

Delft University of Technology

Visual model-predictive localization for computationally efficient autonomous racing of a
72-g drone

Li, Shuo; van der Horst, Erik; Duernay, Philipp; De Wagter, Christophe; de Croon, Guido C.H.E.

DOI
10.1002/rob.21956
Publication date
2020
Document Version
Final published version
Published in
Journal of Field Robotics

Citation (APA)
Li, S., van der Horst, E., Duernay, P., De Wagter, C., & de Croon, G. C. H. E. (2020). Visual model-
predictive localization for computationally efficient autonomous racing of a 72-g drone. Journal of Field
Robotics, 37(4), 667-692. https://doi.org/10.1002/rob.21956

Important note
To cite this publication, please use the final published version (if applicable).
Please check the document version above.

Copyright
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent
of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Takedown policy
Please contact us and provide details if you believe this document breaches copyrights.
We will remove access to the work immediately and investigate your claim.

This work is downloaded from Delft University of Technology.
For technical reasons the number of authors shown on this cover page is limited to a maximum of 10.

https://doi.org/10.1002/rob.21956
https://doi.org/10.1002/rob.21956

J Field Robotics. 2020;1–26. wileyonlinelibrary.com/journal/rob | 1

Received: 15 May 2019 | Revised: 25 February 2020 | Accepted: 6 April 2020

DOI: 10.1002/rob.21956

R EGU LAR AR T I C L E

Visual model‐predictive localization for computationally
efficient autonomous racing of a 72‐g drone

Shuo Li | Erik van der Horst | Philipp Duernay | Christophe De Wagter |

Guido C. H. E. de Croon

Micro Air Vehicle Lab, Delft University of

Technology, Delft, The Netherlands

Correspondence

Shuo Li, Micro Air Vehicle Lab, Delft University

of Technology, 2629HS Delft, The Netherlands.

Email: s.li-4@tudelft.nl

Abstract

Drone racing is becoming a popular e‐sport all over the world, and beating the best

human drone race pilots has quickly become a new major challenge for artificial

intelligence and robotics. In this paper, we propose a novel sensor fusion method

called visual model‐predictive localization (VML). Within a small time window, VML

approximates the error between the model prediction position and the visual

measurements as a linear function. Once the parameters of the function are esti-

mated by the RANSAC algorithm, this error model can be used to compensate the

prediction in the future. In this way, outliers can be handled efficiently and the vision

delay can also be compensated efficiently. Theoretical analysis and simulation re-

sults show the clear advantage compared with Kalman filtering when dealing with

the occasional large outliers and vision delays that occur in fast drone racing. Flight

tests are performed on a tiny racing quadrotor named “Trashcan,” which was

equipped with a Jevois smart camera for a total of 72 g. An average speed of 2m/s is

achieved while the maximum speed is 2.6 m/s. To the best of our knowledge, this

flying platform is currently the smallest autonomous racing drone in the world, while

still being one of the fastest autonomous racing drones.

K E YWORD S

autonomous drone race, visual model‐predictive localization

1 | INTRODUCTION

Drones, especially quadrotors, are transformed by enthusiasts in spec-

tacular racing platforms. After years of development, drone racing has

become a major e‐sports, where the racers fly their drones in a preset

course at high speed. It was reported that an experienced first‐person
view (FPV) racer can achieve speeds up to 190 km/h when sufficient

space is available. The quadrotor itself uses an inertial measurement unit

(IMU) to determine its attitude and rotation rates, allowing it to execute

the human's steering commands. The human mostly looks at the images

and provides the appropriate steering commands to fly through the track

as fast as possible. The advance in research areas such as computer

vision, artificial intelligence, and control raises the question: would drones

not be able to fly faster than human pilots if they flew completely by

themselves? Until now, this is an open question. In 2016, the world's first

autonomous drone race was held at IROS 2016 (Moon, Sun, Baltes, &

Kim, 2017), which became an annual event trying to answer this question

(Figure 1).

We focus on developing computationally efficient algorithms and

extremely light‐weight autonomous racing drones that have the same

or even better performance than currently existing larger drones. We

believe that these drones may be able to fly faster, as the gates will
- -

This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium,

provided the original work is properly cited.

© 2020 The Authors. Journal of Field Robotics Published by Wiley Periodicals LLC

http://orcid.org/0000-0002-8656-4661
https://orcid.org/0000-0002-6795-8454
http://orcid.org/0000-0001-8265-1496
mailto:s.li-4@tudelft.nl
http://crossmark.crossref.org/dialog/?doi=10.1002%2Frob.21956&domain=pdf&date_stamp=2020-05-08

be relatively larger for them. Moreover, a cheap, light‐weight solution

to drone racing would allow many people to use autonomous drones

for training their racing skills. When the autonomous racing drone

becomes small enough, people may even practice with such drones in

their own home.

Autonomous drone racing is indebted to earlier work on agile flight.

Initially, quadrotors made agile maneuvers with the help of external

motion capture systems (Mellinger & Kumar, 2011; Mellinger, Michael, &

Kumar, 2012). The most impressive feats involved passing at high speeds

through gaps and circles. More recently, various researchers have fo-

cused on bringing the necessary state estimation for these maneuvers

onboard. Loianno, Brunner, McGrath, and Kumar (2017) plan an optimal

trajectory through a narrow gap with difficult angles while using visual‐
inertial odometry (VIO) for navigation. The average maximum speed of

their drone can achieve 4.5m/s. However, the position of the gap is

known accurately a priori, so no gap detection module is included in their

research. Falanga, Mueggler, Faessler, and Scaramuzza (2017) have their

research on flying a drone through a gap aggressively by detecting the

gap with fully onboard resources. They fuse the pose estimation from

the detected gap and onboard sensors to estimate the state. In their

experiment, the platform with a forward‐facing fish‐eye camera can fly

through the gap with 3m/s. Sanket, Singh, Ganguly, Fermüller, and

Aloimonos (2018) develop a solution for a drone to fly through arbi-

trarily shaped gaps without building an explicit three‐dimensional model

of a scene, using only a monocular camera.

Drone racing represents a larger, even more challenging problem

than performing short agile flight maneuvers. The reasons for this are

that (a) all sensing and computing has to happen on board, (b) passing

one gate is not enough. Drone races can contain complex trajectories

through many gates, requiring good estimation and (optimal) control also

on the longer term, and (c) depending on the race, gate positions can

change, other obstacles than gates can be present, and the environment

is much less controlled than an indoor motion tracking arena.

One category of strategies for autonomous drone racing is to have

an accurate map of the track, where the gates have to be in the same

place. One of the participants of the IROS 2017 autonomous drone race,

the Robotics and Perception Group, reached gate 8 in 35 s. In their

approach, waypoints were set using the pre‐defined map and VIO was

used for navigation. A depth sensor was used for aligning the track

reference system with the odometry reference system. NASA's JPL lab

report in their research results that their drone can finish their race

track in a similar amount of time as a professional pilot. In their research,

a visual‐inertial localization and mapping system is used for navigation

and an aggressive trajectory connecting waypoints is generated to finish

the track (Morrell et al., 2018). Gao et al. (2019) come up with a teach‐
and‐repeat solution for drone racing. In the teaching phase, the sur-

rounding environment is reconstructed and a flight corridor is found.

Then, the trajectory can be optimized within the corridor and be tracked

during the repeating phase. In their research, VIO is employed for pose

estimation and the speed can reach 3m/s. However, this approach is

sensitive to changing environments. When the position of the gate is

changed, the drone has to learn the environment again.

The other category of strategies for autonomous drone race em-

ploys coarser maps and is more oriented on gate detection. This cate-

gory is more robust to displacements of gates. The winner of IROS 2016

autonomous drone race, Unmanned Systems Research Group, uses a

stereo camera for detecting the gates (Jung, Cho, Lee, Lee, &

Shim, 2018). When the gate is detected, a waypoint will be placed in the

center of the gate and a velocity command is generated to steer the

drone to be aligned with the gate. The winner of the IROS 2017 au-

tonomous drone race, the INAOE team, uses metric monocular SLAM

for navigation. In their approach, the relative waypoints are set and the

detection of the gates is used to correct the drift of the drone (Moon

et al., 2019). S. Li, Ozo, De Wagter, and de Croon (2018) combine gate

detection with onboard IMU readings and a simplified drag model for

navigation. With their approach, a Parrot Bebop 1 (420 g) can use its

native onboard camera and processor to fly through 15 gates with

1.5m/s along a narrow track in a basement full of exhibits.

Kaufmann, Loquercio, et al. (2018) use a trained Convolutional Neural

Network (CNN) to map the input images to the desired waypoint and

the desired speed to approach it. With the generated waypoint, a tra-

jectory through the gate can be determined and executed while VIO is

F IGURE 1 The IROS autonomous drone race track over the years 2016–2018 (a–c). The rules have always been the same. Flight is to be
fully autonomous, so there can be no human intervention. The drone that passes through most subsequent gates in the track wins the race.
When the number of passed gates is the same, or the track is fully completed, the fastest drone wins the race (a) IROS 2016 drone race track;

(b) IROS 2017 drone race track; (c) IROS 2018 drone race track [Color figure can be viewed at wileyonlinelibrary.com]

2 | LI ET AL.

http://wileyonlinelibrary.com

used for navigation. The winner of the IROS 2018 autonomous drone

race, the Robotics and Perception Group, finished the track with 2m/s

(Kaufmann, Gehrig, et al., 2018). During the flight, the relative position of

the gates and a corresponding uncertainty measure are predicted by a

CNN. With the estimated position of the gate, the waypoints are gen-

erated, and a model‐predictive controller (MPC) is used to control the

drone to fly through the waypoints while VIO is used for navigation.

From the research mentioned above, it can be seen that many of

the strategies for autonomous drone racing are based on generic, but

computationally relatively expensive navigation methods such as VIO

or SLAM. These methods require heavier and more expensive pro-

cessors and sensors, which leads to heavier and more expensive

drone platforms. Forgoing these methods could lead to a consider-

able gain in computational effort, but raises the challenge of still

obtaining fast and robust flight.

In this paper, we present a solution to this challenge. In parti-

cular, we propose a visual model‐predictive localization (VML) ap-

proach to autonomous drone racing. The approach does not use

generic vision methods such as VIO and SLAM and is still robust to

gate changes, while reaching speeds competitive to the currently

fastest autonomous racing drones. The main idea is to rely as much as

possible on a predictive model of the drone dynamics, while cor-

recting the model and localizing the drone visually based on the de-

tected gates and their supposed positions in the global map. To

demonstrate the efficiency of our approach, we implement the pro-

posed algorithms on a cheap, commercially available smart camera

called “Jevois” and mount it on the “Trashcan” racing drone. The

modified Trashcan weighs only 72 g and is able to fly the race track

with high speed (up to 2.6m/s)1. The vision‐based navigation and

high‐level controller run on the Jevois camera while the low‐level
controller provided by the open source Paparazzi autopilot

(Gati, 2013; Hattenberger, Bronz, & Gorraz, 2014) runs on the

Trashcan. To the best of our knowledge, the presented drone is the

smallest and one of the fastest autonomous racing drone in the world.

