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Abstract

This thesis contributes to the scientific underpinning of the battle against fruit frost. Fruit frost is the freezing
damage to blossoms when in the growing season the night temperature drops below 0◦C. This results in
damaged or undeveloped fruits, and a yield loss for the fruit farmer. Several techniques against fruit frost
have been developed, including sprinkling and wind machines, often in combination with meteorological
models, for example, to predict air temperature. However, the contribution of heat exchange with the soil
to moderate orchard temperatures is often not included. In this thesis, this heat transfer is investigated,
as an increase of heat transfer from the soil to the orchard during the night is a potential remedy against
fruit frost. The research is based on measurements for soil temperature, soil heat flux, and soil moisture
from two locations (1. Haarweg (Gelderland), The Netherlands 2. Bushland (Texas), The U.S.A.). First, a
numerical model is developed to calculate the temperature and soil heat flux profiles for a soil layer. The
results are compared to the results of an already developed analytical model. Second, the thermal parameters,
that are of influence on the heat transfer, are analyzed by assessing a) their robustness in relation to the
model and b) their relation to soil moisture. Because a numerical model is more flexible for shorter periods
of data compared to an analytical model (because of underlying assumptions), it can be used to relate the
parameters to (daily) varying soil moisture. Third, the numerical model for heat transfer is extended to the
vegetation layer, and, again, the results are compared to analytical results. The model is created by assuming
homogeneity in both separate layers and by discretizing the governing heat equation over the domain. The
results show that the model reproduces temperature and soil heat flux in the soil layer with similar accuracy
as the analytical, harmonic model. One thermal parameter, the diffusivity, is robust and does not show a
clear dependency on soil moisture. The model is however sensitive to deviations in the other parameter, the
heat conductivity. The model shows a clear relation between conductivity and soil moisture, and from this, a
site-specific quantitative relation is determined. This relation however is only valid in the investigated region
of moisture variation and we recommend future research to cover data in a broader range of soil moisture.
Overall, we conclude that the model successfully reproduced the temperature and soil heat flux throughout
the full vegetation-soil continuum.

Rik Aulbers
Delft, June 2021
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1
Introduction

This master thesis presents a study on heat transfer through the vegetation-soil continuum. Hereto observa-
tional analysis is combined with numerical modeling of the heat transfer processes in this complex system.
Although this academic study clearly focuses on the physical principles itself, the motivation for the research
originates from problems with so-called fruit-frost damage in the agricultural sector. Below we will first elab-
orate on the societal background for this research. The complex structure of the vegetation-soil continuum
can be seen in figure 1.1.

Figure 1.1: An example of the vegetation-soil continuum. In this figure, the vegetation is grass. In this re-
search, we assume that both layers are homogeneous. The figure shows that in reality, this is not the case:
Both layers consist of organic material (dead and alive), minerals, air, and (not visible) water. Figure retrieved
from [1].

Our daily weather may have large impact on agriculture. The motivation of this thesis is to combat the
frost damage to fruit trees in the Netherlands during the growing period (the spring). In this period, the buds
of fruit trees break, and blossoms start to grow, which will eventually develop into fruits. However, it is not
uncommon that Dutch temperatures drop below 0◦C in spring nights. Blossoms are sensitive to subzero
temperatures and can be damaged when it freezes. Consequently, the blossoms will develop into smaller or
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2 1. Introduction

damaged fruits or not into fruits at all, and the (economical) yield of the orchard will be reduced. A review of
the impact of spring frosts and the freezing process at the cellular level is presented in [2].

To reduce the impact of frost damage on their crops, farmers can turn to several methods. For example:
Irrigation (think of overhead irrigation, man-made fog or flooding), wind machines, heaters (see figure 1.2),
heat covers, or change of surface cover between trees by e.g. removing grass. Furthermore, meteorology is
needed to predict the behavior of wind, temperature, precipitations (rain or snow), heat transfer, etc., as to
assess which and when methods are needed. An overview of these techniques and the involved meteorology
is included in [3].

Figure 1.2: An example of a method against fruit-frost. French farmers protect their vineyards with heaters
against the cold. Figure retrieved from [4].

In this research, we aim at a better understanding and modeling of heat transfer, specifically heat transfer
into or out of the soil, where grass-covered or bare soil and soil moisture play important roles. The temper-
ature above grass-covered soil is cooler than above bare soil because grass acts as an insulator. This would
suggest that grass removal could be beneficial for farmers: Solar heat of the daytime could be stored (and re-
leased) more efficiently over bare soil than over grass. But before those engineering methods can be applied
in practice, it is important to have a solid understanding of heat transfer through bare soil and grass.

To study the heat transfer, we model the temperature and heat flux dynamics throughout the vegetation-
soil continuum. First, the model is applied to only a soil layer, after which the model is extended to in-
clude both the soil and grass layers. We use a numerical method, which starts by selecting a vertical one-
dimensional domain which we assume to be isotropic. In this domain, we use Fourier’s law of heat conduc-
tion, which reduces to the heat equation, to calculate the temperature profile. We discretize the (continuous)
heat equation (PDE) into a set of coupled equations for finite-size layers (ODE). The system of equations is
then solved over time and a solution is found for the profiles of temperature and heat flux. The model will then
be used to study the influence of grass and of soil moisture on the heat balance of the medium by evaluating
three thermal parameters, which are called diffusivity, conductivity, and volumetric heat capacity. Diffusivity
is defined as the ratio of conductivity and volumetric heat capacity. These parameters can be described as
follows:

• Diffusivity: the rate of transfer of heat in material from the hot end to the cold end, in [Jkg−1K−1].

• Conductivity: the ability of a material to conduct heat, in [Wm−1K−1].
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• Volumetric heat capacity: the amount of energy that must be added to one unit of volume of the mate-
rial to cause an increase of one unit in its temperature, in [Jm−3K−1].

In a previous project in our research group ([5]), the harmonic model as described in the book of Moene
and van Dam [6] was used to model the temperature and heat flux analytically. An advantage of the numerical
model approach used in our project compared to the analytical, harmonic model is that the latter needs
temperature observations of longer periods as input. These observations are decomposed into a Fourier
series of different frequencies with different weighting factors. If the period of the input temperature is too
short, the important yearly cycle may be assigned a too low weighting factor. Therefore, the harmonic model
is impractical to analyze shorter periods of time. The numerical model used in this research is suitable for
shorter periods of time and is, therefore, able to provide values of the mentioned thermal parameters on daily
basis. The thermal parameters are then related to a provided soil moisture data set. As it is commonly known
that a wet surface conducts heat better than a dry surface (think for example of cooling beverages in a dry
environment or an ice bath), we expect that there will be a clear relation between the heat conductivity and
the soil moisture.

The goals of the research can be summarized into three main research questions:

• Can we reproduce the temperature and soil heat flux profiles throughout a soil layer with a numerical
model and are the solutions accurate in comparison with a harmonic benchmark model?

• Can we use the numerical model to estimate the thermal parameters of the soil?

– How robust are these parameters?

– How do these parameters relate to soil moisture?

• Can we reproduce the temperature and soil heat flux profiles throughout a two-layer system of vegeta-
tion and soil?

To answer these questions and thereby assess the numerical model, two data sets are used. The first is
a data set from the meteorological site at Haarweg, The Netherlands, provided by Wageningen University &
Research. The second set is from the lysimeter field at the USDA-ARS Conservation & Production Research
Laboratory in Bushland, Texas, The United States of America. Both data sets provide measurements of soil
temperature, soil heat flux, and soil moisture. Furthermore, the Haarweg data set provides measurements of
longwave outgoing radiation, from which grass temperature can be calculated.

Chapter 2 explains the theory of heat diffusion and the relevance of the thermal parameters. Then, in
chapter 3, the data sets are illustrated and the numerical method and parameter optimization are explained.
Thirdly, chapter 4 provides and analyzes the results, after which chapter 5 concludes the research. Appendix A
and B provide additional results of the research. The project is carried out in the Atmospheric science group
at the Department of Geoscience and Remote Sensing, Faculty of Civil Engineering, at Delft University of
Technology. The supervisors are prof. dr. ir. Bas van de Wiel, dr. ir. Marie-Claire ten Veldhuis, dr. ir. Steven
van der Linden and ir. Judith Boekee.





