TR3SZ-O

STELLINGEN
behorende bij het proefschrift
Application of Mathematical Optimization Techniques to
Nuclear Reactor Reload Pattern Design
door A.J. Quist

I
Het model met gescheiden leeftijdsfracties in bundels biedt voldoende perspectieven voor een
vervolgonderzoek.
Dit proefschrift, par 2.3.3 en 8.3.

31
Locale zoekmethoden zijn succesvol bij het oplossen van een groot aantal combinatorische
optimaliseringsproblemen. Bij problemen waarvan de moeilijkheid mede bepaald wordt door
niet-lineaire relaties op de variabelen, kan het beter zijn om deze methoden te combineren met
niet-lineaire optimalisatiemethoden.
Dit proefschrift, par 8.2.

I
Vergelijking van methoden voor optimalisatie van herlaadpatronen wordt ernstig belemmerd
door het ontbreken van een algemeen geaccepteerde verzameling van testproblemen, zoals die
bijvoorbeeld bestaat voor een groot aantal probleemklassen binnen de mathematische optimali-
sering.
Dit proefschrift, par 3.4.

v
Het NP-complete probleem

minimize{xTAx: xe R, Zx,- =1, x>0}
i

is te herleiden tot het volgende convexe optimalisatieprobleem:
minimize{Tr(AX): X € B, Tr(X) = 1}.

Hierin is B de (convexe) kegel van completely positive n x n-matrices.
[.M. Bomze, M. Diir, E. de Klerk, C. Roos, A.J. Quist and T. Terlaky, On copositive programming and standard
quadratic optimization problems, te verschijnen in Journal of Global Optimization

\%
Technisch onderzoek uit het volledige onderzoeksveld van de TU Delft kan baat hebben bij
combinatie van de beschikbare kennis over het numeriek oplossen van differentiaalvergelijkin-
gen en de beschikbare kennis over wiskundige optimalisatie.
Voorbeeld: A.H. Lobbrecht, Dynamic Water-System Control: Design and Operation of Regional Water-Resources
Systems, Proefschrift, TU Delft, 1997

VI
Interdisciplinair onderzoek verkrijgt meerwaarde indien de samenwerkende onderzoekers één
of meer conferenties uit de andere disciplines bezoeken.

vil
Recentelijk is het een promovendus gelukt om maar liefst 72 stellingen bij zijn proefschrift te
voegen. Zowel aantal als inhoud bleven echter ver achter bij de stellingen van Salomo, zoals
neergelegd in zijn boek der Sprenken.
A. van Dijk, Aliasing in one-point turbulence measurements: Theory, DNS and hotwire experiments, Proefschrift,
TU Delft, 1999

Vi

‘De beweringen in 1 Koningen 7,23 en 2 Kronieken 4,2 van het Oude Testament zijn onjuist.”
Stelling 7 bij het proefschrift The Adjoint of a Semigroup of Linear Operators,
J.M.AM. van Neerven, 1992, CWI1, Amsterdam.

De betrouwbaarheid van de Bijbel als Woord van God staat of valt niet met een afrondingsfout.

IX
Een eventueel besluit om de kerncentrale Borssele in 2004 alsnog te sluiten, is moeilijk te rijmen
met invoer van elektriciteit uit het buitenland.

X
Een hedendaagse promovendus kan internet piet meer missen.

XI
Reclame en media willen ons ten onrechte laten geloven dat bijna niemand zonder internet kan.

X11
Een van de raadgevingen voor het geval er brand uitbreekt, is om te gaan kruipen in ver-
band met de rookontwikkeling. Het verdient daarom aanbeveling om bordjes ‘Nooduitgang’
op kniehoogte te bevestigen.

X111
Aggressieve verkeersovertreders kunnen hun gedrag alleen volhouden in de veronderstelling
dat anderen zich wel aan de regels houden.

X1V
Haast zonder humor leidt tot stress.

PROPOSITIONS
belonging to the thesis
Application of Mathematical Optimization Techniques to
Nuclear Reactor Reload Pattern Design
by A.J. Quist

I
The model with separate age fractions in the bundles opens sufficient perspectives for follow-up
research.
This thesis, par 2.3.3 and 8.3.

11
Local search methods are successful for solving a large number of combinatorial optimization
problems. For problems where the difficulty is also due to nonlinear relations between the
variables, it can be advantageous to combine those methods with techniques from nonlinear
optimization.
This thesis, par 8.2.

I
Comparison of methods for reload pattern optimization is hampered by the lack of a generally
accepted set of test problems. Such test sets do for example exist for a large number of problem
classes within mathematical optimization.
This thesis, par 3.4.

v
The NP-complete problem

minimize{x’ Ax: x € R", Zx; =1, x>0}
i

can be reformulated as the convex optimization problem
minimize{Tr(AX): X € B, Tr(X) =1}.
Here, B is the (convex) cone of completely positive n x n-matrices.

LM. Bomze, M. Diir, E. de Klerk, C. Roos, A.J. Quist and T. Terlaky, On copositive programming and standard
quadratic optimization problems, to appear in Journal of Global Optimization

v
Researchers from the entire spectrum of engineering research activities at the Delft University
of Technology can benefit from combining the available expertise on the numerical solution of
differential equations and mathematical optimization.
Example: A H. Lobbrecht, Dynamic Water-System Control: Design and Operation of Regional Water-Resources
Systems, PhD thesis, Delft University of Technology, 1997

Vi
Interdisciplinary research benefits when researchers attend conferences outside their own field
of speciality.

viI
Recently, a PhD student presented 72 propositions with his thesis. This falls far short of the
propositions of Solomon in his book of Proverbs, both in quantity and profundity.
A. van Dijk, Aliasing in one-point turbulence measurements: Theory, DNS and hotwire experiments, PhD thesis,
Delft University of Technology, 1999

VIl

“The statements in 1 Kings 7,23 and 2 Chronicles 4,2 of the Old Testament are incorrect.’
Proposition 7 by the PhD thesis The Adjoint of a Semigroup of Linear Operators,
JM.AM. van Neerven, 1992, CW1, Amsterdam.

A rounding error has no bearing on the reliability of the Bible as the Word of God.

IX
A possible decision to close the Borssele nuclear reactor in 2004, cannot be reconciled with the
import of electricity.

X
A contemporary PhD student cannot function without internet.

X1
Advertisements and the media wrongly suggest that almost nobody can function without inter-
net.

X1
It is advised to crawl in case of fire, to prevent smoke inhalation. Therefore, it is advisable to
place exit signs at knee-height.

XIII
Aggressive traffic offenders can only keep up their behavior by assuming that other people obey
the traffic laws.

XI1v
Haste leads to stress in the absence of humor.

Application of
Mathematical Optimization Techniques

to Nuclear Reactor Reload Pattern Design

A.J. Quist

Application of
Mathematical Optimization Techniques

to Nuclear Reactor Reload Pattern Design

PROEFSCHRIFT

ter verkrijging van de graad van doctor
aan de Technische Universiteit Delft,
op gezag van de Rector Magnificus prof.ir. K.F. Wakker,
in het openbaar te verdedigen ten overstaan van een commissie,
door het College voor Promoties aangewezen,
op maandag 29 mei 2000 te 16:00 uur

door

Adriaan Jacobus QUIST

wiskundig ingenieur

geboren te Tholen

vt

Dit proefschrift is goedgekeurd door de promotoren:
Prof.dr.ir. C. Roos
Prof.dr. EA. Lootsma

Toegevoegd promotor:
Dr.ir. J.E. Hoogenboom

Samenstelling promotiecommissie:

Rector Magnificus voorzitter

Prof.dr.ir. C. Roos Universiteit Leiden, promotor

Prof.dr.ir. FA. Lootsma Technische Universiteit Delft, promotor

Dr.ir. J.E. Hoogenboom Technische Universiteit Delft, toegevoegd promotor
Prof.dr. T. Terlaky McMaster University, Ontario, Canada

Prof.dr.ir. H. van Dam Technische Universiteit Delft

Prof.dr. W.K. Klein Haneveld Rijksuniversiteit Groningen

Prof.dr. N.V. Sahinidis University of Illinois, USA

Dit proefschrift kwam tot stand onder auspicién van:

THOMAS STIELTJES INSTITUTE
FOR MATHEMATICS

The cover illustration shows the objective function of the basic model and the objective function
of the new model as developed in Section 2.3.3, and is explained on 138.

ISBN: 90-9013770-X

© A.J. Quist, Delft 2000.

All rights reserved. No part of this publication may be reproduced in any form or by any elec-
tronic or mechanical means including information storage and retrieval systems without the

prior written permission from the author.

Printed by Universal Press

32]
Contents
List of Figures v
List of Tables vii
List of Algorithms ix
Summary xi
Samenvatting xiii
1 Introduction 1
1.1 Nuclear reactor fuel management 1
1.2 Mathematical optimization 6
1.2.1 Historical overviewandbasics 6
122 Morecomplicatedmodels 7
1.23 Exampleapplication, . 8
1.3 Motivation,aimsandscope L. .11
1.4 Outline e .1
2 Problem statement 13
2.1 Reactor Physics L e . 14
2.1.1 Fissionchainreactionst . 15
2,12 Neutrontransport v vttt e N
2.1.3 One and a half group diffusiontheory 19
2.14 Greenfunctionmodel23
2.1.5 Fuelburnup 24
2.1.6 Burnableabsorbers26
2.177 Differenttypesofnuclides 28
2.1.8 Otherextensions, .29
2.2 Elements of the optimizationmodels31
2.2.1 Loading pattern specification31
2.2.2 Equilibrium cycle condition32
223 Quadrantand Octant symmetry 33
2.2.4 Safetyrestriction 35
225 Objective function Lo . 35
23 Summaryofthebasicmodels. 35

2.3.1 Thebasic1'/ groupmodel 36

i X

CONTENTS

2.3.2 Model including Burnable Poisons 38
233 Anewmodel 39
Existing optimization approaches 41
3.1 Directsearchmethods., 42
3.1.1 Pairwise or Multiple Interchange 43
3.1.2 Simulated Annealing L e 45
3.1.3 Evolutionary algorithms 46
314 Tabusearch 47
315 Globaltolocalsearch. 48
3.1.6 Othermethodsinliterature 49
3.2 Continuous optimization approaches 49
33 Toolsforgeneraluse 52
3.3.1 Perturbationtheory (PT) 52
332 Engineeringconstraints oo 52
34 Conclusion e e e e e 53
Mixed-integer nonlinear optimization 55
4.1 General structureof MINLP 55
42 Thenonlinearpart., 57
4.2.1 Basics of nonlinear optimizationtheory 59
4.2.2 Unconstrained optimizationmethods 62
4.2.3 Obtaining derivative information, 64
424 Constrained optimizationmethods. 65
43 Theintegerpart e e e e 69
43.1 Rounding heuristics 71
432 The Branch-and-Bound method 72
433 Outer Approximationt 74
434 CuttingPlanes L oo 76
4.3.5 Othertechniques, 78
4.4 Global optimization approaches 79
4.4.1 Lipschitzoptimization 79
442 Convex relaxations within Branch andReduce 80
45 Summary e e e 82
Implementation issues in mixed-integer nonlinear optimization 85
5.1 Starting point and fixed core evaluation 87
S5.1.1 Initial values of the assignment variables 87
5.1.2 Initial values of the physical variables 90
5.13 Fixedcoreevaluation 00 o 90
52 Thenonlinearpart. i 92
521 Variablebounds. Lo 93
5.22 Additionofconstraints L. 95
523 Constraintrelaxation 95

5.2.4 Engineeringconstraints 97

CONTENTS

7

5.2.5 Reducing nonconvexity by reformulations
5.2.6 Time-discretization L.
533 Theintegerpart L e e
5.3.1 Rounding heuristics
5.32 Outerapproximation
5.3.3 Branch-and-Bound L.
534 Pairwiseinterchange
5.3.5 Combinationof methods
5S4 Cuts . .. e e e e e e
541 Cuttypel e e
542 Cuttype2 e e e
543 Cuttype3 . . . e e e
54.4 Powerpeak strengthening. 0.

5.4.5 Warm start after the addition of cuts
5.4.6 General issues regarding the cuts

5.5 Testenvironmentsandsolvers
551 GAMS . . e
5.52 Fortranand Ccodes
5.5.3 Graphical user interface

Computational results
6.1 The test sets

6.2 Results forthebasicmodels
6.2.1 Different modeling features and modeling variants
6.2.2 Nonlinear optimizationsolvers
6.2.3 Mixed-integersolvers
624 Cuts e e e e
6.3 Resultsforthe BPmodel
6.4 Conclusion e e e

Alternative approaches

7.1 Optimizationviatheweb00 0 0oL
7.2 LANCELOT and Leyffer’'scode
7.3 Globaloptimization L
7.4 Semidefinite and copositiverelaxation L. L.
7.4.1 Semidefinite Optimization
742 Copositive Optimization,
7.5 Parallelization e e
7.5.1 Some concepts in parallelization
7.5.2 Parallelization in neighborhoodsearch
7.5.3 Parallelizationin MINLP 0.

7.5.4 Conclusion

98
100
102
103

105
107
107
108
110
111
112
113
114
116
117
118
119
121

127
128
132
132
140
140
146
147
150

8 Summary, Conclusions and Recommendations
8.1 Summary
8.2 General conclusions
8.3 Recommendations

A Nonlinear optimization algorithms
A.l Overview of algorithms
A.1.1 Sequential or Successive Linear Programming (SLP)
A.1.2 Sequential Quadratic Programming (SQP)
A.1.3 Projected Lagrangian Method (PLM)
A.14 Augmented Lagrangian method (ALM)
A.1.5 Reduced Gradient method (RGM)
A.1.6 Generalized Reduced Gradient (GRG) method
A.1.7 Augmented-Lagrangian Trust-region method (ALTR)
A.1.8 Interior point methods (IPM)

A.2 Tools for nonlinear optimization algorithms
A.2.1 Quasi Newton updates of the (inverse) Hessian
A.2.2 Line search methods

B Some proofs

B.1 Results on eigenvalues and eigenfunctions
B.1.1 Discrete inverse equation (2.15)
B.1.2 Continuous diffusion equation (2.9)

B.2 Mathematical proof that k& decreases during a cycle

Bibliography

List of symbols

List of abbreviations

Index
Dankwoord

Curriculum Vitae

CONTENTS

167

1.1
1.2
1.3
14
15
1.6

2.1
22
23
24

2.5
2.6

3.1
32

4.1
42
4.3
44
4.5
4.6
4.7
4.8
4.9
4.10

4.11

5.1
52
53
5.4
55

List of Figures

Schematic picture of a normal operating nuclear power plant - 2
Schematic view of a fuel loading pattern - 2
One fuel element, consisting of a number of fuelpins - 3
Subcritical loading pattern L. L o Lo . 5
Super-critical loading pattern oo L, - 5
Boatcrossingtheriver - 9
Binding energy as function of the massnumber - 15
Power as function of time for each bundle, without and with burnable poisons - 27
NuclideChain - 28
Comparison of k}}fgc and the maximum power peak on 34 test cores, obtained

by a fast nodal method and a detailed diffusion method - 30
Octant Symmetric COT€« v v v vttt e e e e e - 34
Fractional bundle reloading, wrong (left) and correct (right) 39
Pairwise Interchange example Io 0L - 44
Pairwise Interchange example llandIIl - 44
Optimization of adiscrete problem - 56
Optimization of two nonconvex problems - 57
Illustration of the KKT conditions - 60
Saddle point illustration for f(x;,x2) =x3—x3 - 61
Illustration of the RGM and the GRGmethod - 67
Example Branch-and-Boundtree - 73
Convex region estimated by linear inequalities - 75
Small MILP example where cuts can be derived - 77
Cut in nonconvex region wrongly cuts off better integer solutions - 78
Underestimation of a nonconvex objective function: a) using the Lipschitz con-

stant; b) using the convex envelope Lo - 80
Bilinear function underestimated by 2 linear functions - 81
Good loading pattern with ring structure - 88
Most likely locations for bundles in the different age groups - 88
Tightening of linear bounds and relaxation of nonconvex constraints - 95
Center of an octant symmetriccore - 98

Central vs. forward differences solutions as function of the number of time stepss 100

vi

5.6

5.7
5.8
59
5.10
5.11
5.12

5.13
5.14

6.1
6.2
6.3
6.4
6.5

6.6
6.7

6.8
6.9

7.1
Al

LIST OF FIGURES

Comparison of keTff obtained by forward and central discretization using T' = 6

andT =15 e 101
Fractional solution due to the power peak constraint 103
Results of a fixed core evaluation for 2000 patterns on test data set Small 1 . . . 109
High fluxes in surrounding nodes that influence the powerinnodei. 110
Absorption probabilities G; jaroundnode j L 112
Main window and the two drag and drop windows of our GUI ‘PlotCore’ . . . 123
Core evaluation window, and a plot showing the k&~ development in time for the

differentnodes 124
Two examples of the interpolation tool in PlotCore 125
Pairwise interchange windows 126
The four different core layouts 129
Absorption probabilities G; ; in nodes i surrounding centernode j 130
Comparison of different startingpoints 133
Comparison of the Basic model and the k*C-model 136
Conopt+Rounding algorithm with forward and central discretization using 6

and 10 timesteps percycle 137
Objective value as function of the iteration for the fractional model and test set

Medium3 139
Different CPLEX settingsin DICOPT 141
Results for different settings of the Pl algorithm 143
ResultsforCuts e 147
Results with and withoutuseof BP 149
Speedup that is achieved by parallelizationof PI 163

Ilustration of the Goldstein-Armijocriterion. 186

List of Tables

6.1 The various computing environments L. 127
6.2 Parameter values for the differenttestsets 130
6.3 Elements of the G-matrices in the different testsets 130
6.4 Number of variables, constraints, linear and nonlinear nonzeros for the different

models e e 131
6.5 The effect of different model variants 135
6.6 Results of the new fractional model with Rounding algorithm 139
6.7 CONOPT vs. MINOSS. Results of the continuous optimization. 140
6.8 Results on the basic model with five different algorithms 145
6.9 Effective A,-values for different types of discretization with different number of

HMESIEPS . . . v v v o e e e e e e e e e e e e e e e 148
6.10 Solution from which we started, CRPR solution and best-known solution for

the Small, Medium and Large testsets 151

vii

viii

LIST OF TABLES

7140

BN

5.1
5.2
53
54
5.5

List of Algorithms

Core evaluation routine for fixed loading patterns 91
Bumnup calculation using central discretization 92
DICOPT algorithm to solve nonlinear mixed-integer problems 104
PI algorithm exploring infeasible neighbors 108
General outline of the cut-algorithm, 110

X LIST OF ALGORITHMS

NMNENE|

i@ 1]
1]

Summary

APPLICATION OF MATHEMATICAL OPTIMIZATION TECHNIQUES
TO NUCLEAR REACTOR RELOAD PATTERN DESIGN

Nuclear power plants are an important source of electricity in many countries. The uranium that
is used in these plants is very costly, and in order to reduce both fuel cost and nuclear waste, it
should be utilized efficiently. Nuclear fuel management is concerned with the question of how
to utilize the uranium in a safe and efficient way. Our research dealt with one important aspect
of fuel management, namely the placement of fuel elements in the reactor core. A nuclear
reactor core generally consists of a number of nuclear fuel elements, which can be divided into
groups of different ages. At the end of a core operation cycle (which usually lasts from 12 up
to 18 months), the oldest group is discarded from the core, the remaining fuel elements may be
reshuffled in the core grid, and the empty positions are filled with new, unburned fuel elements.
A scheme that tells where each element should be moved to is known as a reload pattern. The
positions of the elements in the reload pattern can have big influences on the efficiency of the
reactor. In current practice, such patterns are usually designed with the use of techniques that
are mathematically known as direct search heuristics.

Another approach to reload pattern optimization is the use of derivative-based optimization
methods. For a given reload pattern, the behavior of the reactor during the forthcoming cycle
is described by a set of differential equations. These equations are discretized, which leads to
a system of algebraic equations. Derivative information on these equations is easily available,
and can be used in a mathematical optimization model. The purpose of our research has been to
explore the usefulness of this approach, and to find the advantages and disadvantages of deriva-
tive based methods when applied to reload pattern optimization. This is done by developing
and implementing appropriate mathematical optimization models and algorithms.

After the Introduction, the second chapter gives a description of the underlying physics, and
the differential equations that are involved. A very accurate model, including all details of the
specific core layout, cooling liquid, three spatial dimensions, and so on, would be so large, that
evaluating just a single pattern would already take lots of computation time. Therefore, we
have developed an optimization model that captures the essence of the physical process, so that
it gives a very reasonable indication of the yield and the safety margins for a pattern, while
at the same time it is small enough to be handled in an optimization context. The model as
such does not require that the variables that describe the loading pattern are integer-valued, i.e.,
fuel elements may be mixed, which is an advantage when using derivative based methods. It
is the responsibility of the optimization method to find integer-valued solutions. The model is
further extended to include the optimization of the burnable absorber concentration. Burnable

xi

xii SUMMARY

absorbers are added to the core to damp the power of fresh bundles at the beginning of a cycle,
so giving a better balanced power distribution.

Chapter 3 provides an extensive overview of methods that are applied to the reload pattern
optimization problem in existing literature. Most papers show an implementation of direct
search heuristics, like pairwise interchange, simulated annealing, and evolutionary algorithms.
Few papers use derivative-based optimization algorithms. In these cases, the models are usu-
ally smaller and less detailed than the model we are working with. Perturbation theory is a
general tool that has been used in both approaches. The same holds for the use of engineering
knowledge to narrow the search area.

The fourth chapter lists a number of mixed-integer nonlinear optimization methods that can
be useful for reload pattern design. Variants of Sequential Quadratic Programming, the Aug-
mented Lagrangian Trust Region method and the (Generalized) Reduced Gradient methods are
applied in the different implementations that we have used. Since all these algorithms neces-
sarily assume convexity of the model, they will find local optimal solutions for our problem
(which is the case for the direct search methods as well). Integer solutions are found via round-
ing heuristics, via a Branch-and-Bound method and with Outer Approximation. Cuts can be
added to find integer solutions more efficiently, and we also used them to cut off bad local
optimal solutions. Another approach is the use of global optimization.

Chapter 5 is the core chapter, describing all the issues that had to be addressed in the actual
implementation. Due to the size and the nonconvexity of the problem, lots of specific adap-
tations, and tests with several solvers were needed to find good local optimal solutions. One
critical issue was the starting point. We developed some variants of starting point generators
that gave satisfactory solutions. The nonlinear optimization algorithm is further guided by tight-
ening bounds, by addition of artificial constraints and by the initial relaxation of some critical
constraints. Some more modifications have been investigated that were less successful. Fur-
thermore, cuts have been added to escape from local optimal solutions, and new starting points
are derived after the addition of these cuts. In order to guarantee stability, the time has to be
discretized in a careful way. Finally, we have combined our method with a pairwise interchange
direct search heuristic. In order to visualize the results, a graphical user interface has been built,
in which all characteristics of a solution can be viewed, and that gives a real-time view of the
pairwise interchange algorithm.

For the final tests we have used a commercially available Outer Approximation solver, and a
commercially available generalized reduced gradient solver, combined with our own rounding
and pairwise interchange algorithms. As is shown in Chapter 6, this last combination gives
results that are competitive to solutions obtained with direct search methods only, while the
computation time is much shorter. Furthermore, our model can easily be extended with contin-
uous variables, for example to model (continuous variable) burnable poisons. This is much less
evident when using direct search methods.

Finally, a short seventh chapter is devoted to miscellaneous algorithms that were considered
only briefly. Among others, these include less successful nonlinear optimization software pack-
ages, global optimization methods, the use of parallelization, and a semidefinite relaxation.

Arie Quist, May 2000 Delft University of Technology

B
EEmaN
1
[1F

T

e
T el

Samenvatting

TOEPASSING VAN TECHNIEKEN UIT DE WISKUNDIGE OPTIMALISATIE
BIJ HET ONTWERP VAN HERLAADPATRONEN VOOR KERNREACTOREN

In veel landen spelen kerncentrales een belangrijke rol bij de energie-opwekking, Het uranium
dat in deze centrales wordt gebruikt is erg kostbaar. Om deze reden, en om de hoeveelheid
nucleair afval te beperken, moet er efficiént mee worden omgegaan. Ook veiligheid speelt een
grote rol. Het werk in dit proefschrift richt zich op één aspect van kernbrandstofmanagement,
te weten de plaatsing van brandstofelementen in de reactorkern. Een reactorkern bevat in het
algemeen een aantal splijtstofelementen, die verdeeld kunnen worden in verschillende leeftijds-
groepen. Na iedere reactorcyclus (normaliter 12 4 18 maanden) worden de oudste elementen
verwijderd, de resterende elementen herschikt, en nieuwe, ongebruikte elementen op de vrijko-
mende posities geplaatst. Een schema dat aangeeft waar welk element geplaatst moet worden,
heet een herlaadpatroon. Het gekozen herlaadpatroon heeft veel invloed op de efficiéntie van
de reactor. In de huidige praktijk worden herlaadpatronen vaak ontworpen met gebruik van
technieken die in de wiskunde bekend staan als direkte zoekmethoden.

De aanpak van herlaadpatroonoptimalisatie in dit proefschrift is gebaseerd op methoden die
gebruik maken van de afgeleiden van functies. Het gedrag van de reactor tijdens de cyclus wordt
beschreven met een stelsel differentiaal vergelijkingen. Discretisatie van deze vergelijkingen
geeft een stelsel algebraische vergelijkingen, die gebruikt kunnen worden in een wiskundig
optimalisatiemodel. De doelstelling van ons onderzoek was om na te gaan wat de voordelen
en nadelen van zo’n aanpak zijn, en om te onderzoeken of methoden die gebruik maken van
afgeleiden nuttig kunnen zijn voor herlaadpatroonoptimalisatie. Hierbij was het de bedoeling
om geschikte wiskundige modellen en algoritmen te zoeken of te ontwerpen.

Na een inleidend hoofdstuk volgt in hoofdstuk 2 een beschrijving van de onderliggende fy-
sica, met de bijbehorende differentiaalvergelijkingen. Een zeer gedetailleerd model dat alle
details zou bevatten van de kern, de koelvloeistof, drie ruimtelijke dimensies, en dergelijke, zou
zo groot zijn dat het evalueren van één enkel herlaadpatroon al heel veel rekentijd zou vergen.
Daarom hebben we een optimalisatiemodel ontworpen dat enerzijds de essentiéle elementen
bevat en een redelijke indicatie geeft van het rendement en de veiligheidsmarges van een pa-
troon, terwijl het anderzijds klein genoeg is om gebruikt te worden in een optimalisatie. In het
model is het mogelijk om fractionele waarden te gebruiken voor de variabelen die de toewijzing
bepalen. Met andere woorden, brandstofelementen kunnen onderling worden gemengd. Dit is
een voordeel voor de door ons geteste methoden. Natuurlijk dient de optimalisatiemethode wel
een uiteindelijke oplossing te geven waarin de brandstofelementen geheel zijn. Het basis model
is uitgebreid zodat ook de concentratie van ‘burnable absorbers’ kan worden geoptimaliseerd.
Deze stoffen worden toegevoegd aan de splijtstof om het vermogen in nieuwe elementen tijde-

xiii

Xiv SAMENVATTING

lijk te reduceren, wat leidt tot een beter gebalanceerde vermogensverdeling.

Hoofdstuk 3 bevat een uitgebreid overzicht van methoden die in bestaande literatuur worden
beschreven voor herlaadpatroonoptimalisatie. De meeste artikelen beschrijven het gebruik van
direkte zoekmethoden, zoals pairwise interchange, simulated annealing, en evolutionary algo-
rithms. Enkele artikelen beschrijven het gebruik van methoden die gebaseerd zijn op functie-
afgeleiden. De daar gebruikte modellen zijn gewoonlijk kleiner en minder gedetailleerd dan ons
model. Verstoringstheorie is een algemeen hulpmiddel dat in beide soorten toepassingen wordt
gebruikt. Dit geldt ook voor het gebruik van vuistregels die de zoekruimte moeten beperken.

Het vierde hoofdstuk geeft een beschrijving van bruikbare gemengd-geheeltallige niet-lineaire
optimalisatiemethoden. In de verschillende implementaties die door ons zijn gebruikt, worden
varianten gebruikt van sequentieel quadratisch optimaliseren, van de ‘augmented lagrangian
trust region’ methode, en van de ‘(generalized) reduced gradient’ methode. Evenals de direkte
zoekmethoden geven deze methoden lokaal optimale oplossingen voor niet-convexe proble-
men. Geheeltallige oplossingen worden verkregen via afrondingsheuristieken, via de branch-
and-bound methode of met behulp van ‘outer approximation’. Verder kunnen snedes worden
toegevoegd om het vinden van geheeltallige oplossingen efficiénter te maken. In ons geval
hebben we snedes gebruikt om slechte locale oplossingen weg te snijden. Een andere aanpak
van het optimalisatieprobleem maakt gebruik van globale optimalisatietechnieken.

Hoofdstuk 5 vormt de kern van het proefschrift. Hierin worden alle zaken besproken die
aan bod kwamen bij de implementatie. Wegens de niet-convexiteit en geheeltalligheid van het
probleem waren vele specifieke aanpassingen nodig, en verschillende programma’s moesten
worden getest. Het vinden van een goed startpunt voor de optimalisatie was absoluut noodza-
kelijk. We hebben enkele startpuntgeneratoren ontwikkeld die bevredigende oplossingen geven.
Andere belangrijke aspecten voor het vinden van goede oplossingen zijn: strakke grenzen op
de variabelen, het toevoegen van hulp-beperkingen en het initieel relaxeren van bepaalde con-
straints. Andere —al of niet succesvolle— aanpassingen zijn eveneens onderzocht en worden be-
sproken, waaronder het toevoegen van snedes. De keuze van de tijdsdiscretisatie was belangrijk
in verband met stabiliteit. Een combinatie van gemengd-geheeltallige niet-lineaire optimalisatie
met een pairwise interchange heuristiek is ook bekeken en getest. De resultaten kunnen wor-
den gevisualiseerd met een grafische interface, die alle karakteristieken van een herlaadpatroon
toont. Ook geeft deze interface het verloop van de pairwise interchange heuristiek weer.

De uiteindelijke testresultaten zijn beschreven in hoofdstuk 6. Deze zijn verkregen met een
commercieel pakket dat gebruik maakt van ‘outer approximation’, en met een eveneens com-
merciéle implementatie van de ‘generalized reduced gradient’ methode. Dit laatste pakket is
geintegreerd met een eigen afrondingsprocedure en met eigen pairwise interchange algoritmen.
Deze combinatie geeft resultaten die kunnen wedijveren met die van direkte zoekmethoden,
terwijl de rekentijden veel gunstiger zijn. Bovendien kan ons model vrij eenvoudig worden
uitgebreid met continue variabelen, zoals bij het modelleren van (continu te vari€ren) burnable
poisons. Zo’n uitbreiding is niet evident bij het gebruik van direkte zoekmethoden.

Een kort zevende hoofdstuk is tenslotte nog gewijd aan alternatieve methoden en varianten die
kort zijn bekeken. Hieronder vallen andere algoritmen voor niet-lineaire optimalisatie, metho-
den voor globale optimalisatie, parallellisatie, en een semidefinite relaxatie.

Arie Quist, Mei 2000 TU Delft

|

]
INEEN]

]

IRERNES
1]
=

|
=[]

[

Chapter 1

Introduction

Nuclear power plants are an important source of electricity in many countries. These power
plants are usually fueled by uranium. Natural uranium is composed of different types of ura-
nium (isotopes), and only 0.7 % is suited for fission in the reactor. For nuclear reactor operation,
uranium is needed with a concentration of fissionable material of about 3 %. In order to obtain
uranium with this percentage of fissionable material, an expensive enrichment procedure has to
be applied. The uranium that is used in a power plant is therefore very costly, and it must be
utilized efficiently. Furthermore, optimal use of the available uranium will reduce the nuclear
waste. Nuclear fuel management is concerned with the question of how to utilize the available
uranium in a safe and efficient way. For answering this question adequately, engineering knowl-
edge only is not sufficient, but also advanced mathematical optimization methods are needed.
Our primary goals are the development of suitable mathematical optimization models of nuclear
fuel management problems and the design of an optimization system to solve those models.

A brief introductory description of the two disciplines —fuel management and mathematical
optimization— is given in the next two sections. This elementary introduction enables us to
formulate our fuel management optimization problem more precisely in Section 1.3. An outline
of the thesis is presented in Section 1.4.

1.1 Nuclear reactor fuel management

A schematic picture showing the main components of a nuclear power plant is given in Fig-
ure 1.1. The heart of the plant is the nuclear reactor core, containing a number of vertically
positioned rods with nuclear fuel (usually uranium). During normal reactor operation, nuclear
fission reactions in the fuel cause heating of the liquid that flows through the core between the
rods. Usually, this liquid is just water. Depending on the type of the reactor, the water may
start boiling, or in order to prevent boiling it may be kept under very high pressure. Anyhow,
the heated water is used to drive a turbine, in most cases via a heat exchanger and a secondary
water circuit. The turbine in turn drives an electricity generator, and the obtained electricity is
distributed via the electricity network.

We do not include the water circuits, turbines, efc. in our models, we concentrate only on the
reactor core containing the fuel elements. A top-down view of a possible reactor core is given

2 CHAPTER 1. INTRODUCTION

foadjad s huifaad jeddaijasd

FIGURE 1.1: Schematic picture of a normal operating nuclear power plant.

[fresh bundle

Bl one year old bundle
[l two years old bundle
Ml three years old bundle

FIGURE 1.2: Schematic view of a fuel loading pattern.

1.1, NUCLEAR REACTOR FUEL MANAGEMENT 3

in Figure 1.2. The core consists of a fixed number of (square) holes, the fuel nodes. Each node
is filled with a fuel element. A fuel element, that may have a width of about 10 to 25 cm is a
construction that contains a large number (say a hundred) of tiny cylindrical fuel pins or rods
with a diameter of about 1 cm. (Figure 1.3). We are only interested in the element as a whole,
and often use the term ‘bundle’ as an equivalent of ‘element’. We consider an element as if it
were a solid square rod of uniform material.

FIGURE 1.3: One fuel element, consisting of
a number of fuel pins. The spider-like con-
struction on the top of the element is used to
move control rods in and out of the element.

In some of the nodes in the core, a number of rods may be control rods instead of fuel rods.
Control rods contain only a certain absorbing material. Fuel rods emit neutrons that keep the
chain reaction alive. The amount of neutrons that are supplied determines the activity of the
core. If too many neutrons are emitted, they can be captured by control rods. Since control rods
can be moved in and out of the core during reactor operation, they can be used to regulate the
power level in the core. In most of our experimental models, the control rods are neglected. In
real reactor core computations, one has to take them into account.

Not all fuel elements in the core have the same composition. One of the reasons is that during
reactor operation, the power may be unevenly supplied over the core, and as a consequence one
bundle looses its fuel more rapidly than another. Another reason is that, depending on the
loading strategy, it may be advantageous even at the start of the reactor operation to fill the
different nodes with bundles that have different fuel concentration. If, for example, all bundles
in the core would have the same fuel composition, one could imagine that the center of the core
would be much more heated than the outer parts of the core. This shows that the fuel has to be
distributed over the core in a smart way.

From time to time, usually each year, the reactor operation is suspended for reloading and
maintenance. Fuel bundles' may be discharged from the core, new bundles may be put into

4 CHAPTER 1. INTRODUCTION

the core, and the remaining bundles may be reshuffled. This operation is called the reloading
operation, and the operational time between two reloading operations is called a cycle. In a usual
reloading operation, only a part of the bundles is discharged from the core, and fuel bundles that
still contain a reasonable amount of fuel are left in the core. In the new configuration, they are
used to create the necessary diversification in the core. In order to obtain an efficient and safe
core in the next cycle, optimal positions of all bundles have to be found.

The placement of the bundles in the core has a significant influence on the behavior of the
reactor in the forthcoming cycle. This is illustrated in the Figures 1.4 and 1.5. The left parts of
these figures give a top-down view of the core layout. This type of pictures is used frequently
in the sequel of the thesis. The different shades of gray denote the different ages of the bundles.
A white bundle is freshly inserted in the core. A light gray bundle has already been in the core
during the previous cycle. A dark gray bundle has been in the core for two previous cycles,
and a black bundle has already stayed in the core for three consecutive cycles. In the depicted
figures, and actually in all models in this thesis, a strategy is used where exactly a quarter of the
bundles is removed during each reloading operation, and where each bundle stays in the core
for four consecutive cycles.

The figures give an indication of the importance of a good loading pattern, by showing cases
where problems may arise. Figure 1.4 illustrates a situation where it may occur that the chain
reaction cannot be maintained. Although the core may initially start up, the old bundles in the
center are emitting too few neutrons to keep the chain reaction alive for the whole fuel cycle.
The fresh, active, bundles loose a large fraction of the emitted neutrons in the surrounding water.
As a result, the neutron density in the core decreases, the number of neutrons that cause a new
fission is too low and the reactor stops operating. Figure 1.5 illustrates another case. In the
outer parts of the core almost nothing is happening, but in the center there is a large fresh fuel
concentration. Sufficient neutrons emitted in the core center cause a new fission reaction to
cause a high temperature in the center. This has to be controlled by inserting neutron absorbing
control rods in the center. But since the outer parts give almost no power, the total power then
becomes too low to to maintain the required power level.

These two cases show two requirements for good loading patterns. The bundles should be
arranged such that a sufficient power level can be obtained during the whole fuel cycle. Also,
the power should be distributed evenly over the core, to prevent local heating. This leads to
cores where too large concentrations of fresh or very old bundles are omitted. A core that might
operate well is given in Figure 1.2 at page 2.

In nuclear reactor fuel management, one looks for such an acceptable loading pattern, and
one tries to find a loading pattern that gives optimal performance in the forthcoming cycle,
where ‘performance’ still has to be defined more precisely. In nuclear reactor operation, it is
very important to find loading patterns that have optimal or nearly optimal yield. If by a better
loading pattern the yield can be improved by only 1 %, this may already save half a million
dollars per year for a medium-sized power plant.

Due to the complexity of the problem, mathematical models and methods have to be used

'We use the terms fuel bundle and fuel element interchangeably. In nuclear physics literature, the term fuel
bundle is often used for one fuel pin in a fuel element.

1.1. NUCLEAR REACTOR FUEL MANAGEMENT 5

[Ifresh bundle

one year old bundle
ll two years old bundle
[l three years old bundle

ia

FIGURE 1.4: Loading pattern (schematic picture at left) that may become subcritical. In such a case, the
chain reaction cannot be kept alive, the core dies out, and the electricity generator stops operating.

-

Ofresh bundle & p /
E one year old bundle g [/ I D
M two years old bundle N _/
[l three years old bundle T)
= “
i =

FIGURE 1.5: Core (left) with an overheating problem. Due to uneven power distribution over the core,
the center would get overheated if the core was used at full operational level.

6 CHAPTER 1. INTRODUCTION

to find a loading pattern with optimal yield. Given the properties of the different fuel bundles
during reloading, one may predict the behavior of the core for a specific loading pattern in
the forthcoming cycle by solving a set of time-dependent partial differential equations. Thus,
theoretically, it is possible to compute in advance the characteristics of the core for all possible
loading patterns and to select the optimal one. In practice, this is not possible: for a core such
as the one in Figure 1.2 there are 6 - 102 possible loading patterns, even if octant symmetry is
assumed and bundles of identical age are considered equal, which is a very rough assumption.
The fastest supercomputer nowadays (and in the visible future) would require billions of years
to evaluate such a huge number of loading patterns.

We can conclude that it is not sufficient to have a tool that computes only the characteristics of
a fixed loading pattern, but additional mathematical algorithms are required that are able to find
optimal or close to optimal loading patterns, without evaluating all possible loading patterns.
Such algorithms are developed in the discipline of mathematical optimization. Although we
did not find a historical overview —loading pattern optimization is a quite young area—, there
are literature references that go back to the late sixties and early seventies, where techniques
from mathematical optimization are applied to find good loading patterns [56, 87, 113, and the
references therein]. Due to the difficulty of the problem, however, no solution method that is
known can guarantee that it finds the best solution, and there is still an ongoing research to find
better methods and techniques for finding better loading patterns, and the current thesis fits in
this area. Before giving a more precise description of the scope of our work, attention is paid in
the next section to the area of mathematical optimization.

1.2 Mathematical optimization

This section starts with a short historical overview of the field, which is inspired by [24, 71].
This overview leads to the description of the linear optimization model. Extensions are dis-
cussed in Section 1.2.2. A small example application, illustrating the use of mathematical
optimization for a simple problem that shares several properties with fuel management opti-
mization, is shown in Section 1.2.3.

1.2.1 Historical overview and basics

The roots of mathematical optimization are quite old. The method of Newton (end of the 17th
century) for solving systems of equations plays a fundamental role in many optimization algo-
rithms. Duality, one of the fundamental concepts in mathematical optimization, was known at
the end of the 18th century [68). Lagrange (end of the 18th century, [70}) introduced a dual-
ity theory for nonlinear optimization that is until now extremely important. Other well-known
names are Cauchy (steepest descent method, mid 19th century) and Farkas (extension of duality
theory, end 19th century). All these people built the basic ingredients for optimization methods.
Still, they did not use optimization methods for several reasons. They developed a theory of
equalities, but did not make the extension to inequalities, which is crucial for mathematical op-
timization. Furthermore, they did not have the computer power to solve practical optimization
problems. Thirdly, the need for mathematical optimization was simply not felt.

1.2. MATHEMATICAL OPTIMIZATION 7

The real breakthrough of mathematical optimization, and the initiation of a dedicated disci-
pline, called operations research, was due to enormous logistics problems of the allied forces
in World War II. Huge numbers of people, clothes, weapons, cars, ships, airplanes, etc. and
huge amounts of oil, food and the like had to be in time at the places where they were needed.
In order to solve these problems, staff members with mathematical insight were appointed and
they started to tackle the problems in a systematic way, by developing mathematical models and
designing algorithms to solve these models. After the end of the war, they as well as other re-
searchers continued developing those models and algorithms. Available resources were defined
as parameters in the system. Decisions that had to be made were modeled as variables. When
making the decisions a large set of constraints and requirements had to be respected. Finally,
and this turned out to be a new concept at that time, an objective should be optimized that was
defined as an explicit function of the decision variables. This objective could guide the search
to obtain a solution that not only satisfies all requirements —if such a solution exists— but that
is also optimal, i.e., the best possible, with respect to a pre-specified goal. In 1947 this lead to
the development of the linear simplex method by George Dantzig [23, 24]. Using this simplex
method, it was possible to find an optimal solution to problems as just described, as long as the
different relations, requirements, constraints and objective function could be defined as linear
functions of the decision variables. It is guaranteed that such a solution is really (globally) op-
timal with respect to the defined objective function, which means that no better solution with
respect to this objective function exists that still satisfies all restrictions.

Without computers, the practical use of the simplex method was limited to a small num-
ber of variables, since it would otherwise lead to a computational burden. During the second
half of this century, due to the rise of modern computers, larger and larger problems could
be solved. Nowadays, efficient implementations of the linear simplex method and the more
recently developed interior point methods [110] solve linear optimization problems with hun-
dreds of thousands of variables and constraints within acceptable time. Models of such sizes
are extensively used in for example the airline industry, leading to savings of billions of dollars
[8]. Many other linear models give drastical savings in various branches of industry.

1.2.2 More complicated models

Although many real-life problems can be solved by using linear optimization, there is also a
bunch of optimization problems that cannot be modeled just by using linear relations. Here we
mention two generalizations, that play an important role in the fuel management optimization
problem. '

The first is integrality of decision variables. An airline company cannot decide to sent half
a plane to New York and the other half of the plane to London. In the same way, it is not
possible to position half a fuel bundle in one position in a reactor core, and the other half of
the bundle in another position. In Section 4.1 it is explained that this makes the optimization
process much more complicated. Although methods are developed for this type of problems,
the success of such methods is strongly dependent on the specific structure of the problem
at hand. Clever specializations of the basic methods may be necessary. The algorithms for
integer optimization basically fall apart into two main categories. On the one hand there are
solution methods that are exact linear problems. These methods usually make use of linear or

8 CHAPTER 1. INTRODUCTION

convex optimization algorithms in which the integrality requirement is ignored, embedded in
an algorithm for finding integer solutions. The other category of algorithms are neighborhood
search methods. Such methods ‘jump’ from one integer solution to another in a smart way, until
they cannot find better neighboring solutions. These methods are not exact: they may get stuck
at a non-optimal solution, but they are generally simpler and faster than exact algorithms.

The second generalization that makes optimization more complicated than linear optimiza-
tion is nonlinearity in the relations between the decision variables or/and nonlinearity in the
objective function. This may cause several more or less severe problems. One problem is nu-
merical instability. Small changes in one variable may cause large changes in other variables.
Another problem is nonconvexity, a feature (explained in Section 4.1) that makes it almost im-
possible to guarantee that a calculated locally optimal solution is really the best possible. In
our problem, this makes it practically impossible to find the overall best loading pattern with
respect to the given objective function, or if we find it by chance, one cannot make sure that it is
the overall best solution. Nonconvexity may also disconnect the feasible area, which in our case
means that it might be impossible to reach certain loading patterns, depending on the starting
point of the algorithm. As with algorithms for integer problems, the efficiency of algorithms for
nonlinear optimization problems strongly depends on the problem at hand. For current practi-
cal problems, it is generally possible to find a solution that is optimal in its neighborhood for
problems with several thousands of variables and constraints. Guaranteeing that a solution of a
nonconvex problem is really globally optimal, is in general only possible for problems with at
most a few hundred variables by using global optimization algorithms.

The nuclear reactor loading pattern optimization problem contains both types of compli-
cations: as we shall see, it is nonlinear, even nonconvex, and also contains integral decision
variables. This makes the problem very hard to solve. Algorithms based on both solution ap-
proaches for integer optimization may be applied. On the one hand, it may be possible to jump
from pattern to pattern in a clever way, in order to arrive at some hopefully good pattern. This
is how it is usually done. The other way is to apply some nonlinear optimization algorithm in
order to find a local optimal solution, in which the integrality constraint is ignored. Such a tool
should be embedded in an other algorithm that finds integer solutions. This is the direction that
will be investigated in this thesis.

