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I Abstract 
 

 

Abstract 

 
The fact that the developing world struggles to cover even the most basics of needs, in contrast to 
the developed world, is tangibly connected to the lack of electricity. As many developing nations, 
especially the ones located in rural areas, face many difficulties to access the grid, alternative 
stand-alone solutions such as Solar Home Systems (SHS) have been proposed and used already for 
a while.  The main technical limitation plaguing SHSs is the necessity of including a storage device 
that mitigates the energy difference between production and demand. Batteries are the 
components that experience the shortest lifetime and highest cost in stand-alone PV systems such 
as SHSs. 
 
This study aims to explore and find the most suitable and viable storage option in terms of lifetime 
and costs for certain load cases concerning SHS applications. In order for this to be achieved, 
single battery options, as well as Hybrid battery options, were examined. 
 
For the comparison of the different battery technologies with the different Hybrid battery 
configurations, lifetime and costs had to be taken into account. For this purpose a non-empirical 
dynamic battery lifetime estimation method was modelled and applied to four different battery 
technologies and a variety of different Hybrid battery combinations. The battery technologies 
examined in this thesis are Lithium iron phosphate (LiFePO4), Sealed lead-acid (VRLA), Nickel-
Cadmium (NiCd) and Flooded lead-acid. This method takes into account different DOD (Depth of 
Discharge) levels, Temperature effects and lifetime curves extracted from different datasheets for 
the different technologies, in order to be able to model the different battery behaviours as 
accurately as possible. 
 
For the modelling of the different Hybrid battery configurations two different power management 
schemes were constructed and applied to the dynamic lifetime estimation that is proposed. This 
method was validated and concluded to be realistic as it was able to capture the different battery 
characteristics for the different technologies. 
 
For the comparison of the different storage options, a singular function was constructed for both 
single and hybrid battery options. This function quantifies both upfront and lifetime battery costs 
while, at the same time, captures the future battery cost trends that are foreseen for different 
technologies. This function was used as the point of reference in the comparison of every storage 
option that was tested. 
 
The optimum storage option that minimizes the battery cost function for the two sets of PV-load 
Case studies used in this project, was found to be a Hybrid battery that consists of LiFePO4 and 
Sealed lead-acid technology, with different sizes and configurations.   
 
In conclusion, the lifetime method proposed as well as the battery cost function constructed could 
be easily adopted and used for a variety of different battery technologies in low-power 
applications. A prerequisite for the above mentioned realization is that cycle life data of the 
examined technology are either provided or easy to be constructed. 
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𝑡0  System installation year 
𝑡𝑟𝑒𝑝𝑙   Year of replacements 

𝑟  Battery capacity percentage  
𝑛  Number of cycles 
𝑑  Battery DOD 
𝑓  Linear factor 
𝑐𝑙  Cycle life of battery 
𝑐𝑓  Capacity fading 
𝜎  Capacity fading tress factor 
𝜉  Capacity fated (Ah) 
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2 Chapter 1 
 

 

Chapter 1 

1. Introduction 

1.1. Motivation of Thesis  
 
The fact that developing nations and communities around the world suffer from poverty, unemployment, lack of 
education and very low levels of life quality is tangibly connected with the lack of electricity.  All these problems 
were addressed in the modern world with the use of electricity enabling so many conveniences and technological 
advancements, increasing the quality of life drastically.  
 
The depletion of fossil fuels combined with the green-house gas emission problem that leads to climate change 
made the use of renewable energy technologies a need. Batteries represent one of the most important 
components in systems like these as well as one of their biggest limitation, driving many scientists and 
researchers to be dealing extensively with projects that aim to minimize battery cost and maximize its lifetime, 
finding  the most effective and optimal storage for different renewable applications. 
 
Many developing regions in Sub-Saharan Africa and South Asia do not have robust grid connection, and are far 
away from having one, due to many technical issues that come with the grid extension procedure. Solar Home 
Systems (SHS) are one effective solution to this grid extension problem as they are defined as low power, low 
cost, off grid PV systems. The energy time mismatch between PV generation and load demand, in such systems, 
needs to be mitigated with a storage unit. Even though batteries are an essential component of the SHSs, are 
also considered to be their main problem mainly due to their high cost and low lifetime. While cost is a very 
important factor in applications taking place in developing countries, lifetime is also important because it 
increases the overall cost of the system. 
 
The need for a more cost effective energy storage, the authors growing interest in clean and renewable 
technologies combined with her passion in helping increasing the socio-economic quality of life that can also 
bring amongst all the other advances women empowerment in developing nations, have led to this project. 

1.2. Objectives and Research Questions 
 
The main objective of this thesis is to examine whether and which Hybrid Battery configuration will be the 
optimal choice in terms of combined lifetime and costs to be used in a Solar Home System application in a 
specific chosen location, taking into account specific sets of PV-production and load profiles. In order for this to 
be achieved, many sub-questions need to be answered first. 

Main Research Question 

Which optimal Battery Technology or Hybrid Battery configuration can optimize the storage cost function for a 
given set of PV-Load profile?  

Sub-Research Questions 

 What is the Optimal Storage Size for different Load Scenarios taking place in a specified location? 
 

 How to accurately estimate the lifetime of a battery taking into account as many battery parameters and 
behaviours as possible for different battery technologies? 
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 How can the upfront and lifetime costs be combined into a singular cost function while capturing the 
future cost trends of the different technologies? 

 

 Which are the limitations of individual battery technologies? How the hybrid battery will combine the 
best features of each technology? 

1.3. Unique contributions of the Thesis  
  
Apart from reaching its main goal this thesis project has some other intermediate contributions that helped 
reach the initial objective and can be adopted and used in many other cases and applications apart from Solar 
Home Systems. These individual contributions are: 
 

 The implementation of a non-empirical Dynamic lifetime battery model, that was conducted taking into 
account various battery parameters and behaviours as well as compared and validated with empirical 
models. 

 

 The formulation of a combined cost function which enables different storage option comparisons, that 
takes into account upfront and lifetime battery costs, including sizing and replacements and captures the 
future trends of the battery costs for different technologies.  

 

1.4. Thesis Outline 
 
The thesis report is divided in 7 chapters. Figure 1-1 illustrates how this report is organized. 
 
Chapter 1 – Introduction   This chapter consists of a short introduction underlying the motivation and defining 
the research questions of this thesis as well as the unique contributions of this work. 
 
Chapter 2 – Solar Home Systems   This chapter aims to provide a background for Solar Home Systems focusing 
mostly on the battery and its usage in systems like that. An overview of the battery parameters and a comparison 
of different battery technologies are also given. In addition, the physical aging mechanisms of the different 
battery technologies and an overview of already existing capacity fading and lifetime estimation studies are 
explained. 
 
Chapter 3 – Storage sizing in SHSs – Case Studies The first section of this chapter consists of the case studies,  
sets of PV-load profiles that were used. The second section discusses a methodology for sizing   the storage in a 
Solar Home Systems for the two different load cases that were taken into account. A detailed description of the 
procedure that was followed and the results for the different scenarios are also presented and discussed. 
 
Chapter 4 – Battery Lifetime Estimation    This chapter includes of a classification of different lifetime 
estimation models explaining them in detail and how they fit or not into the model that is constructed in this 
thesis. Furthermore, the methodology that was followed step by step, for the non-empirical dynamic battery 
lifetime estimation model and how it is validated as well as the results retrieved, are presented and explained.  
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Figure 1-1:  Outline of the thesis 

 
Chapter 5 – Hybrid Battery modelling This chapter has as main goal to present the two power management 
methods that were conducted for the Hybrid Battery System. In addition, the way that the power management 
methods can be combined with the lifetime estimation method proposed in chapter 4, is explained analytically.  
 
Chapter 6 – Cost Function This chapter aims to explain the theoretical background behind the decision of 
conducting the cost function. The formulation of the battery and hybrid battery cost functions are shown with 
their units and the parameters that are taken into account for this cost function. A sensitivity analysis regarding 
the future battery costs is carried out. The results of the cost function for all the battery technologies used and 
all the hybrid battery combinations, are presented and discussed at the end of this chapter.  
 
Chapter 7 – Conclusions and Recommendations  This chapter summarizes the results of this project 
answering the research questions and discusses further improvements recommending some solutions for further 
studies. 
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Chapter 2 

2. Solar Home Systems  
 
This chapter introduces the technology of Solar Home Systems and their main technical limitations. The 
importance of batteries in Solar Home Systems is underlined and the battery technologies with their different 
characteristics that are used for this study are introduced. In addition, different battery aging physical 
mechanisms and different battery parameters that affect battery aging are explained. Lastly, a battery modelling 
classification takes place as well as different existing battery models. 

2.1. Introduction 

 Current Status of rural electrification  2.1.1.

 
It has been evident that nowadays, nearly 1.2 billion people do not have access to electricity. This number is 
translated to 17% of the global population. It is also a fact that 80% of those lacking electricity live in rural areas 
with Sub-Saharan Africa and South Asia to be possessing 95% of this percentage [1]. Figure 2-1 shows how the 
energy poverty which is defined as the lack of access to electricity is distributed throughout the world. 
 
 

 
Figure 2-1: How the lack of electricity is distributed worldwide [as shown [2]] 

 

It is impossible for a nation to reduce its poverty levels without the use of energy, something that imposes access 
to electricity. Therefore, in order for the developing areas to progress, the use of electricity is substantial [3]. 
 
In an effort to reduce this lack of electricity in developing countries, many off grid energy production concepts 
have been invented as well as implemented. High transmission and distribution costs combined with  practical 
difficulties that occur such as the need of very long cables, make the extension of the national grid a less viable 
and immediate solution increasing the popularity of the off grid solutions [4]. Solar Home Systems appear to be a 
very promising idea in addressing these electricity problems. The fact that these areas mostly lie in latitudes with 
high sun irradiation makes them suitable for the use of off grid PV systems.   
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 Solar Home Systems (SHS) in Developing Nations  2.1.2.

 
“As the developed world addresses the challenges of meeting sustainability targets, the developing world simply 
struggles to provide universal electricity coverage” [5]. Within that framework, clean energy technology markets 
such as Solar Home Systems have progressed and grown significantly over the past years, giving access to 
electricity to millions of people worldwide. The largest amount of global off-grid population is concentrated in 
the remote rural areas of developing countries, thus Solar Home System development targets people living in 
these areas, otherwise called as Base of Pyramid (BoP) [6].  
 
A Solar Home System is a low cost low energy off grid PV System that is rated between 50 W to 250 W and 
includes a battery storage unit. These systems are able to power small lights and cell phone chargers or in some 
cases a television and a small fan. They are mostly designed to serve the basic energy needs of a single household 
and sometimes they are expanding to a neighbourhood or a community level. 
 

 Main Challenges of Solar Home Systems  2.1.3.

 
One of the main disadvantages of Renewable Energy Technologies is the energy mismatch occurs between the 
energy production and energy demand. Storage technologies are able to effectively reduce this mismatch by 
storing energy in times with excess of energy production and using it in times with energy deficit [7]. Thus, 
storage units are one of the most important elements in a Renewable Energy System. Off-grid PV Systems such 
as Solar Home Systems are not an exception as they too require a storage unit. 
 
Having this in mind, one of the main and the most important limitations of Solar Home Systems, is considered to 
be their high upfront and lifetime cost. The upfront costs for all the different components consisting an SHS are 
shown in Figure 2-2. 
 

 
Figure 2-2:  Initial costs of components of SHS in 2009 and 2014 [as shown [2]] 

 
 
It is evident that while the PV costs have fallen significantly for the past years the battery costs have remained 
almost the same. In addition, the upfront cost of the battery combined with its low lifetime makes it the most 
expensive component in such systems. While the lifetime of the PVs can reach up to 25 years, the battery 
lifetime for these applications can vary between 3-10 years, meaning that the battery is going to need occasional 
replacement, increasing further the total cost of the system [8]. 
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2.2. Battery Storage-Different Technologies-characteristics-Use in Solar Home 
Systems 

 Battery Technologies - General Information  2.2.1.

 
There are three main types of battery technologies that are going to be discussed in detail and used in this 
project. These technologies are Lead-acid batteries, Lithium-based batteries and Nickel based batteries. 
 

Lead-Acid Batteries: Lead-acid batteries are divided into two main categories, flooded or vented and sealed or 
valve regulated batteries (SLA or VRLA). The main differences between these two types of batteries are that the 
VRLAs do not need upright orientation, ventilated environment or routine maintenance in order to perform 
properly while flooded lead-acid batteries require all of the above [9]. A schematic representation of a lead acid 
cell is shown in Figure 2-3. 

 
 

Figure 2-3: Schematic Representation of lead-acid batteries [as shown in [10]] 

 

Lithium-Based Batteries: Lithium based batteries can be generally divided into two categories also, Lithium-ion 
Phosphate (LFP, LiFePO4) and metal oxides (NCM, NCA, Cobalt, Manganese) [9]. Li-Phosphate batteries exhibit 
higher tolerance to full charge conditions and less stress than other lithium ion systems while at the same time 
operate in lower nominal voltage [11] . Lithium metal cells, on the other hand, have the ability to retain higher 
power outputs [12] . A simple representation of lithium ion battery cells is shown in Figure 2-4. 
 

 
 

Figure 2-4: Schematic representation of lithium ion cells [as shown in [13]]  
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Nickel-Based Batteries: Nickel-based batteries are divided into Nickel-Cadmium (NiCd) and Nickel Metal 
Hydrides (NiMH). For the first technology the anode material contains Cadmium, which was replaced in the latter 
technology by metal hydride because of its toxicity [12] . An illustration of NiCd cells is shown in Figure 2-5. 
 

 
Figure 2-5: Schematic representation of NiCd cell [as shown in [14]] 

 Battery Characteristics 2.2.2.

Lead-Acid Batteries 

Lead Acid batteries are one of the most used battery technologies, nowadays. One of their main characteristics 
as well as main advantage is that they are dependable and inexpensive on cost/Watt and simple to manufacture. 
Moreover lead-acid batteries are characterized by experiencing the lowest-self discharge among the 
rechargeable battery technologies and high specific power.   
 
However, they are heavier and less durable than other battery technologies such as lithium and nickel-based 
systems, especially when deep cycled. In general, these batteries exhibit short cycle life due to various reasons 
which are going to be discussed later in this chapter.  
 
While lead-acid batteries have moderate life span they don’t present memory effects as Nickel-based batteries 
do. In addition, their performance is high at cold temperatures making them a more suitable technology at 
subzero conditions than lithium based batteries. 
 
Similar to all battery types, their capacity fades gradually while cycling. Furthermore, these types of batteries are 
able to deliver high current having a small response time. In terms of environmental considerations the lead and 
sulphuric materials are harmful and unfriendly to the environment. Some of the main limitations of lead-acid 
batteries are, their low specific energy, slow charge rates and the fact that when stored they have to be at 
charged conditions in order to prevent sulfation [15]. 

Lithium-Based Batteries 

Lithium Ion batteries are one of the most popular battery types especially for residential as well as portable 
electronics. They are the most lightweight batteries amongst all the battery technologies having very high energy 
density as lithium is a highly reactive element. For example, 1 kilogram of lithium ion batteries can store the 
same amount of energy that can be stored in 6 kilograms of lead-acid batteries.   
 
The capacity fading in lithium ion batteries is very small especially compared to Nickel based batteries, losing 5 % 
of their initial capacity per month of use instead of the 20 % loss that Nickel-based experience. In addition, 
lithium ion batteries have no memory effect which is significant in Nickel-based batteries. The most important 
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advantage of lithium ion batteries is their long cycle life making them able to handle thousands of charge-
discharge cycles throughout their lifetime. 
 
On the other hand, lithium ion batteries exhibit very high calendar life effects losing a significant amount of their 
initial capacity when stored. The cell degradation is more severe when the cell is exposed in extreme and 
especially high temperatures. One of the most important disadvantages of lithium-ion batteries is their high cost, 
making them highly competitive technology with lead acid [16]. 

Nickel-Based Batteries 

Nickel based batteries or otherwise alkaline batteries have many common characteristics between the different 
chemistries but they also differentiate in some aspects. Some of the common advantages that these technologies 
have are their low internal resistance and high energy density as well as their deep cycle ability. One of their 
most important advantage is that they are able to operate in a wide range of temperatures, greater than lead-
acid, without losing their efficiency or be damaged. In addition, alkaline batteries are able to support a certain 
amount of overcharge without experiencing electronic failure.  
 
On the other hand, their increased memory effect coupled with the fact that they deteriorate after a long time of 
storage are their main limitations. In addition to that, their energy density is considered to be 60% or less than 
lithium ion batteries depending on the battery chemistry.  
 
The most common alkaline technologies are NiCd and NiMH batteries. Their differences mostly lie in their energy 
density, with NiMH having 50% higher energy density than Nicads. Lastly, NiMH are environmentally friendly in 
contrast with NiCd that contain cadmium which a highly harmful material [17] [18] [19]. 
 
A comparison between the different battery technologies and the main battery parameters that are examined in 
this project is shown in Table 1. 
 

Table 1: Comparison of different battery characteristics [20] [21]. 

Battery Technology Energy Efficiency 
[%] 

Cycle Life 
[-] 

Temperature Performance Cost 
 [$/kWh] 

Sealed Lead-acid 70-95 Moderate Low when cold 100-200 

Flooded Lead-acid 72-78 Moderate Low when cold 100-200 

Lithium ion  90-95 High Low when cold 300-600 

Nickel Cadmium (NiCd) 72-78 High -50 to 70 C 300-1000 

 

 Battery Parameters - An overview 2.2.3.

In this section many battery parameters that will be used later in the modelling are going to be introduced and a 
brief overview of these parameters will be presented.  

Battery Cycling 

Battery cycling is the process at which the battery charges and discharges undergoing different levels of charge 
or discharge. In general, battery cycling expresses the total battery usage.  

Cycle Life 

Cycle life is defined as the number of cycles, full charging/discharging that the battery undergoes until it reaches 
the End-of-life. For most manufacturers the End-of-life is the point at which the battery loses 20% of its initial 
capacity. 
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Battery Efficiency 

The battery efficiency or otherwise roundtrip efficiency is defined as the ratio of the output energy of the battery 
to the input energy of the battery as shown in Equation 2.1. 
 
 

𝜂𝑏𝑎𝑡 =
𝐸𝑜𝑢𝑡

𝐸𝑖𝑛
 

 

 
 

(2.1) 

  
This roundtrip efficiency can be divided into two categories, voltaic efficiency and coulombic efficiency. Voltaic 
efficiency is the average discharging voltage of the battery divided by the average charging voltage of the battery 
while coulombic efficiency is the ratio between the total charge that was extracted from the battery with the 
total charge that was fed into the battery over the time of a full cycle. Voltaic and coulombic efficiencies can be 
expressed by the Equations 2.2 and 2.3, respectively [22]. 
 

𝜂𝑉 =
𝑉𝑑𝑖𝑠𝑐ℎ𝑎𝑟𝑔𝑒

𝑉𝑐ℎ𝑎𝑟𝑔𝑒
 

(2.2) 

𝜂𝐶 =
𝑄𝑑𝑖𝑠𝑐ℎ𝑎𝑟𝑔𝑒

𝑄𝑐ℎ𝑎𝑟𝑔𝑒
 

(2.3) 

 

Capacity Fading 

As the battery cycles or being stored, its capacity is reduced irreversibly having as a result for the maximum 
available charge to be less than the nominal value. This procedure is called capacity fading. 

State of Charge (SOC) 

Sate of charge is a measure that indicates the percentage of the charge that is left in the battery after charging it 
or discharging it. 100% SOC corresponds to fully charged battery and 0% SOC corresponds to a fully discharged 
battery. Most manufacturers state that it is better to keep the SOC of the battery between the range between 
20% to 80 % in order to maintain better lifetime for the battery. The state of charge of the battery can be defined 
as the ratio between the current battery capacity divided by the overall-maximum or otherwise nominal battery 
capacity (QN) as shown in Equation 2.4 [23]. 
 
 

𝑆𝑂𝐶 =
𝑄𝑡

𝑄𝑁
 

 

 
(2.4) 

 

Depth of Discharge (DOD) 

The percentage of the charge that is withdrawn from the battery after being charged or discharged is called 
Depth of Discharge. In other words DOD is a measurement of how deeply the battery has been discharged. 100 % 
DOD indicates that the battery is empty and 0 % of DOD indicates that the battery is fully charged. The Depth of 
Discharge is expressed by Equation 2.5 [24] [25].  
 
 

𝐷𝑂𝐷 = 1 − 𝑆𝑂𝐶 = 1 −
𝑄𝑡

𝑄𝑁
 

 
(2.5) 
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C-rate 

C-rate is a measure of how fast the battery is able to fully charge and discharge. For example 1C means that the 
battery is fully discharged in an hour, while 0.5 C means that the battery is fully discharged in 2 hours, etc. 

State of Health (SOH) 

State of Health is an indicator of the battery’s conditions at a certain time compared to its ideal conditions. More 
specifically, it is a measure over time that reflects the current state of the battery and how much of its capacity 
has been consumed through time. SOH is represented as a percentage with 100% meaning that the battery is 
fresh. It can be derived by many battery parameters, such as impedance, self-discharge rate, power density but 
the most common one is the battery capacity. More specifically, it could be considered as the ratio of the current 
battery capacity with the initial, rated capacity given in the specifications. When the SOH reaches 80%, meaning 
that the battery capacity is 20% less than the initial value, then the battery should be replaced [26]. 

End-of-life (EOL)   

End-of-life is a measurement that indicates the point at which the battery needs replacement after undergoing 
aging and fading. Most manufacturers and researchers state that the End-of-life of the battery is when it reaches 
80% of its initial capacity [27]. After this percentage the battery is still able to work and deliver power but with a 
very low performance. For this project EOL of the battery is going to be used as the point at which the battery 
has undergone 20% capacity fading. 

Energy Throughput 

This is a measure of the total amount of energy that goes into as well as comes out of the battery. In other words 
it represents the energy usage of the battery. Total energy throughput is the total energy that passes through the 
battery throughout its lifetime.  

 Battery Costs and their importance  2.2.4.

 
The overall battery cost that occurs in an off-grid PV system is the result of two different costs: the upfront costs 
and the lifetime-running costs. Battery costs can also be divided into these two categories. The upfront costs are 
directly related to the battery size. The larger the size of the battery is, the higher the upfront costs will be 
[€/kWh]. The lifetime-running costs, on the other hand, have to do with the lifetime of the battery. One of the 
main limitations of the storage units is that they have lower lifetime than the other components of the off-grid 
PV system. Thus, the batteries need to be replaced one or more times, depending on the technology, throughout 
the lifetime of the system. To sum up, upfront costs are expressed as a function of the battery size while running 
costs are expressed as a function of the replacements which are also depended on the battery size. 
  
Furthermore, the sizing of the battery, also affects its lifetime. While increasing the battery size the average 
Depth of Discharge that the battery operates for a specific application is reduced resulting to different lifetime 
and therefore different upfront lifetime costs. Consequently, it is shown that the sizing of the storage also 
presents a trade-off between upfront cost and battery lifetime. 
 
In general, different battery technologies have different costs as well as different advantages and disadvantages 
in terms of life-cycles. While lead-acid technology appears to have the lowest upfront cost, thus being the 
cheapest technology, it suffers from a very low battery lifetime. On the other hand Li-ion based technologies 
enjoy higher lifetime, thus need fewer replacements during the system lifetime but at the same time are more 
expensive in terms of upfront cost. Having this in mind this project aims to define the best trade-off between 
battery costs and lifetime in the specific application of SHS combining the best battery characteristics of different 
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technologies in a Hybrid Battery. This battery will be considered the optimal storage configuration assessing the 
limitations of Solar Home Systems.  

 Factors Affecting Battery Selection in Specific applications  2.2.5.

 
In general, in most applications a number of technical battery characteristics are considered in order for the 
optimal storage option to be chosen and used. However, the selection between the different battery storage 
technologies is becoming trivial due to an overlap between the different categories and parameters. More 
specifically, in some cases, the main considerations that are taken into account for the comparison of the 
different technologies are related to battery performance and battery life under different DOD and 
temperatures. In other cases the choice of the battery is location and application specific (PV system, Wind 
energy system, Hybrid System, EV, etc.) taking into account installation infrastructure, ambient conditions and 
space limitations. Lastly, cost as well as safety, are the common and main considerations concerning all types of 
applications and locations. Apart from the large number of factors that affect the choice of batteries the 
combination of cost and performance is very complex to be assessed and defined, while focusing on a single cost 
statistic might lead to non- profitable decisions [28]. This project aims to combine most of the battery lifetime, 
performance and cost characteristics in a single function making the procedure of choosing the most suitable 
battery technology as easier and as accurate as possible. 

2.3. Battery Aging 
 
Capacity and power fading occur in the battery due to many physical failure mechanisms that happen while the 
battery operates as well as in times when the battery does not undergo cycling. Different side reactions in the 
batteries can induce phenomena that will lead to battery aging and eventually failure, or sudden battery failure. 
These phenomena are cell cycling, short circuits and thermal runaway [29].  

 Physical Aging Mechanisms of different technologies 2.3.1.

