 1 0) ;
62 s = 500 ; %Burn−in
63 a44 = f i g u r e ;
64 subplot (2 , 2 , 1)
65 [X,Y, Z , ~] = g (x , y) ;
66 contour (X,Y,Z)
67 hold on ;
68 p lo t (b1 (s : end , 1) , b1 (s : end , 2) , ’ . ’)
69 xlim ([−3 .5 , 3])
70 x l ab e l (’ \gamma = 0.01 ’) ;
71 hold on ;
72 subplot (2 , 2 , 2)
73 [X,Y, Z , ~] = g (x , y) ;
74 contour (X,Y,Z)
75 hold on ;
76 p lo t (b2 (s : end , 1) , b2 (s : end , 2) , ’ . ’)
77 xlim ([−3 .5 , 3])
78 x l ab e l (’ \gamma = 0.1 ’) ;
79 hold on ;
80 subplot (2 , 2 , 3)
81 [X,Y, Z , ~] = g (x , y) ;
82 contour (X,Y,Z)
83 hold on ;
84 p lo t (b3 (s : end , 1) , b3 (s : end , 2) , ’ . ’)
85 xlim ([−3 .5 , 3])
86 x l ab e l (’ \gamma = 1 ’) ;
87 hold on ;
88 subplot (2 , 2 , 4)
89 [X,Y, Z , ~] = g (x , y) ;
90 contour (X,Y,Z)
91 xlim ([−3 3])
92 hold on ;
93 p lo t (b4 (s : end , 1) , b4 (s : end , 2) , ’ . ’)
94 xlim ([−3 .5 , 3])
95 x l ab e l (’ \gamma = 10 ’) ;
96 hold on ;
97 f i g u r e (a44)
98

99 %Plots o f the MH on g with the mean at g iven s t e p s i z e .
100

101 a222 = f i g u r e ;
102 K = 5000 ;
103 h1= 0 . 1 ;
104 x = −3:h1 : 3 ;
105 y = (−3:h1 : 1 0) ;

23

106 [X,Y, Z , ~] = g (x , y) ;
107 contour (X,Y,Z)
108 hold on ;
109 [~ ,~ , x1 , acce3 ,m_x,m_y] = mp2(1 ,K) ;
110 m3_x = mean(x1 (: , 1)) ;
111 b3 = x1 ;
112 e = 500 ;
113 p lo t (x1 (e : end , 1) , x1 (e : end , 2) , ’ . ’)
114 xlim ([−3 3])
115 x l ab e l (’ \gamma = 1 ’) ;
116 hold on ;
117 p1 = p lo t (m_x,m_y, ’ r ∗ ’ , ’ l i n ew id th ’ , 6) ;
118 l egend (p1 , ’Mean ’)
119 f i g u r e (a222)
120

121 %% Calcu la t ing the mean by running the code 100 t imes
122 K = 5000 ;
123 f o r i = 1 :100
124 [~ ,~ ,~ ,~ ,m_x(i) ,m_y(i)] = mp2(1 ,K) ;
125 end
126 m_xx = mean(m_x) ;
127 m_yy = mean(m_y) ;
128 %% Calcu la t ing the mean by tak ing very high number o f i t e r a t i o n s
129 K=100000;
130 [~ ,~ ,~ ,~ ,m_x,m_y] = mp2(1 ,K) ;
131 %% Find the s t e p s i z e which has acceptance p r obab i l i t y in the r eg i on o f (23 +

ep s i l o n)%
132 ac = 0 ;
133 h = 0 . 0 5 ;
134 K = 5000 ;
135 eps = 0 . 7 ;
136 whi le abs (ac−23) >= eps
137 [Xb1 , Xb2 , x , ac ,~ ,~] = mp2(h ,K) ;
138 h = 0.05 + h ;
139 end
140

141 q3 =f i g u r e ;
142 h1 = 0 . 1 ;
143 x1 = (−3:h1 : 3) ;
144 y = (−3:h1 : 1 0) ;
145 [X,Y, Z , ~] = g (x1 , y) ;
146 contour (X,Y,Z)
147 hold on ;
148 p lo t (Xb1 ,Xb2 , ’ . ’)
149 t i t l e (’ S t ep s i z e = ’+s t r i n g (h))
150 f i g u r e (q3)
151