The nuclear reactor loading pattern optimization problem is an optimization problem where
for a given set of optimization variables, the objective value is determined by the solution of
a set of differential equations, where the optimization variables are parameters to the differen-
tial equations. In other words, the problem is to find optimal settings of the parameters of a
system of differential equations. In the next section, we present a small example to illustrate
the approach that we are using. More sample applications of differential equations in various
mechanical systems can be found in [3, 125]; many of these examples can be extended to an
optimization context, just as the example below.

1.2.3 Example application

Consider the following simple example, illustrated in Figure 1.6. We are given a small boat
that has to cross a river, and to arrive at a landing stage at the other side. The water in the river

1.2. MATHEMATICAL OPTIMIZATION 9

y T
(0.1
T —
T —

med (y)

—~
| |
(0,0) T max

FIGURE 1.6: The boat has to cross the river.

flows at a position-dependent velocity as is indicated by the arrows on the left, giving a force
FRow(y) = Ffow. y(1 — y) in x-direction to the boat. The boat (with mass 1) has to reach the
point (0,1) at the other side at a time that is scaled to £ = 1, and can start at ¢ = 0 at any point
(x°,0) with x° in the range [x™", x™X], in any direction o € (—90°,90°) and with any velocity
0 € [0,v™]. The trajectory traversed by the boot is expressed by the variables (x(),y(t)).
Besides flow, the boat also is faced with a resistance that is proportional to the square of its
velocity with parameter . The boat cannot be steered, but the wind is blowing in a direction
B, and a sail can be raised and lowered dynamically during the crossing of the river, to obtain a
force between 0 and %" in direction B. The fraction of the sail that is raised at time ¢ is to be
determined as a value s(t) € [0; 1].

We want to find an initial position xy, an initial velocity vy, an initial direction o, and a
function s(¢) describing how much the sail should be raised at any time ¢ € [0; 1] such that we
arrive at position (0,1) at r = 1, and such that the maximum deviation d in x-direction from
x = 0 during the crossing is minimized. The x- and y-coordinates x(r) and y(z) of the boat
during the crossing are determined from Newtons relation F = m - q, that in our case translates
into a system of differential equations for the x- and y-direction. The acceleration a is the second
derivative of the position; the force is the sum of the flow force and the wind force, minus the
resistance force:

2 . . dx(t)\?
X _ () (1= y(0))Fiov 45(r) F¥indsin B —w(x()), 1€(0,1),
dr? dt (1.1)
d*y(t) o wind dy(t)\2
ar? ra)Feosp —o(SE), e
Associated with the differential equations are the boundary conditions:
dx(t
(fl(t)’d)c]l(t)> = (Wsina®Wcosal),
t
= (XO,O), (12)

=0
(x(0),5(0))
)

(x(1).x(1) = (0,1).

10 CHAPTER 1. INTRODUCTION

Here, vp, 0t and s(¢) are the control parameters. Outside an optimization context, the system of
differential equations (1.1) with boundary conditions (1.2) can be solved to determine x(¢) and
y(t) for fixed values of x°, V0, ® and s(¢)2. In an optimization context, the control parameters
appear as variables in the problem. Furthermore, an additional variable d is introduced to mea-
sure the maximum distance from x = 0, that has to be minimized. This leads to the following
optimization model:

minimize d
A0,00,00,5(8) x(t),y(1),d

subject to Equation (1.1),
Equation (1.2),
d> (x(1)?* relo,1],
xO c [xmin xmax]
o € (-90°,90°),
W e [0,vm],

s(t) € [0;1].

(1.3)

By choosing a suitable discretization of the time-axis, one may write (1.3) as a nonlinear
optimization model with a finite number of variables and constraints, that can be solved using
standard nonlinear optimization techniques. When solving such a model, one implicitly finds
both an optimal parameter setting and the corresponding solution of the differential equations
in one solution process.

In principle, any equation that can be stated as an algebraic equation can be handled by a
nonlinear optimization model. It makes no difference whether the equation is a differential
equation, a boundary constraint, a range constraint for a variable, or another limitation imposed
to the solution. This idea is also used in our solution approach of the nuclear fuel management
optimization problem. We incorporate the differential equations, the safety limitations and the
reloading operations all together as sets of algebraic equations in our optimization model. An
extension which is not present in the river-crossing example, is the presence of the integrality
constraints. Speed and velocity are quantities that may vary continuously; the placement of
bundles, however, is a discrete operation: it is not allowed to spread one fuel element over
different positions. This makes the fuel management optimization problem non-standard and
more complicated, but the basic ideas of using nonlinear optimization are the same as in the
river-crossing example.

2For simplicity of presentation, we assumed here that the parameters are chosen such that a solution exists,
which is not necessary the case since the number of boundary conditions is larger than the number of degrees of
freedom. Alternatively, one might let v* and o vary to reduce the number of boundary conditions to four.

1.3. MOTIVATION, AIMS AND SCOPE 11
1.3 Motivation, aims and scope

Prior to our research, a study is performed by de Klerk ef al. [65], in which a very simpli-
fied model of the reload pattern optimization problem is implemented in standard nonlinear
mixed-integer optimization algorithms. This study indicated that nonlinear optimization might
be a good candidate approach for the reload pattern optimization problem, and it forms the
motivation for the current study.

In nuclear reactor fuel management optimization, one is concerned with designing loading
patterns for nuclear power plants, such that some objective function related to the yield of the
power plant in forthcoming fuel cycles is maximized. Currently used optimization methods
may be very different, but share the property that the objective function is evaluated at ‘inte-
ger’ loading patterns only. Derivative information from the equations that describe the physical
state is not used. An exception to this is the use of perturbation theory (Section 3.3.1), but this
is only useful for selecting integer patterns that are very close to a given pattern. In contrast,
derivative-based nonlinear optimization algorithms make extensive use of derivative informa-
tion with respect to the change in any variable. During the optimization, these algorithms may
place fractions of bundles. In one iteration it may for example replace one eighth of three bun-
dles, and together three quarters of five other bundles. Special care is needed so that in the end
an integer loading pattern will be found. This approach opens new ways for finding optimal
solutions. The purpose of our research is

to explore the usefulness, to find the advantages and disadvantages, and to eval-
uate whether derivative based methods are potentially useful in loading pattern
optimization, by developing suitable mathematical models and algorithms.

A first step to reach this goal is the development of appropriate optimization models. Different
classes of optimization methods require different model variants. Suitable derivative based
optimization tools have to be found. In order to make a fair comparison with existing techniques,
available state of the art derivative-based optimization algorithms have to be tailored to the
newly developed models. Search heuristics that are currently in use must be explored and tested
in order to be able to compare derivative based methods to current practice.

Criteria that are used to compare the algorithms are flexibility, robustness, solution quality
and computational resource usage of our methods, compared to other fuel management opti-
mization methods.

1.4 Outline

This thesis is organized as follows. Chapter 2 contains an introduction to reactor physics, in
which the mathematical equations are derived that describe the evolution of the reactor core
during an operating cycle. These equations are combined with equations describing fuel reload-
ing operations and with further operational constraints. Further, an objective function for the
optimization is defined, finally resulting in a basic optimization model that will be used in the

12 CHAPTER 1. INTRODUCTION

rest of the thesis. Some variants and extensions of this mode] are discussed as well. In Chapter
3 an overview is presented of solution methods from the reactor physics literature, that are po-
tentially usable to solve the reload pattern optimization problem. Advantages and restrictions
of the different methods are briefly discussed. Then, Chapter 4 focuses on mixed-integer non-
linear optimization techniques that are used in our approach. The mathematical description of
these techniques is rather general. Our problem specific additions and modifications to these
methods are discussed in Chapter 5. This chapter gives a rather detailed overview of the dif-
ferent parts of the algorithms that we developed, and it is completed with an overview of our
actual software implementations. Computational results obtained with these implementations
are given and discussed in Chapter 6. During the research we also considered various solution
methods that went beyond the main scope of the thesis. Some of them were interesting enough
to be mentioned in Chapter 7. Finally, conclusions and possible future research directions are
discussed in Chapter 8.

= fe|i]
1
1

RBE

T F
3]

Ia
i

T

Chapter 2

Problem statement

In this chapter we give a description of the physics underlying the reload pattern optimization
problem, which is then used to derive mathematical formulations of this problem.

In the reload pattern optimization problem, a number of fuel bundles are given, which have
to be placed into positions (nodes) in a reactor core. The bundles will stay in the nodes for
one reactor operation cycle, which is usually a year, and we want to compute in advance the
behavior of the core when the core is utilized to obtain a given amount of power during the
cycle. Using such a prediction, we can search for the assignment of bundles to positions (the
loading pattern) that is optimal with respect to a pre-specified goal, or objective function, which
is related to the ‘yield’ of the reactor in the forthcoming cycle.

In order to find such an optimal loading pattern, the behavior of the core has to be described
by a mathematical optimization model. This model will consist of a number of variables, the
values of which can be varied in order to find the best loading pattern. The restrictions on these
variables, and the relations between them, are described using a set of equations and inequalities
known as constraints. A number of fixed parameters such as the core geometry, required power
level, etc. are known as well. The value that we want to optimize is described in terms of the
variables and parameters and is known as the objective function.

In the mathematical models, two types of variables can be distinguished. The decision vari-
ables describe the choice of the actual loading scheme, defining where the specific bundles will
be placed, and additionally they describe what properties the bundles have at the beginning of a
cycle (BoC). The dependent variables describe the physical properties such as the neutron flux
and the ‘yield’ (to be defined later) in the reactor core in the forthcoming cycle, when a valid
assignment of the decision variables is given.

The constraints can also be divided into different types. There are constraints that restrict the
possible values of the decision variables. These include for example the assignment constraints,
describing that each bundle is placed in exactly one node, and each node contains exactly one
bundle.

Given an assignment of the decision variables, another set of constraints implicitly defines the
values of the dependent variables. These constraints are derived from the differential equations
that describe how the neutron flux changes in time and how the amount of fuel decreases. In
physical terms, it may sound a bit strange to denote these descriptions as constraints. In a

13

14 CHAPTER 2. PROBLEM STATEMENT

mathematical optimization context however, they are just seen as restrictions on the possible
values of the dependent variables.

A third set of constraints adds further restrictions on the possible values of the dependent
variables. These include safety constraints that forbid certain values of some physical variables,
e.g., in order to prevent a too large heat generation in some parts of the core. Since the values
of the dependent variables depend on the values of the decision variables, these constraints also
indirectly limit the possible values of the decision variables.

The parameters in the problem describe the layout of the core, the possible properties of fresh
fuel bundles, required power level, cycle length and a number of other things. In fact, the choice
which values are parameters and which are variables in the model is not unique. Depending on a
specific situation, one may for example fix all properties of fresh bundles, or let some properties
(e.g., the concentration of some particles in the fuel) become decision variables. As another
example, the cycle length may be fixed in advance, or it may be left as a decision variable.

Based on the variables and parameters, an objective function is defined. The objective has to
make a clear distinction between good and bad loading patterns. There is some freedom in how
to choose this function. Several different objective functions exist in literature, and an objective
function has to be found that is suited for our purposes and fits in our model.

We also have to choose the level of detail of our models. In the next section, we start with
a rather detailed model describing reactor physics in a general way. Since this description is
far too detailed to be of practical use, it is simplified in a number of steps, and finally a model
is derived to compute the dependent variables for a given initial reactor configuration. Some
variants and possible extensions to this basic model are discussed. In Section 2.2 the decision
variables are defined. The relations between the decision variables and dependent variables are
described, this is the so-called reloading operation. Further, different elements that are needed
to complete the optimization model are discussed in more detail. The third section gives a short
overview of the different model variants that are used in this thesis.

2.1 Reactor Physics

This section starts with an introductory description of the neutron fission process. Starting from
a detailed model in terms of the neutron transport equation, a series of simplifications lead to
a formulation in terms of a diffusion equation, that can be handled much better in practical
implementations. However, it can be further simplified by using a mathematical tool known
as Green’s function theory. Using spatial discretization, this finally leads to a basic stationary
description of the neutron flux in the core at the end of Section 2.1.4. Time-dependence is
studied in Section 2.1.5, which completes the development of the basic physical model. It
still lacks several details that are needed for real-life computations. Implementations of two
important extensions, the inclusion of burnable poisons and the treatment of multiple types of
nuclides individually, are worked out in two separate subsections. Some further extensions are
discussed, without going into the details, in the last subsection. The derivation of the physical
model is mainly based on the books [18], [28], [54] and [118]. The first book [18] handles more
generally about the whole fuel cycling, starting from Uranium mining up to waste management,

2.1. REACTOR PHYSICS 15

while the latter three handle more in depth about the underlying physics.

Before continuing, some definitions and notation are introduced. The term nucleus refers
to the nucleus of a general atom. This nucleus is the ‘center’ of the atom, and is built of a
number of profons having a positive charge of about 1eV, and a number of neutrons without
charge. The various species of nuclei with different numbers of protons and neutrons are called
nuclides. The number of protons in a certain nuclide determines its atomic number, representing
its name and place in the periodic system. The total number of protons and neutrons of a nuclide
is its mass number. Different nuclides with the same atomic number but with a different mass
number are called isotopes. A specific nuclide is denoted by the notation ‘}X, where A is the
mass number, Z is the atomic number, and X is the abbreviated name in the periodic system.
Since the name in the periodic system is uniquely coupled to the atomic number, the latter
number is usually omitted. For example, the Uranium isotope with mass number 235 is written
as ZggU, or just as 23°U.

2.1.1 Fission chain reactions

In a nuclear power plant, energy is obtained by splitting heavy nuclei into smaller nuclei. The
reason why this is possible is that different nuclei have different binding energy per nucleon.
Binding energy can theoretically be viewed as the energy that would be released per nucleon
when a nucleus is being built up from separate nucleons. It arises from the fact that the mass of
the nucleus is slightly less than the sum of masses of ‘isolated’ protons and neutrons (Einsteins
famous formula E = mc? is at work here). Since the binding energy is highest for medium sized
nuclei, transformation of a big nucleus into two medium sized nuclei delivers a large amount of
energy (see Figure 2.1).

(MeV)

Binding energy per nucleon

0 40, 80 120 160 200 240
Mass number

FIGURE 2.1: Binding energy as function of the mass number.

Before a fission can occur, an energy ‘barrier’ has to be passed: some activation energy has
to be added to the nucleus. For nuclei with mass number smaller than 230, this energy barrier
is so large that fission does not occur in nature. On the other hand, for very large nuclei with
mass number greater than 260, this barrier has disappeared, so that these nuclei fall into parts
spontaneously. The best nuclei for practical use in nuclear reactors have a mass number of

16 CHAPTER 2. PROBLEM STATEMENT

around 235-240.

In a nuclear reactor core, the activation energy is supplied by the interaction of a nucleus with
a free neutron. If this neutron is absorbed by the nucleus, the binding energy of the neutron,
plus the kinetic energy of the neutron, may initiate a fission, leading to the emission of one or
more new free neutrons. These free neutrons may again cause a fission reaction. In this way a
chain reaction is obtained.

If all neutrons would cause another fission, the chain reaction would multiply very rapidly,
resulting in an atomic bomb. However, neutrons may be absorbed by other nuclei, or they may
get lost in the water surrounding the core. Some types of nuclei are particularly well suited
for absorbing free neutrons, and they are used within control rods or in other mechanisms that
regulate the reactor power. One of the important aspects of reactor operation is to find such
loading patterns and such control schemes for the regulating mechanisms, that on the one hand
excess neutrons can be captured effectively, while on the other hand there are enough neutrons
in each part of the core to maintain the chain reaction.

The reactions that neutrons can undergo in the core and that are relevant for our work are
mainly divided into three groups.

o Fission: the neutron is captured by a nucleus and causes fission of the nucleus into smaller
nuclei, usually leading to the emission of one or more new neutrons.

e Caption: the neutron is captured by a nucleus, increasing the mass number of the nucleus
by one.

e Scattering: the neutron collides with a nucleus, and is either scattered immediately, or it
is absorbed, followed by emission of itself or another neutron, at a different energy level.

The question which reaction occurs in a particular case depends on the type of nucleus in-
volved, the velocity of the neutron and the nucleus, and quantum-mechanical aspects that go
far beyond the scope of this thesis. The number of nuclei and neutrons in the core is so large,
(1022 nuclei and typically 10® neutrons per cm?), that we can work in a statistical sense with
probabilistic rates at which the different reactions will occur.

The probability that a certain interaction of neutrons with a certain type of nucleus occurs, is
described by so called cross sections. The microscopic cross section, denoted by &, can best be
explained when we think of a nucleus as a solid ball. The microscopic cross section is then the
cross section area of this ball with a plane through its center. In reality, the nucleus is not a solid
ball, and the cross section only makes sense as a statistical number. It depends not only on the
type of nucleus, but also on the type of interaction that is considered, and of the kinetic energy
of a passing neutron. For neutrons at some energy levels, the absorption cross section area may
be larger, while for neutrons with an other energy level, the fission cross section is the largest.

The microscopic cross section as function of the neutron energy is a general property of a
nuclide type, and it is independent of the actual nuclide density in a particular situation. Once
an actual nuclide density N for some nuclide is given, we can define the macroscopic cross

2.1. REACTOR PHYSICS 17

section Z, being the product of nuclide density and microscopic cross section:
X = oN.

This cross section can be interpreted as the probability per unit path length of a free neutron to
undergo the specified type of interaction with a nuclide of the specified type.

We will use the following subscripts to distinguish between different types of cross sections,
related to the different types of reactions described:

e Oy, Xp: Fission cross sections.

® 0,,X,: Absorption cross sections. This includes the absorption of neutrons due to fission,
but excludes absorption followed by re-emission (scattering).

® O, X Scattering cross sections.

Cross sections can be defined for individual nuclide types, for groups of nuclides, or as the
sum of cross sections for all nuclides. When we use a cross section only for one specified
nuclide or group of nuclides, this will be clear from the context or it is denoted by superscripts,
otherwise the cross section is the sum of cross sections of all nuclides. In the same way, position,
time and neutron energy dependence either are denoted explicitly, or the cross sections are
assumed to be average values'. These conventions with regard to notation also hold for the
nuclide and neutron densities, as well as for the flux (which will be introduced in the next
section).

2.1.2 Neutron transport

All relevant reactions in a reactor core are governed by the behavior of neutrons in the core.
Neutrons emerge from fission or from external sources, move through the core at certain veloci-
ties and in certain directions, and either cause reactions in the core or get lost in the surrounding
water. Therefore, we want to know the neutron flux at each time at each point in the core. To
this end, we define the angular neutron density

n{r,E ,Q,t) d*rdEdQ = The expected number of neutrons in a vol-
ume element dr around position r, with en-
ergy in the range dE around E, moving in a
direction within the solid angle d€ around
Qat time 7.

The angular neutron density in the core is described by a neutron balance equation. This
equation describes the rate of change of the angular neutron density for a given r, E and Q and
in the ranges d*r, dE and d<Q at a given time 7 as follows:

Rate of change + Loss = Gain.

!In order to avoid any confusion of the macroscopic cross section sign £ with the summation sign Y we conse-
quently place indices straight under and above each summation sign, and sub- and superscripts after macroscopic
Cross sections.

18 CHAPTER 2. PROBLEM STATEMENT
Possible gain mechanisms are

1. Neutron sources in the volume element d°r (e. g., fission reactions).
2. Neutrons entering through the surface of the volume element d°r.

3. Neutrons of arbitrary energy level and/or moving direction, that due to a scattering col-
lision within dr change to an energy level within range dE around E and a moving
direction within the solid angle d€2 around £2.

Possible loss mechanisms are

1. Neutrons leaking out through the surface of the volume element d°r.

2. Neutrons within d°r that suffer a collision, either absorption (which includes fission), or
scattering.

Without describing the different mechanisms in detail, we give the resulting integro-differential
equation ([28, p.113]; n(r, E,£2,1) is abbreviated to n):

on R
F + vQ-Vn + vEn=

/ agy / dE'VE(E' - E.Q — Q)n(rE' (Y 1) + s(r,E,Q,1), @1
4n 0
where

- v is the neutron velocity;

- X is the total macroscopic cross section for any neutron capture (fission, absorption or
scattering)

- Z(E' - E, Q) — Q)dQdE is the scattering cross section for scattering from energy level
E' and angle €)' to energy level E and angle €2;

- s(rE, fz, t) is the neutron source term.

Equation (2.1) is known as the neutron transport equation. It needs an initial condition,
describing the initial angular density for all positions, energies and directions. It further needs
some boundary condition. A possible boundary condition can be that there is no neutron flow
into the system at a boundary sufficiently away from the reactor core.

Instead of describing the neutron transport equation in terms of angular neutron density, it
is beneficial to rewrite it in terms of the angular neutron flux ¢, which is related to the angular
neutron density in the following way:

q)(r,E,f),t) = vn(r,E,f),t),

2.1. REACTOR PHYSICS 19

where v is the velocity of neutrons of the given energy level. The neutron transport equation
then reads:

1d¢

S Ve + L=

A ay / dE'S,(E' — E,.Q = O)o(rE Q1) + s(rE, Q). 2.2)
11: 1]

The neutron source term s(r, E ,Q,t) is not yet specified. The most important neutron source,
and the only one considered here, is the neutron source due to fission, s:

X(E)

se(r, E,fl,t) =

[aty / dE' [V(E")Z¢(E') o(r,E', Y 1)],
where

V(E') is the average number of fission neutrons produced by a fission, induced by a neutron of
energy E’;

%(E) is the energy distribution of fission neutrons.

The neutron transport equation may theoretically be discretized and used in an optimization
model. However, even calculating one cycle for a fixed core configuration would be compu-
tationally very expensive, since a typical discretization would lead to a system of about 108
equations per time step ([28], p. 123). For this reason complexity reductions are absolutely
necessary. One of the most useful and generally accepted simplifications is elimination of the
angular variable vector) by integration over all directions. Another simplification is to replace
the energy dependence that can vary in a continuous range by a fixed, and not too large, number
of ‘average’ energy levels. Other simplifications include separation of time- and space depen-
dence, and in a later section, the assumption of uniform spatial distribution in larger parts of the
core.

2.1.3 One and a half group diffusion theory

In order to derive a simplified model, (2.2) is integrated over Q. This removes £ from all
terms except for the term Q- V¢. By additional simplifications such as a truncated series ex-
pansion, which are not discussed in detail here, one can get rid of this term, resulting in angle-
independent diffusion coefficients D(r,E,t), and the corresponding diffusion equation?:

100(r,E,1)
— A

5 — V-D(rE,t)V0(rE,t) + Z(r,E,t)0(r,E,1)

= /OwdE’ZS(E’ — E)o(rE' 1)+
E) /OOZIE'V(E')Zf(E')Q)(r,E',t). (2.3)

The dimension of the diffusion coefficient is [cm] instead of the more usual [cm?s~'], since the diffusion
equation is defined for the flux ¢ instead of the neutron density n.

20 CHAPTER 2. PROBLEM STATEMENT

Although this equation already looks much nicer than the neutron transport equation (2.2), the
energy dependence still causes huge complexity of the model. Therefore the energy range is
divided into a number of energy groups, and (2.3) is integrated over the range of each group.
By defining group-average variables and parameters, as well as scattering cross sections from
one group to another in a proper way, a set of coupled diffusion equations, called the multigroup
diffusion equations are obtained:

1 20
L BEED g)10y 00) 4 340 51) 6 11
29 (500 (1) + 9 zv (00 (o),

g‘_'la"'agv (24)

If
OEM”'

where g is the number of energy groups, and the superscript (¢) denotes a properly defined group
averaged quantity. The notation Z(g’g) describes the scattering cross section from group g’ to g.

In our final model, thermal reactors are considered in which a moderator slows down most
neutrons to thermal energy. In this case, a rather accurate model can be obtained with only two
energy groups: a fast and thermal group. Fast neutrons are characterized by high energy, while
thermal neutrons have low energy. The boundary between the two is chosen in such a way that
essentially all neutrons are born in the fast group (x"*™# = 0), upscattering from the thermal
to the fast group may be ignored, and diffusion in the thermal group is negligible. Denoting
the fast group with superscript (1) and the thermal group with superscript (@) this leads to the
following system of equations.

(1
LD g p0) o) + 580 () + 502)60 1)

v o
=VUED (1,060 (r.0) +VIZD (1,10 (1,0),
2.5)
<1>a¢ a(”)w-a (r0)6D(r1) =2 ()0 V().
1%

This coupled system of equations is simplified by assuming that the shape of the flux does not
change within the considered short-term time-intervals: that is, we assume that the flux ¢(r,7)
can be separated as T'(¢)0(r). Substitution in (2.5) leads to a set of time-dependent equations,
and to a set of space-dependent equations. In the short-term analysis, the time-dependent equa-
tions are ignored and the time-dependent variables are eliminated. This introduces an inconsis-
tency in the space-dependent equations, that can only be resolved by introducing an additional
degree of freedom to the system, i.e., by introducing an eigenvalue to the system. The eigen-
value gives a way to indicate how the system changes with time, without actually needing a
time-dependent variable. It is denoted as the inverse of the effective multiplication factor,
which can be interpreted as follows:

el

total neutron production rate

keff _
total neutron loss rate

2.1. REACTOR PHYSICS 2

The complete time-independent system is given below.

V-V (1) + (22" (r) + 2 ()]0 ()
g [0800+ =P (e ()]
(2.6)

Mo,

M
»
=
-
a)
<
S
=
-
")

The second equation of (2.6) can be substituted directly in the first equation, which eliminates
the thermal flux ¢(2) from the system. Essentially this means that we have reduced the 2-group
equations to a 1-group equation. This resulting equation is known as the 1!/, group diffusion
equation. In order to simplify notation, we will remove the (')-superscript from the fast group
flux.

This leads us to the final 1!/, group diffusion equation:
=V,- DIV + (2 () + X (M))e(r) =

1
keft

= ()
=7 (r)

This is the basic equation used to derive the models used in this thesis.

vz (1) 43P () o(r). (2.7)

The flux ¢(#) acts as an eigenfunction in the system. This has two important consequences.
Firstly, its magnitude is not yet defined, it describes only the shape of the flux. The magmnitude
will be fixed by appropriate boundary conditions, that will be described later on.

Secondly, the system (2.7) has infinitely many eigenfunctions, and thus infinitely many solu-
tions. This is not a problem, however. It can be proven that all eigenfunctions are orthogonal.
For a one-dimensional core, (2.7) is a Sturm-Liouville equation, which has the property that
the eigenfunction corresponding to the largest value of k°f is nonnegative over the whole space.
Due to the orthogonality of the eigenfunctions, this implies that the other eigenfunctions have to
be negative somewhere. For the more-dimensional case, the same property holds, but is much
harder to prove [11]. A sketch of this proof is given in Appendix B.

We may conclude that the only solution of interest to us is the largest eigenvalue, the corre-
sponding eigenfunction ¢(r) which is nonnegative over the whole solution space.

Further simplifications

The eigenvalue differential equation (2.7) has to be simplified further in order to detive & nodal
model. First, it is assumed that the diffusion coefficient D(!) is position independent. The fission
cross section X¢ strongly depends on burnup and is highly position dependent. The absOrption
cross sections, especially for the thermal group, also depend on burnup, but also on other prop-
erties such as the amount of fission products. Moreover, since the downscattering of neutrons
is the most important mechanism of removing neutrons in the 1!/, group approximation, the
removal cross section, which consist of the fast absorption cross section plus the downscatter-
ing cross section, is considered to be space independent. The downscattering cross section is
approximately independent of burnup since it is mainly determined by the reactor coolant.

22 CHAPTER 2. PROBLEM STATEMENT

The remaining space dependent cross sections Z{ (r) and Z2(r) are used to define the new
space dependent variable k™ (r) in the following way:

x(12)

v('}Zﬁl)(r) + V(Z)Zgz)(r) zs(z)
£y

K2(r) = : 2.8)
SO

The variable k™, the infinite multiplication factor, is interpreted as the ratio of local neutron pro-
duction and absorption. Using this, the eigenvalue differential equation (2.7) can be transformed
into

~LVH(0) + 00) = 2k (00, @9)
where

(2.10)

is known as the fast diffusion length.

Boundary values

The eigenvalue differential equation (2.9) requires boundary conditions. The simplest boundary
condition is defined on the outer region of the core, where it is required that3

¢(r) = 0, ron aboundary around the core. (2.11)

Sometimes symmetry of the core is exploited and only a quarter or an octant of the core is
considered. In that case, the derivative of the flux should vanish at symmetry edges:

94(r)
or

= 0, ronasymmetry-edge. (2.12)

With these boundary conditions, ¢(r) is still not fully determined, since it can be multiplied by
a constant. This freedom is needed to fix the total power level in the core. Given

s © the amount of energy released per fission

and the fission rate being the product of the fission cross sections and the flux, the local power
density at position r is given by

W) 4 @5
I + () —g5r | 0(Nee
¥(2)
a
This quantity integrated over the whole core should be equal to the required total power level .
In order to write this constraint in terms of k™ instead of X, the two group average values vl

3Neutrons can flow in the water surrounding the core, where they are absorbed. The boundary mentioned in
this condition is therefore an artificial boundary at some distance of the core. In some cases, the core is surrounded
by reflective material, leading to more advanced boundary conditions.

2.1. REACTOR PHYSICS 23

and v(? in (2.8) are replaced by one total, properly averaged factor v, which introduces only a
very small error since the fast fission cross section is small compared to the thermal fission cross
section. Let X denote the whole core region, then the power level fixing constraint is given by

VP,

S L — 2.13)
ur(z + 217

/X O(K(r) dr =

The diffusion equation with the corresponding boundary conditions cannot be solved ana-
lytically. Numerical methods have to be used to solve the problem. One possibility is the use
of eigenfunction expansion methods. This is not a very practical method, since it is highly
complicated by the fact that the core is non-homogeneous.

A better way is to use a direct discretization leading to a system of difference equations. This
method is used in many core evaluation codes, but requires a rather fine discretization in order
to obtain qualitatively good results. In the context of this paper, the model has to be used to
find an optimal loading pattern by optimization of one large algebraic equation system, that
includes the discretized diffusion equation. Since not only the solution, but also the parameters
of the diffusion equation depend on the loading pattern, both the parameters and the solution of
the diffusion equation are variables in this algebraic system. This will lead to an optimization
model with a very large number of variables and many nonlinear and nonconvex constraints,
that is rather difficult to solve. Such a detailed description is not necessary within an optimiza-
tion context, since we can identify good loading patterns with a much coarser model (see also
Section 2.1.8).

For the rest of this thesis, we restrict ourselves to a discretization with only one grid point
per node. A direct discretization in this way would be much too coarse. A better result can be
reached by using the theory of Green’s functions. Using the latter, we can in a certain sense
‘invert’ the diffusion equation, which (when used carefully) allows the use of a much coarser
grid, still with a reasonable solution quality. The resulting model is presented in the next section.

2.1.4 Green function model

The model as derived here is based on the theory of Green functions [28, 48, 59]. The key idea
of this approach is that a Green function G(r,r’) can be defined as the solution of the equation

[1-L}V7IG(rr) = 8(r 1),

where 8(r —#') is the Dirac 8-function. The Green function can be interpreted as the probability
that a neutron produced at ' will be absorbed at r. As shown in the references cited above, this
function G can be used to replace the differential equation (2.9) and its boundary conditions
(2.11) and (2.12) by an equivalent equation

o(r) = k% /X G(r, = (F)o () dr . (2.14)

There are several ways to compute G (see e.g., the related remarks in [28, 118]). Different
approaches are described in e.g., [38] and [59]. The freedom in how to approximate G(r,r') and

24 CHAPTER 2. PROBLEM STATEMENT

how to derive from G(r, ¥} a discrete version of G enables a much rougher discretization than
with direct discretization of (2.9), provided that some effort is spent in finding good values for
the discretized version of G. In this thesis, the method described in [38] is used.

For convenience, the discretization is chosen such that the discretization points coincide with
the nodes in the core. Suppose that the core consists of / nodes. This leads to the probabilities
Gi,jv i9f= 11"',11

e G; j: the probability that a neutron produced in node j will be absorbed in node i.

The infinite multiplication factor k* and flux ¢ also are averaged in a nodal way. The discrete
versions of k', k> and ¢ then are defined as*:

o kT The effective multiplication factor at time ¢.
& k73: The average infinite multiplication factor in node i at time ¢.

e O;;: The average neutron flux in node i at time ¢.

The integral equation (2.14) results in the set of equations

(4

1 w .
iy :k—efTZGi,jquy,,, i=1,- 0 t=1,--,T. (2.15)
=1

The discretized form of the fixed power level constraint (2.13) now reads

1
o VP,
2 ki,t¢i,t = <

—_— —t=1,---,T. (2.16)
= pe(z) + (M)

2.1.5 Fuel burnup

In Section 2.1.3, time-independent cross sections were introduced. This enabled us to use sep-
aration of variables to find a steady-state estimation for the flux, as being the solution of a
time-independent eigenvalue differential equation. However, fission and absorption processes
cause a change in the material composition which will influence the neutron flux on the long
term. This time-dependence will be described in the current section.

During reactor operation, the fission reactions cause burnup of the fuel. The amount of fis-
sionable material, and therefore the fission cross-sections Zp) and Z;Z) decrease. In our current
1!/, group approximation it is assumed that the fast neutron removal cross section remains ap-
proximately constant. This is a reasonable assumption, since most of the neutron removal is

caused by slowing down, and hence downscattering to the thermal group, which is determined

4Note that we introduce a time step subscript ¢ here. Although this is not yet used right now, we will need it
within two pages.

2.1. REACTOR PHYSICS 25

by the moderator instead of the fuel. Moreover, it is assumed that the thermal absorption cross
section remains approximately constant. This cross section decreases, because of the decreas-
ing atom density of fissionable nuclides, but it also increases, since the fission products absorb
neutrons, without causing a fission or scattering reaction.

The decrease of the fission cross sections is determined by the decrease of the density N of
fissionable nuclides:

M)~ o N0 () - o N6
et ot 28
= - (Ga,(1)+°a,(2) B)N(f)¢(t)
= —0“'N(1)e(1), 2.17)
where 61! was defined on the fly. Since -GN, where G is time-independent it follows that

(the time dependence is left out for better readability):

(1)
dx fuely+(1)
= = oL,
dzgz) fuelx(2)
o = ~0,9%"'0. (2.18)
From the definition (2.8) of k>, the change in time of £ now can be found:
(1) (2) ¢(1,2) (1,2)
m4E @9 L g 4 g
-V ar it 5@ VIR VTR T
i — Za — __o.guel Za (1)
dt Zi(ll) + Eglvz Zgl) +Z§l’2)
= —0£“°'k°°<p. (2.19)

This resulting differential equation has to be supplied with a boundary condition in time. If
the complete configuration of the fuel at the beginning of a cycle (BoC) is known, the initial
value of k* can be denoted by k5"

ko = kP (2.20)
In this simplest case no boundary conditions at the End of the Cycle (EoC) are needed. If
equilibrium cycles are studied, the boundary conditions become more complex. In that case,
a part of the core is filled with fresh fuel, but &7 in the remaining bundles depends on k7,
where j denotes the position of the specific fuel bundle in the previous cycle:

N kfresh when the fuel at position i is fresh;
Ko = 2.21)

k7, when fuel is moved from j to i at EoC.
JHEoC

For numerical use, the differential equation (2.19) has to be discretized. Possible choices here
are forward discretization:
Koy =k = — om0 (2.22)

26 CHAPTER 2. PROBLEM STATEMENT

and central discretization:

fuer Ki @it H K41 i1
—Va

ki,t+1 - ki,t = 2 t-

(2.23)
Central discretization leads to a larger number of nonlinear terms. On the other hand, it is
much more accurate and stable. Both types of discretizations will be discussed in more detail
in Section 5.2.6.

In order to describe the boundary conditions (2.20) and (2.21), a description of the reloading
operation is necessary. This is postponed to Section 2.2, that deals with the aspects of the model
that are more directly related to the optimization part. For the rest, our model is now complete.
In the remaining subsections of the current section, we briefly describe some extensions to this
basic model that are used in our work, and we give an overview of possible further extensions.

2.1.6 Burnable absorbers

The model as described above is suitable to test the applicability of different types of optimiza-
tion algorithms. It does not take into account a number of extensions that are needed in real-life
reactor calculations, however. One of the most important extensions is the addition of burnable
poisons (BP), which will be introduced in this section.

When starting a new reactor cycle, the difference in reactivity between the freshly added bun-
dles and the older bundles is quite large. Later on during the cycle, this difference becomes less
and less pronounced, since the fresh bundles also have the highest burnup rate. The difference
at BoC causes a large power concentration in the fresh bundles and their direct neighbors. Since
there is a safety limit on the maximum local power, this means that there may be loading pat-
terns which have a good objective function, but still cannot be applied, because the power peak
constraints at BoC are violated.

This problem is solved by adding neutron absorbing material (burnable poison, BP) to fresh
fuel bundles, that initially absorbs many neutrons, but burns up very fast, so that it does not
affect the later part of the cycle. The high neutron absorption cross section of this material
causes a higher total neutron removal rate, and hence it lowers k. Ideally, this will reduce the
flux in the bundle and in its vicinity, hence it reduces the power peak. The effect of adding BP
is illustrated in Figure 2.2, which shows the difference of the power shape in each bundle of an
example core without and with BP.

The addition of BP can be modeled by introducing some extra variables in the model. Let

Bopi=l t=1,T
be the neutron absorption cross section of the burnable absorbers, which only plays a role for
the thermal group. The infinite multiplication factor £~ now depends not only on ‘standard’
fission and absorption cross sections, but also on these absorption cross sections of the burnable
absorbers.

In order to separate the effect of the BP and the other elements in the fuel, we introduce K
as a variable describing the (theoretical) infinite multiplication factor of the fuel in the case the

2.1. REACTOR PHYSICS 27

© o 015 :
3 2 Max.
2 3 allowed
5 5 01 power peak
2 3
© 1<)
& a
o o
g 8 005|_
s |
e g
Z B Z 9
200 0 200
Time (days) Time (days)

FIGURE 2.2: Power as function of time for each bundle, without and with burnable poisons added.

BP were ignored. Its description in terms of cross sections is therefore the same as the previous
description of £, but it is only an artificial variable that helps in determining the real infinite
multiplication factor. The infinite multiplication factor itself is defined by using the definition
of £ in terms of cross sections as given by (2.8), where the neutron absorption cross section of
BP is included:

z:§1,2)

K = a a,it
it — -

Now we use the fact that the fission cross section of fast neutrons X¢ is negligible compared to
the fission cross section of thermal neutrons. This is used to relate the ‘old’ k* and the ‘new’
k>:
(1.2)
Vs | y@5@ B

it fi.t

) k.,
M (1.2) B l @ ~ -) 224)
o4+ X 1+ EE,i,t/za 1+ Z:I;,i,r/zil

oo
ki,, ~

Thus, the effect of the BP in the infinite multiplication factor is reduced to one product term,
and the infinite multiplication factor k™ can be calculated at any time by using the values of k
and X§.

The BP absorption cross section decreases in time with a factor depending on neutron flux,
just as the fission cross sections (2.18):

dzh
d—ta = —ob2Po. (2.25)
Combining the elements we have derived above, we arrive at a model where k™ is defined as
o0 —oo 1
[e — (2.26)

ot
REED 5 5>
while I?:j, and z;’)i!, are defined using either the forward discretizations (¢f. (2.22)):

00 =00

7 _ fuel 7°°
kigpr—kiy = =0 ki 0is A

28 CHAPTER 2. PROBLEM STATEMENT

i~ Zoy = —ORZR 0iA 2.27)
or the central discretizations, see (2.23). The boundary conditions for k are the same as in
(2.20) and (2.21). The boundary conditions for ZZN are slightly more complicated, since the

initial BP concentration is a decision parameter. Given the cross section Zg,max, corresponding
to the maximum allowed BP concentration, they can be stated as

- € [0,Z8 max] when the fuel at position i is fresh;
2i0 —
thtl p

AT when fuel is moved from j to i at EoC.

In practice, the second case can be ignored since the BP concentration at EoC is negligible
compared to the overall accuracy of the model. The exact mathematical formulation of the
equation will be postponed until we have a description of the variables describing the reload
pattern.

2.1.7 Different types of nuclides

Until now, it was assumed that the different cross sections are determined by only one type of
fissionable material, and that the absorption cross sections can be taken approximately constant.
In order to have a more accurate description, we need to distinguish between several types of
nuclides that interact with neutrons and with each other. This has several consequences. The
absorption cross sections can no longer be assumed to be constant. Furthermore, the decay of
k> can no longer be described in such a simple way as in (2.19), since almost all elements in
the definition of £~ (2.8) are time-dependent with different decay rates, including the terms in
the denominator. Instead, a number of nuclide densities is defined
Ngn q= 17"’1Qa

where @ is the number of nuclides considered. A possible nuclide chain is given in Figure
2.3. As one can see from this chain, there are several positions in the chain where neutrons are

N %D L U - Uranium
By) —— @sion products Pu - Plutonium
@7 n - a free neutron

- @

B
() (45 o () o (B el e (B Lt
& e O
FIGURE 2.3: Nuclide Chain.

captured, either to be absorbed or to induce a fission. The densities of the different nuclides are
highly correlated. One sees, for example, that the 2°Pu (Plutonium) density increases due to

2.1. REACTOR PHYSICS 29

neutron capture in 23U (Uranium), where it is assumed that 23°U immediately is transmuted
into 2°Pu. The 2°Pu density decreases due to absorption of another neutron. In the same way
as (2.17), the change of the 2>?Pu density is given as

Kl
d];]; ot INB; — ol 'NPlg;, (2.28)
where the superscript in brackets represents the last digit of the nuclide number, and c?] covers
both the fission cross section and the so called breeding to ***Pu. In addition to the fissionable
nuclides, one also has to take into account some fission products that have a large absorption
cross section. The two most essential poisonous nuclides are '3 Xe (Xenon) and ***Sm (Samar-
ium). Since the concentrations of these nuclides reach equilibrium values in a relatively short
time, their density can be computed explicitly, once the fission cross section and current neutron
flux are known.

The final computation of £~ can no longer be done by implementing the burnup equation
(2.19) directly. Instead we implement burnup equations like (2.28) for the different nuclides.
Then, from the different nuclide densities, the needed macroscopic cross sections are computed
in equations of the following form (only one specific absorption cross section for the fast group
is given as an example):

=0, ZG N, (2.29)

and finally k™ is related to these cross sections by its definition (2.8):

() @ 2
2 S0yt

vz + v)Zf,i,r(_z)

L LU (2.30)

it s L 502

a,i,t Syt

2.1.8 Other extensions

The current model, together with the extensions described in this chapter, gives a rather accurate
description of the behavior of a reactor core. A truly accurate analysis should treat even more
core specific elements. Some of these model extensions are described in this section.

In a real-life reactor core, some positions in the core are reserved for control rods. These are
rods with a zero fission cross section, and a high absorption cross section, that can be moved
vertically in the core to control the reactor power.

In Section 2.1.6, it was assumed that burnable absorbers are spread uniformly over the fuel.
This is not necessary the case. Sometimes, they are assembled in thicker BP rods, so that the
BP in the inner part of these rods only starts to play a role when the outer part gets ‘saturated’
with neutrons. This way, the absorption cross section of the whole rod is kept large for a longer
time. Modeling this feature requires either more sophisticated modeling techniques or a finer
discretization mesh with several mesh points within the BP stave.

30 CHAPTER 2. PROBLEM STATEMENT

Another extension is to model the 3D behavior of the core. As a matter of fact, the boundary
effects at the top and the bottom have their influences on the whole core. Also partial insertion
of control rods has major effects in the vertical dimension. A right choice of the cross section
parameters in the 2D model may give a rather good prediction of the actual 3D behavior, but
more accurate computations should deal with this extension.

A further extension is to use a finer nodal approach. Instead of one mesh point per fuel
assembly, one might choose 4 (2 x 2) nodes. In doing so, a bundle can be placed in a node
with 4 possible different rotations, thus giving an enormous increase of the number of loading
patterns. For a really accurate calculation, one has to switch to a direct discretization of the
diffusion equation, where 10 x 10 mesh points in 2D calculations are not uncommon, with
possibly even more mesh points in vertical direction.

As can be seen from this list, the models as used in this paper are certainly not the most
detailed ones. Nevertheless, they are suitable for our purposes. Our aim is not to evaluate a
given core very accurately, but to find good loading patterns. A method is suitable for this
purpose if it preserves the quality order of the different loading patterns. As is indicated by
Figure 2.4, a nodal model is suited for this purpose. This picture shows that the power peak is

ke Max. power peak
115 £oC 35
] (53
kel
3 g 3
=] * =1
§ 1.14 . % 2.5
& A b=
a A 5 ;
L33 Ii4 s L5535 3 35
Nodal method Nodal method

FIGURE 2.4: Comparison of kf;ff)c (left) and the maximum power peak (right) on 34 test cores, obtained
by a fast nodal method and a detailed diffusion method. These results are cited from [39].

underestimated by the nodal model that was used, so that the method may return solutions that
are feasible in the nodal model, but not in accurate models. This is circumvented by evaluating
a few rather different patterns with the detailed model before the optimization starts. These are
used to estimate the ‘drift’ of the power peak in the nodal model, and the power peak constraints
in the nodal model can be adjusted accordingly. After the nodal model has determined one or a
few good loading patterns, a detailed model evaluation may be used to finally select the best one
of these candidate patterns, possibly followed by a very limited local search performed using
the more accurate model around these patterns.

2.2, ELEMENTS OF THE OPTIMIZATION MODELS 31

2.2 Elements of the optimization models

In the previous section, we discussed the concepts from reactor-physics that are needed to build
an optimization model. For the evaluation of a given core composition, this would be sufficient.
In order to find an optimal loading pattern, more information is needed, and more variables have
to be introduced. We define variables that specify the current loading pattern, and constraints
are introduced such that these variables can only represent valid loading patterns. It must be
defined how these loading pattern variables relate to the physical variables introduced in the
previous section. We need an objective function that enables us to judge between patterns. It is
also described how we can profit from symmetry in the reactor core.

Although an overview of existing solution methods is postponed until the next chapter, and
our solution method will be treated even later, the model that will be discussed here is somewhat
tailored to our solution method. It is unavoidable to make some choices at this stage, which are
dependent on the solution method being used. Whenever this is the case, it will be made as
clear as possible.