2
Theory

2.1. Heat transfer in a homogeneous medium
In this research, we will assume that soil is a homogeneous medium. This is not truly the case, because soil
exists of organic material (flora and fauna), moisture, clay, air cavities, et cetera, which can be seen in figure
1.1 and is schematically depicted in figure 2.1. Where on microscale the soil is a composite, we here assume it
to be a (homogeneous) continuum since we are only interested in the overall behavior of the soil temperature.
Furthermore, it would be too complicated to model all individual components. If we assume that the soil has

Figure 2.1: Schematic representation of conduction of heat through the soil. The circles denote the soil par-
ticles. The space between particles is filled with air (white) and moisture (dark grey). The arrows denote the
conduction of heat. Figure retrieved from p.49 [6].

no velocity, there is no source/sink of heat in the soil, that the problem is only one-dimensional because of
the homogeneity in the x and y-direction, and that the parameters λ, ρ, c and κ are constant over space and
time, Fourier’s law reduces to

∂T

∂t
= λ

ρc

∂2T

∂z2 = κ∂
2T

∂z2 . (2.1)

In this equation, T denotes the temperature in [K] or [◦C], t the time in [s], λ the thermal conductivity in
[Wm−1K−1], c the specific heat capacity in [Jkg−1K−1], ρ the density in [kgm−3], κ the thermal diffusivity
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6 2. Theory

in [m2s−1] and z the depth in [m]. For convenience, ẑ is defined positive downward into the ground with
z = 0m located at the top of the soil layer. The product of ρc =C is sometimes referred to as volumetric heat
capacity in [Jm−3K−1]. If we want to solve equation 2.1 for T (z, t ) with a numerical scheme, we have to set
two boundary conditions (BC’s) and one initial condition (IC), which will be explained in chapter 3.

According to [6], heat transport in the soil is dominated by thermal conduction, which means the soil heat
flux density G (in [Wm−2]) is defined by the local temperature gradient and the thermal conductivity:

G =−λ∂T

∂z
. (2.2)

If we have an expression for T (z, t ) and for λ, we can solve equation 2.2 for the soil heat flux G(z, t ).

2.1.1. Heat transfer in a two-layer system of separate homogeneous media
Here, we seek to model the vegetation-soil (or grass-soil) continuum by connecting two homogeneous media.
These two media, vegetation and soil, have similar diffusion equations, but with different effective parame-
ters. In those media we describe thermal heat diffusion according to the following equations:

∂Tveg

∂t
= λveg

ρveg cveg

∂2Tveg

∂z2 = κveg
∂2Tveg

∂z2 , (2.3a)

∂Tsoi l

∂t
= λsoi l

ρsoi l csoi l

∂2Tsoi l

∂z2 = κsoi l
∂2Tsoi l

∂z2 , (2.3b)

where the subscripts ’veg’ and ’soil’ stand for the ’vegetation’-medium and the ’soil’-medium respectively.
The two media are attached and need to have two additional boundary conditions at z = 0m: Both T and its
vertical derivative should be continuous. The vegetation of the Haarweg data set is a grass layer and is as-
sumed to be a homogeneous medium with a thickness of (approximately) 10cm. It spreads in the coordinate
system from z = −0.1m to z = 0. Note again that ẑ is defined positive when directed into the soil. Again we
note that in reality grass is far from homogeneous (see figure 1.1), but it is interesting to see how close we can
get to solving the problem with such a simplification.

2.2. Thermal parameters of soil
Figure 2.1 shows that the soil exists of three main components: soil particles, air, and water (please bare in
mind that soil particles are also a group of other particles, for example, quartz, clay minerals, and organic
material). For some of the parameters, i.e. density and heat capacity, the overall parameter of the soil is the
combination of the weighed parameters of the three components, which can be represented as

ρs = fpρp +θρw + faρa (2.4a)

Cs = fpCp +θCw + faCa (2.4b)

cs =Cs /ρs . (2.4c)

In this equation, the subscript ’p’ denotes (soil) particles, ’w’ denotes water, and ’a’ air, and fp , θ and fa

are the associated volumetric fractions in [m3m−3], or [-]. Equation 2.4 shows that both the density and the
volumetric heat capacity depend linearly on the soil moisture content.
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The situation of the other free parameter (the conductivity λ) is, however, more complex. Whereas soil
particles have rather large conductivity, the air has a conductivity close to an insulator. When soil is com-
pletely dried out, the conductivity is effectively determined by the total surface area between soil particles.
Adding a small amount of water would therefore have a substantial effect. Figure 2.1 shows that the wa-
ter tends to concentrate around the areas of contact so that the conduction area increases and the overall
conductivity increases too. Adding more water would increase the conductivity even more, but not as dra-
matically as in the (almost) dry regions because the conductivity of water is much lower than that of the soil
material.

The third parameter, the diffusivity κ, is defined as the ratio of conductivity and volumetric heat capacity,
λ
C , as can be seen in equation 2.1. In the dry region, this ratio increases with moisture, because the numerator
(λ) increases more than the denominator (C ). So, in the dry region, the diffusivity increases with moisture. In
the wetter region, the increase in λ slows down, while the increase in C remains linear. After a certain point,
the ratio λ

C decreases with moisture and so does the diffusivity. The relations are depicted by [6] and can be
found in figure 2.2. Note that figure 2.2 does not show any quantitative results on the x- or y-axis and is hence

Figure 2.2: Schematic representation of the relation of volumetric heat capacity C , conductivity λ, and diffu-
sivity κ with soil moisture θ for sand, clay, and organic material. The subscript ’s’ of the parameters denotes
the soil. Figure retrieved from p.51 [6].

just meant as a schematic. A goal in this study is to actually quantify those dependencies on soil moisture.





3
Method

3.1. Data sets
3.1.1. Haarweg, The Netherlands
The first data set used in this research was obtained at the Haarweg measurement site located in the center
of The Netherlands (lat. 51◦58’N, long. 5◦38’W, altitude 7msl; www.met.wau.nl) and is described in detail
in [7], [8] and [9]. The soil consists predominantly of "heavy basin clay resulting from the back-swamps of
the Rhine river" [7]. We used the data from 16-May-2001 up until 14-Nov-2012, for which data with a high
temporal resolution is available (i.e. 10-minute coverage).

A schematic overview of the measurements is presented in figure 3.1. The figure shows three domains:
Atmosphere (blue), the vegetation layer (green), and the soil (orange) (covered by vegetation or bare surface).
Please note again that ẑ is defined positive downward into the ground with z = 0m located at the top of the
soil layer. In the figure, T denotes measured temperature (soil or radiation), G denotes measured soil heat
flux and Θ denotes measured soil moisture. The subscripts ’5cm’, ’10cm’, and ’20cm’ stand for depth in the
soil, the subscript ’IRT’ stands for radiation (temperature), and the superscripts ’bare’ and ’grass’ stand for
bare soil or grass-covered soil.

Figure 3.1: Schematic representation of the used measurements and models. The system consists of three
domains: Atmosphere (blue), the vegetation layer (green), and the soil (orange) (covered by vegetation or
bare soil). Each combination of two blue arrows denotes a domain. The green arrows denote the calculation
of soil heat flux out of temperature or the relation of the parameters to soil moisture.

9
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In the bottom left part, figure 3.1 shows the measurements used in the one-layer model for bare soil.
T bar e

5cm and T bar e
20cm form the boundaries of the domain in which T (z, t ) is calculated. Then, the parameter for

diffusivity is optimized by comparing the modeled and the measured temperature T bar e
10cm at 10cm, which is

denoted by the blue arrows. The optimization process will be explained in section 3.3. The soil heat flux
is calculated from the modeled profile of T (z, t ) and compared to the measured heat flux Gbar e

5cm at 5cm to
optimize the conductivity, which is denoted by the green arrow.

Similarly, the one-layer model for grass-covered soil is depicted in the bottom right part of the figure.
T g r ass

5cm and T g r ass
20cm form the boundaries of the domain in which T (z, t ) is calculated. The modeled temperature

is again compared to the measured temperature T g r ass
10cm at 10cm to optimize the diffusivity. Then, the soil heat

flux is calculated from the profile of T (z, t ) and compared to the measured heat flux Gg r ass
5cm to optimize the

conductivity. Lastly, the optimized parameters for diffusivity and conductivity can be related to the measured
soil moisture at 5cm depth, which is denoted by Θ5cm . Note in this part of the figure that the soil moisture
is only measured beneath grass-covered soil. Because we assume homogeneity, the diffusivity, optimized at
10cm depth, can still be related to the soil moisture, measured at 5cm depth.

Lastly, at the total right side of figure 3.1, the two blue arrows denote the two-layer model. The boundaries
of the domain are now the radiation temperature of the grass TI RT at -10cm and the soil temperature T g r ass

10cm at
10cm depth. The two values of the diffusivity (both for the grass layer and for the soil layer) are now optimized
by comparing the modeled temperature profile T (z, t ) to the measured temperature T g r ass

5cm at 5cm depth.
Again, the soil heat flux is calculated from the temperature profile and compared to the measured soil heat
flux profile Gg r ass

5cm to optimize the soil conductivity parameter. The parameters in the two-layer model are
not related to the soil moisture as it would not provide any additional information.

The sensors of the Haarweg data used in this research can be found in table 3.1.

Table 3.1: In this research, the soil temperatures T at 5cm, 10cm, and 20cm depth and the soil heat flux G at
5cm are used for both grass-covered soil and bare ground. The longwave radiation Lout is measured above
grass soil and is used to calculate the radiation temperature TI RT of the grass top. Note that a negative value
for z translates to above soil.

