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1
Introduction

Stealth is one of the key design drivers for modern military aircraft. Minimizing signatures makes it harder

for adversaries to detect, identify and engage an airborne asset. Therefore, a logical design step is

to eliminate unnecessary corners, making a tailless configuration an interesting candidate. However,

to maintain lateral control, high-manoeuvrability and add redundancy in control, tailless aircraft require

unconventional, redundant control effectors. With this in mind, the innovative control effectors (ICE)

program was conceived in 1993 to investigate the potential for new and innovative methods for stabilization

and control of high performance, low all-aspect signature fighters [1]. Specifically, two tailless aircraft with

novel control surfaces were designed; a carrier-based and a land-based configuration.

Over-actuation of dynamic systems, as seen in the ICE aircraft designs, potentially offers increased

performance, redundancy, and agility in the control solution. However, to exploit these advantages requires

high complexity control systems, introducing various engineering problems. Firstly, one must navigate

through a continuous solution space to select a control solution that adheres to the physical actuator

constraints. Secondly, complex systems may exhibit highly nonlinear cross-coupled dynamics. Matamoros

[2] addressed these problems for the ICE land-based configuration through incremental nonlinear control

allocation (INCA). INCA has proven to increase performance in real-time applications compared to linear

control allocation (CA) techniques by exploiting nonlinear cross-coupling in the control effectiveness

function.

Another challenge includes the actuator dynamics, often overlooked in CA techniques. Nevertheless,

neglecting actuator dynamics may result in the optimal control solution not being achieved. Assuming

perfect actuator dynamics in CA design can be argued for systems with relatively fast actuators compared to

the system dynamics. However, for faster, high performance systems this assumption reduces performance

of the CA strategy [3]. Ways to explicitly account for the actuator dynamics in CA have been proposed with

model predictive control allocation [3, 4] and Lyapunov based control allocation [5, 6, 7]. Unfortunately, these

methods suffer from high computational load and bring forth non-optimal control solutions, respectively.

Moreover, more recent research [8] proposed reinforcement learning control allocation (RLCA) as a solution

to the CA problem. However, the study concluded that performance remains less than that of model-based

CA methods.

On the other hand, incremental methods [9, 10, 11] heavily rely on output derivative measurements

rather than system dynamics modeling. INCA has proved effective in dealing with nonlinear non-control

affine systems in a robust manner [2, 9]. Nevertheless, it was found that INCA is rather conservative in

accounting for actuator saturation limits [3]. Also, system delays introduced by the actuator dynamics

are not regarded in the control solution, hereby underutilizing a system’s potential performance. Control

schemes have been designed that account for actuator dynamics in incremental control allocation in

additional control loops [3, 10], however, no previous study has combined the dynamic incremental control

allocation problem in a single method. Consequently, the integration of so-called dynamic CA techniques

with incremental nonlinear control remains under-addressed in existing research.

Besides performance gain, over-actuation may offer increased actuator fault tolerance through redun-

dant effectors. To harness this advantage, previous research has elaborated on adaptive control for several

CA methods. For example, parameter update laws have been defined for both the actuator dynamics

1



model [7] as well as the control effectiveness model [4, 7, 12]. While INCA provides robustness in control

effectiveness model mismatch, adaptive control may leverage actuator redundancy more effectively.

The current thesis’ contribution includes the design of a CA scheme for non-control affine systems that

accounts for actuator dynamics in the optimal CA solution, and adapts its strategy for in-flight actuator

fault modes. INCA presents significant advantages in terms of robust CA for non-control affine systems.

In addition, the incremental approach allows for linear solvers and presents flexibility in defining the CA

problem. Therefore, INCA will be used as the baseline method in this thesis. The research objective can

be defined as follows.

The primary objective of this research project is to design an incremental nonlinear control

allocation method that compensates for actuator dynamics and adapts for online actuator failure

modes for fast non-control affine, nonlinear over-actuated systems.

Research Objective

Subsequently, the main research question that can be posed is:

How can actuator dynamics and online actuator failure modes in non-control affine nonlinear

over-actuated systems be effectively accounted for within the incremental nonlinear control

allocation framework?

Research Question

Several sub-questions will need to be answered in light of the main research question. These include:

1. How can actuator dynamics be taken into account within the INCA control loop under output derivative

measurement constraints and possible onboard model limitations? And

2. to what extent can the compensation of actuator dynamics in the incremental nonlinear control

allocation framework improve the tracking performance?

3. What update laws are required to account for actuator failures under the incremental nonlinear control

allocation framework? And

4. to what extent can these update laws increase tracking performance under actuator failure modes?

In order to answer these questions, this thesis will start with a scientific article in Part I. This article

includes both the adopted methodology and the derived results and conclusions. Subsequently, the

preliminary literature review is included in Part II. Any results additional to those in the scientific article

are depicted and discussed in Part III. Lastly, the research questions are answered in Part IV. This final

chapter also includes the limitations of the current study and recommendations for future work.
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Part I
Scientific Article
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Adaptive dynamic incremental nonlinear control allocation and
its applications for innovative control effectors

N. Stam∗
Delft University of Technology, 2629HS Delft, The Netherlands

Neglecting actuator dynamics in nonlinear control and control allocation can lead to per-

formance degradation, especially when considering fast dynamic systems. This paper provides

a novel method to account for actuator dynamics in the control allocation solution, dynamic

incremental nonlinear control allocation, or D-INCA. The incremental approach allows for

the implementation of a first order discrete-time actuator dynamics model in the quadratic

programming (QP) solver. This model is used to find the optimal command inputs in addi-

tion to the desired physical actuator deflections, hereby compensating for actuator dynamics

delays. Whereas, the baseline incremental nonlinear control allocation (INCA) approach re-

quires pseudo-control hedging of the outer loop reference to increase closed loop stability mar-

gins under actuator dynamics delays. To its advantage, D-INCA does not require feedback of

higher order output derivatives than INCA and can be used with nonlinear non-control affine

systems. Furthermore, with adaptive D-INCA, or AD-INCA, an actuator dynamics parameter

estimator is introduced to adapt the actuator model online, minimizing actuator tracking er-

rors after actuator failures. The proposed methods are applied to a fighter aircraft model with

an over-actuated innovative control effectors suite and results are compared to the baseline

INCA controller.

Nomenclature

A = actuator system state matrix

B = actuator system input matrix

𝑏 = wing span [ft]

𝐶 = aerodynamic coefficient

𝑐 = mean aerodynamic chord [ft]

D = set of feasible physical control inputs [rad]

e = output error

∗MSc student, Control and Simulation Department, Faculty of Aerospace Engineering, Delft University of Technology, Kluyverweg 1, 
2629HS Delft, The Netherlands
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f (x) = system state dynamics equation

F(x, 𝝉) = system output derivative function

G(x) = system input dynamics equation

𝐻 (𝑠) = transfer function

h(x) = system output dynamics equation

𝐼 = identity matrix

𝐽 = aircraft inertia matrix [lbf · ft2]

J = cost function

𝐾 = recursive least squares gain

𝑘 = discrete time step

𝐿 𝑓 ℎ(x) = Lie derivative of scalar function ℎ(x) along the vector f (x)

𝐿 = roll moment [lbf · ft]

𝑀 = pitch moment [lbf · ft]

𝑁 = yaw moment [lbf · ft]

𝑃 = recursive least squares parameter estimate covariance

𝑝 = roll rate [rad · s−1]

𝑞 = pitch rate [rad · s−1]

R = set of real numbers

𝑟 = yaw rate [rad · s−1]

𝑡 = continuous time [s]

U = matrix with upper and lower bound command inputs [rad]

u = command input vector [rad]

𝑉 = true airspeed [ft · s−1]

W = active set-based programming working set

x = system state vector

y = system output vector

𝛼 = angle of attack [rad]

𝛽 = sideslip angle [rad]

Δ = increment

𝜹 = physical control deflection [rad]

𝜿 = perturbation for the active set-based optimizer [rad]

𝝐 = recursive least squares predication error [rad]

2
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𝜂 = maximum distance to feasibility in the active set-based optimizer

𝜽̂ = actuator dynamics parameter estimates

Λ = recursive least squares adaptive forgetting factor

𝜆 = Lagrange multiplier for the active set-based optimizer

𝝂 = virtual-control input vector [rad · s−2]

𝝃 = recursive least squares regressor [rad]

Σ0 = recursive least squares information filter

𝝉 = pseudo-control input vector [lbf · ft]

𝚽 = control effectiveness function [lbf · ft]

𝜙 = roll angle [rad]

∇𝜹𝚽 = control effectiveness Jacobian [lbf · ft · rad−1]

𝜔 = body angular rates [rad · s−1]

I. Introduction
Over-actuation of dynamic systems potentially offers increased performance, redundancy, and agility in the control

solution. However, to exploit these advantages requires high complexity control systems, introducing various engineer-

ing problems. Firstly, one must navigate through a continuous solution space to select a control solution that adheres

to the physical actuator constraints. Secondly, complex systems may exhibit highly nonlinear cross-coupled dynamics.

These problems have been studied thoroughly, however, still remain subject to ongoing research. Another challenge in

control allocation (CA) includes actuator dynamics compensation in the CA solution, also referred to as dynamic CA.

The choice to neglect actuator dynamics in CA techniques can be argued for systems with relatively fast actuators

compared to the system dynamics. However, for faster, high performance systems it is found that neglecting the actuator

dynamics reduces performance of the CA strategy [1]. Ways to explicitly account for the actuator dynamics have been

proposed with model predictive control allocation [1, 2] and Lyapunov based control allocation [3–5]. Unfortunately,

these methods suffer from high computational load and bring forth non-optimal control solutions, respectively. More

recent research [6] showed reinforcement learning control allocation (RLCA) can learn to effectively distribute the

control moments and forces over the available actuators. However, the study concluded that performance remains less

than that of model-based CA methods.

On the other hand, incremental methods [7–9] heavily rely on output derivative measurements rather than system

dynamics modeling. Moreover, incremental nonlinear control allocation (INCA) has proven effective in dealing with

nonlinear non-control affine systems in a robust manner [7, 10]. Control schemes have been designed that account for

actuator dynamics in incremental CA in additional control loops [1, 8], however, no previous research has combined

3
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the dynamic incremental CA problem in a single control loop. Consequently, the integration of dynamic CA techniques

with incremental nonlinear control remains under-addressed in previous research.

Although the INCA framework provides significant robustness, over-actuated systems may offer far more potential

in terms of actuator fault-tolerant control. In order to harness this advantage, previous research has elaborated on

adaptive CA for several other CA methods. For example, parameter update laws have been defined for both the actuator

dynamics model [5] as well as the control effectiveness model [2, 5, 11].

The current research paper’s contribution is the design of an adaptive dynamic incremental nonlinear control allo-

cation scheme, or AD-INCA, for non-control affine systems that compensates for actuator dynamics in the optimal CA

solution, and adapts its strategy for in-flight actuator fault modes. Furthermore, INCA presents significant advantages

in terms of robust CA for non-control affine systems. In addition, the incremental approach allows for linear solvers

and flexibility in defining the CA problem. Therefore, INCA is considered the baseline controller for this study.

This paper is organized as follows. Firstly, a brief review on feedback linearization will be given in Section II.

In Section III the step will be made from incremental feedback linearization towards INCA. The theory behind the

dynamic CA problem and the proposed control solution are discussed in Section III.A, along with a novel adaptive

dynamic CA scheme in Section III.B. The innovative control effectors suite and its flight control system are introduced

in Section IV and Section V. Furthermore, simulations and results are portrayed in Section VI. Lastly, conclusions on

the proposed CA methods are derived in Section VII, including limitations and recommendations for future research.

II. Nonlinear control
The dynamics of a nonlinear time-invariant input-affine system are governed by both state and input equations.

Assume a multiple-input multiple-output (MIMO) system described by the differential equation

¤x = f (x) + G(x)𝝉 (1)

where f is a smooth vector field on R𝑛. G ∈ R𝑛×𝑚 is a matrix whose columns are smooth vector fields. Moreover,

x ∈ R𝑛 is the state vector and 𝝉 ∈ R𝑚 is the vector of pseudo-control inputs representing a number forces and moments

to be controlled 𝑚. The output equation, assuming no feedthrough, becomes

y = h(x) (2)

with h a smooth vector field on R𝑛 and y ∈ R𝑚 the output vector. The relation between the physical control deflection

𝜹 and the pseudo-control input 𝝉 is described by a state dependent control effectiveness function

𝝉 = 𝚽(x, 𝜹) (3)

4
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where 𝚽 is a smooth vector field on R𝑛+𝑚 and the physical control inputs 𝜹 ∈ D ⊂ R𝑝 . With 𝑝 being the number

of independent control actuators and D the set of feasible physical control inputs. Substituting Eq. (3) into Eq. (1)

results in a non-input affine nonlinear time-invariant system. In addition, the actuator dynamics can be distinguished.

Assuming these to be linear as in

¤𝜹 = A𝜹 + Bu (4)

with A and B the state and input matrices, respectively. The goal of any control system is to select a command input

u such that the system output vector follows a reference signal yref . To achieve this goal, a control input 𝜹ref and

pseudo-control input 𝝉ref need to be tracked. A graphical representation of Eqs. (1) to (4) is depicted in Fig. 1.

Actuator
dynamics

Control
effectiveness

System
dynamics

𝑢 𝛿 𝜏 𝑥, 𝑦

Fig. 1 Open loop dynamics schematic.

A. Nonlinear dynamic inversion

One well-established approach to nonlinear control is nonlinear dynamic inversion (NDI). This method employs

a dual-layered control structure, featuring a linear outer loop controller coupled with an inner linearization loop. The

fundamental concept behind this so-called feedback linearization is to iteratively differentiate the output equation 𝑟

times in order to reveal the input explicitly, with 𝑟 being the relative degree of the system. Next, the obtained nonlinear

dynamics for 𝑟 differentiations are inverted in order to linearize the input-output relationship, which can then be effec-

tively represented by a serie of integrators. The pseudo-control input 𝝉 becomes a function of a virtual control input

𝝂 which can be controlled by a linear outer loop controller [12]. Consider a MIMO system with h(x) on R𝑛, output

vector y ∈ R𝑚, input vector 𝝉 ∈ R𝑚. Let the first time derivative of the 𝑖-th component 𝑦𝑖 of the output vector y be

¤𝑦𝑖 =
d𝑦𝑖
d𝑡

=
𝜕ℎ𝑖
𝜕x

dx
d𝑡

= ∇ℎ𝑖 (x) ¤x = ∇ℎ𝑖 (x)
[
f (x) + G(x)𝝉

]
(5)

with ∇ℎ𝑖 (x) the gradient of the scalar function ℎ𝑖 ∈ h(x) with respect to the system states x. Next, it is convenient to

introduce the Lie derivative as

𝐿 𝑓 ℎ𝑖 (x) = ∇ℎ𝑖 (x) f (x) =
𝑛∑
𝑗=1

𝜕ℎ𝑖 (x)
𝜕𝑥 𝑗

𝑓 𝑗 (x). (6)

Furthermore, similar to any ordinary derivative, a Lie derivative can be computed multiple times. For example, the

𝑘-th derivative with respect to x along the vector f (x) is

𝐿𝑘
𝑓 ℎ𝑖 (x) = 𝐿 𝑓

(
𝐿𝑘−1

𝑓 ℎ𝑖 (x)
)
= ∇

(
𝐿𝑘−1

𝑓 ℎ𝑖 (x)
)

f (x) (7)

5
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with 𝐿0
𝑓 ℎ𝑖 (x) = ℎ𝑖 (x). Adopting this definition, Eq. (5) becomes

¤𝑦𝑖 = ∇ℎ𝑖
[
f (x) + g1 (x)𝜏1 + · · · + g𝑚 (x)𝜏𝑚

]
= 𝐿 𝑓 ℎ𝑖 (x) +

𝑚∑
𝑗=1

𝐿𝑔 𝑗 ℎ𝑖 (x)𝜏𝑗 (8)

with g 𝑗 the smooth column vector functions in G and 𝜏𝑗 the pseudo-control components in 𝝉. Moreover, by differenti-

ating the output equation 𝑘 times, we obtain the more general solution

𝑦 (𝑘 )𝑖 = 𝐿𝑘
𝑓 ℎ𝑖 (x) +

𝑚∑
𝑗=1

𝐿𝑔 𝑗 𝐿
𝑘−1
𝑓 ℎ𝑖 (x)𝜏𝑗 . (9)

The pseudo-control input does not show in the expressions for 𝑦 (𝑘 )𝑖 until 𝑘 = 𝑟𝑖 . Hence, for 𝑘 < 𝑟𝑖 the Lie derivatives

𝐿𝑔 𝑗 𝐿
𝑘−1
𝑓 ℎ𝑖 (x) = 0 ∀ 𝑗 . The solutions for 𝑘 = 𝑟𝑖 become

𝑦 (𝑟𝑖 )𝑖 = 𝐿𝑟𝑖𝑓 ℎ𝑖 (x) +
𝑚∑
𝑗=1

𝐿𝑔 𝑗 𝐿
𝑟𝑖−1
𝑓 ℎ𝑖 (x)𝜏𝑗 (10)

with
∑𝑚

𝑗=1 𝐿𝑔 𝑗 𝐿
𝑟𝑖−1
𝑓 ℎ𝑖 (x)𝜏𝑗 ≠ 0 for at least one 𝑗 . The remaining unobservable input-output relationships 𝑟𝑖 < 𝑘 ≤ 𝑛

are referred to as the internal dynamics of the system. These dynamics need to be asymptotically stable for the NDI

controller to function properly. The resulting equations in Eq. (10) for all the outputs 𝑦𝑖 can be put into matrix form



𝑦 (𝑟1 )
1

𝑦 (𝑟2 )
2

...

