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Arno van Hilten 1,7 , Federico Melograna 2,3,7 , Bowen Fan4, Wiro Niessen1,5,
Kristel van Steen 2,3 & Gennady Roshchupkin 1,6

Non-linear interactions among single nucleotide polymorphisms (SNPs), genes, andpathways play an
important role in human diseases, but identifying these interactions is a challenging task. Neural
networks are state-of-the-art predictors in many domains due to their ability to analyze big data and
model complex patterns, including non-linear interactions. In genetics, visible neural networks are
popular as they provide insight into the most important SNPs, genes, and pathways for prediction.
Visible neural networks use prior knowledge (e.g., gene and pathway annotations) to define node
connections in the network, making them sparse and interpretable. Currently, most of these networks
provide measures for the importance of SNPs, genes, and pathways but do not provide information
about interactions. In this paper, we explore different methods to detect non-linear interactions with
visible neural networks. We adapt and speed up existing methods, create a comprehensive
benchmark with simulated data from GAMETES and EpiGEN, and demonstrate that these methods
can extract multiple types of interactions from trained neural networks. Finally, we apply these
methods to a genome-wide case-control study of inflammatory bowel disease and find high
consistency of the epistasis pairs candidates between interpretation methods. The follow-up
association test on these candidates identifies seven significant epistasis pairs.

Machine learning methods, particularly neural networks, have been a dis-
ruptive technology that has transformed numerous fields in the last decade.
Machine learning and deep learning have completely reshaped the fields of
biomedical image segmentation1, natural language processing2,3, protein
folding4 andmanymore. The rise of deep learning can be attributed to three
main factors. First, sufficiently large neural networks can approximate any
function5,6. Neural networks are thus not constrained to linear combina-
tions, but can find and leverage non-linear interactions between inputs.
Secondly, neural networks scale well with data set size7. Neural networks
thrive in large data sets withmany examples as it allows the network to find
complex patterns. Third, neural networks are flexible; their architecture can
be easily modified for different tasks and different types of data. For the
imaging domain, this led to convolutional neural networks (CNNs) while
for natural language processing, transformers have deeply impacted
the field8.

In population-based genetics where there is a large number of input
SNPs, there is a domain-specific trend to embed neural networks with prior

biological knowledge, such as gene and pathway information, to create
sparse and interpretable neural networks that predict genetic risk9–13. These
interpretable neural networks, coined visible neural networks14, provided a
solution to the twomain challenges forneural networks for genetic data.The
large number of input features - up to millions of SNPs - and the need for
neural networks that can provide more insight into its decision-making
process. Prior knowledge such as gene and pathway information is
embedded in the neural network architecture to define which node should
connect and which not, resulting in a sparse and interpretable neural net-
work. In these networks, each node represents a biological entity by the
inputs it groups (e.g. SNPs are grouped by gene). The weights of the con-
nections represent how predictive these entities (i.e., SNPs, genes and
pathways) are for the final prediction.

However, although visible neural networks provide more insight into
how important SNPs, genes and pathways are for prediction, they do not
provide any information about interactions between SNPs or genes. Like-
wise, other post-hoc interpretability methods for standard types of neural
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networks, such as Layer-wise Relevance Propagation15, Integrated
Gradients16 and DeepLIFT17, only provide the importance for each entity
and do not provide insight in the nature of the relation between entities.
Attributing entities with an importance score, a single value for each input,
provides a simplified view of the decision process that ignores interactions.
Neural networks thrive because they can learn (non-linear) combinations of
features and these cannot be expressed by a single importance value. Thus,
for amore complete overviewof the decisionprocess of neural networks and
tounderstand thenature of the relation betweenSNPs, genes, andpathways,
it is important to detect and understand which input features interact with
each other in neural networks.

Non-linear effects are ubiquitous in biology. Detecting and under-
standing these interactions is necessary to fully model the complex bio-
logical mechanisms that exist between genotype and phenotype18,19.
Detecting interactions between genes and, in particular, SNPs (epistasis)
comes with an inherent computational challenge. Following Fisher’s20

definition of statistical epistasis, i.e., as a deviation from the additive
expectation of allelic effects, the possible set of interactions exceedsOðp2Þ,
with p the number of features. Thus, an exhaustive search is computa-
tionally unfeasible for a large number of inputs. In genetics, genome-wide
association studies (GWASes) consider several millions of SNPs and
detecting epistasis is thus infeasible to date without extra interventions to
reduce the search space of possible interactions, due to the sheer number
of possible combinations. Fortunately, there is a wide variety of non-
exhaustive epistasis detectionmethods available. Epiblaster21, takes a two-
step approach that first searches for a smaller number of likely candidates
using correlation before performing full rank logistic regression to con-
firm significance. MB-MDR22, a non-parametric model often used to
detect epistasis, conditions interaction testing on lower order effects.
Other approaches, such as machine learning applications, build a pre-
diction model first and then extract interaction information from this
model. Tree-based classifiers can use the structure of the trees to find
epistasis candidates23,24 or use the prediction model with permuted input
data to find interacting features25. For neural networks, the field of
explainable AI (XAI) provides many tools that aim to explain the trained
neural network. Most of these tools focus on input feature attribution
and place little emphasis on finding interacting features. However,
Tsang et al.26 proposed amethod forfinding statistically significant feature
interactions using the weights of a neural network. They demonstrated
this method on synthetic datasets and real-world datasets such as Cali-
fornia housing prices and bike rental counts. In genomics, only Greenside
et al.27 introduced a feature attribution method for detecting interactions
in sequences for neural networks predicting epigenetic markers.

Combining thesemethodswith visible neural networksmight enhance
our understanding of these neural networks and thereby the underlying
biology. In this paper, we evaluate the performance and consistency of
several post-hoc interpretationmethods onvisible neural networks from the
GenNet framework10. Primarily, we focus on epistasis detection, i.e., a pair of
SNPs whose combination affects the phenotype. After training these net-
works, we apply: neural interaction detection (NID)26, PathExplain28 and
Deep Feature Interaction Maps (DFIM)27 to investigate how well these
methods explain interactions learned by visible neural networks. Moreover,
on the learned network, we analyze which gene gives a relative local
improvement in predictive power (RLIPP)13.We compare thesemethods to
literature epistasis methods, such as light gradient-boosting machine, Epi-
blaster and MB-MDR, using simulated data from Epigen and Gametes.
Finally, we apply these post-hoc interpretation methods to visible neural
networks trained on data from the Inflammatory Bowel Disease
Consortium.