Name Unit z [m] Sensor Grass-covered soil Bare soil
T5cm

◦C 0.05 Pt100 X X
T10cm

◦C 0.10 Pt100 X X
T20cm

◦C 0.20 Pt100 X X
G5cm Wm−2 0.05 TNO-WS31 X X
Lout Wm−2 -0.10 Kipp CG2 X x

The longwave radiation mentioned in table 3.1 is used to calculate the radiation temperature via

TI RT = (
Lout

εσ
)

1
4 , (3.1)

in which ε = 0.99, the assumed emissivity of grass [10], and σ = 5.67 ·10−8Wm−2K−4, the Stefan-Boltzmann
constant. The soil heat flux G5cm is measured with a heat flux plate (TNO-WS31) and must be corrected for
instrumental shape and for the difference between plate and soil conductivities [7] with the factorΦ:

Φ= 1

1−1.7t A−0.5(1−ε−1
p )

. (3.2)

In equation 3.2, t = 2mm, the thickness of the plate, A = 1
4π0.112m2, the area of the plate, and εp = λpl ate

λsoi l
,

the ratio between the thermal conductivity of the plate to that of the soil. Note that the correction factor is a
function of λsoi l , which will become important in the optimization process. The measurement locations are
photographed and depicted in figure 3.2.

To model the relations as described in section 2.2, an additional data set with soil moisture is used, which
is not included in table 3.1 (but is included in figure 3.1). The soil moisture is measured by a Time-Domain
Reflectometry System (TDR100 Reflectomer, [11]) with an interval time of 60 minutes. The logger is located
at lat. 51◦97’N, long. 5◦64’W and the sensors are located in a triangle at 8.5m north, 8.5m west, and 8m
north around the logger as to measure an ’area average value’. The sensors are located beneath grass-covered
surfaces and are located at different depths: 0cm, 2.5cm, 5cm, 10cm, 30cm, and 60cm. We are interested in
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(a)

(b)

Figure 3.2: Figure (a) shows the longwave radiation sensor (Kipp CG2). Figure (b) shows the temperature and
soil heat flux measurement locations for bare soil and grass soil. The sensors for temperature (Pt100) and soil
heat flux (TNO-WS31) are buried beneath the surface. Note also that the grass is mowed to an average height
of 10cm. Figures retrieved from p.21 and p.23 [9].

the relation of soil moisture with the parameter λ defined at 5cm depth as can be seen in figure 3.1. Therefore
we only use the 5cm moisture measurements and we average over the three positions via equation 3.3:

θ5cm = 1

3
(θ8.5mNor th

5cm +θ8.5mW est
5cm +θ8.0mNor th

5cm ). (3.3)
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3.1.2. Texas, U.S.A.
During the project, a second data set is used to validate the model a second time. The data set is described in
detail in [12] and in [13] and contains soil temperature, soil heat flux, and soil moisture data. The measure-
ments were made from 24 June to 24 September 2008 at the USDA-ARS Conservation & Production Research
Laboratory (Bushland, Texas, USA). We used the data as specified in table 3.2. The measurements for Θ6cm

Table 3.2: In this research, the temperature T at 4cm, 8cm, and 16cm depth and the soil heat flux G at 8cm
are used. The soil moistureΘ at 6cm and at 12cm depth is used to calculateΘ at 8cm.

Name Unit z [m] Sensor
T4cm

◦C 0.04 TDR probe - copper-constantan thermocouple
T8cm

◦C 0.08 TDR probe - copper-constantan thermocouple
T16cm

◦C 0.16 TDR probe - copper-constantan thermocouple
G8cm Wm−2 0.08 HFT-3.1
Θ6cm [-] 0.06 Trifilar TDR probes
Θ12cm [-] 0.12 Trifilar TDR probes

and Θ12cm are used to calculate Θ8cm as a weighted average. All the measurements were done at 10 different
locations close to each other. In this research, we take the average of the 10 locations to do the parameter
optimization. The procedure and results of this second data set are described in appendix B.

3.2. Discretizing the unsteady one-dimensional heat diffusion equation
We aim to solve equation 2.1 in a numerical way, for which we will use a method described in chapter 6 of
[14]. The method is often referred to as the ’FTCS’ (Forward Time Centered Space) method. As explained in
section 2.1, we assume that the parameters λ, c, ρ, and κ are constant over space and time (for the selected
domain and period). Furthermore, we substitute x for z. We integrate equation 2.1 over the time interval from
t to t +∆t and over a 1D control volume from west to east (which is pure terminology and can be replaced for
instance by top and bottom) and we get

ρc∆x(T j+1
p −T j

p ) =
∫ t+∆t

t
[
λ(TE −TP )

δxe
− λ(TP −TW )

δxw
]d t . (3.4)

In this equation, the uppercase subscripts ’E’,’P’ and ’W’ denote a location at the side of a control volume,
and the smaller case subscripts ’e’ and ’w’ denote a location in the middle of a control volume (’e’ between
’E’ and ’P’, ’w’ between ’P’ and ’W’) as can be seen in figure 3.3. ’j’ denotes the discretization of time. In this

Figure 3.3: The figure shows how 1D discretization schematically looks like. ’W’ denotes west and ’E’ denotes
east. Figure retrieved from p.121 [14].

derivation, we have assumed linear interpolation for the characteristic cell faces:∫ e

w

∂2T

∂x2 d x = (
dT

d x
)e − (

dT

d x
)w = TE −TP

δxe
− TP −TW

δxw
. (3.5)

We then assume that time integration of T results in a combination of ’old’ time T j and ’new’ time T j+1∫ t+∆t

t
TP d t = [ f T j+1

P + (1− f )T j
P )]∆T, (3.6)
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where f is a weighting factor and ’P’ may be replaced by ’E’ or ’W’. For an explicit scheme, as we will use,
f = 0. We combine equations 3.4 and 3.6 and end up with:

ρc∆xT j+1
P −T j

P

∆t
= [

λ(T j
E −T j

P )

δxe
− λ(T j

P −T j
W )

δxw
]. (3.7)

On a uniform grid, as we will use, δxe = δxw . We generalize the iteration of equation 3.7 over space by replac-
ing ’E’ with ’i+1’, ’P’ with ’i’ and ’W’ with ’i-1’, in which ’i’ denotes the discretization of space. By rearranging,
substituting z back for x again and substituting κ= λ

ρc , the result is

T j+1
i = T j

i + κ∆t

∆z2 (T j
i+1 −2T j

i +T j
i−1). (3.8)

If we now discretize the control volume, define one initial condition (IC) and two boundary conditions (BC’s),
we can calculate T (z, t ) over the discretized space (’i’) and time (’j’) domain. This process will be described in
detail in section 3.3.

3.2.1. Neumann stability analysis
If we regroup equation 3.8, we get

T j+1
i = (1−2

κ∆t

∆z2 )T j
i + κ∆t

∆z2 (T j
i+1 +T j

i−1). (3.9)

One of the four principles of the discretization procedure is that the coefficient connected to T j
i should be

positive at all times (p. 124 [14]). This means that

1−2
κ∆t

∆z2 > 0, (3.10)

or
κ∆t

∆z2 < 1

2
. (3.11)

As will follow from section 3.3, we construct the model with values for∆t and for κ, which means that we end
up with the following condition for ∆z:

∆z >
√

(2κ∆t ). (3.12)

Condition 3.12 is derived using von Neumann stability analysis and ensures a numerically stable FTCS scheme.
The numerical convergence (and stability) are demonstrated in practice by comparing numerical results to
known analytical solutions.

3.2.2. Two-layer model
For the two-layer model (vegetation-soil) we follow a similar approach, only now the parameters are not
constant over space. Similarly as for 3.8, we end up with equation 3.13:

T j+1
P = T j

P + ∆t

∆z2 (κe (T j
E −T j

P )−κw (T j
P −T j

W )), (3.13)

or

T j+1
i = T j

i + ∆t

∆z2 (κi+0.5(T j
i+1 −T j

i )−κi−0.5(T j
i −T j

i−1)). (3.14)

κ can have two values: If z > 0, κ= κsoi l , and if z < 0, κ= κveg .

3.2.3. Discretizing the soil heat flux equation
Equation 2.2 is rather easy to discretize. As will be explained in 3.3, we will have to use a forward difference
scheme and we calculate the soil heat flux at z = 0.05m via

G(0.05m, t ) =−λT (0.05m+∆z, t )−T (0.05m, t ))

∆z
. (3.15)
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3.3. Parameter optimization procedure
This section describes step-by-step how the optimal parameters for the diffusivity κ and conductivity λ are
determined.