𝑦 (𝑟𝑚 )
𝑚

︸      ︷︷      ︸
y(𝑟 )

=



𝐿𝑟1
𝑓 ℎ1 (x)

𝐿𝑟2
𝑓 ℎ2 (x)
...

𝐿𝑟𝑚𝑓 ℎ𝑚 (x)

︸             ︷︷             ︸
c(x)

+



𝐿𝑔1𝐿
𝑟1−1
𝑓 ℎ1 (x) 𝐿𝑔2𝐿

𝑟1−1
𝑓 ℎ1 (x) · · · 𝐿𝑔𝑚𝐿

𝑟1−1
𝑓 ℎ1 (x)

𝐿𝑔1𝐿
𝑟2−1
𝑓 ℎ2 (x) 𝐿𝑔2𝐿

𝑟2−1
𝑓 ℎ2 (x) · · · 𝐿𝑔𝑚𝐿

𝑟2−1
𝑓 ℎ2 (x)

...
...

. . .
...

𝐿𝑔1𝐿
𝑟𝑚−1
𝑓 ℎ𝑚 (x) 𝐿𝑔2𝐿

𝑟𝑚−1
𝑓 ℎ𝑚 (x) · · · 𝐿𝑔𝑚𝐿

𝑟𝑚−1
𝑓 ℎ𝑚 (x)

︸                                                                                 ︷︷                                                                                 ︸
D(x)



𝜏1

𝜏2

...

𝜏𝑚

︸  ︷︷  ︸
𝝉

(11)

or for simplicity reasons in short

y(𝑟 ) = F(x, 𝝉) (12)

with F ∈ R𝑛×𝑚;𝑚 a smooth vector function. Assuming D(x) is full rank, a virtual control input 𝝂 can be defined. By

choosing the virtual control law as

𝝉 = D−1 (x)(𝝂 − c(x)), (13)

a linear relationship between 𝝂 and the output

𝝂 = y(𝑟 ) (14)
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is obtained. Hence, the inner loop dynamics are reduced to a cascade of integrators and all nonlinearities are canceled.

The outer loop controller can now be an ordinary PID controller that feeds the inner loop with the virtual control input.

A candidate for the linear control law is

𝝂 = y(𝑟 )
𝑟𝑒 𝑓 + 𝐾 (e, ¤e, . . . , e(𝑟−1) ) (15)

with e = y − yref and 𝐾 (e, ¤e, . . . , e(𝑟−1) ) a feedback control law that can be tuned for the desired error dynamics.

B. Incremental nonlinear dynamic inversion

A downside of NDI control is that complete knowledge about the controlled system and its states is required. To

reduce this dependency, an incremental approach or incremental nonlinear dynamic inversion (INDI) can be adopted.

This method computes the control signal in individual increments Δ𝝉. In discrete time, y(𝑟 ) can be linearized for each

time step. Taking the Taylor series of Eq. (12) around a local point (x𝑘 ,𝝉𝑘) yields

y(𝑟 ) = F(x𝑘 , 𝝉𝑘) +
𝜕F(x𝑘 , 𝝉𝑘)

𝜕x
(x𝑘+1 − x𝑘) +

𝜕F(x𝑘 , 𝝉𝑘)
𝜕𝝉

(𝝉𝑘+1 − 𝝉𝑘) + O (16)

or

y(𝑟 ) = F(x𝑘 , 𝝉𝑘) + Fx (x𝑘 , 𝝉𝑘) (x𝑘+1 − x𝑘) + F𝝉 (x𝑘 , 𝝉𝑘) (𝝉𝑘+1 − 𝝉𝑘) + O (17)

with O being the higher order terms. These terms will be discarded for the control design. Next, it is assumed that the

change in pseudo-control input is orders of magnitude faster than the change in the state vector. Under this assumption,

for a sufficiently small sampling time, Eq. (17) is reduced to

y(𝑟 ) ≈ F(x𝑘 , 𝝉𝑘) + F𝝉 (x𝑘 , 𝝉𝑘)Δ𝝉 (18)

with Δ𝝉 = 𝝉𝑘+1 − 𝝉𝑘 . Adopting the definition in Eq. (14), the following virtual control to pseudo-control increment

mapping is obtained

Δ𝝉 = F−1
𝝉 (x𝑘 , 𝝉𝑘) (𝝂 − y(𝑟 )

𝑘 ). (19)

Next, Eq. (19) can be rewritten in terms of the former obtained D(x) matrix of Lie derivatives in Eq. (11)

Δ𝝉 = D−1 (x𝑘)(𝝂 − y(𝑟 )
𝑘 ). (20)

Hence, the dependency on plant dynamics knowledge is reduced. Instead, this incremental method relies on output

derivative measurements y(𝑟 )
𝑘 to account for the system dynamics. Knowledge of the input dynamics is still required.

7
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Equation (20) only considers increments in pseudo-control input. The physical deflection 𝜹 to achieve the pseudo-

control increments is not yet included. However, this control effectiveness can easily be accounted for. Linearizing the

control effectiveness function Eq. (3) around the local operating point yields [10]

Δ𝝉 =
𝜕𝚽(x𝑘 , 𝜹𝑘)

𝜕x
(x𝑘+1 − x𝑘) +

𝜕𝚽(x𝑘 , 𝜹𝑘)
𝜕𝜹

(𝜹𝑘+1 − 𝜹𝑘) + O. (21)

Applying the same time-scale separation principle, the state dependent term can be discarded, yielding

Δ𝝉 ≈ 𝜕𝚽(x𝑘 , 𝜹𝑘)
𝜕𝜹

Δ𝜹 = ∇𝜹𝚽Δ𝜹. (22)

∇𝜹𝚽 indicates the gradient of 𝚽 in the directions 𝛿𝑖 ∈ 𝜹. This function is referred to as the control effectiveness

Jacobian (CEJ) throughout this work. Moreover, assuming perfect zero-order hold actuator dynamics Δ𝜹 = 𝜹𝑘+1 − 𝜹𝑘 .

However, in reality the control increment may be governed by more complex dynamics. Rewriting Eq. (22) leads to

Δ𝜹 = (∇𝜹𝚽)−1Δ𝝉. (23)

Substituting Eq. (20) in Eq. (23) results in the following expression for the control increment

Δ𝜹 = (∇𝜹𝚽)−1D−1 (x𝑘)(𝝂 − y(𝑟 )
𝑘 ). (24)

Which relies on the same assumption as for the NDI case that D(x𝑘) is invertible. For the case 𝑝 = 𝑚 the Jacobian

matrix ∇𝜹𝚽 can also be inverted. However, in case of an over-actuated system, the Jacobian matrix cannot be inverted

and Eq. (24) cannot be solved.

III. Incremental nonlinear control allocation
To solve the control increment for over-actuated systems, Tol [7] proposed a control method that combines INDI

with a spline based CA technique. This work adopted a multivariate B-spline model to capture the control effectiveness

function. A more general form of this method was described and implemented by Matamoros [10]. The so-called

incremental nonlinear control allocation (INCA) technique aims to find a control increment Δ𝜹 such that the pseudo-

control reference is achieved. In mathematical terms: solve Eq. (22) subject to the constraint

Δ𝜹 ≤ Δ𝜹 ≤ Δ𝜹 (25)
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with Δ𝜹 and Δ𝜹 the lower and upper limits of the control increments, based on the most stringent limitation between

the physical actuator position and rate constraints

Δ𝜹 = max
(
𝜹min − 𝜹𝑘 ,−¤𝜹maxΔ𝑡)

Δ𝜹 = min
(
𝜹max − 𝜹𝑘 , ¤𝜹maxΔ𝑡)

(26)

with 𝜹min and 𝜹max the vectors with the minimum and maximum actuator positions and ¤𝜹max the vector containing the

maximum rates of control deflection. The sampling time is denoted as Δ𝑡.

Moreover, since the current problem definition is linear in the control increments, it can be solved with linear

optimizers. Previous research [10] adopted the quadratic programming (QP) active-set based solver for INCA and it

was found that this method outperformed other linear methods. In QP an ℓ2-norm cost function is defined that should

be minimized to find an optimal solution. Furthermore, since the current problem is under-determined, an additional

equation is required besides minimizing the error in pseudo-control, or CA error. One example of a secondary objective

is to drive the output to a preference value, usually zero. This approach prevents the use of greater control inputs than

necessary. For the incremental case a QP cost function and constraints can be defined as

min
Δ𝜹

J =



W1

(
∇𝜹𝚽Δ𝜹 − Δ𝝉𝑐

)



2
+



W2

(
Δ𝜹 − Δ𝜹𝑝

)



2

subject to Δ𝜹 ≤ Δ𝜹 ≤ Δ𝜹,

(27)

with Δ𝝉𝑐 the commanded increment in pseudo-control input. Moreover, Δ𝜹𝑝 indicates the preferred increment in

control deflection. In Eq. (27) the first term minimizes the CA error in a weighted least-squares sense in accordance

with Eq. (22). The second objective attracts the control element to a preferred value. W1 and W2 are weight matrices

that can give preference to either one of these two objectives or prioritize between the pseudo-control components

𝜏𝑗 ∈ 𝝉 or actuators 𝛿𝑖 ∈ 𝜹. Before applying the QP optimizer to an incremental controller, however, the preferred

control deflection needs to be evaluated for every time step. Otherwise, if the preferred control increment would be

set to zero, the cost function would not drive the control actuators to zero, but rather try to keep them in their current

position. To solve this problem, Matamoros [10] adopted the following definition

Δ𝜹𝑝 = min
(��𝜹𝑝 − 𝜹𝑘

�� , |Δ𝜹 |, |Δ𝜹 |) · sign
(
𝜹𝑝 − 𝜹𝑘

)
(28)

with 𝜹𝑝 the (zero) vector of preferred actuator deflections and 𝜹𝑘 the current actuator deflections at time step 𝑘 . The

advantage of QP when applied in increments, is that the CEJ model and the weights do not need to be constant. Instead

they can be adapted at each increment which can be beneficial during actuator failure modes [13]. Moreover, the

QP problem can be solved through various optimization methods, such as the active set-based method described by
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Härkegård [14].

A drawback of INCA is that it only computes the optimal control inputs and then adopts these values as command

inputs, implicitly assuming perfect actuator dynamics. De Heer [1] found that with assuming perfect actuator dynamics,

the optimal control solutions are not actually achieved. Also, INCA is rather conservative in defining the QP output

constraints as the physical actuator constraints are directly imposed on the command inputs and not on the actuator

deflections.

A. Dynamic incremental nonlinear control allocation

To overcome these drawbacks, this article introduces a novel dynamic incremental nonlinear control allocation (D-

INCA) method to compute the required command input u in addition to the desired physical deflection 𝜹. In other

words, the actuator dynamics as depicted on the left-hand side of Fig. 1 are taken into account. Assume linear first

order actuator dynamics in discrete state space form

𝜹𝑘+1 = A𝜹𝑘 + Bu𝑘 (29)

with diagonal discrete time state and input matrices A and B. The increment in control deflection can be written as

𝜹𝑘+1 − 𝜹𝑘 = Δ𝜹𝑘 = A𝜹𝑘 + Bu𝑘 − 𝜹𝑘 . (30)

Substituting the expression for Δ𝜹𝑘 in Eq. (22) results in the following equality

Δ𝝉 = ∇𝜹𝚽(A𝜹𝑘 + Bu𝑘 − 𝜹𝑘), (31)

which can be solved directly for u𝑘 for non over-actuated systems (𝑝 = 𝑚). For over-actuated systems, a cost function

analogous to Eq. (27) can be found by substituting Eq. (30) into Eq. (27) and rewriting the inequality constraint for u𝑘

min
u𝑘

J =



W1

(
∇𝜹𝚽(A𝜹𝑘 + Bu𝑘 − 𝜹𝑘) − Δ𝝉𝑐

)



2
+



W2

(
(A𝜹𝑘 + Bu𝑘 − 𝜹𝑘) − Δ𝜹𝑝

)



2
,

subject to B−1
(
Δ𝜹 − A𝜹𝑘 + 𝜹𝑘

)
≤ u𝑘 ≤ B−1

(
Δ𝜹 − A𝜹𝑘 + 𝜹𝑘

)
,

(32)

with Δ𝜹 and Δ𝜹 being the most pressing lower and upper boundaries from the actuator rate and position constraints

as described by Eq. (26). The optimal solution for u𝑘 now depends on the first order actuator dynamics described by

(A,B) as well as the CEJ ∇𝜹𝚽. Equation (27) was solved by Matamoros [10] through an active set-based optimization
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method. This method can also be applied to the dynamic QP problem by reformulating Eq. (32) as

min
u𝑘












W1∇𝜹𝚽B

W2B

 u𝑘 +


W1∇𝜹𝚽(A𝜹𝑘 − 𝜹𝑘)

W2 (A𝜹𝑘 − 𝜹𝑘)

 −


W1Δ𝝉𝑐

W2Δ𝜹𝑝










 ,

subject to Cu𝑘 ≥ U,

(33)

with C = [𝐼 − 𝐼]𝑇 and U =
[
B−1

(
Δ𝜹 − A𝜹𝑘 + 𝜹𝑘

)
B−1

(
Δ𝜹 − A𝜹𝑘 + 𝜹𝑘

)]
indicating the lower and upper bound

command inputs that respect the physical actuator constraints. The active set algorithm solves a sequence of equality

constrained problems, where in every iteration some inequality constraints are regarded as equality constraints and

form a working set W, whereas the remaining inequality constraints are disregarded. The working set at the optimum

is known as the active set of the solution. The active set algorithm taken from [14], used to solve the QP problem in

Eq. (33), is given in pseudo-code in Algorithm 1.

Algorithm 1 Active set-based quadratic programming control allocation with first order actuator dynamics.
Let u0 be a feasible starting point. A point is feasible if it satisfies Cu ≥ U. Let the working set W contain the active
inequality constraints at u0. Let 𝑁 be the maximum number of iterations.

1: for 𝑖=0,1,…,𝑁 − 1 do
2: Given u𝑖 , find the optimal perturbation 𝜿, considering the constraints in the working set as equality constraints

and disregarding the remaining inequality constraints, by solving

min
𝜿







[

W1∇𝜹𝚽B
W2B

] (
u𝑖 + 𝜿

)
+
[

W1∇𝜹𝚽(A𝜹𝑘 − 𝜹𝑘)
W2 (A𝜹𝑘 − 𝜹𝑘)

]
−
[

W1Δ𝝉𝑐
W2Δ𝜹𝑝

]





subject to 𝜿𝑖 = 0, 𝑖 ∈ W.