Figure 2 shows the weight and the speed of our drone in comparison

to the drones of the winners of the IROS autonomous drone races.

2 | PROBLEM FORMULATION AND
SYSTEM DESCRIPTION

2.1 | Problem formulation

In this study, we will develop a hardware and a software system that

the flying platform can fly through a drone race track fully autono-

mously with high speed using only onboard resources. The racing

track setup can be changed and the system should be adaptive to this

change autonomously.

For visual navigation, instead of using SLAM or VIO, we directly

use a computationally efficient vision algorithm for the detection of

the racing gate to provide the position information. However, im-

plementing such a vision algorithm on low‐grade vision and proces-

sing hardware results in low frequency, noisy detections with

occasional outliers. Thus, a filter should be employed to still provide

high frequency and accurate state estimation. In Section 3, we first

briefly introduce the “Snake Gate Detection” method and a pose

estimation method used to provide position measurements. Then, we

propose and analyze the novel VML technique that estimates the

drone's states within a time window. It fuses the low‐frequency on-

board gate detections and high‐frequency onboard sensor readings

to estimate the position and the velocity of the drone. The control

strategy to steer the drone through the racing track is discussed. The

simulation result in Section 4 shows the comparison between the

proposed filter and the Kalman filter in different scenarios with

outliers and delay. In Section 5, we will introduce the flying experi-

ment of the drone flying through a racing track with gate displace-

ment, different altitude and moving gate during the flight. In

Section 6, the generalization and the limitation of the proposed

method are discussed. Section 7 concludes the article.

2.2 | System overview

To illustrate the efficiency of our approach, we use a small racing

drone called Trashcan (Figure 3). This racing drone is designed for

FPV racing with the Betaflight flight controller software. In our case,

to fly this Trashcan autonomously, we replaced Betaflight by the

Paparazzi open source autopilot for its flexibility of adding custom

code, stable communication with the ground for testing code and

active maintenance from the research community. In this article, the

Paparazzi software only aims to provide a low‐level controller. The
main loop frequency is 2 kHz. We employ a basic complementary

filter for attitude estimation and the attitude control loop is a

F IGURE 2 The weight and the speed of the approach proposed in
this article and the winners' of IROS autonomous drone race. All weights
are either directly from the articles or estimated from online specs of the
used processors [Color figure can be viewed at wileyonlinelibrary.com]

1The video of the experiment is available at https://www.youtube.com/playlist?list=PL_

KSX9GOn2P8H0QvUZtLZSYggzQ2DFHCi

LI ET AL. | 3

http://wileyonlinelibrary.com
https://www.youtube.com/playlist?list=PL_KSX9GOn2P8H0QvUZtLZSYggzQ2DFHCi
https://www.youtube.com/playlist?list=PL_KSX9GOn2P8H0QvUZtLZSYggzQ2DFHCi

cascade control including a rate loop and an attitude loop. For each

loop, a P‐controller is used. The details of Trashcan's hardware can

be found in Table 1

For the high‐level vision, flight planning and control tasks, we use

a light‐weight smart camera (17 g) called Jevois, which is equipped

with a quad core ARM Cortex A7 processor and a dual core Mali‐400
GPU. In our experiment, there are two threads running on the Jevois,

one of which is for vision detection and the other one is for filtering

and control (Figure 4a). In our case, the frequency of detecting gates

ranges from 10 to 30 Hz and the frequency of filtering and control is

set to 512Hz. The Gate detection thread processes the images in

sequence. When it detects the gate it will send a signal telling the

other thread a gate is detected. The control and filtering thread

keeps predicting the states and calculating control command in high

frequency. It uses a novel filtering method, explained in Section 3, for

estimating the state based on the IMU and the gate detections.

The communication between the Jevois and Trashcan is based on

the MAVLink protocol with a baud rate of 115,200. Trashcan sends

the Attitude and Heading Reference System (AHRS) estimation with

a frequency of 512 Hz. And the Jevois sends the attitude and altitude

commands to Trashcan with a frequency of 200Hz. The software

architecture of the flying platform can be found in Figure 4b.

In Figure 4b, the Gate detection and Pose estimation module

first detects the gate and estimates the relative position between the

drone and the gate. Next, the relative position will be sent to the

Gate assignment module to be transferred to global position. With

the global position measurements and the onboard AHRS reading,

the proposed VML filter fuses them together to have accurate po-

sition and velocity estimation. Then, the Flight plan and high‐level
controller will calculate the desired attitude commands to steer the

drone through the whole track. These attitude commands will be sent

to the drone via MAVLink protocol. On the Trashcan drone, Papar-

azzi provides the low‐level controller to stabilize the drone.

3 | ROBUST VML AND CONTROL

State estimation is an essential part of drones' autonomous naviga-

tion. For outdoor flight, fusing a GPS signal with onboard inertial

sensors is a common way to estimate the pose of the drone (Santana,

Brandao, & Sarcinelli‐Filho, 2015). However, for indoor flight, a GPS

signal is no longer available. Thus, off‐board cameras (Lupashin

et al., 2014), Ultra Wide Band Range beacons (Mueller, Hamer, &

D'Andrea, 2015) or onboard cameras (McGuire, De Croon, De

Wagter, Tuyls, & Kappen, 2017) can be used to provide the position

or velocity measurements for the drone. The accuracy and time‐delay
of these types of infrastructure setups differ from each other. Hence,

the different sensing setups have an effect on what type of filtering is

best for each situation. The most commonly used state estimation

technique in robotics is the Kalman filter and its variants, such as the

Extended Kalman filter (EKF; Gross, Gu, Rhudy, Gururajan, &

Napolitano, 2012; Santamaria‐Navarro, Loianno, Solà, Kumar, &

Andrade‐Cetto, 2018; Weiss, Achtelik, Chli, & Siegwart, 2012).

However, the racing scenario has properties that make it challenging

for a Kalman filter. Position measurements from gate detections of-

ten are subject to outliers, have non‐Gaussian noise, and can arrive at

a low frequency. This makes the typical Kalman filter approach un-

suitable because it is sensitive to outliers, is optimal only for Gaussian

noise, and can converge slowly when few measurements arrive. In

this section, we will propose a VML technique which is robust to low‐
frequency measurements with significant numbers of outliers. Sub-

sequently, we will also present the control strategy for the autono-

mous drone race.

3.1 | Gate assignment

In this article, we use the “snake gate detection” and pose estimation

technique as in S. Li et al. (2018). The basic idea of snake gate de-

tection is searching for continuing pixels with the target color to find

the four corners of the gate. Subsequently, a perspective n‐point
(PnP) problem is solved, using the position of the four corners in the

image plane, the camera's intrinsic parameters, and the attitude es-

timation to solve the relative position between the drone and the ith

gate at time Δ¯ = [Δ¯ Δ¯]k x yx, ,k
i

k
i

k
i . Figure 5 shows this procedure, which

is explained more in detail in S. Li et al. (2018). In most cases, when

the light is even and the camera's auto exposure works properly, the

gate in the image is continuous and the Snake gate detection

F IGURE 3 The flying platform. The Jevois is mounted on the
Trashcan. The Trashcan provides power to the Jevois and they
communicate with each other by the MAVLink protocol. The weight

of the whole platform is only 72 g [Color figure can be viewed at
wileyonlinelibrary.com]

TABLE 1 The specifications of Trashcan's hardware

Weight 48 g (with the original camera)

Size 98mm × 98mm× 36mm

Motor TC0803 KV15000

MCU STM32F4 (100 MHZ)

Receiver FrSky D16

4 | LI ET AL.

http://wileyonlinelibrary.com

algorithm can detect the gate correctly. However, after an aggressive

turn, such as a turn to a window, the camera cannot adapt to the new

light condition immediately. In this case, Snake gate detection usually

cannot detect the gate. Another failure case is that due to the uneven

light condition or the similar color in the background, Snake gate

detection may get interfered with. These situations make the

searching stop in the middle of the bar or stop at the background

pixels. Although we have some mechanism to prevent these false

F IGURE 4 The architectures of the

software on Jevois and the software of the
whole flying platform. (a) The two threads
structure running on Jevois. For the gate

detection thread, the frequency of gate
detection ranges from 10 to 30 Hz while the
frequency of control and filtering thread is

512Hz. (b) The software architecture of the
UAV platform. The vision detection, filtering,
and control are all running on Jevois.
Paparazzi provides the low‐level controller to
stabilize the drone. VML, visual model‐
predictive localization [Color figure can be
viewed at wileyonlinelibrary.com]

F IGURE 5 The Snake gate detection method and pose estimation method (S. Li et al., 2018). (a) Snake gate detection. From one point on the
gate P0, the Snake gate detection method first searches up and down, then left and right to find all the four corners of the gate. (b) When the

four points of the gate are found, the relative position between the drone and the gate is calculated with the points' position, the camera's
intrinsic parameters and the current attitude estimation [Color figure can be viewed at wileyonlinelibrary.com]

LI ET AL. | 5

http://wileyonlinelibrary.com
http://wileyonlinelibrary.com

positive detections, there is still a small chance that a false positive

happens. The negative effect is that outliers may appear which leads

to a challenge for the filter and the controller.

Since for any race a coarse map of the gates is given a priori (cf.

Figure 1), the position and the heading of gate ψ= ⎡⎣ ⎤⎦
i x yx, , ,g

i
g
i

g
i

g
i can

be known roughly (Figure 6). We use the gates' positions to transfer

the relative position Δx̄k
i measured by camera to a global position

¯ = [¯ ¯]x yx ,k k k by Equation (1). In Equation (1), x y,g
i

g
i and ψg

i are the

position of the gate i which are known from the map.

ψ ψ

ψ ψ
⎡
⎣

¯

¯
⎤
⎦
=
⎡

⎣
⎢

⎤

⎦
⎥ +

⎡

⎣

⎢
⎢

− ⎤

⎦

⎥
⎥

⎡

⎣
⎢
Δ¯

Δ¯

⎤

⎦
⎥

x
y

x

y

x

y

cos sin

sin cos
.k

k

g
i

g
i

g
i

g
i

g
i

g
i

k
i

k
i

(1)

Here, we assume that the position of the gate is fixed. Any error

experienced in the observations is then assumed to be due to esti-

mation drift on the part of the drone. Namely, without generic VIO, it

is difficult to make the difference between drone drift and gate

displacements. If the displacements of the gates are moderate, this

approach will work: after passing a displaced gate, the drone will see

the next gate, and correct its position again. We only need a very

rough map with the supposed global positions of the gates (Figure 6).