1. First, a grid of expected values for κ and λ is created. This is the so-called ’shooting method’. ∆t = 30s
is chosen, which is relatively small compared to the measurement time interval of 600s. The domain is
created from z = 0.05m up until 0.20m. The minimum value of ∆z follows from condition 3.12 where
the largest possible value of κ is taken as an upper limit. For convenience, ∆z is rounded off (conserva-
tively) to its closest value of 1, 2.5, 5, or 10 mm. The control volume is discretized with step size ∆z. For
example, if the maximum value of κ is set to κmax = 10 ·10−7m2s−1, ∆z >p

(2κmax∆t ) = 7.8mm and is
rounded up to ∆z = 10mm. Furthermore, the measured data is cut to a certain period. In this research,
these periods are either a single day or a sequence of days in the period 01/05/2006 - 31/10/2006. The
months May-October are chosen to omit temperatures below 0◦C as to avoid phase transitions of water.
Frozen water (either snow or ice) has important repercussions on the surface energy balance (section
2.3.8 of [6]). The year 2006 is chosen because it shows a relatively large range of soil moisture compared
to the other possible years, which is beneficial to investigate the relations of figure 2.2.

2. For the initial condition (IC) T (z,0), we use spline interpolation over the measured temperatures T5cm ,
T10cm and T20cm to the domain with space step ∆z. The boundary conditions (BC’s) used are the mea-
sured temperatures T5cm and T20cm , which are interpolated from the measurement interval 600s to the
new interval 30s.

3. Third, we use equation 3.8 to calculate the new temperature T (z,30s). This process is repeated each
time with interval 30s until T (z, t ) is calculated for the total desired period. To save memory, only the
temperatures at intervals of 600s are stored.

4. The root-mean-square error eT is calculated for the modeled temperature as a function of the preset κ:

eT (κ) =
√√√√ 1

N

N∑
j=1

(T obs
j −T mod

j (κ))2 (3.16)

In this equation, j denotes a point in the time-series, with maximum N . Note that t j = ( j −1)∆t and
that∆t = P

N−1 , where P is the period. eT is a function of the inserted κ. By calculating eT for all possible
values of κ, the minimum error, and corresponding κ, κopt , can be found. This must be a global min-
imum, or the range of κ at step 1 will be broadened. For a visualisation of this process, see figure 4.2.
T obs is the measured temperature, T10cm , and T mod is the modeled temperature at 0.10m, T (0.10m, t ).

5. With the optimized profile T (z, t ), a similar optimization can be executed to find the optimal λ. The
measured G5cm has to be corrected with the factor Φ (equation 3.2). Because G is measured at 0.05m
and the domain goes from z = 0.05m up until 0.20m, the forward difference method of equation 3.15 is
necessary. The optimal value for λ, λopt , is then found by minimizing the error of the soil heat flux, eG :

eG (λ) =
√√√√ 1

N

N∑
j=1

(Gcor
j (λ)−Gmod

j (λ))2, (3.17)

where Gcor is the measured soil heat flux at 0.05m corrected with the factor Φ (equation 3.2, Gcor =
GobsΦ−1) and Gmod is the modeled heat flux at 0.05m.

The procedure results in optimal values forκ andλ for the chosen period. In this research, we will first analyze
the quality of the model by optimizing over a period of multiple days. Then we will optimize the parameters
over individual days and relate the results to the (daily) mean soil moisture variations.

3.3.1. Two-layer model
The procedure for the two-layer model is very similar. In the following enumeration, the differences are
shortly highlighted.

1. The domain now is from z =−0.10m up until 0.10m. Furthermore, the diffusivity is a (step)function of
z, i.e. κ= κ(z) (if z < 0m, κ= κveg , if z > 0, κ= κsoi l ). A range is created for possible values of κveg and
κsoi l .
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2. Whereas the mean temperatures for 2006 were nearly uniform in depth in the upper soil, for the vegeta-

tion an off-set of 0.9◦C in the yearly mean was found: T 2006
5cm = T 2006

10cm = T 2006
20cm = 12.0 ◦C and T 2006

I RT = 11.1
◦C. As described in the book [6], the yearly means should be equal if we assume that there are no heat
sources or sinks (on this time scale). Therefore, for all the measurements the yearly mean is subtracted
such that the used signals are averaged around 0◦C. For the initial condition, we use spline interpola-
tion over the radiation temperature TI RT (equation 3.1) and over the measured temperatures T5cm and
T10cm to the domain with step size ∆z. The boundary conditions are TI RT and T10cm , which are again
interpolated. Furthermore, T and its derivative must be continuous at the interface z = 0m. In a dis-
cretized domain however these requirements are only approximated, because the temperature is only
defined at the sides or in the middle of the discretized control volumes. Therefore, the discretization
should be fine enough near the interface as to accurately estimate and to prevent ’unnatural kinks’ in
the vertical temperature profile.

3. We use equation 3.14 to calculate the new temperature profile over the entire period.

4. To find the optimal parameters, equation 3.16 is used. The difference is that the modeled temperature
now is a function of both soil and vegetation diffusivities: T mod

j = T mod
j (κsoi l ,κveg ). Furthermore, the

measured and modeled temperature of equation 3.16 are now compared at z = 0.05m, whereas the
temperatures of the one-layer model were compared at 0.10m.

5. The calculation of G5cm in the two-layer method is not done with a forward difference scheme but with
a central difference scheme because the domain is not limited at z = 0.05m. The central difference
scheme reads

G(0.05m, t ) =−λT (0.05m+∆z, t )−T (0.05m−∆z, t ))

2∆z
. (3.18)

The parameter λ is again optimized by minimizing the error in G calculated with equation 3.17.





4
Results and Discussion

4.1. Modeling heat transfer in soil
As stated in the first research question, we investigate whether it is possible to model the soil as a homo-
geneous medium and solve for the temperature T (z, t ) and soil heat flux G(z, t ) with an explicit numerical
scheme. As described in section 3.3, a part of the first step is to cut the signal into the desired period. In the
proceeding section, we use the period 07/07/2006-17/07/2006. Figure 4.1 shows the observed temperature
underneath a bare soil surface and a grass-covered surface.

The figure shows that the amplitudes (extrema) for bare soils (4.1a) are larger than that of grass-covered
soils (4.1b), which is stressed by plotting them on the same scale. This is ’the insulating effect of grass’ and will
be further discussed in section 4.4. Furthermore, we see that the amplitude decreases with depth and that
the phase shifts to the right. The book of Moene and van Dam [6] shows that this behavior can be explained
by prescribing soil temperature as (a summation of) sinuses. Here, we will briefly demonstrate the concept
with a single sinus. Let’s assume that we have a semi-infinite homogeneous soil where at the surface (z = 0m)
the temperature is prescribed as

T (0, t ) = T + A(0)sin(ωt ). (4.1)

In this equation, T is the mean and A(0) is the amplitude in [K] or [◦C] and ω is the frequency of the wave in
[s−1]. The lower boundary condition is T (∞, t ) = T , and the solution of the problem is

T (z, t ) = T + A(z)sin(ωt − z

D
). (4.2)

In this equation, the amplitude is (indeed) decreasing with depth as

A(z) = A(0)e−z/D (4.3)

and D is the damping depth in [m] given by

D ≡
√

2κ

ω
. (4.4)

Equation 4.2 shows that the phase of the signal indeed shifts over depth.

17
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(a)

(b)

Figure 4.1: In the figure, the temperature data for depths of 5, 10 and 20cm are given for the period
07/07/2006-17/07/2006. Figure (a) represents a bare soil, figure (b) represents a grass-covered soil.

Step 2 of the procedure was to set an IC and two BC’s. The IC is created by using spline interpolation over
the temperatures T5cm , T10cm , and T20cm at 07/07/2006 00:00:00 to the domain with ∆z = 1cm. The BC’s are
the measurements of T5cm and T20cm , which are interpolated from the measurement interval 600s to the time
step interval ∆t = 30s. As mentioned in section 3.3, the modeled temperature is compared to the measured
temperature at 10cm depth (which is shown in red in figure 4.1) to optimize the diffusivity. This process is
visualized in figure 3.1.

The use of spline interpolation to create the initial condition will probably cause some errors. During
the project, other approaches have been studied as well, for example, an initial temperature profile constant
over height, a linear interpolation between the used signals, or using the FTCS scheme twice (to first create
an initial condition after which the rest of the temperature is calculated). Spline interpolation was the best
choice because its performance was good enough and the computational cost was not too high.
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Steps 3 and 4 of the procedure are performed by calculating T (z, t ) for different values for κ and min-
imizing the difference between the model predicted and the observed temperature. Figure 4.2 shows the
calculated error eT plotted against the inserted κsoi l , for both the bare and grass-covered soil.

(a) Minimum is located at κsoi l = 3.37 ·10−7 m2/s and eT = 0.21 ◦C.

(b) Minimum is located at κsoi l = 3.22 ·10−7 m2/s and eT = 0.08 ◦C.

Figure 4.2: The error eT is plotted against κsoi l for soil underneath bare surface (a) and for soil under grass
surface (b) for the period 07/07/2006-17/07/2006.