Lithium-based Batteries 

Capacity fading and aging of the battery are caused by many different internal mechanisms and are further 
induced by extreme temperatures and high charging-discharging rates. In lithium ion batteries the most critical 
aging procedures that are triggered by mechanical stresses and volume changes, occur in the negative 
electrode/electrolyte interface. Excessive growth of the passive layer and more specifically of the solid 
electrolyte interface (SEI) induces lithium corrosion and reduction of the power capability of the electrode, 
leading to power loss. In very severe cases these phenomena might lead to lithium plating that induces even 
further and more drastically the capacity fading of the battery. In addition, reactions at the positive interface 
might be induced at high temperatures and high SOC levels leading to oxidation of the electrolyte components, 
increase of the internal cell impedance and evolution of CO2. All these affect the active cyclable material, 
removing a part of it and decreasing the battery capacity [30] [31] [32]. In terms of calendar aging, which is 
severe in Li-ion cells, the main mechanisms that take place causing capacity fading are the shift in the electrode 
balancing and low anode potentials that accelerate even further the loss of active lithium material [32].  

Lead-Acid Batteries 

For lead acid batteries, battery degradation is caused by many internal mechanisms as well. To begin with, 
anodic corrosion of grids, plate-lugs, posts or straps is considered one of main reasons for battery aging. Active 
mass degradation and loss of adherence to the grid which are the result of battery cycling reduce the available 
battery capacity. In addition, irreversible reactions such as crystallization or sulfation that form lead sulfate in the 
active mass of the material in combination with short circuits that are mainly caused due to deep discharge 
cycles, affect significantly the cycle life of lead-acid batteries. Lastly, when overcharging the battery or when 
there is a significant temperature increase as well as during self-discharge and electrolysis, loss of water is being 
observed affecting again the aging of the battery [33]. 
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Nickel Metal-Cadmium Batteries 

One of the most important characteristics of NiCd batteries in terms of cycle life is that the internal resistance 
remains more or less constant while the battery is cycling. This helps the increase of cycle life. Generally, the 
main aging mechanism that occurs in NiCd batteries is the progressive separator metallization that happens 
again when the battery is used. One very significant characteristic of all alkaline batteries is the “memory effect” 
at which is exhibited reduced discharge voltage at the end of discharge. The main cause of this effect is that the 
battery appears to remember the lower capacity level that was obtained during a shallow cycle, resulting to 
temporary loss of the maximum initial capacity. In terms of calendar aging Nickel-based batteries can be stored 
for a long period of time without having severe aging [18]. 

 Battery Parameters and how they affect battery lifetime  2.3.2.

2.3.2.1. Effect of Temperature 

The way that the batteries perform in different temperatures and more specifically in extreme high and low 
temperatures is very important and especially in low cost applications such as Solar Home Systems as it is not 
economically feasible to apply temperature control. In general, batteries do have a high sensitivity at operating 
temperatures with some technologies being able to operate better at extreme temperatures and with others not 
as good. More specifically, the temperature has a double effect on the performance of the battery. While the 
temperature increases, the internal resistance of the battery decreases improving the battery efficiency and 
enhancing its energy capacity as shown in Figure 2-6. On the other hand, the increase of temperature triggers 
faster unwanted chemical reactions in the battery (The Arrhenius equation), causing irreversible damage on the 
components, capacity fading and decrease in the battery lifetime [25]. The lifetime sensitivity of different battery 
technologies on the temperature is shown in Figure 2-7 . 
 

 
Figure 2-6:  Positive effect of Temperature on battery capacity [as shown in [34]] 

Arrhenius equation 

The Arrhenius equation shows that the rate of the chemical reactions occurring in the battery has exponential 
dependency on the temperature as shown in Equation 2.6. 
 
 

𝑘 = 𝐴 ∙ exp
−𝐸𝑎

𝑅 ∙ 𝑇
 

 
(2.6) 
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Where, 
𝑨: pre-exponential factor 
𝒌: rate constant, 
𝑻: absolute temperature [K], 
𝑬𝒂: activation energy [kJ/mol], 
𝑹: universal gas constant [J/mol/K] 
 

 
Figure 2-7:  Effect of Temperature in battery lifetime for different battery technologies [as sown in [34]] 

Temperature sensitivity of Lead Acid Batteries 

For valve regulated as well as flooded lead-acid batteries the ideal operating temperature lays close to 20 ˚C - 25 
˚C, meaning that if the battery operates constantly at that temperature it will reach its maximum achievable 
cycle life. More specifically, when operating, lead acid batteries, it is recommended for the temperature to be in 
the range of -5 ˚C to 50 ˚C for discharging and in the range of 0 ˚C to 40 ˚C for charging. In addition, when lead-
acid batteries are stored and not undergoing cycling, it is recommended for the stored temperature to lie 
between -15 ˚C to 40 ˚C [35]. Temperatures higher than 55 ˚C shorten the cycle lifetime of the battery drastically, 
though it is recommended from manufacturers not to operate at temperatures higher than 45 ˚C for a long 
period of time [36] [37]. 

Temperature sensitivity of Lithium-based Batteries 

Lithium ion cells can safely be charged within 0-45 ˚C temperature range and discharged within -20 ˚C - 60 ˚C. 
These cells are more resistant to temperature, so that their capacity loss is not as easily affected in elevated 
temperatures as in Nickel-based cells. On the other hand, they experience higher capacity loss at low 
temperatures being able to deliver 90% of their maximum energy at 0 ˚C and 70 % at -20 ˚C. The ideal operating 
temperature range for Lithium ion cells lies between the range of 20 ˚C to 25 ˚C [38]. 

Temperature sensitivity of Nickel-based Batteries  

For NiCd and NIMH batteries, manufacturers depict for 0-50 ˚C to be the maximum temperature operating limit 
and typically they even further restrict this range between 10-40 ˚C in conditions of fast battery charging. The 
best temperature level for these batteries is considered to be 25 ˚C. Above or below this “ideal” point the battery 
characteristics change significantly resulting to undesirable effects. These effects are capacity fading of the cell 
having as a consequence not be able to deliver the maximum energy when being fully charged. The second effect 
has to do with the ability of the cell to accept charge making the procedure of charging hard. This effect 
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decreases the battery’s charging efficiency, especially at temperatures higher than 40 ˚C. On the other hand, at 
low temperatures capacity fading is also observed but in a lesser extent than in high temperatures. In addition, 
low temperatures have as a result the reduction of the cell’s tolerance at the maximum safe charging current 
mainly because the gas cannot recombine as easily inside the cell [38].  

2.3.2.2. Effect of Depth of Discharge 

In general, the dependency of the lifecycle of a battery is large on the depth of discharge at which the battery 
operates. While increasing the DOD of the battery, its lifetime is affected adversely, thus being decreased. The 
extent, to which the lifetime of the battery is increased, is different in different battery technologies [21]. 
Experimental results have shown that battery operation at small values of DOD improves the lifetime of the 
battery, decreasing capacity fading phenomena slowing down or preventing stresses that lead to irreversible 
damages [39]. Many manufacturer datasheets provide lifetime curves in respect to DOD. Some of them, for the 
battery technologies that are used in this report, are shown combined in a diagram in Figure 2-8.  
 

 
Figure 2-8:  Reconstructed Cycle life curves in respect to DOD for different technologies as derived from manufacturer’s 

datasheets [37] [36] [40] [41] 

2.3.2.3. Effect of C-rate 

Operating C-rate increases the cell temperature and internal Ohmic resistance increase as well. As it was 
mentioned before, the increase in the temperature has a negative effect in the battery lifetime, thus the increase 
in C-rate also decreases lifetime [42]. In general higher C-rates lead to higher capacity loss thus faster capacity 
fading and EOL [43].  
 
In SHSs the operational battery current rate is very low reaching C-rates equal to 1/150C, thus it can be said that 
in such applications the C-rate is not taking a very active part in the battery aging process. In addition, the C-rate 
effect can be neglected, because it is not as severe as the effects of temperature and DOD/SOC in the battery 
lifetime [44].  
 
In this study, the C-rate effects are also going to be neglected, as the temperature behavior of the battery was 
accounted by using battery datasheets which focus on the ambient temeprature and not the cell temperature. In 
addition many side chemical reactions are happening inside the cell as the cell temperature changes, which are 
very complex to be modeled and used for the battery lifetime. 
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 Battery Dynamic Modelling 2.3.3.

 
In general battery modelling can be distinguished in three different levels in terms of the physical insight that 
they provide as well as in terms of accuracy and complexity: white box, grey box and black box. An example of 
white box modelling is the electrochemical or physical models, an example of grey box modelling is the 
equivalent electrical circuit models and lastly an example of black box modelling is the artificial neural networks. 
These models need to satisfy specific criteria in order to be considered successful and suitable enough [45]. 
These criteria are:  
 

 Accuracy, representing the extend which the model has achieved in imitating the behaviour of a real 
battery. In order for a model to be accurate enough, it has to match with experimental measurements 
taking into account the same battery parameters and external variables that the experiment considered. 
In addition, in order to be accurate a model needs to have a dynamic behaviour that has been tested and 
validated in the short as well as in the long run. 
 

 Configuration effort represents the extend at which the chemical theory of the battery was used. This 
takes into account the number of chemical parameters and variables that were considered for the model 
and if they are enough to represent the battery in a satisfying degree. 
 

 Computational complexity represents the time that the simulation needs in order to be completed. The 
smaller the time the better for the model.  
 

 Analytical insight or interpret-ability represents whether or not the battery model was able to interpret 
the battery behaviour qualitatively enabling the design of battery management strategies and the 
exploring of performance and lifetime trade-offs [45] [46].   

 
The battery behaviour can be modelled in many ways. The literature classifies the models in many different 
categories. The most common are the electrochemical or physical models, the equivalent circuit models, 
analytical or empirical models and Artificial Neural Networks (ANN). These types of models are going to be 
explained more analytically in Chapter section 4.2. 
 

 Existing Battery Lifetime Models  2.3.4.

 
Experimental approaches, tried to observe and measure the battery degradation throughout time, semi-
empirical approaches have represented the fade mechanisms using equations which fit specifically to a single 
battery chemistry and type of cell and lastly, theoretical approaches that have used the physics behind the side 
reactions to interpret the battery lifetime [31]. In most of these approaches, cycle and calendar fading were 
modelled taking into account temperature and time dependencies by combining Arrhenius equation and the rate 
of side reactions using a time relation that was conducted experimentally [47] [48]. 
 
It is worth pointing out that most of the studies and researches undertaken for battery lifetime are mainly for 
different types of lithium ion batteries because they have higher lifetime and they are being broadly used in 
electric vehicles. Most of these models have taken into account cycling aging and not calendar aging. This is 
mainly due to the time, calendar aging experiments require, even though the calendar aging phenomena could 
be accelerated by exposing the batteries in extreme temperature and charging conditions. Another reason that 
calendar fading hasn’t been taken into account in many studies, is because it causes much less capacity fading 
than cycling phenomena cause to the battery. In the following section some of the already existing capacity 
fading models are explained.  
 
A semi-empirical life model for lithium ion batteries that takes into account both calendar life and cycle life using 
data that were extracted from a cycle-test matrix was created by Wang et al.. This model used three battery 
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parameters as stress factors to account for the battery degradation, temperature, time and discharge rate. For 
the inclusion of the calendar life the diffusion capacity loss is represented with a square root relation of time 
while the temperature effect is represented by an Arrhenius relation. The cycle life model was constructed by 
empirically fitting the capacity loss with a generalized exponential function that takes into account the rate 
effects [47]. 
 
Zabala et al. proposes a lifetime estimation method for LiFePO4 batteries taking into account calendar and 
cycling aging too. A comparison between the cycling aging of the battery, conducted through static tests 
(constant operating conditions), was compared with a dynamic battery degradation model. The battery 
parameters that are used for this capacity fading are DOD, C-rate and Ah-throughput. These parameters were all 
combined into a semi- empirical model for the aging prediction that was followed by a lifetime prognosis of the 
battery. The cycling aging was combined with calendar aging for the final lifetime estimation of the battery [49].  
 
Dudezert et al. studied the battery aging applying a mechanical approach to the chemical processes that take 
place in the battery, connecting the stress factors that lead to battery degradation to the battery aging factors. 
The experiments were taken by exposing the battery in extreme stress conditions in order to accelerate the aging 
accordingly and reach to conclusions predicting the battery lifetime. The temperature effects were represented 
by the exponential term of the Arrhenius equation. The cycling aging was described by a variable called 
electrochemical fatigue damage that represents the physical active area evolution during the battery lifetime 
[50]. 
 
Many studies have used the rainflow method combined with Palmgren Miners’ rule, which are going to be 
explained analytically in Chapter 4, in order to achieve battery lifetime estimation. 
 
Tankari et al. in his study for combining ultracapitors and batteries aiming to achieve an efficient energy 
management in a Wind-Diesel Hybrid system, used rainflow counting method as well as Palmgren Miners’ rule 
for the estimation of the battery lifetime. The fluctuating load he had from the wind production resulted for the 
battery to be cycled in micro-cycles or half cycles. The three point rainflow method that was used classified the 
individual charge and discharge cycles into 20 classes of equal size. Later on, a Miners’ rule was applied by taking 
into account the cycling corresponding to DOD stresses that was extracted from rainflow, and a fitting equation 
corresponding to the cycling until the End-of-life for a specific stress, which was extracted from curves included  
in the manufacturer’s datasheets. The End-of-life was set to be the point when the cumulative damage from the 
Miners’ rule reached the unity [51].  
 
Musallam et al. uses the rainflow algorithm for life consumption estimation, again combining it with Miners’ rule. 
At the beginning, he applies the traditional method of rainflow counting in order to measure half and full cycles 
while later he develops a real time rainflow code for this algorithm. This new approach uses two flexible buffers 
and the number of full and half cycles is identified recursively while updating the life consumption models 
accordingly [52].  
 
Dragisevic et al. uses the rainflow counting method in order to group and count cycles from fluctuating loading 
and then makes lifetime estimation for VRLA and Lithium ion batteries using fitting equations obtained through 
experiments. The stress factor for the rainflow algorithm in this study is also the DOD [53].  
 
The main limitations of these different methods and modelling approaches is that they have been constructed 
for specific cells under certain temperature conditions and throughout a limited amount of time making them 
not accurate enough and not suitable to be used for other battery technologies. In addition, if some of these cells 
are going to be used in series or parallel for specific applications the modelling equations should be used as a 
combination more than one times for every cell.  
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In renewable energy applications, like Solar Home Systems everything needs to be examined in battery level and 
not in cell level, thus everything is modelled from a system point of view using different power managements 
schemes and not electrical models.   
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Chapter 3 

3. Storage Sizing in SHS - Case Studies 
 
This chapter introduces the different sets of PV-load profiles that are examined in this study and explains in detail 
the battery sizing methodology that was followed. The main goal of this chapter is to reach to the best Power 
management Architecture (between the two that are used)  to move forward to the dynamic capacity fading 
model with, as well as the optimum battery size for the case studies used. 

3.1. Introduction 
 
The first step that needs to be taken for this project is the determination of an optimal sizing methodology. The 
most important factor for achieving a balanced optimal system sizing is to have the load profiles (LP) concerning 
the application that this project is dealing with (SHS).  

3.2. Types of Load profiles - Case studies 
 
The main kinds of usage consumption can be classified into three categories: Low, medium and high 
consumption usage. For these load profiles low power efficient appliances were used. For this project only two of 
these categories are going to be used as the case studies, low and medium load profiles with their corresponding 
PV power generation.  
 
For the PV sizing of the two case studies a very simple algorithm was used that takes into account the number of 
Equivalent Sun hours in city Chennai in India as well as the average daily energy consumption of each one of the 
load cases. The decided PV sizes that were used will be presented below with their corresponding load profiles. 
After finding the suitable PV size of the different load profiles, the PV output was calculated following some steps 
which are summarized in the block diagram of Figure 3-1. 
 

 
 

Figure 3-1: PV yield calculation procedure 
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The general PV output methodology as also shown in Figure 3-1 has as the first step the extraction of the 
location’s ambient/ weather data. Temperature, irradiance and wind speed for one year were obtained from 
METEONORM software for the location of interest. The module orientation was set to be horizontal in order to 
examine the worst case scenario when sizing the battery in later steps and keep things as simple as possible. 
Using these data the Fluid-dynamic model (FD) was applied for the calculation of the module temperature. FD is 
a thermal model that is able to evaluate accurately the effects of important meteorological data concerning the 
location of interest creating a detailed energy balance between the module and the environmental aspects that 
surround it [22]. After calculating the operating temperature of the module, its effect on the module 
performance is expressed by different temperature coefficients of different parameters as extracted from the 
module datasheets. These parameters are open circuit voltage (VOC), short circuit current (ISC), efficiency (η) 
maximum power point power (Pmpp) and module area (AM). These parameters were extracted from different 
manufacturer datasheets for the two PV sizes [54] [55]. Accounting all of the above the total output PV energy 
production can be calculated for one year. The load profiles as well as the PV profiles were given having a 
minutely resolution for one year. 

 Case Study 1 – Low power consumption load profile  3.2.1.

In general, lighting, entertainment and communication, mechanical loads and labor-saving, food preservation, 
space cooling or heating, cooking and water heating, are the main categories consisting the basic human needs 
[56].    
For the low power load profile, the appliances that were used are:  

 LED lights 

 Mobile phone 

 Radio 

 TV 
 
A low power load profile for one day is shown in Figure 3-2. The calculation for the PV size for this load profile 
resulted to one panel of 40 Wp and its profile for one day is shown in Figure 3-3. 
 

 
Figure 3-2: Daily load profile of an SHS with low 

consumption 

 
Figure 3-3: Daily PV generation for a module with rated 

power 40 Wp. 

 
From Figure 3-2 it can be seen that in general the power consumption needed for this SHS system is very low and 
even when it peaks it is much lower than the average power value from the medium load profile as shown in 
Figure 3-4. It can also be seen that the peak in the power demand occurs very close to the midday when the PVs 
are going to be able to produce enough energy to satisfy the load, thus the battery needed, in this case is going 
to be small. 
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 Case Study 2 – Medium power consumption load profile  3.2.2.

 
For the medium power load profile, the appliances that were taken into account are the same as the low power 
case plus iron using efficient loads. A medium power load profile for three days is shown in Figure 3-4. The 
calculation for the PV size for this load profile resulted to one panel of 300 Wp and its profile is shown in Figure 
3-5. 
 

 
Figure 3-4: Daily load profile of an SHS with medium 

consumption 

 
Figure 3-5: Daily PV generation for a module with rated 

power 300 Wp. 

 
From Figure 3-4 it can be seen that the peaks in the power demand occur early in the morning, during the noon 
and late in the afternoon. In the morning and afternoon is clear from Figure 3-5 that the PV generation is almost 
zero thus energy storage is demanded in order to mitigate this difference. During the noon on the other hand, 
the energy demanded by the load can be satisfied by the generation of the PVs. The battery size needed in this 
case is going to be quite larger than the low consumption loads. 
 
For the next steps such as lifetime estimation of the battery the temperature profile of the whole year also needs 
to be considered. The temperature profile with a minutely resolution for the city Chennai previously known as 
Madras in India is shown in Figure 3-6.  

 
Figure 3-6: Temperature profile for one year in Chennai, India 
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From Figure 3-6 it can be seen that the temperature mostly varies between 20 ˚C and 40 ˚C. The minimum 
temperature value equals to 9.9 ˚C and is happening during the end of December while the maximum 
temperature equals to 41.1 ˚C and happens between April and May. Lastly, the average value of the temperature 
is 28.2 ˚C which is logical considering that South India lies in latitudes with high sunshine.  

3.3. Sizing Methodology 
 
One of the initial steps need to be taken is the optimal storage sizing for the specific load profiles that were 
considered in this project and described above. In order for this to happen a sizing methodology was followed. 
This methodology is going to be described and discussed in detail in the following sections. 

 The Algorithm  3.3.1.

For the quantification of the storage size two different Architectures or otherwise system configurations that 
indicate the power flow in the system as well as battery usage, where used and compared. The exact net energy 
deficit and surplus of the battery were calculated at every minute for one year, which is the data resolution of 
the load profiles (525600 data), and the battery was charged and discharged accordingly depending on the 
Architecture that was used. The algorithm that was used for both Architectures was a Rule Based Energy 
Management algorithm that examines different cases at which the battery needs to be used (charged or 
discharged). A measure of the failure of the system was also used and evaluated at different battery sizes until 
reaching the optimal predetermined value. This measure is called Loss of Load Probability. The sizing of the 
battery was performed at MATLAB software. 

Loss of Load Probability 

The quantification of the storage size revolves around minimizing the Loss of Load Probability (LLP). LLP measures 
how many times the system, PV and battery contributions, failed to satisfy the load. The smaller this index is, the 
more reliable the system is. For example an LLP of 10% shows a 10% downtime of the system throughout the 
year which is translated to almost 36 days of system failure to satisfy the load. This is prone to happen on days 
with less sunshine, thus less PV production and high power demand. For the case of this model, after testing 
different numbers, the LLP was set as low as possible and not exactly equal to zero order to have a reasonable 
battery size and at the same time being able to minimize the failure of the system [22].  

Efficiencies 

For the sizing of the system, the battery efficiency was kept as a constant value without considering different 
battery technologies. The efficiency of the battery was set to be equal to 95%, a value that is very common for 
battery efficiencies at Solar Home Systems. The efficiencies were not considered dynamically with power or 
different for different technologies because the purpose of the sizing procedure, at this stage of the project is to 
simply and easily estimate a battery sizing considering the load cases that were given to us. Thus, the battery 
capacity that was found is a kWh value that mitigates the intermittency between energy generation and 
consumption accordingly to the used Architecture. The efficiency of the converter used for the sizing of the 
system was again kept constant and equal to 95%. In general the converters have very high efficiency, reaching 
levels of 98%. In renewable energy applications due to the fluctuation in the input power, the converter 
efficiency is varying between 80-98%. In order to keep things simple, the efficiency was kept constant. 

Other Assumptions 

For the sizing of the storage, capacity fading and aging mechanisms were not taken into account for this one year 
simulation. Temperature effects were also not considered, as they are going to be added with capacity fading 
later on in the battery lifetime estimation model. In addition, a limit for the DOD was set, equal to 80% meaning 
that the minimum capacity value at which the battery could be discharged was equal to 20% of the initial battery 
capacity. This assumption was made, in order to protect the battery from deep discharging and reduce its aging 
and capacity fading. This value is also considered appropriate and recommended by manufacturers. In addition 
the voltage of the batteries was kept constant to 12 V which is common for SHS applications [57].  
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Architecture 1 

At the first architectural scenario the storage kicks-in only when there is a deficit of energy at the system, 
meaning that the battery is being used when the PV energy production is not enough to power the load, as 
shown in  
 
Figure 3-7. This happens at times when there is not enough irradiation from the sun, thus not enough energy 
production from the PV panels to satisfy the high load demand.  
 

 
 

Figure 3-7:  System configuration of Architecture 1 

Architecture 2 

At the second architectural scenario, the storage isolates the PV panels from the load as shown in Figure 3-8. 
More specifically after the energy is produced by the PV panels is fed directly to the battery. After that, the load 
demand is satisfied by taking the needed energy amount from the battery. Thus, the battery is cycled at every 
minute of the simulation as it represents the link between energy production and generation. Even though it is 
obvious that the battery usage in Architecture 2 will be much higher, resulting to much more battery cycling than 
Architecture 1, thus less battery life, this method was examined because this is a common phenomenon in 
developing countries. Small households own a battery unit that is moved and charged in a local kiosk and then 
used for the energy demands of the house, without having an energy production component such as PVs, etc.  
 
 
 

 
 

Figure 3-8: System Configuration of Architecture 2 
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3.4. Results 
When applying low power load profile in Architecture 1 the battery sizing was varying in order to reach the 
optimum LLP levels that would give a reasonable battery sizing but at the same time being small enough in order 
for the system to be able to come through almost at all times. Due to the fact, that the low power load profile 
has very small energy demand the battery that used was also very small. In terms of comparing the different 
Architectures and decide which one is going to be used the LLP and energy throughput variation with the battery 
size were extracted from the simulation and compared. For both architectures and the two case studies, results 
for LLP minimization and energy throughput are shown below. 

 Case Study 1 3.4.1.

The LLP that was set for this load-PV scenario is equal to 0.4%. Figure 3-9 and Figure 3-10 illustrate the LLP and 
energy throughput as calculated for different battery capacities for the two Architectures. 
 

 
Figure 3-9: LLP for different battery capacities for low 

power LP. 

 
Figure 3-10: Energy throughput for different battery 

capacities for low power LP 

 
The Loss of Load probability was set to be minimized at the value of 0.4% (very close to zero, translated to 1.5 
days of system downtime throughout the year) which it is represented by the horizontal dashed line in Figure 
3-9. In both Figure 3-9 and Figure 3-10 the two vertical dashed lines represent the optimum battery size that was 
reached for LLP equal to 0.4% for Architectures 1 (left vertical lines) and Architecture 2 (right vertical lines), 
respectively. In Figure 3-9 the intersection between the two LLP curves and the horizontal minimum LLP line, for 
Architecture 1 (blue curve) and 2 (red curve) are represented by the yellow and green dots, respectively. These 
points happen at 370 Wh and 440 Wh. It can be seen that Architecture 2 requires a bigger battery than 
Architecture 1. In addition, from Figure 3-10 it can be seen that the energy throughput in Architecture 2 is much 
higher than the energy throughput of the battery in Architecture 1, meaning that the battery will undergo much 
more cycling when the power management of Architecture 2 is applied, thus its lifetime will be shorter. The 
battery size decided for this case study equals to the best case scenario and is 370 Wh. 