Methods
To evaluate epistasis methods in a controlled environment with known
ground truth, we used simulated data from two different methods:
GAMETES29 for strict and pure epistasis models and EpiGEN30 for more
complex simulations. Finally, we applied the methods to the data from the

International Inflammatory BowelDiseaseGenetics Consortium (IIBDGC)
to test the approaches in human data.

GAMETES is an open-source simulation package to generate pure and
strict epistatic models, thus epistasis models without linkage disequilibrium
and marginal effects but with two loci contributing to a discrete phenotype
in a strictly non-linear manner. Fourteen different sets of simulations
were simulated with varying sample sizes {3000, 12000}, heritability
{0.05, 0.1, 0.2, 0.3}, and number of SNPs {25, 100, 1000}. An overview of the
simulation settings can be found in Supplementary Table 1.

EpiGEN, on the other hand, is a simulation pipeline built to simulate
more complex phenotypes based on realistic genotype data. For example,
EpiGENallows the use ofHAPGEN2 to simulate genotype datawith similar
characteristics (linkage disequilibrium, ethnicity, etc.). Additionally, Epi-
GENwas used to explore the effects of different epistasis models and SNPs
with marginal effects. Using HAPGEN2 as a basis, we created simulations
with varying sample sizes {3000, 12000}, number of SNPs {100, 1000},
interactions models {joint-dominant, joint-recessive, multiplicative and
exponential}, and interaction strength {3, 10, 100}. Different interaction
models mimic different structures of the epistasis. An interaction strength
of, e.g., 10, means that an individual with the epistatic pair has 10-times the
risk of someone without. Overall, we generated 384 different simulations:
288 with a marginal background effect and 96 pure epistasis models where
only interaction effects lead to the response. All simulation parameters for
EpiGENcan be found in SupplementaryTable 1. For in-depth details on the
simulations, we refer to the original paper30.

IBD dataset. We investigated the IBD dataset from the International
Inflammatory Bowel Disease Genetics Consortium (IIBDGC). The data
contains cases with non-infectious inflammations of the bowel, including
Ulcerative colitis (UC)andCrohn’s disease (CD), the twomain categoriesof
IBD31. The dataset was genotyped on the Immunochip SNP array32. We
performed quality control as in Ellinghaus et al.33, reducing the number of
SNPs from 196,524 to 130,071. The final dataset contained 66,280 samples,
including 32,622 cases (individualswith IBD) and33,658 controls, thuswith
a feature:sample ratio of around 2:1.

Since the IIBDGCdataset aggregatesmultiple cohorts, confounders by
sharedgenetic ancestry is a concern.As inEllinghaus et al.33,weused thefirst
7 principal components tomodel population stratification.We adjusted the
phenotypes for epistasis detection methods that cannot include covariates.
The same quality control steps as in Duroux et al.34 were applied. We
removed rare variants (MAF < 5%) or in Hardy-Weinberg equilibrium
(p-value < 0.001). All risk SNPs described in Liu et al.35 were included.

Visible neural networks
TheGenNet framework10 was used to create sparse and interpretable neural
networks. These visible neural networks use biological knowledge embed-
ded in the neural network architecture to define connections betweennodes.
Figure 1 illustrates the employed neural network architecture. Each network
had a depth of three or four layers, depending on the input encoding, and
was structured according to Fig. 1. Several changesweremade to the original
framework to improve the neural networks for epistasis detection. First, we
tested one-hot input encoding in addition to the standard (additive) input
encoding. Secondly, we added multiple filters for each gene to allow the
network to find and usemultiple patterns per SNP and gene, followed by an
extra layer to converge back to a single node per gene (Supplemen-
tary Fig. 1).

The simulated data from EpiGen and GAMETES lack gene annota-
tions. For these simulations,we created thegene annotationsdynamically by
connecting neighboring inputs to a number of genes proportional to the
input size of the simulation.More specifically, the number of neurons— the
basic computational units in a neural network — was defined as the total
number of inputs divided by 100, with a minimum of five neurons. The
learning rate for theADAMoptimizer and the strength of L1 penalty on the
kernel weights were optimized on the validation set. To reduce the com-
putational cost, hyperparameters were only optimized for a single simula-
tion for simulations similar in sample size and input size. Networks were
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trained using CPU since the sparse matrix operations used do not benefit
from using a GPU.

For the IBD dataset we used similar neural networks but with gene
annotations from FUMA36. To map SNP to genes, both positional and
functional annotations were combined. In the positional annotations, SNP
to genes were mapped via a positional mapping obtained from FUMA’s
SNP2GENE function. A SNP was mapped to a gene when the genomic
coordinates of a variant were within the boundaries of a gene ± 10 kb. For
the functional annotations, we used FUMA’s eQTL mapping that is based
on eQTLs obtained from GTEx37. An eQTL SNP was mapped to its
target gene when the association p-value was significant in any tissue
(FDR < 0.05). Combined they map 38,225 SNPs to 25,139 genes with
126,899 connections.

One-hot encoding. The standard genotype encoding {0,1,2} may
introduce a bias to the additive model between genetic variants and the
outcome as it represents an additive model. Therefore, we train for each
application two models. A standard model and a model with a one-hot
encoded input for the genotype. For this model we modify the first layer of
each network, leading to three inputs per SNP (as shown in figure 1a).
Regular one-hot encoding is widely used in machine learning to treat
categorical variables as numerical values. In one-hot encoding the three
categories that the SNPcanassume: both reference alleles, a referenceandan
alternate allele, or both alternate alleles are each represented with a single
variable that assumes value 1 if the input individual has said configuration,
and 0 otherwise. We designed a novel way of using this one-hot encoded
input, the three inputs per SNP are connected to a node representing that
SNP in the first layer of the network. The weights of these connections may
be informative of the genetic model learned by the model for that SNP.