The optimal parameters are κsoi l = 3.37 ·10−7 m2/s for mineral soil underneath bare surface and κsoi l =
3.22·10−7 m2/s for mineral soil underneath grass surface. The minimum errors are then respectively eT = 0.21
◦C and eT = 0.08 ◦C. Both curves have a remarkably similar ’L’-shaped form: the lines are steep on the left side
of the minimum, whereas they are smooth on the right side of the minimum. Mathematically, this translates
to a large gradient left to the minimum and a small gradient right to the minimum. Practically this means that
the model is more sensitive for a too low value of κsoi l than for a too high value. This is an important result
that will come back in section 4.4. The figure also shows that the error for bare soil is overall larger than that
of grass-covered soil. Equation 3.16 shows that this makes sense, as the magnitude of the error scales with
the square root of the residuals. Figure 4.1 shows that bare soil has greater extrema than grass-covered soil,
so any error in the model is enlarged. To generalize the error plots, one could choose to normalize the error
calculation with the amplitude of the signal. In figure 4.2, the scaling factor between the two plots is about 4,
which is similar to the scaling factor between the amplitudes plotted in figures 4.1a and 4.1b.
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Figures 4.3a and 4.3b show the measured temperature and the modeled temperature at z = 10cm depth
for the optimal value for κsoi l (that is, the lowest value for eT ). Note that the measured temperature plotted
in blue is nearly invisible as both lines are almost overlying.

(a) κsoi l = 3.37 ·10−7 m2/s and eT = 0.21 ◦C.

(b) κsoi l = 3.22 ·10−7 m2/s and eT = 0.08 ◦C.

Figure 4.3: The measured and modeled temperature at 10 cm depth for bare soil (a) and grass-covered soil
(b). Note that the blue line is nearly invisible as both lines are almost overlying.

The numerical model seems to work very well as both lines almost coincide. This answers (a part of)
the first research question and shows that indeed it is feasible to model soil temperature dynamics with a
(relatively) simple numerical scheme assuming homogeneous soil properties. Hereby the scheme uses two
given boundary conditions and one initial condition. One could argue that the chosen domain (0.05m up to
0.20m) and the chosen period (07/07/2006-17/07/2006) are respectively small and short. During the project,
larger domains and longer periods have been studied with similar results (not shown). The domain can be
stretched up to a depth of 1m (limited by the data set) and the period can be extended up to months or even
years. This report however is a proof of principle. Extension to larger domains and longer time intervals is
beyond our scope here.
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To answer the first research question, a comparison is made with the results of the harmonic model1,
which are given in figure 4.4:

(a) κsoi l = 3.28 ·10−7 m2/s and eT = 0.20 ◦C.

(b) κsoi l = 3.03 ·10−7 m2/s and eT = 0.10 ◦C.

Figure 4.4: The measured and modeled temperature at 10 cm depth for bare soil (a) and grass-covered soil
(b) for the harmonic model. The results are very similar to that of the numerical model depicted in figure 4.3.

The figure shows that the results are extremely similar and that the errors are of the same order of mag-
nitude: The error for soil under bare surface now is eT = 0.20 ◦C instead of eT = 0.21 ◦C, and soil under
grass surface now is eT = 0.10 ◦C instead of eT = 0.08 ◦C. The optimal diffusivities of the harmonic model
are somewhat lower than that of the numerical model: For bare surface, κsoi l = 3.28 · 10−7 m2/s instead of
κsoi l = 3.37 ·10−7 m2/s, and for grass surface, κsoi l = 3.03 ·10−7 m2/s instead of κsoi l = 3.22 ·10−7 m2/s. This
can be explained by the error-plots of figure 4.2, where is shown that the model is robust to small changes in
diffusivity.

1Analytical solutions were obtained by dr. Van der Linden (co-supervisor of this project), which are going to be published as peer-
reviewed paper soon (2021). His results are used here to benchmark our numerical results, with permission of dr. Van der Linden and
prof. Van de Wiel.
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With the numerically calculated temperature profile T (z, t ), step 5 can be executed, and G(0.05m, t ) can
be diagnosed directly for a range of λ’s. The associated measurements are corrected with the factor Φ of
equation 3.2. The error is calculated with equation 3.17. Figure 4.5 shows the error eG versus the inserted
λsoi l underneath a bare and grass surface for the period 07/07/2006-17/07/2006. The optimal parameters are
λsoi l = 1.04 Wm−1K−1 for bare soil and λsoi l = 0.57 Wm−1K−1 for grass-covered soil. The errors respectively
are eG = 14.6 Wm−2 and eG = 1.7 Wm−2.

(a) Minimum is located at λsoi l = 1.04 Wm−1K−1 and eG = 14.6 Wm−2.

(b) Minimum is located at λsoi l = 0.57 Wm−1K−1 and eG = 1.7 Wm−2.

Figure 4.5: The error eG is plotted against the inserted value for λsoi l for bare soil (a) and grass-covered soil
(b) for the period 07/07/2006-17/07/2007.

In contrast to the results above, where the minima in the error functions of eT versus κ were not sharply
defined (the plots were ’L’-shaped), the minima in figure 4.5 are. This means that the model is indeed sensitive
to any deviation of λ. Furthermore, we see again that the overall error in the bare soil is larger than that of
the grass-covered soil. Again this can be explained because the extrema in G are greater for bare soil than
for grass-covered soil, as can be seen in figure 4.6. Like mentioned before, the result could be generalized by
scaling with the maximum amplitudes over bare soil and grass-covered soil respectively.
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Figure 4.6 shows the measured and modeled soil heat flux at z = 5cm depth using the optimized value
λsoi l (that is, the lowest value for eG ). The measured soil heat flux is corrected for instrumental shape and
properties (see equation 3.2). Again, the model seems fairly accurate. For grass-covered soil (4.6b), the obser-
vational data and modeled heat flux nearly coincide. For bare soil (4.6a), some of the peaks are not modeled
that well. We have modeled the heat flux with a constant value for λ. As we will investigate in section 4.2, it
is possible that λ itself is variable over time due to e.g. temporal changes in soil moisture. One could even
consider varying λ over shorter time intervals. However, the smaller the time interval, the larger the influence
of noise of the measurements. The minimum time interval in this research to optimize κ and λ is therefore
an individual day.

(a) λsoi l = 1.04 Wm−1K−1 and eG = 14.6 Wm−2.

(b) λsoi l = 0.57 Wm−1K−1 and eG = 1.7 Wm−2.

Figure 4.6: The measured (and corrected) and modeled soil heat flux at 5cm depth for bare soil (a) and grass-
covered soil (b).

To illustrate that κ and λ may vary due to variation in soil moisture, another 11-days period, 25/08/2006-
04/09/2006, is analyzed in the same way. These periods are chosen because they show a difference in soil
moisture. The mean moisture of the periods are ΘP1 = 0.13 and ΘP2 = 0.24, where P1 denotes the first period
and P2 the second period. Table 4.1 presents the periods and the optimized parameters of the bare and grass-
covered soil. The resulting figures for period 2 can be found in appendix A.

Table 4.1 shows that κ barely changes in the two different periods, only 11% (soil underneath bare surface)
and 2% (underneath grass surface). This agrees with figure 2.2, where κ does not increase or decrease con-
siderably with soil moisture. Furthermore, figure 4.2 shows that the model is not sensitive to any deviations
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Table 4.1: In this table, the optimized parameters κ and λ are presented for two periods. The parameters are
given for both bare and grass-covered soils.

Period Dates κbar e [m2/s] λbar e [Wm−1K−1] κg r ass [m2/s] λg r ass [Wm−1K−1]
1 7-17 July 2006 3.37 ·10−7 1.04 3.22 ·10−7 0.57
2 25 Aug-4 Sept 2006 3.74 ·10−7 1.20 3.29 ·10−7 1.01

in κ. λ on the other hand increases with 15% (bare surface) and 77% (grass surface) from the dry to the wet
period. Indeed figure 2.2 shows that λ should increase with increasing moisture and figure 4.5 shows that the
model is sensitive to deviations in λ.
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4.2. Thermal parameters and soil moisture
The preliminary analysis above indicated that we expect the most variation in λ compared to soil moisture.
Next, we are going to quantity this dependence in more detail i.e. we aim to monitor λ= f (Θ). To this end, we
use the numerical scheme as described in section 3.3 to find the optimal values for the parameters. In section
4.1 we applied the model on two periods of 11 days. In this section, we will optimize the parameters for
separate days from 01/05/2006 to 31/10/2006. For each day, the diffusivity and conductivity are determined.
Figure 4.7 shows the daily determined optimal parameters κopt (figure (a)) and λopt (figure (b)) versus time.
In the same figures, the soil moisture at 5cm depth is plotted as to visualize a possible relation. Please note
that the soil moisture is measured beneath grass-covered soil only. Therefore, in this part of the project, the
model is applied to grass-covered soil only (and not to soil covered by bare surface).