2.2.1 Loading pattern specification

In the cores that we will consider, an equilibrium cycle loading strategy is applied. Ateach EoC,
the same number of fuel bundles is discharged, and all those removed bundles are of the same
age, i.e., they all have entered the core as fresh bundles and they have spent the same number
of subsequent cycles in the core. Furthermore, the applied loading pattern will be exactly the
same for many cycles, so that in the long term, ideally, each cycle will be exactly the same as
the previous cycle.

To achieve such a scheme, each bundle has to be moved at each reloading, since if a node
contained a 2 times reloaded bundle in some cycle, it also has to contain a 2 times reloaded
bundle in the next cycle, so that the first bundle has to move to a position that is used to contain
a 3 times reloaded bundle. A handy notation to describe such loading patterns is the trajectory
notation [42]. For example, suppose we have 12 nodes in the core, and at each EoC, three
bundles are discharged. We then may have the following three trajectories in the core:

4 - 6 = 8 — 10,
2 - 3 51 = 5
7T - 11 - 9 — 12
indicating for example that during a reloading, the bundle in node 4 is moved to node 6, and a

fresh bundle is supplied in node 4. In order to be able to formulate the problem as an optimiza-
tion problem, binary variables are used that describe the trajectories. We define

I: the number of nodes in the core;

L: the number of cycles that a bundle stays in the core before it will be discharged;

32 CHAPTER 2. PROBLEM STATEMENT

M: the number of trajectories in the core, i.e., the number of fresh bundles that is entered into
the core at each reloading. Note that L-M = 1.

Using these parameters, we introduce the set of variables
Xigmy i=1,- [, £=1,--.Lym=1,--- M,

that are defined in the following way:

1 if node i will contain the bundle of age ¢ from trajectory m,
Xilm =
0 otherwise.

The index m is denoted as the ‘bundle-number’ of the bundle. The variables x; ¢ ,, are simply
assignment variables, restricted by the following assignment constraints:

L M
ZZXi,E,m = 1, i:]’...’l’

{=1m=1
Exi,lf,m = 1,¢=1,---\Lym=1,--- M,

Xigm € {0,1}.

These constraints are sufficient to ensure that exactly one bundle is placed in each node, and
each bundle is placed in exactly one node.

2.2.2 Equilibrium cycle condition

Once the assignment variables are defined, the physical behavior of the core has to be coupled
with the actual loading pattern. That is, the boundary conditions (2.21) are to be defined more
precisely. These conditions are split into two parts.

The part that is used when a bundle is fresh, is rather simple. It can be formulated as

M
k:’l — 2 XiLm kfresh‘
m=1

We assume here that all fresh bundles are of the same —given— composition, which is defined
by the infinite multiplication factor k™", Though in reality there is often a choice between a
small number of different fresh fuel types, this is left out for simplicity. It would however not
alter the model too much and in the burnable poison model (see below) we actually address the
situation in which the burnable poison concentration per fresh bundle can be varied.

The second part of the boundary conditions is slightly more difficult. It handles the case that
a bundle is not fresh. A certain k{7 has to be matched with exactly that &7, that describes the
bundle in the same trajectory, in the previous cycle. This is accomplished by the second part of

the constraint:
,l = zlefmzxj,f lm J}"
{=2m=1 J

2.2. ELEMENTS OF THE OPTIMIZATION MODELS 33

The aggregated constraint now is simply the sum of the above two parts:

ki) = anmkf‘“h + 2 Zx,,e,mZx,,z 1 kT @.31)

=2m=1

In the case that burnable poisons are considered, the fresh bundles are no longer described by
one single parameter, since the BP concentration may be varied independent of k™", Therefore,
a new variable is introduced for eachm=1,---,M:

Ep’ﬁ“h . the cross section of BP in the fresh bundle of trajectory m.

Depending on the type of BP used, the fresh fuel BP concentration can take a (small) number
of predetermined values, or its value can vary (almost) continuously between 0 and a specified
maximum concentration.

In order to specify the reloading equations in this case, recall from Section 2.1.6 that in the
BP model a distinction is made between Fo the (artificial) infinite multiplication factor where
BPis neglected and k%, the total multiplication factor that accounts for the presence of BP. The
properties k and Z§ describe the properties of a certain bundle, the actual multlphcatlon factor
is derived via (2.26). So, the reloading equations are to be specified for kK~ and X only. The
reloading equation for k_ is given by

Z xt,l,rrv’(ﬁ-eSh + z 2 Xif,m zxj,f lm J.T

=2m=1

The burnable poison concentration has the property that it depletes very rapidly; at the end
of the fuel cycle the fraction of the BP that is still active is smaller than the precision of the
used data. Therefore it is safe to ignore the BP concentration in older bundles, so that the BP
reloading equation is described by

Jfresh
ail - th]ym):p’m .

m=1

In the multi-nuclide model, the situation is even more different. A bundle is now described
by its nuclide densities, hence a reloading equation has to be specified for each nuclide type:

,1 = zxt,l7 Nofresh Z szfmzxjf 1V jT

m=1 =2m=1 j=

The cross sections and k™ at BoC then are computed by equations of the form (2.29) and (2.30),
respectively.

2.2.3 Quadrant and Octant symmetry

The smallest core that we have used contains 96 bundles. A typical reactor may contain a few
hundred bundles. This leads to huge models. However, typical reactor cores have a nice sym-
metry. If we restrict to loading patterns that obey some symmetry rules, the number of possible

iR

34 CHAPTER 2. PROBLEM STATEMENT

loading patterns reduces drastically. In our equilibrium cycle model, ideal symmetry is obtained
when each symmetric part contains a complete set of trajectories. If quadrant symmetry is used,
then this is possible if the number of bundles in each quadrant is a multiple of the number of
age groups in the core, and if there is no single center node in the core. Actually, our (imagi-
nary) test cores are designed in such a way that this holds, ¢f. Figure 2.5. When using octant

[T]

ol |

FIGURE 2.5: Octant symmetric core.

symmetry, it is already obvious from this figure that the same situation cannot hold, since there
are bundles on the diagonal which are shared by two octants. In our model we added the arti-
ficial constraint that adjacent pairs of diagonal nodes share the same bundle, which is split into
halves, by imposing the constraint’

Xigm=Xjem, forall adjacent diagonal pairs (i,j), £=1,---,L, m=1,---,M.

This introduces a small bias, since we assume that the ‘re-assembled’ bundle at EoC has the
average properties of the two diagonal nodes.

In the model formulation, this division of the diagonal bundles makes it necessary to take into
account the volumes V; of the nodes. For example, the power normalization constraint (2.16)
now is formulated as

P
Ve T (2.32)

1
S Viki b = e, =1,
i=1 o ,Uf(Zgl)—l-Zél’z))

where
v 1/, if node i is a diagonal node,
P =
1 otherwise.

The other constraints are adapted in a similar way.

SIn our actual implementations, the x; ¢ ,-variables are eliminated in before and all occurrences of x; ¢ are
replaced by x; ¢ . Since this messes up the notation, this replacement is not used in the models in the thesis.

2.3. SUMMARY OF THE BASIC MODELS 35

2.2.4 Safely restriction

The power in a reactor core must be spread quite evenly over the core. Although some variations
are unavoidable, the local power density in a bundle may not become too high for safety reasons.
We introduce the power peaking factor, f'™, which is the maximum allowed ratio between
the maximum and the average local power peak. The average power peak can be derived from
(2.32) by dividing the right hand side by the sum of the volumes. The power peaking constraints
then are defined as

flim . VP,
sy u(E+307)

i=1

k;.’"’tq)l-,,g ,i=1,-- L, t=1,---.T. (2.33)

2.2.5 Objective function

In reloading pattern optimization literature different objective functions have been applied. It is
possible to search for a loading pattern for which the cycle length is maximal before the reactor
becomes subcritical. Another approach is to minimize the leakage out of the core. Here we
have chosen to fix the cycle length, and search for a pattern for which the reactivity of the core
at EoC is maximal. According to [132], all these possible objective functions are more or less
equivalent in the case of an equilibrium cycle.

As a measure for the reactivity we use the uncontrolled effective multiplication factor k°:

max kfbt.ic.
The word uncontrolled refers to the case that the core is not controlled by external regulators,
such as control rods. In actual core control, the effective multiplication factor is always kept
" around one.

In the implementation of an optimization algorithm, the objective may be adapted to contain
some penalty. For example, in our implementation, it turned out to be advantageous to relax the
safety limitation (2.33) with a small value €, which is then penalized in the objective. This will
be discussed later on.

2.3 Summary of the basic models

This chapter is concluded by an overview of the standard optimization models that are obtained
by merging the results from this chapter. First, the basic 1'/, group model is stated. Next,
this model is extended as to include burnable poison optimization. This section is concluded
with an adaptation of the basic model. We came up with this modified model only in the final
stage of the project. It alleviates some difficulties in the other models, arising from our solution
methodology. Due to time limitations, we could not work out that model further, but some
preliminary computational results for this model are presented in Chapter 6.

36 CHAPTER 2. PROBLEM STATEMENT

In the model listings, the flux variable ¢ is replaced by the normalized removal rate R. The
unnormalized removal rate R is obtained by multiplying the flux with the removal probability:

R=0-=+x").
This removal rate is scaled in order to simplify the model presentation:

HE 5
R=—R.
vP,

This scaling, together with the substitution

VP,
@ = 03— (2.34)
pe(Za ' +X37)
makes the presentation of the problem much easier.
2.3.1 The basic 1!/, group model
max kST
X,k R, ket
subject to:
the linear constraints:
I
zvixi,l,m = 1, £=13"'1L1m=17"'7M (2.35)
i=1
L M
NN xiem = 1, i=1,,1 (2.36)
{=1m=1
the nonlinear constraints:
M
k;’ol — Z Xi,l,mkfmSh
m=1
L M I
+ 2 2 Xigm X, Vixje-1mKiTs i=1,-,1 (237)
=2m=1 j=1
1
KR, = Y GikTR)y, i=1,--1t=1,--,T (2.38)
j=1
1
Y Viki Ry = 1, t=1,---,T (2.39)

i=1

Kizy1 = kiy —OAK Ry, i=1,---,I,t=1,---,T—1 (2.40)

13

2.3. SUMMARY OF THE BASIC MODELS 37

flim
ki iRip < T i=1,--- I, t=1,---T (2.41)

XV

j=1
the variable bounds:
KT > o0, t=1,-,T (2.42)
ki Rip 2 0, i=1,---,I,t=1,---,T (2.43)
Xitm = Xjim all adjacent diagonal pairs (i, j), (2.44)
{ = 1’.4.,L’ m= l’...’M

Xilm € {0’1}’ l.:lv”'vleezl,“'al‘)mzly"'aM' (245)

There are several ways to look at this model. Given an assignment of the x variables that sat-
isfies the assignment constraints (2.35)(2.36), there exists exactly one nonnegative assignment
of the variables £, R and kT that satisfies the nonlinear system (2.37)—(2.40). This assignment
can be calculated by iterative methods and may or may not satisfy the power peaking constraint.
Local search methods and other black box optimization approaches make use of this feature:
the equality constraints are left out of the actual optimization procedure, and they are only
used to calculate the objective function and the value of the power peaking constraints for fixed
X; 4 m-variables by iterative methods. Since the resulting objective function and power peaking
constraints are nonconvex functions of the x; s ,,-variables, it is very difficult, and for realistic
size problems practically impossible, to guarantee that a found optimum is globally optimal.

Another approach is to treat this model as a mixed-integer nonlinear optimization (MINLP)
model. In this approach, all equalities are used as constraints in the optimization model. In that
way, we are able to use derivative information from all equalities and constraints. The modet is
nonconvex, as the equality constraints and the power peaking constraint contain terms that are
bi- and trilinear in the variables. This nonconvexity makes it very difficult to find global optimal
solutions.

For both approaches, the local optimal solution that will be found depends on the starting
points from which the search is initiated. Since the power peaking constraint is nonconvex
as well, algorithms may erroneously conclude that there is no feasible loading pattern at all.
Therefore, care has to be taken and several adaptations to the model have to be made in order
to guarantee stability of algorithms. The aim of our work is to find stable implementations
following the MINLP approach.

The model is an extension to the model of de Klerk et al. [65] mainly in three ways. First of
all, the model in [65] had k°f fixed to 1, and instead the burnup of the bundles was introduced
as an optimization variable. Secondly, there was no distinction between the bundles of the same
age. However, it is clear that a fresh bundle in the center has much different characteristics
at EoC than a fresh bundle at the boundary, so this was really a rough estimation. Thirdly,
there was no division of the cycle into time-steps, but the power distribution was assumed to be
constant during the whole cycle.

38

CHAPTER 2. PROBLEM STATEMENT

2.3.2 Model including Burnable Poisons

In this case, a bundle is described by the two properties % and >F and in each bundle and in
each time step £” is derived from these quantities. Besides o as defined in (2.34), we also define

D A8
o = O — i),
Ff(za +Z)

This leads to the following model:

subject to:

I
2 Vixi,l’,m
i=1

M=
Mz

Xil,m

¢ 1

il
1|

1m

—00

ki

p

a,i,1
2)\ 00
(1+ Eg,i,t/ 2;(1))ki,t

ktefij‘t

!
> Vik7Riy
i1

—o0

kist

P
):a,i,t+1

oo
ki,tRi,t

max

ket
XK et o R geft

the linear constraints:

l’ €:1,~',L,m=l,-~,M
1, i=1,--,N
the nonlinear constraints:
M
— x,"[,mkfreSh
m=1
L M 1 .
+ 22 Fitm 2 ViXje1mKj i=1,N
(=2m=1 Jj=1
M fresh
= in,l,ng,’m" 131, '7N
m=1
= ki,n =1, 0, t=1,--T
I
= ZG’.)jk;‘:’tRj,h lzl" 717t:17' 7T
j=1
= 1, t=1,---,T
= ki, — oAk Ry, i=1,- 0 t=1,---,T—1
= Zg,i,t—apAtzg,i,tRi,h =L Lt=1,--,T-1
lim
< {) i=1,---, 1, t=1,-T
V:
=

(2.46)

(2.47)

(2.48)

(2.49)

(2.50)

(2.51)

(2.52)

(2.53)

(2.54)
(2.55)

(2.56)

2.3. SUMMARY OF THE BASIC MODELS 39

the variable bounds:

KT > o, r=1,---,T (257
E}"’,,za,,,k,,,R,, > 0, i=1,-0,t=1,---,T (2.58)
shiesh e 10,2P maxls m=1,M (2.59)
Xigm = XjtLms all adjacent diagonal pairs (i, j), (2.60)

(=1, .Lim=1,---.M
Xiem € {0,1}, i=1,---1,6=1-Lm=1,--M (261)

Although this model has some extra variables and constraints, the structural difference when
compared to the previous model is very moderate. One real difference is that in the black box
approach, the decision variables are not only the x; ¢ ,,-variables, but also the Zp fresh~variables.
These variables may be continuous instead of bmary, which can cause dlfﬁculnes in some local
search algorithms.

In the MINLP model, the nonlinearities are still bi- and trilinear terms. The increase of this
type of constraints may decrease the stability of some algorithms, causing some extra work
to get the implementation robust. The continuity of the zg’f‘“h variables is not a problem here,
since continuous optimization is already involved in finding the values of the physical variables.

2.3.3 A new model

Although the model of Section 2.3.1 is exact for integer solutions, it is not completely accurate
for fractional solutions, i.e., solutions where x; ,, values are not exactly O or 1, but some value in
between. Although this is not a problem for optimization methods that use only integer values
of x; ¢m, it may cause problems when continuous optimization is used to solve the problem.
The inaccuracy that may occur is illustrated by Figure 2.6. In this figure, we consider two fuel

FIGURE 2.6: Fractional bundle reloading, wrong (left) and correct (right).

trajectories A and B. Fresh fuel is assigned to node 1 and 2, and the one year old bundle of
trajectory B is placed in node 3. Node 4 and node 5 are each partly filled with the one year

40 CHAPTER 2. PROBLEM STATEMENT

old bundle of trajectory A and for the other part with the two years old bundle of trajectory B
(i.e, x424 =x53 8 = 0.4 and x43 5 = x524 = 0.6). Now node 6 should contain the two years
old bundle of trajectory A (i.e., x¢3.4 = 1) and similarly, x7 4 5 = 1. But this is not the case.
Using the reloading equation from the model in Section 2.3.1, it is illustrated at the right side
of Figure 2.6 that node 6 contains fraction 0.4 of the mixed bundle in node 4 and fraction 0.6 of
the mixed bundle in node 5. This results in a fraction 0.52 of the bundle that came from node
2 and a fraction 0.48 from the bundle that came from node 3. The statement x¢3 4 = 1 is thus
interpreted incorrectly by the model.

In order to get a correct model, it is necessary to trace the fractions of different bundles in a

node separately. This is accomplished by introducing the variable
k;,cé,m,t’

being the infinite multiplication factor at time # of the fraction of the bundle of age ¢ from
trajectory m that resides in node i. In order to trace this fraction, the burnup has to be computed
for each fraction separately at each time step. In the reloading equation, it is then possible to
reload the correct fractions into the correct nodes. Returning to Figure 2.6, given that x 3 4 = 1,
it is possible to build kg, as the weighted average of k5, 4 7 and k5, 4 7. Note that the right
picture is still not completely correct, since during the cycle, the fractions in bundles 4 and
5 should be completely mixed. Only during reloading are they separated again into the parts
denoted by ‘A’ and ‘B’.

In the model described in Section 2.3.1, the reload equation (2.37) should be replaced by

o0 fresh :

ki,l,m,l = X1 mk™", i=1,---I,m=1,--- M

- LN

k:i,m,l = xi»fv'".z Vl'kfyl—lym,T’ i=1,-- 1, £=2,---,L,m=1,-- M.

=1

The burnup equation is then replaced by

= ke _aAtnoe Ri,t’ i:19”'317€:17”'7l‘7

ki,l,m,t+l ifmt i6,mit+1
m=1,--- M t=1,--,T—1.

~
oo

Finally, a relation between all the separate k75, ,

variables and the node-average k;;, is given:
L M

ki,tzZZki,&m,,, i=1,- I t=1,---,T.
=1m=1

In the BP model of Section 2.3.2 the modification is done in a similar way. There, the reload
equation and the burnup equation for the variables Em, can be substituted by the corresponding

equations for IAc;.’"[. a5 stated above. The variable %~ can be deleted completely when in (2.51)

- L M,
the variable k; , is substituted by ¥ ¥ k75, ..
’ =lm=1 """

Due to time limitations, we had not much opportunity to experiment with this modified
model. Some encouraging results are discussed in Chapter 6 on page 138.

Chapter 3

Existing optimization approaches

Starting from the sixties, many authors have been working on the loading pattern optimization
problem. A large variety of methods have been applied. It was recognized that it is very
difficult to obtain globally optimal solutions, since the models exhibit a structure that makes the
problem hard in a mathematical sense. Apart from the mathematical difficulties, there is also
no unanimous understanding about what objective function should be selected, which makes
it indeed very difficult to state that some loading pattern is globally optimal. To make it even
worse, every author and every paper uses its own model, with its own scope, properties and
simplifications. Thus comparison of results is only possible on a ‘local scale’, usually the scale
of just one paper.

This chapter presents an overview of the literature, with emphasis on the used mathematical
optimization methods. Remarks about the used models, their complexity or their scope will
only be made on a rather generic level. The different optimization approaches are handled in
more detail.

A main distinction between the used algorithms is the way in which they treat the opti-
mization problem. The reload pattern optimization problem can be viewed as a mathematical
optimization problem with two types of variables:

1. Decision variables specifying the fuel assignment (which bundle in which node, in which
rotational position, and which BP concentration is included in each node);

2. Dependent variables specifying the core reactivity and depletion.
The variables are restricted by the following types of constraints:

1. Constraints on the decision variables, that specify which combinations of these variables
are valid loading patterns;

2. Equations that describe how the dependent variables depend on the decision variables;

3. Operational constraints, either on the decision variables (engineering constraints), on the
dependent variables (power peak constraints), or possibly on both types of variables to-
gether.

41

42 CHAPTER 3. EXISTING OPTIMIZATION APPROACHES

The depletion equations are in this description contained in the second type of constraints. Many
algorithms consider only the decision variables in the actual optimization, while the dependent
variables and the corresponding equations are hidden in a black box. This black box, which can
include an arbitrary core depletion algorithm, returns the objective function value and safety
limit values for fixed sets of decision variables, i.e., for fixed loading patterns. In these methods,
a (large) number of patterns is evaluated in a smart way, in order to find the best one. A number
of these direct search methods is shortly described in Section 3.1.

Instead of treating the function evaluation for a fixed loading pattern as a black box (possibly
opened a little bit when using perturbation theory), the black box can also be opened completely,
and the information in it can be used in derivative based approaches to find search directions
towards better loading patterns. Due to the nature of derivative based optimization methods,
continuous relaxations are solved first, that may return fractional reloading patterns, and from
there integer solutions are generated. Some variants based on this idea are explained in Section
3.2. Our method as described in the following chapter also falls into this category.

Perturbation theory (PT) is a tool that can be used in both types of methods. Local search
methods use PT to predict the function value in some patterns without the need of completely
evaluating these patterns. Some implementations of derivative based methods use PT to obtain
gradient information or to linearize the problem. Another generic tool is the use of engineering
constraints. PT and engineering constraints are discussed in Section 3.3.

The list of papers and methods below is not complete. The number of proposed methods is
very large. Also, some methods are very similar to each other but have different names.

3.1 Direct search methods

In this section, a brief overview is given of those local search methods that are used to solve the
loading pattern optimization problem.

Initially, one or more loading patterns must be given, which define the initial solution set.
At each iteration, a neighborhood of the current (or parent) solution set is defined, containing a
number of loading patterns that are related to the patterns in the current solution set in a way that
may differ from method to method. Some patterns from this neighborhood are selected in either
a deterministic or stochastic way, and their objective function is evaluated. After this evaluation,
possibly some of these evaluated patterns are inserted into the current solution set, while other
patterns might be removed from the current solution set. The decision, which patterns are to be
inserted or removed from the solution set, is either deterministic or stochastic, and is usually
based on the quality of the current solution set and the newly evaluated patterns The decision
may also be influenced by the search history. The process is repeated until some stopping
criterion is met, and the best pattern found is accepted as the (local) optimum pattern.

The class of local search methods is very wide, and moreover each method has many vari-
ants. Overviews of a number of different methods that are applicable to the reload pattern
optimization problem are given by [15, 98]. These methods vary from commonly used methods
(Simulated annealing (SA), Genetic algorithms (GA)), to methods with exotic names such as

3.1. DIRECT SEARCH METHODS 43

Record-to-Record Travel, Great Deluge algorithm, and Population-Based Incremental Learning
algorithm.

Since in local search methods the function evaluations are considered as a black box, these
methods are applied in a number of other areas. Actually many combinatorial search methods
are developed in rather different application areas, and there are very few common naming
conventions. In current practice, the same names are used for methods that share some common
basic property but otherwise are very different, while on the other hand totally different names
are used for methods that are essentially the same, even within one application area [1, 51, 123].

Regarding this diversity of methods, the only goal of this section can be to present the general
structure of the most common search methods that have been applied to reload pattern optimiza-
tion. In Section 3.1.1 the Pairwise interchange algorithm will be discussed, which is the basic
local search algorithm. Actually, as it will be described in Section 5.3.4, we designed an ex-
tension of this algorithm so that it can deal better with patterns that exceed the power peaking
constraint. In the next three sections we discuss Simulated annealing, Evolutionary algorithms
and Tabu search. Section 3.1.5 deals with some variants that are studied at the Delft University
Interfacuity Reactor Institute within the scope of our joint research project [39].

3.1.1 Pairwise or Multiple Interchange

This is the basic variant of a local search algorithm. Although the method itself is very simple,
it illustrates several aspects of local search heuristics that also appear in the other algorithms.
The variants Pairwise Interchange (PI) and Multiple Interchange (MI) differ in the definition of
the neighborhood only.

The (pairwise or multiple) interchange algorithm uses a single pattern as current solution.
After evaluating all patterns in the neighborhood, the neighbor with the best objective function
value is selected. If it is better than the objective function value of the current solution, the
current solution is replaced by this neighbor solution. Otherwise, the algorithm terminates and
returns the current solution as the (locally) optimum solution.

In PI, the neighborhood consists of all patterns that are obtained by exchanging two bundles in
the current pattern. In k-Multiple Interchange, the neighbors are all patterns that are obtained by
exchanging k bundles in the current pattern. The size of the neighborhood increases drastically
for larger k. For k =2 (which is PI), the number of neighbors is 7(I — 1) /2, where [is the number
of bundles in the core. For k > 2, the number of neighbors is O(1*). For k = I this is equivalent
to a complete enumeration of all possible loading patterns! In practice, only the PI algorithm is
applicable, unless the neighborhood is drastically reduced by additional restrictions.

The number of iterations in PI is not known in advance. Also, there is no guarantee that the
algorithm will end with the best solution. It is very likely that the algorithm ends in a local
optimum. The final solution also depends on the starting point, as is illustrated in Figure 3.1.

If the cost of evaluating the whole neighborhood in each iteration is too high, the neigh-
borhood can be restricted at the risk of obtaining worse final solutions. One may for example
restrict the neighborhood to exchanges of fuel bundles of the same (or adjacent) age, or to ex-

44 CHAPTER 3. EXISTING OPTIMIZATION APPROACHES

K5 (@) i1 3 [©)
BB D

FIGURE 3.1: Pairwise Interchange tree of a core with three nodes. The bundles are indicated by gray
values and numbers. The circled value is the objective value for the given pattern. Neighboring solutions
in PI are connected. The two right solutions, with the best objective value, cannot be reached when
starting from the left one.

changes of bundles in adjacent positions. Another smart way of reducing the neighborhood is
the use of engineering constraints, which exclude fuel combinations that are known to be bad
(Section 3.3.2). In the loading pattern optimization literature, we encountered such a restricted
PI algorithm under the name Dynamic Programming [121]. Other PI implementations, some-
times combined with engineering constraints (see Section 3.3.2) are found in [29, 64, 83, 87].

First best neighbor selection

Computation time in PI may be restricted by not selecting the best of all neighbors, but simply
the first neighbor encountered that improves the objective function. This typically will lead
to less pattern evaluations, but to a worse final solution, It also introduces dependence on the
order in which the neighbors are evaluated, as shown in the left illustration of Figure 3.2. Occa-
sionally, this approach may lead to better quality solutions, as in the right illustration of Figure
3.2.

®<® e
‘ B0

EII ?thfrﬁ @

FIGURE 3.2: Two more Pairwise Interchange trees, starting with the solutions left in the trees as the
parents. If the neighbors in the middle columns are evaluated in the order as listed, then the strategy of
selecting the first improved neighbor as new parent leads to a worse final solution in the left tree, and to
a better final solution in the right tree.

Handling infeasible patterns

There are different ways of handling infeasible patterns, that is, patterns violating some opera-
tional constraint such as a safety limitation. One might ignore all infeasible neighbors as soon

3.1. DIRECT SEARCH METHODS 45

as the first feasible solution is found. Another approach is to include the constraints in the ob-
jective function, multiplied with a penalty parameter. In this way, an infeasible pattern may be
chosen only if it has a very good objective value with relatively small constraint violations, with
the hope that this solution will have neighbors that are feasible and still have a good objective
value. Since in this variant the current solution might be infeasible, while a feasible solution
was found before, the best found feasible solution should be stored separately during the search.
The quality of the results with this approach will depend on the value of the penalty parameter.

We have implemented a variant of this algorithm, which is described further in Section 5.3.4.

A weakness of the standard interchange algorithm is that it is unable to escape from a local
optimum. This is because it never accepts a pattern with worse objective function than the
current solution. Another weakness is the solution time required. In the standard PI algorithm,
the number of neighbor evaluations per iteration grows quadratically in the number of nodes,
while the evaluation time per neighbor increases, and also the average number of iterations
before reaching a local optimal solution grows quite fast. The algorithms in the next sections
are designed to reduce these problems.

3.1.2 Simulated Annealing

This algorithm allows the acceptance of parent solutions that are worse than the current solution,
in order to make it possible to escape from local optima. These worse patterns are accepted with
a certain probability, that depends on the optimization objective value, and on a ‘temperature’
T which slowly decreases during the search. The algorithm is based on the annealing process
of a crystal. In this process, a liquid metal is cooled down in order to obtain a crystal. If the
cooling is too fast, the resulting crystal is not at the minimum energy state, but it will be an
amorphous structure at a higher energy state. Escaping from this energy state is not possible
without addition of external energy, so it is a local optimum. Using slower cooling, the atoms
have more opportunities to escape from local optima and reach lower energy states, and the
resulting crystal will better resemble an ideal, regular crystal.

More precisely, the Simulated Annealing (SA) algorithm is stated as follows. Starting from
a parent solution, a random child solution is chosen. If this child has better objective function
than the parent, it is accepted as the new parent solution, otherwise it is accepted with a certain
probability. This probability depends on the objective function and on the temperature param-
eter. After a number of such acceptances and rejections (a chain), the temperature parameter
is decreased, which means a lower probability of selecting worse patterns. The algorithm ends
when some stopping criterion is satisfied.

Let f. be the objective value of the current solution, and f,., the objective value of the
selected child. The acceptance probability for the child, for given temperature parameter 7, is
given as follows:

) 1 if f,41 18 better than f,
P(fllﬂ.ﬁl+lvT) = —fn=fup1
T

e otherwise

46 CHAPTER 3. EXISTING OPTIMIZATION APPROACHES

At the end of a chain, the temperature parameter is usually decreased by a fixed factor o < I:
Tk+| = aTkv

but the reduction formula may take more exotic forms [117]:

Ti
Tir1 = TiIn(1+)
14
30y
where & is some suitable parameter and Oy is the standard deviation of the objective function
values in the kth evaluation chain. The length of such a chain can be fixed in advance, or may
depend on the quality of the obtained solutions.

The neighborhood from which trial patterns are chosen can be defined in a number of dif-
ferent ways. One may simply select a neighbor from the PI-neighborhood [66], or select a
completely random permutation, maybe restricted by some heuristic rules [120]. Good results
are reported on an algorithm that switches between these two neighborhoods [117]. Another
variant incorporates continuous variables into the simulated annealing [97, 99].

Operational constraints are usually handled by bounds cooling or augmentation of the objec-
tive function.

In bounds cooling, the operational constraints or ‘bounds’ are relaxed by a value that depends
on the annealing temperature. As the annealing temperature decreases, the bounds become
more and more tight. Patterns that do not satisfy the (relaxed) constraints at some stage are
rejected. In this way, infeasible patterns may be accepted at the beginning of the algorithm, thus
widening the search. Towards the end of the search, only (almost) feasible patterns are likely to
be accepted.

When using an augmented objective, constraints that are not satisfied are penalized in the
objective function. In this way, infeasible patterns are only likely to be chosen if their original
objective function value is much better than the objective value of the current solution. Towards
the end of the search, infeasible patterns have a very low probability of being selected. It is
crucial to find good penalty parameter values in order to get a good algorithm, which have to be
found by experience.

The evaluation of the trial pattern can in principle be done by an arbitrary core evaluation
model, such as a one-and-a-half-group model {117], or a two-group model [120]. The com-
putation time may be decreased by using Generalized Perturbation Theory (GPT, see Section
3.3.1) to evaluate the trial patterns [66, 80, 79]. In [77], a simulated annealing algorithm for the
fuel positioning is combined with successive integer linear programming for finding the optimal
placement of burnable poisons for each evaluated loading pattern.

3.1.3 Evolutionary algorithms

Evolutionary algorithms (EA) form another class of algorithms that are inspired by the evolu-
tionary principle of survival of the fittest. Starting from a basic population of loading patterns,
offspring is created (‘generated’) either by combining loading patterns (cross-over), or by mu-
tation of single loading patterns in the population. After evaluating the objective function of

3.1. DIRECT SEARCH METHODS 47

the offspring patterns, a new population is formed by selecting some members of the current
population and some members of the offspring. This —possibly stochastic— selection process
depends on the quality of the objective function values of the patterns. Two of the possible
stopping criteria are stopping after a pre-determined number of generations, or stopping when
no improvement is found during some generations.

Mutation

There is much freedom in how to define combination and mutation operators. One author [5]
arranges the fuel elements with respect to their reactivity at BoC. A mutation operation then
selects a bundle whose Begin of Cycle reactivity is within a randomly generated range around
the BoC reactivity of the current bundle in that position [5]. Another author [25] represents
the patterns with bit strings that are combined and mutated. Both methods are combined with
expert knowledge (engineering constraints) and heuristics.

Cross-over

The cross-over operation in its simplest form combines a part of one loading pattern, say the
inner half of the core, with the other part of another pattern. In practice, lots of refinements
are to be made, for example to prevent the placement of the same bundle in both parts [15,
104]. An alternative approach uses no individual bundles during the evolutionary algorithm,
but patterns with BoC reactivities are arranged [25]. The advantage is that one does not have
to care about double placement of one bundle. Instead, one has to assign bundles that match
the BoC reactivity pattern of the ‘optimal” solution as well as possible. This approach does not
work for equilibrium cycle optimization, and also in other cases it may not be possible to match
the BoC reactivity pattern with the available bundles.

Selection

For the selection of the new population there are also many possibilities. If offspring is created
from single patterns only (by mutation), one may compare a pattern and its offspring, and select
the best of the two. If n patterns together are used to create offspring, one can put these n
patterns and all their offspring together, and then select the n best patterns from this set. The
selection may also contain a random acceptance probability as in simulated annealing.

As'with SA, an arbitrary core evaluation model may be used for objective function evalua-
tion, and the quality of an implementation depends on heuristics and engineering rules that are
adopted in the main algorithm. Furthermore, an example exists where expert knowledge is used
in creating the offspring [25].

3.1.4 Tabu search

The tabu search (TS) algorithm! is designed as a deterministic algorithm that is able to escape
from local optimal solutions. Given a neighborhood structure, all neighbors of the current

ISome authors write “taboo search’. Although this is more correct English, we use the commonly used term
‘tabu search’ instead, which is also used by Glover [46], considered as the founding father of the algorithm.

48 CHAPTER 3. EXISTING OPTIMIZATION APPROACHES

solution are evaluated. The best neighbor is selected as new solution, regardless whether it is
better than the current solution or not. This strategy would lead to cycling if no further actions
are taken. Therefore a ‘tabu list’ is maintained. A neighbor or swap that is tabu (i.e., on the tabu
list) cannot be selected as new solution, unless it satisfies a certain ‘aspiration criterion’, which
is usually the criterion that it must be better than any previous solution.

The tabu list is considered as the ‘memory’ of the algorithm. It contains a list of swaps that
are performed in previous iterations with a number indicating the ‘recency’ of the swap. This
recency is set to a given value when the swap is executed. After each iteration the recency
value is decreased, and when it reaches zero the swap is removed from the tabu list. Different
and more sophisticated tabu list implementations are possible. Instead of maintaining a list of
swaps, one may for example declare a list of nodes or bundles that have recently been involved
in a swap. Also, one may use a long-term type of memory by counting the frequency of certain
swaps [47].

We have found one implementation of TS in reload pattern optimization [75]. Here, the
neighborhood is restricted by knowledge-based heuristics. The obtained results are not com-
pared to other methods. In [15], it is stated that ‘when correctly used the performance is better
than SA like algorithms’. This statement is not based on experience in reload pattern optimiza-
tion, however, while the applicability of this type of statements strongly depends on the problem
at hand.

3.1.5 Global to local search

Global to local search [42, 44] is a two phase method. In the first phase, a global search is
performed, where random patterns are selected from a large neighborhood. In the second phase,
a smaller neighborhood of the best found pattern is searched more thoroughly.

The initial large neighborhood consists of a series of quadruple interchanges. A number
of such interchanges is made in sequence, and the corresponding objective functions are just
recorded. At the end of a fixed chain length, the best pattern found is selected and a new chain
of quadruple interchanges is started from there. If there is no improving solution in the chain,
then the local search is started, which is a PI algorithm.

The idea of the algorithm is that, initially, it is important to locate the vicinity of a local
optimum. But in order to reach such an optimum exactly, one has to do a more refined local
search.

In a more sophisticated variant, the switch from global to local search is not made at once,
but stochastic methods are used to make the search gradually more local. The latter implemen-
tations can be viewed as variations of SA.

Another variant called Population Mutation Annealing (PMA) [41, 39] is an evolutionary al-
gorithm that works with a set of solutions and a mutation operator, where the mutation operator
and the criterion whether or not a new pattern is accepted, are stochastic and depend on the
annealing temperature.

3.2. CONTINUOUS OPTIMIZATION APPROACHES 49

3.1.6 Other methods in literature

There are a lot of other methods in literature, that all have the property that, in a smart way, a
(relatively) restricted number of reload patterns is evaluated, in order to arrive at a local optimal
solution.

One of these methods is the use of neural networks [60, 61]. With the use of a network with
one hidden layer, that is trained with a number of reference loading patterns, the objective func-
tion and power peak for any given loading pattern are predicted by the neural network within
a reported accuracy of about 2.5% for the power peak and 0.1% for the infinite multiplication
factor. Since the evaluation time for one loading pattern is reduced drastically, an optimiza-
tion method may evaluate much more patterns in the same time, thus (hopefully) increasing the
solution quality.

Neural networks can be combined with other methods, e.g., with heuristic rules and fuzzy
logic [60]. Axmann [5] uses a neural network to provide starting points for an evolutionary
algorithm. A Monte Carlo method is applied in [52]. Several other algorithms are described
with names as Great Deluge Algorithm, Record to Record Travel and Population-Based Incre-
mental Learning Algorithm are described by [15], but no results of these algorithms on the fuel
reloading problem are reported.

An artificial intelligence (AT) based approach, embedded in an interactive system, is used
by Galperin et.al. [36, 94]. Based on a set of elimination rules, that forbid certain fuel com-
binations, and preference rules, that specify likely positions for the different types of bundles,
a set of patterns is generated that satisfy these rules. The results of the whole solution set are
visualized, and based on these results the user may be satisfied, or modify and refine the set of
rules.

A modern trend in combinatorial optimization is the combination of different optimization
techniques and heuristics in a so-called hybrid algorithm. Such an algorithm for reload pattern
optimization is (under a different name) described in {97], where SA and EA are combined,
while the algorithms are monitored and adjusted on the fly by Al techniques.

Since the number of techniques and combinations of techniques is endless, the list of methods
reported in this section is certainly not exhaustive. Methods that are not yet mentioned are
variational techniques [127] and a Hooke and Jeeves pattern search, combined with engineering
rules [56], and more direct search methods may be found in literature that are ever applied to
the reload pattern optimization problem. Except for a few techniques that are applied quite
regularly, however, most of the methods are only used by one or a few authors.

3.2 Continuous optimization approaches

In direct search methods, the optimization algorithm is more or less decoupled from the core
evaluation algorithm. Continuous optimization methods use the model equations of the core
evaluation model to guide the search. As explained in the introduction of the current chapter,
the reload pattern optimization problem is viewed as a mathematical optimization problem with

50 CHAPTER 3. EXISTING OPTIMIZATION APPROACHES
two types of variables:

1. Variables specifying the fuel assignment (which bundle in which node, in which rotational
position, and which BP concentration is included in each node);

2. Variables specifying the core reactivity and depletion.

The optimization problem then is of the following form:

maximize the desired objective function;

subject to - constraints specifying valid fuel assignments; 3.1

- constraints specifying the physical (neutronics) behavior;

- operational constraints.

This general description still leaves a lot of freedom for the exact formulation. Actually,
a number of papers have appeared using rather different problem definitions in the form of
(3.1). Since a detailed reactor model would lead directly to a complex optimization problem,
most studies until now are based on a rather simple core model, usually a nodal optimization
model. Since bundles cannot be partially moved to other positions in the core, the resulting
models contain binary variables, i.e., variables that only can take the values 0 or 1. In the
continuous optimization approaches, this integrality is initially relaxed, and then one obtains an
optimization problem that is nonlinear, i.e., the constraints contain nonlinear combinations of
variables. The problem is also nonconvex, which means that two solutions may be very good,
while solutions in between these two solutions may be worse, or even infeasible. The notions
of integrality, nonlinearity and nonconvexity of optimization problems are explained in more
detail in the next chapter.

A number of continuous optimization algorithms is applied to solve the problem. We give
an overview and a short description of methods that were encountered in literature. The mathe-
matical description of the underlying basic optimization algorithms is postponed to the Sections
4.2 and 4.3.

Most papers use some variant of Sequential Linear Programming (SLP). In this method, the
model is linearized around a reference pattern. This linearization is either done in the usual
way based on Taylor expansion [67, 122, 131], or with use of generalized perturbation theory
(GPT) [29, 62, 63, 77, 78, 82, 113]. Most implementations solve the linearized subproblems
within a restricted area around the reference pattern, which comes close to the mathematical
optimization idea of a trust region. Just for getting some idea of what this means, one might
compare it to the neighborhood in direct search methods, but then in a continuous sense.

A more advanced algorithm that is proposed, combines two linear models to construct a
quadratic model [134]. Here, the model is linearized with respect to fuel assignment for given
BP concentrations, and linearized with respect to BP concentration for fixed fuel assignment.
From these two linearizations a new model is assembled that contains bilinear terms, that is

3.2. CONTINUOUS OPTIMIZATION APPROACHES 51

solved a Sequential Quadratic Programming (SQP) method. To our knowledge, this algorithm
has not been implemented.

Implementations of the gradient projection method are used to find optimal BP distribution
for a fixed pattern [2, 122] and to solve a rather coarse model at once [57]. An odd method
using derivatives is an approach based on optimal control theory [127].

The SLP, SQP and gradient projection methods are not aiming to find integer solutions. Thus
one may end up with a solution in which fractions of bundles are assigned to different nodes.
Various methods are used by different authors to produce integer solutions. In one method,
given the assignment variables x; ;, a penalty term minimizing

u)anﬁj(l—xi7j)2 (3.2)
L)

is added to the objective, where , increases during the subsequent SLP iterations [77]. Other
implementations use a Branch-and-Bound method in the linear subproblems, either very basic
[62, 63], or with more advanced selection and branching rules [67]. In another variant the
SLP algorithm only finds a distribution of k3, - values in the nodes, and then bundles from the
inventory are found that match this distribution as close as possible [29, 122]. This assumes that
there is an inventory of bundles available to choose from, which is not the case in equilibrium
cycle calculations. In the paper [64] a reload pattern is found using a PI method, and SLP is
only used to find an optimal BP distribution.

In the method that was studied in the beginning of our research project, a reduced gradi-
ent method is used for the continuous optimization, and a comparison was made between a
Branch-and-Bound method and an Outer Approximation method for finding integer solutions
[65]. More detailed descriptions of these methods are postponed to the next chapter.

In some papers, continuous optimization is combined with direct search methods. Kim and
Kim [63] solve a linearized problem, and use a Branch-and-Bound to find an integer solution
to this linear approximation. If no improving pattern is found in this way, the sensitivity co-
efficients of the LP optimization around the current pattern are used to deduce an improving
pairwise interchange. In another implementation [77], an attempt is made to improve the ob-
tained (local optimal) solution of the continuous optimization by applying one hundred random
pairwise interchanges and evaluating the corresponding patterns.

Combination the other way around is also possible. Two papers [64, 77] show implemen-
tations where the bundles are placed using local search, while in a second phase the Burnable
poisons are placed using continuous optimization.

We may conclude that the majority of papers uses some variant of the SLP method, possibly
embedded within a trust-region-like method. Most of the implementations use modifications to
the standard mathematical optimization methods. Little work is done on investigating the use
of other general-purpose nonlinear optimization algorithms.

In this respect, the rather old paper using the gradient projection method [57] is interesting.
Despite the fact that the model is much coarser, the model structure somewhat resembles the
structure of our model, and the same problems are reported that were also initially encountered
in our research, such as the inability of the solver to find initial feasible solutions, and the sen-
sitivity to very small changes in the model parameters. Using current state-of-the-art nonlinear

52 CHAPTER 3. EXISTING OPTIMIZATION APPROACHES

optimization solvers, embedded in a problem-specific framework, we could overcome most of
these deficiencies (Chapter 5).

3.3 Tools for general use

This section discusses some existing tools that can be used in the above described optimization
algorithms. These tools are meant to speed up the algorithms, either by decreasing the time
needed for evaluating the physical parameters of the model, or by steering the optimization
process with use of engineering knowledge.

3.3.1 Perturbation theory (PT)

In a local search algorithm, one has to evaluate neighbor loading patterns that are very similar
to a loading pattern for which the physical characteristics are already calculated in a previous
iterate. Instead of recalculating the new pattern completely, one may try to estimate its physical
characteristics from the known neighboring loading pattern.

This technique is known as generalized perturbation theory (GPT), and it has for example
been used in an SA framework {66, 79, 80]. GPT is used in the global to local search and the
PMA algorithm [41, 43], and also in the linearization step of some NLP-based implementations,
to get approximations for the gradients. Computation times of local search algorithms can be
greatly reduced when GPT is used to approximately evaluate the neighbors.

In GPT, the effect of a given small perturbation on a desired quantity is approximated. It is
based on the theory of adjoint equations, which is closely related to duality theory in nonlinear
optimization. For a general description of GPT one is referred to a textbook on operator theory,
e.g., [48]. For a description of GPT applied to loading pattern evaluation one may consult one
of the papers mentioned above or a text book on nuclear reactor analysis, e.g., [28].

3.3.2 Engineering constraints

Many implementations use one or another form of expert knowledge. One example is the use
of expert knowledge to select a starting point [25]. Another example of expert knowledge is the
use of engineering constraints. These constraints are used to exclude some fuel configurations
that are known to be bad. There are several types of engineering constraints.

Simple geometric heuristics maintain a list of prohibited fuel-node pairs [64, 117, 120]. It
may be forbidden, for example, to place fresh fuel on the core boundary or in the core center.
Relational heuristics exclude some specific combinations of fuel elements at specific positions
in the core. One may for example exclude all patterns with four fresh bundles in a square, or
patterns with old bundles paired in inner regions of the core [120]. Similar constraints are used
to enforce a checkerboard pattern [121].

Other heuristics exclude the placement of burnable poisons at certain positions [66]. Another
class of engineering constraints do not forbid certain positions, but give preference positions for

3.4. CONCLUSION 53

some bundles. This is used to guide a search process when a choice between multiple alternative
patterns has to be made [60].