(34)

3: if u𝑖 + 𝜿 is feasible then
4: Set u𝑖+1 = u𝑖+𝜿 and compute the Lagrange multiplier 𝜆 associated with the active constraints in Cu𝑖+1 ≥ U.
5: if All 𝜆 ≥ 0 then
6: u𝑘 = u𝑖+1 is the optimal command input. 𝜹𝑐,𝑘+1 = A𝜹𝑘 + Bu𝑘 is the optimal control input. Terminate

operation.
7: else
8: Remove the constraint associated with the most negative 𝜆 from W.
9: end if

10: else
11: Determine the maximum step length 𝜂 such that u𝑖+1 = u𝑖 + 𝜂𝜿 is feasible. Add the dominant constraint to

the working set.
12: end if
13: end for
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The Lagrange multipliers are computed in accordance with [14]


W1∇𝜹𝚽B

W2B


𝑇 ©­­­«


W1∇𝜹𝚽B

W2B

 u +


W1∇𝜹𝚽 (A𝜹𝑘 − 𝜹𝑘)

W2 (A𝜹𝑘 − 𝜹𝑘)

 −
W1Δ𝝉𝑐

W2Δ𝜹𝑝


ª®®®¬ = C𝑇

0 𝜆

(35)

where C0 contains the rows of C that correspond to constraints in the working set.

The main advantage of the proposed dynamic CA method is that it does not require the feedback of higher order

output signals than for INCA or INDI itself. The control scheme allows for an incremental implementation of a discrete

time onboard actuator dynamics model, which is limited to first order dynamics. Nevertheless, depending on the

application the method might also be useful for systems that portray second order actuator dynamics.

B. Adaptive dynamic incremental nonlinear control allocation

As Algorithm 1 accounts for first order actuator dynamics, it also allows us to adapt the actuator dynamics model

with each control increment. This work proposes a new adaptive dynamic incremental nonlinear control allocation (AD-

INCA) method that includes online actuator dynamics model updates to increase actuator fault tolerance. For this, an

actuator dynamics model is to be identified and, if needed, reduced to a first order model for the active set-based solver.

The current paper assumes a recursive least squares (RLS) method as proposed by Fortescue et al. [15] to estimate the

actuator dynamics model parameters. The main advantage of this estimator is that it does not require persistence of

excitation. Instead, the parameters only update for sufficient measure of excitation, preventing covariance windup.

Algorithm 2 Recursive least squares parameter estimation with adaptive forgetting factor.
Given an initial covariance 𝑃0, minimum forgetting factor Λmin and information filter Σ0.

1: 𝜹̂𝑘+1 = min
(
max

(
𝝃𝑘 𝜽̂𝑘 , 𝜹

)
, 𝜹
)

⊲ Output prediction
2: 𝝐 = 𝜹𝑘+1 − 𝜹̂𝑘+1 ⊲ Output prediction error
3: 𝐾𝑘 = 𝑃𝑘𝝃

𝑇
𝑘 /[1 + 𝝓𝑘𝑃𝑘𝝃

𝑇
𝑘 ] ⊲ Least squares gain

4: Λ𝑘 = 1 − (1 − 𝝃𝑘𝐾𝑘)𝝐2/Σ0 ⊲ Forgetting factor
5: if Λ𝑘 ≤ Λmin then
6: Set Λ𝑘 = Λmin
7: end if
8: 𝜽̂𝑘+1 = 𝜽̂𝑘 + 𝐾𝑘𝝐 ⊲ Estimate update
9: 𝑃𝑘+1 = (1 − 𝐾𝑘𝝃𝑘)𝑃𝑘/Λ𝑘 ⊲ Covariance update

The RLS algorithm taken from [15] is included in pseudo-code in Algorithm 2. In this algorithm, the parameter

estimates are indicated by 𝜽̂𝑘 and the regressor vector is 𝝃𝑘 . The tuning parameters include a minimum forgetting

factor Λmin, an information filter Σ0 and initial covariance 𝑃0. Even though the QP optimizer should prevent command
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inputs beyond the saturation limits, this may not be the case for underdamped actuators that have not yet been identified

properly. Therefore, it is necessary to include actuator constraints explicitly in the RLS estimator output prediction as

captured in the first line of Algorithm 2. Note that in Algorithm 2, 𝜹𝑘+1 is the measured quantity and that therefore the

parameter estimator is lacking one time step behind the actual actuator dynamics. The resulting parameter estimates

Â, B̂ are fed to the QP active-set based optimizer to compute the desired command input u𝑘 based on Algorithm 1.

IV. Innovative control effectors (ICE) model
Fighter aircraft have been part of the battle space since the early 20-th century. Moreover, during the two world wars

air superiority developed into a critical tool for establishing the upper hand on the ground. In order to counter the new

threat from above, the Royal Air Force used early radio detection and ranging (radar) systems to provide themselves

with early warning against incoming German bombing parties during World War II. Radar technology has advanced

rapidly since, which makes aircraft nowadays prone to enemy detection, identification and engagement. Furthermore,

reducing radar cross section (RCS) remains one of the key drivers in military aircraft design. A logical step herein is

to eliminate unnecessary corners, making a tailless configuration an interesting candidate.

However, to maintain lateral control, high-manoeuvrability and add redundancy in control, tailless aircraft require

unconventional, redundant control effectors. With this in mind, the innovative control effectors (ICE) program was

conceived in 1993 to investigate the potential for new and innovative methods for stabilization and control of high

performance, low all-aspect signature fighters [16]. Specifically, two tailless designs with novel control surfaces were

investigated, a carrier-based and a land-based configuration. A schematic representation of the land-based version,

hereafter referred to as ’ICE’, is depicted in Fig. 2. Its actuator suite consists of the following components:

Inboard leading-edge flaps
Outboard leading-edge flaps
All-moving wing tips
Multi-axis thrust vectoring
Spoiler-slot deflectors
Pitch flaps
Elevons

Fig. 2 A 2D schematic of the ICE aircraft [10].
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• Leading-edge flaps: The ICE suite consists of two inboard and two outboard leading edge flaps (LEF). Differential

use of the flaps provides directional-lateral control. The choice for four control surfaces adds redundancy and

flexibility in control strategy.

• All-moving wingtips: Next, two all-moving wingtips (AMT) are included in the design. The control surfaces are

constrained to trailing edge down (TED) movements for RCS reduction purposes. Yaw control magnitudes at

large deflections are on the order of that produced by an F-16 rudder [16].

• Multi-axis thrust vectoring: In order to relieve the need for a tail even further, multi-axis thrust vectoring (MATV)

was integrated in the ICE model. MATV provides both pitch and yaw control power. Unfortunately, yaw thrust

vectoring is not very effective at high speed conditions due to the dependence of thrust vector control power on

dynamic pressure, and structural limitations on nozzle deflections at high speeds.

• Spoiler-slot deflectors: Spoiler-slot deflectors (SSD) let airflow through the wings. The actuators allow for both

yaw and roll control through differential lift and drag. As a drawback, control effectiveness of downstream

surfaces is highly coupled with SSD deflection.

• Pitch flaps: These surfaces provide good pitch control effectiveness throughout the angle of attack (AoA) range.

These are however, restricted to moving symmetrically in the same direction.

• Elevons: The elevons are located on the trailing edge outboard of the pitch flaps and can move independently from

one another, allowing for both pitch and roll authority. The elevons can also produce a secondary-axis yawing

moment through differential lift-induced drag.

Goals for these control concepts included 1) improved low signature characteristics; 2) improved high AoA effec-

tiveness; 3) applicability to tailless fighters; 4) potential weight and drag reduction; 5) reduced hinge moments and

6) reduced susceptibility to aeroelastic effects [16]. As part of the project the ICE model was tested in a wind tunnel

environment at Lockheed Martin Tactical Aircraft Systems, Aerodynamic Development Facility in Fort Worth, Texas

[17]. The obtained aerodynamic model has been used for numerous studies into flight control.

Although the innovative actuator concepts could provide the required control forces and moments, the resulting

over-actuated ICE configuration requires high complexity CA systems to exploit the aircraft’s potential agility and

redundancy in control. ICE exhibits highly cross-coupled nonlinear control effectiveness. Nevertheless, Matamoros

[10] applied INCA to effectively utilize inherent cross-coupling.

A. ICE control effectiveness modeling

Van der Peijl [18] captured the ICE aerodynamics with a simplex-spline model. For each degree of freedom 𝑖 =

𝑙, 𝑚, 𝑛, 𝑋,𝑌 , 𝑍 the dimensionless moments and forces coefficients were represented by a set of B-splines 𝐶𝑠
𝑖𝑛

defined

over a simplex triangulation with 0-th-order continuity. The sum of the B-splines represents the ICE aerodynamics
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𝐶𝑖 =𝐶
𝑠
𝑖1
(𝛼, 𝑀) + 𝐶𝑠

𝑖2
(𝛼, 𝛽, 𝑀) + 𝐶𝑠

𝑖3
(𝛼, 𝛿ls, 𝛿le, 𝑀) + 𝐶𝑠

𝑖4
(𝛼, 𝛿rs, 𝛿re, 𝑀) + 𝐶𝑠

𝑖5
(𝛼, 𝛽, 𝛿lfi) + 𝐶𝑠

𝑖6
(𝛼, 𝛽, 𝛿rfi)

+ 𝐶𝑠
𝑖7
(𝛼, 𝛽, 𝛿lf , 𝛿lfo, 𝑀) + 𝐶𝑠

𝑖8
(𝛼, 𝛽, 𝛿rf , 𝛿rfo, 𝑀) + 𝐶𝑠

𝑖9
(𝛼, 𝛿lfo, 𝛿la) + 𝐶𝑠

𝑖10
(𝛼, 𝛿rfo, 𝛿ra) + 𝐶𝑠

𝑖11
(𝛼, 𝛿la, 𝛿le)

+ 𝐶𝑠
𝑖12

(𝛼, 𝛿ra, 𝛿re) + 𝐶𝑠
𝑖13

(
𝛼, 𝛿rs, 𝛿ls, 𝛿pf , 𝑀

)
+ 𝐶𝑠

𝑖14
(𝛼, 𝛽, 𝛿la) + 𝐶𝑠

𝑖15
(𝛼, 𝛽, 𝛿ra) + 𝐶𝑠

𝑖16
(𝛼, 𝛽, 𝛿ls)

+ 𝐶𝑠
𝑖17

(𝛼, 𝛽, 𝛿rs) +
𝑝𝑏

2𝑉
𝐶𝑠
𝑖18
(𝛼, 𝑀) + 𝑞𝑐

2𝑉
𝐶𝑠
𝑖19
(𝛼, 𝑀) + 𝑟𝑏

2𝑉
𝐶𝑠
𝑖20
(𝛼, 𝑀)

(36)

with 𝛼 the angle of attack, 𝛽 the sideslip angle, 𝑀 the Mach number, 𝑐 the mean aerodynamic chord, 𝑏 the wing span

and 𝑉 the true airspeed. The body angular rates are given by 𝑝, 𝑞 and 𝑟 . Lastly, the actuators 𝛿𝑖 are included in Table 1.

For use in INCA, [10] derived a CEJ from the aerodynamic model by taking the partial derivative of each term with

respect to 𝜹

∇𝜹Φ(𝛼, 𝛽, 𝑀, 𝜹) =



∑20
𝑗=1

𝜕𝐶𝑠
𝑙 𝑗
(x,𝜹)

𝜕𝛿1

∑20
𝑗=1

𝜕𝐶𝑠
𝑙 𝑗
(x,𝜹)

𝜕𝛿2
· · · ∑20

𝑗=1
𝜕𝐶𝑠

𝑙 𝑗
(x,𝜹)

𝜕𝛿13∑20
𝑗=1

𝜕𝐶𝑠
𝑚𝑗

(x,𝜹)
𝜕𝛿1

∑20
𝑗=1

𝜕𝐶𝑠
𝑚𝑗

(x,𝜹)
𝜕𝛿2

· · · ∑20
𝑗=1

𝜕𝐶𝑠
𝑚𝑗

(x,𝜹)
𝜕𝛿13∑20

𝑗=1
𝜕𝐶𝑠

𝑛 𝑗
(x,𝜹)

𝜕𝛿1

∑20
𝑗=1

𝜕𝐶𝑠
𝑛 𝑗

(x,𝜹)
𝜕𝛿2

· · · ∑20
𝑗=1

𝜕𝐶𝑠
𝑛 𝑗

(x,𝜹)
𝜕𝛿13


. (37)

For the MATV a CEJ can be derived analytically [10, p. 55].

B. ICE actuator dynamics and constraints

The actuator dynamics can be modeled as second order transfer functions. Both a low and a high-bandwidth transfer

function were chosen, based on the type of actuator.

𝐻𝑙 (𝑠) =
1800

𝑠2 + 118𝑠 + 1800
(38)

𝐻ℎ (𝑠) =
4000

𝑠2 + 140𝑠 + 4000
(39)

The position and rate constraints for each actuator type are included in Table 1.

Table 1 Dynamic properties of the ICE actuators.

Control effector Notation Position limits [deg] Rate limit [deg/s] Dynamics
Inboard LEF 𝛿lfi, 𝛿rfi [0, 40] 40 𝐻𝑙 (𝑠)
Outboard LEF 𝛿lfo, 𝛿rfo [-40, 40] 40 𝐻𝑙 (𝑠)
AMT 𝛿la, 𝛿ra [0, 60] 150 𝐻ℎ (𝑠)
Elevons 𝛿le, 𝛿re [-30, 30] 150 𝐻ℎ (𝑠)
SSD 𝛿ls, 𝛿rs [0, 60] 150 𝐻ℎ (𝑠)
PF 𝛿pf [-30, 30] 150 𝐻ℎ (𝑠)
MTV 𝛿ptv, 𝛿ytv [-15, 15] 150 𝐻ℎ (𝑠)
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V. Flight control system design

A. INCA-based flight control system

The current research builds on the INCA-based flight control system (FCS), depicted in Fig. 3. The inner control

loop consists of an angular acceleration inversion loop, together with a CA optimization function, being the active

set-based QP solver. Perfect knowledge is assumed of the angular accelerations ¤𝝎. The angular acceleration inversion

loop is described in detail in [10], and will not be further elaborated upon in this work.

INCA
QP solver𝐽PID Actuator

dynamics
Aircraft

dynamics
𝑢 𝛿Δ𝜏𝑐

𝜔

𝜔𝑒𝜔𝑐
+
-

¤𝜔𝑐

¤𝜔

+
-

¤𝜔𝑒

𝑥, 𝛿

𝑦

Control effectiveness
Jacobian ∇𝛿Φ(𝑥, 𝛿)

𝜈ℎ = 𝐽−1∇𝛿Φ(𝑥, 𝛿)(𝑢 − 𝛿)

K𝑟𝑚 1/s

𝜈𝑟𝑚

𝜈ℎ

𝜔𝑟𝑚
-

-
+

+ +
+

Fig. 3 INCA ICE FCS block diagram [10].

1. INCA and PCH

To omit command saturation problems, Matamoros [10] applied a pseudo-control hedge (PCH) within the INCA-

based FCS. The PCH is defined by the difference in virtual control input 𝝂 or ¤𝝎𝑐,𝑘−1 and the estimated obtained virtual

control 𝝂̂ or ¤̂𝝎𝑘 . Assuming that no unoptimalities originate from the QP solver, the PCH only depends on actuator

dynamics and saturation limits. For INCA the PCH 𝝂ℎ can be computed as

𝝂ℎ = ¤𝝎𝑐,𝑘−1 − ¤̂𝝎𝑘 = 𝐽−1∇𝜹𝚽(x𝑘−1, 𝜹𝑘−1)(u𝑘−1 − 𝜹𝑘). (40)

Next, the hedge is fed back into a reference model as a compensation signal. The reference model 𝝂rm is given by

𝝂rm = 𝐾rm (𝝎𝒄 − 𝝎rm) (41)

with 𝐾rm a diagonal matrix. The hedged reference signal fed as a control input into the attitude control system is the

state vector of the reference model

𝝎rm =
1
s
(𝝂rm − 𝝂ℎ) . (42)

As indicated, the PCH was introduced to act in the case of actuator saturation by avoiding unfeasible virtual com-

mand signals. However, the underlying problem with INCA is not primarily actuator saturation limits. These are

hard-coded in the QP solver and cannot be violated by the constrained optimization problem. Instead, the solver cannot
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catch up with the virtual control input references as the optimal command inputs are not achieved due to actuator dynam-

ics delays. With the PCH, the outer loop signal is hedged or scaled to preserve closed loop stability with these system

delays present. The current study provides an alternative approach to cope with inner loop time delays originating from

the actuator dynamics.