(a)

(b)

Figure 4.7: In this figure, the optimal values for the parameters κ and λ per day are plotted in red versus
time. The soil moisture at 5cm depth is plotted in blue. The diffusivity and soil moisture do not show a clear
correlation, but the conductivity and soil moisture do.

Figure 4.7a does not show a clear relation between diffusivity and moisture. This is in line with the con-
ceptual view in figure 2.2, where it was shown that moisture dependencies in both thermal conductivity and
thermal heat capacity largely cancel each other, such that the diffusivity is almost independent of soil mois-
ture content. Figure 4.7b however does show a clear relation between conductivity and soil moisture. The
peaks in soil moisture at the beginning of May, beginning of June, and beginning of September, are accom-
panied by peaks of conductivity. This is supported by the relation shown in figure 2.2, where λ goes to a
maximum ifΘ goes to a maximum.
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The relations between moisture and thermal parameters can be visualized more clearly by making scatter
plots betweenΘ and the conductivity or diffusivity. This is done in figure 4.8. The red data points denote days
where the fits are relatively inaccurate (i.e. eT > 0.1◦C or eG > 5 Wm−2).

(a) Red data points denote days where eT > 0.1 ◦C.

(b) Red data points denote days where eG > 5 Wm−2.

Figure 4.8: This figure shows the daily determined thermal diffusivity (a) and conductivity (b) versus the
daily mean soil moisture measured at 5cm. The red data points denote days where the errors eT and eG are
relatively large.

For the diffusivity, the expectation is that for very low values of Θ the diffusivity increases for increasing
moisture, after which the diffusivity hits a maximum and starts decreasing (see figure 2.2). Because there is
no numerical data given in figure 2.2, it is not possible to say where the maximum is. In this research, we
deal with ’heavy basin clay’ [7]. The curve in figure 2.2 for clay barely shows any increase or decrease. It is
hard to relate figure 4.8a to figure 2.2. It seems that the diffusivity increases over moisture for small values for
moisture, after which it reaches a ’ceiling’. The values for κ for values of Θ< 0.3 however are too scattered to
make this claim founded and to draw a definite conclusion. The data in this region should be acquired more
precisely. Furthermore, it is recommendable to calculate κ over a larger region of Θ to accurately derive a
numerical relation.

Secondly, 4.7b shows the relation between λ and Θ. Theoretically, it is expected that the conductivity
would rapidly increase (see explanation section 2.2) and then level off. If the red data points are omitted,
which seems reasonable because the fit at those days is poor (eG > 5 Wm−2), the theoretically expected be-
havior seems to be present in our data as well. Below we elaborate on the quantitative relation.
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In figure 4.9, we show a yellow fit curve through the blue data points of 4.7b. The fit has the form y = axb+c
and is optimized by Matlab (minimizing least squared deviations). In the equation, x denotes soil moistureΘ
[-] and y denotes conductivity λ [Wm−1K−1]. There is no theoretical foundation behind the equation of the
fit. It is purely based on the description that λ increases for increasing moisture but that the increase slows
down. Figure 2.2 does for example not show if the curves go through the origin or if λ reaches a constant
maximum.

Figure 4.9: This figure is the same as figure 4.8b with an added fit through the blue data points of the form
y = axb+c. The results of the fit are a =−0.14 Wm−1K−1, b =−0.91 and c = 1.49 Wm−1K−1, with a root-mean-
square error (RMSE) of 0.11Wm−1K−1.

The results of the fit are a =−0.14 Wm−1K−1, b =−0.91 and c = 1.49 Wm−1K−1, with a root-mean-square
error (RMSE) of 0.11Wm−1K−1. Next, we consider limit behaviour. If soil moisture goes to infinity, λ goes to

c = 1.49 Wm−1K−1 according to the fit, which seems reasonable. However, if Θ < (−c
a )

1
b = 0.07, λ would be

negative, which is not allowed. Therefore we recommend not to use this empirical formulation for values of
Θ lower than 0.1.

The current research was done on clay soil in a moderate climate. As to assess the generality of the results,
we also analyzed silty clay loam soil in a semi-arid environment. However, in view of brevity, those results are
given in appendix B.
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4.3. Modeling heat transfer in soil and vegetation: a two-layer system
The third goal in this research was to apply the numerical scheme to a two-layer system, which consists
of a vegetation layer (z from -0.10m to 0m) and a soil layer (z from 0m to 0.10m) which are both assumed
homogeneous in itself, to calculate the temperature T (z, t ). The procedure is about the same as in section 4.1,
however, the thermal diffusivity now has two distinct values: For the vegetation layer, where −0.1m< z <0m,
κ = κveg , and for the soil layer, where 0m< z <0.1m, κ = κsoi l . Again, we select a period of data, as can be
seen in figure 4.10, where the radiation temperature TI RT and the soil temperatures T5cm and T10cm (5cm and
10cm underneath the grass) are given. The radiation temperature is calculated out of the longwave radiation
via equation 3.1.

In [6] was shown that in soil the amplitude of the temperature decreases with depth. Furthermore, there
is a phase shift compared to the surface temperature. Both aspects are visible in figure 4.10 for the soil tem-
peratures, but also for the radiation temperature TI RT . This motivates to model the grass layer (similarly to
soil) as a homogeneous layer, but with different thermal properties: hence, the two-layer model. Note also
the insulating effect of the vegetation: The distance from TI RT to T5cm is only 15cm, but the temperature
amplitude already has decreased considerably.

Figure 4.10: In the figure, the temperature data for depths of 5 and 10cm are given for the period 07/07/2006-
17/07/2006. The soil is covered with grass. The radiation temperature (IRT) is calculated out of the longwave
radiation via equation 3.1.

The domain is created from z = −0.10m up until 0.10m in steps of ∆z = 0.01m and a range is created for
possible values of κveg and κsoi l . As explained in section 3.3, the mean temperatures for 2006 are subtracted

from the data. Because T 2006
I RT = 11.1 ◦C and T 2006

5cm = T 2006
10cm = 12.0 ◦C, this results in a raise of the TI RT of

0.9◦C with respect to the soil temperatures. The boundary conditions are the radiation temperature TI RT

and the temperature at 10cm depth T10cm interpolated to the 30s interval. The initial condition is a spline
interpolation with ∆z = 1cm over the temperatures TI RT , T5cm and T10cm .
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The third step is to calculate T (z, t ) for each combination of κsoi l and κveg . The associated error can then
be calculated via equation 3.16, where the error is a function of κ and κ is a function of κveg and κsoi l , or
eT (κ) = eT (κveg ,κsoi l ). The temperature predicted by the numerical model at 5cm depth is compared to the

observed temperature. Note that the mean temperature T 2006
5cm is added back to the modeled temperature

before calculating the error. We can visualize eT as an error landscape, as can be seen in 3D (a) or in 2D top
view (b) in figure 4.11.

(a)

(b)

Figure 4.11: The error landscape of the two-layer method in 3D (a) and in 2D top view (b), where the error is
plotted as a function of diffusivity of soil (κsoi l ) and vegetation (κveg ) for the period 07/07/2006-17/07/2006.
The global minimum is found at κsoi l = 8.2 ·10−7 m2/s and κveg = 4.1 ·10−7 m2/s, where eT = 0.27 ◦C, and is
denoted by the red dot.

The global minimum in the error landscape is denoted by a red dot, as can be seen in the 2D top view. It
is located at κsoi l = 8.2 ·10−7 m2/s and κveg = 4.1 ·10−7 m2/s, where eT = 0.27 ◦. We note that the found soil
diffusivity κsoi l is greater than found in section 4.1 (κsoi l = 3.22 ·10−7 m2/s), which will be further discussed
in section 4.4. The dark blue area covers a large area, which means that the error landscape around the
minimum is relatively ’flat’ and so the model is robust to parameter changes.
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Again, the results are compared to that of the harmonic model. The resulting figures are however not
shown here, since the harmonic model has a slightly different approach for two layers. The harmonic model
optimizes the diffusivity parameter throughout the soil layer first, whereafter it extends to the grass layer
and optimizes the grass diffusivity parameter. Figure 4.4b already showed that κsoi l = 3.0 ·10−7 m2/s for the
one-layer model of the grass-covered soil, and so this is also the value for the soil diffusivity in the harmonic
two-layer model. This is far away from the numerical result of κsoi l = 8.2 ·10−7 m2/s (figure 4.11). The value
for the diffusivity of the grass however is rather large for the harmonic model compared to the numerical
model: κveg = 13.3 ·10−7 m2/s and κveg = 4.1 ·10−7 m2/s. To be able to compare the results of the two models,
the harmonic model could be optimized for the two parameters κsoi l and κveg simultaneously2.