For an additive model, the expected strength of the weights should
roughly adhere to:W0−W1≃W1−W2.We, therefore, use the ratioRw=
W0�W1
W1�W2

as a measure for the degree of linearity. Historically, the additive

model is the standardmodel, and it has had great success as the underlying
model explaining genetic effects. Accordingly, we initialized the weights
for each SNP according to the additive model, which can be seen as a
reference model under Fisher’s epistasis definition. During training the
neural network may freely change the ratio between these weights,
diverging from an additive model. Inspecting the weights and the ratio Rw
may indicate forwhich inputs themodel deviates from the additivemodel.
However, it is important to note that the model may learn more complex
models using subsequent layers of the network, thus additive weights in
the first layer do not exclude the possibility of a deviation of an
additive model.

Epistasis detection using trained neural networks
After training the visible neural networks we apply various methods to
extract the non-linear patterns learned from the model.

Neural interactiondetection (NID). Ref.26 is amethod to detect statistical
interaction pairs in neural networks that works on the premise that
relevant interacting features have large weights assigned. Pairs of features
are ranked according to the strength of the weights connecting to the
neuron and the importance of the neuron (defined by the weights of its
successive connections). Adapting this algorithm to visible neural net-
works is straightforward, as the mathematical interpretation is unchan-
ged. The most likely interaction candidates are the combinations of
the absolute weights that result in the highest value. Multiplying this
valuewith the importance of the node, expressed by amultiplication of all
the weights between the node and the output node, results in the final
interaction score.

NIDgene ¼ Zj �minðjWcandð1Þj; jWcandð2ÞjÞ ð1Þ

Fig. 1 | An overview of the post-hoc interpretation methods applied in this study
to detect interactions in visible neural networks. aComparing the relative weights
of the one-hot encoded input for each SNP reveals themodel that the neural network
is using for that particular SNP (e.g., linear spaced weights indicate an additive
model). PathExplain applies Integrated Gradients on itself to find the Expected
Hessians, which can be used to find interaction between inputs. RLIPP (c) is a
method to detect if a node has non-linear behavior. The activations towards and

from this neuron are regressed to the output with linear regression to provide an
estimate of the non-linear gain of that node. d NID uses the assumption that edges
with strong weights are more likely to interact with each other than edges with low
absolute weights. DFIM (e) compares Deeplift’s attribution scores for all features
before and after a feature of interest is perturbed, revealing all features that interact
with the feature of interest.
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withWcand as a matrix sorted by the absolute weights per gene and Zj as the
importance of the gene node (resulting fromamultiplication of the absolute
weights of all nodes between the selected node and the output).

Deep Feature InteractionMaps (DFIM). Ref.27 assumes that perturbing
a feature will result in a change in attribution score for a feature that is
interacting with the perturbed feature. DFIM uses DeepLIFT17 to get
attribution scores before and after mutating a variant and saves this
difference in attribution score as the feature interaction score (FIS). Since
a singleDeepLIFT call provides the attribution scores for all variants, only
two calls are necessary to gain all the feature interaction scores for all the
unperturbed (target) features. In this work, we perturb the hundredmost
important features identified by DeepLIFT and save the feature that has
the highest FIS score, however a larger number of features can be saved if
one suspects more interactions per feature.

PathExplain. Ref.28 uses the Expected Hessians for identifying interact-
ing features. We apply PathExplain on the hundred most important
features identified with expected gradient38, the build-in feature impor-
tancemethod of PathExplain. For an input x, the feature interaction score
(FIi,j(x)) is obtained using Integrated Gradients (ϕ)16 applied on itself in
order to explain the degree to which feature i impacts the importance of
another feature j:

FIi;jðxÞ ¼ ϕjðϕiðxÞÞ ð2Þ

Thus, where DFIM mutates a feature and finds the change in impor-
tance for other features using the gradients in Deeplift, PathExplain directly
finds the change in gradients by computing the expected Hessians.

Relative local improvement in predictive power (RLIPP). Ref.13 is a
method to detect in which nodes of the neural network statistical inter-
actions occur. It compares the difference in predictive performance of a
specific neuron’s inputs and outputs. The activations towards and from
this neuron are regressed to the output with linear regression. In the
original paper, the Spearman correlation was used to measure the per-
formance gain for a regression task. We modified the algorithm in two
ways to adjust it for the classification problem at hand. We compare the
adjusted R2 of the two models and calculate RLIPP as:

RLIPPn;l ¼
R2
pa � R2

ch

R2
pa

: ð3Þ

For GenNet’s networks for each node (n) and for each layer (l), the
phenotype based on its’ activations (Parent, pa) and all the incoming edges,
i.e., the weighted SNPs defining the node (Child, ch).

Baseline methods
To compare the neural network to more traditional solutions, we use dif-
ferent epistasis detection models with different underlying mechanisms:

LGBM, MB-MBDR and Epiblaster (see Table 1 for a comparison between
the epistasis detection algorithms used in this study).

Light gradient-boosting machine (LGBM). Ref. 39 is a classification
model using gradient boosting decision trees. Light gradient-boosting
machine (LGBM) is an open-source gradient boosting framework that is
designed to be efficient and scalable, making it well-suited for large
datasets and high-dimensional problems. LGBM is particularly effective
for handling large datasets with a large number of features, as it is able to
handle missing data and categorical features efficiently. Two techniques
distinguish LGBM from other gradient-boosting decision tree classifiers.
Gradient-based one-side sampling allows LGBM to grow decision trees
faster than traditional approaches, while also reducing overfitting and
exclusive feature bundling to handle categorical features without the need
for one-hot encoding, further reducing the memory usage and training
time. We evaluated both feature importance as well as an unpublished
feature interaction detection method39, used in a Kaggle competition to
predict customer transactions.

