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1
Introduction & Problem Statement

1.1. Introduction
Foam injection as a technique for mobility control has potential for beneficial application in a wide variety
of enhanced oil recovery (EOR) operations. Foams can be used for diversion in acid treatments or gas
injection processes [6, 14]. Foams can serve as mobility control agents in both miscible and immiscible
floods and are even being tested in thermal floods [9]. As of 2008, over 120 active COኼ projects exist in
the United States with 16 additional planned projects from 2008-2010. EOR gas flooding methods are
often cheaper than chemical EOR methods, and with a smaller carbon footprint than thermal methods.
Nitrogen injection (miscible and immiscible), hydrocarbon gas injection, and COኼ flooding have all been
used a successful EOR methods for the recovery of medium to light oils, condensates, and volatile
oils, though COኼ has been the most widely used gas EOR method in the recent decades due to the
abundance of cheap, readily available COኼ from natural sources [10]. All of these gas EOR methods,
however, suffer from the same problems: poor volumetric sweep efficiency due to gravity override,
reservoir heterogeneities, and viscous instabilities. SAG foam injection can help remedy some of these
issues by lowering gas mobility and providing a more favorable mobility ratio while maintaining a better
injectivity than other mobility control methods such as water-alternating-gas (WAG) injection [1].

1.2. Problem Statement
With the potential of SAG foam injection in the field, more work needs to be done to understand how
the non-Newtonian rheologies of foam in various permeable media affect the injection process. To that
end, we develop a semi-analytical fractional flow program in MATLAB to solve for injection pressure
of gas into a surfactant saturated core. The program is able to handle Newtonian, shear-thinning, and
shear-thickening cases at a variety of resolutions.
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2
Background

2.1. Introduction
Modeling flow through porous media, whether numerically or analytically, is a crucial step in under-
standing how to design a Foam Enhanced Oil Recovery process with the best possible outcome. As
with all physical phenomenon, the mathematical models are based on conservation equations (mass,
momentum, and energy), equation of state (EOS) models that describe fluid behavior, and some em-
pirical and constituent relations that couple macroscopic flow to the permeable medium. In this paper,
flow is assumed to be isothermal and incompressible; conservation of energy and EOS models are
ignored.

In this chapter, we present a brief background on the theory of flow in permeable media, especially
as it pertains to foam flow and fractional-flow theory (FFT). We describe Darcy’s law, phasemobility, and
Corey’s relative permeability functions. Modifications to relative permeability in the presence of foam
are then presented. The concept of fractional-flow is introduced in both dimensional and dimensionless
forms. Finally, the solution to the first-order hyperbolic partial differential equation (PDE) through the
method of characteristics is presented with an outline of the Buckley-Leverett solution for a Newtonian
single-slug SAG process. Unless otherwise noted, background material comes from Lake [9].

2.2. Darcy Flow Equation
While there are several models in existence for fluid flow through porous media, the most universally
utilized model is known as Darcy’s law [8]. Analogous to Fourier’s law of heat conduction, Fick’s law
of diffusion, and Ohm’s law, Darcy’s law is an empirical relationship that relates fluid flux (superficial
velocity or ”Darcy” velocity) to potential gradient of the differential form

𝑢⃗ = −
⃗⃗𝑘
𝜇 ⋅ ∇Φ =

⃗⃗𝑘
𝜇 ⋅ ∇{𝑃 − 𝜌𝑔𝐷፳} (2.1)

where 𝑢⃗ is the fluid’s superficial velocity vector, ⃗⃗𝑘 is the medium’s permeability tensor, 𝜇 is the fluid
viscosity, and Φ is fluid potential. Fluid potential includes a pressure component (𝑃) and an elevation
head component (𝜌𝑔𝐷፳) where 𝜌 is fluid density, 𝑔 is the universal gravitational constant, and 𝐷፳ is a
positive distance below some horizontal reference plane. In a radial coordinate system describing 1D
flow ignoring the effects of gravity, (2.1) reduces to

𝑢 = 𝑄
𝐴፫
= −𝑘𝜇

𝜕𝑃
𝜕𝑟 (2.2)

where 𝑄 is volumetric flow rate and 𝐴፫ is radial flow area. Assumptions underlying Darcy’s law are
laminar Stokes flow (low Reynolds number), Newtonian fluid rheology, no-slip boundary conditions
within the porous media, and no chemical interactions between fluid and the porous media in question.
For multiphase flow, the Darcy equation can be adapted by adding a relative permeability term 𝑘፫፣.

𝑢፣ =
𝑄፣
𝐴፫
= −

𝑘፫፣𝑘
𝜇

𝜕𝑃፣
𝜕𝑟 for 𝑗 = 1…𝑁 phases. (2.3)
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4 Background

Relative permeability is a dimensionless rock-fluid property which characterizes the inhibition of flow
when multiple phases are present in a medium. It represents the ratio of effective permeability of a
phase at a given saturation to the absolute permeability of the medium to some reference fluid (typi-
cally 100% air or water). It is a strong function of phase saturation, and a weak function of pore size
distribution and the preference of phase 𝑗 to wet the permeable medium.

2.3. Phase Mobility
Perhaps the more important parameter to an injection based EOR process, more than just relative
permeability, is mobility. Mobility describes the ability for a phase to move through a permeable media
when under the influence of a pressure gradient. It is the quotient between phase permeability, effective
permeability, and phase viscosity. For a phase 𝑗, it is defined as

𝜆፣(𝑆፣) =
𝑘፣(𝑆፣)
𝜇፣

=
𝑘𝑘፫፣(𝑆፣)
𝜇፣

= 𝑘𝜆፫፣(𝑆፣) (2.4)

where 𝜆፣ is absolute phase mobility and 𝜆፫፣ is relative phase mobility. The total relative mobility is then
defined as the sum of the relative mobilities of each phase at a given water saturation as follows

𝜆፫፭(𝑆፰) = 𝜆፫፰(𝑆፰) + 𝜆፫፠(𝑆፰) (2.5)

2.3.1. Mobility Ratio
Used in assessing displacement stability and sweep efficiency, mobility ratio is the quotient between
the mobility of the displacing fluid and the mobility of the displaced fluid at various phase saturations.
Endpoint mobility ratio (𝑀፨) uses residual phase saturations; shock-front mobility ratio (𝑀፬፟) uses sat-
urations upstream and downstream of the displacement front; and average mobility ratio (𝑀) uses the
average water saturation behind the displacement front (𝑆፰) as follows

𝑀፨ =
𝜆፨፫፠
𝜆፨፫፰

; 𝑀፬፟ =
𝜆ዄ፫፭
𝜆ዅ፫፭
; 𝑀 = 𝜆ፒᑨ፫፭

𝜆ዅ፫፭
; (2.6)

where superscripts ዄ and ዅ refer to upstream and downstream of the displacement front respectively.
Whenmobility ratio is unity or less, the displacement is considered to be stable. At higher mobility ratios,
the displacing phase is more mobile than the displaced phase, and former tends to finger through the
latter due to viscous instabilities. Decreasing mobility ratio improves displacement efficiency, vertical
sweep efficiency, and areal sweep efficiency.