B. (A)D-INCA-based flight control system

The novel FCS designs with D-INCA and AD-INCA are depicted in Fig. 4 with in red the AD-INCA specific

system identification loop. With (A)D-INCA, the need for a PCH is omitted. Instead, (A)D-INCA produces more

aggressive command inputs to mitigate actuator dynamics delays through an onboard actuator dynamics model. In

addition, (A)D-INCA imposes the physical saturation limits of the actuators as QP output constraints on the expected

physical deflections 𝜹𝑐, rather than on the command inputs u𝑘 as is the case with INCA. It is expected that this results

in less conservative CA solutions and higher system performance.

(A)D-INCA
QP solver𝐽PID Actuator

dynamics
Aircraft

dynamics
𝑢 𝛿Δ𝜏𝑐

𝜔

𝜔𝑒𝜔𝑐
+

-

¤𝜔𝑐

¤𝜔

+

-

¤𝜔𝑒

𝑥, 𝛿

𝑦

RLS
estimator

𝐴̂, 𝐵̂

Control effectiveness
Jacobian ∇𝛿Φ(𝑥, 𝛿)

Fig. 4 (A)D-INCA ICE FCS block diagram.

1. PID tuning

The adopted PID gains for each FCS are the same and taken from [10]. For the INCA-based FCS a reference model

gain 𝐾rm was tuned. The chosen values are stated in Table 2.

Table 2 PID and reference model gains for 𝝎 control.

𝑝 𝑞 𝑟

𝐾𝑃 6.5 6.5 5.8
𝐾𝐼 0.0 0.0 0.0
𝐾𝐷 0.5 0.5 0.5
𝐾rm 12 12 12
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2. (A)D-INCA QP solver

The CA optimizer is based on the active-set based QP solver described by Algorithm 1. The maximum num-

ber of iterations that was chosen 𝑁 = 100 and the actuator preference vector 𝜹𝑝 = 0. All the weights were taken

from the static method in [19, p. 16]. The weights on the CA error are W1 = 𝐼. For the penalty on 𝜹, W2 =

diag([
lfi
1

lfo
1

la
0.5

le
1

ls
10

pf
0.5

rfi
1

rfo
1

ra
0.5

re
1

rs
10

ptv
1

ytv
1 ]). To prevent convergence to local optima of the

spoiler-slot deflectors due to non-convex SSD CEJ terms, the weights on the SSDs are augmented as follows

𝑊1SSD (𝛼) = [−0.25 + 0.25 exp (1.6𝛼)]−1. (43)

3. RLS estimator

The actuator dynamics parameter estimator is described by Algorithm 2. For ICE control, the adopted parameter

estimates include 𝜽̂𝑘 = [𝑎̂1,𝑘 , 𝑎̂2,𝑘 , 𝑏̂1,𝑘 , 𝑏̂2,𝑘] and the regressors include 𝝃𝑘 = [𝜹𝑘 , 𝜹𝑘−1, u𝑘 , u𝑘−1]. As the actuator

behavior is governed by second order dynamics, a second order model needs to be estimated as first order model

parameter estimates would diverge after observing second order phenomena. The discrete time second order model to

be estimated is the following difference equation

𝜹𝑘+1 = 𝑎1,𝑘𝜹𝑘 + 𝑎2,𝑘𝜹𝑘−1 + 𝑏1,𝑘u𝑘 + 𝑏2,𝑘u𝑘−1. (44)

The tuning parameters include a minimum forgetting factor Λmin = 0.25, an information filter Σ0 = 10 and initial

covariance 𝑃0 = 0.01 · 𝐼. Next, the second order model is reduced to a first order lag through a Matlab built-in balanced

truncation routine. The resulting parameter estimates Â, B̂ are fed to the AD-INCA QP solver. Moreover, to prevent

extreme command inputs for input scalars 𝐵̂𝑖 ∈ B̂ approaching zero, 𝑢𝑘 = 10 deg is forced on actuators with large value

(>1000 deg) command input constraints (i.e., with low command input effectiveness or being stuck).

VI. Simulations and results
Simulations were conducted for the INCA, D-INCA and AD-INCA control schemes. Specifically, for these simu-

lations a Matlab Simulink R2023b environment was used. Matamoros [10] created four different reference trajectories

with three different outer loop inversion controllers to obtain 𝝎𝒄 . These outer loop controllers are described in detail

in [10] and will not be further elaborated upon in the this work. Three of the four reference trajectories were adopted

in the current study and are briefly discussed in Section VI.A.
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A. Challenging flight trajectories

1. Maneuver A

The barrel roll maneuver uses a sideslip compensation outer loop with direct roll and pitch body rate control inputs.

It consists of constant pitch and roll rate inputs, synchronized to complete two barrel rolls and exit the maneuver with

the initial heading and zero flight path angle. The simulation time is 50 s.

2. Maneuver B

Maneuver B is the most demanding test performed in this work, consisting of a sequence of aggressive aerobatic

maneuvers: aileron roll, asymmetric looping with sideslip, half 8-point hesitation roll and Immelmann turn. These

maneuvers are done with a sideslip compensation outer loop with direct roll and pitch body rate control inputs, same as

with maneuver A. The aileron roll consists of a roll input of 180 deg/s resulting in two full turns in 4 s. The asymmetric

looping consists of a pitch rate input of 19 deg/s, yielding a full looping in roughly 19 s. During the first 10 s of the

looping a 5 deg sideslip input is given, which returns to 0 deg for the last 9 s of the looping. This results in lateral

displacement during the looping. The half 8-point hesitation roll consists of four quick roll rate step inputs of 90 deg/s

with a duration of 0.5 s each and with a separation of 1 s, resulting in four quick steps in roll of 45 deg each, yielding

a 180 deg roll angle. Lastly, a downward half-looping follows ending the maneuver in straight and level fight, flying in

the opposite direction at a lower altitude than initially. The simulation time is 50 s.

3. Maneuver C

This maneuver is intended to test the behavior of the FCS at high AoA and high sideslip, because most nonlin-

earities and interactions occur within these regions of the flight envelope. The simulations were performed using the

aerodynamic inversion outer loop with the aerodynamic angles 𝛼 and 𝛽 and the roll angle 𝜙 as control inputs. The

reference consists of a doublet 𝛼 input of ≈ 40 deg followed by a doublet 𝛽 input of ≈ 25 deg, while keeping the roll

angle reference at 0 deg. The simulation time is 30 s.

B. Measures of performance

For each reference maneuver, performance metrics are evaluated for D-INCA and AD-INCA. The results are com-

pared to those obtained with the baseline INCA. The measures of performance that are regarded include the following

errors and their root mean square (RMS) values:

• CA error: evaluates the ability to attain the control-induced moments required by the high-level FCS

RMS(𝝉 − 𝝉𝑐). (45)
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• Tracking error: evaluates the overall ability of the CA method to track the reference command inputs∗

RMS(𝜹 − 𝜹𝑐) ((A)D − INCA),

RMS(𝜹 − u) (INCA),
(46)

with 𝜹𝑐 the commanded physical inputs. These are the expected physical inputs based on the command inputs,

the current actuator positions and the onboard actuator dynamics model.

• Control effort: evaluates the amount of deflection of the control effectors required

RMS(𝜹 − 𝜹𝑝). (47)

Additionally, the outer loop tracking performance is investigated by comparing the references to the attained trajectories.

C. D-INCA

This section includes the results obtained with the D-INCA ICE FCS for trajectories A, B and C. The results are

compared to those found for INCA.

1. Control allocation performance with D-INCA

Firstly, CA performance will be determined in terms of tracking the pseudo-control (torque) input. Note that the

CA errors for INCA are determined after virtual control input 𝝂 = ¤𝝎𝑐 augmentation by the PCH. This PCH scales the

virtual control input signal based on the difference between input command and actuator deflection. Whereas, for D-

INCA (and AD-INCA) the commanded torque aims to achieve the outer loop rate commands. To mitigate this problem,

the unbiased outer loop tracking performance metrics are included in Section VI.C.3.
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Fig. 5 Error in attained control torque for maneuver A.

∗These definitions differ between INCA and (A)D-INCA, because for the latter, u is merely an auxiliary signal to reach 𝜹 = 𝜹𝑐 .
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Fig. 6 Error in attained control torque for maneuver B.
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Fig. 7 Error in attained control torque for maneuver C.

Maneuver A can be tracked by both INCA and D-INCA. However, errors in control moment 𝝉 − 𝝉𝑐 significantly

decrease with D-INCA. In particular, temporary peaks in CA error are reduced by compensating for the actuator dynam-

ics. Maneuver B is the most challenging trajectory that was flown. INCA cannot follow the reference maneuver which

results in an unstable system response. Especially, during the sequence of aggressive roll maneuvers around 𝑡 = 30

s. Whereas, D-INCA can still keep the CA error within certain boundaries. Maneuver C gives similar information as

B. In particular, INCA cannot track the yaw and pitch torque commands at the challenging sideslip doublet reference.

The RMS CA errors are included in Table 4 in the Appendix. It is found that the average CA error decreases with

D-INCA. Not only for the case in which INCA cannot track the reference, but also for maneuver A that can be tracked

by both INCA and D-INCA. Especially, during maneuver A pitch and roll torque errors reduce with D-INCA, as the

reference trajectory consists of aggressive pitch and roll maneuvers. On the other hand, yaw tracking performance is

fairly similar between the two adopted methods.
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2. Actuator deflections in D-INCA

This section will dive into actuator deflections attained with D-INCA and the errors in actuator deflection. The

tracking errors and control effort metrics are also depicted. The tracking errors obtained for maneuver A are in line

with the CA errors seen in Fig. 5. The actuator position errors with D-INCA decrease compared to those with the

baseline INCA implementation. With maneuver B, it can be seen that the magnitude of the errors stays the same. This

is because the saturation limits together with the sample time bound the tracking errors. However, the density of errors is

much lower for D-INCA than for INCA. With D-INCA, the onboard actuator dynamics model largely follows the actual

actuator dynamics. However, it cannot predict the actuator deflections perfectly throughout the entire simulation. This

shows the limitations of the discrete first order onboard actuator dynamics model. Lastly, for maneuver C, INCA and D-

INCA show a similar relationship as for maneuvers A and B. The RMS tracking errors for each maneuver are included

in Table 5 in the Appendix. From the entries in this table it becomes clear that INCA cannot follow the reference

actuator deflection in maneuver B and C. The tracking errors significantly reduce with the D-INCA QP solver. Table 6

in the Appendix states the control effort required for each maneuver. Since INCA cannot track trajectories B and C, the

control effort for these maneuvers is less interesting as performance metric. The control effort for the maneuver A that

can be tracked by both methods, is not significantly different. Hence, in terms of control effort, there is no reason to

prefer one method over the other.
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Fig. 8 Error in attained actuator deflection for maneuver A.

22

2.6. Simulations and results 25



0 10 20 30 40 50

Time [s]

-4

-3

-2

-1

0

1

2

3

4

A
n
g
le

 e
rr

o
r 

[d
e
g
]

e
lfi

e
lfo

e
la

e
le

e
ls

e
pf

e
rfi

e
rfo

e
ra

e
re

e
rs

e
ptv

e
ytv

(a) INCA

0 10 20 30 40 50

Time [s]

-4

-3

-2

-1

0

1

2

3

4

A
n

g
le

 e
rr

o
r 

[d
e

g
]

e
lfi

e
lfo

e
la

e
le

e
ls

e
pf

e
rfi

e
rfo

e
ra

e
re

e
rs

e
ptv

e
ytv

(b) D-INCA

Fig. 9 Error in attained actuator deflection for maneuver B.
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Fig. 10 Error in attained actuator deflection for maneuver C.

3. Outer loop tracking performance

Figures 11 to 13 show the tracking of the outer loop references. Both INCA and D-INCA can track maneuver A.

The challenging maneuver B cannot be tracked by INCA. Whereas, D-INCA follows the signal with great precision.

Similarly, only D-INCA can follow the high sideslip reference in maneuver C. This is in line with the CA and tracking

errors found. The simulated translational trajectories are included in Fig. 32 in the Appendix.
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Fig. 11 Outer loop reference tracking maneuver A.
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Fig. 12 Outer loop reference tracking maneuver B.
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Fig. 13 Outer loop reference tracking maneuver C.
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4. Command inputs and model limitations

This section will briefly demonstrate the difference between INCA and D-INCA from a command input perspective.

Consider the initial control of the left all-moving wingtip for maneuver A in Fig. 14. The time evolution of the command

input 𝑢la, physical control input 𝛿la and the commanded physical control input 𝛿𝑐,la are included. At 𝑡 = 0 s, the

command input with INCA is much smaller than it is with D-INCA. This is because the rate limit is 150 deg/s, which

does not allow for a command input greater than 1.5 deg from the zero start position at the given sample time Δ𝑡 = 0.01

s. Limited by this QP constraint, the actuator by far does not reach its physical constraint. Instead, a deflection rate of

20 deg/s is observed. After initialization, the actuator dynamics prevent the AMT to converge to a steady state.
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Fig. 14 Command input and position of the left all-moving wing tip for maneuver A.

0 0.05 0.1 0.15 0.2 0.25 0.3
0

0.2

0.4

0.6

0.8

1

True actuator dynamics

First order discrete model

 

Time (seconds)

A
m

p
lit

u
d

e

Fig. 15 Step response for actuator dynamics and onboard first order discrete model.

D-INCA on the other hand, produces a command input for which the expected physical deflection matches the 150

deg/s rate constraint. Also for D-INCA, the real physical constraint is not obtained after the first sample time, because

of a mismatch between the first order discrete time model and the true actuator dynamics. More specifically, this can

25

2.6. Simulations and results 28



be explained by the differences in step responses as depicted in Fig. 15. The zero-order-hold reduced-order-model does

not align with the real second order actuator dynamics at its own sample time. After one sample time 𝑡 = 0.01 s, the

model overestimates the actuator response. Hence, the QP solver will produce a smaller command input than needed

for the optimal deflection. The expected and obtained actuator positions converge during the subsequent sample times.

To conclude, the D-INCA QP solver is much less conservative as it imposes output constraints on the actuator

deflections rather than the command inputs. A higher order actuator dynamics model will likely yield better results.

Nevertheless, the current implementation already outperforms the conservative INCA control solution.

5. Command input chatter

A great portion of the tracking errors in Figs. 8 to 10 can be pinpointed to command input chatter. It was found that

both INCA and D-INCA suffer from this problem. An example of the phenomenon is depicted in Fig. 16 for D-INCA,

where command input chatter at the left all-moving wingtip occurs during maneuver A after 𝑡 = 21.13 s. This chatter

is induced by discontinuity in the adopted CEJ model, as the command input follows a jump in the CEJ.
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Fig. 16 Chatter in D-INCA LAMT control solution for maneuver A.

Particularly, for extremely challenging reference trajectories the chatter problem becomes more prominent as the

QP solution space is reduced. This chatter affects the control solution as the first order actuator dynamics model cannot

accurately predict the increased second order actuator behavior. This can also be observed in Fig. 16a as a mismatch

arises between 𝛿la and 𝛿𝑐,la. Additionally, discontinuity in the CEJ model increases the chance of finding local optima.

This makes it hard to predict the total potential of D-INCA without a continuous CEJ model. Last but not least, input

chatter poses a problem for practical implementation of INCA due to structural limitations of the actuators. It would

be worthwhile to investigate whether a continuous CEJ model would prevent the chatter and increase closed loop

performance.
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6. Control effectiveness Jacobian model mismatch robustness

Matamoros [10] showed INCA’s significant robustness against CEJ mismatch. In order to test D-INCA’s CEJ

mismatch robustness, a grid of maneuver A simulations was conducted for different CEJ offsets and scaling errors.