152 %Traceplot o f the i d e a l s t e p s i z e f o r g
153 d1 =f i g u r e ;
154 p lo t (x (1 :K, 1))
155 x l ab e l (’ i ’)
156 y l ab e l (’ x_i ’)
157 t i t l e (’ \gamma =’+s t r i n g (h))
158 f i g u r e (d1)
159

24

160 %% Tracep lot s o f the MH on g
161 d = f i g u r e ;
162 subplot (2 , 2 , 1)
163 h = 0 . 0 1 ;
164 [~ ,~ , x] = mp2(h ,K) ;
165 p lo t (x (1 :K, 1))
166 xlim ([0 K]) ;
167 t i t l e (’ \gamma =’+s t r i n g (h))
168 x l ab e l (’ i ’)
169 y l ab e l (’ x_i ’)
170 subplot (2 , 2 , 2)
171 h = 0 . 1 ;
172 [~ ,~ , x] = mp2(h ,K) ;
173 p lo t (x (1 :K, 1))
174 xlim ([0 K]) ;
175 t i t l e (’ \gamma =’+s t r i n g (h))
176 x l ab e l (’ i ’)
177 y l ab e l (’ x_i ’)
178 subplot (2 , 2 , 3)
179 h = 1 ;
180 [~ ,~ , x] = mp2(h ,K) ;
181 p lo t (x (1 :K, 1))
182 xlim ([0 K]) ;
183 t i t l e (’ \gamma =’+s t r i n g (h))
184 x l ab e l (’ i ’)
185 y l ab e l (’ x_i ’)
186 subplot (2 , 2 , 4)
187 h = 10 ;
188 [~ ,~ , x] = mp2(h ,K) ;
189 p lo t (x (1 :K, 1))
190 xlim ([0 K]) ;
191 t i t l e (’ \gamma =’+s t r i n g (h))
192 x l ab e l (’ i ’)
193 y l ab e l (’ x_i ’)
194 s u p t i t l e (’ Trace p l o t s o f B iva r i a t e Normal d i s t r i b u t i o n ’)
195 f i g u r e (d)
196

197

198

199

200 %% co r r e l a t i o n
201

202 [Xb1 ,Xb2 , x] = mp2(10 ,K) ;
203 Xb3=x (1 : 1 00) ;
204 autoc = autocor r (Xb3 , 1) ;
205

206 %% The 3−D plo t o f g
207 abc = f i g u r e ;
208 h1 = 0 . 1 ;
209 x = (−3:h1 : 3) ;
210 y = (−3:h1 : 1 0) ;
211 [X,Y, Z ,D] = g (x , y) ;
212 s u r f (X,Y,Z)
213 s e t (gca , ’ x t i c k l a b e l ’ , [])
214 s e t (gca , ’ y t i c k l a b e l ’ , [])

25

215 s e t (gca , ’ z t i c k l a b e l ’ , [])
216 f i g u r e (abc)
217

218

219

220 %% Al l o f the f unc t i on s that we need
221

222 f unc t i on [X,Y, Z ,D] = g (x , y) %Biva r i a t e normal d i s t r i b u t i o n
223 [X,Y] =meshgrid (x , y) ;
224 mu1 = [0 0] ;
225 sigma1 = eye (2) ;
226 mu2 = [0 . 4 5] ;
227 sigma2 = [1 0 ; 0 1] ;
228 r a t i o = 2 . / 3 ;
229 A = [X(:) Y(:)] ;
230 D = ra t i o ∗mvnpdf (A,mu1 , sigma1)+(1− r a t i o) ∗mvnpdf (A,mu2 , sigma2) ;
231 Z = reshape (D, l ength (y) , l ength (x)) ;
232 end
233

234

235 %MH method f o r 2D (or more with a few tweaks)
236 f unc t i on [Xb1 , Xb2 , x , ac ,m_x,m_y] = mp2(h ,K)
237 x = ze ro s (K, 2) ; %vecto r in which we w i l l s t o r e the accepted va lues
238 x (1 , :) =[−3; 0] ; %i n i t i a l va lue
239 ac = 0 ;% counter accepted draws
240 f o r i = 2 :K
241 mu = [0 0] ;
242 sigma = eye (2) ;
243 [~ ,~ ,~ , px] = g (x (i −1 ,1) , x (i −1 ,2)) ;
244 w= mvnrnd(mu, (h^2)∗ sigma) ;
245 y = x(i −1 , :) + w;
246