2.4. Corey Relative Permeability
Almost every EOR process is highly dependent on the relative permeability of the phases in-situ. Most
tertiary recovery processes fundamentally operate by modifying some property that shifts the relative
permeability curves in a manner beneficial to sweep and oil recovery. While no theoretical expression
exists for the relative permeability functions, Corey’s semi-empirical relations are commonly used and
provide smooth differentiable functions that can be fit to lab data. For two-phase flow of water and gas,
the Corey’s relative permeability functions are

𝑘፫፰(𝑆፰) = 𝑘፨፫፰ (
𝑆፰ − 𝑆፰፫

1 − 𝑆፰፫ − 𝑆፠፫
)
፧ᑨ

𝑆፰፫ ≤ 𝑆፰ ≤ 1 − 𝑆፠፫ (2.7)

𝑘፫፠(𝑆፰) = 𝑘፨፫፠ (
1 − 𝑆፰ − 𝑆፰፫
1 − 𝑆፰፫ − 𝑆፠፫

)
፧ᑘ

𝑆፠፫ ≤ 𝑆፠ ≤ 1 − 𝑆፰፫ (2.8)

where 𝑆፰, 𝑆፰፫, and 𝑆፠፫ refer to water saturation, residual water saturation, and residual gas saturation
respectively. The terms 𝑘፨፫፰ and 𝑘፨፫፠ are endpoint relative permeabilities, i.e., the relative permeability
of a phase at the irreducible saturation of the other phase. These endpoint values are dependent on
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the wettability of the rock with the fluids in question.
In a typical sandstone with the gas-water system used in this paper, water is the wetting phase with
gas acting as a strongly non-wetting phase. (While most rocks are water-wet and can become mixed-
wet or oil-wet under the right conditions, gaseous immiscible phases are always the most non-wetting
in a two or three phase system). At irreducible gas saturation, gas is trapped in isolated globules
several pore diameters in length, often centering in the center of the largest pores. Wetting fluids (e.g.
water), occupy crevices between rock grains and form continuous coating of the rock surfaces. From a
transport perspective, the trapped non-wetting phase is a larger hindrance to the wetting phase than a
trapped wetting phase is to the non-wetting phase. Thus, wetting phase endpoint relative permeability
is less than that of the non-wetting phase.
With the endpoints of the curves set by 𝑆፫፣ and 𝑘፫፣, the Corey saturation exponents 𝑛፣ determine
non-linearity. An exponent of one prescribes a linear relationship with higher exponents increasing
the upward concavity of the curves. For the same reason as for the inequality of endpoint relative
permeabilities, saturation exponents for the wetting phase tend to be larger (𝑘፫፰ more non-linear) than
for the non-wetting phase.

2.4.1. Foam Relative Permeability Adjustment
As previously mentioned, the purpose of foam injection is to use surfactant to decrease gas mobility so
that a favorable mobility ratio and more efficient sweep efficiency is achieved. In previous literature, this
mobility reduction is represented by a reduction in the gas relative permeability rather than an increase
in gas viscosity. A common foam mobility model is that used by the Computer Modeling Group in their
STARS software [7]. This model captures the reduction in gas relative permeability in the presence
of surfactant through a foam mobility-reduction factor (FM). FM is a dimensionless parameter which
represents the factor by which gas relative permeability is reduced due to the presence of foam relative
to the gas relative permeability at the same water saturation in the absence of foam. Foam relative
permeability is defined by

𝑘፟፫፠(𝑆፰) = 𝐹𝑀 × 𝑘፫፠(𝑆፰) (2.9)

where the factor FM is defined as

𝐹𝑀 = 1
1 + 𝑓𝑚𝑚𝑜𝑏𝐹ኻ𝐹ኼ𝐹ኽ𝐹ኾ𝐹኿𝐹ዀ

0 ≤ 𝐹። ≤ 1 (2.10)

The parameter 𝑓𝑚𝑚𝑜𝑏 is a reference mobility reduction factor, i.e., the maximum reduction in gas
mobility a foam of a formulation can achieve. 𝑓𝑚𝑚𝑜𝑏 is scaled by six dimensionless coefficients 𝐹።
which represent the effect of surfactant concentration, water saturation, oil saturation, capillary number,
gas velocity, and critical capillary number, respectively on foam behavior.
In this paper, we focus on the 𝐹ኼ function which captures the effect of water saturation on foam mobility,
an important factor to foam behavior in the high quality (low 𝑆፰) regime. In SAG injection, a significant
volume of the reservoir (specifically the near-wellbore region) operates in this high-quality regime, so
this assumption is appropriate. FM becomes a function only of 𝑆፰ in the form

𝐹𝑀(𝑆፰) =
1

1 + 𝑓𝑚𝑚𝑜𝑏𝐹ኼ(𝑆፰)
(2.11)

STARS Model Dryout Function: In the STARS model, 𝐹ኼ is defined as

𝐹ኼ(𝑆፰) = 0.5 +
arctan(𝑒𝑝𝑑𝑟𝑦(𝑆፰ − 𝑓𝑚𝑑𝑟𝑦))

𝜋 (2.12)

𝑓𝑚𝑑𝑟𝑦 is the foam parameter which is the water saturation at which foam collapses and mobility re-
duction drastically decreases. 𝑒𝑝𝑑𝑟𝑦 controls the abruptness of foam collapse at 𝑓𝑚𝑑𝑟𝑦. Large values
give a sharp almost discontinuous transition between the two regimes, while smaller values result in a
more gradual transition.

N.Z. et al. Dryout Function: The STARS model in equation (2.12) does not model full foam collapse
and dryout. The foam retains some mobility reduction at all water saturations including 𝑆፰፜. The exact
behavior of high-quality foams at very low wattlined in shhddder saturations is still unclear, but recent
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studies provide some evidence of a weaker foam at low water saturations than that presented in the
STARS model. A model proposed by Namdar Zanganeh [11] modifies the STARS 𝐹ኼ model by adding
an additional term that captures the complete collapse of foam at residual water saturation.

𝐹ኼ(𝑆፰) = (0.5 +
arctan(𝑒𝑝𝑑𝑟𝑦(𝑆፰ − 𝑓𝑚𝑑𝑟𝑦))

𝜋 ) − (0.5 + arctan(𝑒𝑝𝑑𝑟𝑦(𝑆፰፫ − 𝑓𝑚𝑑𝑟𝑦))𝜋 ) (2.13)

Due to the importance of the behavior of foam in this high quality regime to well injectivity and pressure
drop considerations, the N.Z. et al model for 𝐹ኼ as in equation (2.13) is used throughout the rest of this
paper.

In the presence of foam, all the parameters represented in equations (2.3-2.6)–Darcy velocity, mo-
bility, relative mobility, total relative mobility, and mobility ratio–can be calculated in the same manner
by replacing 𝑘፫፠ with 𝑘፟፫፠ where the superscript ፟ indicates the presence of foam.

2.5. Continuity Equation
Conservation of mass applied to a representative elementary volume states that the net transport of
mass into the volume plus external source must equal the change in total mass in the volume over an
increment in time. That is,

Mass in−Mass out+ Source = Accumulation (2.14)

In the context of radial flow, the terms in (2.14) are

Flow in = 2𝜋ℎ(𝜌𝑢𝑟)፫Δ𝑡 (2.15)

Flow out = 2𝜋ℎ(𝜌𝑢𝑟)፫ዄጂ፫Δ𝑡 (2.16)

Accumulation = 2𝜋𝑟Δ𝑟ℎ(𝜌𝜙)፭ዄጂ፭ − 2𝜋𝑟Δ𝑟ℎ(𝜌𝜙)፭ (2.17)

where the terms 𝜌, 𝜙, and 𝑡 are density, porosity, and time respectively. Substituting these terms into
(2.14) and dividing both sides by 2𝜋𝑟ℎΔ𝑡Δ𝑟 results in

1
𝑟
(𝜌𝑢𝑟)፫ − (𝜌𝑢𝑟)፫ዄጂ፫

Δ𝑟 = (𝜌𝜙)፭ዄጂ፭ − (𝜌𝜙)፭
Δ𝑡 (2.18)

Taking the limit as Δ𝑟 and Δ𝑡 approach zero leads to the differential of the form

− 1𝑟
𝜕(𝜌𝑢𝑟)
𝜕𝑟 = 𝜕(𝜌𝜙)

𝜕𝑡 (2.19)

which is the radial continuity equation. Expressed generally in 3D, the continuity expression is

− ∇ ⋅ (𝜌𝑢⃗) = 𝜕
𝜕𝑡 (𝜌𝜙) (2.20)

The same continuity equation (2.19) can be expressed for a given phase in multiphase flow, if superficial
velocity 𝑢 in terms (2.15) and (2.16) is taken to be that of a single phase 𝑗 and the phase saturation 𝑆፣
is added into the accumulation term. Assuming incompressible fluid and matrix, dividing both sides by
2𝜋𝜌፣𝑟ℎΔ𝑡Δ𝑟, and taking the limit, you obtain

− 1𝑟
𝜕(𝑢፣𝑟)
𝜕𝑟 = 𝜙

𝜕(𝑆፣)
𝜕𝑡 (2.21)

2.6. Pressure Drop
2.6.1. In single phase flow
In the case of incompressible, steady state, 1D radial flow, the continuity equation (2.20) simplifies to
the form

𝜕
𝜕𝑟 (𝑟𝑢፫) = 0 (2.22)



2.7. Fractional-Flow Theory 7

It follows then that 𝑟𝑢፫ is a constant dependent on some boundary condition. This implies that super-
ficial velocity 𝑢 scales inversely with radius away from the wellbore. This is also consistent with the
definition of superficial velocity, i.e., a volumetric flow rate divided by flow area, where in radial coordi-
nates, flow area is a function of radius 𝑟.