The scale factor was varied between 0.6 and 1.4 with increments of 0.1. The model offset is determined as a percentage

of the absolute maximum CEJ values obtained for the nominal simulation with INCA. The offset was varied between

-30% and 30% with increments of 5%. The performance metrics for different CEJ mismatches are shown in Figs. 17

to 19. In terms of CA errors and tracking errors, D-INCA’s robustness against Jacobian mismatch is higher than INCA’s.
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Fig. 17 CA error robustness for INCA (left) and D-INCA (right).
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Fig. 18 Tracking error robustness for INCA (left) and D-INCA (right).
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Fig. 19 Control effort robustness for INCA (left) and D-INCA (right).

D. AD-INCA

In addition to the simulations with nominal actuators, the ICE FCS was tested under actuator failure events, for

example due to loss of hydraulic pressure. The sequence of failure events adopted is included in Table 3. Failures were

forced on the elevons and all-moving wingtips. In addition, the right spoiler-slot deflector is stuck. This is an interesting

failure as it will have large impact on downstream actuator effectiveness. The multi-axis thrust vector control, pitch flaps

and leading edge flaps are left intact. This should provide the aircraft with both pitch and yaw control authority. Roll

references however, are likely more difficult to attain. The results for D-INCA and AD-INCA are compared. Results for

INCA are not depicted in the applicable figures as earlier simulations showed D-INCA to be superior during nominal

actuator behavior. Nevertheless, performance metrics for INCA are included in Tables 7 to 9 in the Appendix.

Table 3 Tested actuator failure sequence.

Actuator Event Time [s]

𝛿la underdamped: 𝐻 (𝑠) = 4000
𝑠2 + 40𝑠 + 4000

0

𝛿le stuck in 30 deg position 20
𝛿ra stuck in 0 deg position 20

𝛿re underdamped: 𝐻 (𝑠) = 4000
𝑠2 + 100𝑠 + 4000

10

𝛿rs stuck in 30 deg position 15

1. Control allocation performance with AD-INCA

Firstly, CA performance will be determined in terms of tracking the pseudo-control input. The time evolutions of

the CA errors are depicted in Figs. 20 to 22. AD-INCA and D-INCA perform very similar under the given actuator

failure events. However, peaks in CA error for maneuver A are higher for D-INCA than for AD-INCA. Also, higher

CA errors at the end of the simulation time are observed for each maneuver.
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Fig. 20 Error in attained control torque for maneuver A.
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Fig. 21 Error in attained control torque for maneuver B.
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Fig. 22 Error in attained control torque for maneuver C.
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The RMS CA errors for the actuator failure sequence for the three maneuvers are included in Table 7 in the Appendix.

On average, the RMS CA error is reduced by 34% with the AD-INCA implementation. Especially, in maneuver A

the adaptive actuator dynamics model proves its advantage over D-INCA. This is logical as the elevons and AMTs,

providing significant roll and pitch authority, are stuck during high pitch and roll rate references. During maneuver B

and C AD-INCA also performs slightly better. Nevertheless, D-INCA already exhibits robustness for actuator failures.

Since the actuator positions are fed back, the actuator errors are bounded by the saturation limits and the sample time.

2. Actuator deflections in AD-INCA

Next, the actuator errors are depicted in Figs. 23 to 25. Although actuator errors seem similar between the two

CA schemes, some additional steady state errors are observed with D-INCA for each maneuver. These start after the

actuator failures and are mitigated by AD-INCA through actuator dynamics parameter estimation.
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Fig. 23 Error in attained actuator deflection for maneuver A.
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Fig. 24 Error in attained actuator deflection for maneuver B.
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Fig. 25 Error in attained actuator deflection for maneuver C.

Table 8 in the Appendix gives the RMS tracking errors for the actuator failure sequence. What jumps out is that the

INCA tracking errors are not necessarily worse than D-INCA’s tracking errors regarding the broken actuators. Neither

D-INCA nor INCA ’know’ how to cope with the stuck actuators. Therefore, no significant difference between the two

methods is expected. As for the heavily underdamped actuator, the assumed perfect actuator dynamics by INCA may

actually be a reasonable first order representation of the underdamped dynamics. Whereas, with slightly underdamped

dynamics, the D-INCA actuator dynamics model performs better than INCA’s ’perfect actuator dynamics model’.

Table 8 also shows that for D-INCA the tracking errors are higher for the faulty than for the nominal actuators. The

RLS estimator can reduce the tracking errors of the erroneous effectors slightly. However, the faulty actuators’ tracking

errors remain higher. Hence, the adaptive actuator dynamics model cannot describe the faulty actuator dynamics as

good as it can describe the nominal actuator dynamics. This has two main reasons: 1) the RLS estimator needs time

to update the parameters and 2) the first order discrete-time model is limited in representing the dominantly second

order dynamics. Moreover, the error in 𝛿le tracking during maneuver C actually increases slightly with AD-INCA

compared to D-INCA. From the time evolution of the errors in Fig. 25 it can be concluded that AD-INCA needs two

large command inputs. Hence, it is likely that the applicable estimates did not converge to the true values after the

failure event at 𝑡 = 20 s. Despite its limitations, AD-INCA still presents reduced average tracking errors.

The control effort, included in Table 9 in the Appendix, increases significantly during the actuator failure events.

Due to the fact that actuators are stuck in a non-zero position, other actuators need to compensate for these actuators

with relatively large deflections as well. This also indicates the reduced solution space for the QP optimizer.

3. Outer loop tracking performance

Next, the results on tracking performance of the outer loop reference signals are shown in Figs. 26 to 28 and

compared. In addition, the simulated translational trajectories are included in Fig. 32 in the Appendix.
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Fig. 26 Outer loop reference tracking maneuver A.
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Fig. 27 Outer loop reference tracking maneuver B.
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Fig. 28 Outer loop reference tracking maneuver C.
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During maneuver A, the moment of actuator error initialization can be clearly distinguished in Fig. 26. Especially,

at 𝑡 = 15 s and 𝑡 = 20 s when three actuators become stuck, errors peak. AD-INCA is able to recover itself after these

errors. However, D-INCA cannot follow the roll and pitch rate references accurately afterwards. Figure 27 shows fairly

similar tracking performance for both INCA and D-INCA, despite the steady state tracking errors found in Fig. 24. For

maneuver C, the roll tracking performance deteriorates after actuator failures. AD-INCA is able to force the roll angle

𝜙 back to zero, whereas a steady state error in 𝜙 is introduced with D-INCA.

4. Parameter estimator performance

This section includes a short discussion on the parameter estimates evolution obtained for the adopted failure se-

quence. The parameters of the faulty actuators for maneuvers A, B and C are included in Figs. 29 to 31. The state scalar

estimates 𝐴̂𝑖 of the faulty actuators are pointed out, the input scalars 𝐵̂𝑖 values are (almost) symmetrical to the 𝐴̂𝑖 values

around 𝜃𝑖 = 0.5. The three actuators that become stuck at 15 s and 20 s are clearly identified by the parameter estimates.

During sufficient excitation, these parameters instantly converge to 𝐴̂𝑖 = 1, 𝐵̂𝑖 = 0. The drawback of the adopted least

squares estimator is that for a single time step, two possible solutions exist. For example, during maneuver B and C

the parameter estimate of the state scalar function dips to zero briefly after updating the erroneous actuator dynamics.

However, after one sample time the estimator recovers to the correct parameter estimate.

The underdamped actuators are visualized too. In terms of a reduced first order lag model, the underdamped

actuators become faster, and hence their input scalar 𝐵𝑖 increases. Since, the left all-moving wingtip is quite heavily

underdamped, the first order parameter estimates may eventually indicate perfect actuator dynamics. This can be seen

in Fig. 30. However, convergence of these parameters is not instantly achieved, but only after sufficient excitation of

the applicable actuators. Changing the adopted tuning parameters may exhibit different estimator behavior.
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Fig. 29 Parameter estimates of faulty actuators for maneuver A.
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Fig. 30 Parameter estimates of faulty actuators for maneuver B.
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Fig. 31 Parameter estimates of faulty actuators for maneuver C.

VII. Conclusion and recommendations
The D-INCA framework compensates for actuator dynamics delays using an onboard model. It computes a desired

command input to achieve the required physical deflections and pseudo-control inputs. Furthermore, D-INCA is much

less conservative than INCA as it imposes physical actuator limits as output constraints on the expected actuator deflec-

tions rather than on the command inputs. Altogether, D-INCA increases closed loop stability under actuator dynamics

delays. This relieves the closed loop controller from the need for a PCH as implemented for INCA. The PCH scales

the outer loop command virtual control signal while these are actually feasible references with D-INCA.

For all the observed maneuvers, D-INCA is superior in terms of CA errors. Especially, for challenging reference

trajectories. This also becomes clear through the tracking errors, which are significantly decreased compared to the
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INCA results. However, the control actuator deflections are still not optimal at all times. Discontinuity in the CEJ

model may cause actuators to be stuck in local optima between two discontinuous splines. Furthermore, second order

actuator behavior becomes dominant during command input chatter introduced by discontinuities in the CEJ model.

The first order onboard actuator dynamics model cannot accurately predict these second order dynamic phenomena,

resulting in performance degradation. This makes it hard to predict the total potential of D-INCA without a continuous

CEJ model. Besides, input chatter forms a barrier for practical implementation of the CA method. Command input

chatter was already a problem for INCA, although this was never observed or discussed in detail in earlier work. These

observations yield the need for a continuous CEJ. The implementation of such a model is recommended future research.

Moreover, a first order actuator dynamics model was adopted to describe the second order actuator dynamics. This

has proven to be effective for application within the ICE FCS. However, a higher order actuator dynamics model will

likely increase performance. Lastly, it was shown that D-INCA embeds the same robustness against CEJ mismatch as

the baseline INCA scheme.

The potential of D-INCA was further exploited through AD-INCA. Results show improved tracking and CA per-

formance after various challenging actuator failure events. Pushing the ICE aircraft even further towards its potential

in fault tolerance. Especially, steady state actuator errors are reduced which enhances outer loop reference tracking.

However, the step in performance is minor compared to that from INCA to D-INCA. This is likely due to the fact that

INCA and D-INCA already exhibit significant robustness. Due to the incremental approach, the mismatch between

the optimal control deflection and the actual control deflection after actuator failure remains bounded by the actuator

saturation limits and the sample time. The solution space does decrease, but this is also the case for AD-INCA. At the

same time, this reduced solution space increases command input chatter.

The observed failure modes include stuck actuators as well as underdamped effectors. The case for zero torque was

not investigated as it cannot be modelled through the actuator dynamics. Instead, such a case should be observed by the

FCS and fed back to the CEJ rather than the actuator dynamics model. Hence, implementation of such fault tolerance

requires a different approach. Robustness of the parameter estimator was achieved through an adaptive forgetting

factor, preventing diverging parameter estimates even with little to no excitation. Unfortunately, a reduced-order-model

needs to be determined in order for the second order parameter estimates to be useful within the D-INCA frame. The

computational load from the Matlab balanced truncation model-order-reduction routine is high, because it needs to be

called as an extrinsic function in Simulink. However, this is a drawback introduced by Matlab and not necessarily a

practical problem. To overcome this issue, the algorithm may be modeled as a native S-function within Simulink as

part of future research. Alternatively, a way to implement second order actuator dynamics directly in the QP optimizer

could be further investigated.
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Appendix

Table 4 RMS CA errors [lbf· ft] for nominal actuator behavior.

CA method Maneuver
Control moment axis

Average Total average
𝐿 𝑀 𝑁

INCA
A 1.066E+03 2.146E+03 1.450E+03 1.554E+03

1.984E+07B 2.047E+05 8.503E+04 4.709E+07 1.579E+07
C 2.756E+07 7.582E+07 2.779E+07 4.372E+07

D-INCA
A 2.439E+02 9.098E+02 1.378E+03 8.438E+02

4.231E+03B 1.571E+04 4.584E+03 3.639E+03 7.978E+03
C 2.370E+03 5.924E+03 3.317E+03 3.871E+03

AD-INCA
A 2.536E+02 8.715E+02 1.371E+03 8.320E+02

4.018E+03B 1.509E+04 4.373E+03 3.338E+03 7.600E+03
C 2.279E+03 5.696E+03 2.889E+03 3.621E+03

Table 5 RMS tracking errors [deg] for nominal actuator behavior.

CA
method

Man.
Actuator

Avg.
𝛿lfi 𝛿lfo 𝛿la 𝛿le 𝛿ls 𝛿pf 𝛿rfi 𝛿rfo 𝛿ra 𝛿re 𝛿rs 𝛿ptv 𝛿ytv

INCA
A 0.02 0.11 0.07 0.04 0.03 0.13 0.04 0.06 0.03 0.05 0.00 0.01 0.10 0.05
B 0.24 0.25 0.78 0.80 0.78 0.88 0.24 0.25 0.82 0.87 0.63 0.56 0.77 0.61
C 0.25 0.32 1.02 0.93 0.88 1.03 0.31 0.31 1.00 0.96 0.88 0.86 0.78 0.73

D-
INCA

A 0.00 0.02 0.02 0.00 0.01 0.01 0.01 0.01 0.01 0.01 0.00 0.00 0.02 0.01
B 0.02 0.02 0.06 0.06 0.06 0.12 0.02 0.03 0.07 0.06 0.05 0.06 0.04 0.05
C 0.03 0.04 0.12 0.10 0.10 0.16 0.04 0.04 0.10 0.10 0.11 0.05 0.03 0.08

AD-
INCA

A 0.00 0.02 0.02 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.00 0.00 0.02 0.01
B 0.02 0.03 0.06 0.08 0.06 0.13 0.02 0.03 0.08 0.08 0.05 0.07 0.05 0.06
C 0.08 0.06 0.14 0.14 0.13 0.20 0.05 0.05 0.11 0.13 0.10 0.08 0.06 0.10

Table 6 RMS control effort [deg] for nominal actuator behavior.

CA
method

Man.
Actuator

Avg.
𝛿lfi 𝛿lfo 𝛿la 𝛿le 𝛿ls 𝛿pf 𝛿rfi 𝛿rfo 𝛿ra 𝛿re 𝛿rs 𝛿ptv 𝛿ytv

INCA
A 0.03 2.08 0.95 0.91 0.05 10.5 0.18 0.34 0.32 1.45 0.01 0.36 1.10 1.40
B 5.05 1.63 29.5 12.6 13.1 12.2 11.3 2.15 27.4 12.6 5.8 5.08 6.59 11.1
C 2.37 13.5 30.8 18.2 20.9 15.2 4.78 8.8 32.8 15.7 18.2 8.63 8.34 15.3

D-
INCA

A 0.01 2.05 1.03 0.87 0.01 10.5 0.09 0.15 0.32 1.45 0.00 0.36 1.15 1.38
B 0.67 1.31 3.52 3.21 2.62 11.0 0.31 1.44 4.00 5.36 1.22 2.16 1.78 2.97
C 0.86 2.80 14.0 7.92 1.56 9.02 1.79 2.95 14.6 8.65 1.50 0.82 1.79 5.25

AD-
INCA

A 0.01 2.10 1.02 0.88 0.01 10.5 0.09 0.15 0.32 1.46 0.00 0.36 1.16 1.39
B 0.71 1.30 3.53 3.31 2.65 10.9 0.35 1.44 4.02 5.42 1.16 2.12 1.72 2.97
C 0.88 2.88 14.0 8.03 1.45 8.95 1.68 3.06 14.6 8.83 1.34 0.81 1.78 5.25
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Table 7 RMS CA errors [lbf· ft] for actuator failure sequence.