Epiblaster. Ref.21 is an algorithm that employs a two-stage approach to
detect epistasis and generate a ranked list of SNPs with associated scores
and adjusted p-values. The algorithm uses a combination of quasi-
likelihood and linear models, such as linear regression or logistic
regression depending on the output. In the first stage, an exhaustive
filtering process is performed on all SNP pairs using the difference of
Pearson’s correlation coefficient to rank them rapidly. In the second
stage, only the top-k SNP pairs are selected, and a more accurate linear
model with a real likelihood is used to compute the real p-value and test
statistic. The p-value associated with the Beta is the measure of the
association, and since multiple testing is performed, adjustment is nee-
ded. The retrieved p-value, adjusted formultiple testing, was used to rank
the found SNP pairs.

MB-MDR. Ref.22 can identify genetic interactions in various SNP-SNP
based epistasis models. The algorithm exhaustively explores the asso-
ciation between each SNP pair and the phenotype, using all available
cases. It is a non-parametric method, in the sense that it makes no
assumptions about the modes of interaction inheritance. The model-
based part of MB-MDR refers to the ability to condition interaction
testing on lower-order (main) SNP effects. For additional information
and performance results, we refer to40,41; Such works report about the
significance of interactions are corrected for multiple testing, using a
step-down maxT inspired algorithm, controlling family-wise error rates
(Type I errors). Exact permutation-based significance assessment is
replaced by approximate such computations via the gammaMAXT
algorithm as described in42. By default, approximations are invokedwhen
the number of input SNPs, to interrogate for interactions, exceeds 10, 000.

Evaluation metrics
The Area Under the Receiver Operating Characteristic Curve (AUC-ROC) is
a popular metric used to evaluate the performance of binary classifiers.

Table 1 | Properties of the different epistasis detection algorithms used and associated input

Method Main category Test conditional on main
effects

Covariates adjustment Imputation required Detect direct interactions

Epiblaster21 Statistical Yes No Yes P-value

LightGBM54 ML No No No Interaction strength

MB-MDR42 Dimensionality reduction Yes Yes No P-value

NID26 ML, statistical Yes No Yes Interaction strength

DFIM27 ML No No Yes Interaction strength

PathExplain28 ML No No Yes Interaction strength

In detail, wedescribe themain category they belong to; if the test they perform is conditional onmain effects; if they cannaturally consider covariates, if themissingSNPsneed to be imputed, and the typeof
epistasis score they yield.
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TheROCcurve is created by plotting the true positive rate (TPR) against the
false positive rate (FPR) for different thresholds. TheAUC is simply the area
under the ROC curve, ranging from 0 to 1, with anAUCof 0.5 representing
a model equal to random guessing. We use the AUC to evaluate the clas-
sification performance of the neural network.

The Area Under the Precision-Recall Curve (prAUC) is a useful metric
to assess classifiers when there is a large imbalance between the classes. A
high prAUC represents both high recall and high precision, where high
precision relates to a low false positive rate, and high recall relates to a low
false negative rate. The prAUC is used to evaluate epistasis detection.

Fig. 2 | GAMETES. In (a) the prAUC with the
confidence interval of of the various epistasis inter-
pretation methods. In (b) the average of the prAUC
for methods for different thresholds of prediction
AUC in the test set. There is a clear trend showing
better prAUC given better prediction AUC. In (c)
the correlation plot shows the correlation between
the prAUC of various methods and the prediction
AUC of the NN and LGBM (AUC NN; AUC NN
OneHot; AUC LGBM).
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Reporting summary
Further information on research design is available in the Nature Portfolio
Reporting Summary linked to this article.

Simulation results
We evaluated the performance and the consistency of interpretation
methods for finding non-linear interactions with visible neural networks
and compared these tomore traditional approaches such as Epiblaster,MB-
MDR and LGBM.

GAMETES
The heritability value used in generating the simulations and the ease of
detection, thedifficultybasedon thepenetrance tables, had a clear impact on
the predictive performance in the expected directions (see Supplementary
Fig. 2). To evaluatewhether the post-hoc interpretationmethods can extract
the learned interactions in neural networks, we examined only simulations
for which both types of neural networks found a predictive pattern, i.e.,
models with an AUC higher than an AUC of 0.5 in the test set (142/280).

Overall, the best interpretation method for the GenNet networks was
DFIMwith an averageprAUCof 0.70over all runs, followedbyPathExplain
(prAUC of 0.68) and NID (prAUC of 0.63) see (Fig. 2a). There were strong
correlations (Pearson correlation coefficients between 0.62 and 0.64)
between the predictive performance of the neural network (AUC of the test
set) and the ability of the interpretation networks to capture epistasis (e.g.,
DFIM prAUC). Figure 2b further dissects the relation between predictive
performance and the ability of the interpretationmethods to detect epistasis.
In this figure, the performance of the various methods (NID, DFIM and
PathExplain), are reported separately if they were trained with or without
the one hot encoding. Moreover, it can be observed (Fig. 2b) that for all
networks with a prediction AUC of 0.6 or higher, DFIM and PathExplain
achieved a prAUC of 0.98 and 0.95, respectively, with better results on the
network without the one hot encoding. Interpreting the visible neural net-
works with NID resulted in a respectable prAUC of 0.89 for the same AUC
threshold.

There were negligible differences between standard GenNet networks
and networks with a one-hot encoding in terms of classification perfor-
mance. The networks with one-hot encoding did perform slightly better
(average AUC of 0.64 vs 0.63) but the performance of the interpretation
methods was worse, most noticeable for DFIM, where the average prAUC
was 5 percent points lower for networks with the one hot encoding com-
pared to networks that did not have the encoding.

In addition, we performed simulations to investigate if these inter-
pretationmethods canfind interaction between genes (gene-interaction). In
these simulations the epistasis pairs are located in different genes. Classifi-
cation performance was poor and dropped significantly compared to
simulations where the interacting variants were in the same gene (see
Supplementary Fig. 3).

Baseline methods performed very well on GAMETES. LGBM slightly
outperformed the neural networks in classification performance and for
epistasis detection MBMDR outperformed the neural network interpreta-
tionmethods inmost simulations. Epiblaster achieved an average prAUCof
0.80 over all the simulations. Figure 2c displays the correlation between the
results of thesemethods.Wefinda strong correlation (Pearson) between the
predictive AUC of GenNet (blue), with the prAUC of the DFIM; NID and
PathExplain. The same is true between theAUCof predictionAUC and the
epistasis prAUC of LBGM.