Using the definition that flow area 𝐴(𝑟) = 2𝜋𝑟ℎ, equation (2.2) can be integrated to yield the pressure
difference between the wellbore radius 𝑟፰ and the outer radius 𝑟 as follows

ፏᑣᑨ

∫
ፏᑣᑖ

𝑑𝑃 = −
፫ᑨ

∫
፫ᑖ

𝑄𝜇
𝑘𝐴𝑑𝑟 =

𝑄
2𝜋ℎ𝑘

፫ᑖ

∫
፫ᑨ

1
𝜆፫𝑟

𝑑𝑟 (2.23)

For single phase flow, mobility is constant and integration of the RHS yields

𝑃፫ᑨ − 𝑃፫ᑖ =
𝑄

2𝜋ℎ𝑘𝜆፫
ln ( 𝑟𝑟፰

) (2.24)

2.6.2. In multiphase flow
In multiphase flow, the influence of a modified mobility has to be taken into account. Under the as-
sumption of incompressible phases, the total flow rate is

𝑢፭ =
𝑄፭
𝐴 = 𝑢፰ + 𝑢፠ (2.25)

Using equation (2.3) leads to the form

𝑢፭ = −(
𝑘𝑘፫፰
𝜇፰

𝜕𝑃፰
𝜕𝑟 +

𝑘𝑘፫፠
𝜇፠

𝜕𝑃፠
𝜕𝑟 ) (2.26)

If capillarity is neglected, the pressure gradients in each phase are equivalent. Recognizing the defini-
tion of total relative mobility from equation (2.5) leads to

𝑢፭ = −𝑘𝜆፫፭(𝑆፰)
𝑑𝑃
𝑑𝑟 (2.27)

Integrating equation (2.27) between the wellbore radius 𝑟፰ and the outer radius 𝑟 yields

𝑃፫ᑨ − 𝑃፫ᑖ =
𝑄፭
2𝜋ℎ𝑘

፫ᑖ

∫
፫ᑨ

1
𝑟𝜆፫፭(𝑆፰(𝑟))

𝑑𝑟 (2.28)

2.7. Fractional-Flow Theory
Originally derived by Buckley and Leverett in 1942 for use in estimating efficiency of water floods,
fractional flow theory (FFT) has proved applicable to numerous EOR processes [1, 12]. In the context
of foam EOR, the process has been outlined previously in Rossen et al. [13, 15], Zhou and Rossen
[16]. Fractional-flow theory provides a simple framework to make predictions about multiphase flow,
capturing many dynamic displacement effects in a straight-forward analytical closed form. Several
simplifying assumptions underlie the theory:
1. Flow is one-dimensional and isothermal.

2. At most there are two phases interacting simultaneously. There are no phase changes.

3. The permeable medium and all fluids are incompressible.

4. There is no chemical interaction between fluids and rock, except for chemical adsorption.

5. Steady-state mobilities for each phase are achieved instantaneously.

6. Phase viscosities are Newtonian

7. Dispersion and viscous fingering is neglected

8. Initial conditions are homogeneous throughout the medium.
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2.7.1. Fractional Flow Equation
In the context two-phase flow of water and gas, fractional-flow of water 𝑓፰ is defined as the fraction of
water flow relative to the total fluid flow rate as follows

𝑓፰ ≡
𝑄፰

𝑄፰ + 𝑄፠
= 𝑢፰
𝑢፰ + 𝑢፠

(2.29)

Taking equation (2.3) for water and gas phases and including the gravity term yields the system

− 𝑢፰𝜇፰𝑘𝑘፫፰
= 𝑑𝑃፰
𝑑𝑥 + 𝜌፰𝑔 sin 𝛼 (2.30)

−
𝑢፠𝜇፠
𝑘𝑘፫፠

=
𝑑𝑃፠
𝑑𝑥 + 𝜌፠𝑔 sin 𝛼 (2.31)

Subtracting (2.31) from (2.30), substituting in 𝑢፰ = 𝑢𝑓፰ from (2.29), and rearranging yields

𝑓፰ =
1 + ፤፤ᑣᑘ

፮᎙ᑘ [
፝ፏᑔ
፝፱ − Δ𝜌𝑔 sin 𝛼]

1+ ፤ᑣᑘ᎙ᑨ
፤ᑣᑨ᎙ᑘ

(2.32)

where capillary pressure 𝑃፜ = 𝑃፠ − 𝑃፰, the density difference between the two phases Δ𝜌 = 𝜌፰ − 𝜌፠,
and 𝛼 is the positive angle from the horizontal. If capillary pressure is negligible (፝ፏᑔ፝፱ ≈ 0) and flow is
horizontal (𝛼 = 0), then equation (2.32) can reduce to

𝑓፰(𝑆፰) = 1
1+ ፤ᑣᑘ(ፒᑨ)᎙ᑨ

፤ᑣᑨ(ፒᑨ)᎙ᑘ

= (1 +
𝜆፫፠(𝑆፰)
𝜆፫፰(𝑆፰)

)
ዅኻ

(2.33)

In this form, the fractional flow curve depends parametrically on 𝑀፨, 𝑛፰ and 𝑛፠. The S-shaped curve
has an inflection point that varies with 𝑀፨. Curvature is least when 𝑀፨ is unity, shifts to the left (larger
𝑓፰ at given 𝑆፰) with increasing 𝑀፨, and shifts to the right (smaller 𝑓፰ at given 𝑆፰) with decreasing
𝑀፨. In this way, the fractional flow curve is highly sensitive to phase viscosities and endpoint relative
permeabilities.

For the foam fractional-flow curve, the gas relative mobility is replaced by the foam relative mobility
as in

𝑓፰(𝑆፰) = (1 +
𝜆፟፫፠(𝑆፰)
𝜆፫፰(𝑆፰)

)
ዅኻ

(2.34)

2.7.2. Dimensionless Parameters
Dimensionless position: is defined as the fraction of the pore volume at a given radius back to the
injection point, i.e., wellbore radius.

𝑥ፃ(𝑟) ≡
𝑟ኼ − 𝑟ኼ፰
𝑟ኼ፞ − 𝑟ኼ፰

𝑥ፃ ∈ [0, 1] (2.35)

Dimensionless time: is defined as the cumulative volume injected at a given time divided by the
pore volume of the reservoir. If the injection rate is constant, then dimensionless time scales linearly
with physical time. Dimensionless time is sometimes referred to as Pore Volumes (PV) Injected.

𝑡ፃ ≡ ∫
𝑄(𝑡)𝑑𝑡

𝜋(𝑟ኼ፞ − 𝑟ኼ፰)ℎ𝜙
𝑡ፃ > 0 (2.36)

Dimensionless pressure: In order to remove the influence of reservoir permeability and simplify
calculations, the dimensional pressure drop in each layer is normalized by the pressure drop of inject-
ing water at the same volumetric rate into a fully water-saturated layer, i.e., 𝑆፰ = 1. The resulting
dimensionless pressure can be written as

𝑃ፃ =
𝑃፫ᑨ − 𝑃፫ᑖ

(𝑃፫ᑨ − 𝑃፫ᑖ)ፒᑨ዆ኻ
=

ፐᑘ
ኼ᎝፤፡

፫ᑖ
∫
፫ᑨ

ኻ
፫᎘ᑣᑥ(ፒᑨ)𝑑𝑟

ፐᑨ
ኼ᎝፤፡᎘ᑣᑨ ln(

፫ᑖ
፫ᑨ )

(2.37)
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Assuming a water viscosity of 1 cP (10ዅኽ Pa s), the relative mobility of water in a water-saturated
reservoir is 1/𝜇፰ = 1, 000[Pa ⋅ s]ዅኻ. Simplifying equation (2.37) thusly yields

𝑃ፃ =

፫ᑖ
∫
፫ᑨ

ኻ
፫᎘ᑣᑥ(ፒᑨ)𝑑𝑟

1000× ln( ፫ᑖ፫ᑨ )
(2.38)