 Case Study 2 3.4.2.

The same methodology was again used, in order to determine the optimum battery size of the medium load 
scenario. The battery size was varied, and the minimum LLP was again set to be equal to 0.4%. The results 
extracted from the simulation are shown in Figure 3-11 and Figure 3-12. 
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Figure 3-11: LLP for different battery capacities for medium 

power LP. 

 
Figure 3-12: Energy throughput for different battery 

capacities for medium power LP 

 
While it is again clear that Architecture 1 gives smaller battery size for LLP equal to 0.4%, it can be seen that the 
difference between battery sizes in two Architectures is too big. While, as shown in Figure 3-11,  the minimum 
LLP value in Architecture 1 is being reached for battery capacity equal to 1150 Wh (yellow dot), in Architecture 2 
is reached for 5950 Wh (green dot), almost five times the size required for the first Architecture. In addition, the 
cycling that the battery undergoes, as shown in Figure 3-12 using the second Architecture is much higher than 
using the first, meaning that the battery will die mush faster. 

 Conclusions 3.4.3.

The main goal of this chapter was to determine the optimum battery size for each one of the load scenarios as 
well as decide the optimum Architecture, or otherwise power management configuration that gives the best 
results and is going to be used later for the next steps. The Architecture that gave the best results reaching the 
LLP limit in lower battery capacity and having the battery undergoing less cycling, for both case studies, is 
Architecture 1. The concluding sizing results for both Case studies are summarized in Table 2. 
 
Table 2: Optimum battery size and energy throughput value for this size for both case studies 

ARCHITECTURE 1 

Parameter Case study 1 (low LP)  Case study 2 (medium LP) 

Optimum Battery Size 370 Wh 1.15 kWh 

Overall Energy Throughput 6.5 x 104 6.2 x 105 Wh 
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Chapter 4 

4. Battery Lifetime Estimation 
 
This chapter begins by introducing the different types of battery aging as well as different battery lifetime models. 
The main goal of this chapter is to introduce and explain step by step the non-empirical dynamic battery lifetime 
methodology proposed. During the construction of the model some intermediate results are shown helping to 
explain the choice of using specific methods instead of others. Lastly, the proposed methodology is applied for 
both case studies introduced in Chapter 3 and all four battery technologies of interest and validated with an 
empirical model. The lifetime results are analysed and discussed. 

4.1. Introduction 
As it was repeatedly mentioned before, battery lifetime is seen as one of the most vital parameters when 
designing a Solar Home System. For the estimation of the battery lifetime different battery parameters that 
affect it, need to be taken into account and combined dynamically. The interdependencies between the different 
battery parameters and aging mechanisms are very important to be modelled accurately. This study proposes a 
non-empirical dynamic battery lifetime estimation model that can be applied to different technologies, using 
stress factors as DOD and Temperature and capturing the different battery behaviours from the manufacturers 
datasheets. 

4.2. Aging Models 
Long term battery modelling can be expressed in many different ways such as battery state of health model, 
lifetime prediction model and battery aging or capacity degradation model. All of these models have as main goal 
to determine how long the battery can last before reaching obsolescence and how much irreversible damage has 
occurred in the battery throughout this time period. As it was already said before the End-of-Life of the battery 
happens when the battery has reached 80% of its rated initial capacity. The types of aging and the different 
lifetime prediction/capacity fading/aging model categories are explained in the following sections. 

 Types of Aging 4.2.1.

Capacity fading is defined as the loss of discharged capacity at which the battery operates, over time. This 
capacity loss can occur in inactive times, when the battery does not undergo cycling or when it is  stored and in 
times when the battery is exercised [27]. These two types of capacity fading are explained below. 

Calendar Aging 

Natural degradation of the battery occurs from aging and is directly connected with the temperature at which 
the battery operates or it is stored and in a lesser extend it is related to SOC of the battery. Throughout the years 
the battery loses a small percentage of its initial capacity due to aging.  

Cycling aging 

Cycle degradation occurs due to battery operation during charging and discharging cycles. It is strongly related to 
the temperature that the battery experiences during these cycles as well as the SOC/DOD of the battery.  
 

 Battery lifetime Modelling  4.2.2.

Capacity fading models or lifetime prediction models that have as indication the determination of the SOH of the 
battery enabling the estimation of the battery lifetime and its long term behaviour can be divided into two 
different categories. The first one consists of performance based models and the second one of weighted Ah-
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throughput models or otherwise cycle counting models. Performance based models work simulating and 
observing the change in specific battery performance characteristics predetermining the EOL as a threshold 
(minimum) value. When the performance drops under this value then the battery has no further use. The 
monitored performance parameters can be the battery capacity, charge acceptance or discharge rate of the 
battery. This method needs to have as an input the rate that the battery degrades in order to know when it 
reaches EOL. The weighted Ah throughput models on the other hand, use predetermined parameter values such 
as the number of cycles that the battery can undergo throughout its lifetime, the Ah-throughput or the time 
since the battery was manufactured in order to be able to predict the time that the battery has reached EOL [52].  
For this study the weighted throughput method was decided to be used as it is simpler and since it is not 
experimental the capacity fading rate of the battery was not known beforehand. Different performance based 
models as well as weighted throughput models are explained below. 

 Performance Based Models 

These models have the ability to simulate battery performance taking into account the aging processes that 
occur in the battery throughout its lifetime. These models can be: 

o Electrochemical Models: These, are the most complex and low speed models as they require extensive 
knowledge of the chemical as well as physical interaction of the batteries in order to be able to simulate 
in detail the battery conditions. Input information such as density, material porosity, volume of the 
electrolyte, etc. need to be given so that the determination of battery conditions such as temperature, 
electrolyte concentration, current, potential, etc. can be determined [44]. 

o Equivalent Circuit Models: For these models, the battery is represented by an equivalent electrical 
circuit with resistors, current and voltage sources, capacitors, etc. The prediction of the dynamic 
characteristics of the battery is the most common outcome from these types of models as the 
degradation and aging processes correspond to the changes of the values that are present at the 
equivalent circuit. These models cannot be used as lifetime prediction models as they are enable to 
capture stress factors as C-rate, DOD, etc. [44]. 

o Analytical Models with empirical data fitting: These models work by fitting and interpolating empirical 
data that have been obtained from actual experiments. The main challenges that these models have to 
overcome have to do with the amount of the data that is required as well as the way that they are going 
to link different battery stress parameters  and combine their effect to the battery lifetime [44].  

o Artificial neural networks (ANN): These models take as an input the operating conditions of the battery 
and have the ability to discover their relationship with the system outputs, which are the aging 
mechanisms of the battery. The in-depth understanding of the battery mechanisms is not necessary for 
the results to be obtained, but measurements need to be taken for this model to be conducted [44]. 

Damage accumulation model  

The damage accumulation model is a performance based model that is used to simulate mechanical failure of an 
object and it is a summation of the damage that was observed in the object throughout its lifetime. This model 
uses the rate at which the damage has happened, thus the rate of the capacity fading of the battery. This rate is 
described in the following Equation 4.1 [44]. 
 
 

𝑑𝜉(𝑡)

𝑑𝑡
= 𝜑(𝜉, 𝜎) 

 

 
(4.1) 

 
Where, 

 𝝃: The amount of damage, 

 𝝋: Function of the damage 𝜉 and the stress factor 𝜎 
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 Weighted Ah-throughput models 

These models are mainly based on information given from battery manufactures, assuming that the battery is 
able to achieve an overall Ah-throughput or number of cycles throughout its lifetime, when operating under 
specific stress conditions (DOD, Temperature, C-rate, etc.). The main advantage of this method is that the 
deviations from the standard operating conditions can be observed as they affect (increasing or decreasing) the 
Ah-throughput for certain events, making the real-life battery simulation more accurate. Thus, these models are 
more appropriate for times that the battery is cycling with different DOD levels and in a variation of ambient 
temperatures. The limitation of these models is that this stress factor deviation from the standard conditions 
during battery operation needs be modelled accordingly and as accurately as possible. The End-of-life of the 
battery is reached when the total Ah-throughput or number of cycles that occur from the summation of all the 
events taken place during battery operation so far, reaches or exceeds the predetermined total lifecycle value 
[44]. 

Palmgren Miners’ (PM) rule  

One of the most common weighted Ah-throughput or counting cycle models, that counts mechanical aging or 
failure of a component is Palmgren Miners’ rule.  This rule is able to measure the fatigue of a component after it 
went through stresses and aging. It states that the lifetime of a component after undergoing a series of loads is 
reduced by a finite fraction corresponding to each one of these load events. This reduction fraction is the ratio 
between the number of cycles that the element has undergone under a particular stress factor divided with the 
number of cycles that the element was supposed perform until reaching EOL when operating continuously under 
this specific stress factor. This fraction is shown in the Equation 4.2. The End-of-life of the element is reached 
when the Damage (D), which is the cumulative of the fractions of life reduction, reaches the unity [44], [51]. 

 

 
 

𝐷 = ∑
𝑛𝑖

𝑁(𝜎𝑖)

𝐸

𝑖=1

= 1 

 

 
 

(4.2) 

 
Where, 

• 𝒏𝒊: Number of cycles spent under a stress factor 𝜎𝑖  
• 𝑵(𝝈𝒊): Total Number of cycles for the EOL to be reached  
• 𝑬: Number of events taken place until the EOL condition is reached 
• 𝑫: Damage  at the battery for each one of these events 

 
The main difference between damage accumulation model and Palmgren Miners’ rule is that for the first the 
damage rate needs to be known in order to be applied, while for the latter the entire development of the 
capacity fading until the battery reaches the EOL needs to be predetermined [58] . In this project Palmgren 
Miners’ Rule is used, as the EOL conditions of the battery under specific stress have been extracted from 
manufacturer datasheets, for different technologies. In addition, damage accumulation model cannot easily be 
applied to the proposed model, because the rate of the damage for each technology is unknown and cannot be 
determined without conducting experiments on specific cells.  

 Important Characteristics of Battery Lifetime Models 4.2.3.

Being able to predict the estimated lifetime of a specific battery technology or brand is very important especially 
when a selection of one battery for an application needs to be made. In order for the lifetime prediction model 
to be accurate enough it needs to satisfy specific requirements such as extensive knowledge of the aging 
processes that occur in the battery, the important stress factors that induce or accelerate the aging of the 
battery and how and to what extent these stress factors interact leading to battery damage. More specifically, a 
lifetime prediction model is required to consider specific parameters and follow specific characteristics that lead 
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to some complexities. The main challenges that a lifetime prediction model needs to undertake and overcome 
and the main criteria that this model needs to satisfy are explained below: 
 

1) The operating conditions of the application need to be considered for the lifetime estimation. These 
conditions might require the use of many stress factors that have to be combined together in order to 
simulate the aging process of the battery accurately. This procedure could be very complex as the effects 
of many of the aging mechanisms occur simultaneously. 

 
2) Lifetime prediction needs to have predetermined threshold for the EOL of the battery. For this, it needs 

to be able to combine all the stress factors and aging effects of the battery into a single figure of merit 
(EOL) considering the severity of every stress factor to the aging process. 
 

3) The lifetime prediction needs to examine the aging processes in battery level and not in cell level as it is 
going to be applied in a specific application. Thus, the effects need to be examined of the battery scope 
and not cell scope. 
 

4) Lifetime prediction can only be useful if it is able to answer questions that have to do with application 
from user point of view such as: How long will a specific battery brand, (from a specific manufacturer) 
last when different applications and operating conditions are applied to it?  How long will a new and 
more advanced with different material composition battery design last in a specific application? 
 

5) The most important and complex challenge that a lifetime prediction model needs to overcome is the 
lack of lifetime related data availability by the different battery manufacturers. As it is expected, 
manufacturers are not able to test their batteries for a full range of different operating conditions or 
applications. For renewable energy systems there are very few complete datasets that give lifetime 
information and curves under different ambient conditions and stress factors. Thus, the biggest 
challenge of a lifetime prediction method is being able to predict the battery lifetime under conditions 
for which no lifetime tests were undertaken or even if they were they used non-similar conditions to the 
ones that the prediction is examining [59]. 
 

The dynamic capacity fading and lifetime prediction methodology that was constructed and followed in this 
study was able to overcome all of these challenges to satisfying degree thus, it is considered to be one of the 
unique contributions of this work. More specifically points 1 to 4 are satisfied completely while for point 5 some 
assumptions had to be taken.  All these are going to be argued in detailed in the conclusions section of this 
chapter after explaining the followed methodology. The detailed methodology will be explained in the following 
sections. 

4.3. Methodology 
The lifetime estimation methodology that is followed in this study, is based in an idea that was conducted in the 
university for the IEEE Africon Conference [2]. After taking this idea, many layers of complexity were added to it 
in order to create a dynamic and a more accurate model for battery capacity fading and battery lifetime 
estimation. The methodology was validated while compared to an empirical model, adjusting it in the specific 
Solar Home System load cases used in this project. The following section explains thoroughly the methodology by 
presenting at the beginning the ideas used for the paper and step by step adding the different complexities until 
the full model is constructed.  

 Overall Lifetime Estimation Methods 4.3.1.

This method consists of a simple lifetime estimation equation based on energy throughput and average DOD. The 
average DOD was calculated using three different methods in order to be as accurate as possible. These different 
methods are presented in the next section. The cycle life of the battery and first term of Equation 4.3 is 
calculated using a lookup fitting function (cycle life function) extracted from manufacturer datasheets. The third 



Thekla Papakosta 
Master of Science Thesis 

32 

 

Thekla Papakosta  Master of Science Thesis 

term of the equation indicates the total cycling that the battery undergoes throughout one year of simulation [2]. 
Thus, the battery lifetime is calculated by the following Equation 4.3. 
 

L = 𝑐𝑙 ×  𝐷𝑂𝐷𝑎𝑣𝑔 ×
2 × 𝐸𝑛𝑜𝑚

𝐸𝑡ℎ𝑟,𝑡𝑜𝑡
 

 
(4.3) 

 
Where,  

 𝑳: the battery lifetime in years, 

 𝒄𝒍: the cycle life as calculated from the lookup function, 

 𝑫𝑶𝑫𝒂𝒗𝒈: the total average DOD, 

 𝑬𝒏𝒐𝒎: the nominal battery capacity, 

 𝑬𝒕𝒉𝒓,𝒕𝒐𝒕: the total energy throughput. 

Cycle Life Function  

Most battery manufactures provide in their datasheets a cycle life curve as a function of DOD. This curve 
indicates the maximum number of full cycles that a battery can undergo throughout its lifetime when operating 
at a constant DOD as shown in Figure 4-1. First, these curves were extracted from the battery datasheets for four 
technologies and a constant temperature, and a fitting lookup table was created for each one of these curves. 
This lookup table was approximated into a polynomial function that represents cycle life for a variation of DODs. 

 

 
 

Figure 4-1: Reconstruction of battery cycle curve in respect to DOD for sealed lead-acid battery [as shown in [2]] 

 
The polynomial function is a 4th order approximation that was applied for all different technologies used in this 
project.  The following Equation 4.4 represents the cycle life approximation lookup function.  
 
 

𝑐𝑙 = 𝑝4 × 𝑑4 + 𝑝3 × 𝑑3 + 𝑝2 × 𝑑2 + 𝑝1 × 𝑑 + 𝑝0 
 

(4.4) 
 
Where, 

 𝒄𝒍: cycle life 

 𝒑𝟎 to 𝒑𝟒: fitting coefficients of the polynomial function, 

 𝒅: DOD of the battery 
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This function as it is, is not taking into account temperature effects. As it has already been mentioned, 
temperature has a damaging effect on the cycle life of the battery. In order for the cycle life function to account 
for the battery temperature sensitivity too, another lookup function was constructed and used. Cycle life curves 
in respect to DOD for a variety of temperatures were extracted from the manufacturer datasheets. At this point 
it is worth pointing out that finding these curves for all the battery technologies examined in this report was a 
challenge consuming a lot of time and being a frustrating procedure. For some of the technologies, these curves 
were not able to be found for more than one temperature so they were normalized to that reference 
temperature by using the temperature linearity that the cycle life for these curves represents. 
 
For VRLA (Sealed lead- acid) and flooded lead acid, the cycle life curves for different temperatures were found 
directly from the datasheets. For NiCd and LiFePO4 the curves were normalized to the reference temperature of 

20 
o
C. More specifically through the investigation of NiCd battery, the datasheets found included only the cycle 

life curves for temperature equal to 20 oC. In addition, a curve representing the lifetime sensitivity on the 

temperature was also found as shown in Figure 4-4. In order to approximate the lifetime curves for 20-45 
o
C a 

constant ratio between the two cycle life-DOD curves was assumed for different ambient temperatures. For 

example, the reference curve of 20 
o
C was multiplied by 0.91 for 25 

o
C, by 0.84 for 30 

o
C, etc. The same 

procedure was followed for LiFePO4 batteries. The only difference is that the cycle life curve that was found was 

for 23 oC so it first had to be normalized to 20 oC and the reconstruct the curves for the other temperatures [60]. 
The reconstructed curves for VRLA and flooded lead acid batteries as derived directly from the datasheets are 
shown in Figure 4-2 and Figure 4-3 . The temperature sensitivity curves for NiCd and LiFePO4 are shown in Figure 
4-4 and Figure 4-6 and their reconstructed cycle life curves for different temperatures are shown in Figure 4-5 
and Figure 4-7, respectively. The method for normalizing and creating the different temperature curves was 
initially used in a SIP II project [60]. 
 

 
Figure 4-2: Reconstruction of battery cycle life curve in respect to DOD for different temperatures for sealed lead-acid 

battery [36] 
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Figure 4-3: Reconstruction of battery cycle life curve in respect to DOD for different temperatures for flooded lead-acid 

battery [37] 

 
 
 
 

 
Figure 4-4:Temperature dependency of cycle life of NiCd batteries 

normalized to the reference temperature 20 
o
C [60] [61] 

 
 

Figure 4-5: Reconstruction of battery cycle curve in respect to 
DOD for different temperatures for NiCd batteries [40] 
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Figure 4-6: Temperature dependency of cycle life of LiFePO4 

batteries normalized to the reference temperature 20 
o
C [60] [62] 

 
Figure 4-7: Reconstruction of battery cycle curve in respect to 

DOD for different temperatures for LiFePO4 batteries [41] 

 
The polynomial function that was approximated taking into account DOD as well as Temperature effects, 
exploiting the linearity difference that cycle life presents in different temperatures is shown in the Equations 4.5 - 
4.8.  
 

𝑐𝑙 = 𝑐𝑙(𝑇𝑟𝑒𝑓) − 𝑓 × 𝐷𝑐𝑙  (4.5) 

 
Where, 

 

𝑐𝑙 (𝑇𝑟𝑒𝑓) = 𝑝4 × 𝑑4 + 𝑝3 × 𝑑3 + 𝑝2 × 𝑑2 + 𝑝1 × 𝑑 + 𝑝0 

 

 
(4.6) 

 
𝑓 = 𝑝𝑙𝑖𝑛1

 × 𝑇𝑎𝑣𝑔 + 𝑝𝑙𝑖𝑛0
 

 

 
(4.7) 

 
𝐷𝑐𝑙 = 𝑝diff4

× 𝑑4 + 𝑝diff3
× 𝑑3 + 𝑝diff2

× 𝑑2 + 𝑝diff1
× 𝑑 + 𝑝diff0

 

 

 
(4.8) 

 
Where, 

 𝒄𝒍: cycle life of the battery 

 𝒇: linear factor 

 𝑫𝒄𝒍: difference of cycle life between two temperature curves 

 𝒑𝟎to 𝒑𝟒: the fitting coefficients of the polynomial function for the reference temperature, 

 𝒑𝒍𝒊𝒏𝟎
 and 𝒑𝒍𝒊𝒏𝟏

: the fitting coefficients of the linear difference approximated between the curves, 

 𝒑𝒅𝒊𝒇𝒇𝟎
to 𝒑𝒅𝒊𝒇𝒇𝟒

: the fitting coefficients of the curve created when subtracting a temperature curve from       

the reference one, 

 𝑻𝒓𝒆𝒇: The reference temperature, 

 𝑻𝒂𝒗𝒈: The average operating temperature of the battery extracted from the simulation. 

 𝒅: DOD of the battery 
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As it can be seen the cycle life equation approximated including the temperature effect in the cycle life of the 
battery is more complex that the one that does not. To begin with, a reference temperature is set for the cycle 
life curve which for most technologies is 20 oC. After subtracting the different temperature cycle curves, a 
linearity was observed between them and the reference curve, thus a linear factor was approximated as a linear 
function and the difference between any curve from the temperature as a 4th order polynomial lookup function. 
The linear factor is positive when the average operating temperature of the battery is lower than the reference 
temperature and negative when this temperature is higher. The coefficients of the cycle life lookup function for 
all the different technologies that were used are shown in Table 3 to Table 5. 
 
Table 3: Fitting coefficients of the polynomial function for the reference Temperature (20 oC) for four battery 

technologies 

Coefficients  Gel Lead acid Flooded Lead acid LiFePO4 NiCd 

𝒑𝟎 2.30E+04 2.08E+04 5.00E+04 1.57E+04 

𝒑𝟏 -1.12E+05 -9.83E+04 -7.03E+04 -7.14E+04 

𝒑𝟐 2.53E+05 2.13E+05 2.13E+05 -1.30E+05 

𝒑𝟑 -2.71E+05 -2.19E+05 3.09E+05 -1.03E+05 

𝒑𝟒 1.11E+05 8.66E+04 -1.56E+05 3.09E+04 

 
Table 4: The fitting coefficients of the linear difference approximated between the curves for four battery technologies 

Coefficients  Gel Lead acid Flooded Lead acid LiFePO4 NiCd 

𝒑𝒍𝒊𝒏𝟎
 -3.785774188 -3.911421039 -2.80769231 -3.33333333 

𝒑𝒍𝒊𝒏𝟏
 0.190763893 0.196177387 0.153846154 0.171111111 

 
Table 5: The fitting coefficients of the curve created when subtracting a temperature curve from the reference one for 
four battery technologies 

Coefficients  Gel Lead acid Flooded Lead acid LiFePO4 NiCd 

𝒑𝒅𝒊𝒇𝒇𝟎
 2.89E+03 2.45E+03 6.49E+03 1.42E+03 

𝒑𝒅𝒊𝒇𝒇𝟏
 -1.58E+04 -1.17E+04 -9.14E+03 -6.43E+03 

𝒑𝒅𝒊𝒇𝒇𝟐
 3.88E+04 2.54E+04 -1.69E+04 1.15E+04 

𝒑𝒅𝒊𝒇𝒇𝟑
 -4.44E+04 -2.64E+04 4.02E+04 -5.36E+04 

𝒑𝒅𝒊𝒇𝒇𝟒
 1.91E+04 1.07E+04 -2.03E+04 2.78E+03 

 

 Estimating Average DOD 4.3.2.

 
Parameters such DOD, SOC and energy throughput of the battery were able to be extracted through the energy 
management simulation that explained in Chapter 3, using Architecture 1. The most important idea concerning 
the accuracy of the lifetime estimation method is the concept of active DOD/SOC. In general, the DOD/SOC that 
is being considered in lifetime estimation methods, consists of the DOD extracted throughout the overall 
simulation. However, it is important to make a distinction between the DODs at which the battery actually 
undergoes through cycling, thus being in active operation, and the DODs that happen in times that the battery is 
not cycling. These “inactive” periods, can be considered as the times that the battery lies at some DOD/SOC 
levels without being charged or discharged mostly times when it is full or empty. These time intervals when the 
battery is not in active operation are being excluded from the average calculations introducing the term active 
DOD/SOC. More specifically active DOD/SOC refers to the State-of-Charge or Depth-of-Discharge of the Battery, 
while it undergoes active cycling [2]. 
 

Having in mind the concept of active DOD/SOC three different overall methods for estimating the DOD values 
were conducted. Coarse estimation method, Zero crossings estimation method and fixed micro-cycles estimation 
method. 
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4.3.2.1. Coarse estimation method 

The average DOD as well as the total energy throughput, were extracted by considering all the time periods, 
active and inactive for one year. The average DOD for the coarse lifetime estimation method is calculated as 
shown in Equation 4.9. 
 
 

𝐷𝑂𝐷̅̅ ̅̅ ̅̅ =
∑ 𝐷𝑂𝐷𝑡

̅̅ ̅̅ ̅̅ ̅525600
𝑡=1

525600
 

 
 

 
(4.9) 

 
Where, 

 𝑫𝑶𝑫̅̅ ̅̅ ̅̅ ̅: the average DOD, 

 𝒕: the time (one minute resolution), 

 𝑫𝑶𝑫𝒕: the DOD corresponding to every minute. 
 

4.3.2.2. Zero-crossings based estimation method 

 
While the coarse lifetime estimation method is enable to capture the operation of the battery accurately as it 
depends on the total average DOD of the battery, the zero-crossings method takes into account short  and deep 
current cycles, by accounting all the micro-cycles that take place through the battery cycling. 
 