CA method Maneuver
Control moment axis

Average Total average
𝐿 𝑀 𝑁

INCA
A 1.577E+09 2.165E+09 8.562E+09 4.101E+09

1.404E+09B 1.013E+08 1.623E+08 6.843E+07 1.107E+08
C 4.603E+05 7.558E+05 1.141E+06 7.856E+05

D-INCA
A 3.402E+04 3.255E+04 1.980E+04 2.879E+04

2.173E+04B 5.094E+04 7.834E+03 6.035E+03 2.160E+04
C 2.709E+04 1.203E+04 5.270E+03 1.480E+04

AD-INCA
A 8.595E+03 5.478E+03 1.410E+04 9.391E+03

1.434E+04B 5.015E+04 7.681E+03 4.765E+03 2.086E+04
C 2.689E+04 7.895E+03 3.554E+03 1.278E+04

Table 8 RMS tracking errors [deg] for actuator failure sequence with stuck (red), heavily underdamped (or-
ange) and slightly underdamped (yellow) actuators.

ActuatorCA
method

Man.
𝛿lfi 𝛿lfo 𝛿la 𝛿le 𝛿ls 𝛿pf 𝛿rfi 𝛿rfo 𝛿ra 𝛿re 𝛿rs 𝛿ptv 𝛿ytv

Avg.

A 0.19 0.21 0.52 1.04 0.71 0.67 0.21 0.21 0.68 0.70 1.10 0.68 0.56 0.58
B 0.21 0.27 0.53 0.97 0.72 0.80 0.18 0.23 0.80 0.79 1.30 0.64 0.66 0.62INCA
C 0.27 0.32 0.80 1.16 0.91 1.08 0.30 0.32 1.12 0.88 1.25 0.84 0.78 0.77
A 0.08 0.14 0.80 1.19 0.05 0.11 0.10 0.15 1.16 0.16 1.32 0.12 0.11 0.42
B 0.03 0.05 0.71 0.93 0.05 0.26 0.04 0.05 0.94 0.27 1.32 0.05 0.07 0.37

D-
INCA

C 0.06 0.10 0.70 1.13 0.29 0.33 0.05 0.14 0.97 0.38 1.19 0.14 0.24 0.44
A 0.01 0.13 0.62 0.57 0.07 0.10 0.02 0.09 0.14 0.09 0.46 0.09 0.07 0.19
B 0.04 0.05 0.47 0.64 0.08 0.26 0.03 0.09 0.13 0.27 0.44 0.07 0.08 0.20

AD-
INCA

C 0.14 0.10 0.49 1.24 0.28 0.34 0.05 0.11 0.46 0.33 0.56 0.16 0.24 0.35

Table 9 RMS control effort [deg] for actuator failure sequence with stuck (red), heavily underdamped (orange)
and slightly underdamped (yellow) actuators.

ActuatorCA
method

Man.
𝛿lfi 𝛿lfo 𝛿la 𝛿le 𝛿ls 𝛿pf 𝛿rfi 𝛿rfo 𝛿ra 𝛿re 𝛿rs 𝛿ptv 𝛿ytv

Avg.

A 1.81 5.38 7.11 11.4 12.7 15.5 4.67 3.87 2.85 9.81 17.6 4.38 7.22 8.02
B 1.98 24.2 32.2 20.8 15.3 8.98 3.59 4.51 8.04 12.5 23.3 5.10 7.16 12.9INCA
C 2.99 7.13 25.9 21.0 27.7 12.4 7.93 9.33 14.3 16.9 22.8 7.86 8.44 14.2
A 28.9 12.0 10.4 23.7 13.7 18.7 2.86 14.5 2.54 20.5 25.1 8.68 11.5 14.9
B 21.3 25.9 36.5 23.4 15.3 4.17 2.02 10.5 4.24 9.75 25.1 6.66 5.48 14.6

D-
INCA

C 22.3 20.5 26.5 19.9 19.6 20.5 3.53 23.1 13.7 19.4 21.2 5.32 4.63 16.9
A 30.6 14.8 3.93 24.0 14.1 18.6 12.4 29.1 2.35 21.7 25.1 7.28 10.5 16.5
B 21.8 25.3 36.2 23.4 15.5 4.36 1.87 10.4 4.30 13.8 25.1 7.38 5.60 15.0

AD-
INCA

C 15.0 23.2 25.4 19.6 19.6 20.6 3.41 20.9 13.4 19.9 21.2 5.58 4.64 16.3
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Fig. 32 Translational trajectories.
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3
Literature Review

3.1. Introduction
Dynamical system designs rely on actuators that allow them to be effectively controlled to a desired state.

Redundancy in control or over-actuation refers to the case that more independent actuators are available

than that there are degrees of freedom to be controlled. Over-actuation of control systems provides

several advantages, such as improved fault tolerance as well as increased tracking performance as each

actuator is subject to its own constraints and control effectiveness. However, a redundant actuator suite

also imposes high complexity on the control laws required to exploit these advantages to the full. For

over-actuated systems, infinite control strategies can be adopted to follow a given reference signal1. To

distribute control forces and moments to the available effectors, a control allocation (CA) method must be

chosen. Moreover, over-actuation of systems often presents nonlinear and coupled control effectiveness.

Accounting for these properties in CA has shown to increase the tracking performance of systems in

previous research [2].

Various research papers have dived into the topic of solving the CA problem. The current literature study

will investigate the CA solutions provided by previous work, building on earlier surveys [13, 14]. This

paper considers the literature survey on CA methods by Matamoros [2, ch. 2] as a baseline for existing

methods. To build upon this work, Figure 3.1 depicts a slightly updated breakdown of the earlier identified

methods. The upper branch covers the static CA algorithms, including the CA methods that assume

constant control effectiveness and therefore perfect actuator dynamics. This assumption is reasonable

for many systems as actuator dynamics are often significantly faster than the system dynamics they are

involved with. However, in the distribution of control moments for fast dynamic systems, this assumption

might degrade the optimality in control allocation and ultimately closed loop stability.

Therefore, this study focuses on the incorporation of actuator dynamics in the search for optimal control

distribution, in literature referred to as dynamic CA. This subset of CA methods is described in the lower

branch of Figure 3.1. The current work will both include a brief summary on the dynamic CA methods as

identified by [2] and include other methods based on more recent literature. Subsequently, a step will

be made in the direction of fault tolerant control allocation, exploring parameter update laws for control

effectiveness and actuator dynamics models. This topic is important to consider, because fault tolerance

is one of the main advantages of over-actuated systems if properly exploited through the control laws.

1Assuming no actuator constraints are present.
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3.2. Dynamic control allocation methods
This chapter will focus on dynamic CA methods found in existing literature. The literature study aims to

evaluate these methods in terms of their advantages, disadvantages and possible future research. A

comprehensive view of the identified methods is included in Table 3.1.

3.2.1. Dynamic quadratic programming
In the quadratic programming (QP) problem, a weighted `2-norm cost function is minimized. This framework

can be used in CA to drive the control deflection to a position that produces the required control moments

and forces [13]. Additionally, a secondary objective is chosen such that the ill-posed problem can be

solved numerically through various solvers. A popular choice for a secondary objective is to minimize the

actuator deflection, keeping the actuators as far away from position limits as possible. This is beneficial for

both performance and stability margins. Also, operating with all actuators at their limits is usually not very

efficient in terms of power consumption. A drawback of QP is that it requires a linear control effectiveness

function. Nevertheless, QP CA with an active set solver2 has been effectively adopted for aerospace

systems by [2, 3]. Härkegård [15] introduced dynamic QP (DQP), an extension of QP. Besides DQP taking

into account the preferred actuator positions, it also includes previous actuator positions in order to penalize

actuator rates. This is especially interesting when different actuators operate in different bandwidths. The

slower components in the reference signal can be assigned to slow (but perhaps more effective) actuators,

whereas fast components in the reference signal can be solved for with the faster effectors. A disadvantage

of this method is that the relative importance between preferred actuator position and actuator rate should

be tuned through weight matrices. Hence, the actuator bandwidth is only implicitly accounted for through

these matrices. Moreover, the approach does not provide a reference for the actuator input that results in

the optimal physical control deflection after actuator dynamics. Also, the example provided by Härkegård

did not account for higher order actuator dynamics. This could be done through additional actuator position

information, however causality may become issue. In a similar fashion, Yang and Hu [16] used dynamic

weights to prevent reaction wheel (i.e., rotational rate or torque) saturation in a weighted pseudo-inverse

framework. The method proved useful for energy saving compared to a static pseudo-inverse approach.

The concept of actuator dynamics beyond saturation (i.e., rotational acceleration and higher order rotational

time derivatives), however, was not considered in this work.

3.2.2. Incremental nonlinear control allocation
Matamoros [2] proposed incremental nonlinear control allocation (INCA), which is an extension of the

incremental nonlinear dynamic inversion (INDI) method, for example found in [17, 18, 19]. Moreover, the

INCA approach is a more generic version of the earlier multivariate simplex spline based CA method

discussed in a paper by Tol et al. [9]. For the INCA approach, a model of both input dynamics and

control effectiveness is required, however, no model of the system dynamics is needed. These dynamics

are instead captured through output derivative feedback. This makes the method more robust and

reconfigurable than classical feedback linearization. An additional advantage of posing the CA problem

in control increments is that actuator rate constraints can be explicitly included in discretized position

constraints. Also, the control effectiveness function can be linearized in the control increments. This makes

it possible to solve the CA problemwith linear solvers, such as general inverse, linear programming or theQP

method discussed in Subsection 3.2.1, while still taking into account the nonlinear control effectiveness and

coupling between actuators. The work of Matamoros [2] found that the incorporation of these nonlinearities

and cross-coupling improved the performance compared to ordinary linear programming control allocation.

Also, the control method was robust to control effectiveness model mismatch. The control approach even

performed better for underestimating the control effectiveness, effectively increasing the control gains.

Later work from De Heer [3] found that the implementation of actuator constraints in the INCA framework

was rather conservative. Matamoros [2] adopted pseudo-control hedging (PCH) to avoid command windup

problems, in combination with input constraints in the QP formulation. The resulting feasible input command

however, is still subject to the actuator dynamics (i.e., the physical control deflections remain unequal to

the optimal input command found by the control allocation algorithm). Therefore, the INCA framework

does not exploit the system its full potential. Lastly, Matamoros [2] recommended fault tolerance through

online system identification and control effectiveness update laws as future work since the current INCA

framework does not consider actuator fault modes. This topic will be elaborated upon further in Section 3.3.

2Active set methods are iterative methods, where at each iteration they improve their guess of the optimal active set [13].
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3.2.3. Model predictive control allocation
In order to account for the conservative implementation of actuator constraints in INCA, De Heer [3]

adopted a separate model predictive controller (MPC), or receding horizon approach, to drive the actuator

deflections to the control allocation input command. Hereby, effectively canceling the actuator dynamics.

The results showed that the actuators follow the input commands and therefore that the performance of

the INCA control strategy increased. The advantage of using MPC for this goal is that this approach will

yield the optimal control strategy, as opposed to for example linear feedback control. Also, MPC reduces

the order of lead compensation required compared to simply inverting the actuator dynamics in a pre-filter

(See Subsection 3.2.4). Moreover, Chatrath et al. [4] adopted model predictive control allocation (MPCA)

for the CA problem as a whole, from pseudo-control input (i.e., control force/moment) to input command,

omitting the quadratic programming approach used in [2] and [3]. It was shown that the incorporation of

the actuator dynamics in the MPCA framework ensures stable motion for a vehicle operating at its friction

limits, whereas a QP approach neglecting actuator dynamics is not able to do so. Thus, increasing the

performance of the system. Another example of MPCA is described by Naderi et al. [20]. The method

entails a combination of pseudo-inverse control allocation with MPCA to effectively determine and enforce

the feasible region of the pseudo-control input as integral part of the CA algorithm. In order to reduce

computational load of the discussed approach, an approximate feasible region was used by the MPC

rather than the exact feasible region. Computational load remains the main downside for using MPCA,

making it hard to implement on fast complex real-world systems with limited processing power. In addition,

the MPC controller requires information on the actuator rates and filtering the applicable signals introduces

delays. MPC might not be able to mitigate such delays and/or increased computation times. This way

it could break down to the point of non-optimal CA or eventually closed loop instability. Besides, these

constraints make it hard to certify for, for example, implementation in flight control systems. Also, the

proposed work [3, 4] assumed the actuator dynamics to be known and linear. Hence, this approach fails to

capture nonlinearities and uncertainties in the actuator dynamics. An analogous nonlinear adaptive MPCA

would be a logical next step, however, this step will increase the computational load of the controller even

more.

3.2.4. Feedforward actuator compensation
Similar methods to MPC [3] have been found to drive the physical actuator deflection to the control allocation

reference, for example [21, 10]. These works show that the actuator dynamics can be effectively canceled

for some cases through feedforward compensation. Although this approach is limited in the lead it can

produce, higher order actuator dynamics can be partly accounted for by canceling the steady state gain

and neglecting the higher frequency lag dynamics in the compensator [10]. This method could be sufficient

for certain applications. However, by adopting a mere gain correction the system might break down for

higher frequency components. The CA approach will not exploit the system’s full potential for the entire

bandwidth. Also, the approach relies on the assumption that the actuator dynamics are fully known. Note

that even with canceling the actuator dynamics, the actuators are still physically constrained in position

and rate and this needs to be accounted for in the control allocation algorithm.

3.2.5. Nonlinear dynamic inversion with actuator dynamics
Steffensen et al. [11] found a nonlinear control method that incorporates actuator dynamics in the feedback

linearization loop, actuator nonlinear dynamic inversion (ANDI). By inverting the actuator dynamics a linear

relationship is obtained between output and input command rather than between output and physical

input. The result is an incremental nonlinear control approach that relies on knowledge of the output

time derivatives. This knowledge might not always be obtained easily and filtering of noisy derivative

signals would introduce delays reducing the system performance. Also, the adopted method only takes

into account first order actuator dynamics, or bandwidth, which should be known for the control law design.

In case of higher order actuator dynamics, an equivalent bandwidth could be considered that approaches

the higher order dynamics. However, this will affect the performance of the control strategy. Otherwise,

higher order output derivatives may help in the incorporation of higher order actuator dynamics, imposing

significant requirements on the sensor and filtering capabilities. It was shown that the proposed control

method does not necessarily outperform the existing INDI control approach [11]. Instead, its performance

needs to be evaluated on a case to case basis. However, for systems with slower actuator dynamics, fast

system dynamics, or systems that require control allocation to distribute the control forces and moments,

accounting for actuator bandwidth could make the control strategy more optimal. Furthermore, in their
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control design Steffensen et al. [11] did not consider any control allocation problems, but rather assumed

a system for which the degrees of freedom equals the number of independent actuators3. Hence, future

research would be required to apply the proposed method to over-actuated systems.

3.2.6. Lyapunov-based control allocation
Another approach to tackle the CA problem, Lyapunov-based control allocation (LBCA), pioneered by

Johansen [5], consists of employing control Lyapunov-functions (CLF) to derive dynamic actuator reference

update-laws for the CA problem. The CLF was augmented with a barrier function to enforce input constraints.

The method uses Lagrangian multipliers for optimum seeking. Furthermore, the CLF approach guarantees

closed loop stability under the assumption that a higher level controller Lyapunov function exists. Since no

iterative solver is required in the proposed control-Lyapunov framework, its numerical efficiency is superior

to earlier discussed numerical optimization based approaches, such as QP and MPCA. However, this also

means that optimality of the control strategy is only obtained asymptotically rather than for each individual

input command. This can lead to some level of performance degradation as shown through a case study by

Tavasoli and Naraghi [22]. Another disadvantage of the method includes possible convergence problems

in the case of non-convex cost function and constraints [5]. Later on, De Castro and Brembeck [23] aimed

to combine the best of both worlds to tackle the problem of infeasible reference signals and its implications

on closed-loop stability. The approach uses Lyapunov-based constraints, control barrier functions and

numerical optimization. Preserving the numerical optimization formulation, the Lyapunov-based constraints

allowed to improve the response to infeasible virtual inputs, while the control barrier functions were used

to force the system to a safe state space. A numerical optimizer was used to decrease the effect of

infeasible pseudo-control inputs on the overall closed loop stability through evaluating the Lyapunov

function. Also, the barrier functions allow for effective use of the null-space to return to a preferred actuator

space. However, the problem of actuator dynamics was neglected by De Castro and Brembeck [23].