247 [~ ,~ ,~ , py] = g (y (1) , y (2)) ;
248 alpha = min (1 , py/px) ;
249

250 mu = uni f rnd (0 , 1 , 1) ;
251 i f mu < alpha
252 x (i , :) = y ;
253 ac = ac +1;
254 e l s e
255 x (i , :) =x (i −1 , :) ;
256 end
257 end
258 ac = (ac/K) ∗100 ; % accepted percentage
259 bg = K∗ 0 . 1 ; % Burn−in
260 Xb1 = x(bg : end , 1) ; % f i r s t component
261 Xb2 = x(bg : end , 2) ;% second component
262 m_x = mean(x (: , 1)) ; % mean o f f i r s t component
263 m_y = mean(x (: , 2)) ; % mean o f second component
264 end

7.2. Code of the Horse Shoe
The implementation of the MH method is done in a function at the end of this section.

1 % Horse Shoe

26

2 c l e a r a l l ;
3 K = 5000 ; % Number o f i t e r a t i o n s
4

5 %Tracep lo t s o f the MH on f (horse shoe)
6 d = f i g u r e ;
7 subplot (2 , 2 , 1)
8 [~ ,~ , x , acc1] = mp(0 . 0 1 ,K) ;
9 p lo t (x (: , 1))

10 xlim ([0 5000]) ;
11 t i t l e (’ \gamma =0.01 ’)
12 x l ab e l (’ i ’)
13 y l ab e l (’ x_i ’)
14 subplot (2 , 2 , 2)
15 [~ ,~ , x , acc2] = mp(0 . 1 ,K) ;
16 p lo t (x (: , 1))
17 xlim ([0 5000]) ;
18 t i t l e (’ \gamma =0.1 ’)
19 x l ab e l (’ i ’)
20 y l ab e l (’ x_i ’)
21 subplot (2 , 2 , 3)
22 [~ ,~ , x , acc3] = mp(1 ,K) ;
23 p lo t (x (: , 1))
24 xlim ([0 5000]) ;
25 t i t l e (’ \gamma =1 ’)
26 x l ab e l (’ i ’)
27 y l ab e l (’ x_i ’)
28 subplot (2 , 2 , 4)
29 [~ ,~ , x , acc4] = mp(10 ,K) ;
30 p lo t (x (: , 1))
31 xlim ([0 5000]) ;
32 t i t l e (’ \gamma =10 ’)
33 x l ab e l (’ i ’)
34 y l ab e l (’ x_i ’)
35 s u p t i t l e (’ Trace p l o t s o f f (x , y) ’)
36 f i g u r e (d)
37

38 % Contour p l o t o f f
39 a2 = f i g u r e ;
40 h1 = 0 . 0 1 ;
41 x1 = −2:h1 : 2 ;
42 y1 = −1:h1 : 2 ;
43 [X,Y] =meshgrid (x1 , y1) ;
44 Z = exp(−10∗(X.^2−Y) .^2−(Y−0.25) .^4) ;
45 contour (X,Y,Z)
46 t i t l e (’The contour p l o t o f f (x , y) ’)
47 f i g u r e (a2)
48

49

50 %Plots o f the MH on f without burn−in
51 a = f i g u r e ;
52 subplot (2 , 2 , 1)
53 h1 = 0 . 0 1 ;
54 x1 = −2:h1 : 2 ;
55 y1 = −1:h1 : 2 ;
56 [X,Y] =meshgrid (x1 , y1) ;