ZCs micro-cycle 
A micro-cycle is a small cycle of variable duration that exists between two consecutive current zero crossings [2].  
From now on we will be referring to this time interval as a ZCs micro-cycle.  
 
For this method all the zero current transitions in the one minute resolution data, were taken into account. The 
concept of zero crossings is explained more graphically through Figure 4-8. The average DOD is calculated by 
taking into account the average DODs through the non-zero intervals between the zero crossings, thus, using 
only the time periods when the battery actually undergoes cycling. 
 
 

 
Figure 4-8:  Illustration of the current intervals taken into account for the ZCs method [as shown in [2]] 

 
While the lifetime is calculated by using the same equation that was used in the coarse lifetime estimation 
method with and without temperature effects (Equations 4.4, 4.5) the average DOD used in this method is 
calculated as follows. 
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𝐷𝑂𝐷̅̅ ̅̅ ̅̅ =
∑ 𝐷𝑂𝐷𝑖

̅̅ ̅̅ ̅̅ ̅ × 𝐸𝑡ℎ𝑟𝑜𝑢𝑔ℎ𝑝𝑢𝑡𝑖

𝑁
𝑖=1

∑ 𝐸𝑡ℎ𝑟𝑜𝑢𝑔ℎ𝑝𝑢𝑡𝑖
𝑁
𝑖=1

 

 

 
 

(4.10) 

 
Where 

 𝑫𝑶𝑫̅̅ ̅̅ ̅̅ ̅: Combined average active DOD due to all the micro-cycles, 

 𝑫𝑶𝑫𝒊
̅̅ ̅̅ ̅̅ ̅̅ : Average active DOD in the 𝑖𝑡ℎ micro-cycle, 

 𝑬𝒕𝒉𝒓𝒐𝒖𝒈𝒉𝒑𝒖𝒕𝒊
: Total energy throughput in the  𝑖𝑡ℎ micro-cycle, 

 𝑵: Number of micro-cycles throughout the year. 

4.3.2.3. Fixed Micro-cycles estimation method 

 
After considering the two aforementioned methods that were conducted for the conference paper the fixed-
micro-cycle method was also used for the calculation of the average DOD approximation. This method takes into 
account fixed energy throughput intervals for the calculation of the average DOD that is going to be used in the 
lifetime equation method. Many tests were taken with energy throughput intervals starting from 10 Wh to 
10000 Wh with a step equal to 10 as well as intervals equal to the optimum battery size or twice the value of the 
optimum battery size. The average DOD was calculated using the same equation as the zero crossing method 
uses (Equation 4.10) but the intervals were counted for the consumption of a fixed amount of energy 
throughput.  
 
Comparing this fixed-micro-cycle method with the other two methods, it was observed that while the fixed Ah-
throughput interval was increasing the closer the results were to the coarse battery lifetime estimation method. 
This observation makes sense and can be explained by the fact the coarse lifetime estimation method works as if 
it takes a huge interval over all the data points we have for the whole year (525600 points). Thus, the higher the 
interval is, the closer the fixed micro cycle method to the coarse estimation method is. In addition, when the Ah-
throughput intervals were set to be non-constant but each time equal to the average value of the Energy 
throughput of the ZCs calculation intervals, the fixed-micro cycle method showed very similar estimation to the 
ZCs method, thus it was decided to not be used moving forward. All these observations are shown in Figure 4-9 
when all of the methods were applied for yearly simulations and variable battery size. 
 
Moving forward the fixed micro-cycle method is not going to be used as it was shown that it is validated only 
when the fixed intervals are equal to the ZCs average throughput intervals. Thus, ZCs and coarse lifetime 
estimation method are going to be analysed and compared in more depth. 
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Figure 4-9: Comparison of lifetime estimation methods for variable battery size for sealed lead-acid battery. 
 The fixed micro-cycle method was used with varied fixed Ah-throughput 

 interval and is being represented by the normal lines  

4.3.2.4. Overall lifetime estimation Results  

 Testing and Comparison of Methods 

The comparison of the three different lifetime estimation methods was made by considering one of the load 
cases that were mentioned in Chapter 2. Case study 2 consisting of medium power load profile and a 300Wp PV 
panel, using Architecture 1, and optimum battery size 1.15 kWh, as described in Chapter 3, was simulated for 
one year on MATLAB. After the yearly simulation, the methodologies of coarse lifetime estimation, ZCs lifetime 
estimation and fixed micro-cycles lifetime estimation were applied using Equations 4.9 for the first and 4.10 for 
the two others, in order to determine the different average DODs to be used. Lastly using Equation 4.3 in 
combination with Equation 4.4, the lifetime of the battery was calculated. This methodology was applied for the 
optimum battery size as well as for a variation of different battery sizes in order to examine how the lifetime of 
the battery changes with the battery sizing.  
 
First, a comparison between the two DOD estimation methods, coarse and ZCs is done without the use of 
temperature effects (the two methods used for the conference) in order to decide which one is the most 
accurate and is going to be used for the next steps. Figure 4-10 shows a histogram of the different DOD levels 
that the battery experiences throughout one year including active and inactive battery periods as well. However 
Figure 4-11 shows only the active DOD levels that the battery experiences during this year, as being measured 
with the ZCs estimation method. 
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Figure 4-10: Histogram for DOD value used for coarse 

lifetime method [2] 

 
Figure 4-11: Histogram showing only active DOD values as 

used in ZCs method [2] 

 
 
The differences between these two histograms have to do with the fact that Figure 4-10 includes all the inactive 
periods of the battery as well as the active ones. It is worth pointing out that the DODs with values between 0 - 
0.02 were excluded from this figure because it was very disproportionate otherwise, as they represent all the 
times that the battery was full and inactive. The average DOD values that were calculated for both methods 
coarse and ZCs are presented in Table 6. 
 

Table 6: Average DOD values over a simulation of one year with two different methods 

Parameter Value [-] 

Average DOD 0.33 

Average active DOD (ZCs) 0.36 

 
As can be observed from Table 6 there is significant difference between the overall average DOD values obtained 
from the coarse method and the active DOD value obtained from the ZCs method. The overall average DOD is 
lower than the active one, thus coarse estimation it is considered to be a more optimistic method for battery 
lifetime. 

 Observation of how battery size affects battery lifetime 

These estimation methods were also applied for variable battery sizing in order observe and extract some 
conclusions of how the battery sizing affects the lifetime of the battery. This application is shown in Figure 4-12. 
 
The general trend that is followed in Figure 4-12 is that while the size of the battery increases the lifetime of the 
battery decreases. And this is logical because as the battery is bigger the variation of DOD is smaller having 
smaller average values as well, thus higher lifetime. In other words, in larger sizes the battery does not undergo 
deep charge-discharge cycles avoiding extensive fatigue. However, between the vertical dashed lines in the 
figure a weird curve is observed showing smaller battery sizes to have higher cycle life than larger battery sizes. 
An explanation for that is that at lower capacities between these size intervals there are more times that the 
battery fails to meet the load. In these time periods the battery lies empty and does not undergoing cycling. On 
the other hand, while going to higher capacities the battery is able to cycle more and this extra number of cycles 
are considered and added at the overall battery lifetime leading to smaller lifetime in the end. The main 
conclusion is that the battery lifetime curve in terms of sizing is depended on the load profile and more 
specifically at the usage thus the cycling that the battery undergoes for specific PV-load cases. 
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Figure 4-12: Sealed lead-acid battery lifetime calculated from ZCs estimation method for variable battery sizes 

 Validation of ZCs method 

In order for the zero crossings lifetime estimation method to be validated and have a meaningful comparison, an 
empirical model was adopted to the specific Solar Home System Model used in this report for Lithium Iron 
Phosphate batteries and Case study 2. The empirical model uses capacity fading equations for describing the 
degradation and aging mechanisms of LiFePO4 battery [63]. This model was also contacted at the university. The 
equations that the empirical model uses, and were adopted in the SHS model for the comparison are: 
 

𝑐𝑓 = ∑ ((𝑘𝑠1
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𝐴ℎ𝑚

𝐴ℎ𝑚−1

 
(4.12) 

 
Where 

 𝒄𝒇: the capacity fading experienced by the battery, 
 𝒊: is an event or arbitrary length of time, 

 𝑬: the total number of events taking place throughout the simulation, 

 𝑨𝒉𝒊: the total charge processed through an event I, 

 𝒌𝒔𝟏to 𝒌𝒔𝟒: are the experimentally determined constants  

 𝑺𝑶𝑪𝒅𝒆𝒗: is the normalized standard deviation from 𝑆𝑂𝐶𝑎𝑣𝑔 in an event. 

 
For the comparison of the ZCs and coarse lifetime estimation methods to the empirical model, the temperature 
was kept constant, thus the last exponential temperature factor in Equation 4.11 was set to be equal to unity. 
The lifetime results for LiFePO4 batteries of the two methods are shown in Table 7. 
 
Table 7: Comparison of the empirical model to ZCs and coarse lifetime estimation method 

 Empirical Model Coarse lifetime estimation ZCs lifetime estimation 

Lifetime [years] 22.88 24.28 23.77 

Deviation from empirical 
model 

- 6.1 % 3.8 % 
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The lifetime results show that the ZCs method deviates from the empirical model by less than 4% while the 
coarse method deviates from the empirical model by almost 6%. The main conclusion is that the ZCs estimation 
is more accurate than the coarse lifetime estimation method, as it takes into account the actual cycling of the 
battery, the times that the battery is really active. The ZCs method is the one that is going to be used forward for 
the estimation time intervals to be considered for the DOD values.  

 Temperature effect validation 

All of the above results were not considering the temperature effects. In order to compare whether or not the 
temperature plays an important role to the cycle life function, the cycle life of the battery using Equation 4.4 that 
does not include temperature and the cycle life of the battery using Equations 4.5-4.8 that include temperature 
effects, was calculated and illustrated for variable battery sizes. The different cycle lives were applied to Equation 
4.3 calculating the lifetime of the battery in years. This is in shown in Figure 4-13. It can indeed be seen that the 
lifetime of the battery including the effect of the temperature is shorter than when this is not the case. 

 
 

Figure 4-13: Sealed lead-acid battery lifetime comparison with and without Temperature inclusion 

 Lifetime results for different Technologies 

The lifetime results of different battery technologies conducted by applying ZCs lifetime estimation method 
including temperature for one year of simulation for optimum battery size for Case studies 1 and 2 are shown in 
Table 8 and Table 9. 
 
Table 8: Battery lifetime for different Technologies for low power LP (optimum battery size=370 Wh) 

Battery Technology Cycle life [number of cycles] Cycle life [years] 

Sealed lead-acid 7.79e+03 15.67 

Flooded lead-acid 7.16e+03 14.39 

NiCd 5.59e+03 11.22 

LiFePO4 2.78e+04 55.82 

 
Table 9: Battery lifetime for different Technologies for medium power LP (optimum battery size=1150 Wh) 

Battery Technology Cycle life [number of cycles] Cycle life [years] 

Sealed lead-acid 3.76e+03 4.97 

Flooded lead-acid 3.46e+03 4.57 

NiCd 2.04e+03 2.70 

LiFePO4 1.57e+04 20.70 
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When comparing the different battery technologies, a general trend is shown in both Case studies. Lithium Iron 
Phosphate batteries (LiFePO4), exhibit the higher lifetime, having a big difference from the other technologies. 
Lead Acid batteries present similar lifetime between them, with flooded having a little bit shorter lifetime than 
sealed lead acid. Lastly NiCd batteries show the shortest lifetime of all the technologies. 
 
When comparing different Case studies it is clear that the lifetime of the battery is very increased in low power 
LP compared to medium power LP. This happens because the battery undergoes a lot less stress in the low LP 
case as there are not so many peaks, thus not as many as deep charging and discharging cycles as in Case study 2. 

 Non-empirical dynamic battery lifetime estimation method 4.3.3.

Even though the overall lifetime estimation methodology was validated, it still is enable to capture the real 
battery behaviour as it is using yearly average values. In real battery operation, this is not the case. The battery 
degrades dynamically and gradually over its lifetime. This battery behaviour was tried to captured and modelled. 
 
The methodology that was followed for the construction of the dynamic battery lifetime estimation method 
consists of dynamic capacity fading that is modelled by multiple stages. A simple illustration of the steps followed 
and the methods included for the dynamic capacity fading is shown in Figure 4-18. First, a cycle counting method 
in combination with a fatigue estimation method as found from the literature and adopted to the model are 
going to be explained showing some intermediate results. Later the overall methodology will be discussed 
thoroughly. 

4.3.3.1. Rainflow Counting Algorithm  

This method is broadly used for the analysis of fatigue data allowing the application of Palmgren Miners’ (PM) 
rule for the assessment of the damage that was caused in the battery. The main function of this algorithm is to 
reduce the number of cycles that happened during an event into groups of cycles that experience the same 
stress. The number of groups is given by the user and is otherwise called bin number, representing the number 
of classes that you wish to divide the stress profile. The first step is to apply a stress profile over time to the 
algorithm. This load profile is given as an input to the rainflow counting algorithm, which finds the peaks and 
valley from this stress-time signal and generates full and half cycles with the same stress. Once the cycles are 
counted, another subroutine is used to create histograms that show the frequency of each stress in number of 
cycles. The stress factors that were used for this project are DOD and temperature. Using this method we 
minimize the total amount of data that need to be analysed for every event and PM rule can easily be applied at 
a later stage in order to calculate the total damage occurred during a specific event [52]. A representation of how 
the rainflow algorithm works is shown in Figure 4-14. It can be seen that full and half cycles are taken into 
account by finding the peaks and valleys in the DOD profile signal given. 
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Figure 4-14: Rainflow Counting algorithm for cycle extraction applied to a 3 day DOD profile extracted from the simulation 

[64] 

 
In order to be able to show in more detail how the rainflow algorithm works in combination with PM rule, some 
intermediated results were extracted from the simulation and shown below. To begin with, the simulation was 
run for one year, using medium load profile (Case study 2) and the DOD variation of the battery for the whole 
year was extracted in a minutely resolution. This DOD profile (Figure 4-15) was fed to the rainflow algorithm 
function. This function was adopted from MathWorks, written by Adam Nielson and changed accordingly in 
order to be able to fit to the dynamic capacity fading code [64]. After feeding this load profile to the rainflow 
function and set the bin number, for now 10, the number of cycles with specific stress is counted and grouped, as 
well as the total number of full cycles is calculated. This cycle frequency for the one year simulation is illustrated 
by a histogram as shown in Figure 4-16 and the detailed results are shown in Table 10. 

 
Figure 4-15: Daily DOD profile as extracted from one year of simulation 

 



45 Battery Lifetime Estimation  
 

Thekla Papakosta  Master of Science Thesis 

 
 

Figure 4-16: Histogram expressing the frequency of the cycling the battery has undergone for  specific stresses, grouped in 
ten bins, for one year of simulation 

 
Table 10: Results of grouped cycles from rainflow algorithm with their corresponding stress for one year of simulation 

Group Number DOD variation (stress) Full Cycles (n) Cycles until EOL (N) 

1 0.0400 123 1.8910 e+04 

2 0.1200 161 1.2720 e+04 

3 0.2000 80 0.8650 e+04 

4 0.2800 96 0.6087 e+04 

5 0.3600 276 0.4524 e+04 

6 0.4400 49 0.3568 e+04 

7 0.5200 97 0.2931 e+04 

8 0.6000 20 0.2436 e+04 

9 0.6800 150 0.2015 e+04 

10 0.7600 45 0.1708 e+04 

Total Number of Cycles 1097 - 

 
When applying Palmgren Miners’ rule the numerator of the damage fraction represents the number of cycles (n) 
for a specific stress (DOD) as extracted from the rainflow algorithm (3rd column of Table 10), while the 
denominator is the number of cycles that correspond to the same stress until the battery reaches EOL, as 
extracted from manufacturer datasheets (N) (4th column of Table 10). Figure 4-17 shows the reconstructed cycle 
life curve of the sealed lead acid battery used in this study, and the projection lines show the DOD stresses and 
their corresponding cycle life that was used in PM rule. The cycle life values illustrated by the projection curves in 
this figure are the values shown in the last column of Table 10. 
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Figure 4-17: Stresses extracted from rainflow algorithm and their corresponding End-of-life cycle number for Sealed lead 

acid battery 

 
The cumulative Damage for the one year simulation is calculated as follows: 
 

𝐷 = ∑
𝑛𝑖
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(4.13) 

 
It can be seen that the damage that the battery has undergone in one year equals to 26%. The battery reached 
EOL when this damage becomes 100%. Thus it represents almost ¼ of the overall damage that the battery can 
undergo until reaching EOL.  

4.3.3.2. Detailed explanation of the overall methodology 

 
While the battery starts cycling, using power management of Architecture 1, as discussed in Chapter 3, the 
consecutive current zero crossings are found. The overall DOD profile between these two consecutive ZCs   
includes active as well as inactive periods. In order for the inactive periods to be eliminated and not take part at 
the cycling degradation of the battery, their value is being zeroed and not accounted later at the PM rule. 
 
This DOD profile including only the active cycling time periods of the battery is being fed into the rainflow 
counting algorithm. The bins at the rainflow algorithm were set to be 1000 for higher accuracy. While this 
algorithm computes the number of cycles that the battery has undergone under specific values of DOD, the 
lookup function for the cycle life including temperature and DOD effects is used to compute the overall cycling 
that the battery could undergo if it was operating constantly under the DOD values found from the rainflow. The 
temperature that is used at the lookup function equals to the average temperature extracted from the 
simulation for the time period between these consecutive zero current crossings (for the ZCs micro-cycle).  
 
After that a cumulative Palmgren Miners’ rule is applied using the cycling from the rainflow (not taking into 
account the first bin with the inactive zero stress values) as well as the cycling from the lookup function, it 
calculates the total damage that happens to the battery during the time period between the ZCs micro-cycle. The 
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damage is calculated as a percentage of the total cycle life of the battery. As it was already said before, the EOL 
of the battery is set to when the battery capacity reaches 80% of its initial capacity. In addition the EOL of an 
element is defined when the cumulative damage has reached the unity. Combining these two statements the 
equation that was used for the calculation of the capacity fading in Wh that the battery has undergone between 
these consecutive zero current crossings is the following: 
 

𝑐𝑓𝑍𝐶𝑠 = 0.2 × 𝐷(𝑍𝐶𝑠) × 𝑄𝑢𝑝𝑑𝑎𝑡𝑒𝑑 (4.14) 

 
Where, 

 𝒄𝒇𝒁𝑪𝒔: the capacity that consumed from the battery in [Wh] during a ZCs micro-cycle, 

 𝑫(𝒛𝒄𝒔): the damage that the battery has undergone as a percentage, 

 𝑸𝒖𝒑𝒅𝒂𝒕𝒆𝒅: real time maximum available battery capacity 

 
The factor of 0.2 in the Equation 4.14, indicates that the battery reaches EOL at 80 % of its initial capacity. The 
Battery capacity that is used at the equation symbolizes the capacity that the battery has at the specific time 
(real time battery capacity) that has been cycled. The remaining battery capacity is calculated after subtracting 
the capacity fading that has been calculated from Miners’ rule from the battery capacity that the battery had 
before the ZCs event.  
 
After reducing the battery capacity by a percentage it is checked whether or not the battery has reached 80% of 
its maximum initial capacity, thus EOL. If this is not the case, the battery continues cycling having the updated, 
reduced battery capacity until the next current zero crossing occurs, and the same procedure is repeated until 
End-of-life. When the EOL is reached, the model gives as an output the lifetime of the battery technology used, in 
years. It is worth pointing out the after every decrease in the battery capacity the overall maximum and 
minimum charging and discharging capacity values of the battery are updated in order to match the new capacity 
requirements. 
 
It is worth pointing out that this capacity fading method is very dynamic as the resolution of the events is not in 
years or months but in ZCs micro-cycles. The capacity fading is happening for every zero crossings micro-cycle 
that the battery undergoes, thus the aging phenomena are accounted in very small battery cycling intervals 
making the methodology very realistic and accurate. 

Efficiencies 

In order for the dynamic capacity fading code to be as accurate as possible, different efficiencies were used for 
different battery technologies. The efficiencies of the different technologies were kept constant throughout the 
simulation and their value was decided after comparing the efficiencies of the same technologies from different 
sources [65] [66] [67] [68] [69]. It has been found from the literature that Lithium ion batteries and more 
specifically LiFePO4 have the highest efficiency of all the battery technologies while NiCd batteries have the 
lowest efficiency of all the technologies used. Lead acid batteries do experience high efficiencies with flooded 
batteries having 5% lower efficiency than VRLA batteries. Table 11 shows the efficiencies used for the different 
battery technologies. 
 

Table 11: Different efficiencies used for different battery technologies 

Technology Efficiency [-] 

LiFePO4 0.93 

Sealed lead acid 0.90 

NiCd 0.78 

Flooded lead acid 0.85 
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Figure 4-18: Block diagram of the steps followed for modelling dynamic capacity fading 
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4.3.3.3. Calendar aging 

The concept for the calendar aging, as also described at the beginning of this chapter has to do with irreversible 
battery damage that occurs in times when the battery is resting, thus being inactive and not undergoing cycling. 
The main cause of the calendar aging is the temperature and not the SOC/DOD of the battery [70].  Most of the 
studies do not take into account the battery SOC when they measure calendar aging but mostly temperature, 
thus this is what it was followed for the approach in this study too [71].  
 
In order to perform calendar fading the inactive periods of the battery were isolated from the active and the 
temperature profile between these inactive periods was used. It is worth pointing out that due to lack of 
information for all the battery technologies calendar fading was performed only for research and observation 
purposes for Sealed lead-acid batteries and it is not used further in the model. 
 
After the inactive periods were calculated, curves from the same battery datasheets that were used for sealed 
lead-acid batteries before, were found and fitted for different temperatures. A reconstruction of the linear 
curves of battery capacity fading due to calendar aging in respect to inactive time for different temperatures is 
shown in Figure 4-19. 

 
Figure 4-19: Reconstructed calendar aging curves for Sealed lead-acid [data sourced from [36]] 

 
After fitting the curves into linear polynomials a relationship between them was found by considering the curve 
of 20 oC as a reference one and subtracting the slopes of the other curves from the reference. The relationship 
between the slope difference was not linear but it was fitted as a third degree polynomial and the curve is shown 
in Figure 4-20. 
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Figure 4-20: Slope difference fitting curve from the reference slope 

 
The calendar fading was modemed as a linear function with slope depending on the temperature which is 
calculated form the third degree polynomial of the temperature difference. The equations used for calendar 
fading of sealed lead acid battery are: 
 

𝑐𝑎𝑙𝑒𝑛𝑑𝑎𝑟 𝑓𝑎𝑑𝑖𝑛𝑔 (% 𝑄𝑁)

= 𝑠𝑙𝑜𝑝𝑒(𝑇𝑎𝑣𝑔)

× 𝑖𝑛𝑎𝑐𝑡𝑖𝑣𝑒 𝑡𝑖𝑚𝑒 𝑝𝑒𝑟𝑖𝑜𝑑 [𝑦𝑒𝑎𝑟𝑠] + 100 

  
(4.15) 

 

𝑠𝑙𝑜𝑝𝑒(𝑇𝑎𝑣𝑔) = 𝑠𝑙𝑜𝑝𝑒(𝑇𝑟𝑒𝑓) − (𝑏1 × 𝑇𝑎𝑣𝑔
3 + 𝑏2 × 𝑇𝑎𝑣𝑔

2

+ 𝑏3 × 𝑇𝑎𝑣𝑔 + 𝑏4) × 𝑎𝑏𝑠(𝑠𝑙𝑜𝑝𝑒(𝑇𝑟𝑒𝑓)) 

 
(4.16) 

 
Where, 
 

 𝒑𝟏, 𝒑𝟐: linear fitting coefficients of the fitting curves, 

 𝑻𝒂𝒗𝒈: average temperature of inactive intervals, 

 𝑻𝒓𝒆𝒇: reference temperature, 

 𝒃𝟏𝒕𝒐 𝒃𝟒: fitting coefficients of the slope difference curves, 

 𝑪𝑵: rated battery capacity 
 
The values of the coefficients of Equation 4.16 are shown in Table 12. 
 
Table 12:  Fitting coefficients of the slope equation  

Coefficients Value 

𝒃𝟏 -0.003109 

𝒃𝟐 0.3433 

𝒃𝟑 -7.525 

𝒃𝟒 25.5 

 
In order for the calendar fading to be applied as accurately as possible to the inactive periods of the battery, 
rainflow counting algorithm and Palmgren Miner’s rule were again used. The stress factor that was used as input 
in the rainflow algorithm now is the Temperature between these inactive time periods. More specifically as soon 
as one inactive period is identified the temperature profile in respect to minutes are fed into the rainflow 
algorithm, which is able to group and measure the total time that the battery was resting for a corresponding 
temperature stress. These time periods are used later in the Palmgren Miner’s rule as the nominator. The 
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denominator needs to represent the time the battery can last in specific temperature stress until the EOL is 
reached. In order to be able to calculate this time the terms of Equation 4.16 were rearranged setting the 
calendar fading term equal to 80% (EOL). The equation is used as follows: 
 
 

𝑖𝑛𝑎𝑐𝑡𝑖𝑣𝑒 𝑡𝑖𝑚𝑒 𝑝𝑒𝑟𝑖𝑜𝑑 [𝑦𝑒𝑎𝑟𝑠] =
80 − 100

𝑠𝑙𝑜𝑝𝑒(𝑇𝑎𝑣𝑔)
 

 
(4.17) 

 
These time periods found for all the different temperatures extracted from the rainflow algorithm are used as 
the denominator in the Palmgren Miner’s rule. The results in the lifetime of the battery after applying this 
method are highly pessimistic as the battery is able to last less than a year.  
 