2.8. FF Mass Balance
The continuity equation (2.21) derived previously can be written in terms of water fractional flow 𝑓፰ and
dimensionless parameters to form the fundamental conservation law used in Buckley-Leverett analysis.
Plugging in equation (2.29) into equation (2.21) leads to

− 1𝑟
𝜕(𝑢𝑓፰𝑟)
𝜕𝑟 = 𝜙

𝜕(𝑆፣)
𝜕𝑡 (2.39)

As (𝑢𝑟) is a conserved quantity and constant with respect to radius (See subsection 2.5 on page 6),
it can be taken out of the differential. Plugging in the definition of superficial velocity and rearranging
yields

𝜙𝜕𝑆፰𝜕𝑡 + 𝑄፭
2𝜋𝑟ℎ

𝜕𝑓፰
𝜕𝑟 = 0 (2.40)

The derivative of dimensionless position with respect to radius is

𝑑𝑥ፃ
𝑑𝑟 = 2𝑟

𝑟ኼ፞ − 𝑟ኼ፰
(2.41)

The derivative of dimensionless time with respect to physical time is

𝑑𝑡ፃ
𝑑𝑡 =

𝑄፭
𝜋ℎ𝜙(𝑟ኼ፞ − 𝑟ኼ፰)

(2.42)

Expanding the partial derivatives in (2.40) by chain rule and plugging in equations (2.41-2.42) yields

𝑄፭𝜙
𝜋ℎ𝜙((𝑟ኼ፞ − 𝑟ኼ፰)

𝜕𝑆፰
𝜕𝑡ፃ

+ 𝑄፭
2𝜋𝑟ℎ

2𝑟
(𝑟ኼ፞ − 𝑟ኼ፰)

𝜕𝑓፰
𝜕𝑥ፃ

= 0 (2.43)

Canceling like terms leads to the mass balance equation in the dimensionless form

𝜕𝑆፰
𝜕𝑡ፃ

+ 𝜕𝑓፰
𝜕𝑥ፃ

= 0 (2.44)

As can be seen in equation (2.33), water fractional-flow is a function of position and time only through
its dependence on water saturation. Thus, using the chain rule to expand the 𝑓፰ partial derivative in
terms of a total derivative with water saturation, equation (2.44) becomes

𝜕𝑆፰
𝜕𝑡ፃ

+ 𝑑𝑓፰
𝑑𝑆፰

𝜕𝑆፰
𝜕𝑥ፃ

= 0 (2.45)

2.9. Buckley-Leverett Solution
As can be seen in equation (2.33), water fractional-flow is a function of position and time only through
its dependence on water saturation. Thus, using the chain rule to expand the 𝑓፰ partial derivative in
terms of a total derivative with water saturation, we can obtain the dimensionless governing PDE.

2.9.1. Governing PDE
The problem, therefore, is to find solutions 𝑆፰(𝑥ፃ , 𝑡ፃ) subject to the governing equation and the initial
and boundary conditions

𝜕𝑆፰
𝜕𝑡ፃ

+ 𝑑𝑓፰
𝑑𝑆፰

𝜕𝑆፰
𝜕𝑥ፃ

= 0 (2.46)
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𝑆፰(𝑥ፃ , 0) = 𝑆፰ፈ , 𝑥ፃ ≥ 0 (2.47)

𝑆፰(0, 𝑡ፃ) = 𝑆፰ፉ , 𝑡ፃ ≥ 0 (2.48)

where ፈ and ፉ represent initial and injection conditions respectively.

Equation (2.46) represents a prototypical first-order hyperbolic PDE with variable coefficients. It is a
one-waywave equation in which saturations travel with a finite speed of propagation from source to sink.
Generally, is is called an initial value problem as no information downstream of the wave is needed for a
solution. Saturation depends only on dimensionless position and time 𝑆፰(𝑥ፃ , 𝑡ፃ). Therefore, equation
(2.46) can be solved through a technique known as the method of characteristics (MOC). Along a
characteristic (a line in the (𝑡, 𝑥) of–in our case–constant water saturation), the PDE is reduced to a
family of ordinary differential equations (ODE) along which the solution can be integrated from some
initial condition. At a constant saturation, the total derivative 𝑑𝑆፰ can be written as

𝑑𝑆፰(𝑥ፃ , 𝑡ፃ) = (
𝜕𝑆፰
𝜕𝑡ፃ

)
፱ᐻ
𝑑𝑡ፃ + (

𝜕𝑆፰
𝜕𝑥ፃ

)
፭ᐻ
𝑑𝑥ፃ = 0 (2.49)

Rearranging equation (2.49) can then yield

(𝑑𝑥ፃ𝑑𝑡ፃ
)
፝ፒᑨ዆ኺ

= −
(ᎧፒᑨᎧ፭ᐻ )፱ᐻ
(ᎧፒᑨᎧ፱ᐻ )፭ᐻ

≡ 𝑣ፒᑨ (2.50)

where 𝑣ፒᑨ is a specific velocity of the saturation 𝑆፰ but normalized by the bulk fluid interstitial velocity
𝑢/𝜙. It is dimensionless. Eliminating either of the derivatives in equation (2.50) with (2.46) yields

𝑣ፒ፰ =
𝑑𝑓፰
𝑑𝑆፰

= 𝑓ᖣ፰ (2.51)

which states that the specific velocity of a given saturation is equal to the derivative of the fractional
flow curve at that saturation. This is the essence of Buckley-Leverett analysis. Because all saturations
between 𝑆፰ፈ and 𝑆፰ፉ exist at the origin of 𝑥ፃ − 𝑡ፃ and a given saturation has a constant velocity, the
position of any saturation at a given 𝑡ፃ is te toTime

2.9.2. Shock formation
As mentioned in subsection 2.7.1, most fractional flow curves have an inflection point dependent on
endpoint mobility ratio. Equation (2.51) shows that if this inflection point is between 𝑆፰ፈ and 𝑆፰ፉ, sat-
uration specific velocity will go through a maximum between this range. The resulting solution for
saturation profile can yield three values of 𝑆፰ at a given 𝑥ፃ and 𝑡ፃ. While non-physical, these multiple
solutions are technically mathematically valid. This type of non-physical solution is a common feature
of hyperbolic equations, especially dissipation-free conservation equations which idealize natural con-
servation laws by neglecting dissipation, i.e., dispersion, diffusion, capillary pressure, compressibility,
and thermal conductivity. While dissipative mechanisms are always present in nature, idealizing the
process with a shock simplifies the analysis while approximating the true behavior of the phenomenon
to a good extent. In our context, the shock is a discontinuity in saturation at the shock front of the
displacement.

To determine the location, velocity, and magnitude of the shock front, we create a water mass
balance over a control volume that contains the shock in time interval Δ𝑡

(Water volume in)−(Water volume out) = (Water volume present finally)−(Water volume present initially)
(2.52)

[𝑓፰(𝑆ዄ፰)−𝑓፰(𝑆ዅ፰)]
፭ዄጂ፭

∫
፭
𝑞𝑑𝑡 = [(𝑣(𝑡+Δ𝑡)−𝑥ኻ)𝑆ዄ፰+(𝑥ኼ−𝑣(𝑡+Δ𝑡))𝑆ዅ፰]𝐴𝜙−[(𝑣𝑡−𝑥ኻ)𝑆ዄ፰+(𝑥ኼ−𝑣𝑡)𝑆ዅ፰]𝐴𝜙

(2.53)
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where 𝑆ዄ፰ and 𝑆ዅ፰ are the water saturations upstream and downstream of the shock respectively, and
𝑥ኻ and 𝑥ኼ are the upstream and downstream positions of the control volume in question. Solving for
specific shock velocity leads to

𝑣፬፟ =
𝑓፰(𝑆ዄ፰) − 𝑓፰(𝑆ዅ፰)

𝑆ዄ፰ − 𝑆ዅ፰
(2.54)

To be physically possible and continuous, the shock saturation must obey equations (2.51) and (2.54).
The velocity of the shock front derived frommass balance must equal the velocity derived from the frac-
tional flow curve. Setting equations (2.51) and (2.54) equal and taking the downstream water saturation
to be the initial water saturation yields

𝑓ᖣ፰|ፒᑤᑗᑨ = 𝑓፰(𝑆፬፟፰ ) − 𝑓፰(𝑆ፈ፰)
𝑆፬፟፰ − 𝑆ፈ፰

(2.55)

Interpreted graphically in 𝑓፰ − 𝑆፰ space, equation (2.55) can be seen as a straight line through point
(𝑆ፈ፰,𝑓ፈ፰) tangent to the fractional flow curve at (𝑆፬፟፰ ,𝑓፬፟፰ ). The slope of this line is the specific shock
velocity.