27

57 Z = exp(−10∗(X.^2−Y) .^2−(Y−0.25) .^4) ;
58 contour (X,Y,Z)
59 hold on ;
60 [~ ,~ , x1] = mp(0 . 0 1 ,K) ;
61 p lo t (x1 (: , 1) , x1 (: , 2) , ’ . ’)
62 x l ab e l (’ \gamma = 0.01 ’) ;
63 subplot (2 , 2 , 2)
64 contour (X,Y,Z)
65 hold on ;
66 [~ ,~ , x2] = mp(0 . 1 ,K) ;
67 p lo t (x2 (: , 1) , x2 (: , 2) , ’ . ’)
68 x l ab e l (’ \gamma = 0.1 ’) ;
69 subplot (2 , 2 , 3)
70 contour (X,Y,Z)
71 hold on ;
72 [~ ,~ , x3] = mp(1 ,K) ;
73 p lo t (x3 (: , 1) , x3 (: , 2) , ’ . ’)
74 x l ab e l (’ \gamma = 1 ’) ;
75 subplot (2 , 2 , 4)
76 contour (X,Y,Z)
77 hold on ;
78 [~ ,~ , x4] = mp(10 ,K) ;
79 p lo t (x4 (: , 1) , x4 (: , 2) , ’ . ’)
80 x l ab e l (’ \gamma = 10 ’) ;
81 f i g u r e (a)
82

83

84 s = 500 ; %Burn−in
85 a = f i g u r e ;
86 subplot (2 , 2 , 1)
87 contour (X,Y,Z)
88 hold on ;
89 p lo t (x1 (s : end , 1) , x1 (s : end , 2) , ’ . ’)
90 x l ab e l (’ \gamma = 0.01 ’) ;
91 subplot (2 , 2 , 2)
92 contour (X,Y,Z)
93 hold on ;
94 p lo t (x2 (s : end , 1) , x2 (s : end , 2) , ’ . ’)
95 x l ab e l (’ \gamma = 0.1 ’) ;
96 subplot (2 , 2 , 3)
97 contour (X,Y,Z)
98 hold on ;
99 p lo t (x3 (s : end , 1) , x3 (s : end , 2) , ’ . ’)

100 x l ab e l (’ \gamma = 1 ’) ;
101 subplot (2 , 2 , 4)
102 contour (X,Y,Z)
103 hold on ;
104

105 p lo t (x4 (s : end , 1) , x4 (s : end , 2) , ’ . ’)
106 x l ab e l (’ \gamma = 10 ’) ;
107 f i g u r e (a)
108

109

110 %% Cor r e l a t i on
111 h=1;

28

112 [Xb1 ,~] = mp(1 ,K) ;
113 Xb3=Xb1(1 : 5 00) ;
114 autoc = autocor r (Xb3 , h) ;
115

116 %% Plot o f the MH on f with the mean at g iven s t e p s i z e .
117 a2 = f i g u r e ;
118 h1 = 0 . 0 1 ;
119 x1 = −2:h1 : 2 ;
120 y1 = −1:h1 : 2 ;
121 [X,Y] =meshgrid (x1 , y1) ;
122 Z = exp(−10∗(X.^2−Y) .^2−(Y−0.25) .^4) ;
123 contour (X,Y,Z)
124 hold on ;
125 [Xb1 ,Xb2,~ ,~ ,mx,my] = mp(1 ,K) ;
126 p lo t (Xb1 ,Xb2 , ’ . ’)
127 hold on ;
128 p1 = p lo t (mx,my, ’ r ∗ ’ , ’ l i n ew id th ’ , 6) ;
129 xlim ([−2 2])
130 ylim ([−1 2])
131 l egend (p1 , ’Mean ’)
132 x l ab e l (’ \gamma = 1 ’) ;
133 f i g u r e (a2)
134 %% Calcu la t ing the mean by tak ing very high number o f i t e r a t i o n s
135 K = 10000 ;
136 [~ ,~ ,~ ,~ ,mx,my] = mp(1 ,K) ;
137 %% Calcu la t ing the mean by running the code 100 t imes
138 K = 5000 ;
139 f o r i = 1 :100
140 [~ ,~ ,~ ,~ ,mx(i) ,my(i)] = mp(1 ,K) ;
141 end
142 m_xx= mean(mx) ;
143 m_yy = mean(my) ;
144

145 %% Find the s t e p s i z e which has acceptance p r obab i l i t y in the r eg i on o f (23 +
ep s i l o n)%

146 ac = 0 ;
147 h = 0 . 0 5 ;
148 K = 5000 ;
149 eps = 1 ;
150 whi le abs (ac−23) >= eps
151 [Xb1 ,Xb2 , x , ac] = mp(h ,K) ;
152 h = 0.05 + h ;
153 end
154