Gate displacements only become problematic if after passing gate i

the gate +i 1 would not be visible when following the path from the

expected positions of gate i to gate +i 1.

At the IROS drone race, gates are identical, so for our position to

be estimated well, we need to assign a detection to the right gate. For

this, we rely on our current estimated global position ˆ = [ˆ ˆ]x yx ,k k k .

When a gate is detected, we go through all the gates on the map

using Equation (1) to calculate the predicted position ¯ = [¯ ¯]x yx ,k
i

k
i

k
i .

Then, we calculate the distance between the predicted drone's po-

sition x̄k
i and its estimated position x̂k at time tk by

Δ = ∥ ¯ − ˆ ∥d x x .k
i

k
i

k 2
(2)

After going through all the gates, the gate with the predicted

position closest to the estimated drone position is considered as the

detected gate. At time tk , the measurement position is determined by

= Δ

¯ = ¯

j d

x x

argmin ,

.

i k
i

k k
j

(3)

The gate assignment technique (Figure 7) can help us obtain as

much information on the drone's position as possible when a gate is

detected. Namely, it can also use detections of other gates than the

next gate, and allows to use multiple gate detections at the same time

to improve the estimation. Still, this procedure will always output a

global coordinate for any detection. Hence, false positive or in-

accurate detections can occur and have to be dealt with by the state

estimation filter.

3.2 | VML

The racing drone envisaged in this article has a forward‐looking
camera and an IMU. As explained in the previous section, the camera

is used for localization in the environment, with the help of gate

detections. Using a typical, cheap CMOS camera will result in rela-

tively slow position updates from the gate detection, with occasional

outliers. The IMU can provide high‐frequency, and quite accurate

attitude estimation by means of an AHRS. The accelerations can also

be used in predicting the change in translational velocities of the

drone. In traditional inertial approaches, the accelerations would be

integrated. However, for smaller drones the accelerometer readings

become increasingly noisy, due to less possible damping of the au-

topilot. Integrating accelerometers is “acceleration stable,” meaning

that a bias in the accelerometers that is not accounted for can lead to

unbounded velocity estimates. Another option is to use the accel-

erometers to measure the drag on the frame, which—assuming no

wind—can be easily mapped to the drone's translational velocity (cf.

S. Li et al., 2018). Such a setup is “velocity stable,” meaning that an

accelerometer offset of drag model error would lead to a propor-

tional velocity offset, which is bounded. On really small vehicles like

the one we will use in the experiments, the accelerometers are even

too noisy for reliably measuring the drag. Hence, the proposed ap-

proach uses a prediction model that only relies on the attitude es-

timated by the AHRS which is an indirect way of using the

accelerometer. It uses the attitude and a constant altitude assump-

tion to predict the forward acceleration, and subsequently velocity of

the drone. The model is corrected from time to time by means of the

visual localization. Although the IMU is used for estimating attitude,

it is not used as an inertial measurement for updating translational

F IGURE 6 The gates are displaced. The drone uses the gate's
position on the map to navigate. After passing through the first gate,
it will use the second gate's position on the map for navigation. After

seeing the second gate, the position of the drone will be corrected
[Color figure can be viewed at wileyonlinelibrary.com]

6 | LI ET AL.

http://wileyonlinelibrary.com

velocities. This leads to the name of the method; VML, which will be

explained in detail in this subsection.

3.2.1 | Prediction error model

Asmentioned above, the attitude estimated from the AHRS is used in the

prediction of the drone's velocity and position. However, due to the

AHRS bias and the model inaccuracy, the prediction will diverge from the

ground truth over time. Fortunately, we have visual gate detections to

provide position information. This vision‐based localization will not in-

tegrate the error over time but it has a low frequency. Figure 8 is a

sketch of what the onboard predictions and the vision measurements

look like. The red curve is the prediction result diverging from the ground

truth curve because of AHRS biases. The magenta dots are the low‐
frequency detections which distribute around the ground truth. The er-

ror between the prediction and measurements can be modeled as a

linear function of time which will be explained later in this section. When

the error model is estimated correctly, it can be used to compensate for

the divergence of the prediction to obtain accurate state estimation.

(a) (b)

F IGURE 7 In most cases the drone will detect the next gate in the race track. However, the proposed gate assignment strategy also allows to

exploit detections of other gates. (a) It iterates through all gates, evaluating where the drone would be if it was observing those gates. The
position closest to the current global position is chosen as the right observation. (b) The drone detects other gate instead of the one to be flew
through. This still helps state estimation, as the observed gate indeed gives an estimate closest to the current estimated global position [Color

figure can be viewed at wileyonlinelibrary.com]

F IGURE 8 Illustrative sketch of the time
window ∈ []−t t t,k q k . At the beginning of this
time window, the difference between the

ground truth and the prediction is Δ −xk q and
Δ −vk q. The prediction can be done with high
frequency Attitude and Heading Reference
System (AHRS) estimates. The vision

algorithm outputs low‐frequency unbiased
measurements. The prediction curve deviates
more and more from the ground truth curve

over time because of the AHRS bias and
model inaccuracy [Color figure can be viewed
at wileyonlinelibrary.com]

LI ET AL. | 7

http://wileyonlinelibrary.com
http://wileyonlinelibrary.com

Assuming that there is no wind, and knowing the attitude, we can

predict the acceleration in the x and y axis. Figure 9 shows the forces

the drone experiences.
*
*T denotes the acceleration caused by the

thrust of the drone. It provides the forward acceleration together

with the pitch angle θ.
*
*D denotes the acceleration caused by the

drag which is simplified as a linear function of body velocity (Faessler,

Franchi, & Scaramuzza, 2017):

⎧

⎨
⎩

=

=

D c v

D c v

,

,

x
B

x x
B

y
B

y y
B

(4)

where *c is the drag coefficient.

According to Newton's second law in xoz plane,

θ θ θR R R⎡

⎣⎢

()

()
⎤

⎦⎥
= ⎡
⎣
⎤
⎦
+ ()⎡

⎣
⎢ ()

⎤

⎦
⎥
+ () ()

⎡

⎣
⎢

()

()

⎤

⎦
⎥

a t
a t g T t

v t

v t
D0 0

.x

z
B
E

z
B B

E
E
B x

E

z
E

(5)

Expand Equation (5), we have

θ

θ

⎧

⎨
⎩

() = () () − ()

() = () () + − ()

a t t T t v t c

a t t T t g v t c

sin ,

cos ,

x z
B

x
E

z z
B

z
E

(6)

where θR ()E
B is the rotation matrix and = ⎡

⎣

−
−
⎤
⎦

c
c

D 0
0

is the drag

coefficient matrix. If the altitude is kept the same as in the IROS

drone race, we have

θ

θ

⎧

⎨
⎩

() =
−

()

() = − () − ()

T t
g

t

a t g t v t c

cos
,

tan .

z
B

x x
E

(7)

Since the model in the y axis has the same form as in the x axis, the

dynamic model of the quadrotor can be simplified as

θ

ϕ

̇

̇

̇

̇

⎧

⎨

⎪
⎪

⎩

⎪
⎪

() = ()

() = ()

() = − () − ()

() = () − ()

x t v t

y t v t

v t g t v t c

v t g t v t c

,

,

tan ,

tan ,

x
E

y
E

x
E

x
E

y
E

y
E

(8)

where ()x t and ()y t are the position of the drone, and ϕ is the roll angle

of the drone. In Equation (8), the movement in x and y axis is decoupled.

Thus we only analyze the movement in the x axis. The result can be

directly generalized to the y axis. The nominal model of the drone in x

axis can be written by

̇ () = () + ()t t u tx Ax B ,n n n (9)

where () = ⎡

⎣
⎢

()

()
⎤

⎦
⎥

= ⎡
⎣ −

⎤
⎦

= ⎡
⎣−

⎤
⎦

t
x t

v t c gx A B, 0 1
0

, 0n
n

x
n , and θ= ()u tann .

The superscript n denotes the nominal model. Similarly, with the

assumption that the drag factor is accurate, the prediction model can

be written as

̇ () = () + ()t t u tx Ax B ,p p p (10)

where () = ⎡

⎣
⎢

()

()
⎤

⎦
⎥

t
x t

v t
xp

p

x
p and θ θ= (+)u tanp

b . θb is the AHRS bias and

is assumed to be a constant in short time. Consider a time window

∈ []−t t t,k q k , the states of nominal model at time tk are

∑= (+) + (+)−

=

−
−T T T ux I A x I A B ,k

n
s

q
k q
n

i

q

s
i

s k i
n

1

1 (11)

where Ts is the sampling time. The predicted states of model 10 are

∑= (+) + (+)−
=

−
−T T T ux I A x I A B .k

p
s

q
k q
p

i

q

s
i

s k i
p

1

1 (12)

Thus, the error between the predicted model and nominal model

can be written as

∑Δ = (+) ⎡⎣
− ⎤⎦

+ (+)− −

=

−T T T ux I A x x I A B ,k
p

s
q

k q
p

k q
n

i

q

s
i

s b
1

1 (13)

where ()= −− −u u ub k i
p

k i
n is the input bias which can be considered as

a constant in a short time. In Equation (13),

∑
(+) =

⎡

⎣

⎢
⎢

(−)

(−)

⎤

⎦

⎥
⎥

=

−

T
T cT

cT
I A

1 1

0 1
.s

i s j

i
s

j

s
i

1
1

(14)

Since the sampling time Ts is small, (Ts= 0.002 s in our case), we can

assume

(+) ≈ ⎡
⎣⎢

⎤
⎦⎥

T
iT

I A
1

0 1
.s

i s (15)

Hence, Equation (13) can be approximated by

F IGURE 9 Free body diagram of the drone.
*
*()v t is the velocity of

the drone. The superscript E denotes north‐east‐down (NED) earth
frame while B denotes body frame.