EpiGEN
The EpiGEN simulations were designed to investigate the behavior of the
models for more realistic simulations with marginal effects and different
interactionmodels. The interactionmodel strongly affects the classification
performance of the GenNet models (see Supplementary Fig. 4). Networks
performed best in simulations using a multiplicative model, followed by
exponential and joint-dominant models. Joint-recessive interaction models
were the hardest types of interactions to capture in these sparse neural

networks. In comparison to the GAMETES simulations, the performance
difference between simulations with interacting pairs in the same gene
versus interacting variants in different genes, was less pronounced, possibly
due to the presence of marginal effects (Supplementary Figs. 4, 5). The
number of inputs and training-set size were clearly affecting predictive
performance (Supplementary Fig. 6).

To investigate the performance of the epistasismethods, we considered
the subset of trained networks that achieved an AUC of 0.5 or higher for
both types of networks. Figure 3 shows the average performance for each
interpretation method. Predictive performance and interpretation perfor-
mance were generally better for neural networks with a one-hot encoding
than their corresponding networks without one-hot encoding (see also
Supplementary Figs. 5 and 7). Moreover, we investigated further if this is
drivenby themarginal effect, andweobserved that the advantage of theone-
hot encodednetworks is stronger inEpiGen runwithmarginal effect than in
networks without the one-hot encoding (Supplementary Section 10). We
found a similar positive trend as in the GAMETES simulation between
prAUC and the AUC of the prediction 3c for all the neural network
interpretation methods. However, thanks to the marginal effect, the neural
networks can achieve a higherAUCwith a poorer prAUC. Inspectingfig. 3c
shows that, for the same prediction AUC threshold, the prAUC is generally
lower than in the GAMETES simulation (Fig. 2c).

Inspecting the one-hot encoding (shown in detail in Supplementary
Fig. 8) reveals that the networks encoded the interactionmodels differently.
Supplementary Fig. 9 shows the deviations from linearityRw per interaction
model. The distribution deviates the most for the joint-dominant weights;
causal joint-dominantpairs’weights plateau for dosage input values 1 and 2,
making them clearly separable from random or marginal weights (Sup-
plementary Fig. 10). Multiplicative and exponential weights were stronger
for all inputs, but this was indistinguishable from theweight distribution for
the one-hot encoding for variants with marginal effects. The weights dis-
tribution for the joint-recessive variantswasmost similar to thoseof random
variants without any effects.

The best performing algorithm was LGBM; LGBM detects epistatic
pairs with high prAUC in simulations with exponential, joint-dominant,
and multiplicative interactions models (Fig. 3b). All models struggle to
detect epistatic pairs in simulations with an underlying joint-recessive
model. For joint-recessive models LGBM is only second to MBMDR
(MBMDRaverage prAUC for joint-recessive: 0.39).However,MBMDRand
Epiblaster are unable to detect multiplicative pairs.

Application to the IBD dataset
To showcase the potential of our approaches in real-life data, we applied the
methods to the IBD dataset with 66 280 observations and 38 825 SNPs after
preprocessing. We divided the data into train (65%), validation (20%) and
test (15%). As in Ellinghaus et al.33, we used the first 7 principal components
to model population stratification.

Neural networks were created using GenNet command line func-
tionality and both positional and functional annotations. As a result, a SNP
can be linked to multiple genes. The covariates are inputs to the last hidden
layer, before thefinal prediction.Webuilt neural networkswith andwithout
one-hot encoding and achieved good predictive performance, with anAUC
of 0.745 (0.715, for the one hot) in the validation set and 0.793 (0.761) in the
test set. After training, we apply the epistasis detection methods on the
trained models to extract the learned nonlinearities. We do this in a two-
stage approach to improve the statistical power to detect epistasis. First, we
reduce the search space by selecting only the most promising variant pairs.
We evaluate the top 100 pairs of variants identified by that method. In the
second stage, we test the significance of the interaction using logistic
regression with an interaction term, using the validation and test set.

Interaction detection in visible neural networks
RLIPP provides insight into which parts of the network the largest non-
linearities can be found. We found that the node representing the gene
CCL11 had the highest relative improvement (see Supplementary Fig. 11).
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LYPLAL1-DT and SNX2P1 had the highest RLIPP values for the neural
network trained with the one-hot embedding (see Supplementary Fig. 12).

NID, DFIM, and PathExplain. The top epistasic pair (hit) of NID, for both
the network built with and without the one hot encoding, was rs2066844-
rs2066845, both missense variants in the NOD2 gene and leading causal

variants ofCrohn’s disease and IBD inbothDisGeNet and SNPedia databases
(https://www.snpedia.com and https://www.disgenet.org). PathExplain, on
the neural networkwith the one hot layer, had the SNP rs2066844 (NOD2) as
part of the top epistasic pair together with rs5743293 (NOD2), a frameshift
variant, related to both Crohn’s disease (vda score = 0.83) and IBD (vda score
0.02). rs5743293 isparticularly important forPathExplainonehot, as it is ahub

Fig. 3 | EPIGEN. In (a) the mean prAUC of the
various methods are compared, with the confidence
interval displayed. In (b) the mean prAUC of each
method is displayed per type of interaction. In (c)
each dot is the average of the prAUC for methods
that have a prediction AUC equal or greater than the
number on the x-axis.
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involved in all the top-100 interactions. DFIM (on the network with one hot),
showed the same behaviour, having a SNP, rs12946510, involved in 99 out of
the top 100 interactions. rs12946510 (IKZF3, GRB7) is an intergenic variant
associated to Crohn’s disease, IBD and Ulcerative colitis, as per the GWAS
catalog. DFIM’s, on the one-hot neural network, top epistasic pairs involve
rs12946510 (IKZF3, GRB7) with rs2066844 and rs2066845, both previously
described. A list of the top SNP-SNP interactions for NID can be found in
SupplementaryTable 3 for thenetworkwith theonehot encoding layer and in
Supplementary Table 4 for the network without the one-hot layer.