3.2.7. Reinforcement learning control allocation
Recent progress in the field of reinforcement learning has led to an alternative view on the control allocation

problem [8, 24]. More specifically, De Vries and Van Kampen [8] adopted a Q-learning method to solve the

CA problem. This approach relieves the need for a system model. Although reinforcement learning control

allocation (RLCA) methods are promising, their certification and implementation for safety critical systems

remains problematic. To reduce complexity of the training process, a reduced model (longitudinal aircraft

motion) was used with four control actuators. This makes the method less useful for high dimensional

nonlinear and coupled systems. In addition, the Q-learning approach with action and state discretization

resulted in aggressive flight behavior far less practical than that of model-based methods. It was argued

that the problem of ’similar cost’ and therefore the cycling between control strategies would be a problem

for other types of RLCA as well. A possible solution for these drawbacks includes the use of continuous

function approximators. Another topic for future research is the use of hybrid CA, combining a neural

network representation of the control effectiveness with model independent outer loops. Also, penalizing

actuator positions and rates is something to consider within the proposed framework.

3I.e., the control effectiveness matrix is square and full rank.
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Table 3.1: Identified methods for implementing actuator dynamics in control allocation.

Method References Advantages Downsides Possible future research topics

DQP [15]
Allows to allocate the control

tasks based on actuator bandwidth.

7Implicit modeling of actuator

bandwidth through weights.

7Assumes linear control effectiveness.

- Implement in CA increments.

RLCA [8, 24] No model required.

7Poor tracking performance

compared to model-based CA.

7Problematic for high dimensional

nonlinear coupled systems.

7Hard to certify for safety critical

systems.

- Explore hybrid solutions.

- Include continuous function

approximator.

INCA [2, 3, 9]

Allows a linear solver for non-

control affine problems.

Allows for discretized rate

constraints.

Robust to control effectiveness

mismatch.

7No actuator dynamics included.

7No adaptive control allocation.

- Include actuator dynamics.

- Combination with online

parameter estimation.

MPCA [3, 4]

Optimal solution.

Explicit modeling of actuator

dynamics.

Reduces the required derivative

order of output feedback.

Parameter update law is

implemented.

7Computationally expensive.

7Prone to delays in feedback signals.

7Current work assumes linear

control effectiveness.

7Hard to certify for safety critical

systems.

- Nonlinear MPCA (even higher

computational load).

FFAC [21, 10] Simple implementation.

7Higher order actuator dynamics

require non-causal filter, or

7Feedforward of steady state gain

reduces performance.

- Use to increase actuator

bandwidth in combination with

other methods.

ANDI [11]
Explicit implementation in

the existing NDI controller.

7Only first order dynamics are

taken into account.

7No control allocation included.

- Feasibility for higher order

actuator dynamics.

- Extent to CA problems.

LBCA [5, 23, 6, 7]

Computationally efficient.

Allows for parameter update law.

Can be used in combination

with numerical optimizers for

infeasible pseudo-control inputs.

7Only asymptotic optimality.

7Convergence issues for non-convex

(often occurs with nonlinearity)

problems.
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3.3. Fault tolerant control allocation
This chapter elaborates on fault tolerant control allocation (FTCA) methods found in existing literature.

This topic often touches upon the methods described in the previous chapter. Moreover, FTCA in this work

is with regard to actuator failures and does not consider FTC in terms of unpredicted system configurations

(e.g., wing surface reduction on aircraft). This topic is usually accounted for through a higher level controller

and has been thoroughly studied (e.g., Smit et al. [25] and Smeur et al. [26]).

3.3.1. Lyapunov-based methods
Tjønnås and Johansen build on the initial work [5] to include fault tolerance [6] in the Lyapunov CA scheme.

Unknown parameters were defined as part of the control effectiveness function and in later work also

for the actuator dynamics model [7]. Subsequently, update laws were adopted for the input command

reference and the unknown parameters. Asymptotic stability and convergence of the parameters was

obtained with the proposed method. However, the example used in the paper considered a slow system

(ship at low speed), focusing on disturbance rejection. This raises the question as to what extent the

proposed control allocation method, which is only asymptotically optimal, is applicable for faster dynamical

systems.

3.3.2. Fault detection and isolation
Cristofaro et al. [27] used fault detection, isolation and control reconfiguration to tackle the FTCA problem.

The key point of the method is the use of a family of unknown input observers that are designed to decouple

faults affecting selected actuators or clusters of actuators. These observers use linear algebraic rules and

nonlinearities are thus treated as disturbances. This may limit the applicability for highly nonlinear systems.

Once the faults are detected and isolated, the control reconfiguration module is activated. The actuators

that are identified as faulty are not used and the desired control effect is produced by the joint action of the

healthy devices only. Moreover, no parameter update laws are required, as the entire control strategy

is changed. However, this also leaves less room for adapting the control law in other ways that are less

drastic. Another downside of the method is that it does not consider actuator dynamics as for example [7]

does.

3.3.3. Adaptive MPCA
To address the assumption of perfectly known actuator dynamics in the MPCA framework, Chatrath et

al. [4] adopted online system identification to update the control effectiveness function. Furthermore, the

proposed method uses auxiliary model-based recursive least-squares to estimate the actuator dynamics

parameters. The designed update law takes into account unknown dynamics, as well as actuator fault

modes. Through simulating the controller with errors in the initial parameter estimates and a steering

action after 10 seconds, it was shown that the parameter estimates converge quickly. A drawback of the

proposed method is that it assumes the actuator dynamics to be linear and the order and number of zeros

to be known. Implementation of nonlinear actuator dynamics requires to reconsider the adopted parameter

update laws. Additionally, the method requires the system to be constantly excited by the input for the

adaptive update laws to converge.

3.3.4. Other methods
Another example of FTCA was investigated by Baggi et al. [12]. The aim of this work was to take advantage

of the secondary control surfaces of airliners (i.e., flaps, slats and spoilers) to add redundancy in aircraft

attitude control. The fault tolerance was obtained through a control effectiveness parameter update law

rather than defining the uncertainty in terms of both the actuator dynamics and control effectiveness

together. By putting preference on the primary control surfaces, the secondary effectors were only used if

necessary to obtain the desired control moments. For airliners this is a sensible approach. However, by

enforcing such preference on ’primary’ actuators, the actuator suite in its entirety might be under-exploited.

This means the proposed method is less suitable for implementation in high performance over-actuated

systems, for example fighter aircraft. Also, when looking at the physical reality of faulty actuators, it makes

more sense to model this concept in terms of the actuator dynamics rather than the control effectiveness

function. Lastly, Tohidi et al. [28] used a control method wherein a virtual dynamics model with virtual

reference compensates for unknowns in the control effectiveness. This relieves the need for uncertainty

estimation and online system identification in the control allocation layer. Furthermore, the control design



relies on measurements of the pseudo-control input to realize the desired virtual dynamics. An advantage

of this approach is that the controller does not discard actuator surfaces with reduced control effectiveness

like [27] does. The optimal solution, however, is obtained only asymptotically as is the case for the

control-Lyapunov approach.

3.4. Conclusion
The choice to neglect actuator dynamics in control allocation techniques can be argued for systems with

relatively fast actuators compared to the system dynamics. However, for faster, high performance systems

it is found that neglecting the actuator dynamics reduces performance of the control allocation strategy.

Ways to explicitly account for the actuator dynamics have been found for MPCA [3, 4] and Lyapunov CA

[5, 6, 7]. Unfortunately, these methods each suffer from their own limitations. That is, computational load

and non-optimal control strategies. Moreover, RLCA relieves the need for a physical control effectiveness

model. However, it was found that RLCA lacks in tracking performance, especially when considering

highly coupled nonlinear control effectiveness functions for high dimensional systems. This ’curse of

dimensionality’ remains problematic for the application of RLCA in complex over-actuated systems.

On the other hand, incremental methods [2, 10, 11] heavily rely on output derivative measurements

rather than a system dynamics model. Methods have been proposed to account for actuator dynamics

in incremental control allocation [3, 10] in separate control loops, however, no previous research has

combined the dynamic incremental control allocation problem in a single control loop. Also, the described

methods [3, 10] are subject to the limitations stated in Table 3.1. Hence, the combination of INDI with

dynamic actuator control allocation techniques remains under-addressed in previous research. Although

the INCA framework provides a lot of robustness in control effectiveness model mismatch, over-actuated

systems offer far more potential in terms of actuator fault tolerant control. This potential has not yet been

reached through earlier control designs. Moreover, incremental control allocation as is has proved useful in

dealing with nonlinear non-control affine systems in a robust manner. Hence, taking into account both the

inherent advantages as well as the future growth potential in dynamic incremental CA, it is recommended

to deepen out this field of research.

In addition, previous research has elaborated on adaptive control allocation for several other CA methods.

For example, parameter update laws have been defined for both the actuator dynamics model [7] as well

as the control effectiveness model [7, 4, 12]. Other methods rely on fault detection, isolation and control

reconfiguration [27]. These approaches can give insight in possible ways to implement FTCA within the

incremental nonlinear control allocation framework.

Given the identified research gaps, the resulting research question to be explored is: How can actuator

dynamics and actuator failure modes be effectively accounted for within the incremental nonlinear control

allocation framework? In order to answer this research question, several subquestions can be posed.

These include:

• How can the control allocation problem be solved in the actuator nonlinear dynamic inversion control

problem?

• How can higher order actuator dynamics be taken into account under output derivative measurement

constraints?

• To what extent can the implementation of actuator dynamics in the incremental nonlinear control

allocation framework improve the tracking performance?

• What update laws are required to account for actuator failures under the incremental nonlinear control

allocation framework?

• To what extent can these update laws increase tracking performance under actuator failure modes?

52



Part III
Additional Results

53



4
Miscellaneous topics and results

4.1. INCA and PCH
To omit command saturation problems, Matamoros [2] applied a pseudo-control hedge (PCH) within the

INCA-based FCS. The PCH is defined by the difference in virtual control input ν or ω̇c,k−1 and the estimated

obtained virtual control ν̂ or ˆ̇ωk. Assuming that no unoptimalities originate from the QP solver, the PCH

only depends on actuator dynamics and saturation limits. For INCA the PCH νh can be computed as

νh = ω̇c,k−1 − ˆ̇ωk = J−1∇δΦ(xk−1, δk−1)(uk−1 − δk). (4.1)

Next, the hedge is fed back into a reference model as a compensation signal. The reference model νrm is

given by

νrm = Krm(ωc − ωrm) (4.2)

with Krm a diagonal matrix. The hedged reference signal fed as a control input into the attitude control

system is the state vector of the reference model

ωrm =
1

s
(νrm − νh) . (4.3)

In Fig. 4.1 the block diagram of the INCA method with PCH is depicted.

INCA
QP solver

JPID Actuator
dynamics

Aircraft
dynamics

u δ∆τc

ω

ωeωc
+

-
ω̇c

ω̇

+

-
ω̇e

x, δ

y

Control effectiveness
Jacobian ∇δΦ(x, δ)νh = J−1∇δΦ(x, δ)(u− δ)

Krm 1/s

νrm

νh

ωrm

-

-

+

+ +

+

Figure 4.1: INCA control structure with PCH.

The PCH was introduced to act in the case of actuator saturation by avoiding unfeasible virtual command

signals. However, the underlying problem with INCA is not primarily actuator saturation limits. These are

hard-coded in the QP solver and cannot be violated by the constrained optimization problem. Instead, the

QP solver cannot catch up with the virtual control input references as the optimal command inputs are not

achieved due to actuator dynamics delays. The outer loop signal is hedged or scaled to preserve closed

loop stability with these system delays present.

Matamoros [2] did not compute the PCH based on uk−1 and δk, but instead compared uk with δk.
However, these signals merely provide a difference between optimal control solution and the current

physical actuator deflection (i.e., control increment). Actuator dynamics and saturation limits are not

explicitly involved in this quantity. Nevertheless, the signal is still positively correlated with actuator
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dynamics delays and saturation events, as larger control increments in general take longer to be achieved.

Therefore, the PCH implementation still proved effective.

For this thesis, the INCA PCH was adapted in order to represent the actuator dynamics instead of

the control increment needed to achieve optimal actuator deflection. In reality however, the difference

in results was found negligible. Hence, if tuned correctly, the control increment turns out to be a good

quantity for hedging the virtual control input. However, even the updated PCH implementation with a

slightly better theoretical basis, is clearly lacking. The actuator dynamics are always present, also when

the reference signal is not that challenging. Therefore, the virtual command is being hedged throughout

the entire flight with no true system limitations present. Lastly, the QP constraints on actuator saturation

are very conservative if imposed onto the command inputs instead of the actuator positions themselves.

To conclude, the PCH method results in performance degradation for INCA while the source of the problem

is left untouched: the system delays introduced by the actuator dynamics.

4.1.1. PCH for all-moving wing tips
To illustrate the effects of PCH for INCA, a brief use case with maneuver A will be investigated. A 180

deg/s roll maneuver is initiated at t=2 s.
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(a) INCA: PCH with feed-forward
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(b) INCA: PCH without feed-forward

Figure 4.2: Roll pseudo-control hedging for maneuver A.

Figure 4.2 depicts the time evolution of the virtual control inputs and pseudo-control hedge. A distinction

is made between the PCH method without and with feed-forward of νrm, as depicted in Fig. 4.1. This

feed-forward was introduced by [29] to increase tracking performance. It ’boosts’ the signal when large

changes in reference states occur, effectively counteracting the hedge νh. A large difference between the

two virtual control inputs ν can be observed.

Figure 4.3 gives a clear comparison in virtual control inputs between INCA without PCH, with PCH

(with and without feed-forward) and D-INCA (without PHC). The PCH with no feed-forward clearly hedges

the virtual control input which becomes slightly less steep than found for the outer methods. However, the

INCA PCH feed-forward term actually increases the magnitude of the virtual control input, making this

controller the most aggressive one. It can be concluded that in the current PCH implementation, not the

hedge, but the reference model’s feed-forward is dominant. The references for both methods without PCH

(INCA and D-INCA) portray a similar slope. The difference in magnitude can be assigned to the tracking

performance. For higher tracking errors in ω, the virtual control ν = ω̇c will be higher as well. The virtual

control input of the PCH without feed-forward its magnitude does not increase compared to the D-INCA

method, because the error is kept artificially low by the reference state ωrm which tends to move towards

the estimated obtained angular rate. For INCA with PCH, the error is computed relative to this reference

state, whereas for D-INCA the error is computed with respect to the outer loop command input ωc. The

difference between these error definitions is supported by Fig. 4.4.
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Figure 4.3: Roll virtual control input for maneuver A.
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(a) ω − ωrm.
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(b) ω − ωc.

Figure 4.4: Roll rate tracking errors for maneuver A.

As the tracking performance increases thanks to the feed-forward term, the error with the reference

model diminishes almost entirely as depicted in Fig. 4.4a. With no PCH for INCA, ωrm = ωc holds and

INCA cannot hide the error in angular rate tracking behind a reference model. This method yields the

greatest errors.

When considering the actual error in attained angular rate, compared to the commanded value, as

depicted in Fig. 4.4b, we conclude the PCH with no feed-forward performs the worst. This method also

produces the least aggressive inputs and has no inner loop actuator compensation to back this up. Next in

line is INCA with no PCH. Thereafter comes D-INCA, which peaks slightly higher than INCA with PCH.

However, D-INCA is the first to reach a steady error of zero after the intense maneuver. This is where the

knowledge embedded in the onboard actuator dynamics model clearly pays off.

To conclude this topic, the PCH implementation adopted by Matamoros [2] increases the virtual control

input under actuator dynamics delays through actuator output feedback and reference model feed-forward.

The latter effectively counteracts the hedge itself. The D-INCA method uses an onboard model of the

actuator dynamics to mitigate the actuator dynamics induced time delays at command input level instead.

This makes it hard to compare the two methods at CA error (i.e., command torque error) level. INCA+PCH

with reference model feed-forward compensates before the torque command, whereas D-INCA does
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so after the torque signal. Nevertheless, by explicitly modeling actuator dynamics knowledge in the CA

optimizer, the closed loop performance is increased as oscillations in attitude rate tracking are diminished.

A D-INCA controller with a more accurate actuator dynamics model will likely reduce the angular rate

tracking errors even further.