*
*T is the acceleration caused by

thrust and
*
*D is the acceleration caused by the drag, which is a linear

function of the body velocity. g is the gravity factor and c is the drag
factor which is positive. θ ()t is the pitch angle of the drone. It should be
noted that since we use NED frame, θ < 0 when the drone pitches down

[Color figure can be viewed at wileyonlinelibrary.com]

8 | LI ET AL.

http://wileyonlinelibrary.com

∑Δ = (+) ⎡⎣
− ⎤⎦

+ ⎡
⎣⎢

⎤
⎦⎥

− −

=

T
iT

T ux I A x x B
1

0 1
,k

p
s

q
k q
p

k q
n

i

q
s

s b
1

(16)

= ⎡
⎣⎢

⎤
⎦⎥
⎡

⎣
⎢

Δ

Δ

⎤

⎦
⎥ +

⎡

⎣

⎢
⎢

(+) ⎤

⎦

⎥
⎥

qT x

v
q

q q
T

q
T uB

1

0 1

1

2
0

.s k
p

k
p

s
s b (17)

Expanding Equation (17), we have

⎧

⎨
⎩

Δ = Δ + Δ −
(+)

Δ = Δ −

− −

−

x x qT v
q q

T gu

v v qT gu

1

2
,

.

k
p

k q
p

s x
p

k q s b

k
p

x
p

k q s b

2

(18)

Actually, = − −qT t ts k k q is the time span of the time window. If

we neglect Ts
2 term, we can have the prediction error at time tk

Δ = Δ + (−)Δ− − −x x t t v .k
p

k q
p

k k q k q
p (19)

Thus, within a time window, the state estimation problem can be

transformed to a linear regression problem with model Equation (19),

where β̂ = ⎡⎣Δ Δ ⎤⎦− −x v,k q
p

k q
p T

are the parameters to be estimated. From

Equation (19), we can see that in a short time window, the AHRS bias

does not affect the prediction error. The error is mainly caused by the

initial prediction errorΔ −xk q
p . Furthermore, velocity errorΔ −vk q

p can cause

the prediction error to diverge over time. If the time window is updated

frequently, model 19 can remain accurate enough. Hence, in this study,

we focus on the main contributors to the prediction error and will not

estimate the bias term. The next step is how to efficiently and robustly

estimate Δ −xk q
p and Δ −vk q

p .

In this simplified linear prediction error model, we use the constant

altitude assumption to approximate the thrust Tz
B on the drone, which

may lead to inaccuracy of the model. During the flight, this assumption

may be violated by aggressive maneuvers in z axis. However, if the

maneuver in z axis is not very aggressive and the time window is small

(in our case less than 2 s), the prediction error model's inaccuracy level

can be kept in an acceptable range. In the simulation and the real‐world
experiment shown later, we will show that although the altitude of the

drone changes 1m in 2 s, the proposed filter can still have very high

accuracy with this assumption. Another way to improve the model

accuracy is to estimate the thrust by fusing the accelerometer readings

and rotor speed together, which needs the establishment of the rotors'

model. It should also be noted that we neglect Ts
2 term in Equation (18)

to have a linear model. To increase the model accuracy, the prediction

error model can be a quadratic model. In our case, since the time

window is small, the linear model is accurate enough.

3.2.2 | Parameter estimation method

The classic way for solving the linear regression problem based on

Equation (19) is to use the least square method (LS Method) with all

data within the time window and estimate the parameters β̂.

β̂ = ()−X X X Y,T 1 T (20)

where

β̂ = ⎡⎣
Δ Δ ⎤⎦

=

⎡

⎣

⎢
⎢
⎢
⎢

−

−

⋮ ⋮

−

⎤

⎦

⎥
⎥
⎥
⎥

=

⎡

⎣

⎢
⎢
⎢
⎢
⎢

− ¯

− ¯

⋮

− ¯

⎤

⎦

⎥
⎥
⎥
⎥
⎥

− −

− −

− + −

−

− −

− + − +

x v

t t

t t

t t

x x

x x

x x

X

Y

,

1

1

1

,

.

k q
p

k q
p

k q k q

k q k q

k k q

k q
p

k q

k q
p

k q

k
p

k

1

1 1

The LS Method in Equation (20) can give optimal unbiased es-

timation. However, if there exist outliers in the time window

∈ []−t t t,k q k , they will be considered equally during the estimation

process. These outliers can significantly affect the estimation result.

Thus, to exclude the outliers, we employ random sample consensus

(RANSAC) to increase the performance (Fischler & Bolles, 1981). In a

time window ∈ []−t t t,k q k , we first calculate the prediction error

{ }Δ = Δ ∣Δ = − ¯ ≤ ≤− − + − + − + − +x x x x i qx , 0k q k
p

k q i
p

k q i
p

k q i
p

k q i, and time dif-

ference Δ = {Δ ∣Δ = − ≤ ≤ }−t t t t i qt , 0i i i k q . For each iteration i, the

subsets of Δ −xk q k
p

, and Δ −tk q k, are randomly selected, which are de-

noted by Δ −xk q k
s

, and Δ −tk q k
s

, . The size of the subset ns can be calcu-

lated by σ=n qs
s , where σs is the ratio of sampling. We use subsets

Δ −xk q k
s

, and Δ −tk q k
s

, to estimate the parameters β̂i (Figure 10).

When β̂i is estimated, it will be used to calculate the total pre-

diction error εi of the all the data in the time window ∈ []−t t t,i k q k by

ε ∑= ϵ
= −

,i
j k q

k

j (21)

where

σ

σ
ϵ =

⎧
⎨
⎩

∥ Δ (Δ − Δ) + Δ − Δ ∥ ϵ <− − −v t t x x , if ,

, otherwise.
j

k q
p

i j k q k q
p

i j
p

j th

th

2

(22)

In the process of Equation (21), if ϵj is larger than a threshold σth,

it counts the threshold as the error. After all the iterations, the

parameters β̂i which has the least prediction error will be selected to

be the estimated parameters for this time window ∈ []−t t t,i k q k . The

pseudo‐code of this Basic RANSAC Fitting (BRF) method can be

found in Algorithm 2.

With the BRF method, the influence of the outliers is reduced, but

it has no mechanism to handle over‐fitting. For example, in time

window ∈ []−t t t,i k q k , BRF can estimate the optimal parameters β̂ with

the minimal error. However, sometimes it will set Δ −vk q
p to un-

realistically high values. This happens when there are few detections in

the time window, which may result in the inaccurate estimation of the

parameters. In reality, the drone flies at maximum speed 3m/s, so the

velocity prediction error at the start of time window −tk q should not be

too large. To avoid over‐fitting, we add a penalty factor/prior matrix P

to limit Δ −vk q
p in the fitting process. The loss function can be written as

LI ET AL. | 9

β β β β(ˆ) = ∥ ˆ − ∥ + ˆ ˆJ X Y P ,2
2 T (23)

where

= ⎡

⎣⎢
⎤

⎦⎥

p
p

P
0

0
x

v
(24)

is the penalty factor/prior matrix. To minimize the loss function, we

take derivatives of β(ˆ)J and let it be 0

β
β β β

β

∂ (ˆ)

∂ ˆ
= ˆ − + ˆ + ˆ =

J
X X X Y P P2 2 0.T T T (25)

Then we have the estimated parameters by

β̂ = (+)−X X P X Y.T 1 T (26)

We call the use of Equation (26) inside the RANSAC fitting the

Prior RANSAC fitting (PRF). Compared with Equation (20), PRF has

the penalty factor/prior matrix P in it. By tuning matrix P we can add

the prior knowledge to the parameter distribution. For example, in

our case Δ −vk q
p should not be high. Thus, we can increase pv in P to

limit the value of Δ −vk q
p .

To conclude, in this part we propose three methods for esti-

mating the parameters β̂ . The first one is the LS Method which

considers all the data in a time window equally. The second

method is BRF, which has the mechanism to exclude the outliers.

And the third one is PRF, which can not only exclude the outliers

but also take into account the prior knowledge to avoid over‐
fitting. In the next section, we will discuss and compare these

three methods in simulation to see which one is the most suitable

for our drone race scenario.

3.2.3 | Prediction compensation

After the error model (Equation 19) is estimated in time

window k , the error model can be used to compensate the pre-

diction by

⎡

⎣
⎢

ˆ

ˆ
⎤

⎦
⎥
=
⎡

⎣
⎢

⎤

⎦
⎥ −

⎡

⎣⎢

− ⎤

⎦⎥

⎡

⎣
⎢

Δ

Δ

⎤

⎦
⎥

+

+

+

+

+ − −

−

x
v

x

v
t t x

v
1

0 1
.k i

k i

k i
p

k i
p

k i k q k q
p

k q
p (27)

Also, at each prediction step, the length Δ = − −T t tk k q of the time

window will be checked, since the simplified model 19 is based on the

assumption that the time span of the time window ΔT is small. If ΔT is

larger than the allowed maximum time window sizeΔTmax, the filter will

delete the oldest elements until Δ < ΔT Tmax. The pseudo‐code of the

proposed VML with LS Method can be found in Algorithms 3 and 4.

3.2.4 | Comparison with Kalman filter

When it comes to state estimation or filtering technique, it is in-

evitable to mention the Kalman filter which is the most commonly

used state estimation method. The basic idea of the EKF is that at

time −tk 1, it first predicts the states at time tk with its error covar-

iance ∣ −Pk k 1 to have prior knowledge of the states at tk .

Φ Φ

ˆ = ˆ + (ˆ)

=
∂

∂
(() ())∣

Φ ≈ +

=
∂

∂
(())∣

= +

∣ − − − −

− ()= ˆ

∣ − −

()= ˆ

∣ − ∣ − − ∣ − −

−t t

t

X X f X u

F
x

f x u

I F

H
x

h x

P P Q

, T ,

, ,

T,

.

k k k k k

k t

k k k

k t

k k k k k k k k

x x

x x

1 1 1 1 s

1

1 1

,

1 1 1 1
T

1

k

k

1

(28)

When an observation arrives, the Kalman filter uses an optimal

gain Kk which is a combination of the prior error covariance + ∣Pk k1

and the observation's covariance Rk to compensate the prediction,

which as a result, leads to the minimum error covariance Pk .

δ

δ

ˆ = { − [ˆ]}

= ⎡⎣ + ⎤⎦
ˆ = ˆ + ˆ

= (−) (−) +

∣ −

∣ − ∣ −
−

∣ −

∕ −

kX K Z h X

K P H H P H R

X X X

P I K H P I K H K R K

, ,

,

,

.

k k k k k

k k k k k k k k k

k k k k

k k k k k k k k k k

1

1
T

1
T 1

1

1
T T

(29)

According to Diderrich (1985), a Kalman filter is a least square

estimation made into a recursive process by combining prior data

with coming measurement data. The most obvious difference be-

tween the Kalman filter and the proposed VML is that VML is not a

recursive method. It does not estimate the states at tk only based on

the last step states ˆ −xk 1. It estimates the states considering the

previous prediction and observations in a time window.

In the VML approach, we use least square method within a time

window, which looks similar to the least square estimation method.

F IGURE 10 In the ith iteration, the data in

the time window ∈ []t t t,1 9 will be randomly
sampled into Δ −tk q k

s
, and Δ −xk q k

s
, . Then least

square method (LS Method; Equation 20) will

be used to estimate the parameters β̂i . In this
example, σ = 0.4s , which means that
= × ≈n 9 0.4 4s samples should be sampled

[Color figure can be viewed at
wileyonlinelibrary.com]

10 | LI ET AL.

http://wileyonlinelibrary.com

However, there are two major differences between the two methods.