The top interaction in DFIM, in the network without the one-hot
encoding, was between rs80174646 (intron variant, IL23R) and rs11805303
(intron variant, C1orf141/IL23R); both previously reported in association
with Crohn’s disease and IBD. (GWAS catalog). The second strongest
interaction was between rs9988642 (IL23R) and rs11403745 (intergenic,
LINC014675). The former is a downstream gene variant, mapped to the
IL23R gene, a protein-coding gene associated with Inflammatory Bowel
Disease. rs11403745 is an intergenic variants whose closest gene is
LINC01475, a non-coding gene. Nearby is also SEC31B, which has been
associated to IBD. rs11403745 (intergenic, LINC014675) is also the SNP
most present, 24 times, in theDFIM’s top 100 interactions. The samevariant
(rs11403745) is also part of the second top association in NID (on the
network trained with the one-hot layer), together with rs5743293 (NOD2),
the hub SNP in PathExplain. Interestingly, a recent study highlighted
rs11403745 in relation to IBD43. rs9988642 (IL23R) and rs80174646 (intron
variant, IL23R), part of the top and second interaction in DFIM (without
one hot encoding layer), are also the second-highest interaction of NID
without one hot encoding.

PathExplain on the network with the one-hot encoding detected the
strongest interaction between rs9296009 (intergenic, closest are PRRT1,
FKBPL) and rs2413583 (intergenic, RPL3, PDGFB). While the former has
not been reported in the literature, rs2413583 has been associated with
Crohn’s disease, IBD, and ulcerative colitis, according to theGWAS catalog.
Moreover, rs5743293 (NOD2) is the SNPmost present, 26 times, in the top
100 interaction; it was part of all top 100 interactions of PathExplain with
one hot layer and in the second position usingNID on the network with the
one-hot layer.

LGBM
There was no straightforward way to incorporate confounders into LGBM.
Hence, we first regressed the phenotype with the 7 PCs with a linearmodel,
subsequently using LGBM with the residuals as the outcome. LGBM pro-
vides both the feature importance and the interaction importance rankings
for SNPs. Supplementary Tables 5 and 6 show the top-10 hits and the
complete ranking can be found in Supplementary Table 5. Moreover, the
most important feature according to feature importance, rs2066844
(NOD2), is known to be the leading causal variant of Crohn’s disease. The
top 3 features per LGBM’s feature importance, rs2066844, rs5743293, and
rs2066845, are all linked to geneNOD2andall associatedwith both IBDand
Crohn’s disease. Remarkably, out of the top-10 hits, 9 of themwere already
known in the literature to be associated with both Crohn’s and IBD. The
only hit not present inDisGeNet, rs11403745 (intergenic, LINC014675) has
been recently associated to IBD and has been extensively discussed in the
previous subsection.

For the LGBM’s interactions score, the top two SNP-SNP pairs
involved rs5743293 (NOD2), first with rs80174646 (IL23R); and then with
rs2066844 (NOD2). All three SNPs are known in the literature and have
been found and described by the various neural network interpretation
methods above.Overall, out of the top-10 SNP-SNP interactions, all but one
SNPs are present in DisGeNet, for either IBD or Crohn’s disease. The
majority of themaremapped to either IL23R orNOD2. The single SNP that
is not present in DisGeNet is rs11403745 (intergenic, LINC014675).

Rank aggregation and shared variants
Overall, we investigated the accordance and the peculiarities of eachmethod
on the IBD data for a broader picture of the agreement and disagreement of

each interpretation method. We only calculated the interactions for the
hundred most predictive variants for the DFIM and Pathfinder, restricting
the search space, to reduce the computational burden.

First,we ranked everyvariant fromNID,DFIM,PathExplain, bothwith
and without one hot encoding layer, and LGBM, resulting in eight different
rankings. For eachmethod, the variant’s score is calculated as the sum of the
interaction score (i.e., NID score, DFIM score, LGBM score,.) of every pair
containing the variant. A comparative study fromLi et al.,44 guides us toward
using the geometric mean of the rankings. In this analysis, variants not
present in a particular method, i.e., outside of the top-100 for DFIM and
PathExplain, were assigned the lowest rank plus one. The geometricmean of
the ranking of the eight methods highlights rs2066844, rs2066845, and
rs5743293 (all NOD2 variants), as the top hits. Such variants were con-
sistentlypresent as topvariants in eachdifferentmethod,with rs2066844and
rs2066845 ranked top-10 in 6/8 methods, with the only exceptions being 1)
DFIM built without one hot layer and 2) the NID with the one hot layer.

Of the top-10 ranked hits, nine are already linked to either Crohn’s
disease (9) or IBD (7) in DisGeNet. The other hit is rs11403745, recently
related to IBD43. Another relevant SNP, in the top-100 in 7 out of 8methods
is rs9271588, a variant in the HLA region, that has been extensively studied
in autoimmune disease and particularly Sjögren’s disease45,46. The full
ranked table is available in the Supplementary Materials.

Furthermore, we plotted for each method the top 100 variants, the
most promising candidates for epistasic effects, in anUpSet plot (Fig. 4a).To
immediately visualize the adherence of our hits with the literature, we also
included the list of SNPs associated with Crohn’s and IBD present in Dis-
GeNet that are part of our 38,825 pool of input SNPs, respectively 314
and 228.

From this UpSet plot it can be seen that the top-100 hits combining all
methods have a high overlap with the known hits in DisGeNet. LGBM’s
feature importance (LGBM 1d) and epistasis detection (LGBM 2d) had the
biggest overlap with > 40 out of the top-100 hits present in the DisGeNet
hits for both Crohn’s disease and IBD, respectively 62 and 55 for Crohn’s
and 52 and 45 for IBD. NID methods have around 20 hits, with, for NID
with the regular embedding and theone-hot embedding, respectively 23 and
24 in Crohn’s disease and 17 and 21 in IBD. DFIM and Pathfinder have
similar results, with the lowest number of hits belonging to DFIM without
the one-hot embedding on the IBD list, with only 12 hits.