This is very logical as battery relaxation phenomena haven’t been considered but instead every inactive period 
between the active charging discharging times of the battery was used for the calendar fading. Relaxation time or 
period is a non-linear chemical reaction that takes place inside the battery and it represents the time that the 
battery needs in order to reach equilibrium, so as the terminal voltage relaxes to the new steady state value, 
after a charging or discharging cycle [72]. It is evident that relaxing a cell after it has experienced discharge has an 
important advantage in its performance [73] [74]. Thus, when calendar fading is performed in every inactive 
period-when the relaxation time also takes place decreases drastically the lifetime of the battery, something that 
is not realistic. It is worth pointing out that most of the models that consider calendar fading of the battery 
experience very large periods of battery inactivity, mainly because it is used on battery storage, thus it is much 
easier to account for the relaxation time of the battery too. 
 
To conclude, calendar fading is not considered in the construction of the dynamic capacity fading model that is 
proposed in this study mainly due to lack of data for all the battery technologies as well as due to the difficulty of 
considering the relaxation period in the model which is also beyond the scope of this thesis. 

4.4. Results of Dynamic lifetime estimation model  

 Validation of Dynamic capacity fading model 

In order to be able to validate the model constructed for the dynamic capacity fading of the battery, it was 
compared with the same model that Zero crossings lifetime estimation method was compared. The difference is 
that the empirical model was applied dynamically into the model used for this project having a lithium iron 
phosphate battery undergoing the cycling from Case study 2 and temperature effects were not excluded this 
time. The results for the lifetime of LiFePO4 battery lifetime in years from the two models are shown in Table 13. 
 
Table 13: Results and comparison between the empirical model and our model 

 
Lifetime [years] 

Dynamic Empirical 
Model  

Dynamic Capacity 
Fading   

Deviation From 
Empirical Model 

17 8.62 49% 

 

In general the empirical model states that it is too optimistic in operating temperatures between 0-25 oC [63]. 

The average operating temperature from the temperature profile that was used in this report equals to 28 oC. 
However the average temperature that is taken into account when applying the empirical model dynamically is 
the average temperature between the zero crossings found, thus the temperature between the ZCs micro-cycles. 

Thus, there are many times that the average temperature used is between 0-25 
o
C, leading to an optimistic 

lifetime prediction for the battery lifetime. More specifically the mean temperature calculated and take into 
account for all the zero crossings found in one year is shown in Figure 4-21. 
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Figure 4-21: All the average temperature values accounted between the ZCs micro-cycles occurred for one year 

 

While most of the average temperatures used for the dynamic capacity fading are above 25 oC there is a 

considerable amount of zero crossings micro-cycles where the temperature is below 25 
o
C, thus  below the 

dashed line in Figure 4-21. More specifically 1/3 of all the zero crossing temperatures is below 25 oC, thus it is 
safe to say that the lifetime number calculated from the empirical model is very optimistic while the number 
calculated using the dynamic capacity fading method is more realistic and even a little bit pessimistic.  
 
It is worth pointing out that the first time the empirical model was used for the validation of the Zero crossings 
lifetime estimation method the temperature effects were not considered and the deviation between the 
modelling and the experimental results was smaller. For the validation of the dynamic capacity fading though, 
the temperature effects are included in both models, experimental and non-empirical, thus the difference 
between them becomes bigger as the first one is very optimistic. 

 Lifetime Results 

After applying dynamic capacity fading at the way it was explained above for all the battery technologies and 
both case studies, the results are shown in Table 14.  
 
Table 14: Lifetime results from dynamic capacity fading for four technologies 

Battery Technology Lifetime [years] 

Case Study 1 Case Study 2 

LiFePO4 6.92 8.62 

Sealed lead-acid 1.94 2.68 

NiCd 0.77 1.02 

Flooded lead-acid 1.67 2.26 

 
Comparing the lifetime results of the batteries it is clear that Lithium ion battery is the one that has the highest 
lifetime in both case studies filled by sealed lead acid and flooded lead acid respectively. Lastly, the NiCd battery 
chosen for this study represents the technology with the lowest lifetime reaching almost one year before 
needing a replacement. 
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 State of Health Results 

It is very interesting to see the rate at which the battery capacity degrades for every one of the battery 
technologies. For this purpose the state of health of the battery was calculated as a percentage of the rated 
battery capacity while the battery was still at operating conditions, meaning having a capacity above 80% of the 
rated battery capacity. The SOH of the batteries versus the number of years that represent their lifetime is 
illustrated in Figure 4-22 for all the technologies separately. 
 
 

 
(a) 

 
 (b) 

 
(c) 

 
 (d) 

 
Figure 4-22: State of Health in respect to time in years for (a) LiFePo4, (b) Sealed lead-acid, (c) NiCd, (d) Flooded lead-acid 
batteries. 

 
In order to be able to compare the aging rate of the battery the SOH data with their fitting curves were 
illustrated in a single figure, Figure 4-23. 



Thekla Papakosta 
Master of Science Thesis 

54 

 

Thekla Papakosta  Master of Science Thesis 

 
Figure 4-23: SOH of four battery technologies, Case study 2 

 
It can be seen that while Lithium ion battery is degrading gradually over its 8 years of lifetime almost linearly, the 
other technologies are aging much more drastically having smaller lifetime. The aging rate of NiCd battery in the 
specific application of Solar Home Systems is appear to be very high and not gradual as it almost drops to 80 in 
the first year of usage. The capacity fading rate of the lead-acid batteries is more gradual but still steep as the 
battery presents almost 1/3 of its capacity fading every year. 
 

4.5. Conclusions 
 

 The main conclusions that can be drawn from this chapter, in terms of the dynamic lifetime estimation 
methodology is that it can be considered accurate enough and a little bit of pessimistic taking into 
account the comparison of the method with empirical model. More specifically, the fact that the model 
takes into account active and inactive periods of the battery as well as temperature and DOD factors 
makes it very suitable for any kind of low power application. 
 

 In terms of battery technology comparison it is clear that lithium ion and more specifically LiFePO4 
battery experiences higher lifetime in all load profiles used. Thus, even though it undergoes different 
cycling it is still able to maintain higher lifetime. Lead acid batteries on the other hand, have lower 
lifetime than lithium ion battery and NiCd battery exhibits the lowest lifetime in both load profiles. It is 
worth pointing out that the results shown are for specific battery technology brands from different 
manufacturers as their datasheet lifetime curves were used. It is very much expected that the lifetime 
results of the batteries to change in case that other datasheet or technology curves are used. This is one 
of the main advantages of this dynamic capacity fading model. It can be adopted in any battery as long as 
the temperature lifetime curves in respect to DOD are provided or easy to be constructed taking into 
account experiments. 

 

 Another conclusion that can be drawn is that in the specific load cases of Solar Home Systems the 
average temperature is very close to the ideal operating temperature of the all the battery technologies, 
thus it does not affect the lifetime results that much. It is very important to state that the linearity of the 
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temperature as accounted for the construction of the cycle life equation is valid for temperatures 
between the range of temperature curves provided by the manufacturer, thus between 20 to 45 OC. For 
operating temperatures outside this range, the equation will be able to provide a result but it is probably 
going to be far from realistic as the temperature linearity might not be followed in those temperatures. 
As it was also discussed in detail in Chapter 2 in extreme temperatures the batteries undergo 
accelerating aging with different rate depending on the technology. To sum up, it is very possible that the 
equation of the cycle life that includes temperature linearity (Equation 4.5) will give far from realistic and 
accurate results in extreme temperatures. On the other hand, this method can be applied in a very wide 
range of applications as most of the developing countries and regions and not only, lie in latitudes with 
temperatures between the range of 20 to 45 OC. 

 

Evaluation of dynamic capacity fading model 

When evaluating the capacity fading/lifetime estimation model we have to make sure that the main challenges 
these kind of models face were overcome and that the main criteria that these models need to satisfy have 
indeed been satisfied. In order to do that the five points in section 4.2.3 were argued in respect to the model of 
this study. 
 

1) The operating conditions of the specific application of Solar Home Systems were indeed considered 
during the construction of the lifetime estimation method and the stress factors taking place in such 
applications were used in the determination of the aging processes. In such systems the main stress 
factors that are taking place is the DOD fluctuation due to battery cycling and temperature effects. These 
two stress factors were combined together and used for the dynamic capacity fading. In addition, 
considering that there is no fast charging and discharging in such applications the C-rate effect was 
excluded for the aging process. 
 

2) The EOL of all the battery technologies used was indeed predetermined as the cycle life datasheet curves 
that were used for different temperatures and the equations constructed for the cycle life take into 
account EOL conditions for specific temperatures and DODs into a single cycle life function. 
 

3) As the data for the lifetime of the battery were extracted from battery datasheets the lifetime estimation 
is performed in battery and not in cell level for the application of the Solar Home Systems 
 

4) The following questions were able to be answered: 
 
How long will a specific battery brand, (from a specific manufacturer) last when different applications and 
operating conditions are applied to it? 
The lifetime estimation method’s inputs are based on battery manufacturer lifetime dataset curves. Thus, it can 
be applied to any manufacturer and any battery technology or brand as long the specific lifetime curves are given 
by the manufacturer. In addition, given different load profiles as input to the model all kinds of low power 
applications could be applied and have results in this lifetime estimation model. 
 
How long will a new and more advanced with different material composition battery design last in a specific 
application? 
This question can be again answered by arguing that the manufacturer of this new kind of battery is able to 
provide the cycle life curves for the different temperatures. If this is the case then this lifetime estimation 
method can be applied in any battery type. 
 

5) As most of the lifetime estimation models, the main and real challenge that this model had to overcome 
was the limited amount of data provided by manufacturers for renewable applications. For the case of 
the battery technologies used in this study, some of the lifetime curves that were used for the batteries 
had to be constructed and not taken directly from the datasheets. Thus, this challenge was not overcome 
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completely. It is worth pointing out, that in case that those curves were provided directly by 
manufacturers the final result could be more accurate. But in terms of methodology and modelling the 
dynamic capacity lifetime estimation method that was used in this report can be considered very 
accurate. 

 
The aforementioned point is also the main reason that calendar fading couldn’t be performed as curves or 
models for calendar fading couldn’t be found for all the battery technologies that are examined here, in order to 
be able to make a meaningful comparison. 
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Chapter 5 

5. Hybrid Battery  
In this chapter the methodology for the Hybrid battery storage is explained. In order to be able to use a hybrid 
battery storage option two power management algorithms are constructed and used for the battery cycling in the 
dynamic lifetime estimation model. The two batteries forming the hybrid battery are cycled differently in each 
one of the power managements. The dynamic lifetime estimation model is applied at both batteries 
simultaneously for both power managements for a System lifetime of 25 years.  

5.1. Introduction 
One of the most burning technical issues concerning Solar Home Systems is the high battery upfront cost as well 
as the battery reliability. The sizeable proportion of the upfront battery cost in a SHS combined with the limited 
lifetime of the battery compared to the other elements forming a SHS makes the issue even more significant. 
Considering the battery as the most expensive component in a Solar Home System, the idea of Hybrid Battery is 
going to be examined. This chapter explains the methodology followed for the hybrid battery configuration. 

Hybrid Battery (HB) 

The Hybrid battery is defined as the combination of two battery technologies possessing different sizing 
percentage of the overall battery size that a system needs. These two batteries are used together in the system 
and their cycling is a result of the power management used. 

Hybrid Battery (HB) ratio   

Hybrid battery ratio is defined as the percentage of the overall battery size possessed by the secondary battery 
technology to the percentage of the overall battery size possessed by the main battery technology. The overall 
battery size is the optimum battery size needed for every set of PV-load profile as calculated in Chapter 3. More 
specifically, the hybrid battery ratio is expressed as shown in Equation 5.1.  Main and secondary battery 
technologies are defined differently for the two different power managements and are explained later.  
 
 
 

𝐻𝐵 𝑟𝑎𝑡𝑖𝑜 =
%𝑆𝑖𝑧𝑒𝑠𝑒𝑐𝑜𝑛𝑑𝑎𝑟𝑦

%𝑆𝑖𝑧𝑒𝑚𝑎𝑖𝑛
 

 
(5.1) 

 
 

Main battery technology 
In this study, in both power managements that will be introduced in the following sections, the term “main 
battery” is used to represent the battery technology that has the primary  role in the power managements 
having priority in charging and discharging. 
 

Secondary battery technology 
The term “secondary battery” in the two power managements represents the battery technology that is used as 
complementary in the main battery technology, handling specific load cases differently for different power 
managements. 
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5.2. Methodology 
 
Two different methodologies for the Power Management in the Solar Home System, using Hybrid battery 
Storage were used. The first one uses a main battery handling most of the load and a secondary one in times that 
the first is not enough. The second power management uses a certain C-rate threshold. The loads above that 
threshold (mainly the peaks in the load) are handled by one of the batteries, while the loads below that value are 
handled by the other one (average load). These two power managements were used instead of Architecture 1 in 
the dynamic capacity lifetime estimation model, in order to determine the power flow in the system.  

 Power Management A (PM A) 5.2.1.

 

Main battery technology: For this power management method, one of the batteries is used as the main 
battery, handling most of the load. This battery has a priority in charging when there is an excess of energy as 
well as in discharging, when there is a deficit of energy. It has the primary role between the two batteries 
consisting of the hybrid system 

 
Secondary battery technology: In times when the main battery is fully charged or is unable to handle full or a 
part of the load, then the secondary battery kicks in complementing the contribution of the main battery. The 
main role of this battery is to support the main battery whenever it is needed depending on the load profiles use 
each time  
 
This power management flow chart is summarized through an illustration shown in  
Figure 5-1. Every time there is a deficit or surplus of energy the priority goes to the main battery checking 
whether it has enough space to be charged or enough energy to give to the load and be discharged. If this is not 
the case then the secondary battery is checked and charged with full or remaining surplus and discharged by the 
remaining unsatisfied load that the main battery couldn’t handle. In times that both batteries are fully charged 
and there is still extra energy production not needed by the load, this energy is dumbed. On the other hand, 
there are some times that the system is not able to satisfy the load completely mainly when there is very high 
demand and low energy production, in the winter or during the evening. However this system downtime was set 
to be very low during the sizing of the battery carried in Chapter 3. 
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Figure 5-1: Energy balancing algorithm for Hybrid Battery System having a main and a secondary battery (PM A) 
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 Power Management B (PM B) 5.2.2.

For this power management method the main control that takes place is the C-rate value of the system for a 
specific minute. The main idea behind this method is that one of the batteries has to handle the power peaks of 
the system while the other one handles the average power values. Doing that, the batteries do not experience 
deep charge and discharge cycles, helping the extension of their lifetime. Furthermore, in times that the load is 
not satisfied and one of the batteries hasn’t been empty yet, then this is the one that kicks in to handle the load. 
This power management flow chart is summarized through an illustration shown in Figure 5-4. In order for the C-
rate threshold to be set, the C-rate using the overall battery size for each case study, was found from one year of 
simulations that were done beforehand. Figure 5-2 shows the C-rate as extracted from one year of simulations 
for Case Study 1 (low LP) and Figure 5-3 shows the yearly C-rate for Case Study 2 (medium LP). 
 

 
Figure 5-2: C-rate for one day as extracted from a yearly simulation for Case study 1 (low LP) 

 
For Case Study 1 (low LP) the C-rate threshold was decided to be equal to 0.01, as the dashed black line in Figure 
5-2 shows.  
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Figure 5-3: C-rate for one day as extracted from a yearly simulation for Case study 2 (medium LP) 

 
For Case Study 1 (low LP) the C-rate threshold was decided to be equal to 0.2, as the dashed black line in Figure 
5-3 shows. 
 
Main battery technology: For this power management method the main battery will be defined as the one that 
handles the average power of the system. More specifically as it is seen from the C-rate graphs, there are some 
big power peaks. The main battery is responsible on handling everything up to a specific threshold point that is 
defined differently for different load profiles. 
 

Secondary battery technology: The secondary battery will be defined as the one that handles the power 
peaks of the system.  Whenever the C-rate is higher than the threshold value that was set, the secondary battery 
handles the remaining power above this threshold. 
 
Due to the fact that one of the batteries is going to be working constantly handling the average power of system 
while the other one will only be working in times that there are peaks, the main battery needs to be bigger than 
the secondary one. Thus, the HB ratio combinations when the secondary battery is bigger than the main are not 
going to be tested as it doesn’t make sense. This is also shown in Figure 6-8 where the blue shadow represents 
the cases where power management B was used. 
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Figure 5-4: Energy balancing Algorithm for Hybrid Battery System based on C-rate threshold (PM B) 
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5.3. Lifetime Calculation for Hybrid Battery System  
 
For the calculation of the lifetime of the two batteries forming the Hybrid Battery system, dynamic lifetime 
estimation model was applied for both batteries simultaneously. In a more detailed explanation, the first step of 
this algorithm is to choose which Case study and which two of the four different technologies that are examined 
in this report are going to be used forming the HB. After having already calculated from the simple battery sizing 
algorithm explained in Chapter 3, the optimum battery size for the specific case study, the percentage of the 
total size that each one of these two technologies is going to have needs to be determined. In order to check as 
many options as possible this HB ratio is going to be varied. The size of each battery in the HB system is a 
percentage of the optimum battery size determined in Chapter 3 for each one of the Case studies. Equations 5.1 
and 5.2 show how the battery size for each one of the two batteries, is calculated: 
 
 

𝑆𝑖𝑧𝑒𝑡𝑒𝑐ℎ𝑛𝑜𝑙𝑜𝑔𝑦1
= 𝑟 × 𝑆𝑖𝑧𝑒𝑜𝑝𝑡𝑖𝑚𝑢𝑚 

 
(5.2) 

 
𝑆𝑖𝑧𝑒𝑡𝑒𝑐ℎ𝑛𝑜𝑙𝑜𝑔𝑦2

= (1 − 𝑟) × 𝑆𝑖𝑧𝑒𝑜𝑝𝑡𝑖𝑚𝑢𝑚 

 

 
(5.3) 

 
Where, 

 𝑺𝒊𝒛𝒆𝒕𝒆𝒄𝒉𝒏𝒐𝒍𝒐𝒈𝒚𝟏
: the size of one of the batteries consisting the Hybrid battery system, 

 𝑺𝒊𝒛𝒆𝒕𝒆𝒄𝒉𝒏𝒐𝒍𝒐𝒈𝒚𝟐
: the size of the other of the batteries consisting the Hybrid battery system, 

 𝒓: the percentage of the optimum battery size varied between 10-90 % , 

 𝑺𝒊𝒛𝒆𝒐𝒑𝒕𝒊𝒎𝒖𝒎: the optimum overall battery size (370 Wh for Case study 1, 1150 Wh for Case study 2)  

  
As it can be seen from Equations 5.2 and 5.3, the two different battery sizes are complementary to each other, 
and if added up they are equal to the total storage size that the system needs. 
  
The next step is to apply the different efficiencies corresponding to the battery technologies that are used. 
Starting the simulation for one Case study, the chosen power management is applied and the batteries start 
cycling. The data resolution is minutely for one year, thus a check for consecutive zero current crossings, happens 
for both batteries every minute. If two consecutive zero current crossings are found for one or for both of the 
batteries, then the DOD of the specific battery and temperature profile between this time interval is fed to the 
rainflow counting algorithm.  
 
As the rainflow algorithm finds the exact number of cycles that the battery has undergone for specific DOD 
values for this ZCs micro-cycle time interval, the cycle life lookup function that was constructed using the 
datasheets for the specific battery technology examined, is used. This function, calculates the total cycling that 
the battery can undergo under the rainflow-extracted DOD values and the temperature profile that is given. 
Having these, Palmgren Miners’ rule is applied for each one of these stress levels identified between this time 
period, and a cumulative damage percentage is calculated. 
 
This damage is used to calculate the total capacity fading that the battery has undergone during this period, and 
subtracted from the initial battery capacity. A check is made, whether or not the battery has reached EOL. If  this 
is true, then the battery examined is replaced with a fresh one, having the initial proportional battery capacity 
that was defined at the beginning, otherwise it continues cycling with reduced capacity, undergoing even more 
fading until the EOL is reached. This procedure is illustrated in detail in the block diagram of Figure 5-5. 
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Figure 5-5: Block diagram of application dynamic lifetime estimation method to the HB storage system 

 
 

 

The different battery technology combinations that are constructed and examined for the hybrid battery 
configuration are summarized in Figure 5-6. These combinations were between two battery technologies each 
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time, with one of them representing the main battery technology and the other one the secondary. The diagonal 
cells of the figure represent the single battery storage options. All of the storage configurations hybrid and not 
that are shown in this are going to be examined and compared after applying the cost functions introduced in 
Chapter 6. 
 
 

 

 
Figure 5-6: Different battery technology combinations to be examined 
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Chapter 6 

6. Cost Function 
 
The main goal of this chapter is to examine whether or not a hybrid battery option would be more ideal than just 
using a single battery technology, for the application of the SHSs and the specific load profiles that are examined 
in this study. In order to have a meaningful comparison, a cost function representing the comparison reference 
between the different storage choices available for the application of SHSs will be constructed and applied.   
 
The different parameters that were used for the construction of this function and a detailed explanation of its 
construction step by step are given. For the purpose of this study two cost functions are constructed. One function 
was constructed for the individual battery technology choice and one for the hybrid battery (HB) storage option.  
 
The individual battery cost function in combination with the dynamic capacity fading/ lifetime prediction method 
that was introduced in Chapter 4 were applied for a System lifetime of 25 years for all four battery technologies of 
interest and the two case studies. The results are presented and analysed at the end of this chapter along with a 
sensitivity analysis that was carried out for different battery costs. 
 
The hybrid battery cost function in combination with the dynamic capacity fading ,lifetime prediction method that 
was introduced in Chapter 4 were applied for a System lifetime of 25 years for all HB technology and sizing 
combinations and the two case studies. The results are presented at the end of this chapter. 
 

6.1. Introduction 
 
The battery technology selection for a specific application can be a non-trivial issue due to the fact that many 
technical and economical parameters need to be taken into account for this decision. In most studies the 
comparison of different storage options is made having in mind a number of key technical features of the 
batteries. While some of the considerations have to do with the performance and life of the battery, others have 
to do with parameters such as DOD, efficiency, temperature sensitivity calendar and cycle life. The type of the 
application as well as the location that this application is going to be implemented along with the corresponding 
ambient conditions that come with the location, are very important to be considered too. Last but not least, the 
economic factors that relate the application and the battery costs are very important [28]. Battery lifetime, with 
all the parameters that affect it (ambient conditions, specific application cycling, DOD, C-rate, etc.) is a very 
important aspect that needs to be accounted along with the different battery costs because it increases the 
running costs of an application. During the lifetime of a Solar Home System the battery will need many 
replacements depending on the technology that is used. Thus, it is very important for the selection of the battery 
to account the future battery costs in the time of the replacements. 
 
 As these parameters and categories might overlap in many cases, the technology storage comparison is a very 
difficult procedure. The discretization between these parameters as well as their selection and the way they are 
going to be combined for the battery comparison is the main challenge of the comparison procedure 
 
Having all of the above in mind, this chapter introduces an overall cost function that takes into account as many 
battery parameters as possible, combining the lifetime of the battery with its present and future costs. This cost 
function is going to be used as a comparison measure between the different battery technologies as well as the 
different hybrid configurations helping to reach to the best storage solution for each load scenario.  
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6.2. Theoretical approach  

The importance and connection of different parameters that need to be considered for the cost 
function 

The main goal of the cost function is to combine as many battery characteristics and sensitivities together as well 
as battery lifetime with battery cost while taking into account future battery trends into a single function. The 
parameters that were used, their connection as well as the way they are depended from one another are shown 
in Figure 6-1 . In this figure, the dashed lines show the interdependencies between the different parameters, 
while the arrows show all the parameters considered for the construction of the cost function. 
 
 To begin with, the location at which the system is going to be implemented is very important because the 
ambient conditions are different for different locations. The most important ambient condition that is taken into 
account for the cost function is the temperature and how the battery lifetime is affected by the ambient 
temperature. Secondly, the type of the application for example SHS in combination with ambient conditions for 
example sunshine, determines the cycling that the battery is going to undergo during its operation. Moving 
forward, depending on the battery technology that used, the efficiency is going has to be different, as well as its 
sensitivity to the DOD levels, at which the battery operates and its temperature sensitivity. The DOD levels are 
determined from the battery cycling and as said before from the ambient temperature. Having all these as inputs 
the capacity fading rate (taking into account aging mechanisms that take place into the battery through its 
operation depending on the chosen technology) of the specific battery technology can be determined and the 
lifetime of the battery can be calculated.  
 