The first one is that in the proposed VML, the prediction information

is fused to the VML. Secondly and most importantly, we estimate the

prediction error model β̂ instead of estimating all the states in the

time window as in the least square method. Thus, the VML has its

advantages of handling outliers and delay by its time window me-

chanism and it also has the advantage of computational efficiency to

the Least Square Estimation. In Section 4, we will introduce Kalman

filter's different variants for outliers and delay and compare them

with VML in estimation accuracy and computation load in detail.

3.3 | Flight plan and high‐level control

With the state estimation method explained above, to fly a racing

track, we employ a flight plan module which sets the waypoints that

guide the drone through the track and a two‐loop cascade

P‐controller to execute the reference trajectory (Figure 11).

Usually, the waypoint is just behind the gate. When the distance

between the drone and the waypoint is less than a threshold Dturn, the

gate can no longer be detected by our method, and we set the heading

of the drone to the next waypoint. This way, the drone will start turning

towards the next gate before arriving at the waypoint. When the dis-

tance between the drone and the waypoint is within another threshold

D _switch wp, the waypoint switches to the next point. With this strategy,

the drone will not stop at one waypoint but already start accelerating to

the next waypoint, which can help to save time. The work flow of flight

plan module can be found in Algorithm 5.

We employ a two‐loop cascade P‐controller (Equation 30) to

control the drone to reach the waypoints and follow the heading

reference generated from the flight plan module. The altitude and

attitude controllers are provided by the Paparazzi autopilot, and are

both two‐loop cascade controllers.

Φ ψ() = ((() − ˆ ()) − ˆ ())k k k kR K K x x v ,c
v x

r (30)

where

θ ϕ
ψ ψ

ψ ψ
Φ ψ() = [() ()] = ⎡

⎣
⎢

() ()

− () ()
⎤

⎦
⎥

= ⎡

⎣
⎢

⎤

⎦
⎥

= ⎡

⎣
⎢

⎤

⎦
⎥

() = [() ()] ˆ ()

= [ˆ () ˆ ()] ˆ () = [ˆ () ˆ ()]

k k k

k
k

k
k

k x k y k k

x k y k k v k v k

R K

K x x

v

, ,
cos sin

sin cos
,

0

0
,

0

0
, , ,

, , ,

c c c
v

v x

v y
x

x

y

r r r

x y

T

T

T T

.

4 | SIMULATION EXPERIMENTS

4.1 | Simulation setup

To verify the performance of VML in the drone race scenario, we first

test it in simulation and then use an EKF as benchmark to compare

both filters to see which one is more suitable in different operation

points. We first introduce the drone's dynamics model used in the

simulation.

ϕ

θ

ψ

ϕ ϕ

θ θ

ψ ψ

̇
̇

̇

̇

̇

̇

̇

̇

̇

̇

ϕ

θ

ψ

R R R

⎡

⎣

⎢
⎢

⎤

⎦

⎥
⎥
=
⎡

⎣

⎢
⎢

⎤

⎦

⎥
⎥

⎡

⎣

⎢
⎢

⎤

⎦

⎥
⎥
=
⎡

⎣

⎢
⎢

⎤

⎦

⎥
⎥
+

⎡

⎣

⎢
⎢

⎤

⎦

⎥
⎥
+

⎡

⎣

⎢
⎢

⎤

⎦

⎥
⎥

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

=

⎡

⎣

⎢
⎢
⎢
⎢

(−)

(−)

(−)

(−)

⎤

⎦

⎥
⎥
⎥
⎥

x
y
z

v
v
v

v
v

v g T

v
v
v

T

k

k
k

k T T

K

,

0
0

0
0 ,

,

x

y

z

x

y

z

B
E

B
E

E
B

x

y

z

c

c

c

T
c

(31)

where ()x y z, , is the position of the drone in the Earth frame. *v is the

velocity of the drone. g is the gravity factor. T is the acceleration

caused by the thrust force. ϕ θ ψ, , are the three Euler angles of the

body frame. And RB
E is the rotation matrix from the Body frame to

the Earth frame. = ([− −])K diag 0.5, 0.5, 0 is the simplified first or-

der drag matrix, where the values are based on a linear fit of the drag

based on real‐world data with the Trashcan drone. R R []v v vKB
E

E
B

x y z
T

is the acceleration caused by other aerodynamics. The last four

equations are the simplified first order model of the attitude

F IGURE 11 The Flight plan module

generates the waypoints for the drone to fly
the track. When the distance between the
drone and the current waypoint <d Dturn, the

drone starts to turn to the next waypoint
while still approaching the current waypoint.
When <d D _switch wp, the drone switches the

current waypoint to the next one. The
cascade P‐controller is used for executing the
reference trajectory from the flight plan
module. The attitude and rate controllers are

provided by the Paparazzi autopilot. kr is a
positive constant to adjust the speed of the
drone's yawing to the setpoint. In the

real‐world experiment and simulation, we set
=k 1r [Color figure can be viewed at

wileyonlinelibrary.com]

LI ET AL. | 11

http://wileyonlinelibrary.com

controller and thrust controllers where the proportional feedback

factors are ϕ θ ψ= = = =k k k k6, 6, 5, 3T . Thus, the model 31 in

the simulation is a 10 states ϕ θ ψ= []x y z v v v Tx , , , , , , , , ,x x x
T and four

inputs ϕ θ ψ= []Tu , , ,c c c c T nonlinear system. In this simulation, we

use the same flight plan module and high‐level controllers discussed

in Section 3 (Figure 11) to generate a ground truth trajectory

through a 4‐gate square racing track (Table 2). In this track, we use

different height to test if the altitude change affects the accuracy of

the VML.

With the ground truth states, next step is to generate the sensor

reading. In the real world, AHRS estimation outputs biased attitude

estimation because of the accelerator's bias. To model AHRS bias, we

have a simplified AHRS bias model

ϕ

θ

ψ ψ

ψ ψ
⎡

⎣
⎢

⎤

⎦
⎥
= ⎡

⎣
⎢−

⎤

⎦
⎥
⎡

⎣⎢
⎤

⎦⎥

B
B

cos sin

sin cos
,b

b

N

E
(32)

where ϕb and θb are the AHRS biases on ϕ and θ. BN and BE are the

north and east bias caused by the accelerometer bias, which can be

considered as constants in short time. From real‐world experi-

ments, they are less than 3°. Thus, the AHRS reading can be

modelled by

ϕ

θ

ϕ

θ

ψ ψ

ψ ψ

ϕ

θ

⎡

⎣
⎢

¯

¯
⎤

⎦
⎥ =

⎡

⎣
⎢

⎤

⎦
⎥
+ ⎡

⎣
⎢−

⎤

⎦
⎥
⎡

⎣⎢
⎤

⎦⎥
+ ⎡
⎣

ϵ

ϵ
⎤
⎦

B
B

cos sin

sin cos
,k

k

k

k

N

E
(33)

where ϵ σ*~ (*)N 0, is the AHRS noise and in our simulation we will set

σ* = = − =∘ ∘ ∘B B0. 5 , 2 , 1N E . For vision measurements generation,

we first determine the segment []u v, of the trajectory where the

drone can detect the gate. Then, we calculate the number of the

detection by =
−nv

t t
f

u v

v
, where fv is the detection frequency. Next, we

randomly select nv points between u and v to be vision points. For

these points, we generate detection measurement by

⎡
⎣

¯

¯
⎤
⎦
= ⎡
⎣

⎤
⎦
+ ⎡
⎣

ϵ
ϵ
⎤
⎦

x
y

x
y .k

k

k

k

x

y
(34)

In Equation (34), ϵ σ*~ (*)N 0, is the detection noise and σ* = 0.1 m

In these nv vision points, we also randomly select a few points as

outlier points, which have the same model with Equation (34) but

σ* = 3 m. In the following simulations, the parameters are the same

with the value mentioned in this section if there is no statement. The

simulated ground truth states and sensor measurements are shown

in Figure 12.

4.2 | Simulation result and analysis

4.2.1 | Comparison between EKF, BRF, and PRF
without outliers

We employ an EKF as benchmarks to compare the performance of

our proposed filter. The details of the EKF can be found in the

Appendix. We first do the simulation in only one operation point,

where =f 30 mv HZ, σ* = 0.1 m and the probability of outliers

F IGURE 12 In the simulation, the ground truth states are first generated (blue curve). Then, vision measurements and Attitude and Heading
Reference System (AHRS) readings are generated. It can be seen clearly that the bias of AHRS readings changes with the heading, as on a real
drone. Namely, the offset in ϕ and θ changes when the ψ changes. This phenomenon is modeled by Equation (32). In this simulation

σ σ σ= = = =f 30 Hz, 0.1 mv x y z (a) Generated ground truth states and vision measurements in −x y plane. (b) Generated ground truth position
and vision measurements [Color figure can be viewed at wileyonlinelibrary.com]

TABLE 2 The map of the simulated racing track

Gate ID x (m) y (m) z (m) ψ [°]

1 4 0 −1.5 0

2 4 4 −2.5 90

3 0 4 −1.0 180

4 0 0 −1.5 270

12 | LI ET AL.

http://wileyonlinelibrary.com

= / =P N N 0out outliers detection . At this operation point, three filters are

run separately. The result is shown in Figure 13.

When there are no outliers, all three filters can converge to the

ground truth value. However, the EKF has a longer startup period

and BRF overfits after turning, leading to unlikely high velocity off-

sets (the peaks in Figure 13b). This is because, after the turn, the

RANSAC buffer is empty. When the first few detections come into

the buffer, the RANSAC has a larger chance to estimate inaccurate

parameters. In PRF, however, we add a prior matrix = ⎡
⎣

⎤
⎦

P 0 0
0 0.3

to

limit the value of Δv and the number of the peaks in the velocity

estimation is significantly decreased. At the same time, the velocity

estimation is closer to the ground truth value.

To evaluate the estimation accuracy of each filter, we first in-

troduce a variable, average estimation error γ , to be an index of the

filter's performance:

γ =
∑ (ˆ −) + (ˆ −)

=
x x y y

N
,i

N
i i i i1

2 2

(35)

where N is the number of the sample points on the whole trajectory.

x̂ and ŷ are the estimated states by the filter. x and y are the ground

truth positions generated by the simulation. γ captures how much the

estimated states deviate from the ground truth states. A smaller γ

indicates a better filtering result.

We use running time to evaluate the computation efficiency of

each filter. It should be noted that since we need to store all the

simulation data for visualization and MATLAB has no mechanism of

passing pointers, data accessing can take much computation time.

Thus, we only count the running time of the core parts of the filters,

which are the prediction and the correction.