2.9.3. Newtonian Displacement Solution
With this background information, we can now calculate the saturation profile solution for the radial
displacement of a surfactant solution by gas. Initial condition 𝐼 is taken to be a porous medium fully
saturated with a uniform surfactant concentration, i.e., 𝑆ፈ፰ = 1 and 𝑓ፈ፰ = 1. The gas injection condition
𝐽 is taken to be at 𝑆ፉ፰ = 𝑆፰፫ and 𝑓ፉ፰ = 0. With a fractional flow curve constructed using equation (2.33)
using 𝑘𝑟፟፠ instead of 𝑘𝑟፠, the shock point can be found by plotting a line through initial point 𝐼 tangent to
the fractional flow curve. The ultimate displacement follows a path along the fractional-flow curve from
J smoothly to the shock point (𝑆፬፟፰ ,𝑓፬፟፰ ); it then jumps to the initial condition point I. At each saturation
along the path, the saturation velocity is given by equation (2.51), and the shock front velocity is given
by equation (2.54). At a given dimensionless time 𝑡ፃ, the saturation profile can be plotted with the use
of equation (??) and by recognizing the fact that downstream of the front, 𝑆፰ is at initial conditions.





3
Methodology

3.1. Capturing Foam Non-Newtonian Rheology
For a Newtonian foam, the FFT construction presented in section 2.9.3 is appropriate. There only two
phases (gas and water with a constant surfactant concentration), relative permeability parameters are
constant, and phase viscosities are constant; water fractional flow is only dependent on water saturation
which is fully captured in a single fractional-flow curve. For foam with a non-Newtonian rheology, which
is most commonly the case, the fractional flow construction is different and must be modified in a way
to capture the effects of varying shear rates.

3.1.1. Linear Flow
In linear flow, this process is relatively simple; since flow area does not change with position, superficial
velocity 𝑢 also does not change and shear rate is constant throughout the core. Thus, foam mobility
can be calibrated with laboratory data and calculated a priori. There is only one fractional-flow curve for
a given injection rate. In the STARS model [7], a shear-thinning rheology is represented as a function
of pressure gradient

𝐹኿ = (
𝑓𝑚𝑐𝑎𝑝
𝑁፜ፚ

)
፞፩፜ፚ፩

𝑁፜ፚ ≡
𝑘∇𝑝
𝜎፰፠

(3.1)

where 𝜎፰፠ is water/gas interfacial tension and 𝑁፜ፚ is capillary number. 𝑓𝑚𝑐𝑎𝑝 represent the lowest
reference capillary number for a given application. 𝑒𝑝𝑐𝑎𝑝 scales 𝐹኿ with changing pressure gradient
and controls the non-Newtonian behavior in the low-quality regime. While equation (3.1) is an option
for capturing shear dependent behavior in foams, we choose not to use it in this paper for two reasons:
(1) it is most applicable in the low-quality foam regime while SAG injections operates mostly in the
high-quality regime; (2) it is dependent dynamically on pressure gradient ∇𝑃 which is not utilized in FFT
as the fractional-flow curves are calculated a priori and not dependent flow rate.

3.1.2. Radial Flow
In radial flow, however, shear rate is a function of radius (See section 2.5). Mobility must scale with
position, and therefore, the fractional flow curve must change as well. Rossen et al. [13] propose an an-
alytical closed-form solution for fractional-flow in the context of polymer injection where 𝑓፰ = 𝑓(𝑆፰ , 𝑥ፃ).
The analytical solution, however, is limited to a non-Newtonian exponent of 𝑛 = 0.5, and thus, is not
universally applicable to our case.

In this paper, we take a more general approach by scaling 𝑓𝑚𝑑𝑟𝑦 as a function of radius. The
general form of a non-Newtonian model is a power-law fluid model in which viscosity depends on
interstitial velocity, and through equation (2.22), inversely with radius

𝜇 = 𝜇፨ ( 𝑣𝑣፨ )
፧ዅኻ

= 𝜇፨ (𝑟
፨

𝑟 )
፧ዅኻ

(3.2)

13
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where 𝜇፨ is a reference viscosity at some reference velocity 𝑣፨. The parameter 𝑛 is the fluid power-
law exponent which controls rheology (𝑛 < 1 indicates a shear-thinning behavior, 𝑛 = 1 indicates a
Newtonian behavior, and 𝑛 > 0 indicates a shear thickening behavior). As can be seen in equations
(2.4-2.6), adjusting gas viscosity has the same effect on mobility ratio as the same adjustment to water
relative permeability. Thusly,

𝜇፠
𝜇፨፠
= (𝑟

፨

𝑟 )
፧ዅኻ

= 𝑘፫፰
𝑘፨፫፰

(3.3)

Plugging in equation (2.7) and canceling terms yields

(𝑟
፨

𝑟 )
፧ዅኻ

= (𝑆፰ − 𝑆፰፫)፧፰
(𝑆፨፰ − 𝑆፰፫)፧፰

(3.4)

As previously mentioned, 𝑓𝑚𝑑𝑟𝑦 is essentially the water saturation at which foam collapses. Substi-
tuting in 𝑓𝑚𝑑𝑟𝑦 for 𝑆𝑤 values in equation (3.4), taking the reference location to be the outer radius 𝑟 ,
and rearranging leads to

𝑓𝑚𝑑𝑟𝑦(𝑟) = 𝑆፰፫ + (𝑓𝑚𝑑𝑟𝑦 − 𝑆፰፫) (
𝑟
𝑟 )

ᑟᎽᎳ
ᑟᑨ

(3.5)

where 𝑓𝑚𝑑𝑟𝑦 is a reference fmdry value at outer radius 𝑟 .

3.2. Semi-Empirical Solution Method
With 𝑓𝑚𝑑𝑟𝑦 a function of radius as in equation (3.5), the foam fractional-flow equation is now a function
of radius as well. In the context of Buckley-Leverett analysis, this implies that characteristic lines in 𝑥ፃ−
𝑡ፃ space curve as they move outward. In addition, the shock front velocity changes as the fractional-
flow curve shifts as a function of position. In order to capture this change, we take a semi-analytical
approach.The flow domain (𝑥ፃ ∈ [0, 1]) is discritized into many layers, each of which are assigned an
𝑓𝑚𝑑𝑟𝑦 value based on equation (3.5). For each layer, an individual fractional-flow curve is constructed
with equation (2.34). Within each layer, standard Buckley-Leverett analysis as outlined in section 2.9.3
can be conducted. At the inlet, a number of characteristics are initialized with saturations ranging from
𝑆፰፫ to 𝑆፬፟፰ . These characteristics locations in 𝑥ፃ − 𝑡ፃ space are solved outward-in-space-forward-in-
time by performing standard Buckley-Leverett analysis sequentially in each layer.