In addition, after being able to calculate the lifetime of the battery the number of battery replacements that are 
needed throughout the system lifetime can also be computed. Lastly, the current battery costs, depending on 
the technology are taken into account for the first time that the battery was used, and the future battery cost 
trends are taken into account for the times that the battery replacements need to be done. The overall cost 
function has to be conducted by considering all of the above.  
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Figure 6-1:  Parameters taken into account for the cost function and their interdependencies 

 

6.3. Future Battery Cost Trends- depending on the battery technology 
 
It is evident that the energy storage has already started becoming a huge player concerning the global energy 
market. It is also fact that it will continue to grow even more for the foreseeable future. This has as a result for 
the battery component cost to start declining enhancing even more the benefits of the battery storage, making 
energy storage combined with renewable energy generation, an attractive solution to the upcoming fossil fuel 
depletion and climate change. This price reduction for many battery technologies has already become evident 
while Bloomberg New Energy Finance predicts that the price for battery technologies will drop to $ 120/ kWh by 
2030 [75]. 
 
The decreasing battery cost trends, refer mostly to lithium ion batteries that have shown the more drastic price 
reduction in recent years, especially in electric vehicle applications while other technologies such as advanced 
lead-acid, flow batteries, etc. have shown a downward trend cost but in a less pronounced manner. However, 
while the technology is advancing, the battery technologies will continue experiencing cost reduction due to 
performance improvements that will lead to higher deployment [28].  
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In 2015, lithium ion battery technology accounted for 95% of the new-energy storage deployments. This is an 
evidence of the increasing interest that is shown in lithium ion technologies. This technology is widely used in 
renewable, automotive applications consumer electronics and electric vehicles as their safety and performance 
have been increasingly improved. Lithium ion batteries can work in applications that require high power density 
providing high amount of energy for a short time period as well as in applications that require high energy 
density providing lower amounts of energy for longer time periods. To sum up, lithium ion batteries have 
become a broadly used technology in applications for stationary energy storage across the grid, industrial and 
residential systems as well as large utility-scale installations for energy transmission and distribution [76]. 
Bloomberg Energy Finance in a survey shows the continuing decrease in Lithium ion battery for automotive 
applications from 2010 to 2016 stating that technology improvements and the competition between the 
different Li-ion manufacturers have led to these trends, as also shown in Figure 6-2. 
 

 
Figure 6-2: Reduction of cell plus pack Li-on prices. The cost presented is the average cost between the surveys taken 

place for the specific years [as shown in [77]] 

 
 
It is worth pointing out that, while Li-ion prices for EV applications seem to be decreasing drastically reaching 
very low price levels, for residential applications using renewable energy sources Li-ion technology is still 
considered as the most expensive between all the technologies even though it again has a downward trend in 
the past years. It is also foreseen that this trend will continue but not in such a steep manner as it happens for EV 
applications [78]. However the increasing use of li-ion batteries in the EV applications is the one that also 
determines the general decreasing cost that this technology exhibits. 
  
However, characteristics such as capability of long term storage as well as high power performance of lead-acid 
batteries, in combination with their already very low prices, allow them to remain a competitive storage solution 
in the energy market [28]. Lastly, Nickel Cadmium batteries can be considered as an inexpensive solution for low 
power applications such as Solar Home Systems [79].  

6.4.   Cost Function Construction 
Taking everything that has been discussed into consideration the construction of the cost function considers as 
many battery parameters as possible combining upfront and lifetime costs as well as future battery trends. 
Figure 6-1 shows all the parameters that used for the construction of the battery cost function while Figure 6-3 
groups the main considerations into two factors showing them in a simplistic way. From the latter figure it can be 
seen that the cost function consists of two main parameters: Upfront battery cost and lifetime-running cost.  
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Upfront cost represents the cost of the battery the first time that is going to be installed considering prices for 
the year when the total system was implemented. Upfront cost is directly proportional to the battery size and 
differs between different technologies. Lifetime cost on the other hand, is the total cost calculated from the 
number of the battery replacements that are needed throughout the system lifetime. If for example, the total 
system lifetime is 25 years (common lifetime of PV systems) while the expected lifetime of a lead-acid battery in 
a SHS can be as low as three years, then the battery will need a replacement every three years. For the 
replacements the battery costs need to be included while accounting the future battery prices, always depending 
on the technology, dynamically. Thus, lifetime costs take into account parameters such as battery aging and 
number of replacements. In the case of the hybrid battery the different battery sizing proportions for the 
different technologies also need to be considered.  
 

 
 

Figure 6-3: Brief representation of the factors included for the construction of the cost function 

 

6.4.1.1. Construction of the Cost Factor – C (t) 

 
The first step taken for the construction of the cost function is the construction of the cost factor which captures 
the different battery technology costs/kWh. In order to be able to capture future battery costs along with the 
current prices the cost factor was used. The cost factor is a variable that changes with time and uses learning cost 
curves for different battery technologies. In general learning curves are able to depict the cost as a function of 
increased cumulative production and are considered as the most objective method of calculating the future cost 
trends of different technologies [78]. For these learning curves to be constructed many factors that depict the 
cost are taken into consideration such as historical data, sales, R&D, cumulative production. 
 
In general, the collection of this kind of data for all the battery technologies used in this project was very difficult 
and time consuming. While many experience curves representing the trends of Lithium ion batteries were easy 
to be found, for lead-acid and NiCd batteries, it was very difficult. In addition, when comparing the different Li-
ion trends there was observed a discrepancy between them making this procedure even more difficult.  
 
The cost factor is represented as a lookup function which is a fitting of the cost learning curves for different 
battery technologies as have been found from many economic reports and studies. The general battery cost 
trends were discussed in detail at the beginning of this chapter. The main observation is that while all of the 
battery technologies present a downward cost trend, lithium ion shows the steepest decrease in the past years, 
something that is foreseen to be continued in the future.  
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 Lithium ion and Lead acid learning curves 

For lithium-ion and lead acid batteries the curves decided to be used were retrieved from O. Schmidt et al. paper 
shown in Figure 6-4. It is worth pointing out that the learning curve representing lithium ion battery cost for 
electric vehicles shows a much more downward decrease than the one representing lithium-ion battery for 
residential purposes. The responsible factor for this difference is the current as well as predicted use of lithium-
ion batteries in the EV applications. While for EVs it is predicted that this technology will be used broadly, for 
residential purposes it is not going to be used as much. In other words, the most cost - competitive technology is 
the one that is able to bring the most capacity into the market [78]. 
 

 
Figure 6-4: Future cost curves of electrical energy storage as a function of time [as shown in [78]] 

 NiCd learning curve 

For NiCd batteries learning curves were impossible to be found, so the curve was approximated by the author 
taking into account past and present cost data for NiCd as well as future production rate and use. A cost curve 
from NiCd cells was found from a report of Swedish Environmental Protection Agency with cost data from 1999 
to 2006. That curve showed a non-significant price decrease of NiCd battery cost between this time period 
starting from 800 $/kWh and after a lot of fluctuations reaching a little less than 600 $/kWh. Another important 
consideration that was taken into account for the construction of the learning curve for the NiCd batteries is that 
this technology has started to be more or less replaced by NiMH batteries due to the damaging and toxic effects 
that the cadmium has to the environment as well as to health [80]. Even though NiCd batteries were broadly 
used in solar applications having as their main advantage their low cost, their hazardous material combined with 
the fact that the cost of NiMH batteries was decreased considerably, has made them banned from European 
Union regulations of hazardous substances [81]. Another report shows that the use and utilization (in volume) of 
NiCd batteries decreases by 2% every year while Li-ion batteries increases by 21% and NIMH also increase by 6% 
per year from 1995 to 2015 [82]. The broad use of a battery technology is directly proportional to the cost 
reduction of this technology, so not using NiCd batteries does not demand for their cost to be reduced. Figure 
6-5 shows the global sales of rechargeable batteries between 1991 and 2007 and it is clear that NiCd battery 
usage is decreasing more than any other battery technology. The cost learning curve that was constructed and 
approximated for the NiCd batteries takes into account all of the above as well as current cost values of this 
battery technology [20]. 
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Figure 6-5: Worldwide sales of different technologies of rechargeable batteries from 1991 to 2007. The values represent a 

percantage f the total global sales of these technologies [as shown in [83]] 

 
 
One last consideration for the construction of the cost curves for all technologies was the lower cost limit that 
they could reach in the far future if they continue following the downward trend presented in the curves in 
Figure 6-6. This lower cost limit was decided to be equal to 100 $/kWh after considering many general storage 
cost predictions found from the literature [75] [84] .    

 Resulting cost factor curves to be used in the cost function 

 
Figure 6-6: Reconstructed cost function curves [sourced from [78]] 

 
The cost function curves shown in Figure 6-6 are the reconstruction of the fitting equations constructed from the 
curves that were found from literature for lithium ion and lead acid, as well from the NiCd curve constructed by 
the author.  
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6.4.1.2. Cost function definition and equations 

Two different cost functions were constructed for this study. The first one is for the calculation of the combined 
upfront and lifetime costs, for individual battery technologies while the other one is for the Hybrid battery 
systems where a combination of two different battery technologies with a varying sizing proportion is going to be 
considered. This way, the comparison of the hybrid technology with the individual technologies will be easy and 
possible using the cost function as a reference. 
 

Battery Cost Function (b.c.f) 

Individual Battery Cost Function (b.c.f) is defined as a comparison measure between different battery 
technologies taking into account their upfront cost and lifetime characteristics for a predefined system lifetime. 
The units of this function are in $. This function becomes smaller for technologies that present better combination 
of upfront and lifetime cost results. 
 

𝑏. 𝑐. 𝑓 = 𝑆 ∗  𝐶(𝑡0) + 𝑅 ∗ 𝑆 ∗ 𝐶(𝑡0 + 𝑡𝑟𝑒𝑝𝑙) (6.1) 

 
 
Where, 

 𝒃. 𝒄. 𝒇:individual battery cost function[$] 

 𝑺: Storage Size [𝑘𝑊ℎ] 

 𝑪(𝒕): Cost factor at a specific year [
$

𝑘𝑊ℎ
],will be explained before 

 𝑹: Number of Replacements [−] 

 𝒕𝟎: the year that the implementation of the system started 

 𝒕𝒓𝒆𝒑𝒍: the number of years needed for a battery to  reach EOL. 

 
Using the function above, the different battery technologies that were used in this project, can easily be 
compared in terms of lifetime - performance cost resulting to the best one to be used in the application of Solar 
Home Systems.  

Hybrid Battery Cost Function (h.b.c.f) 

Hybrid Battery Cost Function (h.b.c.f) is a comparison measurement between different hybrid battery storage 
choices consisting of two different individual battery technologies. This function becomes smaller as the 
technology combination and sizing configuration of the hybrid battery has better lifetime and cost characteristics 
for a predefined system lifetime. 
 
 

ℎ. 𝑏. 𝑐. 𝑓 = ∑ 𝑟𝑖 ∗ 𝑆𝑖 ∗ 𝐶𝑖(𝑡0) + ∑ 𝑟𝑖 ∗ 𝑅𝑖 ∗ 𝑆𝑖 ∗ 𝐶𝑖(𝑡0 + 𝑡𝑟𝑒𝑝𝑙)

𝑁𝑓

𝑖

𝑁

𝑖=1

 

 
 

(6.2) 

 
Where, 

 𝒉. 𝒃. 𝒄. 𝒇: hybrid battery cost function [$] 

 𝒓: percentage of the total size possessed by each of the two technologies, 

 𝑵: Number of technologies used 

 𝑵𝒇: Number of failed butteries of each technology 

 
Using the hybrid battery cost function (h.b.c.f) we are able to compare different hybrid storage combinations 
using different sizing ratios of the different technologies as well as comparing the hybrid storage solutions with 
the individual technology solutions that used the previous cost function (b.c.f). It is worth pointing out that while 
the overall size of the storage is the one that was calculated in Chapter 3, for the hybrid system each technology 
will possess a percentage of this total size. 
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6.5. Application of Cost Functions  
 
In order to be able to retrieve battery cost function results for the comparison of the different individual battery 
technologies with the HB storage options, the non-empirical dynamic lifetime estimation method (explained 
thoroughly in Chapter 4 for the individual technologies and Chapter 5 for the HB storage) was applied into a 
system lifetime of 25 years. 
 
More specifically, for individual battery technologies, the batteries begin cycling with architecture 1. The dynamic 
capacity fading model is applied for every ZCs micro-cycle that the battery undergoes, and a check whether EOL 
was reached is made. If this is the case the battery is replaced with a fresh one having the optimum battery 
capacity depending on the case study examined, as calculated with the sizing methodology in Chapter 3. This 
procedure is repeated until the 25 years of the system lifetime are passed. The number of battery replacements 
that occurred in these 25 years of system operation, the future cost trends of the battery as captured by the 
battery cost factor curves and the battery sizing are fed into the b.c.f.. The b.c.f is applied, calculating upfront 
cost for the first time the battery was used and lifetime cost for the replacements needed.  The cost function is 
applied after taking into consideration how many years have passed from the first time that the battery was used 
(year 2017) until the replacement, in order to be able to capture dynamically the cost of the battery in the future, 
reaching to more accurate results and conclusions. 
 
In the case of the Hybrid battery storage system the same methodology is applied. The sizing of the two batteries 
forming the hybrid battery is determined as shown in Chapter 5. The batteries start cycling simultaneously either 
with PM A or PM B. Dynamic capacity fading is applied to each one of the batteries after a micro-cycle of two 
zero crossings is found. When one or both of the batteries has reached EOL, it is replaced by a fresh one having 
the same size as the beginning. This procedure is repeated for both batteries for a system lifetime of 25 years. 
After this time is passed, the number of replacements each one of the batteries needed, the future cost trends 
for of the batteries and their proportional to the optimum capacity size are fed to the h.b.c.f. This function is 
calculated for every HB configuration given. 
 
The combination of the power managements explained in Chapters 3 and 5, the dynamic capacity fading model 
explained in Chapter 4 and the two cost functions explained in this chapter for a system lifetime of 25 years, is 
illustrated in detail in the block diagram of Figure 6-7. 
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Figure 6-7: Application of dynamic capacity fading and battery cost functions for a system lifetime of 25 years. 
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This procedure was repeated for two load cases, two power management algorithms, all the different sets of 
battery technology combinations and variety of different HB ratios. This method was also applied in individual 
battery technologies for a system of a 25 year lifetime, using energy management of Architecture 1 in order to be 
able to compare the individual technologies to the use of hybrid battery configurations using the battery cost 
function and the hybrid battery cost function, respectively.  
 
All the cases that were examined and all of the results obtained are shown in Figure 6-8. The yellow and purple 
boxes represent the combinations for which case studies 1 and 2 were used while the pink and light blue 
shadows represent the cases where power management A and power management B were used, respectively. As 
it can be seen, all the batteries and different sizing combinations were used for both case studies and power 
management A while for power management B only half of the HB ratios were used.  
 
 

 
Figure 6-8: All the different cases and combinations that were taken into account 
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6.6. Results of battery cost function for individual technologies 
 
The obtained results for Case studies 1 and 2 using the optimum battery sizes decided in Chapter 3, 370 Wh and 
1150 Wh respectively for System lifetime are shown in Table 15 and Table 16.   
 
Table 15: Battery Cost function results (b.c.f) for individual battery technologies for Case Study 1 (low LP) 

Battery Technology b.c.f 
[$] 

Number of 
replacements 

Upfront Cost 
[$] 

Lifetime Cost 
[$] 

Sealed lead-acid 2.84e+03 13 4.68e+02 2.37e+03 

Flooded lead-acid 3.45e+03 16 4.68e+02 2.98e+03 

NiCd 6.91e+03 46 1.74e+02 6.73e+03 

LiFePO4 1.29e+03 3 6.24e+02 6.70e+02 

 
Table 16: Battery Cost function results (b.c.f) for individual battery technologies for Case Study 2 (medium LP) 

Battery Technology b.c.f 
[$] 

Number of 
replacements 

Upfront Cost 
[$] 

Lifetime Cost 
[$] 

Sealed lead-acid 6.52e+03 9 1.45e+03 5.06e+03 

Flooded lead-acid 7.22e+03 10 1.45e+03 5.76e+03 

NiCd 1.15e+04 24 5.42e+02 1.09e+04 

LiFePO4 3.32e+03 2 1.94e+03 1.38e+03 

 
From both case studies, it can be seen that the battery with the higher lifetime is LiFePO4 needing two or three 
replacements in the period of 25 years that the lifetime of the system is. In addition, it can be seen that the 
battery cost function is being minimized for LiFePO4 batteries even though their upfront cost is higher than the 
other technologies. Their high upfront cost is mitigated by their lifetime cost which is lower that all the other 
technologies, as their lifetime is higher and their cost is being decreasing as the time passes as illustrated better 
in Figure 6-12. The second best technology is found to be Sealed-lead acid battery having the second smaller 
battery cost function which is very close to the cost function of the flooded lead acid technology. Lastly, the NiCd 
battery is found to be the worst technology in terms of combined lifetime costs with the higher battery cost 
function. Even though, the upfront cost of NiCd batteries is the smallest of the all the technologies their lifetime 
cost is the higher as they need a very big number of replacements. Histograms illustrating the battery cost 
function results of each technology as well as the upfront and lifetime costs separately for both case studies are 
shown in Figure 6-9 to Figure 6-12. 
  
In terms of comparing the different case studies, it can be seen that while the same trends are being followed by 
the battery technologies, the battery lifetime is lower in Case study 1, thus the batteries need more 
replacements. The battery cost function though is smaller as the battery size in Case study 1 is almost three 
times smaller than Case study 2, thus cost/kWh is much smaller. 
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Figure 6-9: Total Battery Cost as derived from b.c.f for all 

the technologies for Case study 1 (low LP) 

 
Figure 6-10: Upfront and Lifetime Cost for all the 

technologies for Case study 1 (low LP) 

 
 
 

 
Figure 6-11: Total Battery Cost as derived from b.c.f for all 

the technologies for Case study 2 (medium LP) 

 
Figure 6-12: Upfront and Lifetime Cost for all the 

technologies for Case study 2 (medium LP) 
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 Battery Cost Function and sizing trade-offs 6.6.1.

In order to examine whether oversizing the battery would have a better result in battery cost function due to 
increasing battery lifetime, measurements of the b.c.f were made for different battery sizes for all the 
technologies. The results are shown in Figure 6-13, where QN represents the nominal capacity size of the battery. 
 

 
(a) 

 
 (b) 

 
Figure 6-13: Battery cost function (b.c.f.) and sizing trade-off for (a) Case Study 1 and (b) Case Study 2. CN represents the 

nominal capacity of the battery. 

 
It can be seen that while the battery is oversized the b.c.f is increasing. This is logical up to a point as the battery 
costs are proportional to the battery size. However, after a trade-off point the lifetime of the battery will have to 
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be increased significantly as the battery is oversized. Thus the number of replacements would have to be 
decreased as well as the lifetime cost which is considered to be the higher cost of the battery. 
 
However, this is not entirely the case. The different lifetime costs and the battery replacements of Sealed lead-
acid battery were plotted together in order to be able to examine better the battery behavior as its capacity is 
oversized. From Figure 6-14, it is seen that the replacements decrease from 9 to 7 when the battery capacity is 
1.5 times bigger than the nominal capacity (symbolized in the figure as QN). Even though the battery lasts longer 
the increase in the size is not able to compensate the decrease in the replacements, thus the lifetime cost 
increases. Going even further, and as the battery is oversized by two times more it is seen that the same number 
of 7 replacements are needed and this is translated by a steeper slope in the increasing lifetime curve as it is 
proportional only to cost. After that, and as the battery is oversized even more, the replacements decrease to 6 
per year and they remain at this level. In order for the replacements number to start decreasing again the 
battery needs to be oversized a lot, something that does not help the overall cost to decrease. 
 
 

 
(a) 

 
(b) 

 
Figure 6-14: (a) Different battery costs for Sealed lead-acid as the battery capacity is oversized, (b)number of required 

replacements as the battery is oversized 

 
It is worth pointing out that this is the case for almost all the battery technologies depending to the Case study. 
The number of replacements decreases up to a point and then they more or less remain constant for logical 
battery sizes. 

6.7. Sensitivity Analysis  
 
A sensitivity analysis needs to take place at this point of the project in order to investigate how the results of the 
battery cost function are going to change in terms of the future battery costs. There is a high uncertainty to 
whether the battery costs are going to follow the trends that have been used in the learning curves for the cost 
factor. A small change in the future costs might create a change in the battery cost function which might lead to 
change in the final battery technology decision making result. 
 
Thus, it is important for a sensitivity analysis to be carried, determining how a change in the cost curve will affect 
and change the cost function result. For this sensitivity analysis one of the battery technology curves that are 
included in this project was used. The learning curve that was used is the one for Lithium ion batteries mainly 
because this technology is foreseen to have the more dramatic decrease over the next years having very 
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optimistic forecasts. In addition, while most of researches and forecasts show that the price of lithium ion 
battery is going to be decreased drastically over the next years, there are some that disagree. The limited supply 
of lithium mineral which is concentrated and produced in specific regions all combined with the increased 
demand of the material have increased its price over the past fifteen years. It is also foreseen that this increase 
will continue even further as this material is broadly used in the electric car industry with companies such as 
Tesla, Apple to Google to try and launch new and more efficient lithium batteries for EVs. Having all these in 
mind, lithium carbonate price has shown a price increase of 47% over the past two years [85]. This is also shown 
in Figure 6-15. 
 

 
Figure 6-15: Lithium Carbonate Price increase from 2012 to 2017 [data sourced from [85]] 

 
 
For the sensitivity analysis three different curves were conducted and used. The first one represents the worst 
case scenario where the Li-ion cost remains the same as its present value experiencing zero reduction. The other 
two curves represent in between offset curves between the worst case scenario and the curve that is already 
used representing the most optimistic scenario. These curves are shown in Figure 6-16. 
 

 
Figure 6-16: Lithium Ion battery price curves used for the sensitivity analysis 
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Using all of the curves shown above, the simulation for LiFePO4 for a System lifetime of 25 years and for one load 
profile (medium LP) was run and the battery cost function was applied for all three sensitivity curves.  The 
upfront and lifetime cost for each case were calculated for the same battery lifetime and the same number of 
replacements as well as the overall battery cost function. Figure 6-17 includes projection curves at the year 
points that the battery needed replacement and the cost per kWh used on each sensitivity case. 
 

 
 

Figure 6-17: Lithium Ion battery price curves used for the sensitivity analysis including the projection price curves in the 
years of the battery replacements 

 

The replacements occur in years 2025.6 (x1) and year 2034.1(x2) as shown by the projection lines in the x-axis of 
Figure 6-17. It is seen that the battery needed two replacements, every almost 8.5 years starting from 2017. It is 
also clear that there is a significant difference in the price between the sensitivity curves and the original curve. 
In addition, it is worth pointing out that the upfront cost in each case is the same as it represents the price per 
kWh of Lithium-ion battery in the present (2017) and that is why all the curves have the same starting point. The 
results of the sensitivity analysis including the difference that occurs in the lifetime cost differently for every 
replacement and the resulting h.b.c.f difference are summarized in Table 17.  
 
Table 17: Sensitivity analysis results for upfront lifetime and overall cost (b.c.f) for all the cases 

Curve Upfront Cost 
[$] 

Lifetime Cost [$] 

 
Input Difference 

from original curve 
b.c.f [$] Output 

Difference  

from 
original 
curve 

Year of replacements 

x1 x2 x1 x2 

Original 
curve 

 
 
 
1.94e+03 

848.34 530.99 - - 3.32e+03 - 

Sensitivity 
curve 1 

1940.30 1940.30 128.72% 265.41 % 5.82e+03 75.30 % 

Sensitivity 
curve 2 

1603.40 1355.80 89 % 155.33 % 4.90e+03 47.59 % 

Sensitivity 
curve 3 

1285.80 927.4 51.57 % 74.65 % 4.15e+03 25 % 
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The last column of Table 17 shows the percentage difference of the b.c.f calculated using the original curve with 
the b.c.f calculated using each one of the sensitivity curves while the fourth column shows the percentage 
difference of the input values for every year of replacement. As expected, the difference between the original 
and the worst case scenario curve (sensitivity curve 1) is very significant reach about 75 % while the other two 
sensitive curves present a difference of 47% and 25% accordingly. The overall conclusion of the sensitivity 
analysis is that a difference in the future cost of the batteries can lead to a very different cost function able to 
affect the overall result of battery technology selection for a specific application such as SHS.  

6.8. Results of hybrid battery cost function for HB configurations 

 Power Management A (PM A) 6.8.1.

6.8.1.1. Case Study 1 

The results for the hybrid battery cost function power management A when varying the battery sizing percentage 
from 10 to 90 with a step of 10 Wh, for all different battery technology combinations, are shown in the Appendix 
A Table 26for Case study 1. 
 