All engineering constraints aim at reducing the search space. In this way, one hopes to find
good solutions in less iterations. Care is needed when formulating this type of constraints. It
may happen that an engineering constraint excludes the global optimal pattern. Experience and
some understanding of the problem structure is required to formulate engineering constraints
that are really helpful.

3.4 Conclusion

As has become clear in the previous sections, a lot of optimization methods have been applied
to the fuel management optimization problem.

The question raises how all the different methods compare to each other, and how the methods
that we are developing will compare to the results from literature. Unfortunately, it is not so
easy to answer these questions. There is no standard test set that is used by all authors, each
paper presents its own test set, without comparative study with other algorithms on the same
test set.

Quite commonly, a test is built up as follows. The test set consists of one core geometry from
some arbitrary real-world reactor. With this core geometry, optimization is run on a few fuel
inventories that are taken from past cycles of the reactor. The results of the optimization routine
are then compared with the loading pattern that was actually implemented in the past. Although
this method may be very appropriate to convince the responsible people in these plants of the
use of optimization techniques, it does not give any comparison of the different algorithms.

The situation is even worse since there is no standard core model, but in almost any paper, a
different core model is implemented. This is partly due to the fact that ‘the’ model simply does
not exist. Using a very detailed model, that is needed for verification of a ‘real-world’ pattern,
simply would take too much time in a local search method and would be too complex in a
gradient-based method. Although there is some common notion about which simplifications
are justified, there is lot of room to derive many different simplified models, even with different
optimization objectives. Another partial reason for the existence of many different models is
that different reactor types (LWR, PWR) require different modeling, but this does not explain
that there are almost as much different models as there are papers published on reload pattern
optimization.

We must conclude that at the current stage, only general remarks about the quality of the
different methods can be made. The direct search algorithms usually adopt a black-box method,
where the optimization model is separated from the physical model. The level of detail that
may be included in the fixed-core evaluation therefore only depends on the available computing
time. However, such a method generally converges rather slowly without problem-specific
adaptations. The quality and speed of the algorithms is improved by addition of engineering
knowledge and use of GPT when exploring the neighborhood. With these additions, some local
search methods lead to very satisfactory solutions.

In the gradient based methods the black box is opened. Information from within the black

54 CHAPTER 3. EXISTING OPTIMIZATION APPROACHES

box is used to help the optimization process. This leads to a nonlinear optimization model.
The reviewed implementations generally use some variant of SLP to solve this model. In the
SLP variants, a linearization around a reference solution is needed, which is obtained by either
Taylor expansion or GPT. The validity of the linearization is often restricted to some ‘trust
region’. All papers use a dedicated implementation, where the linearization is implemented
by the authors. The LP subproblems are solved by standard routines. Since large systems of
equations are to be solved in the linearization step, or large LP problems are obtained, the used
models are generally small.

The literature review could give the feeling that SLP is the preferred NLP method (since
most authors use it), and that even that method is only applicable to smaller models, so that
local search is still the only choice to solve the reload pattern optimization problem. Other,
more powerful NLP algorithms are developed, however, that perform better in general than
SLP. Moreover, excellent implementations of these algorithms are available, that can handle
much larger and more difficult optimization problems. In the next chapter, we turn our attention
towards such algorithms, and their applicability to the fuel management optimization problem.

e
EER Wi
il

T
T LT

Chapter 4

Mixed-integer nonlinear optimization

In Chapter 2, we modeled the fuel reload optimization problem. After a number of simplifi-
cations we finally arrived in Section 2.3 at an optimization model containing both nonlinear
constraints and integer variables. This means that, in terms of mathematical optimization, the
model can be classified as a mixed-integer nonlinear optimization problem (MINLP-problem
)'. In this chapter, we will discuss general properties of MINLP models, and review possible
techniques for solving these problems. This discussion will be quite general, although some-
times links to the fuel management problem are made. Algorithmic and implementation issues
that are specific to the fuel management problem are postponed until Chapter 5.

Section 4.1 starts with a discussion of the general structure of MINLP problems. Most prac-
tical algorithms break down into a nonlinear optimization part and an integer optimization part.
Issues related to nonlinear optimization are discussed in more detail in Section 4.2, while issues
related to integer optimization will be treated in Section 4.3. The algorithms described in these
sections are only able to guarantee local optimality of solutions. Methods that aim at finding
global optimal solutions are described in Section 4.4.

4.1 General structure of MINLP

The basic model in Mathematical Optimization is the linear optimization (LP) model. In linear
optimization, all variables are defined over connected intervals, and both the objective function
and all constraints are linear. For LP there exist efficient solution methods [31]. Linear simplex
methods [85, 89] are not proven to be efficient in theory, but are very efficient in practice. Inte-
rior point methods for LP [110] are efficient in theory and very efficient in practice, especially
for large problems. LP problems with tens of thousands of constraints and variables can be
solved towards a global optimum with today’s LP solvers on a PC.

A MINLP model is an extension of an LP model in two ways: firstly the objective function

IStandard classification of mathematical optimization models uses abbreviations ending with ‘P’, denoting
‘Programming’ (even Mathematical Optimization is commeonly stated as Mathematical Programming, MP). Al-
though we adopt this standard in this thesis, we often use the word ‘Optimization’ instead of ‘Programming’, since
this avoids confusion with ‘programming’ in the sense of writing Fortran or C programs, and describes much better
what we are talking about.

55

56 CHAPTER 4. MIXED-INTEGER NONLINEAR OPTIMIZATION

and/or some or all of the constraints are nonlinear, and secondly some or all of the variables
have to be integer. Either of these extensions separately can be enough to make finding a global
optimal solution a very difficult, frequently impossible task.

Regarding integrality, it is illustrated by Figure 4.1 that simple rounding of a continuous
optimum is generally a bad method. It also illustrates that the discrete optimum may be far
away from the continuous optimum.

Nonlinearity may introduce numerical difficulties, that make it difficult to converge to even
a local solution. It may also introduce nonconvexity. A function is convex if any two points on
the function can be connected by a straight line that lies entirely on or above the function itself.
More precisely, a function f is convex if for any two points x| and x> it holds that

Fhxr 4+ (1=A)x2) <Af(x1) + (1 = A) f(x2).

In Figure 4.2a, for example, a one-dimensional function is shown, that is clearly nonconvex: if
we draw a straight line between the two end points of the function, large parts of the function
lie above this line. From this figure it becomes clear that nonconvexity of the objective function
may introduce local optimal solutions: solutions that are optimal in a small region around the
solution, but not necessarily optimal over the whole feasible area. A local optimal solution that
has the best objective value out of all local optimal solutions over the whole feasible area is
called a global optimal solution. Finding an arbitrary local optimal solution is generally not a
very hard task, but ensuring that it is a good local optimum, or even the global optimum, can be
a hard and practically impossible task. Graphically, in Figure 4.2a it is not too difficult to find
the bottom of just some valley, starting from any point. Guaranteeing whether this is the global
deepest valley, or even that it its level is only within a given distance from the deepest level, is
a much harder task.

;-Continuous optimum objective direction) .
.. .--Real (discrete) optimum

Rounding ..
solution ~ "° o
~--level sets of objective

x x x x x x

Area described by the linear constraints

x x x

= = feasible point for the discrete problem.

FIGURE 4.1: Optimization of a discrete problem.

Besides nonconvexity of the objective function, also the feasible region may be nonconvex,
which makes the problem hard even if the objective value is linear. A feasible region is convex
if any straight line connecting two points in the feasible region, lies itself entirely in the feasible
region. In Figure 4.2b a nonconvex feasible region is given. The objective is linear: find the
most southern point in the feasible area, but due to the nonconvexity of the feasible region, it is
again difficult to find a global optimal solution; the circled point, for instance, is a local optimal
solution, but from a local view, it is not clear at all whether this is the globally optimal solution,
or only a bad local optimum. In this two-dimensional example, one may immediately conclude
that there is a better solution, but in more-dimensional cases, where visualization is impossible,

4.2. THE NONLINEAR PART 57

\l] Optimizing direction \; Optimizing direction

— e

- Feasible area

objective value

—*> Feasible area
a) One-dimensional example of local optimality. ~ b) Two-dimensional, nonconvex feasible area.
Nonconvex feasible area, nonconvex objective. The objective function improves towards the page botlom,
Find the deepest valley in a foggy environment. Find the most southern point in a foggy environment.

FIGURE 4.2: Optimization of two different nonconvex problems.

this is a much harder, and frequently impossible task. The feasible area in this example is still
connected, but even this need not to be the case in general.

The loading pattern optimization models as derived in Section 2.3 contain a number of non-
convex constraints. Furthermore the assignment variables are integer. From the examples above,
it will be clear that this combination of difficulties leads to a problem that is really hard to solve.
Indeed it is so hard that there are no algorithms known in literature that guarantee global opti-
mal solutions to the loading pattern optimization problem in any reasonable time. Section 4.4
will deal with algorithms that aim at finding global optimal solutions, or at least a quality bound
on the obtained solutions. These methods may only be expected to work for rough models and
small core sizes.

In the next section we ignore integrality constraints and concentrate on the problem of solving
the nonlinear optimization (NLP) part. In Section 4.3 the integer programming part is discussed.

It may be good to mention that we do not discuss multi-objective optimization, although
some work on this approach is done in fuel management optimization literature [100]. Good
references for this specialized topic are for example [95, 119, 133]

4.2 The nonlinear part

In this section, we focus on optimization problems of the following form:
min f(x)
subjectto g;(x) <0, i=1,---.m, “.10

hj(x)zov]:]a"'vp'

The functions f(x), gi(x) and 4;(x) may be linear or nonlinear. Both the objective function
and the feasible area may be nonconvex. The variables are the entries of the vector x and these
may attain any real value. As we have already seen in Figure 4.2, such problems may have
many local optima, and it may be very difficult or impossible to find a global optimum. In this
section we only consider algorithms for finding local optimal solutions. Most methods designed
to solve such problems can be categorized as follows.

58

CHAPTER 4. MIXED-INTEGER NONLINEAR OPTIMIZATION

e Derivative-free direct search methods, also known as Black box methods. The best known

of these methods is the nonlinear simplex method of Nelder and Mead [69, 129]. As
methods like Genetic Algorithms and Simulated Annealing, they are essentially black
box methods, where only function values are needed. They are essentially methods for
unconstrained optimization, although they may be adapted in some extent to solve con-
strained problems, for example by penalizing constraint violations in the objective. These
methods are quite widely used in engineering because of their simplicity and because
of their applicability when no derivative information is known. Although they are also
frequently used when derivative information is obtainable, derivative-based methods per-
form usually better in this case.

More advanced versions of direct search methods use an approximate model to improve
the search {20, 21]. Based on function evaluations in a number of points in the search
space, a quadratic model is built. This model is minimized using the trust-region method,
and in the optimal point of the approximating model, a new function evaluation in the
original problem is performed. This function evaluation is used to refine the approximat-
ing model, until a satisfactory solution is obtained. Another sophisticated variant is the
space-mapping method [6], where a simplified model is used to guide the search for an
optimal solution of a detailed model. A very general overview of direct search algorithms
is given by Powell [105].

Derivative-based optimization algorithms. This is often the category of choice when
derivative information can easily be obtained. First order, and possibly second order
derivative information is obtained in each iteration point, and is used to find improving
search directions. There are basically three subclasses.

1. Gradient (or first order derivative) methods only use first order derivative informa-
tion.

2. Hessian (or second order derivative) methods use both first and second order deriva-
tive information.

3. Quasi-Newton methods use first and second order derivative information. The sec-
ond order derivatives are not computed explicitly in each iteration, but they are ap-
proximated by using the first order information from previous iterations.

There exist many derivative based optimization algorithms, and although there is some
experience about which methods are the better ones, the efficiency and robustness of
the different algorithms may depend on the specific problem at hand. Since this is a very
important class of algorithms in our study, it will be discussed in more detail in the sequel.

Other approaches. Several less frequently used algorithms exist, including methods based
on duality (primal-dual methods). Using model-specific relaxations, decompositions or
branching strategies, it is sometimes possible to obtain solutions that are very difficult to
find with other optimization algorithms. Such an approach often requires more effort and
more insight from the modeler, but may lead to substantially better solutions or shorter
running times.

4.2. THE NONLINEAR PART 59

Before discussing gradient-based approaches, we first introduce some basic theoretical no-
tions for nonlinear optimization. This description is very brief. For a more complete introduc-
tion to the theory of linear and nonlinear optimization, one may consult some textbook on this
topic [9, 32, 45, 88].

4.2.1 Basics of nonlinear optimization theory
Suppose we have the optimization problem (4.1):
minimize f(x)
subjectto g;(x) <0, i=1,---,m, 4.2)
hj(x) =0, j=1,---,p.

In words, the objective of the optimization is to find such a solution x* that has the lowest
objective function value, out of all possible solutions x that satisfy the constraints.

Associated with the optimization problem (4.2) is the Lagrange function L(x,u,w):

m P
L{x,u,w) = f(x)+ ZMigi(x) + z wih;j(x) 4.3)
i=1 j=1
(also known as Lagrangian), which is defined for positive u;, i = 1,---,m. The elements of u

and w are known as the Lagrange multipliers.

In the sequel, we assume that the objective and constraint functions are continuously differ-
entiable functions. Then, the theorem of Karush, Kuhn and Tucker gives first order necessary
conditions for a point x to be a local minimizer.

Theorem 4.1 (KKT-conditions) Given the optimization problem (4.2), where f, g, i=1,---.m
andhj, j=1,.--, p are differentiable. Let X be a point satisfying all constraints, and let V g;(x),
i=1,---,mand Vhj(X), j=1,---,p be linearly independent at X. If X is a local optimum of

(4.2) then there exist scalars u;, i = 1,---,mand Wwj, j=1,--+,p such that
m p
ViE + Y uVgi(X)+ Y, W;Vh;(x) =0,
i=l j=1

4,
wigi(x) =0, i=1,---,m, (@.4)

>0, i=1,m

Note: The first equation of (4.4) is equal to the equation V,L(x, %, w) = 0; the scalars &; and W
from the theorem are just the Lagrange multipliers. A point (X,%, w) satisfying (4.4) is called a
KKT point.

For a proof of Theorem 4.1, the reader is referred to e.g., [9]. A graphical illustration of the
theorem is given in Figure 4.3. In the left picture, the feasible area is given for the case that

60 CHAPTER 4. MIXED-INTEGER NONLINEAR OPTIMIZATION

no equality constraints are present. Suppose x! in the interior of the feasible set is the optimal
solution, then V £(x') must be zero, otherwise the direction —V f(x') would be an improving
direction. Indeed, since g;(x') <0, i =1,---,m, it holds that u; = 0, i = 1,---,m, and hence the
KKT conditions in x! reduce to Vf(x) = 0.

If, on the other hand, a boundary point such as x? is the optimal solution, the gradient V f(x?)
may be nonzero, but for any direction s inwards the feasible region, it must hold that the di-
rectional directive V£(x?)Ts > 0. This is true if and only if Vf(x?) is a negative multiple of
Vga(x?). So for some nonnegative (possibly zero) 2 it must hold that

V() = —uzVga(x?)
which is exactly what is posed in (4.4).

Vg3 (x®) Vg (x®)

o
ox! Vf()

feasible region

gi{(x)=0
g(x)=0

Feasible region (line)

&(x) =0

FIGURE 4.3: Tllustration of the KKT conditions.

In the case x> is the optimal solution, the gradient of f may vary in the cone @, and this is
modeled in (4.4) since both uy and u3 may be nonzero (because gz(x*) = g3(x) = 0).

The right hand side picture of Figure 4.3 shows a case with a single equality constraint. In
this case it is sufficient that the gradient of the objective function is tangential to the gradient of
the constraint, either in positive or negative direction. This is in accordance with Theorem 4.1,
where no sign-restriction is posed on the w-variables.

In Theorem 4.1 the condition is posed that constraint gradients are linearly independent. If
this condition is not satisfied, a point may be a local optimum without satisfying the KKT
conditions. A standard counterexample for this, as is given by Kuhn and Tucker, can be found
in many textbooks on nonlinear optimization, e.g., [9, p.147].

In the case that there are no equality constraints, and the functions g;(x) are concave, the
condition of linear independence of constraint gradients is equivalent to the condition that

a point X exists such that g;(¥) <0, i=1,---,m. 4.5)

This restriction is known as the Slater regularity condition.

The KKT conditions are closely related to the Lagrange function. It can be proven that any
KKT point (¥,%,W) is a stationary point of the Lagrange function.

4.2. THE NONLINEAR PART 61

Second order conditions

For a point to be a local minimum, it is necessary that it satisfies the KKT conditions. This is not
sufficient, however. The KKT conditions also hold in other stationary points, such as maxima,
saddle-points (Figure 4.4) and inflection points. So in order to determine whether a KKT point

P x

FIGURE 4.4: f(x1,x) = 1} — x3. Saddle point at (0,0): V£(0,0) = 0.

is a local minimum, one needs more information. The KKT conditions can be improved by
using second derivatives, describing the curvature of the problem functions at KKT points. In
one dimension, the sign of the curvature (positive, zero, negative) corresponds to the sign of
the second derivative. In more dimensions, the sign of the curvature in direction s at position x
corresponds to the sign of

sTH(x)s,

where H(x) is the second derivative matrix (Hessian) of the function f at x. If the curvature
1s positive in any nonzero direction, then the Hessian is said to be positive definite (PD). If the
curvature 1s nonnegative in any direction, then the Hessian is positive semi-definite (PSD).

Consider a KKT point in the interior of the feasible area, so there are no constraints active in
this point. A necessary condition to be a local minimum is that the objective function in that
point has a nonnegative curvature in any direction. On the other hand, a sufficient condition for
the KKT point to be a local minimum is that it has a strictly positive curvature in any direction.

In the case that the curvature is nonnegative in any direction, but zero in one or more direc-
tions, second order information is still not sufficient to identify a local minimum. Compare for
example the point x = 0 for the two functions f(x) = x* and f5(x) = —x>.

Summarizing:

¢ xis alocal minimum = KKT conditions hold at x and H(x) is PSD;

o KKT conditions hold at x and H(x) is PD = x is a local minimum.

In case there are active constraints in the KKT point, one has to consider the Hessian of
the Lagrange function instead of the Hessian of the objective function. This Hessian has to be
positive (semi-)definite for directions y inwards the feasible area only. Checking this condition
requires in general a copositivity check (see also Section 7.4), which is in itself a very hard
problem.

62 CHAPTER 4. MIXED-INTEGER NONLINEAR OPTIMIZATION

Let us further point out that most optimization packages do not calculate the second deriva-
tive of the Lagrangian explicitly. For all these reasons, the practical use of the second order
constraint qualifications is very limited.

It may be concluded that it is practically impossible to formulate general criteria to check
whether even a local minimum is reached. For some problems this may imply that solvers may
detect that the KKT conditions are satisfied, and report a minimal solution, while the point is
in fact a saddle point or even a maximum. A striking illustration is given by the unconstrained
minimization problems

minimize —x% +x%

(the problem of Figure 4.4), and even worse, the problem
minimize —x3 — x3.

Current state-of-the-art solvers that are started from the initial point (0,0), terminate immedi-
ately with the message that the current point is optimal. In practical models, this situation is
easily circumvented by using appropriate starting points. Also, there exist techniques to avoid
reaching saddle points in cases as in Figure 4.4. A more severe problem in practical imple-
mentations is that only local minima are reached. Only global optimization techniques can give
a qualification on how far the current local minimum objective value is away from the global
optimal value.

In the next three sections we concentrate on solution methods of (4.1) that use first order and
second order information. These methods are usually descent algorithms, in which the objective
value is improved at each iteration. The description starts with unconstrained optimization al-
gorithms. These methods belong to the building blocks of constrained optimization techniques.

" After a discussion on how to obtain derivative information in Section 4.2.3, attention is paid
to constraint optimization in Section 4.2.4. The list of algorithms is by far not complete, and
only algorithms that are implemented in one of the solvers that were used in our research are
discussed in more detail.

4.2.2 Unconstrained optimization methods

The general structure of most unconstrained minimization algorithms is either line search based,
or trust-region based. Both types of algorithms are discussed below.

Line search based methods.

Let x° be the starting point. In a step length based method, the kth iteration is comprised of the
following steps.

1. Convergence test. If the convergence conditions are satisfied, stop with solution x*.
2. Search direction.Calculate a nonzero vector s* representing the search direction.

3. Line search. Calculate a certain positive step length of, such that f(x* + oks*) < f(x¥).

4.2. THE NONLINEAR PART 63

4. Update the current point. Let X! = x* 4 oks*, update k = k + 1, and return to step 1.

In summary, the main ingredients are the convergence test, the search direction calculation, and
the line search.

The line search is in fact a new minimization problem in just one dimension. This can be
either an exact minimization, or the search can be stopped earlier. There is some trade-off
between the effort spent in the line search and the resulting benefits for the overall optimization.

The basic first derivative based unconstrained minimization technique is the steepest descent
algorithm. Consider the Taylor expansion of f at x* in a (yet unknown) direction s*:

Sy @ +55) = f() + VFHT s

The steepest descent method now searches a direction s€ such that Sy (x* + %) is minimized,

assuming that s* has a normalized length, ||s*|| = ||V£(x*)||. This is equivalent to minimizing
the term V f (x*)7 5%, which leads to the search direction

sk = V().

Before performing the actual step, a step length is computed. If the step length algorithm is
such that it ensures sufficient decrease of the objective function, convergence of the algorithm to
a stationary point can be proven. It is generally not an efficient method; often, even for convex
functions, many iterations are needed to reach the optimum. More elaborate first derivative
based methods are for example conjugate direction methods, that are not further discussed here.

Second derivative based methods use second order Taylor expansion:
Firn (@ 455 = f) + VAT + o) TV
A search direction s* is selected that minimizes fir2) (x}‘ +s*), which is equivalent to minimizing
V)T sk 4 U (s5) T V2 £ ()5 . (4.6)

By setting the gradient of (4.6) with respect to s* to zero, one obtains that the search direction
can be computed by solving the system

V2 sk = —V (). 4.7

The resulting method is known as Newton’s method, and the direction s* is the Newton di-
rection. Newton’s method provides very fast convergence if the current point x* is ‘close’ to
the optimum, when the objective function is very well approximated by the quadratic model
fira (x* +5), and if the Hessian is positive definite (PD). A convex quadratic function is mini-
mized in one iteration, provided that exact first and second derivatives are used. If the Hessian
is not PD, then the solution s of (4.7) may be an uphill direction (in which case —s* can be
selected as a downhill direction) or it may be impossible to solve (4.7) when the Hessian is
singular. In this case one may fall back to the steepest descent direction. A well-known mod-
ified Newton method that deals in an effective way with Hessian matrices that are not PD, is
described by Fiacco and McCormick [32].

64 CHAPTER 4. MIXED-INTEGER NONLINEAR OPTIMIZATION

Trust-region methods.

Trust-region methods are different from line search based methods. In Trust-region methods,
we start again with the (second order) Taylor expansion around x*:

fry (45 = FA) + VAT s+ () TV F ()t 4.8)
and an s¥ is searched that minimizes
V)T s5+ ()T V2 F (), (4.9)

When in line search based methods a minimizing direction sk of (4.9) was found, the method
proceeded with a line search. In Trust-region methods, (4.9) is minimized without line search,
but under the restriction that

lIs] < A

for some positive A. So, the quadratic model is optimized within a ball (if the 2-norm is used)
or a box (if the s-norm is used) around the current solution. For the 2-norm, this is equivalent
to the unconstrained minimization of

VAT + ()T (V2) + M5

where A is related to A. The case A = 0 corresponds to A — oo, and then s* will become the
Newton direction. If A — oo, this corresponds to A — 0, and the direction of s* will approach
the steepest descent direction (although ||s*|| — 0).

The process is controlled by comparing the ‘predicted’ reduction in the objective function
fir2) (x* + 5*) and the actual reduction in the real objective function f(x* 4 s¥). If the prediction
was very good, then the trust region is expanded in the next iteration; if the prediction was very
bad, then the current iteration is repeated with a smaller trust region.

4.2.3 Obtaining derivative information

Except for the direct search methods, all optimization algorithms require first derivative in-
formation, or even second derivative information. First order derivative information can be
supplied

o explicitly by manually programming the derivatives. The disadvantage is that it can be a
tedious task to compute the first derivatives, and errors are coming in very easily.

e by an automatic (symbolic) differentiation tool. There are several of these tools avail-
able, that can differentiate quite complex functions. The symbolic derivative is computed
once, and then it is evaluated each time a derivative is needed. Optimization modeling
languages usually supply these tools.

e numerically by finite difference techniques. Given a point x*, the approximate derivative
in the direction of the (normalized) vector s is computed as

fla +8s) — f()
)

4.2. THE NONLINEAR PART 65

for some sufficiently small 8. The advantage of this method is that only function eval-
uations are needed. Two disadvantages of this method are the lower accuracy, and the
longer computation time. In general it is better to spend some effort in supplying exact
derivatives.

Regarding second derivatives, it is even more difficult and error-prone to supply them manually.
As an alternative, they can also be supplied by automatic differentiation tools or finite differ-
ence approximation. Another practical alternative is given by Quasi-Newton methods. In these
methods, the Hessian is not completely recomputed at each iteration, but it is approximated us-
ing the first derivative information from subsequent iteration points. Every time a new gradient
is computed, it is used to update the approximated Hessian. This technique assumes that the
Hessian does not change too much during subsequent iterations, an assumption that is certainty
true for quadratic and bilinear functions. Most state of the art nonlinear optimization solvers
use a Quasi-Newton scheme to approximate the Hessian.

4.2.4 Constrained optimization methods.

The presence of constraints in the problem has major consequences for the algorithms. Instead
of searching for a point x where
Viix)=0,

one now has to find a point that satisfies the KKT conditions (4.4). There is a major differ-
ence in problems with only linear constraints and problems with nonlinear constraints. Many
algorithms to solve the latter create subproblems with linear constraints, that are solved with
dedicated algorithms. In our study we used different solvers that make use of various algo-
rithms. None of the algorithms is better than the others in an absolute sense; the efficiency and
robustness of the algorithm depends strongly on the specific type of problem, and even on spe-
cific implementation details of the algorithm. A brief overview of the algorithms is given below.
The algorithmic ideas are illustrated in more detail for the Reduced Gradient method (RGM)
and the Generalized Reduced Gradient (GRG) method. These methods were chosen because
several of the software packages that we used in our research, invoke RGM as a suboptimization
algorithm, and the —in our research— most successful package (CONOPT) is based on the GRG
method. A more detailed description of all listed algorithms is found in Appendix A and in the
literature {9, 45].

Sequential or Successive Linear Programming (SLP)

This method, in some earlier literature also called Approximation Programming [29, 49], is, in
several variants, frequently used in fuel management literature. In each iteration, the objective
and the constraints are linearized around the current point. The resulting linear problem is
solved towards optimality within a specified region around the current point. At the new point,
a new linearization is made, until convergence is reached.

The linearization is usually only valid on a very local scale. Therefore, constraints may
be added to the linearized problem that limit the maximum deviation from the current point.
Another possibility is to use the linear problem only to generate a search direction, followed by
a line search to compute a step length.

66 CHAPTER 4. MIXED-INTEGER NONLINEAR OPTIMIZATION

SLP is used as ‘sub’-algorithm in some of the state-of-the-art nonlinear solvers, but it is
considered as a method that is not so effective to solve general nonlinear optimization problems.

Reduced Gradient Method (RGM)

This algorithm solves problems with a nonlinear objective function, and linear constraints. We
assume that, except nonnegativity of the variables, only equality constraints are involved:

minimize f(x)
subjectto Ax=»b
x>0

The method starts —if needed— with calling a linear solver to find an initial solution that satisfies
all the constraints. Then, the gradient (and possibly the Hessian) of the objective function
are computed over the null-space of A, i.e., over those directions in which the solution stays
feasible. Given n variables and m linear independent constraints, this means the computation
of a search direction in a ‘reduced’ space with only n — m nonnegative variables. The gradient
in this null space is called the reduced gradient. After finding a search direction, the values
of the remaining m variables are uniquely determined from the n — m variables in the reduced
space, giving a search direction in the full search space. Finally, a line search is performed in
this direction?.

The ideas of the method are illustrated in the left picture of Figure 4.5. For the purpose
of graphical illustration, a problem is shown with linear inequality constraints a! x < b;, i =
1,2,3. In an interior point like x!, the steepest descent direction —or possibly a Quasi-Newton
direction— is choosen. In this search direction, say s1, a line search is performed, such that
the new point stays feasible. So, if the objective function is monotonically decreasing in this
search direction s', an exact line search will lead to the next iteration point x2. In this point, a
search direction is computed in the reduced search space consisting of all directions s for which
a3Ts < 0. Graphically, the set of possible search directions is given by the cone o2, The resulting
search direction can be any direction in this cone, including the two directions tangential to the
constraint. Suppose that the resulting search direction is 52, then a line search is performed in
that direction. The minimum in this direction may be anywhere between x* and the opposite
boundary; for illustration we assume here that it is just x3, that happens to be on the intersection
of two constraints. This is a nice point to illustrate the computational ideas behind the algorithm.
In the algorithm, the constraints are converted to equality constraints

ax+z=hb;, i=1,2,3. ' (4.10)

In x*, z; = z2 = 0. Furthermore, it holds that, given an arbitrary nonnegative value of z; and z3,
the variables x|, x2 and z3 are uniquely determined by solving the system of equations (4.10):

x
x| =8B! (Z‘) @.11)

22
<3

Zfor a more precise description in terms of basic and non-basic variables, see Appendix A.

4.2. THE NONLINEAR PART 67

for some matrix® B. So, it is sufficient to compute a nonnegative improving direction in the
space determined by z; and zp. Due to the nonnegativity of z; and z;, such a direction will
be in the cone o®. The objective gradient in the space determined by z; and z; is obtained
by transforming the original objective gradient in the (xj,x3)-space to the reduced gradient
in the (z;,z2)-space using (4.11). The search direction in the nonnegative quadrant is found
using steepest descent or a Quasi-Newton based method. The search direction in the (z1,22)-
space is transformed back to the (x{,x2,21,22,23)-space, and a line search is performed in this
direction. In this line search, we stay feasible with respect to constraint a3 by requiring that z3
is nonnegative.

FIGURE 4.5: Hlustration of the RGM (left) and the GRG method (right).

Sequential Quadratic Programming (SQP)

In each iteration of an SQP method, the second order Taylor expansion of the Lagrangian is min-
imized, subject to linearized constraints. This minimization can be performed by a dedicated
Quadratic optimization (QP) routine, or by the RGM. Since the Lagrangian is used, estimates
for the multipliers u; and w; have to be provided initially, and they are updated in every step.

Augmented Lagrangian Method (ALM)

This method resembles the SQP method. However, instead of optimizing a quadratic approx-
imation of the Lagrangian in each reduced gradient iteration, it minimizes a slightly modified
version of the Lagrangian (known as the augmented Lagrangian), with a given set of Lagrange
multipliers, subject to linearized constraints, The Lagrange multipliers are updated in each
iteration.

Augmented Lagrangian Trust Region method (ALTR)

As in the ALM, the augmented Lagrangian is minimized in each iteration. Instead of minimiz-
ing subject to linearized constraints, this augmented Lagrangian is now minimized with a Trust
Region method, possibly with bound constraints on the variables.

3The matrix B is a basis matrix, as is explained in Appendix A.

68 CHAPTER 4. MIXED-INTEGER NONLINEAR OFTIMIZATION

Generalized Reduced Gradient (GRG)

In SQP and ALM, a linearization of the constraints is made, and then the subproblem with
linearized constraints is solved to optimality by a separate optimization routine. In the GRG
method, there is no such distinction in an ‘inner’ and an ‘outer’ optimization problem, but the
linearization is updated in each RGM iteration. Moreover, the line search to compute the step
length is more sophisticated. During the line search, the search direction may be adapted in
order to find a point that still satisfies the nonlinear constraints. These two modifications ensure
that constraint gradient and objective function evaluations are only performed in feasible points.

In order to describe the GRG method in more detail, consider Figure 4.5. As the RGM, the
GRG method is devised for equality constraints, but the picture illustrates inequality constraints.
If we have only linear constraints as in the left picture of Figure 4.5, the GRG method reduces
to the RGM. In case of nonlinear constraints, as in the right picture, the algorithm becomes a bit
more complicated. In the example there are two inequality constraints g;(x) <0, i = 4,5. Both
constraints are active in the current optimization point x*. In order to find a reduced gradient
search direction, the constraints are linearized around x* and a search direction s is computed
such that Vg (x*)"s > 0 and Vg5(x*)Ts > 0, corresponding to a search direction within the cone
o, This search direction is found using a reduced gradient in a reduced search space, similar
as described in the paragraph dealing with the RGM. Contrary to the linear case however, it
may happen that the resulting search direction points outward the feasible set, as illustrated by
direction s*. In that case the search direction has to be repaired in order to maintain feasibility.
To this end, the standard line search that finds a point

FH =g A
for some A > 0, is extended with a correction term, such that
= K pask 4 p), 4.12)

where —p¥(1) is in the cone B* spanned by Vg4(x*) and Vgs(x*). The vector p*() is computed
by iterative methods as follows. Consider the set of constraints, that can be written down as

Note that we assume that all constraints are converted to equality constraints here. The point
x* satisfies these constraints. For fixed s* and A, the expression (4.12) for x**! is filled in into
the system of constraints, resulting in a system of nonlinear equalities in p*(A). The variables
p*(A) are then found by iterative methods, e.g., by a Newton-Raphson method. Note that it is not
guaranteed that f(x* +As* 4 p* (L)) < f(x*), but assuming that the constraints are smooth, p* (1)
approaches zero for sufficiently small A and the search direction approaches the decreasing

direction s*.

Inequality constraints can be handled in two ways. The easiest way is to transform them into
equalities by addition of slack variables. The other way is the use of an active-set strategy. If
one or more inequalities are active at the current solution, and some of these inequalities are
violated during the line search, the correction step p*(L) will be such that a subset of these
violated inequalities is active in the resulting solution. This subset, called the active set, can be

4.3. THE INTEGER PART 69

treated as equalities in retaining feasibility. The difficulty here lies in the determination of the
right active set, since it must be chosen such that in the new solution, the inequalities not in the
active set are also satisfied. Therefore, a change of the active set may be necessary during the
line search.

Summarizing, the GRG method requires more computational effort per iteration than one
‘inner’ iteration of SQP and ALM, but the overall number of iterations generally decreases,
especially for strongly nonlinear problems. In such a case, SQP and ALM need extra effort
at each ‘outer’ iteration since the solution of the linearized subproblem may be quite far away
from the feasible set defined by the nonlinear constraints. On the other hand, the steps in a GRG
method can become very small, because it may be difficult to maintain feasibility during the
line search. An advantage of GRG methods, and also of the Interior Point Methods discussed
below, is that objective function evaluations are only performed in feasible points. In many
applications, the objective function is undefined or gives unreliable values outside the feasible
region. In ALM for example, it may happen that in a subproblem the objective is evaluated
outside the feasible region, which makes this method less suited in such cases.

Interior Point Methods (IPM)

Suppose we have only the inequality constraints gi(x) < 0 and no equality constraints. The
constraints can be replaced by a so-called barrier function in the objective:

minimize % - iln(~gi(x)), (4.13)
i=

where ¢ > 0. The function In(-) has the property that it is convex and that both the function
and its first derivative go to infinity when the argument goes to zero. Hence, when the initial
point x is feasible, any descent method will find a feasible minimizing solution. In an interior
point method, the function (4.13) is minimized using a Newton’s method, and the parameter u
is gradually decreased during subsequent iterations.

Combination of methods

A commercial available general nonlinear optimization solver usually consists of a combination
of various methods. The GRG solver CONOPT [27], for example, uses two variants of the
steepest descent algorithm to find the search direction when the model seems to be almost
linear. Otherwise it uses a Quasi-Newton method. If the model continues to be almost linear
for a number of iterations, it uses an SLP subroutine to generate a search direction for the GRG
method. Also, different line search strategies can be chosen, based on the model properties.

4.3 The integer part

After obtaining an optimal solution of the continuous relaxation, one has to find an integer
solution. As was already illustrated by Figure 4.1 for the linear case, this is generally not a trivial
task. Simple rounding of the continuous solution may give a solution that is far from optimal,
or that is not even feasible. Complete enumeration of all possible integer assignments is out of

70 CHAPTER 4. MIXED-INTEGER NONLINEAR OPTIMIZATION

question. Suppose there are n binary variables. Then there exist 2" possible integer solutions.
This number can only be enumerated for very small problem sizes. It may be concluded that
more robust techniques are needed in order to find reliable integer solutions.

One solution method that at first sight seems to eliminate the problem in the nonlinear case
is to replace the integrality constraints by nonlinear constraints. In case we have general integer
variables, the integrality restriction is equal to the nonlinear constraint

sin(mx) = 0.
In case we have 0-1 variables, the integer restriction is equivalent to the constraint
x(1-x)=0. (4.14)

One can easily see however, that this reformulation only enlarges the difficulties, since the area
of feasible solutions becomes highly disconnected. Sometimes, the latter transformation (4.14)
is used as a concave penalty term in the objective function. Generally, this leads to a model
where many of the integer solutions are local minima. When a solution method reaches the
vicinity of such a point, it immediately is attracted by this local minimum, regardless of its
global quality.

In the sequel, it is assumed that all integer variables are binary variables, i.e., they are re-
stricted to the values 0 or 1. This is not an essential restriction. Any integer variable with
known upper- and lower bound can be represented by a number of binary variables, e.g., the
variable z € {0,1,--,15} can be represented by the binary variables x1, - -+, x4

4
= 2)(,‘21_] .
i=1

In most practical applications, the most efficient way of modeling is using binary variables. In
our fuel management models for example, we might use variables

2¢,m = the number of the node in which the bundle of age ¢ from
trajectory m is placed,

but then the rest of the model is much more complicated as when using the binary variables

1 if bundle (£,m) is placed in node i;
Xitbm = .
0 otherwise.

In the sequel of this section we will discuss different techniques for integer optimization in
more detail. We start with a discussion of rounding heuristics. Usually, these heuristics give
only a local optimum, with no guarantee on global optimality of the solution. An other ap-
proach is the Branch-and-Bound method, that yields global optimality for convex problems.
Branch-and-Bound is a widely used technique, especially for linear problems, with very ef-
ficient implementations. A third technique is Quter Approximation. When applied correctly,

4.3. THE INTEGER PART 71

this technique gives in the limit a global optimum for convex optimization problems. It repeat-
edly uses the linear Branch-and-Bound method as a subproblem optimization technique. The
fourth technique is the addition of cuts. This is widely used for linearly constrained problems
as well. Some textbooks about (mixed) integer optimization are [90, 96, 114]. An annotated
bibliography on the subject is also available [26]. Most textbooks concentrate on linear mixed-
integer optimization, much fewer textbooks give a specific overview of nonlinear mixed-integer
optimization algorithms [34].

4.3.1 Rounding heuristics

Rounding heuristics are seldom sufficient to find global optimal solutions, even for linear prob-
lems. Nevertheless, they do have practical value. In linear and convex integer problems, they
may be used to find at least initial feasible solutions, whose objective value gives a bound on the
truly optimal objective value: all solutions that have a worse objective value can be discarded.
Since such bounds play a significant role to speed up other search processes like Branch-and-
Bound and Outer Approximation, rounding heuristics are important tools in integer optimiza-
tion.

There are different heuristic ways to obtain rounded integer solutions from fractional so-
lutions. Starting from the variable with the largest non-integer value, one may fix variables to
one, until some constraint is violated. As an alternative, one may start with the smallest nonzero
value. In this way, an integer solution is obtained that is likely to be somewhat ‘further away’
from the fractional solution. In some cases, one might consider to use dual information. Com-
mercial packages contain some rules of thumb as the two sketched above, to find good rounded
solutions.

In some cases, it might be practically possible to evaluate all possible 0-1 combinations that
can be constructed from a fractional solution. This is only true if

e the number of non integer variables is very small, and

o evaluation of the model with a fixed set of binary variables is not too costly.

In order to illustrate the first point, look at the classical assignment problem where we are look-
ing for a binary matrix, such that each row sum and each column sum must be one. Suppose that
a continuous optimization algorithm returns as a solution the following two-by-two submatrix:

(27)

There are only two possible rounded solutions in this case. In the case we have a full 3 x 3
fractional submatrix (9 non-integer variables), there are 6 possible rounded solutions, the 5 x 5
case with 25 non-integer variables already gives 120 rounded solutions, while two independent
blocks of this size in the matrix give 120> = 14400 solutions. Calculating the objective values
for such a large number of solutions, that are very close to each other in the solution space, is

72 CHAPTER 4. MIXED-INTEGER NONLINEAR OPTIMIZATION

not efficient, particularly not in the scope of reload pattern optimization, where evaluating one
solution is costly.

Suppose that all rounded solutions are evaluated, and the one with the best objective value
is selected. If this objective value is the same as the objective value of the fractional solution,
then it is —at least in linear and convex problems— guaranteed to be globally optimal. In general
however, the evaluation of all possible roundings of the fractional optimum does not guarantee
global optimality, even not in the linear or convex case. For example, in the plain model of
Figure 4.1, the global optimum is not a rounding of the continuous optimum.

4.3.2 The Branch-and-Bound method

A more elaborate strategy to derive integer solutions is the use of a Branch-and-Bound method.
For convex problems, such a method leads to global optimal solutions. For nonconvex prob-
lems, this still may be true, but then special adjustments have to be made, as will be discussed
later in this section. The explanation in this section assumes that the direction of the optimiza-
tion is minimization.

The idea of Branch-and-Bound is to reduce the problem to a number of smaller subprob-
lems. In each subproblem information is obtained about the best possible solution value in this
subproblem (a lower bound on the solution value), and the current best solution value found in
this subproblem (an upper bound on the solution value). If the lower bound in one subproblem
is worse than the upper bound . already obtained in another subproblem, the first subproblem
never will contain the best possible solution, so it needs not to be explored further and can be
fathomed.

In order to explain the Branch-and-Bound method in more detail, let us consider a convex
mixed-integer optimization problem, where all integer variables are binary. The integer vari-
ables are denoted by xj,---,x,. The Branch-and-Bound method maintains a node table. This
is a list of problems where some of the binary variables are fixed to 0 or 1. The solution of
the node is a lower bound on all integer solutions that can be obtained with the currently fixed
subset of binary variables. Possibly there is also an upper bound that may be obtained with an
integer rounding of the solution at this node. The best integer solution value that is found up to
the current iteration in the process is denoted as Upb*. In the description below, it is assumed
for simplicity of exposition that all generated solutions are feasible. The algorithm proceeds as
follows.

1. Start with an empty node table, let x* be a vector that will contain the global best solution,
and let Upb* = oo,

2. Solve the relaxed problem, in which all binary variables x; are relaxed to allow values
0<x;<1.

3. If all binary variables happen to be 0 or 1, then the solution is the global optimal solution,
update x* and Upb* and go to step 8.
Otherwise add the current problem to the node table. Optionally: calculate a rounded
solution. If it has a lower solution value than Upb*, then store it as x*, and update Upb*.

4.3. THE INTEGER PART 73

4. Start of loop. It the node table is empty go to step 8.

5. Node and variable selection. Select a node and remove it from the node table. In this
node, select a not-yet-fixed binary variable. Create two new nodes where the selected
variable is fixed to 0 and 1, respectively. For each of these nodes perform the following
step:

6. Find new bounds. Solve the relaxed problem to obtain a lower bound. If this lower bound
is above the current Upb”* then delete this node.
Otherwise, if the solution is integral then store it as x* and update Upb*. If the solution
is not integral (but better than Upb™) then store the node in the node table. Optionally, an
upper bound on the solution in this node may be calculated by rounding. If this leads to a
solution with a solution value lower than Upb*, then store it as x* and update Upb*.

7. Update node table. Delete all nodes from the node table that have a lower bound that is
larger than or equal to Upb*. Go to step 4.

8. Return the solution corresponding to Upb* as the best solution.

The procedure is illustrated by an artificial example in Figure 4.6. Starting from the relaxed

'upb 100
Lbd 50

x=1
6/ Upb 75

Lbd 75

Integer

""" 4Upb 90 5[Upb 85
Lbd 80 Lbd 85
=0 Fathomed Fathomed
S[Upb 80 9| Upb 90
1.bd 70 Lbd 65
Fathomed y = x5=0
10[Upb 68 HEUpb 80
Lbd 65 Lbd 67

FIGURE 4.6: Example Branch-and-Bound tree.

optimum with value 50, a solution is found with upper bound 100. Variable x; is selected for
branching, resulting in node 2 and 3. Node 2 is branched on xi, and an integer solution with
value 75 is found in node 6. Therefore nodes 4 and 5 are fathomed immediately, since their
lower bound is worse than the best known upper bound. Node 8 can be fathomed as soon as the
upper bound of node 10 is known.

The power of the algorithm lies in the ability to cut off branches as early as possible. It
is therefore important to get good rules how to select the next node to branch on, and how to
select the branching variable. Furthermore, it is important to obtain good (tight) lower and upper
bounds. If bad choices are made, theoretically it can happen that all nodes in the tree have to

74 CHAPTER 4. MIXED-INTEGER NONLINEAR OPTIMIZATION

be expanded, in which case the amount of work is even larger than for complete enumeration.
Usually, however, the computational burden reduces drastically when compared to complete
enumeration.

This is equal to a complete enumeration of all possible integer assignments, which is only
computable for very small problem sizes.

For nonconvex problems, this algorithm in its standard form is not able to produce global
optimal solutions. The algorithm is based on the assumption that the relaxed solution is a true
lower bound of all possible solutions below the current node. For nonconvex problems we are
in general not able to produce global minima in the nodes, hence this assumption does not hold.
A node that is fathomed because of its bad lower bound, may still have another local optimum
with a better lower bounding value, or it may even contain the global optimum.

There exist Branch-and-Bound-based methods that are designed to find global optimal solu-
tions for nonconvex problems. These methods require not only a relaxation and fixing of the
integer variables, but also convex approximations of the nonconvex feasible set and/or objective
function, and a partitioning scheme to divide the feasible set into smaller parts in the subsequent
nodes. These nonconvex Branch-and-Bound methods are discussed in Section 4.4.