3.2.1. Space-Time Diagram Solution Algorithm
The general process for computing the 𝑥ፃ − 𝑡ፃ diagram is as follows. Fractional flow curves are con-
structed for each layer. The shock saturation and fractional flow is calculated by solving for the point
of tangency to the 𝑓፰ curve for a line passing through point (1, 1). The root the function

𝑓፟፰ +
𝑑𝑓፟፰ (𝑆፰)
𝑑𝑆፰

(1 − 𝑆፰) − 1 = 0 (3.6)

is determined numerically using the fzero function in MATLAB, an iterative solver which uses a combi-
nation of bisection, secant, and inverse quadratic interpolation methods. This derivative of the fractional
flow equation is calculated analytically as

𝑑𝑓፟፰
𝑑𝑆፰

= 𝜆፟፫፠(𝑆፰)𝜆ᖣ፫፰(𝑆፰) − 𝜆፫፰(𝑆፰)𝜆
ᖤ፟
፫፠(𝑆፰)

(𝜆፫፰(𝑆፰) + 𝜆፟፫፠(𝑆፰))
ኼ (3.7)

The derivatives for gas and water relative mobilities with respect to water saturation are

𝜆ᖣ፫፰(𝑆፰) =
𝑛፰𝑘፨፫፰ ( ፒᑨዅፒᑨᑣ

ኻዅፒᑨᑣዅፒᑘᑣ )
(፧ᑨዅኻ)

𝜇፰(1 − 𝑆፰፫ − 𝑆፠፫)
(3.8)

𝜆ᖣ፫፠(𝑆፰) =
𝑛፠𝑘፨፫፠ ( ኻዅፒᑨዅፒᑨᑣኻዅፒᑨᑣዅፒᑘᑣ )

(፧ᑘዅኻ)

𝜇፠(1 − 𝑆፰፫ − 𝑆፠፫)
(3.9)
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The derivative of the foam relative mobility is

𝜆
ᖤ፟
፫፠(𝑆፰) = 𝐹𝑀ᖣ(𝑆፰)𝜆፫፠(𝑆፰) + 𝐹𝑀(𝑆፰)𝜆ᖣ፫፠(𝑆፰) (3.10)

The derivative of the foam mobility reduction factor (FM) is

𝐹𝑀ᖣ(𝑆፰) = −
𝐹𝑀ኼ × 𝑓𝑚𝑚𝑜𝑏 × 𝑒𝑝𝑑𝑟𝑦

𝜋 (1 + 𝑒𝑝𝑑𝑟𝑦ኼ (𝑆፰ − 𝑓𝑚𝑑𝑟𝑦)ኼ)
(3.11)

A range of points on the fractional-flow curve between 𝑆፰፫ and 𝑆፬፟፰ are selected; these points ini-
tialize the characteristics that are tracked in the 𝑥ፃ − 𝑡ፃ plane. For the first characteristic, the velocity
(i.e., slope) at the characteristic water saturation is calculated with equation (3.7). The dimensionless
time of the characteristic is then calculated at the edge of the first layer by rearranging equation (2.35)
to solve for dimensionless time as a function of position. When this characteristic moves into the next
layer with a shifted fractional-flow curve, 𝑓፰ is the quantity that is conserved, not 𝑆፰. The point shifts to
the right or left, keeping the same value of 𝑓፰ but at a new water saturation. The velocity of this point is
calculated once again, and the dimensionless time at the edge of the second layer is calculated. The
characteristic continues to move from layer to layer, calculating the new 𝑡ፃ at the edge of each layer
with

𝑡ፃ|፥፜ =
Δ𝑥ፃ|፥
𝑓ᖣ፰(𝑆፰|፥፜)

+ 𝑡ፃ|፥ዅኻ፜ (3.12)

where subscript ፜ denotes a given characteristic and superscript ፥ denotes layer number. Once the
characteristic reaches the edge of the domain (𝑥ፃ = 1), the process repeats for the each characteristic
until the 𝑥ፃ − 𝑡ፃ diagram is complete. The same procedure is also conducted for the shock-front line.

Additional bookkeeping also needs to occur depending onwhether a shear-thinning or shear-thickening
case is occurring. In the shear-thinning case, characteristics curve upward (increasing velocity) and
collide with the shock-front line which is curving downward (decreasing). If a characteristic collides
with the shock-front in a given layer, the collision is noted and the characteristic does not propagate
to the next layer. For the shear-thickening case, characteristics curve downward (decreasing velocity)
while the shock-front curves upward (increasing velocity). Characteristics do not collide, but peal of the
shock-front line moving outward in space. In this case, a new characteristic line is created and tracked
in space-time starting at the (𝑆፬፟፰ , 𝑓፬፟፰ ) point in each layer.

3.2.2. Time Rediscritization
The solution process outlined above results in dimensionless times for each characteristic line at regu-
larly spaced intervals in 𝑥ፃ (i.e. layer boundaries). In order to calculate dimensionless pressure drop as
a function of time, however, the position of each characteristic with a given total relative mobility must
be known at each point in time. To achieve this, the 𝑥ፃ −𝑡ፃ diagram is re-sampled at discrete points in
dimensionless time. Since characteristics are lines within each layer (constant velocity), linear interpo-
lation is used to calculate dimensionless position within layers. The position of the shock-front is also
resampled as a function of time. After the dimensionless breakthrough time, a pseudo-characteristic
point is calculated at the outlet (𝑥ፃ = 1) at each 𝑡ፃ, and assigned a total relative mobility which is a
linear interpolation between total relative mobilities of the characteristics between which the outlet point
falls.

3.2.3. Dimensionless Pressure Calculation
The dimensionless position of each characteristic at each sampled dimensionless time is calculated
using equation (2.35) as follows

𝑟 = √𝑥ፃ(𝑟ኼ፞ − 𝑟ኼ፰) + 𝑟ኼ፰ (3.13)

By using average mobilities between two consecutive characteristics at two consecutive radii, the pres-
sure drop between each characteristic is estimated by

𝑃።ዄኻ − 𝑃። = 𝑄፭
2𝜋𝑘ℎ

1
2 (

1
𝜆።፫፭

+ 1
𝜆።ዄኻ፫፭

) ln (𝑟
።ዄኻ

𝑟። ) for 𝑖 = 1…𝑀 (3.14)
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where 𝑃ኻ and 𝑟ኻ are the pressure and radius at the wellbore, and 𝑃ፌ and 𝑟ፌ are the pressure and
radius at the shock-front. The total pressure difference between the wellbore to the shock radii (𝑃፫ᑨ −
𝑃፫ᑤᑙᑠᑔᑜ) is calculated by the summation of all the inter-characteristic pressure increments. The numerical
integration of equation (2.28) is therefore

Δ𝑃 = 𝑃፫ᑨ − 𝑃፫ᑤᑙᑠᑔᑜ =
𝑞፭
2𝜋ℎ𝑘

፫ᑨ

∫
፫ᑤᑙᑠᑔᑜ

1
𝑟𝜆፟፫፭(𝑆፰)

𝑑𝑟 =
ፌ

∑
።዆ኻ
(𝑃።ዄኻ − 𝑃።) (3.15)

Ahead of the foam bank, the pressure drop is that caused by the water bank at initial conditions as in
equation (2.24)

Δ𝑃፰ = 𝑃፫ᑤᑙᑠᑔᑜ − 𝑃፫ᑖ =
𝑄፭

2𝜋ℎ𝑘𝜆፫፰
ln ( 𝑟

𝑟፬፡፨፜፤
) (3.16)

The total pressure drop, therefore, is the sum of the foam bank and water bank pressure drops nor-
malized to that of water injection as follows

𝑃ፃ =
Δ𝑃 + Δ𝑃፰
ፐ

ኼ᎝፤፡᎘ᑣᑨ ln(
፫ᑖ
፫ᑨ )

(3.17)

Equation (3.17) can be used to calculate the total dimensionless pressure drop as a function of dimen-
sionless time.



4
Results

The results of the following scenarios are presented in this chapter.

1. Berea core with Newtonian foam behavior (n=1)

2. Berea core with shear-thickening foam behavior (n=1.6)

3. Berea core with shear-thinning foam behavior (n=0.38)

All cases were run with the Corey relative permeability parameters and foam parameters presented
for the Berea core in Al Ayesh [2]. The power-law exponents for shear thickening and shear-thinning
regimes were average values Berea core trials in the high-quality and low-quality regimes respectively
[3]. Cases were run with 50 layers and 100 characteristic points initially below the shock spaced reverse
logarithmically. Layer spacing was linear, and 𝑡ፃ timestep for time resampeling was 0.01. Wellbore
radius was 0.1m and outer radius was 100m.