 In Table 26 the technologies that are being with bold and purple background colour represent the main battery 
technologies used in PM A while the ones under them are the secondary batteries used for that power 
management. The first two columns of the table indicate the battery size of the main and secondary battery in 
respect to the optimal battery size that was calculated for Case Study 1 in Chapter 3 and is equal to 370 Wh. For 
example, when the ratio of the main battery technology is equal to 60% the ratio of the secondary battery 
technology equals to 40 % of the overall storage size. Thus,  
 

𝑆𝑖𝑧𝑒𝑚𝑎𝑖𝑛 = 0.6 × 370 = 222 𝑊ℎ (6.3) 
𝑆𝑖𝑧𝑒𝑠𝑒𝑐𝑜𝑛𝑑𝑎𝑟𝑦 = 0.4 × 370 = 148 𝑊ℎ (6.4) 

 
The last row of the table shows the minimum value of the Hybrid battery cost function for every one of the cases. 
In addition, this value was also highlighted with light blue colour in the table in order to indicate clearer which 
specific sizing ratio combination minimizes the cost function for every one of the technology combinations.  
 
The general trends that were followed from the Hybrid battery cost function calculation can be shown in Figure 
6-18 for each one of the battery combination cases, grouped together in figures with the same main battery 
technology. 
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(a1) 

 

 
 

(a2) 

 

 
 

(b1) 

 

 
 

(b2) 
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(c1) 

 

 
(c2) 

 

 
(d1) 

 

 
(d2) 

 
Figure 6-18: Hybrid Battery cost function trends for different battery technology combinations, for PM A-Case Study 1. 
The first column represents the trends in respect to HB ratio. The second column represents the trends in logarithmic 
scale in respect to HB ratio. (a1-a2)-main battery LiFePO4, (b1-b2)-main battery Sealed lead-acid, (c1-c2)-main battery 
NiCd, (d1-d2)- main battery Flooded lead-acid. Purple line represents the b.c.f for 100% of the Individual main technology. 

 
Observations from h.b.c.f trends 
 

 In general it can be seen that the HB ratios optimizing the hybrid battery cost function are varying 
between the different technology combinations. This is mainly due to the varying upfront costs, which 
are directly proportional to the battery size, thus proportional to the HB ratio in combination with the 
varying lifetime costs. The lifetime costs are also proportional to the battery size and are defined as the 
cumulative cost that occurs for all the battery replacements of each technology. If a battery needs to be 
replaced every three years, the lifetime cost will consider all the times that the battery needed 
replacement and the future cost that correspond to that time. In addition, efficiency and temperature 
sensitivity also affect the results of the battery cost function but in a lesser extent. When observing 
Figure 6-18 some more specific observations can be made:  
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 To begin with, when LiFePo4 battery (a1-a2) is used as the main technology, there is not a general trend 
followed by the h.b.c.f. The function fluctuates a lot while the HB ratios are changing and while the 
secondary technology changes. This fluctuation can be explained by examining the number of 
replacements and the lifetime cost results. It was observed that the replacements of the batteries follow 
the same trend in all three combinations. At the beginning, when the HB ratio is very small, with lithium 
ion technology as the main technology to be having a high amount of the overall battery sizing, the 
secondary technologies do not need replacements throughout the system lifetime. However, as the 
secondary technology sizing increases decreasing the main technology size, the replacements of the 
secondary technology start increasing. This increase continues for all follow up HB ratios. The 
replacements of the lithium ion technology are also increasing up to one point where the HB ratio 
becomes 4 (thus 20% main and 80% secondary) where it starts decreasing as the secondary technology 
becomes higher in size than the main and is able to complement the main technology more. The 
fluctuations shown in the cost function have to do with the lifetime cost of secondary technology 
combined with the lifetime cost of the main technology as the upfront cost follows the trend that the 
cost factor curves follow for the specific technologies as it is only depended by the sizing. The results of 
the replacements can be seen in Figure 6-19. 
 

 
Figure 6-19: Number of replacements needed when LiFePO4 is used as the main battery technology, for all the secondary 

technology combinations 

 

 It can be seen that when using for storage a single technology of LiFePO4 battery, the battery cost 
function remains mostly higher than the one calculated for the Hybrid battery. This is mainly due to the 
high upfront cost that the Lithium Ion technology has, which even though is decreasing as the years are 
passing, it still remains significantly higher than the other technologies for most of the time. More 
specifically, after the simulation was done for the 25 System lifetime years, the LiFePO4 battery had to 
be replaced every almost 7 years of lifetime also shown in Table 17. Thus it needed three replacements 
overall. When observing Figure 6-6 it can be seen that starting from 2017 the cost of lithium ion battery 
is much higher than the cost of the other technologies. Continuing for seven years later to 2024 the cost 
of this technology remains higher and even for seven years after that it still is a little bit higher. Thus, for 
the first two replacements needed LiFePO4 is more expensive than the other technologies while for the 
third replacement they almost have the same cost value.  

 

 When sealed lead acid battery is being used as the main technology of the hybrid system ( Figure 6-18 
b1-b2), there is a general downward trend followed as the sizing of the main battery is decreased and 
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the sizing of the secondary one is increased. Even though, lead-acid batteries in general present a low 
and decreasing upfront cost, but still significantly higher than the NiCd batteries, their lifetime is not that 
high mitigating their low cost for the overall b.c.f results. It can be seen that when using a 100% of sealed 
lead-acid battery the cost function is much higher than the cost function of the HB system. Thus, the 
downward trend followed when blending it with other technologies is natural. It is clear that the best 
option using sealed lead acid as the main battery technology is when combining it with lithium ion 
battery. The curve becomes even steeper as the size of LiFePo4 battery is increased. This is explained by 
the fact that both of these two batteries follow similar downward trends in their cost function, with 
LiFePO4 battery to be presenting much higher lifetime than lead acid batteries. More specifically, for the 
best case scenario in this case, which is shown to be 90% of LiFePO4 technology and 10% of Sealed- lead 
Acid, the second one needs a replacements for almost every year of the system lifetime while the second 
one needs only one replacement. This is logical because Sealed Lead Acid, as the main battery is being 
used constantly while lithium-ion is complementing it in times when it cannot provide the energy 
needed.  

 

 For the third choice of main battery technology, NiCd (Figure 6-18 c1-c2) a downward trend as the 
technology is blended with other batteries is also followed. It is evident that when using only NiCd 
battery, the cost function is significantly higher, and the more NiCd technology is combined with other 
technologies, the better are the h.b.c.f results. The main reason for that is that even though NiCd 
batteries appear to have low and constant over the years cost, their lifetime and efficiency is much lower 
than the lifetime of the other technologies. NiCd technology needs almost two replacements every year, 
when is used as single technology, making it very unsuitable for Solar Home System applications. 

 

 The fourth technology that was examined as the main battery in Power management A is flooded lead 
acid batteries. These batteries follow a very similar trend as sealed lead-acid batteries but their general 
h.b.c.f results are higher than the latter. This has to do mainly with the fact that flooded lead-acid 
batteries present less roundtrip efficiency than sealed lead acid. In addition sealed lead acid batteries 
present better tolerance in the temperature effects as can be seen from the reconstructed cycle life –
temperature curves of the two batteries in figures Figure 4-2 and Figure 4-3. 

 

 One general observation that can be made is that while specific trends are followed by mostly all of the 
h.b.c.f in all combinations, there are cases that the last point of the function, when 90% of the overall 
size is represented by the secondary battery and 10% (HB ratio=9)  by the main, that the general trends 
stops and this point deviates. It is observed that this is happening in the cases where NiCd is used as the 
secondary battery. This can be explained by the significant increase in the replacements that this 
technology needs when it  goes from 80% of the battery size to 90% , increasing its lifetime cost and thus 
the h.b.c.f even further. 
 

 When comparing the general results of h.b.c.f it can be seen that using LiFePO4 as the main battery 
technology, minimizes its value, while using NiCd as the main technology maximizes its value. 
 

  
In order to be able to compare the best case scenarios of each HB combination separately with the cases where a 
single technology is used as the storage option in the Solar Home System, the results were grouped and shown 
Table 18. 
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Table 18: Best Case Scenarios for all four cases using different main battery technologies, with their optimal 
corresponding sizing ratio and their minimum h.b.c.f value(PM A – Case study 1). 

Best Case Scenarios for Hybrid Battery Cost Function [$] 

                Secondary              
Main 

LiFePO4 VRLA NiCd Flooded 

LiFePO4 1.29 E+03  
[100%] 

1.12E+03 
[10%-90%] 

1.13E+03 
[50%-50%] 

1.19E+03 
[20%-80%] 

VRLA 1.21E+03 
[10%-90%] 

2.84 E+03  
[100%] 

1.76E+03 
[20%-80%] 

1.51E+03 
[10%-90%] 

NiCd 1.59E+03 
[10%-90%] 

1.88E+03 
[10%-90%] 

6.91 E+03 
 [100%] 

2.04E+03 
[10%-90%] 

Flooded 1.25E+03 
[10%-90%] 

1.43E+03 
[10%-90%] 

1.88E+03 
[10%-90%] 

3.45 E+03  
[100%] 

 
Seeing all of the results above, it can be seen that the configuration that optimizes the h.b.c.f is when using 10% 
of the overall battery size for LiFePO4 battery and 90% for Sealed lead-acid, with the first one to represent the 
main battery in power management A. The best case scenario information for Power Management A - case study 
1 are shown in Table 19.  

Table 19: Optimal Storage choice for PM A and Case study 1 

 LiFePO4 
[main] 

Sealed lead-acid 
[secondary] 

Sizing ratio [%] 10% 90% 

Size [Ah] 37 333 

Number of replacements [-] 8 3 

Upfront Cost [$] 62.42 421.12 

Lifetime Cost  [$] 196.19 440.17 

h.b.c.f [$] 1.12E+03 

 
The different costs for the optimal storage choice presented above are illustrated in  
Figure 6-20.  It can be seen that in general upfront cost is smaller than the lifetime cost as the batteries needed 
some replacements throughout the system lifetime. More specifically LiFePO4 battery had to be replaced every 
almost 3 years of operation while sealed lead-acid had to be replaced almost every 7 years of operation. In 
addition the upfront and lifetime cost of sealed lead acid is higher than the one of LiFePO4 battery, as it is 
proportional to the battery size, and lead acid is bigger than lithium ion. Even though LiFePoO4 needs more 
replacements than lead acid, its lifetime cost is being mitigated not only by sizing but also from the decrease that 
this technology shows in future costs. 
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Figure 6-20: Lifetime and Upfront cost for the best Case Scenario in PM A - Case study 1 

 
 

6.8.1.2. Case Study 2 

The results for the hybrid battery cost function power management A (main and secondary battery) when 
varying the battery sizing percentage from 10 to 90 with a step of 10 Wh, for all different battery technology 
combinations, are shown at Table 27 in the Appendix. The minimum value of each case is shown in the last row 
of the table. These values are also highlighted with light blue inside the table. The general trends that were 
followed from the Hybrid battery cost function calculation can be shown in Figure 6-21 for each one of the 
battery combination cases, grouped together in figures with the same main battery technology. 
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Figure 6-21: Hybrid Battery cost function trends for different battery technology combinations, for PM A-Case Study 2. 
The first column represents the trends in respect to HB ratio. The second column represents the trends in logarithmic 
scale in respect to HB ratio. (a1-a2)-main battery LiFePO4, (b1-b2)-main battery Sealed lead-acid, (c1-c2)-main battery 
NiCd, (d1-d2)- main battery Flooded lead-acid. Purple line represents the b.c.f for 100% of the Individual main technology. 

 
Observations from h.b.c.f trends 
 

 From Figure 6-21 many observations can be made. In general, most of the combinations follow similar 
trends as in Case Study 1. To begin with, when LiFePO4 (a1-a2) is the main technology the h.b.c.f. follows 
an upward trend while the lithium ion technology is being blended with other technologies. More 
specifically, as the size of the secondary technology increases, meaning that the size of the main 
technology decreases, the overall cost of the system becomes larger. It can also be seen that when using 
100 % of lithium ion technology the h.b.c.f has relatively low value compared to some of the 
combinations of the hybrid system. However, when combining the lithium ion technology with cheaper 
options (secondary technologies) especially when their size is smaller than the size of lithium ion, the 
h.b.c.f has also smaller value than the cost of occurs for 100% size of lithium-ion. Lastly, it can be 
observed that again NiCd technology as secondary technology gives the most expensive function and 
sealed lead acid for small ratios the most cheap. 

 

 When using sealed lead-acid as the main technology (b1-b2), the same trend as in Case Study 1, is 
followed. As the main lead acid technology is combined with other secondary technologies, the cost 
function is decreased. The more the sizing of the secondary battery increases the more the cost function 
decreases, leading for the best option being when adding 90% of LiFePO4. 

 

 Flooded lead acid and NiCd batteries as the main technologies in this power management follow the 
same trend. While using 100% of these two technologies the system the cost function becomes very 
large, and when other technologies are added the hybrid battery cost function starts decreasing. The 
best option for both of these technologies is to combine them with LiFePO4 as the secondary battery. In 
addition, the general presented cost when using NiCd battery is almost 1.5 times more expensive than 
the cost presented when flooded lead acid is the main technology. These two batteries have lower 
efficiency compared to the other technologies decreasing their lifetime and increasing their h.b.c.f 
results. 

 
In order to be able to compare the best case scenarios of each technology combination separately to the case 
that a single used as the storage option in the Solar Home System the results were grouped as shown in Table 20. 
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Table 20: Best Case Scenarios for all four cases using different main battery technologies, with their optimal 
corresponding sizing ratio and their minimum h.b.c.f value (PM A – Case Study 2). 

Best Case Scenarios for Hybrid Battery Cost Function [$] 

                 Secondary                     
Main 

LiFePO4 VRLA NiCd Flooded 

LiFePO4  3.32e+03  
[100%] 

3.15E+03 
[80%-20%] 

3.15E+03 

[90%-10%] 
3.17E+03 
[80%-20%] 

VRLA 3.00E+03 
[10%-90%] 

6.52e+03 
 [100%] 

4.99E+03 
[20%-80%] 

4.48E+03 
[20%-80%] 

NiCd 3.36E+03 
[10%-90%] 

5.28E+03 
[30%-70%] 

1.15 E+04 
 [100%] 

5.51E+03 
[20%-80%] 

Flooded 3.07E+03 
[10%-90%] 

4.33E+03 
[20%-80%] 

5.14E+03 
[20%-80%] 

 7.22e+03  
[100%] 

 
Observing all of the results above, it can be seen that the configuration that optimizes the h.b.c.f is when using 
10% of the overall battery size for Sealed lead Acid battery and 90% for LiFePo4 with the first representing the 
main battery in power management A. The best case scenario information for Power Management A - case study 
2 are shown in Table 21. 
 

Table 21: Optimal Storage choice for PM A and Case study 2 

 Sealed Lead Acid [main] LiFePO4 [secondary] 

Sizing ratio [%] 10% 90% 

Size [Ah] 115 1035 

Number of replacements [-] 11 1 

Upfront Cost [$] 145.43 1746.21 

Lifetime Cost  [$] 610.02 502.98 

h.b.c.f [$] 3.00E+03 

 
The different costs for this best case scenario are illustrated in Figure 6-22. It can be seen that the upfront cost, in 
general, is higher than the lifetime cost. For LiFePO4 battery this is explained by the fact that it needs only one 
replacement over the system lifetime accounting for 15 years of operation. For lead acid this is explained by the 
size of the battery. More specifically, as lead acid possesses only 10% of the overall battery cost its upfront cost is 
very low and even though it needs 11 replacements throughout the 25 year system lifetime (almost for every 2 
years), its small size does not increase the lifetime cost significantly. In addition, it can be seen that the upfront 
cost of lithium ion battery is much bigger from the one of lead acid. This is a combination of sizing and general 
cost of this technology.  
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Figure 6-22: Lifetime and Upfront cost for the best Case Scenario in PM A - Case study 2 

 For Power Management B (PM B) 6.8.2.

6.8.2.1. Case study 1 

The results for the hybrid battery cost function for power management B (C-rate control) when varying the sizing 
percentage from 50 to 90 Wh, for all different battery technology combinations, are shown In Table 28 in the 
Appendix for Case study 1. 
 
The general trends that were followed from the Hybrid battery cost function calculation can be shown in Figure 
6-23 for each one of the battery combination cases, grouped together in figures with the same main battery 
technology. 
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(b) 
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(d) 
 
Figure 6-23: Hybrid Battery cost function trends for different battery technology combinations, for PM B-Case Study 1. (a) 
-main battery LiFePO4, (b)-main battery Sealed lead-acid, (c)-main battery NiCd, (d)- main battery Flooded lead-acid. 
Purple line represents the b.c.f for 100% of the Individual main technology 

 
Observations from h.b.c.f trends 
 

 Observing the h.b.c.f trends shown in Figure 6-23 for PM B many observations can be made. The most 
important observation is that using this Power management is much more expensive almost in all cases, 
than using 100% of one battery technology. The only exception is when NiCd battery is mixed with 
LiFePO4 technology for a sizing ratio equal to 50-50% (HB ratio=1). Thus the main conclusion is that it is 
better to use PMA in order to reach better h.b.c.f results.  

 

 Another trend that is shown clearly has to do with the combinations that include NiCd battery 
technology. When this technology is used as the secondary battery, as its size is increased - decreasing 
the size of the main technology, the h.b.c.f shows an upward trend, showing that the lifetime costs of the 
hybrid battery system are increasing. As NiCd was considered the cheapest technology, the increasing 
lifetime cost of the configuration shows that its replacements are increasing. The fact that this 
technology is the worst in terms of cost and lifetime is also shown Figure 6-23 (c) where NiCd represents 
the main technology of the configuration. As it is blended with the other technologies, the h.b.c.f 
decreases for all cases. 

 

 Another observation Is that when both of the lead acid batteries are used as the main technology, their 
h.b.c.f presents a downward trend as they becoming smaller and their secondary technology size is 
increasing especially when they are combined with lithium-ion technology. However when the secondary 
technology is the Nickel-based battery their cost function shows to be increasing confirming even further 
the short lifetime of NiCd technology. 

 
In order to analyse better PM B the best case scenarios for each main battery technology were summarized in 
one table and compared to the results when only one battery technology was used. 
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Table 22: Best Case Scenarios for all four cases using different main battery technologies, with their optimal 
corresponding sizing ratio and their minimum h.b.c.f value (PM B – Case Study 1). 

Best Case Scenarios for Hybrid Battery Cost Function [$] 

                   
Secondary                        
Main 

LiFePO4 VRLA NiCd Flooded 

LiFePO4 1.29 E+03  
[100%] 

3.04E+03 
[90%-10%] 

3.33E+03 
[90%-10%] 

3.08E+03 
[90%-10%] 

VRLA 3.96E+03 
[50%-50%] 

2.84 E+03  
[100%] 

5.91E+03 
[90%-10%] 

5.36E+03 
[70%-30%] 

NiCd 6.49E+03 
[50%-50%] 

7.73E+03 
[50%-50%] 

6.91 E+03 
 [100%] 

8.02E+03 
[50%-50%] 

Flooded 4.34E+03 
[50%-50%] 

5.57E+03 
[50%-50%] 

6.60E+03 
[90%-10%] 

3.45 E+03  
[100%] 

 
 
The best Hybrid battery technology combination (excluding the cases when 100% of a single battery technology 
was used) is appeared to be the case when 90% of battery size is represented by LiFePO4 technology and 10% by 
sealed lead acid. The upfront and lifetime cost of the two battery technologies as well as the number of 
replacements needed are shown in Table 23. 
 

Table 23: Optimal Storage choice for PM B and Case study 1 

 LiFePO4 
[main] 

Sealed lead-acid 
[secondary] 

Sizing ratio [%] 90 10 

Size [Ah] 333 37 

Number of replacements [-] 10 11 

Upfront Cost [$] 561.82 46.79 

Lifetime Cost  [$] 2223.74 205.36 

h.b.c.f [$] 3.04E+03 

 
It can be seen that using PM B both of the battery technologies need almost equal amount of replacements, 10 
and 11.This can be explained by the fact that the main battery technology, in this case LiFePO4 is used almost 
constantly and even though it is not undergoing deep charges and discharges as it handles the average loads, it is 
still used a lot more that the secondary battery technology which is sealed lead acid. In addition, lead acid 
battery exhibits even lower lifetime as it undergoes deep charging discharging cycles for the satisfaction of the 
peaks of the load.  
 
The upfront and lifetime costs of the best hybrid battery choice for Case Study 1 using PM B are shown in the 
histogram illustrated in Figure 6-24. 
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Figure 6-24: Lifetime and Upfront cost for the best Case Scenario in PM B - Case study 1 

 
It is clear that the lifetime cost especially of LiFePO4 technology is the one that is increasing the overall cost and 
the h.b.c.f of the configuration as both of the technologies used required a large amount of replacements.  
 
It is worth pointing out that even though it is obvious that PM B is not profitable at all, it was still analysed in 
terms of best case scenarios and different costs, in order to examine whether there is a trend followed by the 
battery technology combinations and best case scenarios for the different case studies. In addition it will help us 
to reach to conclusions about the battery usage and cycling. 

6.8.2.2. Case Study 2 

The results for the hybrid battery cost function power management when varying the battery sizing percentage 
from 50 to 90 with a step of 10 Wh, for all different battery technology combinations, are shown at Table 29 of 
the Appendix A for Case study 2. 
 
The general trends that were followed from the Hybrid battery cost function calculation can be shown in Figure 
6-25 for each one of the battery combination cases, grouped together in figures with the same main battery 
technology. 
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(c) 

 
(d) 

 
Figure 6-25: Hybrid Battery cost function trends for different battery technology combinations, for PM B-Case Study 2. (a) 
-main battery LiFePO4, (b)-main battery Sealed lead-acid, (c)-main battery NiCd, (d)- main battery Flooded lead-acid. . 
Purple line represents the b.c.f for 100% of the Individual main technology. 

 
Observations from h.b.c.f trends 
 

 Observing Figure 6-25 it is clear that it is much more expensive to choose a hybrid battery technology 
combination than just using one battery technology to handle all the loads. It is important to state that 
when using PM B the trends followed by the h.b.c.f  for all the HB configurations in Case study 2 are the 
same as the ones followed in Case Study 1. More specifically, NiCd technology again shows to have much 
shorter lifetime than the other technologies. In addition, the high cost of lithium ion technology when 
used as the main battery in the power management scheme cannot be compensated by its high lifetime 
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leading to a very increased value of the h.b.c.f. The best scenario h.b.c.f results of each case as well as 
the individual b.c.f results are shown in Table 24. 

 
Table 24: Best Case Scenarios for all four cases using different main battery technologies, with their optimal 
corresponding sizing ratio and their minimum h.b.c.f value (PM B – Case Study 2). 

Best Case Scenarios for Hybrid Battery Cost Function [$] 

                    
Secondary                        
Main 

LiFePO4 VRLA NiCd Flooded 

LiFePO4   3.32e+03  
[100%] 

7.13E+03 
[90%-10%] 

7.84E+03 
[90%-10%] 

7.20E+03 
[90%-10%] 

VRLA 9.90E+03 
[50%-50%] 

6.52e+03 
 [100%] 

1.43E+04 
[90%-10%] 

1.35E+04 
[50%-50%] 

NiCd 1.55E+04 
[50%-50%] 

1.84E+04 
[50%-50%] 

1.15 E+04 
 [100%] 

1.90E+04 
[50%-50%] 

Flooded 1.08E+04 
[50%-50%] 

1.38E+04 
[50%-50%] 

1.59E+04 
[90%-10%] 

 7.22e+03  
[100%] 

 
It can again be seen that the best case scenario is to use only LiFePO4 battery technology which minimizes the 
cost function. In addition, comparing these results with the ones of PM A it is better to use hybrid battery 
configurations determined there. Excluding the single battery technology results, the best hybrid configuration of 
PM B is the one with 90% of the battery size using LiFePO4 and 10% of sealed lead acid. More details about this 
hybrid battery configuration are shown in Table 25. 
 

Table 25: Optimal Storage choice for PM B and Case study 2 

 LiFePO4 
[main] 

Sealed lead-acid 
[secondary] 

Sizing ratio [%] 90 10 

Size [Ah] 1035 115 

Number of replacements [-] 7 7 

Upfront Cost [$] 1.75e+03 1.45e+02 

Lifetime Cost  [$] 4.85e+03 3.86e+02 

h.b.c.f [$] 7.13E+03 

 
I can again be seen that the cost that increases the overall h.b.c.f is the lifetime cost of the batteries as they both 
need seven replacements throughout the overall 25 year system lifetime. This can be better illustrated in Figure 
6-26. 
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Figure 6-26:  Lifetime and Upfront cost for the best Case Scenario in PM B - Case Study 2 

 Battery Sizing and Hybrid Battery Cost Function Trade-offs 6.8.3.

 
In order to examine whether oversizing the battery could lead to more satisfactory results, meaning smaller 
h.b.c.f thus, higher battery lifetime and less number of replacements the simulation was run for a variation of 
different battery sizes. The oversizing of the battery was applied to the best case scenarios of every case study 
and power management. 

Power Management A  

For power management A the results of the h.b.c.f trade-offs with the size of the battery are shown in Figure 
6-27 and Figure 6-28 for Case studies 1 and 2, respectively. The figures on the left include the total upfront and 
lifetime cost of the configuration as well as the h.b.c.f curve, while the figures on the right compare the upfront 
and lifetime cost of the two different batteries that are part of the HB.  
 