The results are shown in Figure 14. In the simulation, the time

window in BRF and PRF is set to be 1 s and five iterations are per-

formed in the RANSAC procedure. For each frequency, the filters are

run 10 times separately and their average γ and running time are

calculated. It can be seen in Figure 14a that when the detection fre-

quency is larger than 30Hz, BRF and PRF perform close to the EKF. In

terms of calculation time, the EKF is heavier than BRF and PRF when

the frequency is lower than 40Hz. It is because that during the pre-

diction phase, the EKF not only predicts the states but also calculates

the Jacobian matrix and the prior error covariance ∣ −Pk k 1 by high

frequency while BRF and PRF only do the state prediction. However,

when the detection comes, the EKF does the correction by several

matrix operations while BRF and PRF do the RANSAC which is much

heavier. This explains why the EKF's computation load is only slightly

affected by the detection frequency but BRF and PRF's computation

load increases significantly with higher detection frequency.

4.2.2 | Comparison between EKF, BRF, and PRF with
outliers

When outliers appear, the regular EKF can be affected significantly.

Thus, outlier rejection strategies are always used within an EKF to

increase its robustness. A commonly used method is using Mahalanobis

distance between the observation and its mean as an index to de-

termine whether an observation is an outlier (Chang, 2014; Z. Li, Chang,

Gao, Wang, & Hernandez, 2016). Thus, in this section, we implement an

EKF with outlier rejection (EKF‐OR) as a benchmark to compare the

outlier rejection performance of BRF and PRF. The basic idea for the

EKF‐OR is that the square of the observation's Mahalanobis distance is

F IGURE 13 The filtering result of EKF, Basic RANSAC Fitting (BRF), and Prior RANSAC fitting (PRF). =f 50 Hzv and σ σ= = 0.1x y . When

there are no outliers, EKF, BRF, and PRF's estimating result all converge to ground truth value. In velocity estimation, however, EKF has longer
startup period than VML and BRF shows peaks, which is caused by the over‐fitting. To limit this over‐fitting, in PFR, we add a prior matrix

= ⎡
⎣

⎤
⎦

P 0 0
0 0.3

and the velocity's peak is significantly smoothed and is closer to the ground truth velocity. (a) Position estimation of EKF, BRF and

PRF. (b) Velocity estimation of EKF, BRF, and PRF [Color figure can be viewed at wileyonlinelibrary.com]

LI ET AL. | 13

http://wileyonlinelibrary.com

χ2 distributed. Hence, when the observation arrives, its Mahalanobis

distance will be calculated and checked whether it is within a threshold

χα . If it is not, this observation will be rejected.

Two examples of the filters' rejecting outliers are shown in

Figure 15. The first figure shows a common case that the three filters

can reject the outliers successfully. However, in some special cases,

EKF‐OR is vulnerable to the outliers. In Figure 15b, for instance, after

a long time of pure prediction, the error covariance ∣ −Pk k 1 becomes

large. Once EKF‐OR meets an outlier, it has a high chance to jump to

it. The subsequent true positive detections will be treated as outliers

and EKF‐OR starts diverging. At the same time, BRF and PRF are

more robust to the outliers. The essential reason is that for EKF‐OR,

it depends on its current state estimation (mean and error covar-

iance) to identify the outliers. When the current state estimation is

not accurate enough, like the long‐time prediction in our case, EKF‐
OR loses its ability to identify outliers. In other words, it tends to

trust whatever it meets. The worse situation is that after jumping to

the outlier, its error covariance become smaller which, as a

F IGURE 14 The simulation result of the filters. It can be seen that when the detection frequencies are below 20Hz, the EKF performs
better than Basic RANSAC Fitting (BRF) and Prior RANSAC fitting (PRF). However, when the detection frequencies are higher than 20 Hz, BRF
and PRF start performing better than the EKF. In terms of computation time, the EKF is affected by the detection frequency slightly while the

computation load of BRF and PRF increase significantly higher detection frequencies. (a) Estimation error of the filters with different detection
frequencies. (b) Calculation time of the filters [Color figure can be viewed at wileyonlinelibrary.com]

F IGURE 15 In most cases, EKF with outlier rejection (EKF‐OR), Basic RANSAC Fitting (BRF), and Prior RANSAC fitting (PRF) can reject the
outliers. But after a long time of pure prediction, EKF‐OR is very vulnerable to the outliers while BRF and PRF still perform well. (a) When

outliers appear, EKF‐OR, BRF, and PRF can reject them. (b) After a long time of pure prediction, EKF‐OR has large error covariance. Once it
meets an outlier, it has a high chance to jump to it. As a consequence, the later true positive detections are beyond the threshold χα and EKF‐OR
will treat them as outliers [Color figure can be viewed at wileyonlinelibrary.com]

14 | LI ET AL.

http://wileyonlinelibrary.com
http://wileyonlinelibrary.com

consequence, leads to the rejection of the coming true positive de-

tections. However, for BRF and PRF, outliers are determined in a

time window including history. Thus, after long time of prediction,

when BRF and PRF meet an outlier, they will judge it considering the

detections in the past. If there is no other detection in the time

window, they will wait for enough detections to make a decision.

With this mechanism, BRF and PRF become more robust than EKF‐
OR especially when EKF‐OR's estimation is not accurate.

Figure 16 shows the estimation error and the calculation time of

the three filters. As we stated before, although EKF‐OR has the

mechanism of dealing with the outliers, it still can diverge due to the

outliers in some special cases. Thus, in Figure 16a EKF‐OR has large

estimation error when the detection frequency is both low and high.

In terms of calculation time, it can be seen that it has no significant

difference with the non‐outlier case.

4.2.3 | Filtering result with delayed detection

Image processing and visual algorithms can be very computationally

expensive for running onboard a drone, which can lead to significant

delay (van Horssen, van Hooijdonk, Antunes, & Heemels, 2019;

Weiss et al., 2012). Many visual navigation approaches ignore this

delay and directly fuse the visual measurements with the onboard

sensors, which sacrifices the accuracy of the state estimation. A

commonly used approach for compensating this vision delay is a

modified Kalman filter proposed by Weiss et al. (2012). The main idea

of this approach, called EKF delay handler (EKF‐DH), is having a

buffer to store all sensor measurements within a certain time. At

time tk, a vision measurement corresponding to the states at earlier

time ts arrives. It will be used to correct the states at time ts. Then,

the states will be propagated again from ts to tk (Figure 17a). Al-

though updating the covariance matrix is not needed according to

Weiss et al. (2012), this approach still requires updating history

states whenever a measurement arrives, which can be computa-

tionally expensive especially when the delay and the measurement

frequency get larger. In our case, we need to use the error covariance

for outlier rejections, it is necessary to update the history error

covariance matrices, which in turn increases the computation load

further. At the same time, for VML, when the measurement arrives, it

will first be pushed into the buffer. Then, the error model will be

estimated within the buffer/time window. With the estimated para-

meter β̂ , the prediction at tk can be corrected directly without the

need of correcting all the states between ts and tk (Figure 17b). Thus,

the computational burden will not increase when the delay exists.

Figure 18 shows an example of the simulation result of the three

filters when both outliers and delay exist. In this simulation, the vi-

sual delay is set to be 0.1 s. It can be seen that although there is a lag

between the vision measurements and the ground truth, all the filters

can estimate accurate states. However, EKF‐DH requires much more

computation effort. Figure 19 shows the estimation error and the

computation time of the three filters.

In Figure 19, we can see that the computation load of EKF‐DH

increases significantly due to its mechanism of handling delay. Un-

surprisingly, EKF‐DH is still sensitive to some outliers while BRF and

PRF can handle the outliers.

5 | REAL‐WORLD EXPERIMENTS (Figure 20)

5.1 | Processing time of each component

Before testing the whole system, we first test on the ground how

much time the Snake gate detection, the VML‐prediction, the VML‐
correction and the controller take when running on a Jevois smart

camera. On the ground, we set an orange gate in front of a Jevois

camera and calculate the time that each component takes. For each

image, for example, we start timing when a new image arrives and

the Snake gate detection is run. Then, we stop timing when the snake

gate finishes. For the VML and the controller, we use the same

strategy to calculate processing time. In this test, the vision detection

frequency is 15 Hz and the number of RANSAC iterations in VML is

set to 5. Figure 21 shows the timing statistics for each component on

the Jevois. It can be seen that outliers happen during the testing

F IGURE 16 The estimation error of EKF with outlier rejection (EKF‐OR), Basic RANSAC Fitting (BRF), and Prior RANSAC fitting (PRF) and

their calculation time with outliers. EKF‐OR has some chance (15%) to diverge, which leads to the high estimation error. (a) Estimation error of
the EKF‐OR, BRF, and PRF with different detection frequencies. (b) Partial enlarged drawing of (a). (c) Calculation time of the filters [Color
figure can be viewed at wileyonlinelibrary.com]

LI ET AL. | 15

http://wileyonlinelibrary.com

process, which can be caused by system interrupts. Thus, we first

exclude the outliers by the Interquartile Range Method (Upton &

Cook, 1996) and then provide the statistics for each component. The

result can be found in Figure 22 and Table 3.

From Table 3, it can be seen that vision takes much more time than

the other three parts. Please note though that the snake gate computer

vision detection algorithm is already a very efficient gate detection al-

gorithm. In fact, it has tunable parameters, that is, the number of samples

(a) (b)

F IGURE 17 The sketches of EKF delay handler (EKF‐DH) and visual model‐predictive localization's (VML) handling delay mechanism. (a) The
sketch of the EKF‐DH proposed inWeiss et al. (2012). When the measurement arrives at tk , EKF‐DH first corrects the corresponding states at ts and
then updates the states until tk . (b) The sketch of VML's mechanism of handling delay. When the measurement arrives, it will be pushed to the buffer

with the corresponding states. Then, the error model will be estimated by the RANSAC approach. At last, the estimated model will be used to
compensate the prediction at tk . There is no need to update all the states between ts and tk [Color figure can be viewed at wileyonlinelibrary.com]

F IGURE 18 An example of the performance of the three filters when outliers and delay exist. (a) Position estimation of the three filters with
outliers and delay. (b) Velocity estimation of the three filters with outliers and delay [Color figure can be viewed at wileyonlinelibrary.com]

F IGURE 19 The estimation error of EKF delay handler (EKF‐DH), Basic RANSAC Fitting (BRF), and Prior RANSAC fitting (PRF) and their

calculation time with outliers and delay. (a) Estimation error of the EKF‐DH, BRF, and PRF with different detection frequencies. (b) Partial
enlarged drawing of (a). (c) Calculation time of the filters [Color figure can be viewed at wileyonlinelibrary.com]

16 | LI ET AL.

http://wileyonlinelibrary.com
http://wileyonlinelibrary.com
http://wileyonlinelibrary.com

taken per image for the detection (3,000 in the current setup), which

allow the algorithm to run even much faster at the cost of having less

accuracy (see S. Li et al., 2018 for more details). The main gain in time in

the approach presented in this article is that we do not employ VIO and

SLAM, which would take substantially more processing. However, as the

Snake gate detection provides relatively low‐frequency and noisy position

measurements, the VML needs to run in high frequency and cope with

the detection noise to still provide accurate estimation for the controller.