Out of the consideredmethods,DFIMandPathExplain on the one-hot
encoded network were the ones with the most unique hits, with DFIM
having almost half of the variants in the top-100 not being in the top-100 of
any othermethod or a known SNP fromDisGeNet. On the other side of the
spectrum, PathExplain and LGBM’s feature importance had the lowest
number of unique hits.

Three variants were in the top-100 of all the mentioned methods,
respectively rs2836878 (intergenic, RPL23AP12 and LINC02940),
rs3024505 (upstream of IL10; close to Y_RNA), and rs10781499 (CARD9),
with known association to IBD and Crohn’s disease. The first is an inter-
genic variant, while the last is synonymous. Interestingly, in the GWAS
catalog there are multiple studies linking rs10781499 to IBD disease,
Ulcerative colitis and Crohn’s disease. rs2836878 has also been associated
with IBD, Ulcerative colitis, and Crohn’s disease, as per the GWAS catalog.
Finally, a study on a Danish cohort suggests a link between rs3024505 and
the risk of Crohn’s disease47.

Bymapping the top-100 SNPs to gene positionally (+/- 10 kb), we saw
the overlap between methods and literature’s known hits (Fig. 4b). We
found that eight relevant genes for both Crohn’s and IBD (Y_RNA;
RPL23AP12; NOD2; LINC02943; IL23R; IL10; CARD9; C1orf141) have at
least one SNP mapped to them in each method (Fig. 4c).

Association analysis for candidates pairs
We verified the findings from our previous methods with the most popular
framework in epistasis detection, namely a logistic regression (LR). We
grouped the top-100 SNP pairs from each of the seven epistasis methods.
Hence, we ran a logistic regression to predict the phenotype using each pair
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Fig. 4 | UpSet plot showing the intersections of our eight interpretation
approaches (7 Epistasis methods: NID; DFIM; Pathfinder with/without the one
hot module, and LGBM’s feature interaction measure; plus LGBM feature
importance) with the known variants from DisGeNet for IBD and Crohn’s dis-
ease. Each standing bar shows the number of overlapping pairs between the high-
lighted method(s). In (a) For each approach, the top-100 SNPs with the highest

importance score were evaluated. The horizontal bar represents the number of SNPs
included in each analysis, whereas the vertical bars show the overlap between each
analysis; In (b) the top-100 SNPs were mapped to gene positionally (as explained in
the method section), and the intersection is showed. Finally, in (c) the shared genes
between at least one approach and one DisGeNet list are highlighted.
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of SNPs. The formula is, for a pair of SNPs SNPi and SNPj, as follows:

logitðYÞ ¼ β0 þ β1SNPi þ β2SNPj þ γSNPiSNPj

þ α1PC1 þ :::þ α7PC7 þ ϵ

Where the PCs are the seven principal components to model population
stratification. Hence, the γ coefficient reflects the epistasis interaction
between a pair of SNPs. To avoid inflating the results, we ran logistic
regression on the validation and test set combined, excluding the training
examples that the network has seen. This is a common approach to reduce
the multiple testing burden (e.g. refs. 48,49. More formally, Pecanka and
Jonker50, showed that if the two stages are independent, thenonly correcting
for the number of tests in the second stage is sufficient.

Repeating the regression estimation for all pairs identified with the
epistasis detection methods, we identified 7 significant SNP pairs after
Bonferroni correction (SupplementaryTable 7); outof those, twowould stay
significant under the usual GWAS threshold of 5*10−8. These epistasis pairs
show different linear and non linear weights proportions (Supplementary
Fig. 15), showing a prediction improvement, and with a different weight
proportion from the zeroed-out weights of non-significant SNPs (Supple-
mentary Fig. 16); Supplementary Fig. 17 shows the contribution of the
interactions to the prediction.

Discussion
We adapted and applied various post-hoc interpretation methods to reveal
the interactions learned by (visible) neural networks. Generally, we found
thatNID,DFIMandPathExplain are all suited todetect learned interactions
fromneural networks. Therewas a strong correlationbetween thepredictive
performance (AUC)and the abilityof these interpretationmethods todetect
epistasis in the simulations (prAUC). That is, a neural network needed to
have identified and learned the correct interactions before an interpretation
method can extract it. There was no clear “best” interpretationmethod and
the best interpretation method depends on the setting. In the GAMETES
simulations, PathExplain performedbest, while neural interaction detection
(NID) was the best performing interpretation method for neural networks
in most of the EpiGEN simulations. In the application to the inflammatory
bowel disease, we found high agreement between the interaction inter-
pretation methods. Interestingly, most variants identified by the inter-
pretationmethods were known variants earlier implicated in inflammatory
bowel disease. From the candidate pairs identified with the interpretation
methods on the neural networks and LGBM, 7 are significantly associated
with IBD in the validation and test set.

In GAMETES, we empirically found that networks that achieved a
classificationAUChigher than 0.60 reliably detected interactions withmost
post-hoc analyses. Furthermore, the simulations revealed that interactions
between variants located in different genes are hard to capture. The EpiGEN
simulations confirmed both these findings and revealed that the ability to
capture and detect epistasis pairs depends strongly on the underlying
interaction model. Pairs based on a exponential model were consistently
captured while pairs based on joint-recessive models were hard to model
and detect. Increasing the depth of the neural networks, for example by
adding pathway layers10, may help with providing the networks with the
necessary capacity to model interacting variants in different genes and with
more complex interaction models.

There are large methodological differences between the methods
employed in the simulations. The machine learning methods (neural net-
works andLGBM)optimize towardsfinding a good classification boundary,
whereas MBMDR and Epiblaster are primarily designed to test for inter-
action effects. This could be an advantage for the simulations, as these
methods align more closely with the process used to simulate the data and
outcome. BothEpiblaster andMBMDR can, however, be used in prediction
models as part of a broader pipeline. For instance, prediction can be
achieved via 1) separating into training/test, 2) identifying (on the training
set) the hits, both main effect and SNP-SNP pairs, 3) creating, for each
observation, a weighted average of the hits’ effect; notable examples in the

literature are51, whereMBMDR is used to buildmultilocus risk score (MRS)
and MBMDRc22, where the average trait for each SNP combination is
averaged to build the prediction. It involves a generic strategy that could also
be applied to other epistasis detection tools that do not readily provide
predictions (such as Epiblaster). Hence, a notable difference is that in ML
approaches prediction precedes the interpretation, while in epistasis tools it
is the contrary.