4.3.3 Outer Approximation

Outer Approximation (OA) is another method for nonlinear mixed- integer optimization. It
can be viewed as an extension of the Benders decomposition method for linear mixed-integer
optimization. In the basic form as developed by Duran and Grossmann [30, 34], it solves
problems of the following form:

minimize f(x)+cTy
subjectto g(x)+By <0
Aix<ag
Ay <a

y is a binary vector,

where f(x) can be a nonlinear function, and g(x) a vector of nonlinear functions. The most
important restrictions are:

1. the binary variables are only involved in linear terms;
2. no nonlinear equality constraints are present;

3. the nonlinear functions f and g are convex.

All restrictions are violated by the fuel management optimization problem. The first restriction
can be circumvented by a sort of implementation trick: a copy y’ of the binary vector y is

4.3. THE INTEGER PART 75

added to the problem. In all nonlinear terms where y occurs, it is replaced by ¥, and the linear
constraints

y=y
are added. A more elegant way to work around this restriction exists [33], but was not available
in the program that we have used in our computational studies. The second restriction also is
not essential when using Equality Relaxation (ER), as will be explained later in this section.
Similarly, it will be illustrated that the third restriction is relaxed by the use of Augmented

Penalty (AP), although no guarantee of global optimality of the solution will be possible in the
case that the function f and/or some of the functions in g are not convex.

The basic idea of OA is that in each iteration, a lower and upper bound on the MINLP solution
are generated. After solving a first NLP (where the integer restriction on y is relaxed), it is
determined whether the solution is integer. If so, then the solution is optimal and the algorithm
is terminated. Otherwise, a sequence of iterations is started, where two problems are solved in
the kth iteration:

e an incomplete master problem, that provides a lower bound on the minimum possible
solution value. This is a Mixed-Integer Linear Optimization problem (MILP), resulting
in a solution (x, y*).

e aprimal problem, being the original problem where the y-variables are fixed to y*. This
problem is a continuous NLP in the x-variables, resulting in a solution x*. If the solution
(x*,y¥) is feasible, it is an upper bound to the optimal solution.

The incomplete master problem is based on the idea that convex functions can be under-
estimated by linear functions, ¢f Figure 4.7. The linear functions are obtained by first order

FIGURE 4.7: Convex region estimated by linear inequalities.

Taylor approximations. The feasible area is completely described by the (infinite) set of linear
approximations in each point, but of course it is impossible to include all these inequalities in
a practical implementation. The incomplete master problem contains the linear approximations
around the solution points of the previous NLP subproblems. In the first iteration, the problem
is linearized around the solution point of the initial NLP, and the MILP master problem is solved
using @ MILP solver. This is usually a linear simplex or interior point solver, embedded in a
linear Branch-and-Bound framework. This results in a solution where all y-variables are inte-
ger. However, since it is a solution to the linearized problem, the x-variables need not satisfy

76 CHAPTER 4. MIXED-INTEGER NONLINEAR OPTIMIZATION

the nonlinear inequality constraints, or they may not be optimal with respect to the objective
function. Therefore the primal problem has to be solved.

If the solutions of the master problem and the primal problem differ by less than the required
accuracy, the solution for convex problems is optimal. Another heuristic stopping criterion is
to stop whenever the solution of a NLP primal problem becomes worse than the previous NLP
solution. This heuristic may in practice stop too early.

As is mentioned earlier, the method needs to be adapted to handle equality constraints and
nonconvex problems. Equality Relaxation (ER) uses Lagrange multipliers from the NLP pri-
mal solution in order to derive a correct linearization. Suppose the NLP contains a nonlinear
constraint

h(x) = 0. (4.15)

If the Lagrange multiplier in the optimal solution is zero, then this constraint was apparently not
active, and no linearization of this constraint is to be added to the master problem. Otherwise
let 6 be the sign of the Lagrange multiplier, then the current solution point would remain a local
optimal solution if constraint (4.15) was replaced by the constraint

oh(x) <O0.

This constraint may be linearized in the same way as other inequality constraints (assuming that
it satisfies convexity properties).

If nonconvex inequality constraints are present, or result from the ER step, or when the
objective function is nonconvex, the linearization step may wrongly cut off parts of the feasible
area, and may cut off the global optimal solution. With the Augmented Penalty (AP) technique,
the linear constraints are relaxed by some penalty variable. For example, around the kth NLP
solution, the linearized inequality constraint

8(*) +Vg(H)(x—2) <0

is replaced by
g() + Vel (x—x) < i,

where py is a penalty variable that is added to the objective function with some positive penalty
parameter. In this (heuristic) way, solutions that do not satisfy the linearized constraints can be
reached if their objective function value is very good.

The case when binary variables occur in nonlinear terms can be treated by the Generalized
Outer Approximation scheme (GOA), proposed in [33]. In this case, the primal problem is not
only linearized with respect to the continuous variables, but also with respect to the binary vari-
ables. This means that the incomplete master problem may return solutions that are infeasible
with respect to the y-variables. The GOA introduces extra linear cuts to handle this case.

4.3.4 Cutting Planes

This technique is usually applied to MILP problems. However, it may be helpful to speed up
the solution process of MINLP problems.

4.3. THE INTEGER FART 77

To understand the idea of cuts, we recall Figure 4.1. The reason why a non-integer solution is
found by a continuous linear optimization algorithm is that the feasible area of the continuous
relaxation is not equal to the convex hull of the integer feasible points. This convex hull is
defined as the smallest polytope that includes all integer feasible points. In the cutting plane
technique, one adds new constraints, so called ‘cuts’ to the relaxed problem, so that they give a
tighter approximation of the convex hull. Consider for example the problem

minimize —5x; +x;
subjectto x;+xy > 6
(4.16)
O9x1+5xp <45

x1,x2 > 0, integer.

The feasible area of this problem is given in Figure 4.8. The relaxed problem as such would

FIGURE 4.8: Example where cuts can be derived.

return the optimal solution (175, %). Multiplying the first constraint of (4.16) by 5 however, gives
that

Sxi + 5x2 > 30.

Combining this with the second constraint immediately yields
15
4x; < 15 ¢x|§7 = x1 <3,

since x; must be integer. Adding this constraint to the problem leads in our case to the optimal
solution (3,3).

As just illustrated, cuts can be derived by using information from the fractional solution.
Also, a number of standard cuts exist for different classes of combinatorial optimization prob-
lems. Apart from these standard classes, implementations of cuts should be based on some
problem knowledge in order to make them efficient. Otherwise, the situation may occur that
subsequent cuts only cut off very small parts of the non-interesting region, converging only very
slowly or not at all to the convex hull of the integer points.

In the same way as above illustrated for linear problems, cuts can be applied to nonlinear
convex problems. For nonconvex problems, the addition of cuts can be dangerous. As illustrated
by Figure 4.9, the global optimum can easily be cut off incorrectly. In a nonconvex problem,

ries

78 CHAPTER 4. MIXED-INTEGER NONLINEAR OPTIMIZATION

cuts should therefore be applied either on a local scale, for example only during one iteration,
or based on insight into the problem. The latter type of cuts is frequently used in reload pattern
optimization in the form of engineering constraints.

.-- global optimum

.----local optimum found
X X j\ /:_/\/\ cut

X X X
feasible area optimization
XXX X X X direction

FIGURE 4.9: All better integer solutions are wrongly cut off.

In nonconvex problems such as the reload pattern optimization problem, cuts may also be
used to escape from local optimal solutions. After a local solution is found, a cut may be
applied that cuts off this local optimal solution, in the hope that re-optimization will lead to a
better local optimum. As with integer cuts, such cuts should only be applied locally, or based
on insight into the problem. In Chapter 5 we discuss such cuts that we have applied to improve
results in reload pattern optimization.

4.3.5 Other techniques

Other proposed techniques to treat MINLP problems are Generalized Benders Decomposition
(GBD) and Generalized Cross Decomposition (GCD). As OA, GBD is based on splitting the
problem into a master problem and a primal (sub)problem, but it uses Lagrange multipliers for
all constraints in setting up the incomplete master problem. GCD [53] splits the problem into
a master problem, a primal and a dual subproblem. Since these two methods are not applied in
our work, they are not treated here in more detail; we refer to [34] for an overview.

Combination of algorithms

All MINLP techniques described until now can be combined with neighborhood search heuris-
tics. When the nonconvex mixed-integer optimization algorithm has stopped, a neighborhood
search may be initiated from the current optimal solution. How and when this is an attractive
option, is very much dependent on problem structure. In some of our reload pattern optimiza-
tion models, several good integer solutions are situated close to each other. However, since they
are all separate local optima in the continuous space, the MINLP solver stopped just in one of
these pretty good solutions. After that, only a few iterations of a local search heuristic could
find an improved solution. In this way, total computation time was reduced compared to a pure
local search, while the solution quality was increased compared to both pure local search and
pure MINLP.

4.4. GLOBAL OPTIMIZATION APPROACHES 79
4.4 Global optimization approaches

The techniques described so far aim at finding global optimal solutions for convex problems, For
nonconvex problems, these techniques give no guarantee about the quality of the obtained local
optimum. Global optimization algorithms are needed to give such a guarantee. In their most
general form, they do require mild assumptions with respect to continuity or differentiability of
the constraints and/or the objective function. They may use function and constraint evaluations
as black box, or they may include some problem-specific elements such as relaxations, dual
problems, erc. Using suitable branching and cutting strategies, either global optimal solutions
are obtained, or the quality of solutions can be specified (e.g., it is within ...% from the global
optimum).

As with Branch-and-Bound, these methods create a number of smaller problems. However,
there are some additional features needed to make Branch-and-Bound suitable for global op-
timization problems. In Branch-and-Bound for linear or convex mixed-integer problems, the
branching step consisted of fixing an integer variable to different integer values in the different
‘child’ problems. In continuous global optimization, the subproblems are created by dividing
the feasible area into different subspaces. The most straightforward way to do so is by divid-
ing the range of a variable into smaller parts. The bounding is also different as with standard
Branch-and-Bound. For linear or convex mixed-integer problems, a lower bound (in the mini-
mization case) was found by solving a relaxed problem, where the integrality restrictions were
relaxed. Rounding heuristics could be applied in a trial to derive an upper bound in each node.
For nonconvex problems, simply solving relaxed solutions will not give true lower bounds, but
only local optimal solutions. These solutions may be used to derive upper bounds, but in order
to derive the lower bounds, other techniques are needed.

In this section, two of these techniques are discussed: partitioning based on the Lipschitz
constant (Lipschitz optimization), and convex over-relaxation combined with range reduction.
It should be noted that these techniques only work for small problems. Depending on the
problem structure and the required accuracy, the problem size that can be handled typically
ranges from ten or twenty variables to several hundreds of variables. An overview of global
optimization techniques is found in [55]. Lipschitz optimization is treated in depth in [102].
Branch and Reduce is discussed in [111].

4.4.1 Lipschitz optimization

This method is based on the concept of Lipschitz continuity. A function f is said to be Lipschitz
continuous if there exists a constant L, called the Lipschitz constant, such that

|f(x2) = Flx)| < L2 = x|

for all two points x| and x; in the domain of f. An optimization problem is Lipschitz contin-
uous if both the objective function and all constraint functions are Lipschitz continuous. For
differentiable functions, this means that there is an upper bound L on the absolute value of the
derivatives, which can be used to derive bounds on function values.

80 CHAPTER 4. MIXED-INTEGER NONLINEAR OPTIMIZATION

For illustration, consider the one-dimensional nonconvex objective function of Figure 4.10a
that has to be minimized over the interval [a,b]. Suppose that at some stage during the search
the objective function is evaluated in the points 1 through 9. Then it is known that the objective
function is underestimated by the sawtooth curve as indicated. The problem can therefore be
reduced to 8 smaller subminimization problems over the intervals 1 —2,2 -3, -+, 8 -9, and in
each interval a lower bound on the function is obtained by the minimum of the sawtooth. Since
the computed objective function in point 5 is better than the sawtooth-minimum in the intervals
2-3, 3-4 and 6-7, these intervals can be discarded from the search. Lipschitz optimization
algorithms contain rules how to select the next point to be evaluated, so that the partitioning is
as efficient as possible, and large parts of the feasible solution area can be discarded as early as
possible.

The advantage of Lipschitz optimization methods is that exact derivative information is not
needed, except for the Lipschitz constant. On the other hand, much partitioning may be needed
before a reasonable approximation is obtained, especially in multi dimensional cases. A more
efficient implementation is possible if more information on the functions to be evaluated is
available. It may for example be known that in parts of the solution space the maximum deriva-
tive value is much smaller, so that the Lipschitz constant then may locally be set to a smaller
value. Without such adaptations, Lipschitz optimization is only possible for at most a few tens
of variables.

FiIGURE 4.10: Underestimation of a nonconvex objective function: a) using the Lipschitz constant; b)
using the convex envelope.

4.4.2 Convex relaxations within Branch and Reduce

As soon as some structural information on the objective and constraint functions is known,
one may derive better upper- and lower bounding functions as can be obtained by Lipschitz
optimization. In the example of Figure 4.10, the objective function can be underestimated by
the dashed function in Figure 4.10b. If an analytical description of this tight underestimating
function were known, the global minimum x* could be found by just minimizing this function
using standard NLP technigues. In general, such an exact convex underestimating function is
not known, but a much weaker convex underestimation can be derived. The idea of Branch and
Reduce is that we can find tighter convex underestimations if the considered variable intervals
become smaller. So if we found a minimum of an underestimating function, we may divide

4.4. GLOBAL OPTIMIZATION APPROACHES 81

the range of some variable into the two parts left and right of this minimum, and derive tighter
underestimators in these two subproblems.

A tight convex lower bounding function as in Figure 4.10b is known as the convex envelope of
the function. A very general and complex scheme for deriving convex envelopes for analytical
functions, products of functions and functions of functions is derived in [81]. The practical
value of this scheme is limited to very special structures. Application of the scheme to bilinear
two-dimensional functions gives a convex underestimating function composed of two linear
parts, as is shown in Figure 4.11. Here the bilinear function is

7= f(x,y) = xxy

and the tightest convex underestimation of this function on the unit square is given by the two
inequalities

z >0,
7z >x+y—1.

Trilinear functions already lead to tight convex underestimations that contain at least 8 of such

FIGURE 4.11: Bilinear function can be underestimated by 2 linear functions.

linear inequalities.

Another way to derive a convex underestimating function is by adding a convex quadratic
function to the nonlinear function, such that the resulting function also becomes convex within
the specified region, assuming that the function is two times continuously differentiable [4].
This is done by considering the Hessian of the function. Addition of quadratic terms adds
values to the diagonal elements of the Hessian. Quadratic functions are added with a multiplier
such that the resulting combined Hessian becomes positive definite within the required region.

Thus far, we only considered a nonlinear objective function. In case we have to relax a
nonlinear constraint it depends on the type of constraint what type of estimating functions are
needed. A ‘greater than’ constraint needs a convex underestimating function. A ‘lower than’
constraint needs a concave overestimating function, while an equality constraint has to be esti-
mated by a ‘box” defined by both types of estimations. Suppose for example that the bilinear
function in Figure 4.11 represents an equality constraint

7=xy.

82 CHAPTER 4. MIXED-INTEGER NONLINEAR OPTIMIZATION

This constraint is then relaxed by four linear inequalities, that together enclose the nonlinear
shape in a ‘box’:

z 20,
z 2x+y—1,
z L,
z <y

This box is tighter when the range over which the variables are defined is smaller. So, observe
that:

1. using convex underestimates and concave overestimates leads to a convex optimization
problem, the minimum value of which provides a lower bound on the global optimum of
the nonconvex problem (note that we consider a minimization problem);

2. this lower bound can be tightened if the range of one or more variables is divided into two
or more parts, and for each part separately the relaxed problem is solved;

3. when in one of these parts a solution of the ‘real’ problem is known with a better objec-
tive value than the lower bound in another part, this other part cannot contain the global
optimum and can be fathomed.

The Branch and Reduce algorithm is essentially a Branch-and-Bound algorithm, with some
dedicated Branching rules. The extra feature of Reduction consists of a set of rules to further
reduce the variable ranges in the nodes. This can again be illustrated with Figure 4.11. Suppose
that in some node, the ranges of x and y are both reduced to [0,0.5)]. Then it can be derived that
the range of z is immediately reduced to [0,0.25]. This in turn may possibly be used to tighten
some relaxation of another constraint.

Using Branch and Reduce, one may identify subregions that cannot contain the global opti-
mum. On the other hand, it also gives quality bounds on solutions that are obtained. During the
search, the global lower bound increases, while the global upper bound (i.e., the current best
found solution) decreases. The gap between the two is an indication how far we are from the
global optimum. For small and nicely structured problems, this gap can be driven towards zero
(within some accuracy), resulting in a guaranteed global optimal solution.

45 Summary

In this chapter mixed-integer nonlinear programming techniques were discussed that may be
useful to solve the fuel management optimization problem. Two main streams are identified.

One stream combines gradient-based nonlinear optimization algorithms with special tech-
niques to find integer solutions. This approach is appropriate to find good quality local optimal
solutions in a reasonable amount of time.

4.5. SUMMARY 83

The second stream consists of global optimization algorithms. These algorithms result in a
guaranteed global optimal solution, but are only applicable for very small (tens up to at most a
few hundred variables and constraints), or very specially-structured problems.

For both approaches, the formulation of the model is very important. Different representa-
tions of basically the same model may result in much easier or harder nonconvexity structures,
or in harder or in less severe numerical difficulties. Also, the specific algorithm of choice de-
pends very much on problem structure. Regarding the solver for the nonlinear optimization
part, for example, the only way to decide between the different algorithms is often by experi-
mentation.

It must be remarked that the way in which the optimization algorithm is implemented has
significant influences on the performance of the algorithms. An efficient and robust implemen-
tation of an optimization algorithm must satisfy some basic properties. It should make use of
sparse linear algebra. This is especially important for large problems that have lots of structural
zeros in the constraint gradients, a property that holds for the reload pattern optimization prob-
lem. Variable bounds are very special constraints that can be handled efficiently in a number of
algorithms. The implementation should offer the possibility to specify these bounds separately.
Efficient implementations of nonlinear optimization algorithms also treat linear constraints sep-
arately, so that expensive and less robust techniques for nonlinear optimization need not be
applied for these constraints. Implementations of integer optimization algorithms may treat
binary variables apart from general integer variables, since the first type can be handled more
efficiently. The handling of numerical errors is another important implementation issue for all
algorithms. There are still lots of other properties that will influence the quality of an algorithm
in a specific implementation.

For all algorithms, it is advantageous to exploit specific properties of the problem at hand.
In the next chapter, we will explain our models in detail, what relaxations and cuts we imple-
mented, what starting points we used, and other problem-specific implementation issues that
were needed to obtain our results.

84

CHAPTER 4. MIXED-INTEGER NONLINEAR OPTIMIZATION

Chapter 5

Implementation issues in
mixed-integer nonlinear optimization

This chapter gives a detailed description of our implementations to solve the fuel management
optimization problem. We use the models developed in Chapter 2, which we are going to solve
with the optimization methods as described in Chapter 4. Lots of problem-specific issues are
involved in the actual implementation. In contrast to linear or convex optimization models, good
results cannot be expected when the models are implemented in a standard available mixed-
integer nonlinear optimization package in a straightforward way. If done so in one of the few
commercially available packages for MINLP, the solver stops in nearly all test problems without
finding any solution. Even the standard continuous relaxation cannot be solved with standard
NLP packages, without the additional effort as described in this chapter.

In order to get MINLP algorithms to work for the fuel management problem, one has to take
care about a lot of things. First of all, the continuous NLP relaxation should give good quality
local optimal solutions. Some issues that we looked at are:

e The starting point.

e Variable bounds.

Addition of extra (linear) constraints.

Relaxation of constraints and addition of objective penalties.
e Choice of discretization patterns.

e Reformulations to reduce nonconvexity.

Engineering constraints.

The computation of a starting point is discussed in Section 5.1. The other items regarding the
nonlinear part are discussed in Section 5.2. After obtaining a local optimal continuous solu-
tion, an integer solution must be obtained. In Section 5.3 we deal with the integer part. We

85

86 CHAPTER 5. IMPLEMENTATION ISSUES IN MIXED-INTEGER NONLINEAR OPTIMIZATION

consider specific properties of implementations using rounding heuristics, Outer Approxima-
tion and Branch-and-Bound. Also, our implementation of a pairwise interchange algorithm is
described, and the combination of it with MINLP algorithms. Another important part of our
research was the implementation of cuts that are used to find improved local optimal solutions.
Section 5.4 describes the various types of cuts that we implemented. Finally, Section 5.5 de-
scribes in more detail the solvers used and the test environments.

Before continuing, we repeat a complete listing of the basic model as given in Section 2.3.1,
since we will refer repeatedly to equations in this model.

maximize k5 5.1)
xk= R ket
subject to
the linear constraints:
i
Y Vixigm = 1, =1, ,Lim=1,---.M (5.2)
i=1
L M
2 Y xiem = 1, =100 (5.3)
{=1m=1
the nonlinear constraints:
M
k;?:?1 — 2 xi,l,mkfreSh
m=1
L M I
+ XY Xiem 2, Vikje1,mKSrs i=1,---,1 (5.4)
£=2m=1 =1
I
KR, = Y GikTR;y, i=1,-- 0, t=1,---,T (5.5)
j:]
I
D VR, = 1, t=1,---,T (5.6)
i=1
kivyi = ki —OAkSRi,, i=1,-- I, t=1,---,T—1 (5.7
f[im
kiRiy < TR i=1,--,1,t=1,---,T (5.8)
IRY
J=1
the variable bounds:
KT o> 0, t=1,---,T (5.9)
ki Rip > 0, i=1...1,t=1---T (5.10)
Xitm = Xjpms all adjacent diagonal pairs (i, j), (5.11)

(=1, ,Lym=1,--.M

5.1. STARTING POINT AND FIXED CORE EVALUATION 87

Xiem € {0,1}, i=1,---1,4=1,....Lym=1,--- M. (5.12)
It turns out to be convenient to introduce some vector notation. We define

oo __ (100 o \T 4 _
k-,t_(Lo ") t=1,-,T

R.,,:(R],,,---,R,’,)T, t=1,---,T.

5.1 Starting point and fixed core evaluation

The choice of the starting values can have a big influence on the behavior of the algorithms.
This influence roughly breaks up into two parts.

1. The initial values of the assignment variables x; ¢ ,, have influence on the final local op-
timal solution. Using some engineering knowledge of the problem, a good starting point
should be selected from which with high probability a good local optimal solution can be
obtained.

2. The model contains many nonlinear and nonconvex equalities. Even if correct values
for the assignment variables are supplied, it may be a difficult task for an optimization
routine to find feasible values for the physical variables from the model equations. It
is therefore important to supply values for the physical variables such that at least the
nonlinear equalities are satisfied as close as possible.

5.1.1 Initial values of the assignment variables

Due to the nonconvexity of the problem, it is desirable to use a starting value that is in the
‘vicinity” of good solutions. A good initial solution could help to avoid that the optimization
will trap into a poor local optimal solution. To this end, engineering knowledge is used to
determine some basic properties of good loading patterns. It is known that fresh bundles in the
middle lead to a (too) high power peak. On the other hand, the bundles on the boundaries of the
core should be sufficiently burned, since otherwise too many neutrons are lost in the surrounding
water. It is known that good loading patterns therefore have a sort of ‘ring structure’, in which
old bundles are put on the boundaries, fresh bundles somewhere between the core center and the
periphery, and huge isles of fresh bundles should be avoided since they cause a too high power
peak. An example of a good loading pattern satistying these properties is given in Figure 5.1.

In the models that are used so far, it is not a good idea to use an integer solution as a start-
ing point, since many integer solutions are local optimal solutions in the space of continuous
variables. An NLP algorithm never escapes from such a local maximum. As an alternative,
fractional starting patterns are used. For each age group, a number of likely positions for the
bundles of this age are located. This number may be larger than the number of bundles itself, as
is the case in Figure 5.2. Using these locations, a fractional loading pattern is constructed. This
fractional assignment is made in such a way that a fraction @ of the volume of the bundles of
age / is spread in the nodes assigned for this age, and 1 — w is spread over the remaining nodes.

88 CHAPTER 5. IMPLEMENTATION ISSUES IN MIXED-INTEGER NONLINEAR OPTIMIZATION

[] fresh

B one year old
i two years old
B three years old

FIGURE 5.1: Good loading pattern with ring structure.

SRR
Age group 1 Age group 2 Age group 3 Age group 4

FIGURE 5.2: Most likely locations for bundles in the different age groups.

Since the number of likely locations for an age may be larger than the number that is actually
needed, a whole range of possible fractional starting patterns satisfying these rules might exist.
We developed two different models to find a balanced distribution of the bundles over the nodes.
Both models are convex quadratic optimization models on their own. The models do not make
distinction between the different bundles of the same age, they use only the variables

%i¢ = the total volume of fuel of age £ to be located in node i.

After finding values for these variables, the actual assignment variables can be found using

>

fie
3

The candidate positions for the different ages are given by the parameter c; ¢:

Xitm =

1 if i is a likely location for age ¢,
Cig =
0 otherwise.

Using o, ¢; ¢ and £; ¢ the following models can be defined.

Starting point model |

In this first model, we require that c; ¢ is defined in such a way that exactly a fraction ® of the
bundles of each age £ can be assigned to the positions i : ¢; ¢ = 1. The fuel is evenly distributed

5.1. STARTING POINT AND FIXED CORE EVALUATION 89

by minimizing the sum of squared assignment values.!

I L
minimize Y ¥ £,
x i=16=1 "

!
subjectto Y ¢ Vifiy = oM, £=1,---,L
i=1

=

I
SVidip =M, {=1,-,L
=l (5.13)

0<%, <1, 1=1,---,1, £=1,---,L.

This model gives quite evenly distributed patterns, but it might be infeasible for some candidate
position set ¢;¢. The second model is devised to overcome this problem.

Starting point model I
o 1 L
minimize Y, Y (%, — cig)? + (1—w)(&ie—(1- cie))?
£ i=16=1

1
subjectto Y Vilie = M, £=1,---,L
i=1 (5.14)

L
Zx\i,[=1, i=1,---,1
=1

0<%, <1, 1=1,---,1, £=1,--- L.
This model always returns a feasible solution, even if an exact match of the fraction ® to the
candidate positions is not possible. On the other hand, for cases where an exact match is pos-
sible, the solution may somewhat deviate from this exact match. This is not a problem, since
both ® and the ring structure as defined by ¢; ¢ provide only an approximation of a good starting
point. The most important issue is to find a reasonable good starting point in a clever way, but
there is no rule how to select the best one.

'TInstead of the listed objective value, one also might minimize the sum of (£;; — ¢i¢)?. Although the resulting
pattern may be different, it also gives an evenly spread distribution.

90 CHAPTER 5. IMPLEMENTATION ISSUES IN MIXED-INTEGER NONLINEAR OPTIMIZATION

5.1.2 Initial values of the physical variables

In order to make the nonlinear optimization robust, it is not enough that the assignment vari-
ables have some sensible initial value. If all physical variables in our model are set to O or to
another bad value, nonlinear optimization solvers usually get stuck in a local infeasible solu-
tion?. Better starting values have to be supplied, that have some sensible physical meaning.
Given a set of x-variables that satisfies (5.2)~(5.3) there exists exactly one nonnegative solution
of (5.4)~(5.7). This nonnegative solution is computed by the method for fixed core evaluation
as outlined in Section 5.1.3. In this way, we obtain a solution that is feasible with respect to all
constraints of our optimization model except possibly the power peaking constraints (5.8) and
the integrality restrictions (5.12). In general, the violation of the power peaking constraints is
not a big problem, especially not when they are relaxed as is described in Section 5.2.3.

5.1.3 Fixed core evaluation

In the starting point calculation, and in several other algorithms such as the rounding algorithm
or the pairwise interchange algorithm, we have to compute the values of the physical variables

for a given set of assignment variables x; s , and, in case of the burnable poison (BP) model, for

a given set of ZE" vaues. This is done by solving the system of equations (5.4)~(5.7) in the

basic model iteratively, and the system of equations (2.49)—(2.55) in case of the BP model. Due
to the nature of the equilibrium cycle, the values k" "y are initially known for the fresh bundles.
In order to find the other ones, we completely ﬁll the core with fresh bundles and calculate
the behavior of the core during the cycle. At the end of the cycle, we apply a reloading and
calculate the next cycle. In this way, convergence to the equilibrium cycle is achieved. Usually,
this convergence is obtained in about 10 cycles; in order to be on a safe side, we apply 19
reloadings, thus computing 20 cycles. In each cycle, we have to calculate the values of the
physical variables in a number of time steps in the following order:

1. Given k°° and ZP , for all i, we compute R;; and k‘if'f using the kernel equation (5.5). Since
this equatlon reduces to a standard eigenvalue equation for fixed k73, this is done by using
the power method. Since we know that the largest eigenvalue in which we are interested
has a strictly positive eigenvector, any strictly positive initial value for R converges to the
eigenvector of interest. This eigenvector is normalized using (5.6).

2. Given R;; we can compute k7 ., and Za i1+1 for all i using the burnup equations (5.7) in
the basic model, and equations (2.54), (2 55) in the BP model. In reactor physical terms,
this is the depletion step.

3. At end of cycle, a reloading is performed using (5.4) in the basic model, and (2.49),
(2.50), (2.51) in the BP model.

The procedure for the BP model is given in Algorithm 5.1. For reasons of programming logic,
the reloading is performed at the beginning of each cycle instead of after each cycle. As the

2The value 0 is particularly bad in our case, since the first derivatives in all bi- and trilinear terms become zero.
In such a situation it is very difficult to obtain improving directions.

5.1. STARTING POINT AND FIXED CORE EVALUATION 91

Procedure EvalFixed(x, fx) {Burnable poison model}

it k undefined then {No previous solution in memory}
Vi kSp,c = AT Ry =10
endif;
eP¥ = 1.0e ~ 5;
for ¢ := 1 to 20 do
{Perform reloading}
L M

Lo ! —o M h
Vi k=3 % 3 (Gido¥jicimkr) + (X sidm)kEOR;
Cam1/51 m=t

M
. fresh
Vi: EP = lei.l,ng.m ;
=

Vi: k7= _.E: ;
LkR = ;
' 1+ 2“lz::‘i.r
{Start core analysis}
fort:=1to T do
et 1 VG R
d T i, 7 .
YUY iRy
=
repeat {Start power iterations}
Kl = 1 Vi RO =Ry
{Compute eigenvector}
!
Vi: Riy:= Zl G,_,‘R,_lk‘;,:
i=
{Compute eigenvalue}
I -
T X ViGijki, R,
i=1j=1)
el
-21 ViR,
i=

K=

{Normalize eigenvector}

Vit Rij:=

T
3 ViR
=1
A= kT - kel
. old
4y = max { ——JR"'R;]f" I }
until max(Ay,Az) < PV /c;
ifz < T then
Calculate burnup
endif
endfor

5

endfor
fe=f

ALGORITHM 5.1: Core evaluation routine for fixed loading pattern x.

92 CHAPTER 5. IMPLEMENTATION ISSUES IN MIXED-INTEGER NONLINEAR OPTIMIZATION

cycles converge to the equilibrium cycle, the power method requires less and less iterations in
the subsequent cycles, since the algorithm uses the R;, values of the previous cycle as starting
vector. When multiple fixed pattern evaluations are to be performed for patterns that are only
slightly different, as is for example the case in PI, we re-use the k"" and R;; of the previous
pattern as starting values for the current pattern. In this way, the algomhm converges faster
to an equilibrium cycle, and the power method needs less iterations. Another implementation
detail is that the convergence check of the power method depends on the cycle c. In this way, the
initial cycles require less power iterations, while the final result still has the required accuracy.

The burnup calculation deserves special attention. When forward discretization is used, it
is a straightforward implementation of (5.7), resp. (2.54), (2.55). The algorithm for central
discretization is given in Algorithm 5.2. In this case we need to evaluate expressions of the
form (5.29), that need values of R; ;1 in advance. Since the flux and the burnup rate are chang-
ing considerably during the first few cycles, the value R;,; of the previous cycle makes no
sense. Therefore we apply forward discretization during the first few cycles. Only after four
cycles, when all bundles that were initially in the core are replaced by new bundles, the solution
becomes more stable and we switch to central discretizations.

Procedure Calculate_burnup {Central discretization}

if c <4 then {Forwarddifferences}
Vit Koggy =Koy — 0PA K Rigs

vi: 2P

firer = Thy —OPRAZY Ris;

it a0

else {Central differences (use prediction from previous cycle}}

—w 1—1oPAR
Vit kg ~"u—c_fl§
1+ za-PchRuH
1—laPP.AR;,
Vit ED, = 2R, — A
wit+l * “"l+zaPPA,R.,+1
endif
vi: K3 Kirs1

i+l = 5
' 1+20, 0

ALGORITHM 5.2: Burnup calculation using central discretization.

5.2 The nonlinear part

In this section we discuss some model reformulations that help in solving the nonlinear part of
the problem. Unless stated explicitly, these adaptations are based on the basic model without
burnable poison. Not all of them can be used directly in the BP model. In the basic model, we
can make use of the fact that the reactivity of each bundle, hence the effective multiplication
factor, decreases monotonically with time. This property does not hold for the BP model, since
initially the increase of reactivity due to BP burnup supersedes the decrease of reactivity due to
fuel burnup.

5.2. THE NONLINEAR PART 93

5.2.1 Variable bounds

Variable bounds are tightened as much as possible. This helps the nonlinear optimization in
staying feasible, since variable bounds give upper bounds on the step lengths in the algorithms.
In this section, only bounds on the physical variables are discussed, since the assignment vari-
ables have the obvious bounds 0 < x;;, < 1. Upper and lower bounds on variables will be
denoted by the superscripts "P and 1°.

Bounding k and R

Clearly, an upper bound on k> is given by k™", the infinite multiplication factor of a fresh
bundle, since k& cannot increase with time>*, so

oo,up __ yfresh
kP = k

ci=1, 0 t=1,---,T.

A lower bound on £~ and an upper bound on R are derived from (5.8) and (5.7). Suppose it is
known that a certain node i contains a fresh bundle, then k; 1 = kfresh_ 1t then follows from the
power peaking constraint (5.8) that, for this fresh bundle and for time stept =1,
lim
RY = —fl— (5.15)
E ool
kip® XV

J=1

This implies that the burnup of this bundle during the first time step, given (when using forward
discretization’) by (5.7), is bounded, giving a lower bound on k75 where ¢ = 2:

K =K (1 - aARY (5.16)

This bound may become negative if ¢AR" ; ,] > 1. Since we know that 7, should be nonnega-
tive, this sharpens the bound (5.15) on RuID tof:

lim 1
R?f:mm{———fl——, J} 5.17)
k:,lo Zlvj 't
j:

Bounds (5.17) and (5.16) can be computed iterdtively fort=1,---,T. The EoC lower bound
k; ’l° for a fresh bundle is also a BoC lower bound & il ° for any one year old bundle at node j, so
that we can repeat this iterative process for bundle j. The process can be repeated in the same
way until R;,, and kf,t 0 f=1,.--,T are computed for a node 7 with a bundle of age L.

In our optimization model, it is not known in advance where the specific bundles are to be
placed, so the numbers i, j and 7 in the above computations can be chosen arbitrarily. Since the

3 Although clear for physical reasons, this statement can be proved mathematically. See Appendix B, Section
B.2 for details.

4For the BP model, this statement holds for K, not for k.

SWhen using central discretization, the Az in (5.16) and (5.17) can be replaced by %A,.

61t is assumed that A, is small enough to ensure stability. For the basic model this is already true when only
threc or four time steps per cycle are used; the situation for the BP model is discussed in Section 5.2.6.

94 CHAPTER 5. IMPLEMENTATION ISSUES IN MIXED-INTEGER NONLINEAR OPTIMIZATION

lower bounds &*!° are monotonically decreasing during the iterative process, and consequently
the upper bounds R" are monotonically increasing, the bounds for node 7 (the node with a
bundle of age L) are valid for all the nodes i = 1,---,/. Hence we can apply the following
bounds:

U U .
RY = Ry, i=1Lt=1,T,

KO = K, =10 =1, .
Bounding k=

In order to derive upper and lower bounds for k< we take a closer look at (5.5). In matrix form
this is written as

KR, = GK/R.,, (5.18)
where
kT, 0
Kt —_ ' “ .
0 k}’j‘,

Equation (5.18) is an eigenvalue equation, and following the remarks after Equation (2.7) in
Section 2.1.3, we are interested in the maximum eigenvalue ¢ and its corresponding positive
eigenvector R.,. Since GK; is an irreducible nonnegative matrix, the maximum eigenvalue is
strictly positive and has a strictly positive, up to a scalar unique, eigenvector (see Appendix B,
Section B.1.1). We know that’

GK!° < GK, < GK;®. . (5.19)

Now the following well-known result may be applied.

Lemma 5.1 Let A and B be two nonnegative irreducible n x n matrices. Let MA) and M(B) be
their maximum eigenvalues. Then '

A<B = MA) <A(B).

A proof, which is given for a slightly more general case, is found in [7, Th.1.7.1]. Let A(GK}°)
and A(GK;¥) be the maximum eigenvalues of the corresponding matrices, then it follows from
(5.19) and Lemma 5.1 that

KT = MGKP) t=1,-,T,

KT — AGK™) t=1,---,T.

Thus far, we have obtained upper and lower bounds for all variables except a lower bound on
R. Though we know that all elements of R are strictly positive (which follows from the fact
that GK, is irreducible nonnegative), we could not guarantee a lower bound on the values of R.
These lower bounds are therefore set to zero.

TInequalities between matrices denote elementwise inequalities.

5.2. THE NONLINEAR PART 95

5.2.2 Addition of constraints

Besides tightening the bounds, convex constraints may be added in order to define a tighter
polytope containing the nonconvex feasible area. Using the matrices K; as defined in the previ-
ous section, it is known from (5.7) that K, ;) < K, elementwise. Hence Lemma 5.1 can be used
to show that

K <k r=1, T~ 1. (5.20)

Although this makes the model larger, explicit addition of these constraints helps to find feasible
solutions with some nonlinear optimization packages.

5.2.3 Constraint relaxation

In the previous two subsections we were concerned about tightening bounds and addition of
constraints. In the current subsection, relaxations of constraints are considered. The paradox
between these two issues can be explained using Figure 5.3. In that figure, the feasible area

Bounds and/or linear inequalities
(Black curve) Nonlinear equality constraints

RN (Shaded area) Relaxation of

nonlinear constraints

- - (Black curve) Nonlinear inequality constraint

I (/Y : U - (Cross-dashes) and its relaxation

FIGURE 5.3: Optimization is helped with tightening linear bounds and relaxation of nonconvex con-
straints. The feasible area is the curve determined by the nonlinear equality constraints, intersected with
the dashed area that is determined by the linear and nonlinear inequality constraints. The nonlinear
inequality constraint in this example disconnects the feasible area. Relaxing the nonlinear equalities
makes the shaded area feasible. Relaxing the nonlinear inequality constraint makes the cross-dashed
arca feasible. Both relaxations together make the feasible area connected.

is just a tiny nonconvex curve. This curve is described by nonlinear equations, and is inter-
sected with the linear inequalities and one nonlinear nonconvex inequality. Regarding the linear
inequalities, the optimization is helped if these bounds enclose the feasible curve as tight as
possible. The nonlinear equalities describing the feasible area as a tiny curve make it very dif-
ficult for a solver to keep staying along this curve during optimization. Relaxing the nonlinear
equality constraints may relieve this problem since the solver now can use feasible points in the
shaded area during the optimization.

The nonlinear inequality constraint in the example disconnects the feasible curve, thereby
disconnecting the feasible area. This makes it very difficult for a solver to reach an optimum in
one part of the feasible area, if its starting point is in the other part. Even after relaxation of the
nonlinear equality constraints the shaded area remains disconnected. This problem is relieved

R

96 CHAPTER 5. IMPLEMENTATION ISSUES IN MIXED-INTEGER NONLINEAR OPTIMIZATION

by relaxing the nonlinear inequality constraint, so that the cross-dashed area also becomes fea-
sible. Since there is a nonempty intersection of the cross-dashed area and the shaded area, the
feasible area is now connected.

In the sequel of this section, we discuss both types of relaxation for the fuel management
optimization problem.

Power peak constraint relaxation

In a search for an optimal solution, it is more important to get at least some reasonable good
pattern, than to get immediately a pattern that satisfies the power peaking constraint. Since the
physical variables are continuous functions of the assignment matrix, the feasible area is nicely
connected if the power peaking constraints are ignored. The power peaking constraints cut off
some patterns, and it may happen that they disconnect the feasible area, just as the nonlinear
inequality constraint in Figure 5.3. For these reasons it is attractive to relax the power peaking
constraints. This was done by addition of a nonnegative variable € to (5.8):

f]im

kiiRiy < <— (1+e). (5.21)
2V
Jj=1

During the optimization, € is driven to zero by penalizing it in the objective function:

maximize kS — B¢,

where 0 is a suitably large penalty parameter. The variable € can be bounded above. For some
very bad loading patterns, we obtained power peaks that were about four or five times as large
as the maximum allowed power peak, and if we would hold all possible loading patterns into
our feasible area, the bound on € should be that large. In practice, it is sufficient to make the
bound much smaller, since patterns that are in the vicinity of good loading patterns have much
smaller power peaks. The precise value should be found by some experimentation; we found
that values of €"P € [.01;1.0] lead in general to satisfying results.

It should be noted that the bounds R*P and k*>'° as derived in Section 5.2.1 are based on the
maximum allowed power peak. If we use power peak relaxation using a nonzero £°?, the bounds
may cut off solutions that are feasible with respect to the relaxed power peaking constraints.
This can be avoided by using (5.21) with € = €"? in the bound calculations (5.17).

Turning equalities into inequalities
Another way of constraint relaxation is turning equality constraints into inequalities. This is in
some sense equivalent to the creation of the shaded band around the feasible area in Figure 5.3.
Care should be taken in determining the direction of these inequalities. The maximization of
k‘}ff suggests that we can replace the kernel equations (5.5) with inequality constraints

1
KRy < Y GijkSiRjy i=1,o 0 t=1,--.T
j=1

5.2. THE NONLINEAR PART 97

However, this is likely to introduce solutions where R.; is not a combination of eigenvectors, so
that solutions without physical meaning are introduced.

The use of such equality relaxations depends on the solution method. The GRG method for
example is an equality based method. If equalities are turned into inequalities, the solver con-
verts them back into equalities by using slack variables. Other methods however, for example
Projected Lagrangian based methods, might profit from this type of relaxation, since it gives the
solver more freedom when choosing search directions. Since we used a GRG solver in most of
our computations, we did not consider further use of equality relaxation.

5.2.4 Engineering constraints

Besides bounds tightening and constraint relaxation, the efficiency of nonlinear optimization
can also be improved by adding engineering constraints. Engineering constraints reduce the
feasible area in a heuristic way using expert knowledge of the problem. These constraints are
imposed on the assignment variables, and the purpose is to cut off bad regions of the feasible
area. In this way, the optimization algorithm is prevented to get stuck at local optima in such
a bad region. Commonly accepted rules within the fuel management optimization community
are for example (see also Section 3.3.2):

e No four fresh bundles in a square, since this leads either to too large power peaks, or to
bad objective function values. This constraint should be implemented with great care: we
encountered several very good solutions in reactor cores of medium size, containing such
fresh squares somewhere in between the core center and the core periphery.

In order to implement this engineering constraint, let Q = {(i',2,,i*) : (i',i2,3,i*)
is a square}. The constraints are then formulated as follows:

4 M
> Y xiaa <3, VAP eQ. (5.22)
j=lm=1
Due to octant symmetry, some of these constraints can be tightened. On the boundary of
the octant it may happen (after suitable reordering) that i' = i3, i = i* and i! # i%. In this
case, (5.22) reduces to

2 M
j=lm=1
This constraint may be divided by 2, giving a right hand side of 3/2 and a left hand side

that is still integer for integer solutions. Thus we may replace the right hand side 3/2 by
[3/2] = 1, resulting in
2 M

PIDIEATESE

j=1m=1
This constraint cuts off more non-integer solutions than (5.23). Another possible situation
is that i, i2 and 3 are different, and i* = i*. In that case, we add the redundant constraint

M

2
z 2 Xii 1,m <2
j=1

m=1

98

CHAPTER 5. IMPLEMENTATION ISSUES IN MIXED-INTEGER NONLINEAR OPTIMIZATION

to (5.22) and divide again by 2, leading to the inequality
3 M 5
z Xii\1,m < I.EJ =2

1m=1

J

o No fresh bundles in the center nodes. This constraint is especially applicable in the layouts
of our test cores. Due to the assumption of octant symmetry and the existence of four
center nodes, a fresh bundle in a center node immediately leads to a square of fresh
bundles, and due to our restriction that two neighboring diagonal nodes contain the same
bundles, the four corner nodes around the square also contain fresh nodes (¢f. Figure 5.4).
Such a configuration in the center is likely to cause too high power peaks.

FIGURE 5.4: Center of an octant symmetric core. Nodes A and C contain the same bundle. If A is a
fresh bundle, then so is C.

e No fresh bundles at the boundary of the core. Fresh bundles at boundary positions are not
likely to be effective since lots of neutrons are spoiled in the water surrounding the core.

e No squares of the oldest bundles in the inner region of the core, since this will create
‘holes’ in the flux distribution.

In general, severe testing is required before an engineering constraint is applied, in order to
avoid the exclusion of very good patterns, or even exclusion of the globally optimal pattern.

5.2.5 Reducing nonconvexily by reformulations

Reformulation of the model equations may lead to reduction of the nonconvexity. In this section,
some of these reformulations are discussed.

Alternative reloading equation

Our model has constraints with linear and bilinear terms, and only the reloading equation (5.4)
contains trilinear terms. An alternative formulation of (5.4) can be derived that involves only
bilinear terms:

1

1 Y xjo-imkiy, £=2,Lym=1,---.M
oo J:t=1m% T) s &y) s 4¥Ly

D Xigmkin = =1 (5.24)

= kfresh (=1, m=1,---,M.

5.2. THE NONLINEAR PART 99

The left hand side of this equation selects the position i of the bundle of age ¢ and trajectory
m. The right hand side selects the position j where this bundle was at the previous cycle. This
constraint only contains bilinear terms, and the total number of non-zeros in the constraint gra-
dient matrix is of order /2 instead of the order /3. For integer solutions, both formulations (5.4)
and (5.24) are equal. For non-integer assignments however, the two methods are incompatible.
There are situations in which (5.24) does not give any solution for the physical constraints, for
example the case where both a bundle and its successor are evenly distributed over two different
nodes:
Xifm = Xifpim = Xjom = Xjorim = ;, forsomei, j#i, £<L, m.