Figure 4.12 shows the measured temperature and the modeled temperature at z = 5cm depth for the op-
timal values for κsoi l = 8.2 ·10−7 m2/s and κveg = 4.1 ·10−7 m2/s. Note again that the measured temperature
plotted in blue almost coincides with the modeled temperature in red. This result is nontrivial, if one con-
siders the enormous change of the signal between the boundary of the system TI RT and the temperature
prediction at 5cm in the soil (see the enormous change in amplitude in figure 4.10).

Figure 4.12: The measured and modeled temperature at 5cm depth for grass-covered soil. The modeled
temperature is calculated with the two-layer model. Note that the blue data line almost coincides with the
red model line.

The two-layer system seems to work surprisingly well (in view of its simplicity) and the blue and red lines
almost coincide. Compared to figure 4.3b however, the blue data line in figure 4.12 is more visible. This
means that the residuals are greater, which is supported by the difference in error: eT = 0.08 ◦C for the one-
layer model versus eT = 0.27 ◦C for the two-layer model. One explanation is that if we compare figure 4.1b
with figure 4.10 we see that the radiation temperature TI RT has greater extrema than the soil temperatures, so
the upper boundary condition has a larger influence. Another argument is that whereas the one-layer model
only uses one assumed homogeneous layer, the two-layer model uses two. Vegetation (grass in this case)
is not as homogeneous as soil, as it contains more air and is easier deformable (for example by wind). A last
logical explanation for the increase in eT is that the error for the two-layer model is evaluated at 5cm, whereas
for one-layer is evaluated at 10cm, which by nature has a smaller amplitude overall.

2Analytical solutions were obtained by dr. Van der Linden (co-supervisor of this project), which are going to be published as peer-
reviewed paper soon (2021). His results are used here to benchmark our numerical results, with permission of dr. Van der Linden and
prof. Van de Wiel.
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With the numerically calculated temperature profile T (z, t ), step 5 can be executed, where G(0.05m, t )
is calculated for a range of λ’s with equation 3.18. The error is calculated with equation 3.17, in which the
corrected heat flux Gcor is the measured heat flux corrected with the factor Φ (equation 3.2). The error eG is
plotted against the conductivity λsoi l in figure 4.13a. The optimal parameter is λopt = 0.62Wm−1K−1 with an
error of eG = 4.49Wm−2. The optimal modeled heat flux is plotted in 4.13b together with the measured heat
flux, which is corrected for instrumental shape.

(a)

(b)

Figure 4.13: Figure (a) show the error function of G . The minimum is located at λopt = 0.62Wm−1K−1 with an
error of eG = 4.49Wm−2. Figure (b) shows the modeled heat flux and the measured data, which is corrected
for instrumental shape.

Similar to section 4.1, a second period is analyzed to compare the results, which is again from 25/08/2006-
04/09/2006. The period is analyzed with the two-layer model in the same way as period 1 and the results can
be found in appendix A. The results are summarized in table 4.2.

Table 4.2: In this table, the optimized parameters κsoi l , κveg and λsoi l are presented for two periods. These
parameters are found by using the two-layer method.

Period Dates κsoi l [m2/s] κveg [m2/s] λsoi l Wm−1K−1

1 7-17 July 2006 8.2 ·10−7 4.1 ·10−7 0.62
2 25 Aug-4 Sept 2006 10.0 ·10−7 2.1 ·10−7 1.13
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4.4. Discussion and implications of results
As can be seen in figures 4.1 and 4.6, the extrema of temperature and heat flux are larger for the bare soil than
for the grass-covered soil, which can best be described as ’the insulating effect of grass’: During the day, less
heat is stored into grass-covered soil, with the consequence that during the night, less heat is stored back into
the atmosphere. This insight was also discussed in [5] by Maarten Kruis, who provided the example that this
phenomenon leads to a mean difference in heat flux at the soil interface of about 20Wm−2 during the night
for the year 2003. This is an important argument in removing grass from orchards in the battle against fruit
frost.

The number of 20Wm−2 was calculated by using two thermal parameters: diffusivityκ and conductivityλ.
In our research, the goal was to develop a numerical model to investigate the robustness of these parameters.
Figure 4.3 shows that the numerical model works and that it can be used to analyze the thermal parameters.

As can be seen in figure 4.2, the error-plot eT versus κ has a sort of an ’L’-shape: a large gradient at the
left of the minimum and a small gradient at the right. The optimal diffusivity for a grass-covered soil for the
shown period is κsoi l = 3.22 ·10−7 m2/s with an error of eT = 0.08 ◦C. For example, let’s consider a value of
κsoi l = 8.2 ·10−7 m2/s, as was calculated with the two-layer model. The error of the one-layer model would
increase to eT = 0.25 ◦C (figure 4.2), which still is fairly accurate. We conclude that the value of κsoi l does not
matter that much for the outcome of this numerical model and it is a robust parameter. This is a reason why
no clear relation between daily diffusivity and soil moisture was obtained: For low values of soil moisture, κ
spreads out over a large range, which can be explained by the flatness of the error plots.

The error function of eG versus the conductivity λ shows a ’U-shape’ dependency, as can be seen in fig-
ure 4.5. This means that the model is sensitive to chosen values of λ. Therefore, the model is a good tool
to visualize the relation between daily conductivity and soil moisture (and vice versa). In figure 4.9 this is
depicted along with a mathematical fit function to the data. The fit cannot be regarded to be universal for the
full moisture range, as it would result in negative values for λ for low values of soil moisture. Nevertheless, it
gives an impression of how the relation could look like in the region 0.1 <Θ < 0.6. To ameliorate the quality
of the fit, more data should be acquired over a broader range ofΘ.

The third goal was to model the temperature and heat flux throughout a two-layer model, consisting of
grass and soil, which was successful (figures 4.12 and 4.13). It was observed that the ’optimal’ κsoi l value
for this soil in this two-layer system differed from the optimized value in the one-layer system. This can be
explained by the robustness of the results to parameter variation (insensitivity to κsoi l in general). Another
explanation for the difference in κsoi l for the one- and two-layer model is that soil just under the surface is
less homogeneous than further away from the surface. In this shallow soil, more organic material is present
(think of roots of vegetation or (parts of) small animals). Also, it is not completely smooth at the surface but
rather a bit bumpy. Moreover, weather - such as rain or wind - has the largest influence on the shallow soil.

Finally, some crude assumptions were made in this study to simplify reality:

• The depth of the sensors is constant.

• The soil remains in place (although it may be influenced by root growth, rainfall, and animal move-
ment).

• Grass remains in place (although it deforms for example by wind) and is of a constant 10cm height
(although it grows and it is mowed).

We, therefore, recommend that in future work, those assumptions are re-assessed, so that additional im-
provements or model refinements can be made to describe reality.
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Conclusion

Here, the research questions will be answered, and some important discussion points and recommendations
are provided.

1. Can we reproduce the temperature and soil heat flux profiles throughout a soil layer with a numerical
model and are the solutions accurate in comparison with a harmonic benchmark model?

The numerical model accurately reproduced the temperature and heat flux profiles, both for bare soil and
grass-covered soil. The profiles were first modeled over two 11-days periods with constant thermal parame-
ters, after which they were modeled for individual days, with daily varying parameter values. The difference
between the two periods showed that the diffusivity parameter was not influenced (much) by soil moisture,
but that conductivity was. The results were very similar to those of the analytical, harmonic model. This
demonstrates that the developed numerical model can be used to find and analyze the thermal parameters.

2. Can we use the numerical model to estimate the thermal parameters of the soil?

(a) How robust are these parameters?

(b) How do these parameters relate to soil moisture?

The numerical model was used to estimate the thermal parameters of the soil by minimizing the difference
between the modeled temperature and heat flux profiles and the measured profiles. The modeled tempera-
ture proved not to be very sensitive to changes in diffusivity, so diffusivity is a robust parameter. In contrast,
the model performance showed to be sensitive to the choice of the conductivity parameters.

An advantage of the numerical model compared to the harmonic model is that the numerical model is
more flexible and is also suited to model short periods (individual days) subject to time-dependent parameter
changes. The daily determined parameters could therefore be related to the daily mean soil moisture. The
diffusivity does not show a clear dependency on soil moisture. The conductivity on the other hand does show
a clear dependency, from which a quantitative relation was described in the investigated region of moisture
values covered by the observations. We recommend that in future research the investigated moisture range is
broadened as to further generalize the results.