In the IBD case-control setting, we achieved good predictive perfor-
mancewithbothGenNet andLGBM. Interpretation revealedmanyvariants
that have been implicated to have a role in biological mechanisms under-
lying inflammatory bowel disease. This is likely a consequence of the initial
filtering, narrowing the interaction interpretation down to pairswith at least
one predictive SNPs in DFIM and PathExplain. NID did not require a
filtering step as it is computationally cheap but the method
inherently focuses on the variants with the highest weight. The most sig-
nificant epistatic pairs are mapped to NOD2 variants (rs2066844,
rs2066845,rs5743293) and IL23R variants (rs80174646). We confirm the
recent finding of SNP rs11403745 (intergenic, LINC014675) for IBD, and
propose variant rs9271588 (HLA region), as a candidate for further vali-
dation, being in the top-100 of 7/8 methods.

Recently, Verplaetse et al.52 applied biologically meaningful sparse
neural networks on whole exome sequencing data to predict IBD. The
authors achieved similar predictive performance but did not find convin-
cing proofs for epistasis when comparing their performance to that of linear
models. Here, we showed that by applying interpretation methods to the
visible neural network we can detect epistasis. The reduced candidate set
compensates with a lower multiple testing burden and thus more power,
even-though half of the data is allocated for training the network and is thus
unavailable for association analysis. Missing heritability is still a relevant
problem for IBD and Zuk et al.19 showed that up to 80% of the missing
heritability could be due to genetic interactions. We detected 7 significant
epistasis pairs in the real-life data but the simulations demonstrated that
detecting epistasis pairs in different genes was difficult for the employed
neural network architecture. Increasing the capacity of the neural networks
to model these pairs could be a promising road for improving this strategy
for epistasis detection.

In principle, the neural network detects interactions only between
SNP-SNP both linked (either positionally or functionally) to the same gene,
and specularly gene-gene interactions from genes connected to the same
pathways. To enhance the detection of SNP-SNP interactions across dif-
ferent genes, we incorporated ConsensusPathDB (CPDB) to map SNPs to
pathways rather than solely to individual genes. This adjustment allowed the
network to identify epistatic interactions between SNPs linked to different
genes within the same pathway, expanding its scope beyond positional or
functional gene connections. The approach maintained predictive perfor-
mance comparable to baseline, and key SNPs and interactions were iden-
tified using multiple methods. Several genes emerged as consistently
significant across analyses, highlighting the potential of pathway-based
mapping in capturing complex genetic interactions; more details are
included in Supplementary Section 10.

While the proposed methods focus on detecting pairwise SNP inter-
actions, higher-order interactions can be inferred whenmultiple significant
pairs share common SNPs. For instance, if SNPi− SNPj, SNPi− SNPk, and
SNPj − SNPk are all significant, they likely form a triplet interaction. We
analyzed the top-100 interactions across methods and found that NID and
NID on the one-hot network identified the most triplets (81 and 71,
respectively), while LGBM detected 18 and PathExplain only 2 (Supple-
mentary Fig. 18). Notably, SNPs rs2066844 and rs2066845 emerged as
central in these higher-order structures, highlighting the potential for
extending pairwise approaches to capture more complex interactions. We
note that the number of triplets obtained with this approach is only a
lower boundary of the number of existing higher-order interactions, since
they do not consider cases where there is no 2-way epistasis but only 3-way
epistasis. Supplementary Section 13 expands on the higher-order epistasis
analysis.
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We introduced several additions to the GenNet framework all of
which, including the interpretation methods, are available from command
line in the GenNet framework (https://github.com/ArnovanHilten/
GenNet). We introduce multiple filters for visible neural networks, akin
to channels in convolutional neural networks, and provide the option for an
one-hot encoding for dosage input as a strategy to deal with the implicit bias
to an additive model. With this encoding, the network is not forced to
adhere to an additivemodel from thefirst layer and it is free to search for the
encoding most suited for each single SNP. The one-hot encoding did result
in minor performance gain in the EpiGen simulations and inspecting this
layer revealed different weight distributions patters for the interaction
models.

Here, we have demonstrated that interpretation methods for neural
networks can identify non-linear interactions between genetic variants
(epistasis pairs) in both simulated and real-life data. Most popular inter-
pretation methods for neural networks provide a single importance (attri-
bution) score per input, but this is inevitably a linear simplification of the
true importance. Deep learning applications can model non-linear inter-
actions and thereby provide a performance gain over linearmodels. In order
to justify the use of these non-linear models it is thus necessary to use
interpretationmethods that can identify the non-linearities that lead to this
performance gain. This does not only apply to epistasis; all tasks where
neural networks are employed to leverage non-linear interactions can
benefit from these interpretation methods.

Conclusion
We demonstrated that interpretable neural networks can learn and detect
epistasis using both simulated and real-life data. Moreover, we provided a
comprehensive tool set and a novel strategy to interpret genetic interactions
with visible neural networks.

Data availability
Code to run and generate data for the simulations are available on sour-
cefore (https://sourceforge.net/projects/gametes/files/) for GAMETES and
on Github for Epigen (https://github.com/biomedbigdata/epigen) The
genetic and phenotypic data for the IBD dataset are available upon appli-
cation to the IBD consortium.

Code availability
All code for interaction detection (NID, RLIPP, PathExplain andDFIM) are
now available in the GenNet interpret module. GenNet is an open-source
framework usable from command line. GenNet can be found on: https://
github.com/arnovanhilten/GenNet/and Zenodo https://zenodo.org/
records/1071690653. Epiblaster implementation used was https://github.
com/FedericoMelograna/Epiblaster_implementation.
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