155 q3 =f i g u r e ;
156 h1 = 0 . 0 1 ;
157 x1 = −2:h1 : 2 ;
158 y1 = −1:h1 : 2 ;
159 [X,Y] =meshgrid (x1 , y1) ;
160 Z = exp(−10∗(X.^2−Y) .^2−(Y−0.25) .^4) ;
161 contour (X,Y,Z)
162 hold on ;
163 p lo t (Xb1 ,Xb2 , ’ . ’)
164 t i t l e (’ S t ep s i z e = ’+s t r i n g (h))
165 f i g u r e (q3)

29

166

167 q4 = f i g u r e ;
168 p lo t (x (1 :K, 1))
169 xlim ([0 5000]) ;
170 t i t l e (’ \gamma = ’+s t r i n g (h))
171 x l ab e l (’ i ’)
172 y l ab e l (’ x_i ’)
173 f i g u r e (q4)
174 %% 3D−p lo t o f the Horse shoe (f)
175 abc = f i g u r e ;
176 h1 = 0 . 1 ;
177 x1 = −2:h1 : 2 ;
178 y1 = −1:h1 : 2 ;
179 [X,Y] =meshgrid (x1 , y1) ;
180 Z = exp(−10∗(X.^2−Y) .^2−(Y−0.25) .^4) ;
181 s u r f (X,Y,Z)
182 s e t (gca , ’ x t i c k l a b e l ’ , [])
183 s e t (gca , ’ y t i c k l a b e l ’ , [])
184 s e t (gca , ’ z t i c k l a b e l ’ , [])
185 f i g u r e (abc)
186 %% The MH method on the horse shoe
187 f unc t i on [Xb1 , Xb2 , x , ac ,mx,my] = mp(h ,K)
188 x = ze ro s (K, 2) ;
189 x (1 , :) = [1 . 5 ; −0 .8] ;
190 ac = 0 ;
191 f o r i = 2 :K
192 mu = [0 0] ;
193 sigma = eye (2) ;
194 px = exp(−10∗(x (i −1 ,1) .^2−x (i −1 ,2)) .^2−(x (i −1 ,2) −0.25) .^4) ;
195 w= mvnrnd(mu, (h^2)∗ sigma) ;
196 y = x(i −1 , :) + w;
197 py = exp(−10∗(y (1) .^2−y (2)) .^2−(y (2) −0.25) .^4) ;
198 alpha = min (1 , py/px) ;
199 mu = uni f rnd (0 , 1 , 1) ;
200 i f mu < alpha
201 x (i , :) = y ;
202 ac = ac +1;
203 e l s e
204 x (i , :) =x (i −1 , :) ;
205 end
206 end
207 ac = (ac/K) ∗100 ; % accepted percentage
208 bg = K∗ 0 . 1 ; % Burn−in
209 Xb1 = x(bg : end , 1) ; % f i r s t component
210 Xb2 = x(bg : end , 2) ;% second component
211 mx = mean(x (: , 1)) ; % mean o f f i r s t component
212 my = mean(x (: , 2)) ; % mean o f second component
213 end

30

References

[1] Siddhartha Chib; Edward Greenberg. Understanding the metropolis-hastings algorithm. The American
Statistician, 49(4):327–335, 1995.

[2] Gareth O. Roberts; Jeffrey S. Rosenthal. General state space markov chains and mcmc algorithms. Probability
Surveys, 1:20–71, 2004.

[3] Jari Kaipio and Erkki Somersalo. Statistical and Computational Inverse Problems. Springer Science+Business
Media, Inc, 233 Spring Street, New York, NY 10013, USA, 2004.

[4] George Casella Christian P. Robert. Monte Carlo Statistical Methods. Springer Science+Business Media, Inc,
233 Spring Street, New York, NY 10013, USA, 2004.

[5] J.S. Rosenthal. A review of asymptotic convergence for general state space markov chains. Far East J. Theor.
Stat., 5:37–50, 2001.

[6] G. O. Roberts, A. Gelman, and W. R. Gilks. Weak convergence and optimal scaling of random walk metropolis
algorithms, 1994.

31