3. Can we reproduce the temperature and soil heat flux profiles throughout a two-layer system of vegeta-
tion and soil?

The numerical model for the one-layer soil domain was extended with a vegetation layer. Again, the tem-
perature and heat flux profiles were modeled and showed good agreement with the measurements. The
optimal value for the diffusivity of the soil layer was however higher than when the model was applied to a
single grass-covered soil layer for the same period. If we would insert this value in the one-layer model, the
root-mean-square error would increase from eT = 0.08 ◦C to eT = 0.25 ◦C, which still is fairly accurate. We
conclude again that the model is not very sensitive to the value of the diffusivity. Another reason for the in-
crease in diffusivity could be that the assumption of homogeneity is not justified for the grass layer and the
direct layer beneath it, as the composition of shallow soil is influenced greatly by weather, plants, and ani-
mals. We recommend that in future research, the homogeneity of the soil is assessed at different depths, to
further improve the model results.
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We conclude that the research questions have been answered and that this numerical model can be used
to study heat transfer in the vegetation-soil continuum. We used the model to demonstrate the influence
of grass-cover or bare surface on heat transfer into or out of the soil. It would be interesting to see how the
removal of vegetation would play out in practice: The temperature of the orchard would increase during the
night, but on the other hand, it would be impractical for a farmer to remove all its grass (think for example
of heavy machinery that is not able to drive over mud). It would be interesting to set up a study to compare
the yields of orchards in grass-covered and bare surface environments. Furthermore, we used the model
to quantitatively describe the relation between soil moisture and soil heat conductivity in the investigated
region of moisture. We recommend broadening this region as to generalize the relation.



A
Extra figures second period

A.1. One-layer model
In this section of the appendix, period 2 (25/08/2006-04/09/2006) is analysed for the one-layer model. The
calculated parameters are presented in table 4.1. Figure A.1 shows the data for T5cm , T10cm , and T20cm for
bare soil and grass soil for the period 25/08/2006-04/09/2006. Compared to figure 4.1, the y-axis is shifted 10
degrees downwards.

(a)

(b)

Figure A.1: In the figure, the temperature data for depths of 5, 10 and 20cm are given for the period
25/08/2006-04/09/2006. Figure (a) represents a bare soil, figure (b) represents a grass soil.
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Figure A.2 shows the calculated error eT plotted against the inserted κsoi l , for both the bare and grass soil.
The optimal parameters are κsoi l = 3.74 ·10−7 m2/s for bare soil and κsoi l = 3.29 ·10−7 m2/s for grass soil. The
minimum errors are then respectively eT = 0.11 ◦C and eT = 0.05 ◦C.

(a) Minimum is located at κsoi l = 3.74 ·10−7 m2/s and eT = 0.11 ◦C.

(b) Minimum is located at κsoi l = 3.29 ·10−7 m2/s and eT = 0.05 ◦C.

Figure A.2: The error eT is plotted against κsoi l for bare soil (a) and grass soil (b) for the period 25/08/2006-
04/09/2006.
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Figure A.3 shows the measured temperature and the modeled temperature at z = 10cm depth for the
optimal value of κsoi l . Compared to figure 4.3, the y-axis is shifted 10 degrees downwards.

(a) κsoi l = 3.74 ·10−7 m2/s and eT = 0.11 ◦C.

(b) κsoi l = 3.29 ·10−7 m2/s and eT = 0.05 ◦C.

Figure A.3: The measured and modeled temperature at 10 cm depth for bare soil (a) and grass soil (b).
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Figure A.4 shows the error eG versus the inserted λsoi l for bare soil and grass soil for period 2. The opti-
mal parameters are λsoi l = 1.20 Wm−1K−1 for bare soil and λsoi l = 1.01 Wm−1K−1 for grass soil. The errors
respectively are eG = 7.33 Wm−2 and eG = 2.26 Wm−2.

(a) Minimum is located at λsoi l = 1.20 Wm−1K−1 and eG = 7.33 Wm−2.

(b) Minimum is located at λsoi l = 1.01 Wm−1K−1 and eG = 2.26 Wm−2.

Figure A.4: The error eG is plotted against the inserted value of λsoi l for bare soil (a) and grass soil (b) for the
period 25/08/2006-04/09/2006.



A.1. One-layer model 39

Figure A.5 shows the measured and modeled soil heat flux at z = 5cm depth for the optimal values ofλsoi l .
The measured soil heat flux is also corrected for instrumental shape.

(a) λsoi l = 1.20 Wm−1K−1 and eG = 7.33 Wm−2.

(b) λsoi l = 1.01 Wm−1K−1 and eG = 2.26 Wm−2.

Figure A.5: The measured (and corrected) and modeled soil heat flux at 5cm depth for bare soil (a) and grass
soil (b).
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A.2. Two-layer model
In this section of the appendix, period 2 (25/08/2006-04/09/2006) is analysed for the two-layer model. The
calculated parameters are presented in table 4.2. Figure A.6 shows the error landscape eT as a function of
κveg and κsoi l for period 2. The minimum error of eT = 0.15 ◦C is located at κsoi l = 10.0 · 10−7 m2/s and
κveg = 2.1 ·10−7 m2/s.

(a)

(b)

Figure A.6: The error landscape of the two-layer method in 3D (a) and in 2D top view (b), where the error is
plotted as a function of diffusivity of soil (κsoi l ) and vegetation (κveg ) for the period 25/08/2006-04/09/2006.
The global minimum is found at κsoi l = 10.0 ·10−7 m2/s and κveg = 2.1 ·10−7 m2/s, where eT = 0.15 ◦C, and is
denoted by the red dot.
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Figure A.7a shows the radiation temperature TI RT and the soil temperatures T5cm and T10cm for the grass
soil for period 2. The radiation temperature is calculated out of the longwave radiation via equation 3.1.
Figure A.7b shows the measured and modeled temperature at 5cm depth for the optimal parameters κsoi l =
10.0 ·10−7 m2/s and κveg = 2.1 ·10−7 m2/s.

(a)

(b)

Figure A.7: Figure (a) shows the soil temperature data for depths of 5 and 10cm for period 2 for a grass soil.
The radiation temperature is also given, calculated via equation 3.1. Figure (b) shows the modeled and mea-
sured temperature at 5cm depth for the optimal parameters κsoi l = 10.0·10−7 m2/s and κveg = 2.1·10−7 m2/s.
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Lastly, step 5 is executed, where G(0.05m, t ) is calculated for a range ofλ’s from the calculated temperature
profile T (z, t ). The error function is depicted in figure A.8a, where eG is plotted against the inserted λ. The
optimal parameter is λopt = 1.13Wm−1K−1 with an error of eG = 3.81Wm−2. The modeled heat flux is plotted
in figure A.8b for the optimal conductivity, together with the measured heat flux corrected for instrumental
shape.

(a)

(b)

Figure A.8: Figure (a) show the error function of G . The minimum is located at λopt = 1.13Wm−1K−1 with an
error of eG = 3.81Wm−2. Figure (b) shows the modeled heat flux and the measured data, which is corrected
for instrumental shape.
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Data set Texas

In this appendix, the Texas data is analyzed in the same way as the Haarweg data in section 4.2. Figure B.1
shows the daily determined optimal parameters κopt (figure (a)) andλopt (figure (b)) versus time. In the same
figures, the soil moisture at 8cm depth is plotted to visualize a possible relation. We see that there are gaps in
the data set of the soil moisture. These gaps are filled by linear interpolation as an intermediate step in the
model, but do not play a role in the finalΘ,κ- andΘ,λ-plots.

(a)

(b)

Figure B.1: In this figure, the optimal values for the parameters κ andλ are plotted in red versus time. The soil
moisture at 8 cm depth is plotted in blue. Similarly to figure 4.7, the diffusivity does not show a clear relation
with soil moisture whereas the conductivity does.
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Figure B.1 shows that there is no clear relation between the peaks in diffusivity and soil moisture, but
there is a clear relation between the peaks in conductivity and moisture, which is the same result as we had
in section 4.2.

Again, we visualize the relations more clearly by making a Θ,κ- and a Θ,λ-plot, which are presented in
figure B.2. Note that the range of soil moisture is smaller compared to figure 4.8. The range of soil moisture of
the Haarweg data is approximately 0.1 to 0.6, whereas the range of soil moisture of the Texas data is approxi-
mately 0.1 to 0.3. The red data points are the days with soil moisture data gaps. The yellow line denotes a fit
of the form y = axb + c through the blue data points and is optimized by Matlab.

(a)

(b)

Figure B.2: This figure shows the daily determined thermal diffusivity (a) and conductivity (b) versus the daily
mean soil moisture measured at 8cm. The red data points denote days where there is a soil moisture data gap.
The results of the fit are a =−0.13 Wm−1K−1, b =−0.66 and c = 1.08 Wm−1K−1, with a root-mean-square error
(RMSE) of 0.03Wm−1K−1.

The range of soil moisture is smaller than that of the Haarweg data set, but the relation between the
conductivity λ and soil moisture Θ is visible. The conductivity increases for increasing moisture, but the
increase slows down. The results of the fit are a =−0.13 Wm−1K−1, b =−0.66 and c = 1.08 Wm−1K−1, with a
root-mean-square error (RMSE) of 0.03Wm−1K−1. If soil moisture goes to infinity, λ goes to c = 1.08 Wm−1K−1

according to the fit, which seems reasonable. However, ifΘ< (−c
a )

1
b = 0.04, λ would be negative, which is not

allowed. The diffusivity again does not show a clear relation with the moisture.
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