4.2. Control effectiveness modeling and command input chatter
A great portion of actuator tracking errors in can be pinpointed to command input chatter. This chatter is

induced by discontinuity in the adopted CEJ model. An example of this phenomenon is depicted in Fig. 4.5

for D-INCA. However, similar events were observed with INCA.
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Figure 4.5: Chatter in D-INCA LAMT control solution for maneuver A.

For maneuver A at t = 21.13 s, command input chatter occurs at the left all-moving wingtip. The

command input follows a jump in the CEJ function, as can be seen in Fig. 4.5. Moreover, the aerodynamic

control effectiveness model in Fig. 4.6 portrays a ridge of 0-th order continuity for Cl9 = fcn(α, δlfo, δla)
and Cm9 = fcn(α, δlfo, δla) around the applicable operating point in Table 4.1. The same model for yaw
effectiveness is much smoother. From the aerodynamic model, it becomes clear that the partial derivatives

with respect to δla will be discontinuous around the applicable operating point. Also, the aerodynamic
model explains why ∂L

∂δla
increases while ∂M

∂δla
decreases at the same time as δla deflection becomes smaller.

Table 4.1: Chatter example operating point.

t [s] 12.12 12.13

α [deg] 10.9 10.9

δlfo [deg] 0.0845 0.0534

δla [deg] 0.0204 0.0108

Particularly, for extremely challenging reference trajectories the chatter problem becomes more promi-

nent as the QP solution space is reduced. This chatter affects the control solution as the first order actuator

dynamics model cannot accurately predict the increased second order actuator behavior. This can also be

observed in Fig. 4.5a as a mismatch arises between δla and δc,la. Additionally, discontinuity in the CEJ
model increases the chance of finding local optima. This makes it hard to predict the total potential of

D-INCA without a continuous CEJ model. Last but not least, input chatter poses a problem for practical

implementation of INCA due to structural limitations of the actuators. It would be worthwhile to investigate

whether a continuous CEJ model would prevent the chatter and increase closed loop performance.
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Figure 4.6: Onboard aerodynamic model sliced at α = 10.9◦.

4.3. Outer loop angle tracking
In order to assess the performance of INCA, body angular rate commands ωc were fed forward as outer

loop references. Nevertheless, it is also interesting to observe angle tracking characteristics. In particular,

to achieve coordinated turns, sideslip β references are required. Therefore, a sideslip inversion loop was

designed by [2] to generate ωc for maneuvers A, B and C. With this outer loop, β is the reference and the

yaw rate r the control input. The other two angular rates, p and q can be controlled directly (maneuver A
and B) or rely on their own aerodynamic inversion loops as implemented for maneuver C. The outer loop

sideslip inversion control diagram is depicted in Fig. 4.7. The kinematic inversion operation is derived in [2,

p. 62] as

rc =

(
−u√

u2 + w2︸ ︷︷ ︸
aβ(x)

)−1[
β̇c −

1√
u2 + w2

(Fx + Fy + Fz + wpc)︸ ︷︷ ︸
bβ(x)

]

= aβ(x)
−1

[
β̇c − bβ(x)

] (4.4)

with u and w the longitudinal and vertical body frame velocities. Fx, Fy and Fz indicate the axial, lateral

and normal aerodynamic forces within the body frame.

In order to obtain a β̇c for a given sideslip error, a PID is required as depicted in Fig. 4.7. The gains

adopted in this PID determine how aggressive the β̇c and thus rc signals will be. The PID values in [2] for

INCA were chosen such that optimal performance was obtained while maintaining closed loop stability.
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Figure 4.7: Sideslip inversion outer loop.

This section will elaborate on outer loop PID tuning for coordinated turns with INCA and D-INCA. The

use case of maneuver A will be used again in order to display the differences in PID tuning requirements

between CA methods. The adopted outer loop gains are included in Table 4.2.

Table 4.2: Outer loop PID β gains for maneuver A.

β controller nominal high extreme

KPβ 15 20 25

KIβ 0 0 2

KDβ 1 5 10

Figures 4.8 to 4.10 show the sideslip reference tracking with INCA and D-INCA for three different sets

of PID gains. It can be seen that tracking for the first two sets of gains is very similar. Adopting a more

stressing PID to achieve higher performance, INCA is showing unstable behavior in Fig. 4.8. Even further

increasing the PID gains for the zero sideslip reference, the INCA solution becomes singular. Whereas,

D-INCA’s tracking performance with respect to β keeps increasing slightly.
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Figure 4.8: Outer loop reference tracking maneuver A with nominal β PID gains [15, 0, 1].
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Figure 4.9: Outer loop reference tracking maneuver A with β PID gains [20, 0, 5].
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Figure 4.10: Outer loop reference tracking maneuver A with β PID gains [25, 2, 10].

The main advantage of D-INCA is that the actuator model-based approach seems to be more effective

in mitigating actuator dynamics induced time delays. Therefore, it presents more stability margin and

can handle more aggressive outer loop references ωc. When performing coordinated turns, this means it

can track the zero sideslip reference more accurately. Presumably, the conservative actuator constraints

in INCA, which are imposed on u rather than δ, play a big role in this. For the current thesis, the same
outer loop PID gains were assumed for INCA, D-INCA and AD-INCA. However, outer loop angle reference

tracking increases if we consider more challenging PID gains for D-INCA. Whereas, if we encounter

instability with INCA, it may be beneficial to reduce the outer loop references for angle tracking. To

conclude, any outer loop angle tracking controller should be tuned based on the inner loop system’s

performance. Ultimately, for a fair judgement of β tracking capability with maneuver A, Fig. 4.8a should be

compared with Fig. 4.10b.

4.4. Higher order dynamic INCA
(A)D-INCA is limited as the onboard actuator dynamics model has to be of first order. For some applications

with higher order actuator dynamics, a first order representation may be sufficient. However, a higher order

actuator dynamics model will likely be more accurate and increase closed loop performance. Therefore,

this section will briefly elaborate on second order actuator dynamics modeling. For the implementation of

higher order actuator dynamics within the D-INCA control scheme, the example of second order actuator



dynamics will be used. Let’s first define the second order actuator dynamics model as[
z1k+1

z2k+1

]
= A

[
z1k

z2k

]
+ Buk. (4.5)

Where the state vector contains the discrete time actuator positions and rates[
z1k

z2k

]
=

[
δk

δk+1−δk

∆t

]
. (4.6)

Substituting the states in Eq. (4.6) into the second order discrete state-space model in Eq. (4.5), the

following model is obtained [
δk+1

δk+2−δk+1

∆t

]
=

[
1 ∆t

∗ ∗

][
δk

δk+1−δk

∆t

]
+

[
0

∗

]
uk (4.7)

with the asterisk indicating the entries in state and input equation that depend on the second order dynamics.

Moreover, in line with the incremental D-INCA approach, the state space model can be rewritten as follows[
δk+1 − δk

δk+2−2δk+1+δk

∆t

]
=

[
1 ∆t

∗ ∗

][
δk

δk+1−δk

∆t

]
+

[
0

∗

]
uk −

[
δk

δk+1−δk

∆t

]
. (4.8)

The left-hand side now corresponds to the discrete-time increments in actuator position and actuator rate.

The analogous continuous time increments are described through

∆δ = δk+1 − δk and ∆δ̇ ≈ δk+2 − 2δk+1 + δk
∆t

. (4.9)

The two left-hand side increments in Eq. (4.9) need to correspond with some information in the control

effectiveness model, i.e., a model is required of the form

τ̇ = Φ2(δ,x, δ̇, ẋ), (4.10)

including an outer loop reference for τ̇ . Subsequently, the directional derivative with respect to δ and δ̇
yields a higher order control effectiveness Jacobian

∆τ̇ = ∇δ,δ̇Φ2(δ,x, δ̇, ẋ)

[
∆δ

∆δ̇

]
. (4.11)

Firstly, the right-hand side of Eq. (4.11) needs to be solved for the outer loop reference ∆τ̇ . Next, the
obtained solution for ∆δ and ∆δ̇ could be used to find the values for δk+1 and δk+2 through Eq. (4.9).

Lastly, uk should be chosen such as to adhere to this solution through the system dynamics described by

Eq. (4.8).

To conclude, a higher order actuator model for D-INCA would impose significant requirements on

the control effectiveness model and the outer loop reference. Another challenge includes the required

knowledge on actuator rates and dealing with potentially noisy signals. In addition, the actuator dynamics

input equation B becomes a vector, making inversion impossible. The fact that both a δk+2 and δk+1 need

to be chosen at time step k may also lead to problems as these values may not match for subsequent
time steps. Freezing the solution for δk+2 for the next time step could be considered in order to solve this

problem. Alternatively, a piecewise model structure may be explored to better capture the second order

dynamics. Furthermore, the implementation of a second order actuator dynamics model for D-INCA is

deemed out of scope of the current thesis.
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Closure
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5
Conclusion

This chapter aims to answer the research questions posed in Chapter 1. These questions are repeated

below for convenience, starting with the main research question:

How can actuator dynamics and online actuator failure modes in non-control affine nonlinear

over-actuated systems be effectively accounted for within the incremental nonlinear control

allocation framework?

Research Question

The sub-questions were:

1. How can actuator dynamics be taken into account within the INCA control loop under output derivative

measurement constraints and possible onboard model limitations? And

2. to what extent can the compensation of actuator dynamics in the incremental nonlinear control

allocation framework improve the tracking performance?

3. What update laws are required to account for actuator failures under the incremental nonlinear control

allocation framework? And

4. to what extent can these update laws increase tracking performance under actuator failure modes?

5.1. Sub-question 1
The first sub-question can be answered as follows. Through an actuator dynamics model within the CA

solver we can optimize for the command input instead of the physical input. By adopting an incremental

approach, a first order actuator dynamics model can be used with no need for higher order derivative

output feedback than already required for INDI or INCA. Higher order actuator dynamics can be partly

accounted for through a first order lag model as presented within the ICE FCS. A higher order actuator

dynamics model may increase tracking performance. However, it also imposes higher requirements on

the control effectiveness model. The implementation of such a higher order actuator dynamics D-INCA is

recommended future research.

Moreover, INCA was implemented in combination with a discontinuous CEJ model. This yields problems

for INCA as well as (A)D-INCA. First and foremost, discontinuity in the CEJ model results in undesired

command input chatter, during which second order actuator behavior becomes dominant. The first order

onboard actuator dynamics model cannot accurately predict these second order phenomena, resulting

in performance degradation. Also, input chatter is a problem for any practical implementation of INCA

due to structural limitations of the actuators. Furthermore, CEJ discontinuity may cause actuators to be

stuck in local optima between two discontinuous splines (potentially even with different signs). This makes

it hard to predict the total potential of D-INCA without a continuous CEJ. These findings leave the need

for a higher order, i.e. first order or higher, continuity aerodynamic control effectiveness function. The

implementation of such a model is highly recommended for future research.
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5.2. Sub-question 2
An earlier adopted method to compensate for actuator dynamics delays includes a PCH with reference

model feed-forward. The latter increases the virtual control input under actuator dynamics delays through

actuator position feedback. D-INCA on the other hand, compensates at command input level through

an onboard actuator dynamics model. It also presents a better definition of the constrained QP problem.

Namely, INCA imposes the actuator saturation limits as QP constraints on the command inputs instead

of the physical inputs. Whereas, D-INCA constrains the command inputs based on the model-based

estimated physical actuator deflections. To conclude, it was found that D-INCA compensates for the

actuator dynamics in a more effective way than INCA in combination with reference model feed-forward.

By accounting for actuator dynamics, D-INCA mitigates inner loop time delays. Therefore, stability margins

are increased. This advantage allows for more challenging outer loop references and outer loop gains. In

terms of flight control, this results in better trajectory tracking performance throughout the flight envelope.

In addition, it can be concluded that the robustness against CEJ mismatch is not decreased with respect

to the baseline INCA scheme.

5.3. Sub-question 3
Thirdly, a recursive least squares estimator with adaptive forgetting factor can be used to estimate the

actuator dynamics online. Moreover, the incremental scheme allows for adaptation of the actuator dynamics

model for each control increment. Robustness of the parameter estimator was achieved through an adaptive

forgetting factor, preventing diverging parameter estimates even with little to no excitation. Unfortunately,

the RLS estimator is not able to identify a first order model from a second order system. Since the D-INCA

framework only allows for first order actuator dynamics compensation, a model-order-reduction step is

needed for the RLS estimator to be implemented within the AD-INCA frame. For this thesis, a Matlab

built-in balanced truncation routine was adopted to obtain a first order actuator dynamics model. The

computational load from the Matlab routine is high, because it needs to be called as an extrinsic function

in Simulink. However, this is a drawback introduced by Matlab and not necessarily a practical problem.

To overcome the issue, the algorithm may be modeled as a native S-function within Simulink as part of

future research. Alternatively, a way to implement second order actuator dynamics directly in the QP

optimizer could be further investigated. Unfortunately, this step would impose high requirements on control

effectiveness modeling.

5.4. Sub-question 4
AD-INCA allows for stuck actuators as well as underdamped actuators to be identified. Hereby nullifying

steady state tracking errors and increasing performance after actuator failure events. However, the step in

performance is minor compared to the performance leap from INCA to D-INCA. This is likely due to the fact

that INCA and D-INCA already exhibit great robustness. Due to the incremental approach, the mismatch

between the optimal control deflection and the actual control deflection after actuator failure remains

bounded by the actuator saturation limits and the sample time. Actuator failure events also introduce

increased command input chatter. This is likely due to a reduced solution space, making it more likely for

the optimizer to stay in local optima and to hop between discontinuous splines.

A failure event resulting in zero torque was not investigated as it cannot be modeled through the actuator

dynamics. Instead, such a case should be observed by the FCS and fed back to the control effectiveness

model rather than the actuator dynamics model. Hence, implementation of such fault tolerance requires a

different approach which may be part of future research.



6
Recommendations

This final chapter provides a brief overview of the primary recommendations for the future continuation of

this research.

Rec 1: Continuous control effectiveness Jacobian

The lack of a continuous CEJ model results in chatter in the command input solution for INCA, D-INCA

and AD-INCA. Discontinuity in the spline model may increase the chances of the solver getting stuck in

local optima. In addition, second order actuator dynamics phenomena become more dominant during

chatter. Hence, for D-INCA and AD-INCA it will be harder to capture the actuator dynamics with a first order

discrete-time model. Lastly, command input chatter introduces problems for real-life implementation of the

CA methods, due to structural limitations of the effectors. Therefore, the implementation of a continuous

CEJ model is recommended for future research.

Rec 2: Higher order D-INCA

It was observed that the first order discrete-time actuator dynamics model is limited in presenting the second

order actuator dynamics. During nominal actuator behavior, the model may overestimate the system

response, resulting in smaller command inputs than required for the optimal physical inputs. Additionally,

overshoot phenomena as observed with (faulty) underdamped actuators cannot be captured by the model.

Solving the problem presents significant requirements on the control effectiveness function as well as

the outer loop reference. Nevertheless, the implementation of a higher order D-INCA will increase the

performance of the CA method even further. This makes it a good candidate for future research.

Rec 3: Native S-function balanced truncation routine

The RLS estimator in AD-INCA cannot directly estimate a first order model from the second order actuator

dynamics. Therefore, a second order difference equation model structure was adopted. On the other hand,

(A)D-INCA only accept first order actuator dynamics models to compensate for the actuator dynamics

delays. This mismatch yields the need for a model-order-reduction from the second order model estimate

to a set of first order model parameter estimates. Currently, the reduced-order-model is computed with

a built-in Matlab balanced truncation routine. However, this approach is computationally costly as the

algorithm needs to be called as an extrinsic function from Simulink. This practical problem could be solved

by implementing the balanced truncation algorithm as a native S-function in Simulink instead.

Rec 4: Zero torque actuator fault tolerance

The actuator failure events in this research include underdamped and stuck effectors, as these situations

can be represented by an actuator dynamics model. Another fault mode that was not considered is that of

zero torque. This failure case should be observed by the FCS and fed back to the CEJ. The implementation

of an adaptive CEJ for zero torque fault tolerance is recommended for future research.
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