As it can be seen from Figure 6-27 (a) and Figure 6-28 (a), for both case studies the h.b.c.f keeps increasing as the 
battery is oversized. The upfront cost of the total configuration naturally keeps increasing linearly while the 
battery size increases, as they are proportional. This can also be justified from Figure 6-27 (b) and Figure 6-28 (b) 
where the upfront costs of both battery technologies that form the hybrid configuration increase linearly with 
the battery capacity increase. 
 
The lifetime costs on the other hand, are more complex to explain. Starting from Case Study 1, it is seen that the 
total lifetime cost is almost kept constant as the battery capacity increases. As it can be seen from Figure 6-27 (b) 
the lifetime cost of the secondary battery technology, in this case Sealed lead-acid becomes zero when the 
battery is oversized by 3 and stays zero until the end. Thus, this battery technology undergoing the cycling of the 
specific load profile and used as secondary battery in PM A is able to last 25 years. The main battery on the other 
hand, exhibits increasing lifetime costs at the beginning but after oversizing the battery by 4 times its lifetime 
costs are shown to be decreasing. This is happening because the battery is able to last more as it is oversized 
leading to less number of replacements.  
 
Something very similar to Case Study 1 is happening at the second case study trade-off curves. The total lifetime 
cost of the hybrid configuration equals to the sealed-lead acid lifetime cost after oversizing the battery by 2. This 
is when the secondary battery (LiFePO4) does not need any replacements having only upfront cost. Again the 
h.b.c.f continues increasing when oversizing the battery due to battery usage and activity at the specific 
application. 
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(a) 

 
 (b) 

 
Figure 6-27: (a) Hybrid Battery cost function (b.c.f.) and sizing trade-off for PM A - Case Study 1 and (b) Different battery 

cost trade-offs. 

 

 
(a) 

 
 (b) 

 
Figure 6-28: (a) Hybrid Battery cost function (b.c.f.) and sizing trade-off for PM A -  Case Study 2 and (b) Different battery 

cost trade-offs. 

Power Management B 

For power management B, Case study 1 we can observe big fluctuations in the h.b.c.f but still not enough to 
become smaller than the value that the function when the battery is not oversized. For Case study 1 as it is again 
logical the upfront costs of the batteries as well as the total upfront cost keep increasing linearly with size. The 
lifetime cost of the configuration on the other hand, shows a very steep decrease when oversizing the battery by 
4 and 5 times and then it continues increasing gradually. Observing Figure 6-29 (b) the big fluctuation happens in 
the lifetime of the main battery LiFePO4. As the battery capacity is oversized up to 3 times the number of 
replacements needed for this technology, are 10, 11 and then 10 again. The increase in the number of 
replacements as the battery is oversized from QN to 2QN has to do with the active time periods of the battery. 
This is happening because as the battery sizing increases, the systems fails less to satisfy the load, thus the 
battery lies empty or full less time periods resulting to more cycling. As the battery cycles more the number of 
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these cycles are the ones that count until the EOL as the EOL cycle number in this lifetime model is 
predetermined by the manufacturer datasheets. Thus higher amount of cycles leads to shorter lifetime of the 
battery. This phenomenon can be justified as the calculation of the battery size for LLP equal to 0.4% takes into 
account a battery efficiency of 95% while here the battery efficiency is smaller. 
 
After oversizing the battery by 4 and 5 times the lifetime of the battery increases significantly as it requires 5 and 
1 replacements, respectively (thus the lifetime cost decreases). After that, the lifetime of the battery continues 
increasing but still needs one replacement as it never reaches 25 years of lifetime. Thus, the lifetime cost of the 
battery becomes proportional to the battery size and not to the replacements from 5 to 15 times the battery 
size.  
 
Observing the lifetime of the secondary technology on the other hand (sealed lead-acid) is seen that it becomes 
zero after oversizing the battery by 10 as the main battery is almost able to handle all of the load individually 
even when the secondary battery fails to handle the peaks. The replacements of the battery decrease gradually 
as the battery capacity is oversized. The replacement curves with the battery oversizing are shown in Appendix A. 
 

 
(a) 

 
 (b) 

Figure 6-29: (a) Hybrid Battery cost function (b.c.f.) and sizing trade-off for PM B-Case Study 1 and (b) Different battery 
cost trade-offs. 

 
For the second case study, it can again be seen that the overall h.b.c.f almost equals to the combination of the 
upfront and lifetime costs of the main technology (LiFePO4) as it possess 90% of the total hybrid battery size. 
Some fluctuations can again be seen in the lifetime of the main battery technology, when the lifetime increases 
significantly from one point to another in a degree that is able to decrease the lifetime cost of the battery. It is 
important to see that when oversizing the hybrid battery by 2 times the h.b.c.f becomes a little bit smaller than 
the value it had before oversizing the battery. In this case the replacements of the main battery drop from 7 to 2 
as the lifetime increases from 3 to 10 years while the size is only doubled, something that is not enough to 
increase the cost that much. This is also happening because the secondary battery needs zero number of 
replacements when oversizing the battery by any number. In addition after reaching 13 times the battery size the 
replacements of the main battery become one per year, thus the sudden drop in the lifetime cost too. The 
replacement curves with the battery size are again shown in Appendix A. 
 
Having all of the above in mind, it is clear that the trade-off between cost, sizing and lifetime are very depended 
to the specific cycling and usage that the battery undergoes for a specific application, load profile and power 
management. 
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(a) 

 
(b) 

Figure 6-30: (a) Hybrid Battery cost function (b.c.f.) and sizing trade-off for PM B - Case Study 2 and (b) Different battery 
cost trade-offs. 

 

6.9. Conclusions 
 

The main conclusion of this chapter is that indeed there is a hybrid battery configuration that is able to decrease 
the battery cost function becoming smaller than the value it has when only using one individual battery 
technology. Different hybrid battery configurations were decided to be the optimum ones for the different sets 
of PV-load case studies that were examined. The final best case scenarios of Power Management A and B 
compared to the individual technologies taking part in the HB configuration are summarized in  
Figure 6-31. The two arrows point out the cases when cost function is minimized for both case studies. It is seen 
that keeping things simple with Power Management A has led to the best cost function values resulting to the 
optimum HB battery choices for Case studies 1 and 2. 
 

 
 

Figure 6-31: Best case scenarios as obtained from all of the results 
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The technologies that take part in the optimum hybrid battery configurations for both case studies are lithium 
ion, more specifically lithium iron phosphate and sealed lead-acid. These batteries exhibit the best combination 
of cost and lifetime in order to represent the most suitable storage technology to be used at Solar Home System 
applications. While lithium ion battery has the higher lifetime of all technologies by far, its high cost is making it 
competitive with the lead acid technology. Even though lead-acid has much shorter lifetime the low cost of the 
technology is decreasing the overall cost of Hybrid battery cost function. 
 
Taking into consideration that the costs of Lithium ion batteries are going to be decreased significantly in the 
future it could also be said that another option, is using hybrid battery configuration at the beginning of the 
System lifetime and after it fails replacing it with only lithium ion technology if its price is indeed a lot decreased 
by the time that the configuration needs replacement. As it can be seen from Figure 6-31 the cost difference 
between the optimal HB configuration for both Case studies 1 and 2, and the choice of using a single technology 
of LiFePO4, is very small, accounting to almost 13% and 10% respectively. Thus it could indeed be an option to 
replace the HB configuration with only lithium ion technology after the first time that the configuration fails. For 
Case study 1 it could be after six years of operation as LiFePO4 battery would need only one replacement and 
sealed lead-acid zero. For case study 2 this could happen after the first or second time that Sealed lead-acid 
battery fails, as lithium ion technology there lasts for 15 years. On the other hand, there is an uncertainty on 
whether the price of this battery technology will actually  have this dramatic decreased, as it was discussed and 
shown in the sensitivity analysis that was held in section 6.7 of this Chapter.  
 
One important conclusion is that the battery lifetime and the fluctuation of the h.b.c.f is very depended on the 
battery usage that the technology might be undergoing under different power managements and load profiles. 
The way that the battery sizing methodology in combination with the lifetime prediction model was constructed 
allows the battery to undergo more cycling when its size is bigger up to a point mainly because efficiency of the 
battery used for the sizing methodology was very optimistic. This is evident by the fact that there are no clear 
trends followed by the best case scenarios in the two different Power managements constructed except for the 
technology combination that has the best results (LiFePO4 and Sealed lead-acid). 
 
 
After considering all of the results, it is seen that  for the cases used in this study HB configurations indeed 
optimize the value of the cost function but the difference of using only lithium ion battery is small and could be 
compensated by the additional costs that will occur for the development of the HB configuration. The installation 
of HB would probably require extra R&D costs as more complex Power management schemes need to be used 
for the power in such system.  
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 Chapter 7 

7. Conclusions and Future Recommendations 
 

7.1. Thesis Retrospection  
 
In this project four different battery technologies were examined, compared and combined together to be able 
to reach the best storage option for the application of Solar Home Systems. This study involved modelling of the 
sizing and the behaviour of different technologies, as well as of Hybrid battery technologies. A non-empirical 
lifetime estimation method for the batteries was proposed and combined with a cost function that was 
constructed for comparing different hybrid battery storage options. Finally, the optimal storage for different load 
cases was found. 

 Answers to the research Questions 7.1.1.

 
The main objective of this project was to examine and propose the optimal storage option whether it consist of 
an individual battery technology or a combination of two technologies together (Hybrid battery), for the 
application of the Solar Home Systems. In order to do that, some other questions needed to be answered first. 
 

 What is the Optimal Storage Size for different Load Scenarios taking place in a specified location? 
 
The first step needed to be taken, was the sizing of the system for both of the Load scenarios that were used. For 
the sizing of the system two different Power management Architectures were examined and compared in terms 
of the battery size based on LLP minimization and the energy throughput minimization. After considering the 
results of each one of the Architectures it was concluded that Architecture 1 required smaller storage size for 
both load scenarios and the battery was undergoing much less cycling. The optimal sizing results for both Load 
case studies were obtained taking into account Architecture 1, which was also used moving forward to the 
methodology. For Case study 1 the optimal battery size was concluded to be 370 Wh and for case study 2 1150 
Wh, 
 

 How to accurately estimate the lifetime of a battery taking into account as many battery parameters 
and behaviours as possible for different battery technologies? 

 
In order to be able to take an informed and accurate decision for the optimum storage option needed, the 
lifetime of each battery technology had to be considered. Thus, a non-empirical lifetime estimation method is 
being proposed using dynamic battery capacity fading. This method started taking as a base idea, the overall 
lifetime zero crossings estimation method, which introduces the definition of active DOD. The many different 
layers of complexities were added trying to take into account as many battery parameters as possible and their 
contribution to battery lifetime. Including different battery efficiencies, temperature and DOD effects, active and 
inactive battery periods as well as cycle counting algorithm (rainflow) and a fatigue measurement rule, the 
dynamic model for capacity fading was constructed. The result of this proposed model is the predicted lifetime of 
a battery technology when being cycled for specific load profiles. It was made sure that this lifetime estimation 
method satisfies all of the criteria that these kind of methods need to have overcoming many challenges. The 
lifetime method was validated and concluded to be very realistic but a bit pessimistic. 
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 How can the upfront and lifetime costs be combined into a singular cost function while capturing the 
future cost trends of the different technologies? 

 
The next step, after being able to estimate the battery lifetime, is to have an accurate measurement of 
comparison between the different tested battery technologies, individual and hybrid. This measure has to 
include the upfront cost of the battery which is directly proportional to the battery size, as well as the lifetime 
cost of the battery which is proportional to battery size again, but also it need to take into account factors such 
as battery lifetime (with all the parameters affecting it), number of battery replacements needed during the 
lifetime of the Solar Home System and future battery costs accounted for their replacement. Taking all of the 
above into consideration a battery cost function (b.c.f) for the individual technologies and a hybrid battery cost 
function (h.b.c.f) of the Hybrid battery system were constructed. The future battery cost trends were 
approximated using cost learning for the different technologies and incorporated into the overall battery cost 
function used for the calculation of the lifetime cost.  
 

 What are the limitations of individual battery technologies? How can the hybrid battery combine the 
best features of each technology? 

 
After comparing lifetime results of all the individual technologies used in this chapter in many stages of the 
chapter some general conclusions for the technologies were drawn. First, the technology that exhibits higher 
tolerance in cycling in the application of Solar Home Systems is the lithium ion technology as it appears to have 
longer lifetime of all the other technologies needed less number of replacements throughout the whole system 
lifetime. Sealed lead acid batteries experience less battery lifetime but still could be used in such applications 
while NiCd batteries experience the smallest efficiency and shortest lifetime of all technologies. The trade-off 
between battery lifetime and technology selection has to do with the battery cost. Lithium ion batteries are the 
most expensive technologies showing downward trends while nickel cadmium batteries are the most cheap 
remaining more or less constant. Lead acid on the other hand also experience a downward cost trend but is a 
lesser extent than lithium ion. 
 
The optimal hybrid battery calculated in chapter 6 was able to combine the best features of the two technologies 
combined in terms of lifetime and cost being able to minimize the cost function. 
 

 Which optimal Battery Technology or Hybrid Battery configuration can optimize the storage 
Cost function for a given set of PV-Load profile?  

 
The Hybrid battery configuration that was found to optimize the hybrid battery cost function was different 
for the different case studies. For Case study 1 (low LP) the optimum storage configuration was found to be 
consisted of 10% of the total storage size by LiFePO4 technology and 90 % of the total storage size  by  Sealed 
lead-acid, cycling with Power management A.  For Case study 2 (medium LP) the optimum configuration 
consists of 10 % Sealed lead acid battery and 90% LiFePO4 cycling with power management A. 

 General Conclusions 7.1.2.

 

 One of the most important conclusions that were drawn from the project is that battery lifetime is very 
dependent on the active and inactive periods that it has during its operation, thus very dependent on the 
specific battery usage, load profile that is used. This was very evident in times that the battery sizing was 
varied resulting to different battery cycling. Thus, different results are expected for battery lifetime if the 
same technology is used in different application.  
 

 In terms of lifetime modelling it is very important to point out that the general methodology constructed 
can be applied to any type of battery technology and brand as long as the manufacturer lifecycle curves 
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can be found or constructed accurately. The lifetime model was able to combine the different technology 
aging characteristic together leading to a very satisfying result. 
 

 In terms of battery and lifetime modelling it very important to point out that the model constructed 
purely sticks to energy balance through the overall SHS. The battery was examined in a system-level 
approach as a black box, and its behaviour was modelled by adding the manufacturer’s datasheet curves. 
Thus all the models constructed had to do with power managements and power flow schemes inside the 
overall System and it is not an electrical model.  

 

 In terms of the battery cost function, the result is very depended on future battery cost forecasts. Thus 
after the sensitivity analysis was carried it was seen that the b.c.f result can easily be changed a lot when 
experiencing a small change in the cost trends.   

 

 The calendar life of the battery was not included in this study. As mentioned in the literature review, the 
battery technology that experiences the higher calendar life degradation is lithium ion. Thus, it is 
conjectured to the best of author’s knowledge, that if calendar fading is applied in all of the technologies 
it is expected for lithium ion technology to have smaller lifetime differences especially with lead acid 
batteries. 
 

 The most important conclusion that can be drawn from this study is that a battery is a very complex 
component that can behave a lot differently when the ambient or operating conditions change. This was 
very evident in the results, as a general trend for everything was not able to found. More specifically, 
even though the best case scenarios in both case studies include LiFePO4 and Sealed lead-acid 
technology, the HB ratio was different in each case as well as the main and secondary technology used.  
 

 If more accurate datasheet information were used, for temperature cycle life curves, then the results 
could also be more accurate in terms of the optimal storage configuration decided. 
 

7.2. Recommendations and Future Work 
 
One of the main challenges that this project had to face was the need to be able to obtain the same data and 
curves for four different battery technologies, so that they could be compared properly. Due to limited 
manufacturer data, some assumptions and simplifications needed to be made. More specifically: 
 

 A more accurate sizing methodology could be followed, including dynamic battery and converter 
efficiencies with the change of the power of the system. This would have led to a more accurate battery 
size for the load cases examined minimizing the LLP (system failure to satisfy the load measurement). In 
addition different efficiencies for different battery technologies could be used. Lastly, the dynamic 
capacity fading could also be included into the sizing methodology as well as the temperature effects. 
 

 In the dynamic capacity fading code, calendar fading could also be added for the different technologies, 
in order to make the lifetime prediction of the battery even more accurate. The calendar fading 
methodology proposed in this study was concluded to be highly pessimistic as it accounts for every 
inactive period of the battery in the aging process while not considering battery relaxation periods. In 
order to be used more accurately it could be applied to the battery after a year of operation accounting 
all the inactive periods and an average temperature. This model would have been more realistic but also 
not very accurate. 
 

 The efficiency of the battery was considered to be constant as the battery undergoes aging and fades 
when the dynamic capacity fading model is applied. In real time applications this is not the case as the 



111 Bibliography  
 

Thekla Papakosta  Master of Science Thesis 

efficiency of the battery should also be reduced as the battery is operating through the years. A future 
recommendation is to also reduce the efficiency of the battery dynamically as the battery degrades. 
 

 As this methodology is applied to Solar Home Systems that represent low power applications with very 
slow charging and discharging rates, the C-rate effect was not included. In the future if this model has to 
be used in application with smaller C-rates there is going to be a deviation in the final results as they will 
appear to be more optimistic. As the C-rate increases, the temperature increases; thus the battery 
lifetime decreases. One future improvement could be to include C-rate or C-rate deviations in order to 
be able to apply the method in a wider range of applications. 
 

 In order for even more accurate results to occur from the two cost function calculated, the cost factor 
curves can be normalized into the specific years’ currency value taking into account inflation etc.  
 

 In the future a multi-objective optimization could take place optimizing all of the aspects and layers that 
were taken into account in this model such as considering different level of LLP optimization and battery 
sizing for all the different load cases as well as battery technologies and configurations. Different battery 
technologies would require different battery sizing or different power management architectures. 
Different hybrid battery configurations would also require the same. By optimizing and customizing every 
level of the procedure followed into the specific cases different and more accurate and informed result 
would occur. 
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Appendix A 

 PM A RESULTS FOR ALL THE HB RATIOS 

 
 

Table 26: Hybrid Battery Cost Function (h.b.c.f) results for PMA and Case study 1 (low LP) 

Battery Technology Combinations 

Ratio                                                      Hybrid Battery Cost Function [$*E+03] 

LiFePO4-main VRLA-main NiCd-main Flooded-main 

Main 
[%] 

Second 
[%] 

Ratio 
[-] 

VRLA NiCd Flooded LiFePO4 NiCd Flooded LiFePO4 VRLA Flooded LiFePO4 VRLA NiCd 

10 90 9 1.12 1.46 1.26 1.21 1.82 1.51 1.59 1.88 2.04 1.25 1.43 1.88 

20 80 4 1.17 1.18 1.19 1.65 1.76 1.78 2.62 2.76 2.88 1.77 1.89 1.99 

30 70 2.33 1.28 1.18 1.28 2.12 2.10 2.11 3.66 3.75 3.77 2.34 2.33 2.33 

40 60 1.5 1.31 1.22 1.31 2.44 2.25 2.35 4.55 4.54 4.55 2.75 2.72 2.64 

50 50 1 1.28 1.13 1.28 2.59 2.36 2.51 5.23 5.16 5.20 2.92 2.84 2.76 

60 40 0.67 1.27 1.15 1.27 2.64 2.46 2.58 5.55 5.49 5.49 3.09 3.02 2.91 

70 30 0.43 1.23 1.15 1.23 2.70 2.56 2.65 5.86 5.81 5.81 3.15 3.11 3.02 

80 20 0.25 1.30 1.24 1.30 2.71 2.62 2.68 6.12 6.08 6.08 3.30 3.27 3.21 

90 10 0.1 1.23 1.20 1.23 2.77 2.73 2.76 6.54 6.52 6.52 3.34 3.32 3.21 

Minimum Value  1.12 1.13 1.19 1.21 1.76 1.51 1.59 1.88 2.04 1.25 1.43 1.88 
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Table 27: Hybrid Battery Cost Function (h.b.c.f) results for PMA and Case study 2 (medium LP) 

Battery Technology Combinations 

Ratio Hybrid Battery Cost Function [$*E+03] 

LiFePO4-main VRLA-main NiCd-main Flooded-main 

Main 
[%] 

Second. 
[%] 

Ratio 
[-] 

VRLA NiCd Flooded LiFePO4 NiCd Flooded LiFePO4 VRLA Flooded LiFePO4 VRLA NiCd 

10 90 9 4.52 5.80 4.72 3.00 6.51 5.10 3.6 5.31 5.76 3.07 4.99 6.59 

20 80 4 3.53 4.32 3.83 3.28 4.99 4.48 4.16 5.39 5.51 3.41 4.33 5.14 

30 70 2.33 3.48 4.18 3.75 3.28 5.01 4.58 4.47 5.28 5.57 3.68 4.49 5.19 

40 60 1.5 3.43 4.04 3.67 3.80 5.09 4.74 4.95 5.63 5.88 4.02 4.70 5.31 

50 50 1 3.35 3.88 3.41 4.11 5.18 4.71 5.58 6.14 6.19 4.25 4.80 5.33 

60 40 0.67 3.31 3.60 3.35 4.47 5.17 4.94 6.46 6.86 6.91 4.80 5.24 5.66 

70 30 0.43 3.16 3.49 3.30 4.84 5.36 5.18 7.3 7.61 7.63 5.25 5.44 5.76 

80 20 0.25 3.15 3.23 3.17 5.15 5.42 5.36 8.47 8.58 8.67 5.64 5.83 5.91 

90 10 0.1 3.15 3.15 3.18 5.92 5.96 5.97 10.06 10.11 10.12 6.50 6.54 6.58 

Minimum Value  3.15 3.15 3.17 3.00 4.99 4.48 3.36 5.28 5.51 3.07 4.33 5.14 
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 PM B RESULTS FOR ALL THE HB RATIOS 

 
Table 28: Hybrid Battery Cost Function (h.b.c.f) results for PMB and Case study 1 (low LP) 

  Battery Technology Combinations 

Ratio Hybrid Battery Cost Function[$*E+03] 

LiFePO4-main VRLA-main NiCd-main Flooded-main 
Main 
[%] 

Second. 
[%] 

Ratio 
[-] 

VRLA NiCd Flooded LiFePO4 NiCd Flooded LiFePO4 VRLA Flooded LiFePO4 VRLA NiCd 

50 50 1 3.75 5.65 3.97 3.96 7.08 5.40 6.49 7.73 8.02 4.34 5.57 7.59 

60 40 0.67 3.49 5.21 3.75 4.32 6.98 5.50 7.27 8.13 8.43 4.81 5.59 7.47 

70 30 0.43 3.14 4.69 3.35 4.77 6.68 5.36 7.93 8.76 8.84 5.01 5.71 7.18 

80 20 0.25 3.11 3.89 3.19 4.93 6.06 5.38 9.11 9.37 9.56 5.66 5.91 6.69 

90 10 0.1 3.04 3.33 3.08 5.46 5.91 5.64 10.24 10.31 10.35 6.19 6.29 6.60 

Minimum Values 3.04 3.33 3.08 3.96 5.91 5.36 6.49 7.73 8.02 4.34 5.57 6.60 

 
Table 29: Hybrid Battery Cost Function (h.b.c.f) results for PMB and Case study 2 (medium LP) 

Battery Technology Combinations 

Ratio Hybrid Battery Cost Function [$*E+03] 

LiFePO4-main VRLA-main NiCd-main Flooded-main 
Main 
[%] 

Second. 
[%] 

Ratio 
[-] 

VRLA NiCd Flooded LiFePO4 NiCd Flooded LiFePO4 VRLA Flooded LiFePO4 VRLA NiCd 

50 50 1 9.29 14.68 9.90 9.90 18.41 13.48 15.48 18.41 19.00 10.83 13.80 19.38 

60 40 0.67 8.71 12.48 9.13 10.93 17.11 13.51 18.17 20.21 20.71 12.36 14.31 18.53 

70 30 0.43 8.21 10.92 8.57 12.22 16.14 13.64 19.92 21.45 21.86 13.58 14.63 17.75 

80 20 0.25 7.68 9.44 8.01 12.64 15.13 13.72 21.97 22.73 22.71 14.11 14.89 16.60 

90 10 0.1 7.13 7.84 7.20 13.26 14.30 13.64 23.39 23.65 23.75 14.90 15.24 15.89 

Minimum Values 7.13 7.84 7.20 9.90 14.30 13.48 15.48 18.41 19.00 10.83 13.80 15.89 
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 Battery Miscellaneous  

 
Figure A-1: Number of replacements for battery oversizing in PMA-Case study1 

 

 
Figure A-2: Number of replacements for battery oversizing in PMA-Case study2 

 
Figure A-3: Number of replacements for battery oversizing in PM B-Case study1 

 
Figure A-4: Number of replacements for battery oversizing in PM B-Case study2 
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Appendix B 

 Sealed lead-acid 

   

 [Sourced from [36]] 
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 Flooded lead-acid 

 

 
 

[Sourced from [37]] 
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 NiCd 

 

 

 

  
 
 

  [Sourced from [40]] 
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 LiFePO4 

 

   

 
[Sourced from [41]] 
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