Suppose £ = 1, then the two reload equations for (£,m) and (£ + 1,m) according to (5.24) for
this assignment read:

/oo | o0 g
f(kil+k') — kfresh
%(k +k7) = %(k}”r*’kef)r)-
Since k;p < kfr%h and k°° < kfresh | this would imply that kir = k‘;“ = kfresh hence Ri;, =
Rj, = 0 t=1,---,T - 1 whxch is impossible. On the other hand since (5.24) compares only
averages of inﬁnite multiplication factors over nodes, there are assignments where non-realistic
solutions are introduced with k% = ™" for almost all nodes i, while only for two or three

nodes, 7"} < 1. These solutions have very large but completely unrealistic objective values,
which make the optimal solution value of the NLP senseless.

Addition of variables

A more standard way to remove trilinear terms is the introduction of extra variables. We recall
the reloading equations (5.4):

k;'):’] = le kfreSh + 2 lel’mzvxj[lmkjl’ i=1,.--,1.

m=1 {=2m=1

Now a new type of variable is introduced:

kE"C the EoC infinite multiplication factor of the bundle of age £ in trajectory
m.

This variable is related to &7, in the following way:
I
Kpoc = 3 xjpmkipy £= 1, L—1, m=1,---,M. (5.25)
= ’

Using (5.25) as an extra set of constraints, we can replace the reloading constraints (5.4) with

M
k;':c] = 2 xi,l,mkfreSh
el (5.26)

+ Z z x!fmkﬂ L l:lvvl
{=2m=|

RINE

100 CHAPTER 5. IMPLEMENTATION ISSUES IN MIXED-INTEGER NONLINEAR OPTIMIZATION

The use of (5.25) and (5.26) reduces the total number of nonlinear terms and the total number of
nonzeros in the constraint gradient matrix. The practical results with this reformulation depend
on the solver used. In our case, it leads to a significant decrease of the number of nonzeros in the
constraint gradient matrix (see also Table 6.4), and it gives in general a reduction of the compu-
tation times with any solver. On the other hand, it removes the direct relations between the }’:’1
and k3’7 which makes the problem less transparent, and makes the role of gradient information
less clear. Practical results indicate a decrease of solution quality in different solvers.

5.2.6 Time-discretization

The optimization models make use of a discretization both in space and time. In space, nodal
discretization is used, which is already discussed in Section 2.1.4. Regarding discretization
in time, it is already noted that the two straightforward possibilities to discretize the burnup
equations are forward and central discretization. Here both possibilities are worked out and
compared. Remarks are also made about how many points in time are needed in order to get
an accurate model, and where to place these points. Figure 5.5, presents some computational

1.0106 _ —
Central discretization
° Forward discretization
2 1.0102
3
ry
© 1.0098
1.0094
1.009
0 100 200 300 400
Timesteps

FIGURE 5.5: Central vs. forward differences solutions as function of the number of time steps. The
central discretization solution is monotoneously decreasing in the number of time steps, the forward
discretization solution is monotoneously increasing in the number of timesteps.

results with some test data on the basic model, with both forward and central discretization for
various numbers of time steps. The time steps are equally distributed over the whole cycle. It is
clear from the results that central discretization gives more accurate answers with much fewer
discretization points.

This observation still tells nothing about which discretization is better to use in our optimiza-
tion system. A less accurate model may be perfectly suited for optimization purposes, provided
that the ranking of all loading patterns with respect to the objective value remains the same. For
a number of arbitrary loading patterns, we computed the objective value k‘}ff of the basic model
both with forward and central discretization. The results are shown in Figure 5.6. Using 15
time steps, the maximum deviation between the forward and central discretization solutions is
0.2%. Using only 6 time steps, the maximum deviation is still only 0.5%. In view of the fact
that our data are given in three, or at most four digits, we conclude that the forward model with

5.2. THE NONLINEAR PART 101

K for 1000 samples - 6 time steps K& for 1000 samples - 15 time steps
o 103 = 103
2 .2
S, S
2 2
2 1.01 2 101
B 3
g g
=] =1
Q [5]
S ool S gl
! (?.99 1 1.01 .02 1.03 . &99 1 1.01 1.02 1.03
Forward discretization Forward discretization

FIGURE 5.6: Comparison of the kS obtained by forward and central discretization for 1000 random
loading patterns using 7 = 6 (left) and T = 15 (right). The time steps are equally distributed over the
cycle length. Test data are taken from model Medium 1 (see Section 6.1).

6 time steps is very reasonable in order to identify a solution that is close to optimal. In most of
the test runs that we performed on the standard model, we used this number of time steps.

In the case that burnable poisons are used, we have to take into account the stability of the
solution. The (forward) discretized burnup equation for the BPs (2.27) is given as
P P _ p
za,i,t-)—l _Zu,i,r - _apza,i,lRi)‘At
where R and X¥ are the variables (the latter must not to be confused with summation signs!). In
order to achieve at least a stable solution, it is required that the value of Zg i1+ i nonnegative.
This is possible only if
1 - (pr,",A, Z 0

for each node i, which means that
1
A< —.
OPR;

To get an estimate for the maximum allowed A, in advance, we need to estimate the maximal

R;;. Using the power peak constraint (2.33) and assuming that power peaks will not be violated
at nodes where k7, < 1, an estimate for feasible patterns is obtained:

lim
Riy < 5.
2V

i=1

Experiments showed that for bad patterns, the power peak can be four or five times the maxi-
mum allowed power peak, especially for larger cores®. So, to get stable solutions for all possible

8We could even construct pathological cases where the power peak is about a factor 7 above the maximum
allowed power peak, but thesc examples are so obviously bad, also in terms of the objective function, that it is safe
to assume that no optimization algorithm will ever reach such a case, except when the starting point is especially
constructed to obtain this behavior.

102 CHAPTER 5. IMPLEMENTATION ISSUES IN MIXED-INTEGER NONLINEAR OPTIMIZATION

patterns, we have the bound

1
A
i=1
At S E . F‘ﬂ-l- .
The highest power peak is attained at the beginning of a cycle, or, when BPs are added, slightly
thereafter, so the changes in the BP concentration are largest near BoC. Therefore, the time
intervals towards EoC may be longer than the maximum obtained in (5.27). We implemented

an uneven distribution of time steps in which the last time step is the triple of the first time step:

(5.27)

Total -1
4, Total cycle length (1 t) (5.28)

t T-1 27 T-2

In this way, the number of time steps is limited, while maintaining stability in the parts with the
largest power peaks.

Stability is easier to achieve when using central discretization. The burnup relation is then
given by

p _ P o
P 5o gp et Ri Ty Rig
aittl ~ Zaip — %) !
which is equivalent to
1-0PR;, 5
= —rd_ 3P (5.29)
g+l T a,i,t" :
o 1-|-00’Ri,r+1%L '

This implies that, due to the division of A, in the numerator by two, A, may be twice as large as
when using forward discretization in order to achieve stability.

5.3 The integer part

In this section, we focus on techniques to derive integer solutions. We start from the situation
in which we have a local optimum of a continuous nonlinear optimization algorithm. Also,
it is assumed that there exists an algorithm that calculates the physical variables, the objec-
tive function and the power peaks for a fixed assignment. Using these tools we derive integer
solutions using the techniques that are discussed in Section 4.3, that will be worked out here
for our specific situation. We first discuss a simple rounding heuristic. The second technique
is Outer Approximation. We have not implemented this technique from scratch, but used the
software package DICOPT. The third method is Branch-and-Bound. Only a restricted version
of this algorithm was implemented for a simplified version of the reactor problem. Based on
this experience, problem-related implementation issues for a larger-scale implementation are
discussed. The fourth technique is a combination with neighborhood search. Besides these four
techniques, we also experimented with generation and addition of cuts. We used cuts not only
with the purpose of getting integer solutions, but the main purpose in our application was to
cut off bad local optimal solutions, so they combine improvement of the NLP solutions and
improvement of the integer solutions. Therefore the generation and the use of cuts is discussed
separately in Section 5.4.

5.3. THE INTEGER PART 103

5.3.1 Rounding heuristics

Due to the nature of our basic model, many integer solutions turn out to be local optima. In
several cases, the NLP solver terminates immediately with an integer value. When the returned
optimum is not integer, this is often due to a power peaking limit (see Figure 5.7), and the
number of nonintegers is usually small®. In order to quickly find an integer solution, we start

1.0143

keff

T

Lo}

1.0139
0

2.1
power peak

T 1.9

1.7
0

02 04 06 08 1
— A

FIGURE 5.7: Fractional solution due to the power peak constraint. The values A =0 and A = 1 represent
two integer solutions x° and x!, other values represent fractional solutions (1 —A)x® +Ax'. The *f-plot
shows that x = 0 and x = | are local maxima. The power peak plot shows that in x = 0 the power peak
f1"m is exceeded. Optimization of the continuous relaxation gave the local optimum indicated at x ~ 0.16.
Rounding leads to the (in this case even better) solution x = 1.

with the relaxed solution and enumerate all possible neighboring integer solutions such that

e ones in the relaxed solution remain ones, and

e zeros in the relaxed solution remain zeros.

Suppose we have the following part of the assignment matrix:

0208
08 0.2
0.5 0.5
0.7 03
030502

(zeros in this matrix are left blank for simplicity). There are two possibilities to create integer
solutions in the first two rows and columns, and independently there are three binary solutions
in the last three rows and columns, so there are six possible binary solutions in total.

The feasible rounding with best objective value is returned, or, if none of the rounded solu-
tions is feasible, the best infeasible rounding is returned.

9This is not true for the model of Section 2.3.3. Still, the described procedure is applicable as part of a more
general rounding scheme.

104 CHAPTER 5. IMPLEMENTATION ISSUES IN MIXED-INTEGER NONLINEAR OPTIMIZATION

5.3.2 Outer approximation

This method, discussed in Section 4.3.3, is implemented in the software package DICOPT [37],
running within the high-level modeling language GAMS [13]. The algorithm solves a sequence
of nonlinear programming problems and mixed-integer linear programming problems. Let y
denote the physical variables, and x denote the binary variables, then the DICOPT algorithm, as
described in [37], is listed in Algorithm 5.3. If the first relaxed solution happens to be integral,

DICOPT

begin
read (x%,)0); {read the user-supplied starting guess}
Solve the relaxcd (NLP) problem — (x!,y').
if x' is integer then stop: Optimal solution found;
else
i=1
z .= oo, {Initialize lower bound on maximization}
repeat
Z:=1z
Linearize around (x,') and
add constraints to the linearized (MILP) problem;
Add integer cuts to the MILP problem;
Solve the MILP problem to the integer optimal solution (x+!,y'1);
Solve the NLP problem with x = x'! being fixed.
Let the solution be (x*!,y*1) and the optimum value be z;
= i+1;
until (Z > 2);
endif
end.

ALGORITHM 5.3: DICOPT algorithm to solve nonlinear mixed-integer problems.

then the algorithm is terminated. If not, a linearization is made around the current solution
point and added to the mixed-integer linear optimization (MILP) problem, containing the union
of all linearizations of iteration 0 to i. The MILP problem is solved and an integer solution is
returned, which is a loading pattern in our case. The physical variables are not accurate due to
the linearization. Therefore, the NLP problem is solved. From the resulting point in the space of
all variables, a new linearization of the constraints is made and added to the MILP subproblem,
until the objective function of the NLP problem starts worsening.

With the basic reload pattern optimization model, the only control variables are the integer
assignment variables, which are fixed in all NLP subproblems, except the first one. These NLP
subproblems therefore reduce to straightforward computations of the physical variables for a
fixed loading pattern and the only real optimization problems are the MILP subproblems. In
this sense, the algorithmic structure somewhat resembles the Sequential Linear Programming
(SLP) method. A major difference with this method is the optimization of the first relaxed NLP
problem, that may be solved with any NLP algorithm.

In the model where continuous BP optimization is included, the correspondence with SLP

5.3. THE INTEGER PART 105

does no longer hold. In this case, the BP concentration is a continuous control variable, that is
optimized in the NLP subproblems.

Different solvers can be attached to DICOPT to solve the NLP subproblems and the MILP
subproblems. For the solution of the NLP subproblems, we used the nonlinear solver CONOPT
[27], which gave more robust solutions than the competing solver MINOSS. It makes use of
the Generalized Reduced Gradient method [45]. The MILP-solutions are obtained by the solver
CPLEX, one of the most advanced MILP-solvers today. It internally uses the linear simplex
method combined with a Branch-and-Bound approach to reach an integer solution'®, Branch-
and-Bound methods have the property that the total solution time is unpredictable in advance.
Still the average behavior of the algorithm can be influenced by changing some Branch-and-
Bound parameters. After testing different parameter settings, we concluded that the default
node selection strategy in CPLEX 6.0 was not optimal to our problem. The standard strategy
is to choose that node from the node table with the best objective function of the associated
relaxed problem (best-bound strategy). If there are multiple optimal and near-optimal solutions
in different branches, this may cause much branching rather high in the Branch-and-Bound
tree. If, on the contrary, the depth first node selection strategy is chosen, integer solutions are
found quickly. Typically it still needs some branching to prove that the solution found is within
optimality tolerances. We observed slight improvement of the algorithm when the depth first
strategy was selected.

5.3.3 Branch-and-Bound

Another way to find integer solutions is to implement a nonlinear Branch-and-Bound algorithm.
The basic structure is the same as with the linear Branch-and-Bound algorithm as described
in Section 4.3.2. The main difference is that we cannot guarantee that the bounds found by
solving the relaxed problems are correct i.e., it may happen that a relaxed problem returns a
local optimal solution instead of a global one. Such a node might be fathomed while it in fact
may contain the global optimal solution. In this way, Branch-and-Bound reduces to a heuristic
method, and a straightforward implementation leads to long computation times and bad local
optimal solutions. Fortunately, there are several possibilities for improvement.

The risk of throwing away potentially good nodes is reduced by keeping nodes in the node
table that are worse than the cutoff value by less than a given fraction. This fraction depends on
the level of the node: for nodes high in the tree more freedom is allowed than for lower-level
nodes. As a consequence, the optimal solution found may become better, but computation time
also increases. It is therefore still important to find good quality bounds in the different nodes,
and to find meaningful cutoff values. This can be obtained by issuing a depth-first search, that is
likely to lead relatively fast to integer solutions. Another possibility is to apply some rounding
heuristic in the different nodes, to force an integer solution value. If this integer solution is
worse than the fractional solution obtained in the node, then the node should be kept in the node
table, since the continuous optimum suggests that better solutions are possible. Otherwise the
integer solution value may be compared to the best known solution value. Heuristic rules are

10Note that this linear Branch-and-Bound method, that is hidden in the CPLEX solver, is different from the
problem-specific nonlincar Branch-and-Bound method that is discussed in Section 5.3.3.

106 CHAPTER 5. IMPLEMENTATION ISSUES IN MIXED-INTEGER NONLINEAR OPTIMIZATION

then needed to decide when a node will be fathomed. Additional research and computational
experience is needed to find suitable rules.

With the different adaptations we tested thus far with the basic model, either the quality of the
results is poor, or the algorithm requires an astronomical amount of time to find reasonably good
solutions. This is due to the fact that there are very many local optima that have comparable
objective values, but that are not close to each other in the search space. Within a node, the local
optimum found in each node depends on the specific starting value that is used to start the NLP
algorithm in that node; therefore a balanced starting value selection strategy for all nodes has to
be developed. These starting values must be generated by applying the same rules that are used
for the starting value of the relaxed NLP problem, i.e., the bundles that are not yet fixed must
have fractional values.

Due to the nonconvexity structure of the several models, it may be expected that the Branch-
and-Bound method works better for the new model as developed in Section 2.3.3. This model
still has many local optima, but at least the property that many integer solutions are local optima
is lost, and the objective function has a much smoother shape.

Special attention in the Branch-and-Bound has to be paid to the power peaking constraints,
since these constraints may divide the feasible region into different disconnected areas. It is
probably helpful to relax the power peaking constraints completely in the top level nodes, and
to make them gradually tighter in lower level nodes. In the top nodes, we are only interested
in the possible values of the objective function in the different nodes, rather than in precise
feasibility. The lower in the tree, the more we work to find real loading patterns, that satisfy the
power peaking constraints.

A different way to speed up the Branch-and-Bound algorithm is the use of a much coarser
model high in the tree. In the top nodes we may for example use a coarse model with a few
discretization points, that at least gives an indication of what objective function values we may
expect in the different nodes. When branching down in the tree, a more precise model may be
used. This is possible since we found that the precision of coarse models (within some limits)
is good enough to give a rather precise distinction between good and bad loading patterns (cf.
Figure 5.6)

It is important to have a dedicated Branching strategy such that most bad patterns are cut off
as high in the tree as possible. Therefore the algorithm should branch first on the bundles or
positions that have most influence on the objective function. These are the center positions, the
boundary positions, the fresh bundles and the oldest bundles. Middle-aged bundles, and core
positions between the core center and the periphery should be fixed only rather deep in the tree.

The Branch-and-Bound algorithm may be extended with a cut-generating algorithm. Instead
of dividing the problem into two subproblems with a variable fixed to 0 and 1, respectively, the
problem can be divided into two subproblems that are separated by a suitable cut. Currently, we
have an implementation of a cut-generating algorithm, that is described in Section 5.4, in which
only one side of a cut is explored. Due to the nonconvexity of the problem, this is a heuristic
algorithm, since a cut may wrongly cut off the global optimum. When both sides of a cut are
explored, such a situation may be avoided.

5.3. THE INTEGER PART 107

5.3.4 Pairwise interchange

One of the aims of this project is to compare the MINLP approach with a direct search ap-
proach. Our results from MINLP are compared to the results of a pairwise interchange (PI)
algorithm. The basic pairwise interchange algorithm selects an initial parent pattern, explores
all neighbors that can be found by exchanging two bundles, and selects the best one as the new
parent. From this pattern, a new neighborhood search is launched, and the process is repeated
until no improving neighbor can be found.

The results of a standard PI were improved by handling infeasible neighbor patterns in a
special way. Neighbor patterns are infeasible when power peaking constraints are violated.
Nevertheless, if they have a very good objective function value, they may have other neighbor
solutions that also have a good objective function value and satisfy the power peaking con-
straints. For this reason we keep track of the best found infeasible solution that is better than the
best known feasible solution. If the current parent pattern has no improving feasible neighbor
solutions that can be chosen as new parent, the best known infeasible solution is selected as the
new parent. If the search around this parent resuits in a better feasible or infeasible neighbor,
this neighbor will be the new parent, otherwise the search is terminated. This PI algorithm is
listed in Algorithm 5.4. The evaluation of the fixed loading patterns is done using the method
described in Section 5.1.3.

The PI algorithm can be improved by various means. Instead of computing the complete
core in each neighbor solution, one may use depletion perturbation theory, as is shown in [39].
Also the use of engineering constraints can speed up the algorithm, at the risk of loosing some
good, possibly optimal solutions. In our test implementation, we have not used such constraints,
primarily because the aim of our work is to explore the applicability of MINLP techniques and
actually we have not implemented many engineering constraints into the MINLP method either.

5.3.5 Combination of methods

In many difficult optimization problems containing a combinatorial structure, the best results
are found when combining several algorithms. An advantage of MINLP compared to direct
search techniques is that it finds solutions of reasonable quality in a relatively short time. It can
do larger steps at once, and based on gradient information it can step directly in an improving
direction, without the need to explore a number of arbitrary patterns in a small neighborhood.
On the other hand, PI is able to find improving neighbors that cannot be found by MINLP, if
the objective function in the continuous optimization space has local optimal solutions in the
integer solutions. Starting from an arbitrary solution, PI may need a large number of steps to
reach a reasonably good solution. For these reasons we also have tested a combined strategy,
in which we start with running a MINLP algorithm. After termination of this algorithm, the
search is continued using PI. This way, we try to reduce the running time of PI, while on the
other hand we improve the solutions obtained by MINLP. In many cases, the results are also
better then the ones that were found by PI alone.

108 CHAPTER 5. IMPLEMENTATION ISSUES IN MIXED-INTEGER NONLINEAR OPTIMIZATION

Pl(x, f)

get_starting.pattern(x);
EvalFixed(x, fi);
if x is feasible then
fa = fi3 fi =0; xg := x; inf_explored = Fulse,
else
f1:= fu, f8:=0; x1 := x; infexplored .= True,
endif
Stop := False,
repeat
18 = fos 1= fis
for each neighbor £ of x do
EvalFixed(X, fi);
if £ is feasible and f; > fp then
fB = fuxpi=8
elseif f; > max(fp, fi} then
fi == fis x1:=2%; inf_explored := False,
endif;
endfor;
if f > f3'4 then
X = x8;
elseif f; > f3'¢ and not inf_explored then
x:=x;; inf_explored := True;
else
Stop := True;
endif
until Stop := True;

ALGORITHM 5.4: PI algorithm exploring infeasible neighbors. The parameter inf_explored is needed
to avoid repeated selection of the same infeasible pattern as parent.

5.4 Cuts

Generating and adding cuts is a well-known technique to speed up the solution process of lin-
ear mixed-integer optimization problems. In our basic model, the most difficulties were not
observed in obtaining integer solutions, since the local optimal solutions of the continuous
relaxation often had only a few non-integer assignments. Simple rounding was amazingly ef-
fective in finding very reasonable integer solutions. The most difficult part of our model is the
nonlinear part. Due to the nonconvexity structure, we often get stuck in local optimal solutions.
In order to overcome this problem, a set of cuts were developed that are used with the purpose
of cutting off bad local optimal solutions. This way, the NLP algorithm finds other, hopefully
better, local optima. In this section we discuss the different cuts that we have implemented. In
the discussion we concentrate on the basic model, although the cuts are also applicable to the
BP model or the improved fractional model (Section 2.3.3).

The cuts that were implemented so far are based on smoothing the power shape in the core.
Solutions where power peaking constraints are exceeded, should be avoided. Another motiva-

54. CUTS 109

tion for power peak smoothing is that there is a weak negative correlation between power peak
and k°%, ¢f. Figure 5.8. The power peak in a node i is described as

K s, power peak for 2000 loading patterns

0.5}
v .
< 04
&
e
5 03
o)
=9
0.2
01 097 098 099 1 1.01
keff
FoC

FIGURE 5.8: Results of a fixed core evaluation for 2000 patterns on test data set Small 1.

oo
max k(Riy,

since the total power summed over all nodes is constant in time. The power peak is decreased
by reducing either k;’; or R;;. These two quantities are related by the kernel equation (5.5):

kTR, = ZG,,k R,

Since the matrix G is diagonally dominant, reducmg k7 for some i will in general reduce the
corresponding R;,, although it may occasionally happeh, due to normalization and influences
in other parts of he core, that R;, increases. The general idea of the cuts type 1, 2 and 3 that
are described on the forthcoming pages is based on reduction of £7; in nodes i where the power
peak is too high. So, if node i has the maximum power peak in the current iteration p, the basic
form of such a cut is:

ki < Ok P, (5.30)
for some suitable & < 1. Since in our model k£~ is a variable that depends indirectly on the
control variables x; ¢, the cuts are applied to these control variables instead of k7, directly.
Here the property is used that £~ decreases during the lifetime of the bundle, and that bundles
of the same age have k™-values that are rather close. The restriction (5.30) is replaced by the
restriction that the age of the bundle in node i and/or its neighbors should be above a given
value.

The general algorithm with cuts is given in Algorithm 5.5. In each iteration we start by
computing an initial pattern. Using this starting pattern, the continuous NLP is solved. If the
solution is feasible, integer and better than the best found solution thus far, it is stored. If it is not
feasible then cuts are derived from this solution. After this processing step, and if the solution is
not integer, a number of integer solutions are derived from this solution. In our implementation
this is done by simple rounding. These solutions are ‘processed’ in the same way as the NLP
solution. Redundant cuts are then removed. This algorithm is repeated until some stopping
criterion is met.

110 CHAPTER 5. IMPLEMENTATION ISSUES IN MIXED-INTEGER NONLINEAR OPTIMIZATION

General cut-algorithm

repeat
Find-initial-pattern(x);
NLP_solve(x, fi);
Process_solution(x, fy);
Derive a set X of integer solutions from x;
for each £in X do
EvalFixed(#, f;);
Process_solution(®, fz);
endfor
Remove cuts that are redundant or timed-out.

until stopping criterion met;

Process_solution(x, fy)

if x feasible and x integer and f, > £ then
Store x as xP! and f, as fo

if x not feasible then
Derive cuts from x.

ALGORITHM 5.5: General outline of the cut-algorithm.

5.4.1 Cuttype 1

The power peak in some node i is mainly caused by the reactivity of itself and the adjacent
nodes. High reactivity and a large flux in the surrounding nodes also causes a large flux in node
i (see Figure 5.9). In type 1 cuts, we assume that the power peak in node i can be reduced by

Y
T
[

FIGURE 5.9: High fluxes in surrounding nodes influence the power in node i.

putting less active bundles in one or more of its neighbors, and it does not matter which one
of the nodes this is. This constraint is implemented by computing the sum of the ages of the
bundles in i and its surrounding nodes in the current solution. In the next iteration it is required
that this sum should be larger than in the current solution, so that the bundles in the relevant
nodes are older on average.

Let the assignment variables in the current iteration p be denoted as xf’ 4 m» denoting the frac-
tion of the bundle with age £ from trajectory m that is placed in node i at the pth iteration. Let
i be the node on which the cut is posed, and let IV (i) be the set of neighbor nodes including i

5.4. CUTS 111

itself, consisting of all nodes as given in Figure 5.9. We compute

L M
Al Z 2 oty (5.31)
JEN() =lm=1
and add the constraint
L M
> 22 Xjom> |AL 8 (5.32)
JEN (i) t=1m=1

for some suitable 8' that is initially chosen greater than 1. We round to integer since in a
fractional solution, A; may be non-integer, but the solution we want to obtain should always be
integer. The choice of 8! is in principle free. In our implementation it consists of two elements:
an element that depends on the magnitude of the power peak violation at node i/ in iteration p,
and a fixed factor:

8 = aldP 1 ¢! (5.33)
where o! and e! are constants, and
I
2 V;
&P = max(k3R; D) E fhm) (5.34)
A value 8% > 1 corresponds to a violation of the power peaking constraint. The values of o'

and €' should be tuned by experiment. As an alternative to the definition (5.33) of 8! we also
tested

8 = ol log(87F) + €' (5.35)

This is motivated by the fact that the constraint can be too strong for large violations of the
power peak. In such a case it may occur that no assignment can be made that satisfies all added
cuts. This holds especially for smaller cores. In those cores, the power peak can be very high
since placing one or two fresh bundles at center positions has major influence on the whole core
(we actually encountered values 8*F > 5). Also, these small cores have less flexibility to satisfy
the cuts since there are less bundles of each age.

5.4.2 Cuttype2

In the type 1 cuts, it is implicitly assumed that the node i itself and its direct neighbors have the
same influence on the power peak in i, whereas the influence of bundles that are further away
is completely neglected. This assumption can be refined by taking into account the matrix G; ;.
As follows from the kernel equation, the contribution of the different nodes j to the flux value
¢, hence to the removal rate R, and finally to the power peak in node , is proportional to G; ;:

1 -
Ris = 2. GijkiiRj
7=

112 CHAPTER 5. IMPLEMENTATION ISSUES IN MIXED-INTEGER NONLINEAR OPTIMIZATION

As in the type 1 cut, we assume that the power in node j is related to the age of the bundle,
but instead of counting the ages of all neighbors as in (5.31), we count the ages with relative
weights G; ;:

I L
A7 =3 Gii Y, X Xy (5.36)

and the cut is formulated as

I L M
Y GiiY Y txjem> AP+ 8 (5.37)
=1 i

=1m=1
where &2 is defined in the same way as '
& = a8 +¢? (5.38)
or, alternatively,
8% = o’ log(8FF) + €. (5.39)

for suitable values of o and €2. Note that the right hand side of (5.37) is not rounded to
integer. Contrary to (5.32), the left hand side can be non-integer even when all x-variables are
integer, thus non-integer right hand sides make sense. As can be seen from Figure 5.10, the
relative importance of the neighbor nodes decreases about one order of magnitude for each step

.003].007].008{.0071.003

.007.025].050(.025.007

.0081.0501.600|.050 | .008

.007(.025{.050.025 |.007

.003|.007].008 {.007 | .003

FIGURE 5.10: Probabilities G; ; that neutrons produced in node j are absorbed in the center node. The
matrix G here is symmetric; note that in general the sum of probabilities need not to be one.

away from the center node i. The precise effect of the cut depends on the values of o? and
€2, that should be found by experimenting, but in general this cut leaves more flexibility for
the assignment variables than the type 1 cut. For some relatively small power peak violations
it may be possible to increase the age of the center node, while the age of a neighbor node is
decreased, which still has the net effect of a decreasing left hand side of (5.37).

54.3 Cuttype 3

The cut of type 2 may be refined further by taking into account the height of the power peak
in node i and its neighbors. Suppose the power peak is exceeded in node i. If neighbor j; has
a relatively large power, while neighbor j, with the same G; j-value has a much lower power,
the bundle j; contributes more to the power peak in i than the bundle j>. The power peak in i

54. CUTS 113

might be suppressed by putting an older bundle in j;, even while a less old bundle is placed in
j2- This is accomplished by making the cut also dependent on the power peak in each node j.
Let

Py = max(i5, RS

be the power peak in node j in the current solution p, then define

I L M
A=Y GiiPl Y Y xiom (5.40)
j=1 {=1m=1
leading to the cut definition
i
> GijPf 2 2 om> AL, + 8 (5.41)

i=1 =1m=1
where & may be defined as in the previous cut types:
& =’ +¢° (5.42)

or alternatively the logarithmic variant like (5.39). Note that we have added the p-subscript to
in the definition of A3 i p- In the previous cuts, the coefficients in the left hand sides of the cuts
(5.32), (5.37) were independent of p. So the cuts obtained in different iterations for the same
node were linearly dependent and only either the strongest or the latest obtained cut had to be
used. For the current type of cuts (5.41) this is no longer true, and if we use the cuts for more
than one iteration, the different right hand sides of the subsequent iterations have to be saved
separately.

This raises also the question how long the cuts should be kept in the solution process. The
type 3 cut with its coefficients and right hand sides depending on the power peak in the current
solution is very dependent on that specific solution. The power peak in the neighboring nodes
also depends on nodes that are further away, and a high power peak in a neighboring node may
be caused by a still higher power peak in a neighbor of this neighbor. The cut is therefore valid
on a local scale only, that is on solutions that are not too different from the current solution. So,
although the cut is useful in order to escape from the current solution, it should be dropped after
one or two consecutive iterations.

5.4.4 Power peak strengthening.

The cut as described in this section is completely different from the three types of cuts described
until now. It works directly via the power peaking constraint and is a restriction imposed on £
and R instead of x. Recall the relaxed power peaking constraint (5.21):

fl im
I
>V

kRis < (1+¢). (5.43)

114 CHAPTER 5. IMPLEMENTATION ISSUES IN MIXED-INTEGER NONLINEAR OPTIMIZATION

Instead of penalizing the power peak when it exceeds the limit value, we may already start
penalizing at a lower value. If we know that the power peak is exceeded in node i in the current
solution, we may penalize the power peak in this node at a lower value, in order to drive the
optimization algorithm to a different solution. The power peaking constraint is to that end
replaced by

flim 1
RS
Jj=1
where
5 = oo + ¢t (5.45)

or the log-variant as (5.39).

5.4.5 Warm start after the addition of cuts

An important issue in all cut algorithms is the implementation of a good warm start, that is, the
implementation of a starting point for the next NLP after the problem is changed. The current
solution typically becomes infeasible when cuts are added. If we start with the current solution
or quite close to it, the algorithm may get stuck in a feasible solution that is somewhat different
from the previous solution in order to satisfy the cuts, but that is still in the attraction area of
the previous local optimum. In order to overcome that limitation, we designed two possible
alternative loading patterns. In our notation, we use the following starting patterns, where X is
the matrix x; g, i = 1,+++, [, €=1,---,L,m=1,---,M:

1. (U The current solution;
2. ¥@: The homogeneous core;

3.). The starting pattern obtained by model 1 as described in Section 5.1, with weight
factor o = 0.

4. ¥ As X(3), but now with weight factor ® = 1. Note that a pattern for 0 < ® < 1 can be
computed as ox® + (1 — @)x>).

5. x5),... x4tP): The P best (integer and non-integer) feasible patterns found until now,
where P is a model parameter that is determined by experimentation.

Warm start model |

In this model, a pattern is found as linear combination of ¥!) to x(that —if possible— satisfies
the cuts. If this is not possible then the violation of the cuts is minimized. This is accomplished

4+P)

5.4. CUTS 115

by solving the optimization problem:

44pP
maximize Z (Y,, p)—M- Z g2

%A0>0
4+P
subjectto X = Y A&P)
=1
asp "
z }‘-p =
p=1

(Value of cut¢) > (RHS of cutc) - &, ¢=1,---,C

where C is the number of cuts, the penalty parameter M is a big number, and y,, p=1,---,4+ P
are suitably chosen weights. As an alternative, one may use a sum of logarithms in the objective:

44P C
max1mlze Z Yplog(1+A,))—M- Y g,
%,A,0>0 =1 =1
resulting a more evenly distributed combination of the patterns 1,---,4 + P. The model is a

simple convex optimization problem with linear constraints, that can be solved in a fraction of
a second. Without the logarithmic term, the problem reduces to a simple quadratic optimization
(QP) problem.

Warm start model Il

In warm start model I, the number of patterns from which can be chosen is small, namely all
convex combinations of the patterns 1,---,4 + P. Therefore it occurs quite frequently that the
new solution is close to the old one. It may be more advantageous to have a pattern that strictly
satisfies the cuts, but which is not necessarily a combination of the given patterns. In the model
below the solution is forced to satisfy the cuts, and the objective is to minimize the (weighted)
deviation of the starting pattern from the given patterns, using a quadratic penalty function.

C 4P M (P) 2 _ Cl log
minimize ¥ YpZ 5 3 i = Figp)” — X log(Ce+2%)

£{>0 p— i=1{=1m= =1

s.t. zvixi,f,mzlv ézlv"‘7L1m=17"'7M
i=1

L M
2 in,[,m‘:lv l:1,"‘,l
=1m=1

(Value of cut¢) > (RHS of cut¢) + &, ¢c=1,---,C.

This model is again a simple convex minimization problem. It gives no solution if and only if
there is no solution satisfying all cuts. Depending on the values vy, and €l°2, the penalty term in
the objective drives the solution away from the boundary of the feasible area. This is especially
advantageous when the last added cuts do not cut off the attraction area of the last obtained local
optimum completely and 7 is relatively large. in that case a model without this penalty term
would very likely result in a solution at which the last added cut is active, and that is still in the

i it

116 CHAPTER 5. IMPLEMENTATION ISSUES IN MIXED-INTEGER NONLINEAR OPTIMIZATION

attraction area of the last obtained local optimum. This would resulting in a new solution that
is very close to the previous one, with an objective function that is worse. This was observed
quite frequently in experiments without this penalty term.

The relative weights y, should be determined by experience. On the one hand, one can argue
that the current solution is already a good local solution, and we want to stay close to it, so
v1 should be relatively large. The same reasoning applies to ¥s,---,Y44+.p. On the other hand,
starting closer to ¥), hence closer to the original starting point, enlarges the change to reach
another, hopefully better, local optimum. The patterns %2 and ¥ are usually bad, and the
corresponding y2 and y3 should be small or zero.

In the case both ¥(!) and x(* are feasible, we might like to have a ‘centered’ solution. This is
not achieved with the objective above, since whenever y; > ¥4 such a solution would always be
equal to x(). To avoid this, one might switch to a centered solution by using an interior point
method.

5.4.6 General issues regarding the cuts

There is a lot of freedom in the actual implementation of the cuts. First of all there is the choice
of the different of and & parameters. Suitable values should be found by experiments. The same
is true for the question whether or not to use the logarithmic variant of the definition of &. The
value of the o parameters should clearly be nonnegative, otherwise the cut would be weaker
for larger violations of the power peak. The value of € could be slightly negative when ol is
positive, denoting that the cut does only cut off the current solution if the power peak violation
PF is more than —g' /&',

Another variant is the application of cuts even when the current solution is feasible. This is
motivated by the fact that we may get a feasible local optimum from the optimization, where
it is likely that there exist better local optima. Assuming that better local optima have a still
lower power peak, or a power peak in another region of the core, cuts are applied to the node
with the highest power. Since there is less justification for the validity of this cut in subsequent
solutions, such a cut should only be kept for one or at most two iterations in the model.

For all types of cuts it can be advantageous to remove them after a few iterations. If they
were known to cut off only bad solutions, the cuts should stay in the optimization problem
forever. Due to the heuristic nature, however, it may happen that very good solutions, or the
global optimal solution, are cut off. It also may happen that cuts disconnect the feasible area.
Therefore, we keep them only a few iterations in the model. The precise number of iterations
to keep them in the core is again to be found by experiments.

Algorithm 5.5 stops if the number of iterations in which no improved solution is found ex-
ceeds some preset number. This number is set not too large (typically 3 or 4), since we found
that, once no improving solution is found in two or three iterations, the objective usually started
worsening in all subsequent iterations. The algorithm terminates immediately if no cuts could
be added in the current iteration, or if the solution resulting from the current iteration is exactly
the same as in the previous iteration. The latter case may happen when weak cut parameters are
used, so that the previous solution was not cut off from the search space.

5.5. TEST ENVIRONMENTS AND SOLVERS 17

As is shown, there is a lot of freedom in the actual implementation of the cuts. This is both an
advantage and a disadvantage. It is an advantage since there is a lot of freedom in selecting the
parameters so that the cut has the best effect. It is a disadvantage since it is difficult to determine
which choice of parameters is the best one in a specific situation.

5.5 Test environments and solvers

We employed a number of different solvers and test environments. The programming environ-
ments used are

e The high level modeling language GAMS;
e Programs in Fortran and C using optimization software libraries;

¢ A Graphical User Interface (GUT), developed in Delphi Pascal and linked with some of
our Fortran routines using Dynamic Link Libraries (DLL’s);

¢ The Standard Input Format (SIF) for nonlinear optimization models.

e Web-based optimization via the NEOS server.

The first three environments are described in more detail in the forthcoming subsections, while
a discussion of the latter two is postponed to Chapter 7.

We will give a brief overview of the solvers that were employed in the different environments.
The most important standard nonlinear optimization packages used are

e MINOSS (within GAMS) [37]. This solver is an implementation that uses the Reduced
Gradient method combined with a Quasi-Newton method for problems with linear con-
straints, and a Projected Lagrangian method for the nonlinear constraints.

e CONOPT and CONOPT?2 (as Fortran library and within GAMS) {27, 37]. Based on
the Generalized Reduced Gradient method. Temporarily switches to a Sequential Linear
Programming based method when the problem turns out to be almost linear in some part
of the feasible area.

e LANCELOT (via the SIF input format) [19]. Trust region implementation that uses the
Augmented Lagrangian for nonlinear constraints. Among other options, it is possible to
choose between a rectangular and an ellipsoidal trust region.

Besides these solvers we have also tested several other codes but the results were not worth
mentioning here. The mixed-integer optimization solvers used are

e CPLEX (linear; as C library and within GAMS) [37, 58]. It covers different variants of
the simplex method as well as an interior point method for the linear part, and a Branch-
and-Bound method for the integer part.

118 CHAPTER 5. IMPLEMENTATION ISSUES IN MIXED-INTEGER NONLINEAR OPTIMIZATION

e ZOOM (linear; within GAMS) [37]. Simplex implementation combined with a Branch-
and-Bound method. In general its results are inferior to that of CPLEX.

o DICOPT (nonlinear; within GAMS) [37]. This is an implementation of the Outer Ap-
proximation algorithm. For the MILP and NLP subproblems it uses the GAMS solvers
that are available (MINOSS or CONOPT for NLP, and CPLEX or ZOOM for MILP).

e The experimental MINLP code of Leyffer [73], combining an SQP algorithm and a
Branch-and-Bound algorithm.

As for the linear mixed-integer subproblems, we have almost always used the solver CPLEX
since it is superior to the version of ZOOM that we had available. The quality of CPLEX is
influenced by the parameter settings. It turns out that the standard Branch-and-Bound strategy
given by the default parameter settings can be improved for our problems by choosing alterna-
tive settings. This is discussed in more detail in the next chapter, where computational results
are presented.

In nonlinear optimization the situation is less clear. Although some solvers perform consis-
tently worse on our problems, other solvers, especially MINOS5 and CONOPT, compete with
each other. In the same way as was observed for CPLEX, playing around with different solver
settings influences the speed and results of the algorithms.

Rather different from all these nonlinear mixed-integer optimization packages are the global
optimization packages. Some tests were performed using the global optimization package «BB
[4], based on a global Branch-and-Bound method (Section 4.4.2). Two other candidate algo-
rithms for global optimization are the BARON algorithm [112], also based on a global Branch-
and-Bound method, and LGO [101], based on Lipschitzian optimization (Section 4.4.1). Lim-
ited experiments made by some of the authors of these packages indicate that only simple mod-
els, applied to small reactor cores, might possibly be solved with global optimization tech-
niques.

551 GAMS

The greatest advantage of using a high-level modeling language is the ability to implement
several modifications and adaptations of a standard model in a very short time. The user does
not have to care about array definitions, sparsity structures and the like. Another important
advantage is the automatic algebraic computation of first and second derivatives. Disadvantages
are the longer running times, since a model has to be recompiled into a low level language
readable by solver routines each time it has changed. Moreover, the communication with the
underlying solvers is performed via the file system of the computer. Finally, direct computations
implemented in the modeling language as needed for our fixed core evaluations are very slow.

The Outer Approximation solver DICOPT was only available within GAMS, so all tests with
DICOPT were performed within GAMS. In general we implemented most of our models and
model modifications the first time in GAMS. If this gave an indication that the variant might
be successful, we implemented it in Fortran for further testing. We also made a Branch-and-
Bound implementation in GAMS. This implementation has a few options that can be altered.

5.5. TEST ENVIRONMENTS AND SOLVERS 119

The most important one is the node selection strategy: it can perform a depth-first, breadth-first
or best-bound strategy. Although the running time in GAMS cannot be used as a performance
measure, the number of Branch-and-Bound nodes visited gives an indication of the efficiency
of the algorithm.

5.5.2 Fortran and C codes

Most of our dedicated implementations are written in Fortran. The choice for Fortran was made
since this language is adopted as a sort of standard in the Reactor Physics group of the Inter-
faculty Reactor Institute of the Delft University of Technology. We developed about 300kB of
source code, that covers all models that are described in this thesis. For the nonlinear optimiza-
tion, it invokes the NLP solver CONOPT as a subroutine library, for which our source code
provides the functions and first derivatives of all objective functions and constraints.

Many implementation issues can be governed by switches in an options file. In this way, many
variants can be tested and combined within the same program, without the need to recompile
the source code. Regarding the main model, the following settings and model variants are
supported and can be selected by setting parameters in the options file:

o the number T of time steps per cycle (Section 5.2.6);
¢ evenly distributed time steps or time steps that are distributed according to (5.28);
o central or forward time discretization (Section 5.2.6);
< standard model or inclusion of burnable poisons;
o standard model or the new model of Section 2.3.3;
Modules for the following solution methods and tools are available and can be invoked se-

quentially by the main program. The main model settings as specified in the options file are
completely transparent to all these tools.

o Starting point generating routine (Section 5.1). Additional settings in the options file:

© use starting point model 1, 2, a random starting point, or read the starting point from
a file.

¢ the parameter o in starting point model 1 and 2.

When using starting point model 1 or 2, the matrix ¢; ¢ is read from a separate file. Since
these two models are optimization problems on their own, they make a separate call to
CONOPT. Model 1 may be infeasible for some matrices c;;; in that case the program
automatically invokes model 2.

e Fixed core evaluation (Section 5.1.3). Also works for fractional loading patterns. Setting
in the options file:

120

CHAPTER 5. IMPLEMENTATION ISSUES IN MIXED-INTEGER NONLINEAR OPTIMIZATION

o the convergence tolerance €P°¥ for the power method;
¢ Nonlinear continuous optimization (CONOPT). Settings in the options file:
o the upper bound €'P and objective penalty 0 for the power peak relaxation variable
(Section 5.2.3);

© arelaxation parameter on the variable bounds (Section 5.2.1).
A separate options file is used to set CONOPT-specific options. When using the new
fractional model, a heuristic was implemented at the end of each iteration in CONOPT.
This new fractional model converges very slowly to an optimal solution. This is partly
due to the fact that a huge amount of variables must become zero in the optimal solution,
and they converge very slowly to this zero value. We therefore applied a heuristic, in
which those variables are manually set to zero when they are smaller than a specified
tolerance. This makes the current solution slightly infeasible. Of course, this causes

some extra restoration work in the next CONOPT iteration, but on average this heuristic
gave a significant improvement in the convergence of the algorithm.

¢ Rounding heuristic (Section 5.3.1). The number of computed rounded solutions for a
given fractional loading pattern is restricted to 1000.

o Pairwise interchange (Section 5.3.4). Setting in the options file:

o Start next iteration immediately when an improved solution is found, or evaluate all
neighbors and then select the best.

e Simulated annealing. This is only a draft quick-and-dirty implementation.

e Cut algorithm (Section 5.4). There are a lot of switches that can be set in the options file.
For each type of cuts we may set the following options:
< use this cut;
© apply this cut even when a solution is feasible;
o use the logarithmic variant like (5.35) instead of the standard variant like (5.33);
¢ remove an added cut after n iterations, where n is an integer value;
¢ the parameter o;
¢ the parameter €°.

Regarding the warm start after addition of cuts (Section 5.4.5), the following options can
be set.

o use model I, model II, the current point, or the original starting point, or do the
complete iteration with both models T and II. In the latter case the better of the two
is selected as the current solution ¥) in the next iteration;

o the maximum number P of best-known solutions that is used in model I or I;

¢ linear or logarithmic objective function in model I;

5.5. TEST ENVIRONMENTS AND SOLVERS 121

o the parameter £!°¢ in model I1;

Starting point models I and IT are solved using a separate call to the CONOPT optimizer.
The values 7y, are supplied via a separate file. A last parameter concerns the stopping
criterion of the cut algorithm (Section 5.4.6):

¢ The maximum number of iterations without improvement of the best solution, be-
fore the algorithm terminates.