5.2 | Flying experiment without gate displacement

Figure 23 shows the flying result of the drone flying the track

without gate displacement. The position of the 4 gates is listed in

Table 4. In Table 4, xg and yg are the position of the gates in the real

world and x̃g and ỹg are their position on the map. In this situation,

they are the same. The aim of this experiment is to test the filter's

performance with sufficient detections. Thus, the velocity is set to be

∕m s1.5 to give the drone more time to detect the gate. In Figure 23,

the blue curve is the ground truth data from OptiTrack motion

capture system and the yellow curves are the filtering results. From

the flying result, it can be seen that the filtered results are smooth

and coincide with the ground truth position well. During the period

when the detections are not available, the state prediction is still

accurate enough to navigate the drone to the next gate. When the

drone detects the next gate, the filter will correct the prediction. In

this situation, the divergence of the states is only caused by the

prediction drift. It should also be noted that when the outliers ap-

pears at s84 , the filter is not affected by them because of the

RANSAC technique in the filter.

5.3 | Flying experiment with gate displacement

In this section, we test our strategy under a difficult condition where

the drone flies faster, the gates are displaced and the detection

frequency is low. The real gate positions and their position on the

map are listed in Table 5 and shown in Figure 24a. Gates are dis-

placed between 0 and 1.5 m from their supposed positions. The da-

shed orange lines in Figure 24a denote the gate positions on the map

while the solid orange lines denote the real gate positions which are

displaced from the map. Figure 24b shows the flight data of the first

lap. The orange solid gates are the ground truth positions of the

gates. The yellow curve is the filtered position based on the gates'

positions on the map (orange dashed gates). In other words, the

yellow curve is where the drone thinks it is based on the knowledge

of the map. After passing through one gate, when the drone detects

F IGURE 20 The picture of the Trashcan flying the track where the
gates are displaced. The average speed is 2m/s and the maximum
speed is 2.6m/s [Color figure can be viewed at wileyonlinelibrary.com]

F IGURE 21 The statistical result of the four components' (vision, control, prediction and correction) processing time [Color figure can be
viewed at wileyonlinelibrary.com]

LI ET AL. | 17

http://wileyonlinelibrary.com
http://wileyonlinelibrary.com

the next gate, the filter will start correcting the filtering error from

the prediction error and the gate displacement.

The whole flight result is shown in Figure 25. From the result, it can

be seen that the drone can fly the track for three laps with an average

speed of 2m/s and a maximum speed of 2.6m/s while an experienced

pilot flies the same drone in the same track with an average speed of

2.7m/s after several runs of training. Figure 25a is the filtering result of

the position. It should be noted that the filtering result does not coincide

with the ground truth curve because of the displacement of the gates.

The pose estimation is based on the gates' position on the map. When

the gates are displaced, the drone still thinks they are at the position

which the map indicates. After the turn, when the drone sees the next

gate, which is displaced, it will attribute the misalignment to the pre-

diction error and correct the prediction by means of new detections.

With this strategy, our algorithm is robust to the displacement of the

gates.

5.4 | Flying experiment with different altitude and
moving gate

We also show a more challenging trace track where the height of the

gates varies from 0.5 to 2.5m. Also, during the flight, the position of

the second gate (2.5 m) is changed after the drone passes through it.

In the next lap, the drone can adapt to the changing position of the

gate (Figure 26).

The flight result is shown in Figure 27. In this flight, the way-

points are not changed and the gates are deployed without any

F IGURE 22 The histograms of each component's processing time without outliers. (a) Histogram of the vision's processing time. (b)

Histogram of the controller's processing time. (c) Histogram of the visual model‐predictive localization (VML)‐prediction's processing time. (d)
Histogram of the VML‐correction's processing time [Color figure can be viewed at wileyonlinelibrary.com]

TABLE 3 Statistics for visual model‐
predictive localization's (VML) components'

processing time without outliers

Mean (ms) Std (ms) Max. (ms) Min. (ms) Outlier rate (%)

Vision 23.2 4.2 36.0 11.3 6.7

Controller 0.03 0.02 0.08 0.01 6.4

VML‐prediction 0.03 0.02 0.09 0.01 7.5

VML‐correction 0.90 0.39 2.25 0.02 2.1

18 | LI ET AL.

http://wileyonlinelibrary.com

ground truth measurement. Thus, the estimated position does not

coincide with the ground truth position. It should be noted that the

height difference between the second gate and the third gate is 2 m.

With this altitude change which violates the constant altitude as-

sumption for the prediction error model, the proposed VML is still

accurate enough to navigate the drone through the gate.

From the real flight result, we can see that the VML performs

well and can navigate the drone through the racing track with high

speed even though the gates are displaced. Also, this strategy does

not need computationally expensive methods like generic VIO and

SLAM. This allows it to be run on a very light‐weight flying platform.

6 | DISCUSSION

In this paper, we proposed a novel state estimation method called

VML which provides navigation information for a 72‐g autonomous

racing drone. The algorithm's properties were thoroughly studied in

simulation and the feasibility of real‐world implementation was

shown in challenging real‐world experiments. Although in this paper

VML is used for a specific drone race scenario, this method can be

directly used for navigation in other more general scenarios where

the sensors have low frequency, temporary failure, outliers and

delays. For example, our approach can be directly adopted into an

outdoor environment where position measurements are provided

by a GPS signal that has a delay, temporary failures and outliers.

Just as in our drone race experiments, the proposed approach

should be more reliable than a Kalman filter. For indoor flight, we

used a common linear drag model for state prediction which does

not need a lot of effort and precise equipment to identify. Outdoor

flight would require adaptations to this model, for instance such as

the ones explained in, for example, Sikkel, de Croon, De Wagter, and

Chu (2016).

We implemented our approach by adding a cheap smart

camera Jevois to a tiny racing drone Trashcan. With very limited

F IGURE 23 The flying result of the drone flying the track without

the gate displacement [Color figure can be viewed at
wileyonlinelibrary.com]

TABLE 4 The position of the gates without displacement

Gate ID xg (m) yg (m) x̃g (m) ỹg (m)

1 5 0 5 0

2 6.5 5 6.5 5

3 1 7 1 7

4 0 1 0 1

TABLE 5 The position of the gates with displacement

Gate ID xg (m) yg (m) x̃g (m) ỹg (m)

1 5 0 4 0

2 6.5 5 5 5

3 1 7 1 6

4 0 1 0 1

F IGURE 24 The experiment where the gates are displaced. When the drone sees the next gate after passing through one gate, the filter will
start correcting the error caused by the prediction drift and the gate's displacement. Thus, there is a jump in the filtering result. (a) The map of the

race track where the gates in the real world are displaced. (b) The flying data of the first lap [Color figure can be viewed at wileyonlinelibrary.com]

LI ET AL. | 19

http://wileyonlinelibrary.com
http://wileyonlinelibrary.com

carrying capacity and more complex aerodynamics properties, it

is still demonstrated that this light‐weight flying platform has the

ability to finish the drone race task autonomously. Compared

with a regular size racing drone, the Trashcan has more complex

aerodynamics and is more sensitive to disturbances. On the other

hand, it has faster dynamics which can make maneuvers more

agile. More important, it is much safer than a regular size racing

drone, which may even allow for flying at home. In any case, the

present approach represents another direction of the autono-

mous drone race, which does not need high performance and

heavy onboard computers. Also, without computationally ex-

pensive navigation methods such as SLAM and VIO, the proposed

approach is still able to make the drone navigate autonomously

with relatively high speed.

However, the proposed approach still has its limitations. First of

all, in this approach, we don't estimate the thrust. Instead, we use a

non‐changing altitude assumption to approximate the thrust to de-

rive the prediction error model. The simulation and real‐world ex-

periments have shown that violating this assumption still results in

accurate estimation. However, when the racing track will contain

more considerable height changes, it may become desirable to esti-

mate the thrust with a model, to have a more accurate error model

and increase the estimation accuracy, especially in more aggressive

flight.

F IGURE 25 The result of flying the track with the gate displacement. (a) The position estimation result. It should be noted that the position

estimation curve does not coincide with the ground truth curve coming from our motion capture system because the gate displacements. (b)
The velocity estimation result of visual model‐predictive localization [Color figure can be viewed at wileyonlinelibrary.com]

F IGURE 26 The flying experiment where the heights of the gates vary from 0.5 to 2.5 m. During the flight, the position of the second gate is
changed. (a) After the drone passes through the second gate, the gate is moved. (b) In the next lap, the drone can adapt to the changing position
of the gate and fly through it [Color figure can be viewed at wileyonlinelibrary.com]

20 | LI ET AL.

http://wileyonlinelibrary.com
http://wileyonlinelibrary.com

Second, the current detection method is sensitive to light con-

ditions. Most failures are caused by the nondetection of the gate.

This is a major bottleneck of increasing the speed of the flight. In the

future, we will design a gate detection method using deep learning

methods to detect the gate in a more complex environment. This

deep net can then run on the GPU of the Jevois. Also, higher speeds

could be attainable.

Thirdly, in this paper, we mainly focus on the navigation part of

the drone. The guidance is only a waypoint based method and the

controller is a PID controller. To make the drone fly faster, optimal

guidance and control methods are needed (S. Li, Ozturk, De Wagter,

de Croon, & Izzo, 2019; Tailor & Izzo, 2019; Tang, Sun, & Hauser,

2018). Another direction is to explore joint estimation for navigation.

This will become very useful when one assumes that gates are mostly

not displaced. Then, over multiple laps, the drone can get a better

idea of where the gates are.

In the future, with the high speed development of computational

capacity, when more reliable gate detection and online optimal control

are implemented onboard, the speed of this autonomous racing drone

can certainly be increased significantly. Compared with regularly sized

drones, this tiny flying platform will be able to perform faster and

more agile flight. At that time, the proposed VML approach will still be

suitable for providing stable state estimation for the drone.

7 | CONCLUSION

In this paper, we presented an efficient VML approach to autono-

mous drone racing. The approach employs a velocity‐stable model

that predicts lateral accelerations based on attitude estimates from

the AHRS. Vision is used for detecting gates in the image, and—by

means of their supposed location in the map—for localizing the

drone in the coarse global map. Simulation and real‐world flight ex-

periments show that VML can provide robust estimates with sparse

visual measurements and large outliers. This robust and computa-

tionally very efficient approach was tested on an extremely light‐
weight flying platform, that is, a Trashcan racing drone with a Jevois

camera. In the flight experiments, the Trashcan flew a track of three

laps with an average speed of 2m/s and a maximum speed of 2.6m/s.