17



18 Results

4.
1.
N
ew

to
ni
an

C
as
e

0
0

.1
0

.2
0

.3
0

.4
0

.5
0

.6
0

.7
0

.8
0

.9
1

W
a
te

r 
S

a
tu

ra
ti
o
n
, 
S

w

1
0

-9

1
0

-8

1
0

-7

1
0

-6

1
0

-5

1
0

-4

1
0

-3

1
0

-2

1
0

-1

1
0

0

Relative Permeability, kr

W
a
te

r,
 G

a
s
, 
a
n

d
 F

o
a
m

 R
e
la

ti
v
e
 P

e
rm

e
a
b

il
it

ie
s
 b

y
 L

a
y
e
r

0
0

.1
0

.2
0

.3
0

.4
0

.5
0

.6
0

.7
0

.8
0

.9
1

W
a
te

r 
S

a
tu

ra
ti
o
n
, 
S

w

1
0

-8

1
0

-6

1
0

-4

1
0

-2

1
0

0

1
0

2

Relative Mobility, lambda

R
e
la

ti
v
e
 M

o
b

il
it

ie
s
 b

y
 L

a
y
e
r

0
0

.1
0

.2
0

.3
0

.4
0

.5
0

.6
0

.7
0

.8
0

.9
1

W
a

te
r 

S
a

tu
ra

ti
o

n
, 

S
w

0

0
.1

0
.2

0
.3

0
.4

0
.5

0
.6

0
.7

0
.8

0
.91

Water Fractional Flow, fw

F
ra

c
ti

o
n

a
l 

F
lo

w
 b

y
 L

a
y

e
r

0
0

.1
0

.2
0

.3
0

.4
0

.5
0

.6
0

.7
0

.8
0

.9
1

D
im

e
n
s
io

n
le

s
s
 T

im
e
, 
tD

0

0
.1

0
.2

0
.3

0
.4

0
.5

0
.6

0
.7

0
.8

0
.91

Dimensionless Position, xD

x
D

-t
D

 D
o

m
a
in

 P
lo

t

Fi
gu
re
4.
1:

Bu
ck
le
y-
Le
ve
re
tt
Pl
ot
s
fo
rN

ew
to
ni
an

Be
re
a



4.1. Newtonian Case 19

0
0

.1
0

.2
0

.3
0

.4
0

.5
0

.6
0

.7
0

.8
0

.9
1

D
im

e
n
s
io

n
le

s
s
 T

im
e
, 
tD

2
.2

2
.3

2
.4

2
.5

2
.6

2
.7

2
.8

2
.93

3
.1

3
.2

Dimensionless Pressure

D
im

e
n

s
io

n
le

s
s
 P

r
e
s
s
u

r
e
 A

r
e
a
 P

lo
t

T
o

ta
l 
P

re
s
s
u

re

0
0

.1
0

.2
0

.3
0

.4
0

.5
0

.6
0

.7
0

.8
0

.9
1

D
im

e
n
s
io

n
le

s
s
 T

im
e
, 
tD

2
.2

2
.3

2
.4

2
.5

2
.6

2
.7

2
.8

2
.93

3
.1

3
.2

Dimensionless Pressure

D
im

e
n

s
io

n
le

s
s
 P

re
s
s
u

re
 -

 A
re

a
 P

lo
t 

b
y
 T

y
p

e

In
te

r-
C

h
a

ra
c
te

ri
s
ti
c

W
a

te
r 

F
ro

n
t

In
te

rp
o

la
te

d
 E

n
d

p
o

in
t

0
0
.1

0
.2

0
.3

0
.4

0
.5

0
.6

0
.7

0
.8

0
.9

1

D
im

e
n
s
io

n
le

s
s
 T

im
e
, 
tD

1
0

0

Dimensionless Pressure

D
im

e
n

s
io

n
le

s
s
 P

re
s
s
u

re
 -

 A
re

a
 P

lo
t 

b
y
 C

h
a
r

F
ir
s
t 

F
if
th

 C
h

a
rs

S
e

c
o

n
d

 F
if
th

 C
h

a
rs

T
h

ri
d

 F
if
th

 C
h

a
rs

F
o

u
rt

h
 F

if
th

 C
h

a
rs

F
if
th

 F
if
th

 C
h

a
rs

W
a

te
r 

F
ro

n
t

In
te

rp
o

la
te

d
 E

n
d

p
o

in
t

0
0

.1
0

.2
0

.3
0

.4
0

.5
0

.6
0

.7
0

.8
0

.9
1

D
im

e
n
s
io

n
le

s
s
 T

im
e
, 
tD

1
.2

1
.4

1
.6

1
.82

2
.2

2
.4

2
.6

2
.83

3
.2

Dimensionless Pressure

D
im

e
n

s
io

n
le

s
s
 P

re
s
s
u

re
 -

 A
re

a
 P

lo
t 

b
y
 S

p
a
c
e

x
D

=
0

-0
.2

0

X
D

=
0

.2
0

-0
.4

0

X
D

=
0

.4
0

-0
.6

0

X
D

=
0

.6
0

-0
.8

0

X
D

=
0

.8
0

-1

W
a

te
r 

F
ro

n
t

In
te

rp
o

la
te

d
 E

n
d

p
o

in
t

Fi
gu
re
4.
2:

D
im
en
si
on
le
ss

Pr
es
su
re
Pl
ot
s
fo
rN

ew
to
ni
an

Be
re
a



20 Results

4.
2.
Sh

ea
rT

hi
ck
en

in
g
C
as
e

0
0
.1

0
.2

0
.3

0
.4

0
.5

0
.6

0
.7

0
.8

0
.9

1

W
a

te
r 

S
a

tu
ra

ti
o

n
, 

S
w

1
0

-1
0

1
0

-9

1
0

-8

1
0

-7

1
0

-6

1
0

-5

1
0

-4

1
0

-3

1
0

-2

1
0

-1

1
0

0

Relative Permeability, kr

W
a

te
r,

 G
a

s
, 

a
n

d
 F

o
a

m
 R

e
la

ti
v

e
 P

e
rm

e
a

b
il

it
ie

s
 b

y
 L

a
y

e
r

0
0

.1
0

.2
0

.3
0

.4
0

.5
0

.6
0

.7
0

.8
0

.9
1

W
a
te

r 
S

a
tu

ra
ti
o
n
, 
S

w

1
0

-8

1
0

-6

1
0

-4

1
0

-2

1
0

0

1
0

2

Relative Mobility, lambda

R
e
la

ti
v
e
 M

o
b

il
it

ie
s
 b

y
 L

a
y
e
r

0
0

.1
0

.2
0

.3
0

.4
0

.5
0

.6
0

.7
0

.8
0

.9
1

W
a

te
r 

S
a

tu
ra

ti
o

n
, 

S
w

0

0
.1

0
.2

0
.3

0
.4

0
.5

0
.6

0
.7

0
.8

0
.91

Water Fractional Flow, fw

F
ra

c
ti

o
n

a
l 

F
lo

w
 b

y
 L

a
y

e
r

0
0

.1
0

.2
0

.3
0

.4
0

.5
0

.6
0

.7
0

.8
0

.9
1

D
im

e
n
s
io

n
le

s
s
 T

im
e
, 
tD

0

0
.1

0
.2

0
.3

0
.4

0
.5

0
.6

0
.7

0
.8

0
.91

Dimensionless Position, xD

x
D

-t
D

 D
o

m
a
in

 P
lo

t

Fi
gu
re
4.
3:

Bu
ck
le
y-
Le
ve
re
tt
Pl
ot
s
fo
rS

he
ar
-T
hi
ck
en
in
g
Be

re
a



4.2. Shear Thickening Case 21

0
0
.1

0
.2

0
.3

0
.4

0
.5

0
.6

0
.7

0
.8

0
.9

1

D
im

e
n
s
io

n
le

s
s
 T

im
e
, 
tD

1
0

0

1
0

1

1
0

2

Dimensionless Pressure

D
im

e
n

s
io

n
le

s
s
 P

r
e
s
s
u

r
e
 A

r
e
a
 P

lo
t

T
o

ta
l 
P

re
s
s
u

re

0
0
.1

0
.2

0
.3

0
.4

0
.5

0
.6

0
.7

0
.8

0
.9

1

D
im

e
n
s
io

n
le

s
s
 T

im
e
, 
tD

1
0

0

1
0

1

1
0

2

Dimensionless Pressure

D
im

e
n

s
io

n
le

s
s
 P

re
s
s
u

re
 -

 A
re

a
 P

lo
t 

b
y
 T

y
p

e

In
te

r-
C

h
a

ra
c
te

ri
s
ti
c

W
a

te
r 

F
ro

n
t

In
te

rp
o

la
te

d
 E

n
d

p
o

in
t

0
0
.1

0
.2

0
.3

0
.4

0
.5

0
.6

0
.7

0
.8

0
.9

1

D
im

e
n
s
io

n
le

s
s
 T

im
e
, 
tD

1
0

0

1
0

1

1
0

2

Dimensionless Pressure

D
im

e
n

s
io

n
le

s
s
 P

re
s
s
u

re
 -

 A
re

a
 P

lo
t 

b
y
 C

h
a
r

F
ir
s
t 

F
if
th

 C
h

a
rs

S
e

c
o

n
d

 F
if
th

 C
h

a
rs

T
h

ri
d

 F
if
th

 C
h

a
rs

F
o

u
rt

h
 F

if
th

 C
h

a
rs

F
if
th

 F
if
th

 C
h

a
rs

W
a

te
r 

F
ro

n
t

In
te

rp
o

la
te

d
 E

n
d

p
o

in
t

0
0
.1

0
.2

0
.3

0
.4

0
.5

0
.6

0
.7

0
.8

0
.9

1

D
im

e
n
s
io

n
le

s
s
 T

im
e
, 
tD

1
0

0

1
0

1

1
0

2

Dimensionless Pressure

D
im

e
n

s
io

n
le

s
s
 P

re
s
s
u

re
 -

 A
re

a
 P

lo
t 

b
y
 S

p
a
c
e

x
D

=
0

-0
.2

0

X
D

=
0

.2
0

-0
.4

0

X
D

=
0

.4
0

-0
.6

0

X
D

=
0

.6
0

-0
.8

0

X
D

=
0

.8
0

-1

W
a

te
r 

F
ro

n
t

In
te

rp
o

la
te

d
 E

n
d

p
o

in
t

Fi
gu
re
4.
4:

D
im
en
si
on
le
ss

Pr
es
su
re
Pl
ot
s
fo
rS

he
ar
-T
hi
ck
en
in
g
Be

re
a



22 Results

4.
3.
Sh

ea
rT

hi
nn

in
g
C
as
e

0
0
.1

0
.2

0
.3

0
.4

0
.5

0
.6

0
.7

0
.8

0
.9

1

W
a

te
r 

S
a

tu
ra

ti
o

n
, 

S
w

1
0

-1
0

1
0

-9

1
0

-8

1
0

-7

1
0

-6

1
0

-5

1
0

-4

1
0

-3

1
0

-2

1
0

-1

1
0

0

Relative Permeability, kr

W
a

te
r,

 G
a

s
, 

a
n

d
 F

o
a

m
 R

e
la

ti
v

e
 P

e
rm

e
a

b
il

it
ie

s
 b

y
 L

a
y

e
r

0
0

.1
0

.2
0

.3
0

.4
0

.5
0

.6
0

.7
0

.8
0

.9
1

W
a
te

r 
S

a
tu

ra
ti
o
n
, 
S

w

1
0

-8

1
0

-6

1
0

-4

1
0

-2

1
0

0

1
0

2

Relative Mobility, lambda

R
e
la

ti
v
e
 M

o
b

il
it

ie
s
 b

y
 L

a
y
e
r

0
0

.1
0

.2
0

.3
0

.4
0

.5
0

.6
0

.7
0

.8
0

.9
1

W
a

te
r 

S
a

tu
ra

ti
o

n
, 

S
w

0

0
.1

0
.2

0
.3

0
.4

0
.5

0
.6

0
.7

0
.8

0
.91

Water Fractional Flow, fw

F
ra

c
ti

o
n

a
l 

F
lo

w
 b

y
 L

a
y

e
r

0
0

.1
0

.2
0

.3
0

.4
0

.5
0

.6
0

.7
0

.8
0

.9
1

D
im

e
n
s
io

n
le

s
s
 T

im
e
, 
tD

0

0
.1

0
.2

0
.3

0
.4

0
.5

0
.6

0
.7

0
.8

0
.91

Dimensionless Position, xD

x
D

-t
D

 D
o

m
a
in

 P
lo

t

Fi
gu
re
4.
5:

Bu
ck
le
y-
Le
ve
re
tt
Pl
ot
s
fo
rS

he
ar
-T
hi
nn
in
g
Be

re
a



4.3. Shear Thinning Case 23

0
0

.1
0

.2
0

.3
0

.4
0

.5
0

.6
0

.7
0

.8
0

.9
1

D
im

e
n
s
io

n
le

s
s
 T

im
e
, 
tD

0
.4

0
.6

0
.81

1
.2

1
.4

1
.6

1
.82

2
.2

2
.4

Dimensionless Pressure

D
im

e
n

s
io

n
le

s
s
 P

r
e
s
s
u

r
e
 A

r
e
a
 P

lo
t

T
o

ta
l 
P

re
s
s
u

re

0
0
.1

0
.2

0
.3

0
.4

0
.5

0
.6

0
.7

0
.8

0
.9

1

D
im

e
n
s
io

n
le

s
s
 T

im
e
, 
tD

1
0

0

Dimensionless Pressure

D
im

e
n

s
io

n
le

s
s
 P

re
s
s
u

re
 -

 A
re

a
 P

lo
t 

b
y
 T

y
p

e

In
te

r-
C

h
a

ra
c
te

ri
s
ti
c

W
a

te
r 

F
ro

n
t

In
te

rp
o

la
te

d
 E

n
d

p
o

in
t

0
0

.1
0

.2
0

.3
0

.4
0

.5
0

.6
0

.7
0

.8
0

.9
1

D
im

e
n
s
io

n
le

s
s
 T

im
e
, 
tD

1
0

-2

1
0

-1

1
0

0

1
0

1

Dimensionless Pressure

D
im

e
n

s
io

n
le

s
s
 P

re
s
s
u

re
 -

 A
re

a
 P

lo
t 

b
y
 C

h
a
r

F
ir
s
t 
F

if
th

 C
h
a
rs

S
e
c
o
n
d
 F

if
th

 C
h
a
rs

T
h
ri
d
 F

if
th

 C
h
a
rs

F
o
u
rt

h
 F

if
th

 C
h
a
rs

F
if
th

 F
if
th

 C
h
a
rs

W
a
te

r 
F

ro
n
t

0
0
.1

0
.2

0
.3

0
.4

0
.5

0
.6

0
.7

0
.8

0
.9

1

D
im

e
n
s
io

n
le

s
s
 T

im
e
, 
tD

1
0

0

Dimensionless Pressure

D
im

e
n

s
io

n
le

s
s
 P

re
s
s
u

re
 -

 A
re

a
 P

lo
t 

b
y
 S

p
a
c
e

x
D

=
0

-0
.2

0

X
D

=
0

.2
0

-0
.4

0

X
D

=
0

.4
0

-0
.6

0

X
D

=
0

.6
0

-0
.8

0

X
D

=
0

.8
0

-1

W
a

te
r 

F
ro

n
t

In
te

rp
o

la
te

d
 E

n
d

p
o

in
t

Fi
gu
re
4.
6:

D
im
en
si
on
le
ss

Pr
es
su
re
Pl
ot
s
fo
rS

he
ar
-T
hi
nn
in
g
Be

re
a





5
Discussion and Conclusions

The results presented above demonstrate that this semi-analytical Buckley-Leverett process can be
used to capture the effects of non-Newtonian rheologies in SAG foam injection. In the Newtonian
case, charcteristics are straight as expected. It is also interesting to note that pressure drop across
the foam front is relatively constant for the majority of injection until breakthough, as was predicted by
Boeije and Rossen [4]. 𝑃ፃ initially declines quickly, shallows out near breakthrough, but drops off after
breakthrough. Dimensionless pressure in the shear-thickening case is an order of magnitude higher
than the Newtonian case, such that the pressure drop almost negligible. The majority of pressure drop
occurs in the first 20% of the flow domain, much more significantly than in the Newtonian case. The
shear-thinning case shows improved injectivity an order of magnitude less than the shear-thickening
case and even less than the Newtonian case. Pressure drop across the foam bank actually increases
from the start of injection to breakthrough. This could be an important design consideration when
dealing with shear-thinning foams. While injectivity on whole is much more favorable, the raise in
pressure drop across the foam bank could require increased injection rates over time. Facilities would
need to be designed to handle the increased capacity. Additionally, pressure drop is spread out across
a much larger range of the reservoir, which could help with viscous instabilities within the foam-bank.

The non-Newtonian Buckley-Leverett process developed in this paper could be extended in further
work in multiple ways. More tuning of the foam parameters should be done to obtain more scalable
results to the field. The process could be combined with the work presented in Al Ayesh [2] to inves-
tigate how non-Newtonian rheologies influence diversion in a heterogeneous reservoir. The influence
of the presence of oil could also be integrated into the model to help more realistically predict field
performance.
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