The different modules are easily combined in one main program. The parameter file auto-
matically determines one physical model that is used in all algorithms. In this way, several
algorithmic variants can be developed in a relatively easy way. A test run results in a detailed
log file with the complete solution of each subalgorithm, and separate log files for the pairwise
interchange algorithm and the cutting plane algorithm. Furthermore, a one line summary con-
taining the parameter settings, the results and computation times for the different subalgorithms
is added to a solution summary file, and one line containing the optimal pattern itself to a pattern
summary file. In this way, we can collect the results of a number of test runs in table format
in a single summary file. If a number of tests is performed with different parameter settings or
different test sets, such a run is driven using a batch file (DOS) or a shell script (Unix). There
is also a randomization tool that generates options files in which the parameters are randomly
generated within given limits. The random seed that is used is also supplied to the main pro-
gram and saved in the one-line solution summaries-file. This random seed can be fed into the
randomization tool so that interesting random runs can be repeated.

Besides this Fortran system, we also have worked on a C implementation of the Branch-and-
Bound algorithm. Although the basic algorithm works on a small model, we did not extend this
to a fully working model for different reasons. The first and most important reason is that it
turned out that our basic model almost always returned integer or almost integer solutions, so
that rounding was sufficient to obtain integer solutions. Also, application of Branch-and-Bound
to this model always led either to a solution that was very close to the initial solution after
evaluation of very few nodes, or to very long running times with very much nodes evaluated
without improvement of the best-known objective function. Very frequently, child nodes gave a
better non-integer solution than their parent, until somewhere deep in the tree, all children turned
out to be infeasible. This sort of oddities make the Branch-and-Bound process very difficult.
Some improvement should be possible, but we decided to spent more time on improving the
nonlinear optimization part. With the recently developed model of Section 2.3.3, the situation
may be completely different, since now no longer the relaxed solutions are almost integer, and
the model, although still nonconvex, seems to have a more smooth objective function, offering
a better behavior for a Branch-and-Bound algorithm. Unfortunately, we did not have time to
work this out further.

5.5.3 Graphical user interface

At some stage during the research, we felt the desire to visualize the loading patterns and the
optimization process. This would lead to a better understanding of the problem. To that end,

122 CHAPTER 5. IMPLEMENTATION ISSUES IN MIXED-INTEGER NONLINEAR OPTIMIZATION

we developed a Graphical User Interface (GUI) for MS Windows, using the Delphi-Pascal
language. Screen dump and descriptions of the various properties are given in Figures 5.11
to 5.14 on pages 123 to 126. The GUI is coupled to our Fortran system using Dynamic Link
Libraries (DLL’s), so that it always uses the latest version of our Fortran implementations for
fixed core evaluation and Pairwise Interchange.

The GUI offers possibilities to change core configurations just by using drag and drop, where
the effect of such changes can immediately be viewed by parameter inspection and plotting
routines (see Figures 5.11 and 5.12). One may get a feeling of the shape of the objective
function and the power peaking constraints in the continuous optimization by interpolating two
loading patterns and evaluating the objective function in intermediate points (Figure 5.13). The
Pairwise Interchange optimization routine is coupled to the system. Due to intensive interaction
between the PI routine and the GUI, detailed graphical progress information is shown on the
screen during a PI run (Figure 5.14). We considered the possibility of coupling the nonlinear
optimization algorithm and the cut algorithm to the GUI in the same way. The major difficulty
here is how to deal with non integer solutions that occur in the various stages of these algorithms.
We developed a draft implementation that was able to plot fractional solutions in the main
window, but this did not give clear pictures and worked very slow. Due to time limitations and
other more stringent priorities we have not developed this feature further.

5.5. TEST ENVIRONMENTS AND SOLVERS 123

n

1.90093

Tiajectornies

FIGURE 5.11: Main window and the two drag and drop windows of our GUI ‘PlotCore’. Either the
whole core or an octant core is shown in the main window. The color coding indicates the ages of the
bundles. Optionally, the following numbers are shown in each node:

e The bundle number (upper left) in two possible formats, due to the octant symmetry;

o The trajectory and age (upper right), where the trajectory is indicated with a character;

e The normalized or unnormalized power peak. Power peaks exceeding the maximum allowed power
peak are colored in red.

The trajectory of a bundle in the core during its lifetime can be visualized by a line, as is shown in
the figure for trajectory C. In the Ages and Trajectories windows, two bundles can be interchanged by
dragging one bundle to the other, as shown in the Ages window. If the appropriate check box in the
evaluation window is selected (see Figure 5.12), the physical parameters are re-evaluated immediately
after each drag and drop action, and the power peak values are accordingly updated. In the Trajectories
window, one may specify the BP concentration in the fresh bundle of each trajectory. This concentration
is optionally used in the different core analysis routines.

It is possible to input core configurations manually, or they can be read from file. The various core
description formats as used by our GAMS programs and our Fortran programs are accepted, and cores
can also be saved in these formats. Pictures of the cores can be printed or saved either as bitmap files, or
as dedicated encapsulated postscript files.

124 CHAPTER 5. IMPLEMENTATION ISSUES IN MIXED-INTEGER NONLINEAR OPTIMIZATION

E valuation

0.91254

0.92267 0.91785

0.93341 0. 0.92695

0.96305 0.95930 0.94837 0.93678 0.52480 0.81257
1.04661 1.04096 1.03400 1.02608 1.01738 1.00803
0.96280 0.96119 0.95908 0.95656 0.95365 0.95039
0.96205 0.96709 0.96455 0.96154 0.95803 0.9542$

0.15434 0.14133

O 12161 A 11EAT

0.24119 0.19888 0.17237

N _1CO24 N 14380 no1anna

0.31682

FIGURE 5.12: Core evaluation window, and a plot showing the £ development in time for the different
nodes. One may choose between 10 available test data sets for the appropriate core geometry. Several
modeling options can be set, corresponding to the switches that in our Fortran system are set via the
options file. The core analysis is performed by the core evaluation routine Algorithm 5.1 from our
Fortran system, that is called using MS-Windows DLL files.

After the evaluation of the core, the various physical properties can be viewed for each node and each
time step. Plots can be made showing the development of these values for each node during the cycle, as
is shown for the k™-value. In this way, one may easily visualize the effect of different modeling options,

or for example the effect of different concentrations of BP.

5.5. TEST ENVIRONMENTS AND SOLVERS 125

Interpolate

nterpolate

C:\arie\Plotkern\cb31.lra
C:\arie\Plotkernicb

Ciharie\Plotkern\cb31.tra

FIGURE 5.13: Two examples of the interpolation tool in PlotCore. Given two cores with loading patterns
x! and x?, it evaluates a number of fractional solutions (1 —A)x! 4 Ax?, where A steps from O to 1. This
gives some feeling of the shape of the objective function and the power peaking constraints in the search
space for the continuous nonlinear optimization model. In the left example, where the basis model
is used, the k*T-plot suggests that the two integer patterns are local optimal solutions. In fact, such
an objective shape is obtained for many pairs of patterns, which suggests that there are many patterns
that are local optima. The example in the right window shows the same example solved with the new
fractional model as developed in Section 2.3.3. At A =0 and A = 1 all values are the same as for the
basic model, but otherwise the figures are very different. The integer patterns are no longer local optima.
Also note that all power peaking values are less than 1 for all A, while in the basic model, all fractional
patterns with A € [= 0.2;% 0.8] have too high power peak. For these reasons, better results are to be
expected with this model.

126 CHAPTER 5. IMPLEMENTATION ISSUES IN MIXED-INTEGER NONLINEAR OPTIMIZATION

 Paitwise Interchange P

¥ Best Infeas
4 Best Feas.

s e byt

FIGURE 5.14: Pairwise interchange con-
trol window and the corresponding four
cores in the main window. These cores
are updated during the iterations. When a
new parent is selected and a new main it-
eration is started, the color in the two it-
eration plots is changed. In the example,
the first feasible solution was found during
the fourth main iteration, immediately fol-
lowed by two subsequent improved feasi-
ble patterns, indicated with upright trian-
gles in the iteration plots. It is interesting
to see that both the average kT . and the
average maximal power peak are improv-
ing each time a new neighborhood is ex-
plored. Note also that this improvement for
kgff,c becomes less pronounced at each sub-
sequent change of neighborhood, since PI
starts with selecting that exchanges as new
parents that give the most improvement in
objective value.

7]
EEE

EEERD]

L
ENN

|mi
|2

Chapter 6

Computational results

This chapter contains results on the different models, solvers and algorithms that were discussed
in the previous chapters. We used a set of 40 different test problems that are described in Section
6.1. Resuits for different modeling variants and solvers for the basic model are presented in
Section 6.2. The results for the model with Burnable Poisons are discussed in Section 6.3. The
chapter ends with some summarizing and concluding remarks in Section 6.4.

Table 6.1 presents the different computer systems on which the different tests are performed,
and the different versions of compilers and software that were used. Unless stated explicitly,
the results presented in this chapter are obtained on the HP workstation.

Intel Pentium II PC HP9000C200 Cray J90SE
Processor P-11233 MHz PA-8200 200 MHz 10 CPU’s at 200MHz
Memory 64 MB 512MB 2048 MB
Op. System MS Windows 95/98" HP-UX B.10.20 Unicos 10.0.0.1
Compilers Lahey Fortran LF90 4.0 HP-UX Fortran 77 Cray CFY0 Fortran
Borland Delphi 4
Software GAMS 2.25.087 using GAMS 2.50.093 using
- DICOPT++ 4-4 - DICOPT++
HP-UX/9000-8-C
- CONOPT 2.040-017 - CONOPT 2.070A
-MINOS 5.3 - MINOS 5.4
- ZOOM-XMP 2.2 -ZOOM-XMP 2.2
-CPLEX 6.0
CONOPT 2.069A library CONOPT 2.066F library
CPLEX 6.0 library CPLEX 4.0 library

* Computation time statistics for Windows 95/98 are not accurate, since it is not possible to
measure the CPU time for each process separately.

TABLE 6.1: The various computing environments.

128 CHAPTER 6. COMPUTATIONAL RESULTS

6.1 The test sets

We used four different test core layouts, differing in the number of fuel positions in the core.
They are shown in Figure 6.1 on page 129. The core geometries are designed in such a way
that the number of fuel positions in an octant core is a multiple of four. In this way we can
restrict ourselves to equilibrium cycles where the four different age groups have equal size. For
each of the four core geometries, we have defined ten data sets, defining interaction probabilities
between fuel bundles, and parameters like the required power level, the cycle time and the power
peaking factor. Using more data sets is a good practice in testing algorithms, since dependence
of the results on peculiarities of one data set is reduced in this way.

The values of the parameters for the different test sets are given in Table 6.2. The values
in the node interaction matrix G; ; depend on the fast diffusion length Lt (see (2.10)), and the
geometrical dimensions of the nodes. Our method of computing the matrix G is described in
[40]. It is based on the approximation that the value G; ; is equal for any pair i, j with the same
relative distance in the core. The probabilities G; ; for a fixed node j are described with the
values g%, g'1, g'2, g?!, g?2 and g%, as shown in Figure 6.2. From these 6 parameters, the
whole matrix G can be computed. The values of g°,---, g% for all test sets are given in Table
6.3.

The ‘Huge’ test sets are to our knowledge larger then any existing PWR reactor core. The
computation times for the different algorithms for the Huge problems are very large. For these
reasons, the Huge test sets are only used in a few of the computational tests that are presented
in this chapter.

Table 6.4 shows the dimensions of the different MINLP models that are solved in this chapter
for all the test sets. These dimensions are based on the use of an octant core, where the diagonal
nodes are pairwise filled with the same bundle. The number of binary variables is not stated
explicitly in the table but is equal to 122 = 144 for the Small models, 282 = 784 for the Medium
models, 487 = 2304 for the Large models, and 76> = 5776 for the Huge models.

6.1. THE TEST SETS 129

BoC color coding:

[Fresh bundle

1 year old bundle

B 2 years old bundle 7
B 3 years old bundle 71[70]76

69| 68| 67| 66{75
65[64| 63| 62|61[75
60]59] 58| 57| 56| 551 54| 74|
5315251/ 50|49 48|47} 46| 74
45(44143|42| 41| 40(39| 38} 37} 73
36(35(34| 33} 32| 31} 30| 29| 28| 27| 26| 73
25024/23|22(21§20] 19| 18| 17] 16{ 1 5] 14]
13112) 11110] 9] 8] 7| 6| 5| 4| 3] 2

10 2] 3| 4 5| 6| 7| 8 9ft0]11|12[13] 14
g 15[16} 17| 18] 19| 20| 21 22| 23| 24| 25{ 26| 27
28(29}30] 31| 32) 33 34| 35| 36| 37| 38| 39
40{41|42[43|44|45|46|47|48|49
= = 50|51 52) 53| 54|55} 56{57| 58
g 59(60] 61 62| 63{ 641 65 66|
67|68 691 70(71(72
73] 74y 75| 76(77
78| 79| 80|
81

Small core Huge core

48]
44143(48
28 42(41]40{39(47|
25(24(28] 38[37(36|35]| 34{47
23|22|21{27 33| 32| 31|30} 29| 28| 46|
20{ 19/ 18] 17{ 16| 27(26| 25| 24(23] 22| 21| 20} 46|
15| 1411312411310 191817 16[15| 14| 13| 12| 11
Rl 7 6 S| 4] 3 10| 9| 8} 7| 6| 5| 4} 3{ 2
1] 2| 3| 4] 5| 6 7| 8 9] 1 4| S[6f 7t 8| 910|111
10| L1] 12§ 13 14/ 5] 16[17 - 12| 13[14§15 16| 17] 18[19]20{ 21
181920} 21{22|23 22|23|24)25/26|27|28)|29| 30
| 24| 25| 26|27 31|32|33| 34| 35|36(37
28|29 30| 38| 39|40/ 41j42|43
] 31 | 44(45)|46[47|48
- . 49| 50] 51
T - 5

Medium core Large core

FIGURE 6.1: The four different core layouts. The total volume of an octant core corresponds to a
multiple of four bundles. Diagonal positions are shared by two octants. To reduce the error due 1o octant
symmetry, we impose that two adjacent diagonal nodes must share the same bundle, ¢f. the numbering
in the upper left corner of each layout. The lower right corners show the numbering of the individual
nodes. The lower left corner shows an example bundle assignment, where the gray values represent the
ages of the bundles.

130 CHAPTER 6. COMPUTATIONAL RESULTS

Testset o kfresh P. cyc. time of flim
small I 6.0E-6 1.2 3640 3500 7.5E-4 20
3 70E-6 126 3800 3500 7.5E-4 1.8
24,5 60E-6 125 3640 350.0 75E-4 1.8
6-10 6.0E-6 125 3800 350.0 75E-4 18
medium all 6.0E-6 1.3 12000 350.0 75E4 175
large all 6.0E-6 12 12000 350.0 7.5E-4 19
hugeall 6.0E-6 1.2 20000 350.0 75E-4 1.8

TABLE 6.2: Parameter values for the different test sets. The values o and o in this table are not exactly
the values from (2.34) and (2.46), but they have still to be multiplied by F..

.003 |.007 | .008 | .0071.003

007|025 | 050|025 | 007

= =8 =
008 | .0501.600 | .050 | 008

007 | .0251.050 | 025 | .007

003 [.007] .008 | .007 |.003

FIGURE 6.2: Probabilities G; ; that neutrons produced in center node j are absorbed in surrounding
nodes i. Matrix G is determined by the values g°, g'!, g'2, g?!, g%? and g%°.

Test Small test sets Medium, Large and Huge test sets
set g0 g PE & &2 o & gl g2 P 2 e
nrt 0.684 00650 00140 0 0 0 0520 0.0620 0.0330 0.0080 0.0070 0.0030
2 0500 00800 00450 O 0 0 0520 0.0600 0.0350 0.0080 0.0070 0.0030
3 0500 00800 00450 O 0 0 0500 0.0650 0.0350 0.0080 0.0070 0.0030
4 0600 00500 0.0250 0.0080 0.0070 0.0030 0.480 0.0670 0.0380 0.0080 0.0070 0.0030
5 0560 00560 0.0290 0.0080 0.0070 0.0030 0.460 0.0700 0.0400 0.0080 0.0070 0.0030
6 0580 00530 0.0270 0.0080 0.0070 0.0030 0.520 0.0600 0.0350 0.0120 0.0050 0.0030
7 0510 00640 0.0310 00080 0.0070 0.0055 0510 00640 0.0310 0.0080 0.0070 0.0055
8 0500 0.0670 0.0340 0.0080 0.0070 0.0020 0.500 0.0670 0.0340 0.0080 0.0070 0.0020
9 0470 00700 0.0375 0.0080 0.0070 0.0030 0470 00700 0.0375 0.0080 0.0070 0.0030
10 0440 0.0750 0.0400 0.0080 0.0070 0.0030 0440 0.0750 0.0400 0.0080 0.0070 0.0030

TABLE 6.3: Elements of the G-matrix for the 10 data sets with different core geometries. Note that the
same g-values lead to different G-matrices in the different core geometries.

1
[sed
-

6.1. THE TEST SETS

*(£'9 uonoag) suosiod 9qrUING Yiim UOISU)X3 JY) 0} SIJaI
1opow gg ‘8¢ 23ed Jo jopowr 3y 0} S19JAI [OPOW “del] “y¢ | a5ed uo SUOIBINULIOJAI JY) 0} 1oJ31 NSUOD JIY+ pue sdg+ ‘[9pow 009y SULS) YL €9
JqBL P ‘O XLIPW UONOBISIUI SU) UI SOISZUOU QIOUI dI8 9I3) S0UIS ¢-] 1S UBL{) SOISZUOU SI0W JABY ()[-{ $198 153) [[eWS], "UONZIAIOSIP [eNUId pue
preao) Suisn uaym yoq ‘sdays awn (g pue ([‘9 J0J ‘S19S 159] PUE S[OPOL JUSISJJIP SY) I0] SOISZUOU PUR SJUTBNSUOD ‘SI[QELIEA JO ISQWINN [p"9 ATV

8¢ 8t 61 0 15U0d Py +
sdg +
.

0 1

T88YPY 9TL8EY PEEEL TIPOL TLTIT SL9O] CSIE0Y 9¢T00v $TSTI TBOEL TIVOI 6STL g
6616 IocRe | gdic 68081 : 6 s S
80VTEr 0€C6Ty €€9I1 TLIEL TEO8] 9E06 BESSOE +SL9 [9POJN distg
agny

8¢ 8¢ 61 0 nsuod oy +

sdg +

ool 0¥l O I

Co

96tPFL HHSOPL

Ooier

OIZLEL OPTSEL 099% 8¥9S 89L8

S5LS

0997 06t 9S85 PE6T

| oeeg

8809 bSEE

[SPOIN

960811

adae]
NSu0d Py +

8IHE

Ll

808T vivl

s

8L81

PEY0E 6651

wmp
D 6 0 o o ¢ 0 nsuod Py +

8ler 9y

9800 .) oI+ Qo

+
9Ty

vE101 v16S
Pyl 7889 TOE 896 80¥1 yTL vSSy TOEy TOE 8TV 88 j34 Olve 0LT€ TOE TLE ¥T9 81¢ [3pojA diseq
(pug
1wy MIo U3 ML) Mo WRD) MIo W) MIOJ W) Mo
ZNIN# ZNT# SNOD# SUVA# ZNIN# ZNI# SNOOJ# SUVA# ZN'IN# ZNI# SNOD# SUVA#
sdars awn g sdais awm g sdals awn 9

132 CHAPTER 6. COMPUTATIONAL RESULTS

6.2 Results for the basic models

In this section the results obtained with different models, different algorithms and different
solvers are presented and discussed. We start with results that are used to compare different
modeling variants. Based on these results, we compare the two most competitive solvers for the
nonlinear part of the problem in Section 6.2.2. In Section 6.2.3 the different settings of different
mixed-integer solution strategies are compared, and the best settings of the different strategies
are used for testing all the different algorithms thus far. The effects of the addition of cuts in
order to find improved solutions are discussed in Section 6.2.4.

6.2.1 Different modeling features and modeling variants

This section shows how the nonlinear optimization problem is effected by different extensions
and adaptations to the basic model. Most results in this section are obtained with the nonlinear
optimization package CONOPT, combined with our rounding procedure. In each test a certain
feature is evaluated, while all other settings are kept the same. In the text, we give a short
description of what is compared, together with a discussion of the results. The actual results,
together with an additional description of each test, are presented in the tables and figures.

6.2. RESULTS FOR THE BASIC MODELS 133

Starting point

In Section 5.1 we developed an algorithm for computing the starting point that depends on
a location matrix with binary components c; ¢, specifying whether location i is regarded as a
suitable candidate place for a bundle of age £. Also a parameter ® € [0, 1] has to be provided
specifying how close the starting point should follow the specification of ¢; g. Results for differ-
ent starting points ¢; ¢ and different values of ® are presented in Figure 6.3. From the results it
can be concluded that it is important to have an initial solution that possesses a ring structure. It
is also important to have a suitable large value for @, so that the starting point indeed resembles
the ring structure that was proposed by the ¢; ¢ matrix.

A striking result is that even for the bad c; ¢-matrix 5, the larger values of ® lead to better
results. In the forthcoming results in this chapter, we use always c¢; ¢-matrix number O with
o-values in the range [0.8,1.0].

1

0.998

e
e
&
*

R R ERE R BT
CoReOANTRRRRRDIP 422

0.994

0.992

Average K - (scaled) from 10 test sets

2
©
°

0.988
Init. pattern:

®w: 06 08 10 06 08 10 0O

2 2 3 3 3 4 4
6 08 10 06 08 10 06 08 10 06 08 1.0
Starting point

[wmAverage Small =1 Average Medium @ Average Large —Total Average]

FIGURE 6.3: Comparison of different starting points. The numbers 0 to 5 in the top row of the horizontal
axis labels correspond to different ¢; ;-matrices, ¢f. Section 5.1. Matrices 0 to 4 have more or less a ring
structure, matrix 5 is random. The starting point is computed using starting point model I, or if this is
infeasible, starting point model 11 is used. For each test set, the best result from all starting points is set
to 1, and the other results are scaled to this best solution. Infeasible solutions are given a k%fgc of 1. A
bar in the graph is the average scaled result for the 10 test sets of the corresponding problem size.

134 CHAPTER 6. COMPUTATIONAL RESULTS

Reformulations
In Table 6.5 on page 135, the effect of the following three reformulations is shown:

e Power peaking constraint relaxation ¢f. Section 5.2.3, with parameters €'? = 1.0 and
0=1.0;

o Addition of the linear constraints kffl < k,eff, t=1,---,T —1¢f Section 5.2.2.

o Addition of extra variables kE°C to eliminate trilinear terms, ¢f. Section 5.2.5.

The differences in results obtained from the different reformulations in Table 6.5 are quite small.
An indication about the differences is obtained by defining an average quality of the reformula-
tions as follows. For each test problem, the best objective value obtained for a test problem was
scaled to 1. The other results for this test problem were scaled according to this objective value,
resulting in a value slightly smaller than one (infeasibility is given a value 0). The average of
these scaled objective values per model is listed at the bottom of the table, together with the
number of problems in which the model gave the best objective value. For the computation
times a similar normalization was done. Here a reformulation is considered better if the average
normalized computation time is smaller.

No reformulation is always better than the others. The formulations without power peak
relaxation lead however too often to infeasibility, so relaxing the power peaking constraints is
necessary.

The effect of adding the linear constraints on k°f can be seen by comparing the second an
fourth model. The model ‘Both’ gives an almost negligible improvement in the average quality,
and a somewhat larger improvement of the computation time. The differences are so small,
however, that one hardly can conclude that these additional constraints are useful.

The kE°C model leads on average to a slightly worse objective function and a slightly better
computation time. We found that this model reformulation had different effect for different
solvers, as is shown in Figure 6.4 on page 136. For MINOSS5, the reduction of computation
time for the kE°C model is much more pronounced, especially for the larger problems. This can
be explained by the reduced number of nonzero’s in the kE°C model. The computation time
reduction becomes more pronounced for larger problems than for small problems, which is
consistent with the reduction in the number of nonzeros, ¢ Table 6.4. The results indicate that
CONOPT is more stable and faster on both models. Since for CONOPT the gain in computation
time is much less pronounced, while the quality slightly decreases (see Table 6.5), none of the
models is a clear winner. In further tests in this chapter, we used the model without KEoC
variables.

6.2. RESULTS FOR THE BASIC MODELS

kgf)(time (s)

or. Standard Ppeake T Both KEoC Standard Ppeak e k" Both k%€
small | 1009837 100883 1.00983"7 1.00832 1.00898° 1.0 110 1.0 43 10
2 L04711% 104320 1047117 1.04330 104860 5.6 39 57111 33

3 1.02033% 1.01917+ 1.02033" 1.01976% 1.01807* 11 [N 14 10

4 1.03929" 1.04269* 1.03929" 1.042731 1.04035 37 1.0 37 13 48

5 1.03963% L04045 1.03963" 1.04045 1.03952% 1.6 38 16 42 09

6 103317 103402 1.03317! 1.03402+ 1.03371% 1.4 L1 L4 1l 12

7 102682 1.02203 102682 1.02739 1.02566 76 425 76 1025 119

8 1.02938* 1.02931 1.02938" 1.02947 1.02771 6.6 46 66 91 S.1

9 1.02571% 102720 1.02571* 1.02198 1.02588 1.6 214 16 46 46

10 102415 102573 102415 102519 1.01817 7.6 54 16 413 49
medium | 1.034327 103489 1.034327 1.03514 1.03503 222 1338 223 502 918
2 1.03427° 1.03442 1.03427* 1.03441 1.03477 83.1 1858.1 827 451 378

3 1.03439° 103470 1.03439" 103470 1.03480 536 484 537 453 347

4 1.03342° 1.03385% 1.03342° 1.03385% 1.03390 528 153 526 154 391

S 1.03293" 103362 1.03293* 1.03362* 1.03339* 1169 207 1172 207 143

6 1.03522° 103526 1.03522* 1.03540 1.03485 493 1447 491 695 8736

7 1.03311° 1.03357 1.03311* 1.03357 1.03394 829 443 824 420 1949

8 1.03519* 1.0353¢ 103519t 1.03533 1.03503 259 467 257 480 612

9 1.03337° 1.03379 1.03337* 103379 1.03384 1430 569 1432 543 15920

10 1.03240* 103317 1.03240" 1.03317 1.03313* 670 547 669 540 145
large | 1047417 104730 1.047417 104729 1.04720 1558 3679 159.7 3729 1747
2 104728 104735 1.04728 1.04731 1.04734% 2710 357.7 2718 3392 910

3 104707 104702 104707 1.04704 1.04707 563.6 2939 5653 579.7 177.2

4 104667 104658 1.04667 1.04658% 1.04610% 4216 3380 4222 1596 105.1

S 1.04633 104639 1.04633 1.04638 1.04626' 3539 13001 3532 5327 1084

6 1.04738 1.04742 1.04738 1.04735 1.04723% 2709 3525 2700 10703 984

7 104654 1.04664 1.04654 1.04665 1.04659 3145 3438 3142 3849 160.0

8 1.04728 1.04707 1.04728 1.04707 1.04728 2437 3510 2433 296.6 2222

9 1.04645" 1.04663 1.04645" 1.04661% 1.04644 153.5 6274 153.0 1595 1615

10 1.04609 104617+ 1.04609 1.04617% 1.04603* 5199 1620 5255 1657 86.0
av. quality 0.63311 099952 0.63311 099953 0.99929 2348 4.890 2351 3.104 3.048
limes best 6 12 6 11 8 5 4 6 3 17

*=Feasible relaxed optimum found, but no feasible integer optimum found.
*=Relaxed optimum is integer.

Results are with DICOPT, using CONOPT as NLP solver and CPLEX with depth first branching as MILP solver.

TABLE 6.5: The effect of different model variants:

1. Standard: The basic model without modifications (except variable bounds).

2. Ppeak €: The basic model where the power peak constraint is relaxed with € ¢f.
Section 5.2.3, with parameters €"P = 1.0 and 6 = 1.0.

3. k. The basic model with addition of the linear constraints kST, <k 1 =1,--., T —1as
explained in Section 5.2.2.

4. Both: A combination of 2 and 3.

5. kE°C. The model of 4 with addition of extra variables kE°C to replace the trilinear terms by
bilinear terms, ¢f Section 5.2.5.

136 CHAPTER 6. COMPUTATIONAL RESULTS

Effect of keoc model

Keff(EoC)

10000

3 5
L L

2 6 8
L L L

OConopt "both' model W Conopt Keoc model @ Minos5 "both' model B Minos5 Keoc model

FIGURE 6.4: Comparison of the Basic model and the kE°C-model. Both are solved using CONOPT and
MINOSS. Results are for the continuous optimization only; the solution may be non-integer. Crosses in
the figure indicate that no solution was found within the iteration limit, due to convergence problems.

6.2. RESULTS FOR THE BASIC MODELS 137

Time discretization

As we have seen in Section 5.2.6, a finer time discretization, or the application of central dis-
cretization instead of forward discretization will lead to more accurate objective values for fixed
core evaluation. This does not imply that a better optimal solution will be found. In Figure 6.5
on page 137 we show the results of CONOPT followed by rounding with four different types
of discretization. Although there are some cases in which central discretization gives better
solutions, there are also cases where the opposite is true. For the further tests, we restricted
ourselves to the model with 6 time points and forward discretization. The effect on the solution
found is not dramatic, and the total testing time is reduced.

{00 Different time discretizations

1.002

0.998 i H]

0996 1§

Keff EoC Scaled to Forward 6 solution

0.994 -

1000

00

Time(s)

: i
9 10 1 2 3 4 5 6
L

o
ZN g
T
z

8
S S s M L L L Lt ZLE1LW
(OForward, 6 timesteps m Central, 6 timesteps
£ Forward, 10 timesteps o W Central, 10 timesteps

FIGURE 6.5: Conopt+Rounding algorithm with forward and central discretization using 6 and 10 time
steps per cycle, a total of four different cases. Solutions for the basis model for 30 test sets. Since
different time discretizations lead to different values of k5T . even for the same pattern, the value kg - at
the optimal pattern is recomputed using central time discretization and 10 time steps in all cases. The
objective values are scaled to the solution of forward time discretization with 6 time steps for each test
set.

138 CHAPTER 6. COMPUTATIONAL RESULTS

New fractional model

As is suggested several times in the previous chapters, the new model developed in Section
2.3.3 relieves some difficulties in nonlinear optimization, since the shape of the objective func-
tion becomes much more smooth. This is illustrated by Figure 5.13 on page 125, and by the
cover illustration of this thesis, which should be read as follows. The bottom plane is a two-
dimensional representation of (parts of) the search space. The circles are integral loading pat-
terns. A triangle between three circles contains all convex combinations of these three loading
patterns. The lower (dark) function is the objective function of the basic model, while the upper
(gray) one is the objective function of the new fractional model. It can be seen that, within this
subset of the search space, each integral loading pattern is a local optimal solution in the basic
model, hence the result is very dependent on the starting point. The objective function of the
new fractional model is much more smooth, and even when starting in some bad integral solu-
tion, the optimization may go away to the neighborhood of some other integral solution, or to a
fractional local optimal solution. Further, this picture demonstrates why the old model tends to
produce solutions with only a small number of non-integer variables while the new model tends
to give almost entirely fractional solution.

Although, due to time limitations, we did not have much opportunity for testing with this
model, results for the basic model with CONOPT + rounding are given in Table 6.6. As could
be expected, the number of non-binary values in the continuous optimum of the new model is
much larger than in the basic model. The rounded optimal loading patterns obtained with the
new model are almost always better than those obtained with the basic model. The price is a
significant increase in the computation time, that frequently supersedes the computation time
of the Pairwise Interchange algorithm. The largest part of this computation time is spent in
the first NLP, which is caused by the increased number of variables and constraints, and slow
convergence near the optimal points. This slow convergence is illustrated by Figure 6.6, where
for one test problem the objective function as function of the CONOPT iteration is shown. The
little peaks towards the end are slightly infeasible points, indicating that CONOPT has difficul-
ties in convergence. A possible way to work around this convergence problem is based on the
observation that, when the curve in Figure 6.6 starts flattening, many of the binary variables
that are zero in the final solution have already a very small value, while many of the binary
variables that should become one are already close to one. A rounding routine may be applied
that interrupts the NLP procedure as soon as the curve is ‘sufficiently flat’ during a number of
iterations. More research is needed to determine when and how this rounding routine should
interact with the NLP solver.

Several results in Table 6.6 are marked with @, indicating that rounding gave no integer so-
lution. This problem is not severe. Typically, the power peaking constraint is slightly exceeded
in the rounded solution, and a quick test showed that performing one PI iteration leads usually
very rapidly to a feasible solution. An alternative way to get a feasible solution is the addition
of Burnable Poison (Section 6.3).

6.2. RESULTS FOR THE BASIC MODELS

1.036

1.034]

1.032

1.03

Objective value

1.028

I ,O"\‘;O

FIGURE 6.6: Objective value as function

200

300

400

500 600

CONOPT iteration

700

139

of the iteration for the fractional model and test set Medium 3.

NLP optimum # Noninteger x # Rounded sol.s Rounding optimum Total time
or. Basic Frac Basic Frac Basic Frac Basic Frac Basic Frac
Small1 1.01072" 1.01167 0 19 1 18 1.01072 1.01082 1.7 213
2 1.04799% 1.04853 0 14 1 9 1.04799 1.04839 1.8 106
3 101681 1.02069 4 0 2 I 101500 1.02069 2.5 9.6
4 1.03832 1.04230 10 20 4 16 1.04024 1.04197 25 279
5 1.03959* 1.04039 0 16 | 2 103959 1.03712 2.0 8.5
6 103065 1.03407 8 4 4 2 1.03312 1.03407 29 148
7 102636 1.02793 8 14 4 9 1.02222 1.02785® 23 181
8 102885 1.02280" 4 97 2 1000 1.02764 1.02800 24 741
9 1.02601 1.02751 8 10 4 4 1.02759¢ 1.02749¢ 35 169
10 1.02484 1.02552 7 15 3 3 1.02490 1.02511 2.2 154
Medium 1 1.03383 1.03587 15 54 13 1000 1.03360 1.03460 29.7 1831.7
2 1.03474 103580 0 41 1 289 103474 1.03526¢ 34.5 17356
3 103222 103526 8 53 4 605 1.032049 1.03411 47.1 1496.6
4 1.0339 1.03471 4 47 2 492 103396 1.03419¢ 353 2084.8
5 103266 103417 4 44 2 345 1.03264 1.03303 324 16248
6 103490 103612 4 46 2 401 1.03494% 1.03452 4.1 17137
7 103307 1.03463 4 49 2 310 1.03384¢ 1.03409¢ 439 21679
8 1.03436 1.03581 4 52 2 378 103446 1.03519° 25.5 14559
9 1.03298 1.03456 4 39 2 165 1.03370¢ 1.03401 33.6 12835
10 1.03244 1.03372 7 40 3 264 103207 1.03341¢ 38.5 1599.3

*=Relaxed solution is infeasible.
* =Relaxed optimum is integer.
®=No feasible rounding found.

TABLE 6.6: Results of the new fractional model with Rounding algorithm. The column ‘Basic’ contains
the results for the basic model, the column ‘Frac’ shows the results for the new fractional algorithm. The
first columns give the objective value of the optimal solution of the continuous NLP. The column *# non-
integer x’ gives the number of x-variables in the solution that was non-integer. The next column shows
the number of roundings of the continuous optimum that were evaluated, and the rounding optimum is
the objective value of the best rounded pattern found. The maximum number of rounded solutions that
was evaluated was limited to 1000.

140 CHAPTER 6. COMPUTATIONAL RESULTS

Summary

It can be concluded from the different results obtained in this section that addition of problem-
specific features to the model is necessary to obtain good-quality solutions. In our case, this
denotes that ring-structured starting patterns and power peak relaxation were necessary to obtain
stable results. Other extensions such as the addition of the kE°C variables do not harm the
solution process, but are not of much use either. This last example further shows that the benefit
from a certain feature may depend on the specific nonlinear optimization algorithm as well. The
two most competitive NLP solvers are compared in more detail in the next section.

6.2.2 Nonlinear optimization solvers

From the nonlinear optimization packages that we tested during our research, the two solvers
CONOPT and MINOSS5 were the most competitive solvers for the continuous relaxations of the
basic model. These two solvers are compared in Table 6.7. For all listed test problems, the
computation time of CONOPT was smaller than the computation time of MINOSS. For the
small problems, the quality of the results from both solvers is comparable. For larger problems,
the solution quality of CONOPT is on average better. CONOPT is also more stable in the sense
that it more often finds a feasible solution (in the test of Table 6.7 it always returns a feasible
solution, but this is dependent on the model settings). In all other tests, we therefore restricted
ourselves to the solver CONOPT. It should be noted that the CONOPT version used within
GAMS is more recent than the callable library version that is used in the rounding algorithm
used in this chapter (see Table 6.1), and we found that this older version performed slightly
worse on our problems. We will come back to this in the discussion of Table 6.8.

Some other solvers gave much worse results and are only discussed in Chapter 7.

Small problems Medium problems Large problems
or. kgﬁc time (s) I(}:;'Zc time (s) Icﬁ-r,[(- time (s)
CPT MNS5 C M CPT MNS C M CPT MN5 C M

1.00802 1.00958" 1.6 20 103514 1.03300 268 1132 1.04730 1.047217 1915 1229.8

|

2 1.04552 1.04800 0.7 20 1.03440 103413 20.2 1120 104731 1.04700 171.6 11649
3 1.019767 1.02021% 1.2 2.3 103471 103453 188 1530 1.04706 1.04685" 166.0 1539.3
4 1.04273% 1.04043 1.2 3.8 1.03385t 1.12457* 133 160.6 1.04658" 1.04637 143.8 1060.2
5 104009 0.90094* 0.7 512 1.03362% 081000 18.1 1554 1.04638 1.04623 170.0 1551.9
6 1.03402" 1.03322+ 0.9 35 103532 1.03473 187 88.6 1.04740 1.04744 159.4 1283.4
7 1.02639 102735t 1.1 25 103354 1.03340 16.7 121.7 104665 1.04655 226.9 1086.9
8 1.02950 1.02955% 1.0 24 103533 1.03474 235 2449 1.04707 104725 175.8 12484
9 1.02683 1.02624 0.9 27 103372 1.03349 21.0 1409 1.046617 1.04647 147.2 14935

10 1.02470 1.02486 0.9 26 103317 1.03256 317 1244 1.04617T 1.045% 148.7 14639
*=No feasible solution found.
*=Relaxed optimum is integer.

TABLE 6.7: CONOPT vs. MINOSS. Only the optimal solution value of the continuous optimization is
reported. The test is performed by using the basic model within the modeling language GAMS.

6.2.3 Mixed-integer solvers

In Section 5.3, four different solution strategies were discussed for the integer part: rounding,
outer approximation (OA), Branch-and-Bound and pairwise interchange (PI). Our quick and

6.2. RESULTS FOR THE BASIC MODELS 141

simple Branch-and-Bound implementation did not give useful results for the basic model, as
is already discussed in Section 5.3.3. The other three algorithms are compared in the current
section. The OA algorithm is tested using the package DICOPT, using the mixed-integer linear
optimization (MILP) solver CPLEX (that performed much better on our problem than the solver
ZOOM-XMP). We compare different settings of the CPLEX solver. Next, we compare different
variants of our PI implementation. Finally, the different algorithms and their combinations are
compared to each other.

DICOPT

When using DICOPT, it occurred quite frequently that the MILP subproblems took an extraor-
dinary amount of time. In order to overcome that problem, we tested different CPLEX settings
for node selection and branching. Since our nonlinear problem has many local optima, it may
be expected that the linear problems have multiple integer solutions with roughly the same
objective value. The standard best bound node selection may therefore stay a long time in
Branch-and-Bound nodes at a high level. An alternative choice is the use of depth first node
selection.

After choosing a node, a variable has to be selected. CPLEX contains a switch to recognize
so-called Special Ordered Sets (SOS-variables) and to treat them in a dedicated way. Our binary
variables are SOS-variables because all x-variables in a node have the property that exactly one
of them is one, the others are zero, hence we tested this SOS switch.

The variable selection is followed by the choice whether to evaluate first the rounding up or
down. In the default setting, CPLEX uses a heuristic to decide. Since we know that branching
an assignment variable to one immediately fixes all other variables in the same row and column
to zero, we tested whether forcing branch up speeds up the optimization.

Different CPLEX settings in DICOPT

.05 g o 1000+ -
1.04+——] — =
— Q
S g 100
§1.03 —A =
&= =%
2 £
1.02— Q
I I (SRRT
101 — - I §
I " A
m.m ».<| il 1A l
S1 s8 S9 s10 S1
mdepth first adepth first branch up wmdefaults 0scansos
_lgepth first scansos branch up @depth first scansos mscansos branch up Edepth first branch down

FIGURE 6.7: DICOPT, basic model, CONOPT for NLP, different CPLEX settings, small model. In
model 3, 4 and 6 the NLP gave already an integer solution, and CPLEX was not invoked. A k&' -value
of 1.001 indicates that no integer solution was found, or the computation time exceeded 1100 seconds.

142 CHAPTER 6. COMPUTATIONAL RESULTS

The results for different CPLEX solver settings are shown in Figure 6.7. Since these tests are
time-consuming for the larger problems, results are only shown for the small test problems. As
can be seen, the Depth first with default branching and Depth first combined with branch up,
are the only two settings that lead to an integer solution in less than 1000 seconds in all cases,
and there is very little difference between these two settings. In our further computations with
DICOPT, we choose to use the Depth first setting with default branching.

Pairwise Interchange

In Figure 6.8 on page 143 two modifications of the standard PI are tested. The first one is our
extension where the search continuous with the best-found infeasible solution as a parent, when
no improving feasible pattern can be found. The second modification is the immediate selec-
tion of a new parent as soon as an improving solution is found. This last modification should
be implemented with caution, since the order in which the neighbors are evaluated becomes
important. We had all nodes in the core numbered from 1 to 1, and all neighbors (swaps of two
bundles) were evaluated in the order (1,2),(1,3),---(1,1),(2,3),---,(2,1), -+ ,(I—1,I). Now
suppose that the neighborhood starts with swap (1,2) each time that an improvement is found
and consequently the parent is updated. This means that there are lots of local improvements
involving the lower-numbered bundles, leading to slow convergence. Each swap between two
high-numbered nodes immediately causes a number of local swaps in the low-numbered bun-
dles. As a better alternative we did not reset the current swap to (1,2) after an improvement was
made, but we continued with the next swap that was not yet evaluated, and after swap (I —1,1)
we continued with swap (1,2).

By comparing the first and third algorithm from Figure 6.8 we see that it occasionally hap-
pens that immediate selection of a new parent leads to better solutions. Certainly this algorithm
is much faster, although on average the solution quality is poorer. The algorithm with infeasi-
ble parent selection is by definition at least as good as the standard algorithm. For the small
problems it gives much more improvement than for the larger problems. This can be explained
because there are much less possible neighbors in the smaller problems, and also the influence
of one exchange on the objective and on the feasibility is larger. The change of getting stuck
in a local optimal solution for the standard problem is therefore much larger on the small prob-
lems. Also for the larger problems, the solution is often improved, with a reasonable increase
of computation time.

6.2. RESULTS FOR THE BASIC MODELS

keff(EoC) (Scaled)

0.997 A

0.996

1000000

Pl algorithms

0.999 4

0.998 -

100000

10000 -

Evaluations

1000

100

[72]

W
ww B
w s B
“ v

e TR

2 3 4 5 6 7 8 9 1 8
L

6 7 8 9 101 1.2 3 4 5 6 7 9
S$ S SSSMMMMMMMMMMLLLLTLLL L L
~-Standard P| &inFeasible Pl MImm.parent ®Imm.par t Infeasible

143

FIGURE 6.8: Results for different settings of the PI algorithm. The objective values of the first algorithm
are scaled to 1, the others are scaled with respect to the first algorithm. Results are for the basic model
with T = 6, forward discretization.

frotiths:

144 CHAPTER 6. COMPUTATIONAL RESULTS

Comparing the different algorithms.

Six interesting algorithms are compared to each other in Table 6.8 on page 145. In this test,
the best settings for the different algorithms that were found in the previous sections were
used. Besides four basic algorithms we also use two algorithms (CRP and CRPR) where the
best solution returned by the rounding algorithm is used as starting point for PI. This test was
performed not only for the Small, Medium and Large test sets, but also for the Huge test sets.
From these results we can make some observations:

1. The results of the relatively simple CR algorithm are competitive with the results from
the more advanced DC algorithm. This may be due to the problem structure, where many
NLP solutions are (almost) integer.

2. In some cases, the first NLP problem in DC returned immediately an integer solution
(indicated with). One might spot that in such a case, CR should return the same value,
since the first NLP is the same. The reason for this difference is that DC is performed
under the modeling language GAMS, where we could use a newer version of CONOPT.
Apparently this CONOPT version is slightly more robust for our problem.

3. The results of CR and DC without PI are on average slightly worse than PI results, but they
are obtained much faster. Especially CR is very fast and robust in time. In five cases, it did
not find a feasible integer solution, but in those cases it tumed out that evaluating a few
(PI)-neighbors lead to a feasible solution. For the Large and Huge cases it always returns
a feasible solution in very moderate time. For these cases the problem becomes more
‘continuous’, change of one bundle has less influence, hence the objective and power
peaking functions becomes more ‘smooth’, which improves the behaviour of the NLP
algorithm.

4. Combination of CR with PI or PIR leads in all cases to improvement of the CR solution.
The computation time is for the Small, Medium and Large test problems on average
three-quarters of the solution time of the PI and PIR algorithm started from an arbitrary
point.

5. PI with immediate parent selection after improvement (PIR resp. CRPR) is in almost
all cases faster than a complete PI (PI resp. CRP), while the solution quality stays very
reasonable.

6. Especially the CRPR algorithm has a good trade-off between on the one hand good quality
solutions and on the other hand very reasonable solution times. Only for the Huge cases,
it sometimes takes too much time.

7. The larger the problems, less difference in solution quality between the algorithms, and
the larger the differences in solution time.