To the best of our knowledge, it is the world's smallest autonomous

racing drone with a weight six times lighter than the currently

lightest autonomous racing drone setup, while its velocity is on a par

with the currently fastest autonomously flying racing drones seen at

the latest IROS autonomous drone race.

ORCID

Shuo Li http://orcid.org/0000-0002-8656-4661

Christophe De Wagter https://orcid.org/0000-0002-6795-8454

Guido C. H. E. de Croon http://orcid.org/0000-0001-8265-1496

REFERENCES

Chang, G. (2014). Robust Kalman filtering based on Mahalanobis distance

as outlier judging criterion. Journal of Geodesy, 88(4), 391–401.

Diderrich, G. T. (1985). The Kalman filter from the perspective of Goldberger'

Theil estimators. The American Statistician, 39(3), 193–198.

Faessler, M., Franchi, A., & Scaramuzza, D. (2017). Differential flatness of

quadrotor dynamics subject to rotor drag for accurate tracking of high‐
speed trajectories. IEEE Robotics and Automation Letters, 3(2), 620–626.

Falanga, D., Mueggler, E., Faessler, M., & Scaramuzza, D. (2017).

Aggressive quadrotor flight through narrow gaps with onboard

sensing and computing using active vision. In 2017 IEEE International

Conference on Robotics and Automation (ICRA), IEEE, pp. 5774–5781.

Fischler, M. A., & Bolles, R. C. (1981). Random sample consensus: A

paradigm for model fitting with applications to image analysis and

automated cartography. Communications of the ACM, 24(6), 381–395.

Gao, F., Wang, L., Wang, K., Wu, W., Zhou, B., Han, L., & Shen, S. (2019).

Optimal trajectory generation for quadrotor teach‐and‐repeat. IEEE
Robotics and Automation Letters, 4(2), 1493–1500.

Gati, B. (2013). Open source autopilot for academic research—the paparazzi

system. In 2013 American Control Conference, IEEE, pp. 1478–1481.

Gross, J. N., Gu, Y., Rhudy, M. B., Gururajan, S., & Napolitano, M. R. (2012).

Flight‐test evaluation of sensor fusion algorithms for attitude estimation.

IEEE Transactions on Aerospace and Electronic Systems, 48(3), 2128–2139.

Hattenberger, G., Bronz, M., & Gorraz, M. (2014). Using the paparazzi

UAV system for scientific research. In IMAV 2014, International Micro

Air Vehicle Conference and Competition 2014, p. 247.

Jung, S., Cho, S., Lee, D., Lee, H., & Shim, D. H. (2018). A direct visual

servoing‐based framework for the 2016 IROS autonomous drone

racing challenge. Journal of Field Robotics, 35(1), 146–166.

Kaufmann, E., Gehrig, M., Foehn, P., Ranftl, R., Dosovitskiy, A., Koltun, V.,

& Scaramuzza, D. (2018). Beauty and the beast: Optimal methods

meet learning for drone racing. arXiv preprint, arXiv:1810.06224.

Kaufmann, E., Loquercio, A., Ranftl, R., Dosovitskiy, A., Koltun, V., &

Scaramuzza, D. (2018). Deep drone racing: Learning agile flight in

dynamic environments. arXiv preprint, arXiv:1806.08548.

Li, S., Ozo, M., De Wagter, C., & de Croon, G. (2018). Autonomous drone

race: A computationally efficient vision‐based navigation and control

strategy. arXiv preprint, arXiv:1809.05958.

Li, S., Ozturk, E., De Wagter, C., de Croon, G. C., & Izzo, D. (2019).

Aggressive online control of a quadrotor via deep network representations

of optimality principles. arXiv preprint, arXiv:1912.07067.

Li, Z., Chang, G., Gao, J., Wang, J., & Hernandez, A. (2016). Gps/uwb/

mems‐imu tightly coupled navigation with improved robust Kalman

filter. Advances in Space Research, 58(11), 2424–2434.

F IGURE 27 The flying result of the drone flying the track with
different height and the gate's position changing [Color figure can be

viewed at wileyonlinelibrary.com]

LI ET AL. | 21

http://orcid.org/0000-0002-8656-4661
https://orcid.org/0000-0002-6795-8454
http://orcid.org/0000-0001-8265-1496
http://wileyonlinelibrary.com

Loianno, G., Brunner, C., McGrath, G., & Kumar, V. (2017). Estimation,

control, and planning for aggressive flight with a small quadrotor with

a single camera and imu. IEEE Robotics and Automation Letters, 2(2),

404–411.

Lupashin, S., Hehn, M., Mueller, M. W., Schoellig, A. P., Sherback, M., &

D'Andrea, R. (2014). A platform for aerial robotics research and

demonstration: The flying machine arena. Mechatronics, 24(1), 41–54.

McGuire, K., De Croon, G., De Wagter, C., Tuyls, K., & Kappen, H. (2017).

Efficient optical flow and stereo vision for velocity estimation and

obstacle avoidance on an autonomous pocket drone. IEEE Robotics and

Automation Letters, 2(2), 1070–1076.

Mellinger, D., & Kumar, V. (2011). Minimum snap trajectory generation

and control for quadrotors. In 2011 IEEE International Conference on

Robotics and Automation, IEEE, pp. 2520–2525.

Mellinger, D., Michael, N., & Kumar, V. (2012). Trajectory generation and

control for precise aggressive maneuvers with quadrotors. The

International Journal of Robotics Research, 31(5), 664–674.

Moon, H., Martinez‐Carranza, J., Cieslewski, T., Faessler, M., Falanga, D.,

Simovic, A., & Kim, S. J. (2019). Challenges and implemented

technologies used in autonomous drone racing. Intelligent Service

Robotics, 1–12.

Moon, H., Sun, Y., Baltes, J., & Kim, S. J. (2017). The IROS 2016

competitions [competitions]. IEEE Robotics & Automation Magazine,

24(1), 20–29.

Morrell, B., Rigter, M., Merewether, G., Reid, R., Thakker, R., Tzanetos, T.,

& Chamitoff, G. (2018). Differential flatness transformations for

aggressive quadrotor flight. In 2018 IEEE International Conference on

Robotics and Automation (ICRA), IEEE, pp. 1–7.

Mueller, M. W., Hamer, M., & D'Andrea, R. (2015). Fusing ultra‐wideband

range measurements with accelerometers and rate gyroscopes for

quadrocopter state estimation. In 2015 IEEE International Conference

on Robotics and Automation (ICRA), IEEE, pp. 1730–1736.

Sanket, N. J., Singh, C. D., Ganguly, K., Fermüller, C., & Aloimonos, Y.

(2018). Gapflyt: Active vision based minimalist structure‐less gap

detection for quadrotor flight. IEEE Robotics and Automation Letters,

3(4), 2799–2806.

Santamaria‐Navarro, A., Loianno, G., Solà, J., Kumar, V., & Andrade‐Cetto,
J. (2018). Autonomous navigation of micro aerial vehicles using high‐
rate and low‐cost sensors. Autonomous Robots, 42(6), 1263–1280.

Santana, L. V., Brandao, A. S., & Sarcinelli‐Filho, M. (2015). Outdoor

waypoint navigation with the ar. drone quadrotor. In 2015

International Conference on Unmanned Aircraft Systems (ICUAS), IEEE,

pp. 303–311.

Sikkel, L., de Croon, G., De Wagter, C., & Chu, Q. (2016). A novel online

model‐based wind estimation approach for quadrotor micro air

vehicles using low cost MEMs IMUs. In 2016 IEEE/RSJ International

Conference on Intelligent Robots and Systems (IROS), IEEE, pp.

2141–2146.

Tailor, D., & Izzo, D. (2019). Learning the optimal state‐feedback via

supervised imitation learning. Astrodynamics, 3(4), 361–374.

Tang, G., Sun, W., & Hauser, K. (2018). Learning trajectories for real‐time

optimal control of quadrotors. In 2018 IEEE/RSJ International Conference

on Intelligent Robots and Systems (IROS), IEEE, pp. 3620–3625.

Upton, G., & Cook, I. (1996). Understanding statistics. Oxford: Oxford

University Press.

van Horssen, E., van Hooijdonk, J., Antunes, D., & Heemels, W. (2019).

Event‐and deadline‐driven control of a self‐localizing robot with

vision‐induced delays.IEEE Transactions on Industrial Electronics.

Weiss, S., Achtelik, M. W., Chli, M., & Siegwart, R. (2012). Versatile

distributed pose estimation and sensor self‐calibration for an

autonomous MAV. In 2012 IEEE International Conference on Robotics

and Automation, IEEE, pp. 31–38.

How to cite this article: Li S, van der Horst E, Duernay P, De

Wagter C, de Croon GCHE. Visual model‐predictive
localization for computationally efficient autonomous racing

of a 72‐g drone. J Field Robotics. 2020;1–26.

https://doi.org/10.1002/rob.21956

22 | LI ET AL.

https://doi.org/10.1002/rob.21956

APPENDIX A

A.1 Kalman filter's prediction model

ψ ψ

ψ ψ

θ

ϕ

ψ ψ

ψ ψ

ϕ

θ

ϕ

θ

ψ ψ

ψ ψ

̇
̇

̇

̇

̇

̇

⎧

⎨

⎪
⎪
⎪
⎪
⎪

⎩

⎪
⎪
⎪
⎪
⎪

⎡
⎣
⎤
⎦
= ⎡
⎣

⎤
⎦

⎡

⎣
⎢

⎤

⎦
⎥
= ⎡

⎣
⎢

− ⎤

⎦
⎥
⎧
⎨
⎩

⎡

⎣⎢

− ⎤

⎦⎥
+ ⎡

⎣
⎢

⎤

⎦
⎥
⎡

⎣
⎢−

⎤

⎦
⎥
⎡
⎣

⎤
⎦

⎫
⎬
⎭

⎡

⎣
⎢

⎤

⎦
⎥ =

⎡
⎣
⎤
⎦

⎡
⎣⎢
⎤
⎦⎥
= ⎡

⎣⎢
⎤

⎦⎥
+ ⎡

⎣
⎢−

⎤

⎦
⎥
⎡

⎣⎢
⎤

⎦⎥

x
y

v
v

v
v

g
g

k
k

v
v

B

B

B
B

cos sin

sin cos

sin

cos

0

0

cos sin

sin cos

0
0

cos sin

sin cos

.

x

y

x

y

m m

m m
x

y

m m

m m
x

y

N

E

m

m

m m

m m
N

E

(A1)

The inputs of the system A1 is the AHRS reading ϕ θ ψ= []u , ,m m m T. The states of the Extended Kalman filter are = []x y v v B BX , , , , ,x y N E
T.

With the standard Extended Kalman filter procedure list below, the states of the system can be estimated.

A.2 Pseudocodes

LI ET AL. | 23

24 | LI ET AL.

LI ET AL. | 25

26 | LI ET AL.