6.2. RESULTS FOR THE BASIC MODELS 145

ff

Kgoe time ()

nr. DC CR CRP CRPR PI PIR DC CR CRP CRPR Pl PR
small 1 1.00832 1.01072 LO1130 1.01130 1.01114 101118 48 17 75 14 116 (22
2 104330 1.04799 104844 1.04844 1.04848 1.04846 77 18 66 87 121 142
3 1.01976% 1.01500 1.02069 1.0206%9 1.02069 1.02069 1.4 2.5 8.4 6.6 164 14.7
4 1.04273% 1.04024 1.04275 1.04275 1.04275 1.04275 1.3 2.5 13.8 73 14.0 8.8
5 104045 103959 1.03974 1.03974 1.03974 1.03975 42 20 53 54 316 162
6 1.034027 1.03312 1.03407 1.03407 1.03407 1.03407 1.1 29 7.2 9.4 13.8 8.7
7 102739 102222 1.02753 1.02748 102682 1.02682 1025 23 135 9.1 234 83
8 1.02047 102764 1.02975 1.02970 1.02888 1.02975 91 24 127 113 240 189
9 1.02198 1.02759* 1.02703 1.02698 1.02703 1.02591 4.6 35 13.4 10.3 216 17.8
10 1.02519 1.02490 1.02545 1.02530 1.02509 1.02475 47.3 2.2 89 90 19.1 11.2
medium 1 1.03514 103360 1.03532 1.03519 1.03545 1.03546 50.2 29.7 3419 1549 605.8 547.0
2 103441 1.03474 1.03528 1.03525 1.03531 1.03522 451 345 5270 2153 5569 5814
3 103470 103204 103486 1.03489 103493 1.03490 453 470 4117 2477 6666 347.7
4 1.03385% 1.03396 103423 1.03437 1.03429 1.03433 154 353 2117 2326 516.8 651.7
5 1.03362% 1.03264 1.03373 1.03373 1.03380 1.03376 20.7 324 3105 1735 455.0 231.7
6 1.03540 1.03494* 1.03555 1.03554 1.03558 1.03543 69.5 441 4304 1841 4845 4963
7 103357 1.03384* 1.03347 1.03395 103411 1.03396 420 439 4603 2325 6443 6855
8 1.03533 1.03446 1.03544 1.03535 1.03549 1.03533 48.0 255 5442 1117 553.7 544.2
9 1.03379 1.03370* 1.03350 1.03418 1.03413 1.03406 54.3 336 423.0 506.6 612.1 174.2
10 1.03317 1.03207 1.03330 1.03339 1.03339 1.03334 54.0 38.5 581.1 1817 502.2 312.7

large 1 1.04729 1.04719 1.04762 1.04759 1.04762 1.04754 371.8 2483 4107.8 35632 121052 2008.6

2 1.04731 1.04728 1.04753 1.04754 1.04751 1.04751 3392 2203 5281.8 35852 95169 64943
104704 1.04681 1.04726 1.04723 1.04724 1.04723 579.7 2309 47694 14632 9234.5 1861.6
1.046587 1.04660 1.04687 1.04686 [.04684 1.04685 1596 207.6 68250 24513 112408 2619.7
1.04638 1.04624 1.04651 1.04652 1.04650 1.04651 5327 2347 6217.0 43530 122823 2787.8
1.04735 1.04739 1.04768 1.04766 1.04767 1.04767 10703 259.4 8573.1 3635.5 11561.9 3887.8
1.04665 1.04645 1.04681 1.04680 1.04680 1.04683 3849 1887 73287 3601.6 96534 27110
1.04707 1.04697 1.04763 1.04760 1.04761 1.04761 296.6 241.8 107194 15705 14159.3 2495.0
1.04661% 1.04663 104677 1.04677 1.04668 1.04668 1595 219.1 41123 26427 132265 2309.6
10 1.04617' 104601 1.04627 1.04627 1.04625 1.04622 165.7 2321 8834.2 44138 10940.2 21524

O 0NNt AW

huge 1 1.04436 104452 1.04452 1.04452 1.04452 1418.5 47377.8 24628.4 88776.6 26289.1
2 1.04429 1.04442 1.04443 1.04448 1.04446 12554 34242.0 19548.4 59937.9 19877.9
3 1.04410 1.04425 1.04426 1.04431 1.04428 1396.6 27822.7 27391.7 63868.8 17128.4
4 1.04378 1.04400 1.04395 1.04401 1.04400 1260.6 33299.2 168014 73687.6 25018.6
5 1.04350 104378 1.04373 1.04377 1.04370 1386.7 46296.1 7328.7 65931.6 23561.0
6 1.04441 1.04448 1.04450 1.04459 1.04452 13764 217719 91744 920123 34262.6
7 1.04369 1.04383 1.04390 1.04396 1.04396 1408.4 39347.0 30963.8 97230.8 25647.1
8 1.04435 104454 1.04442 1.04454 1.04448 12834 46838.3 8006.1 76082.6 27880.0
9 1.04372 1.04388 1.04395 1.04395 1.04392 1482.1 388398 21569.1 93739.8 25952.1
10 1.04331 1.04351 1.04355 1.04357 1.04359 1625.2 265092 9503.0 80643.1 27218.1
* = Feasible relaxed optimum found, but no feasible intcger optimum found.
+ = Relaxed opti is i diately integer.

Boldface objective = Best objective value.

Underlined objective = Within 10~3 from best objective value.

Boldface time = Best time from the four rightmost columns.

Underlined time = Within 10% from the best time in the four rightmost columns.

TABLE 6.8: Results on the basic model with five different algorithms.

¢ DC = DICOPT, using CONOPT as NLP solver and CPLEX with depth first strategy as MILP solver;
e CR = CONOPT as NLP solver, followed by a rounding procedure;

¢ CRP = CR, followed by a PI algorithmn (see below) starting from the rounding optimum;

o CRPR = CR, followed by a PIR algorithm (see below) starting from the rounding optimum;

e PI = Pairwise Interchange, in our improved form that explores the best infeasible pattern when no
feasible iteration can be made;

e PIR = Pairwise Interchange where a new iteration is started as soon as a neighbor is computed with
improved objective value.

146 CHAPTER 6. COMPUTATIONAL RESULTS

6.2.4 Cuts

Different types of cuts are described in Section 5.4. In order to test the different cuts and
combinations of cuts, we created a script around our program that generated random settings
(within pre-specified ranges) for the different cut parameters that are specified in Section 5.5.2
on page 120. Based on experience with smaller test runs for each cut separately, upper and
lower bounds on the o and €' were set for the different types of cuts. The parameters of the
initial starting value (o and starting pattern 1 or 2, see Section 5.1) were also varied in the
different tests.

The tests were executed with the basic model for all 30 Small, Medium and Large test prob-
lems. For each test set, 200 test runs were performed. The results were compared to the results
of the rounding algorithm without cuts, applied to the same basic model. The results show that
in most of the cases, the cuts did not help in escaping from local optimal solutions. In many
cases, either the cut algorithm could not escape from the attraction area of the previous local
optimum, or it found a different local optimum with a worse objective value. Only in 10 from
the 30 test sets, there were a few test runs where the cuts lead to a better optimal solution.
The best of these solutions are given in Figure 6.9. The left bar is the solution of the basic
model without cuts. The middle column is the best solution out of the 200 test runs of the cut
algorithm, and the right bar is the solution obtained by PI. The solution values are scaled and
are relative to the solution of the best cut solution. As can be seen, the extra time required for
the cut algorithm compared to the rounding algorithm is limited. This is because the first NLP
optimization without cuts takes much time, while the subsequent re-optimizations start already
from a point that is relatively close to the new optimum. In three instances, the cut solution
beats the PI solution with much more limited solution time.

Unfortunately, the results shown in Figure 6.9 for the different test sets were obtained by
completely different parameter settings for the cuts. We were not able to explain these results.
From a statistical view, a few vague relations could be found by viewing the correlation between
the setting of one or two variables and the solution values obtained in the different test runs. This
gave relations like:

e Settings where the sum of o! and €! is around 0.2 - 0.3 gave in all but a few cases better
results than settings where this sum was lower than 0.2 or above 0.3;

o The logarithmic variant of cut 2 gave on average better results than the linear variant;

e The most good results are obtained when o2 € [0.3,0.4] and €2 is about 0.4 — o,

The general conclusion is however that it seldom pays off to implement the cuts for the basic
model, although compared to PI, computation times are still very moderate and solutions are
comparable or only slightly worse. These conclusions still tell nothing about the new fractional
model, but testing was impossible due to time limitations. Since the objective function in the
fractional model is much more smooth, it is to be expected that the attraction areas of the local
maxima are larger, hence it may be more difficult to escape from them by simple addition of the
cuts.

6.3. RESULTS FOR THE BP MODEL 147

1.001 o 100000 T

0.999

0.998

KT - (scaled)

0.997 1}

0.996 3

Nt 8 R : | i
S5 S9 S10 M1 M3 M5 M7 M10 L7 L10
Test set Test set

[B Rounding only W Best solution with cuts added #l Pairwise Interchange I

FIGURE 6.9: Results for Cuts.

6.3 Results for the BP model

The addition of cuts, the choice of the starting point, even the difference between forward and
central discretization, are adjustments of the mathematical optimization model and algorithm
of the same physical problem, with the only purpose of getting improved results for the same
optimization problem. The addition of burnable poisons (BP) is an extension of the physical
problem itself. The solution space of the optimization problem itself is enhanced, and if a better
optimum is found by addition of BP, this is not a better local optimum of the basic model, but
it is a solution that could never be obtained by using the basic model. If the BP model finds a
better solution than the basic model, while no BP is actually used in this solution, then this is
also a better local solution in the basic model. Another algorithm might have found this solution
by the basic model as well.

We have implemented the BP model for the rounding algorithm only. It is not obvious at
all how the addition of BP should be modeled in the PI algorithm. Since we use a model of
continuously variable BP concentrations, the most logical way is to include BP optimization
in a PI algorithm by performing a nonlinear optimization for fixed patterns to find the optimal
BP distribution for these specific loading patterns. One possibility is to start such a NLP in
each neighbor. This would lead to unacceptably large solution times. Moreover, the initial
iterations are likely to be in a worse region of the solution space, where addition of BP still
leads to solutions that are worse than the best solution in other regions of the search space, so
that initially, these computations are wasted. Another choice is to do the PI without considering
BP, and to do a separate BP optimization with NLP only for the final pattern. In this way,
we may overlook other patterns that are not so good or infeasible without BP, but that would
have a better objective value when BP was added. An intermediate choice (probably the most
promising) would be to relax the power peaking constraints in the PI algorithm and run a NLP
with the actual power peaking constraints to find an optimal BP concentration for the subsequent
parent nodes only. This would again give a large increase in solution time, especially compared
to the rounding algorithm. It is far more elegant to include BP optimization in mixed-integer

148 CHAPTER 6. COMPUTATIONAL RESULTS

nonlinear optimization, where it can be included in a natural manner.

When using the BP model, it is important to consider the length of the time steps. Since the
rate of change of the BP concentration decreases very fast shortly after BoC, too long time steps
may cause inaccuracy and instability in the results. Using the assumptions from Section 5.2.6,
the requirement

I
L A"
A< o fim

(6.1)

is a minimum requirement to obtain at least stable solutions for patterns that satisfy the power
peaking constraints. For the different test data sets, from Table 6.2, (6.1) leads to the following
values:
Small: A <23
Medium: A, <17
Large: A <28
Huge: A <28

(6.2)

In order to obtain stable solutions for patterns that do exceed the power peaking constraints,
the A;-values must still be considerably smaller. Seeing the effective A;-values in Table 6.9, it
seems to be a reasonable choice to have central discretization with uneven grid points and about
12 time steps.

Type of Number of time steps

discretization 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
Forwardeven 70.0 58.3 50.0 43.7 388 35.0 31.8 29.1 269 250 233 21.8 205 194 184
Forward uneven 35.0 29.1 25.0 21.8 194 175 159 145 134 125 116 109 102 97 92
Central even 350 29.1 250 21.8 194 17.5 159 14.5 134 125 11.6 109 102 97 9.2
Central uneven 17.5 145 125 109 97 87 79 72 67 62 58 54 51 48 46

TABLE 6.9: Effective value of A, when using different types of discretization with different number of
time steps. Unevenly distributed time steps are distributed following (5.28). Here the smallest A; at BoC
is given.

In Figure 6.10 the results are shown for the rounding algorithm. The first bar shows the
result for the basic model. The second bar shows the resuit for the BP model. In this case, the
relaxed NLP problem is solved for the BP model, followed by rounding, where in each rounded
solution, an NLP is solved to find the optimal BP distribution to the rounded solution. The third
algorithm starts with the solution of the relaxed NLP problem without use of BP. In this NLP, the
power peak relaxation as used in all models (see Section 5.2.3) is not penalized in the objective,
so that in the optimal solution the power peaking constraints may be slightly violated. Starting
from this NLP solution, another NLP optimization is started. In this NLP model, the power
peaking relaxation is penalized as usual, and BP is included. This second NLP is followed by
a rounding procedure, with a nonlinear optimization in each rounded solution to optimize the
BP concentration. In the graph with results, some bars are dashed; in those cases the optimal
solution of the BP algorithm does not include BP’s.

6.3. RESULTS FOR THE BP MODEL

0.9991

(=]

o

©O

©
)

0.997

Keff(EoC) (scaled)

0.996

149

o
ey

0.995+

ey

e

GHRIAHIRAE

5 6 7 8 9
MMMILLLLZLLLLLL

M BP Two Phase

BJRelaxed problem and rounding infeasible

|

5

M

{ X Rounding infeasible, relaxed solution is shown
* No BP is added in optimal solution

10000

FIGURE 6.10: Results with and without use of BP.

s

150 CHAPTER 6. COMPUTATIONAL RESULTS

The table shows some striking results. In one of the Small cases, three Medium cases and one
Large case, the best integer solution is returned by the algorithm without BP. Clearly, the other
algorithms got trapped into a local optimum. Another observation is that in relatively many
cases, the third algorithm ends in a fractional solution with no feasible rounding. Apparently,
the initial relaxation of the power peaking constraints leads to solutions where the power peak
is so much violated, that it cannot be repaired by the addition of BP only.

A third striking result is that the BP algorithms give several times solutions where no BP
is added, but that have a better objective value than the solution of the first algorithm. These
improved solutions are also feasible solutions of the first model, which means that local optima
are found that were not found by solving the basic model. This result is a bit in contrast with the
earlier observation that the optimal solutions of the BP-algorithms are sometimes worse than
the solutions of the original model. This may be explained by two forces that act against each
other. On the one hand, the addition of BP leads to an increased feasible area. By adding BP in
intermediate solutions, the BP model may reach solutions in some parts of the feasible region
that could not be reached by the basic model. On the other hand, the increasing nonconvexity
introduced by the BP equations may lead to an increasing number of local optimal solutions
where the solver can get stuck.

The fourth, probably most important observation is that the solutions are more stable for the
larger problems, and that for the large cores the BP models consistently outperform the results
of the basic model without BP. Further, BP is used in all of these solutions. In the small test
cores, the placement of one or two bundles has much influence on the maximal power peak and
the objective function of the core. The violation of the power peaking constraints caused by a
single bundle at a ‘wrong’ position is so strong that it cannot be corrected by addition of BP.
For the larger cores, the placement of one bundle has much less influence on the total power
distribution, and hence addition of BP may better damp out this power peak. These results
also underline the observation that our MINLP approach proofs its real power on large size
problems. The larger the problems are, the more stable are the results.

6.4 Conclusion

The results from this chapter show that it is not a trivial task to design an optimization algorithm
for a complex problem like the loading pattern optimization problem. Neighborhood search is
relatively simple, gives pretty good solutions but takes very much time. Moreover it cannot
be extended to problems where continuous optimization is involved, like the continuous BP
optimization!. The alternative that we investigated is using nonlinear optimization. From the
result in this chapter, it turns out that in that case good modeling and careful implementation of
the algorithms is a must. In Table 6.10 it is shown what we have gained with all modifications
in this chapter, by comparing the result from the random starting point nr. 5 from Figure 6.3,
the result of the CRPR algorithm, and the best result that we ever obtained by any algorithm for
the different problems (translated to the 6-point forward discretized model). Actually, the first
column is even not where we really started. This starting point has meaningful values for the

'We assume that the BP concentration can be chosen arbitrarily (within some bounds). This is not true for all
types of BP. Some types of BP can be inserted in the fuel with integral quantities only. Treating them in one pass
using PI will considerably enhance the solution space. We did not investigate the use of them in MINLP.

6.4. CONCLUSION 151

assignment variables, and the physical variables corresponding to this (fractional) assignment
are computed using a fixed pattern evaluation algorithm. If these initial values were chosen at
random, irregular things happened: we encountered a situation where a change in the fourth or
fifth digit of one starting value could be the difference between finding no solution at all after a
long time, and finding a good quality solution after a moderate number of iterations.

Small problems Medium problems Large problems

nr. First CRPR Best-known First CRPR Best-known First CRPR Best-known
1 1.00676* 1.01130 1.01130 1.02979 1.03519 1.03546 1.04485 1.04759 1.04762
2 1.04201 1.04844 1.04860 1.02939 1.03525 1.03531 1.04488 1.04754 1.04754
3 1.00818 1.02069 1.02069 1.03023 1.03489 1.03493 1.04404 1.04723 1.04726
4 103527 1.04275 1.04275 1.02959* 1.03437 1.03437 1.04368 1.04686 1.04687
5 1.03373 1.03974 1.04045 1.02912 1.03373 1.03380 1.04349 1.04652 1.04652
6 1.02448 1.03407 1.03407 1.02886* 1.03554 1.03558 1.04486 1.04766 1.04768
7 1.02048 1.02748 1.02753 1.02984* 1.03395 1.03411 1.04395 1.04680 1.04683
8 1.02409* 1.02970 1.02975 1.03086 1.03535 1.03549 1.04461 1.04760 1.04763
9 1.02223 1.02698 1.02703 1.02998 1.03418 1.03418 1.04385 1.04677 1.04677

10 1.02039 1.02530 1.02573 1.02910 1.03339 1.03339 1.04334 1.04627 1.04627

*=Relaxed optimum found, but no integer feasible solution found.

TABLE 6.10: Solution with which we started, solution of the CRPR algorithm and the best-known
solution for the Small, Medium and Large test sets.

The results from this chapter showed that we finally arrived at algorithms that give good
quality results in reasonable time. As could be expected, there is not one algorithm that gives
always the best quality solution. From the results in Section 6.2.3 it however follows that our
NLP+Rounding approach has much potential to give good solutions in moderate time, espe-
cially when it is combined with a ‘post-processing” neighborhood search. In Section 6.3, deal-
ing with the BP model, it is further shown that this approach is very flexible and that continuous

optimization elements can easily be added. This is contrary to neighborhood search methods,
that are essentially of discrete nature.

We conclude this chapter with a few words on the new fractional model. This mode! elim-
inates the very many local optima that make the optimization so difficult. In Table 6.6 it was
shown that this potentially leads to better quality solutions. In the current stage of the research,
a disadvantage of this model is that the computation time is much larger than with all other
algorithms. There are two reasons for this that both require further investigation. The most im-
portant reason is the increasing number of variables and constraints, and the increasing number
of nonzeros in the Hessian matrix of the nonlinear optimization model. For each node-bundle-
timestep combination a new variable is introduced. In a BP model or a multi-nuclide model,
such variables additionally have to be introduced for the BP concentration or for each separate
nuclide, which makes the model very large.

The second (related) reason is the slow convergence. On the one hand, the objective function
is more flat near the optimum, which makes it more difficult for the solver to reach the optimum.
On the other hand most of the variables are zero in the optimal solution, since only a subset of
all node-bundle combinations is actually used. Both features impede convergence.

More research is needed to tackle both problems. Regarding the explosive growth in the num-
ber of variables, one could think of some intermediate solution. Since only part of the variables

152 CHAPTER 6. COMPUTATIONAL RESULTS

is actually used, one might use some heuristic to decide which combinations are taken into ac-
count and which combinations are neglected. Regarding the problem of slow convergence, one
might think of an interruption of the NLP solver as soon as convergence slows down, and then
use a rounding technique to fix variables below some level to zero, and assignment variables
above some other value to one. Once such a fixation is done, a large number of the node-bundle
combinations — and hence a large number of the variables — can be fixed to zero. With such
modifications, it will be very well possible that the fractional model combines both a very good
solution quality and a reasonable computation time.

[EEEERE
=l

Chapter 7

Alternative approaches

In this chapter we discuss some solution methods for the fuel management optimization problem
that differ from the ones discussed so far. Optimization via the world wide web and the use of
the SIF input format gave some solutions for a few test problems, and are briefly discussed in
Section 7.1 and Section 7.2, respectively. Some tests with global optimization algorithms are
reported in Section 7.3. The use of semidefinite and copositive optimization to obtain good
approximations, as discussed in Section 7.4, is only interesting from a theoretical viewpoint;
practical application to fuel management is still far away. Concluding, Section 7.5 describes
some preliminary work on parallel optimization. We implemented the PI algorithm on a parallel
machine, leading to interesting results. Implementation of the other algorithms on a parallel
machine is also discussed briefly.

7.1 Optimization via the web

A rather novel way of optimization is the use of an internet based optimization system. Via
the NEOS server [91], one may send various types of optimization problems to a server on
the web. These problems are then solved on a remote computer and the results are sent back.
A few years ago it was possible to submit problems in SIF format (see next section) to be
solved by the NLP solver LANCELOT and we did several tests using this interface. Currently,
nonlinear optimization problems have to be submitted in the AMPL input format, a format
that is somewhat similar to the more classical GAMS. At the time of writing this chapter, the
following NLP solvers were available at the NEOS server.

¢ DONLP2: A combined SQP / Equality constrained QP method that is able to solve not
too large problems (up to 300 unknowns and 700 constraints).

e LANCELOT: An Augmented Lagrangian Trust-region algorithm.
o LOQO: An Infeasible primal-dual interior-point method.

o MINOS: A Sequential Linearly Constrained optimization algorithm, where linearly con-
strained subproblems are solved by a reduced-gradient method with quasi-Newton ap-
proximations to the reduced Hessian.

153

154 CHAPTER 7. ALTERNATIVE APPROACHES

e SNOPT: An SQP algorithm that uses a smooth augmented Lagrangian merit function.

¢ FILTER: An SQP algorithm.

Recently, also the mixed-integer solver MINLP (see the next Section) is added to the NEOS
server. Due to time limitations we did not translate our models into AMPL format, and therefore
we were not able to compare all these algorithms.

Another experimental project that enables remote solution of mathematical problems is the
NetSolve project [16, 93]. This is a more general project that is not restricted to optimization
problems. Currently, it provides access to several general numerical software libraries e.g., for
solving systems of nonlinear equations.

Web-based optimization offers opportunities for parallelization. It is possible to couple a
number of workstations, whose actual location can be anywhere, provided that they are con-
nected to the internet. Computational tasks may then be distributed over these machines. In
a Pairwise Interchange algorithm for example, a large number of computers may calculate the
solutions of the different neighbors of a parent. If every computer is finished, the best neigh-
bor is selected as the new parent. Since most desktop computers in an average department do
nothing during most of the time and are also connected to the internet, this opens an enormous
potential of computing power. In order to use such a system efficiently, parallel algorithms are
to be developed, since all computers have to do different tasks at the same time. More remarks
about parallelization are postponed to Section 7.5.1.

7.2 LANCELOT and Leyffer’s code

The solvers LANCELOT [19] and the MINLP solver of Leyffer [73] are treated in this section.
Both solvers use the odd assembly-like language SIF as input format.

LANCELOT

We made an implementation of the basic model in this format, that enabled us to use the Aug-
mented Lagrangian Trust-region solver LANCELOT. Since we could not obtain encouraging
results, and most of the times no feasible solution was obtained at all, we contacted one of the
authors of LANCELOT and sent our SIF files to him. After experimenting with lots of differ-
ent settings of LANCELOT, it came up with a relaxed optimum for problem Medium 1 (about
1162 variables and 2312 constraints) with objective function 1.03420 in 10000 seconds on a
reasonably fast machine. This should be compared to the results with CONOPT, that found for
various settings solutions in the range 1.03440 to 1.03477 in less than a minute. As the author
of LANCELOT agreed, the current version of LANCELOT is not competitive to CONOPT for
this problem [128].

Leyffers’ MINLP code

Independently, Leyffer converted the basic model into SIF format using his extension of this
language, that allows for the specification of integer variables [74]. He has implemented his

7.3. GLOBAL OPTIMIZATION 155

package MINLP containing a Branch-and-Bound method that uses an SQP solver to solve the
continuous nonlinear subproblems [73]. He solved a modification of data set Small 2 (about 320
variables, of which 144 binary, and 624 constraints), for which he obtained an integer solution
with objective value 1.02475 within a computation time of 361 seconds. In this time it solved 13
continuous NLP problems. A PI algorithm obtained an optimum value of 1.032344 for this case
in about 15 seconds. CONOPT plus rounding obtained a solution with objective value 1.03122
in a few seconds. We may conclude that the Branch-and-Bound method of Leyffer offers a
better alternative than LANCELOT for our problem, and at least it gives a convergent Branch-
and-Bound implementation. In its current state, it is not yet competitive to our implementation
that is based on CONOPT. It might be worthwhile to evaluate Leyffers’ Branch-and-Bound
method combined with the CONOPT NLP solver.

CUTE test set

SIF files of our basic model for different test sets are included in the CUTE standard opti-
mization problem test set [22]. The implementation of Leyffer is available under the name
C-Reload. Our implementation is available for the data sets Small 1, Medium 1 and Large 1
under the names TwiriSm1, TwiriMd1 and TwiriBgl, respectively.

7.3 Global optimization

For smaller-size problems, or for simple models, we considered the use of global optimization
routines in order to generate guaranteed global optimal solutions. Three available codes are
reviewed.

oBB

The code aBB of Floudas ¢f al. [4] is based on a Branch-and-Bound method with over- and
underestimates of the objective function and variables in each node. Overestimates are created
by linear relaxations of the constraints, as well as by the addition of convex quadratic terms to
nonconvex functions, in order to make the Hessian positive definite (Section 4.4.2). Underesti-
mates are created using the NLP solver MINOSS. Tests were performed by Floudas using some
variants of this code, and with different model reformulations on test problem Small 2 with
forward differences and 7 = 6. The best result obtained with Pairwise Interchange and with
MINLP to this problem has objective value 1.04848. The global optimization code BB gave
very slow convergence and finally returned a lower bound of 1.040244 and an upper bound of
1.187743. From experience, we expect the real optimum to have an objective value of about
1.05, so there is still a large gap. Some improvement can possibly be made since at the time that
this implementation was made, we did not yet use the bounds tightening of Section 5.2.1. On
the other hand, the results of a few iterations from a global optimization routine like «BB may
help in further tightening the bounds on all variables. Using such improved bounds, one might
obtain better results from a MINLP algorithm.

156 CHAPTER 7. ALTERNATIVE APPROACHES

BARON

The second code is the BARON solver of Sahinidis er al. [111, 112]. This is also a Branch-and-
Bound based method with further tightening of the bounds in each node. At the time being, no
results of an implementation of test set Small 2 were available yet, however similar results as for
aBB can be expected. A further development related to «BB is a special treatment of integer
variables, recently developed by Tawarmalani et al. [124]. Since the placement constraints in
our problem contain a lot of bi- and trilinear terms in which binary variables are involved, this
technique may be helpful to get useful results for at least small instances of the loading pattern
optimization problem.

LGO

The third code is the Lipschitzian optimization based code LGO of Pintér [101]. Contrary to
the previous two codes, this is a real black box implementation. Only simple bound constraints
have to be given explicitly to the code, all other constraint and objective values in sample points
are obtained via a call to a user-written routine. Theoretically, this is a global optimization
method in that it uses a Lipschitz based Branch-and-Bound method (Section 4.4.1). Practically,
heuristics are used to keep the solution times reasonable, and global optimality of the solution
is not guaranteed. We made an implementation in which only the assignment variables were
explicitly used as variables; the other variables were hidden in the black box, and our fixed- -
core evaluation routine was used to determine the value of the objective function and the power
peaking constraints for a given set of assignment variables. The strength of LGO -complete
independence of the model and the solution method- is also its greatest weakness for the reload
pattern optimization problem. Since the linear assignment constraints are treated by penalties
and not used directly, the solver had difficulties in finding x; ¢ ,-matrices that satisfied the as-
signment constraints. In our black box implementation the fixed core evaluation routine can
only be invoked if the x; ¢ ,,-matrix satisfies the assignment constraints. This meant that during
more than 99% of the running time, LGO was only searching for a valid assignment matrix, and
finally returned a solution that was still not a valid assignment. Currently, the author of LGO is
working on an improved version, that offers the possibility to treat linear constraints and integer
restrictions explicitly instead of using penalties. This will probably lead to much more stable
and relevant solutions.

7.4 Semidefinite and copositive relaxation

All constraints and the objective in our fuel management optimization models contain linear,
bilinear and trilinear terms only. As is already shown in Section 5.2.5, the trilinear terms can be
replaced by bilinear terms at the cost of introducing some additional variables. Bilinear terms
can be relaxed using linearization, as is outlined in Section 4.4.2. Using such linearizations,
one is able to find overestimates of the global optimal solution, that are used in the Branch and
Reduce global optimization approaches. Another possible way to relax the bilinear terms is the
use of convex conic optimization, which is the topic of this section. The best-known method
in this area is semidefinite optimization (SDO), that is worked out in Section 7.4.1. In Section
7.4.2 we describe a copositive relaxation. This is a tighter conic relaxation that was developed as

7.4. SEMIDEFINITE AND COPOSITIVE RELAXATION 157

a by-product of our study. Both the semidefinite and the copositive relaxations are theoretically
suitable to derive bounds on the fuel management optimization problem. In practice, currently
available semidefinite optimization packages can only handle limited-sized problems (up to a
few hundred variables), so they are only applicable to very small models and small core sizes.
For the copositive relaxation it is even not clear at the moment whether an implementation is
possible that will work well on problems of moderate sizes. We therefore only explain briefly
the basic ideas of these algorithms. A more detailed discussion about semidefinite optimization
can for example be found in a paper by Vandenberghe and Boyd [130], for a more detailed
discussion about copositive optimization we refer to our paper [107].

7.4.1 Semidefinite Optimization

The bilinear constraints are translated into one constraint that some matrix should be positive
semi-definite (PSD). This method of relaxing the problem is called the Shor relaxation, since it
was first introduced by Shor [116] (see also [130]). Consider the General Quadratic Program-
ming (GQP) problem without linear constraints

max x! Apx,
7.1
sit. xTAx = b;, i=1,--,m.

Here A;, i =0, --,m are symmetric n x n matrices, b; € R and x is the variable vector of dimen-
sion n. This formulation is general enough to include quadratic constraints with linear terms
[106]. This implies that (7.1) also includes quadratic inequality constraints, since these can be
written as equality constraints by addition of a linear term with a slack variable. The General
Quadratic Optimization problem (7.1) is a very general NP-hard problem [86], including, for
example, integer programming' and optimization with general polynomial constraints (see, for
example [108]).

In order to create a semidefinite relaxation, (7.1) is modified by putting all nonlinearities into
one separate set of constraints. This is achieved by introducing the n x n variable matrix X,
which is defined as the dyadic product

X =xxl (7.2)
The quadratic terms xTAx, i=1,---,mcan be reduced to linear terms in X:
xTAx = Tr(xAx) = Tr(Aax”) = Tr(AX) (7.3)

where the trace Tr(X) of a matrix X is defined as the sum of its diagonal elements, so for two

symmetric matrices X and Y,
Tr (XY) = szijyij-
iJ

'A naive way to include the integrality constraints x; € {0, 1} in (7.1) is to add the restriction x;(1 —x;) = 0.

158 CHAPTER 7. ALTERNATIVE APPROACHES

Using (7.2) and (7.3), the following reformulation of (7.1) is obtained.

max Tr(A¢X),
st. Tr(AX) = b, i=1,---,m, (7.4)
X=xl.

The only nonlinearity occurs in the relation X = xx?. Semidefinite optimization replaces this
equation by the weaker constraint

XeS

where § is the cone of positive semidefinite (PSD)-matrices, defined by
oo
S={SeM:x"Sx > 0V} = {SeM:5=Yss k > 1}, (7.5)
i=1

where the s'’s are vectors of appropriate dimensions. As was already noted by Shor, linear
inequality side-constraints should be quadratized in a special way because otherwise they will
vanish. In [103], such a quadratization is worked out for linear equality constraints.

Contrary to (7.4), which is an NP-hard optimization problem, the semidefinite relaxation is
solvable in polynomial time, like for example LP, and unlike NLP and MILP. Much progress
was made in the last years in developing polynomial-time interior point methods for semi-
definite optimization (see, e.g., the reviews [109] and [130]). Still, there is currently some
gap between theory and practice. Solvers for SDO problems are becoming available during
the last years, but due to the unavoidable need for dense matrix computations, they are only
efficient on small sized problems, and therefore cannot solve problems with more than a few
hundred variables. Therefore, we only implemented a very much simplified fuel management
optimization problem into one of the solvers, to see how tight upper bounds could be found.
After some experimenting we found that solving these problems only resulted in trivial upper
bounds.

7.4.2 Copositive Optimization

As is shown in our paper [107], one of the causes for the fact that semidefinite relaxation gives
trivial upper bounds is the way in which linear side constraints are treated. In the current section,
we illustrate the basic ideas of copositive optimization by addition of nonnegativity constraints
to the GQP (7.1):

max xTApx,
st. xTAx = by, i=1,-,m,

x> 0.

7.5. PARALLELIZATION 159

Using the matrix notation from the previous section, this problem is written as

max Tr(AoX),
s.t. Tr(AX) = b;, i=1,-,m,
X =xx",

x>0.

(7.6)

When using semidefinite optimization, the last two sets of constraints of (7.6) are relaxed to the
constraint

XeSnN, 1.7y

where § is the cone of semidefinite matrices (7.5)and N :={NeM :N,; >0, i,j=1,...,n}
is the cone of nonnegative matrices. In copositive optimization, we introduce the cone of com-
pletely positive matrices:

k
B =(BeM :B= Y k> 1,§>0, i=1,-,k} (7.8)
i=1

and replace (7.7) by the constraint X € B. This cone is contained in § and also contained in
N , hence the relaxation is at least as tight as the Shor relaxation. In [107] it is shown that both
relaxations are equal for problems with 4 or less variables. Using duality theory, an example
can be given with 5 variables, for which the copositive relaxation is really tighter than the
semidefinite relaxation.

Unlike semidefinite optimization problems, copositive optimization problems are generally
not solvable in polynomial time. The reason is that the cones § and N have a relatively sim-
ple boundary, but the cone B is bounded by an exponential number of facets [84]. Although
any convex conic optimization problem is solvable in a polynomial number of iterations [92],
one iteration in copositive optimization will in its general form take an exponential number of
computations. There is some work going on in order to find suitable and efficient algorithms
for special cases, for example the case that X is restricted to be a tridiagonal matrix. Currently
however, the main value of the algorithm is of theoretical nature.

7.5 Parallelization

Another side-step in our research is the use of a parallel computer. Using a parallel computer in
the right way can speed up the solution of a problem, or in the same time a more thorough search
can be performed. The notion of parallel computing can be extended to a network of ordinary
computers, as is already mentioned in Section 7.1. In the current section, we first make some
notes about the general concept of parallelization. Then we concentrate on parallelization in
neighborhood search (we actually have an implementation with a parallelized PI), and finally we
give some thoughts on possible parallelization in MINLP in Section 7.5.3. The current section
is only of introductory nature. For a book on the use of parallel computers in mathematical
optimization one may consult, e.g., [17].

160 CHAPTER 7. ALTERNATIVE APPROACHES

7.5.1 Some concepts in parallelization

In order to design efficient parallel algorithms and implementations, it is necessary to have
some understanding of the basic concepts of parallel computers. Computers can be classified as
follows.

SISD: Single Instruction Single Data. This is the ‘classical’ sequential computer: It executes
one instruction at a time on one piece of data.

SIMD: Single Instruction Multiple Data. Multiple processors execute the same instruction in
parallel on different data.

MIMD: Multiple Instruction Multiple Data. Multiple processors work independently from
each other. They either operate on their own data, or on shared data in a way that avoids
read or write conflicts.

The best-known application of SIMD is the vector computer. Usually, an operation on a piece
of data is a ‘pipeline’ of several steps: Load the data from memory, Manipulate the data in
one or more steps, and Store the data in memory. One operation has to go through the whole
pipeline before another operation is started. A vector computer has special instructions that are
used when the same operation has to be performed on a whole array of data. The next element
of the array enters the pipeline immediately when the first element moves one step forward in
the pipeline. Vectorization is implemented in many modern processors, and compiler programs
should recognize simple loops or operations that can be vectorized.

Modem parallel computers are usually of the MIMD type. A number of processors can
perform different tasks. The memory either may be shared by the processors, or each processor
has its own memory (as is the case with distributed computing). This type of parallelization
is most efficient if the processors can work independently each other. Several issues have to
be addressed when one is making an implementation for such a parallel computer. Following
[17] the most important things to care about are Task partitioning, Task scheduling and Task
synchronization.

Task partitioning
The operations of the algorithm are to be divided into independent tasks that can be performed
concurrently. A task in this sense is a part of the algorithm that operates on a part of the data.
The tasks may be similar operations on different data sets. This holds for example for the
evaluation of all neighbors in a pairwise interchange (PI) algorithm. The tasks may also be
completely different operations, that can be computed concurrently because they do not depend
on each other.

Task scheduling
The issue here is how to assign the tasks to one or more processors for simultaneous execution.
In the PI algorithm, one may divide the total number of neighbors by the total number of pro-
cessors, and assign at once an equal number of neighbors to each processor. Alternatively, one

7.5. PARALLELIZATION 161

may assign the neighbors that are to be evaluated one at a time to each processor. Note that
some scheduling algorithm has to be executed at run time on one of the processors, that assigns
the tasks to the different processors.

Task synchronization.

The order of the execution of the tasks has to be specified and the data exchange between the
tasks has to be synchronized to ensure correct progress of the algorithm. Suppose that at some
stage in the PI algorithm the best known maximal solution value is 100, while processor 1 finds
a solution with value 120 and processor 2 finds a solution with value 110. The following order
of operations will give wrong answers and must be circumvented.

time slot | Processor 1 Processor 2

1 | Read best-known solution <— 100 --- previous computations

100 < 120 — make update decision | Read best-known solution <+ 100

2
3 | Update best-known solution — 120 | 100 < 110 — make update decision
4

next computations - - - Update best-known solution — 110

An error occurs because processor 2 can read the best-known solution between the read and
write operation of processor 1. This situation is circumvented if processor 1 temporarily locks
the best-known solution just before it reads the solution in time slot 1, and frees it after the
update in time slot 3. In that case, processor 2 has to stay idle until processor 1 completes the
operation, but the computations remain consistent.

7.5.2 Parallelization in neighborhood search

Since we made an implementation of our pairwise interchange (PI) algorithm on a parallel
machine, we will describe this parallelization in some more detail. The Pairwise Interchange
algorithm is almost perfectly suited for parallelization. As already stated, task partitioning is
almost trivial, since the evaluations of the different neighbor solutions of the current parent
solution can be done independently.

For task scheduling, there are several possibilities. One may assign one or a few neighbor
solutions at a time 1o each processor. This causes a little overhead time since each processor
has to ask the tasks scheduler for another neighbor each time it has finished a neighbor. As an
alternative, one may immediately divide the number of neighbors by the number of processors,
and assign the same number of neighbors to each processor. This may lead to an uneven load
distribution over the different processors, since different neighbors may require different com-
putation times. The optimal strategy may depend on the specific parallel environment. With the
shared-memory 10-CPU parallel machine that we used for testing purposes, it worked perfectly
well to assign a few neighbors a time to each processor (say 5, depending on the size of the test
problem).

Task synchronization is possible in various ways. Processors may have local copies of the
model parameters, so that they don’t interfere when reading model parameters. Processors may

162 CHAPTER 7. ALTERNATIVE APPROACHES

update the common best-known solution each time they finish a neighbor. Since they have
to lock the best-known solution during this operation, another processor might have to wait
when it just started the same update, as explained in the previous section. Another option is
that the processors maintain local copies of the best-known solution, while the shared best-
known solution is only updated at the end of a main iteration. Since shared-memory access in
our test computer was very fast, the processors compared the solution value of each neighbor
immediately.

Besides the synchronization of the updates of the best-known solution, there is also the syn-
chronization at the end of each main iteration. All processors should have finished the evaluation
of the neighbors before the parent solution can be updated, and a new main iteration can only
be started after a parent update.

Limited experience with the PI algorithm on the 10-CPU machine showed that especially for
larger problems almost linear speedup was obtained, which is the maximal obtainable efficiency
of parallel algorithms (see Figure 7.1). This means that nearly no processor time was wasted
due to synchronization.

Also from the implementation side, the parallelization of PI is not too difficult. A compiler
directive has to be added to the sequential Fortran code to tell the paraliel compiler that the loop
over all neighbors should be parallelized. Optionally, it can be specified how the tasks should
be scheduled over the processors, this choice can also be left to the compiler. The directive
also must contain information about which variables are used locally at each processor, and
which variables are to be kept in shared memory. An additional compiler directive is needed
to synchronize the use of the shared variables. Altogether, only about ten lines of compiler
directives are to be added to the sequential code.

7.5.3 Parallelization in MINLP

The use of parallelization in mixed-integer nonlinear optimization is less clear. There are dif-
ferent possible choices in what should be parallelized, and the parallelizations may be far from
trivial.

NLP

Let us first consider parallelization in continuous nonlinear optimization problem. This a rather
unexplored area. There exist parallel versions of Quasi-Newton methods, but practical expe-
rience is very limited, and they may lead to the loose of sparsity structures [76]. A better
approach for parallelization in nonlinear optimization seems to be the division of problems into
several subproblems that can be solved separately. There is some experience on a parallel im-
plementation of QP [35]. Nonlinear models that are separable, possibly up to a few global
interconnecting constraints, may be parallelized using suitable decomposition techniques [76].
A general overview of the different possibilities of parallelization of continuous (non)linear
programming is given in [17].

7.5. PARALLELIZATION 163

Speedup for problem Small | Speedup for problem Medium 1
16 — 16 — T =
Linear speedup . Linear specdup 7
141 - - - Theoretically possible speedup L7 14 - - - Theoretically possible speedup e
Actual / predicted speedup e Actual / predicted speedup Lo
12 L 1 12 e
o s 10 ,
- =%
= i = s
= -] s
28 i 8 .
2 . £ .
w B 177} il
6 57 6 =
4 P 4 =
2] 2
0 . R 0
0 s 10 15 0 5 10 15
CPUs # CPUs
Speedup for problem Large 1
16
Linear speedup 7
14} -- - Theoretically possible speedup
Actual / predicted speedup
12
10
e
3
3 8
o
@
6 +
4
2
0 —
0 15

10
CPUs

FIGURE 7.1: Speedup that is achieved by parallelization of PI on the basic problems (see Table 6.4 for
problem sizes). The dash-dotted line shows the maximum speedup that can be theoretically achieved,
taking into account the part of the program that is run in parallel and the part of the program that is to be
run in sequential mode. Only at the beginning and the end of the code, a sequential part is present; the
evaluation of all neighbors is done in parallel. The effect of these sequential parts is reduced for larger
problems, as can be seen by the fact that the dash-dotted line approaches the linear speedup line. The
fixed line is the actual speedup for up to 10 CPUs, and an extrapolated speedup up to 16 CPUs. The
behavior for smaller problems is very unpredictable due to several reasons:

¢ The evaluation of one neighbor is shorter, hence the chance that two processors have to synchronize
their update of the best-known solution is larger;

o The number of neighbors is smaller, hence the computational task of one main iteration has to be
divided into relatively larger parts. All processors have to wait at the end of each main iteration until the
last one is finished, and the effect thereof is greater.

o Less data are obtained from a test run hence the extrapolation towards more processors is less accurate.
We do not have a satisfying explanation for the strange figure for the medium-sized problem. Besides
the points just mentioned, some memory conflicts might have caused this result, that are only solvable
when spending more effort in tuning the implementation.

164 CHAPTER 7. ALTERNATIVE APPROACHES

MINLP

Besides the parallel implementation of each nonlinear optimization run, there are many more
opportunities for optimization in mixed-integer nonlinear programming. In our rounding algo-
rithm, all possible rounded loading patterns can be evaluated in parallel. In the outer approxi-
mation algorithm, the mixed-integer linear subproblems can be solved by parallel Branch-and-
Bound (CPLEX has parallel versions for parallel machines).

Parallelization in a dedicated Branch-and-Bound algorithm is possible in several ways. The
different branches from one parent node may be evaluated in parallel. In standard Branch-and-
Bound, there are only two such branches. If more processors are available one may develop
a dedicated Branch-and-Bound strategy where more branches are created. Given the binary
variables x; ¢ ,, with the constraints

1
_lei,l’,m =1
=
L M
) in,/.’,m =1
{=1m=1

one may create L - M branches, where for fixed i
Xifm = 1

for all different pairs (¢,m). The different branches are evaluated in parallel.

The descriptions thus far concentrate on reducing the wall-clock time for finding an optimal
solution. Another view point is to use the same wall-clock time as in a sequential search,
and to use the extra computing power to do a more thorough search. This is probably the
biggest advantage of parallel computing. In this way, one may obtain solutions that could not be
obtained by a sequential implementation, at least not in reasonable time. Since our algorithms
are sensitive to the starting point, one may initiate a separate nonlinear optimization at each
processor, each with a different starting point. Then one may choose the best resulting solution,
or a small set of the best obtained solutions, and do a parallel evaluation of all roundings for
these solutions. In the cut algorithm, one may create different warm starting points at the start
of each cut iteration and re-optimize from these points in parallel.

The list of ideas for parallel implementation can easily be extended. Global optimization
algorithms may also profit from parallelization. This especially holds for black-box type meth-
ods, where a number of core evaluations can be done simultaneously. Also Branch-and-Reduce
methods may be parallelized, using the sketched ideas for Branch-and-Bound methods.

7.5.4 Conclusion

Parallel optimization opens perspectives to speed up optimization algorithms considerably. The
time that is gained can be used to do a more thorough search, for example by using multiple
starting points. In this way, one may obtain solutions that could not be found in reasonable time
on a sequential computer.

7.5. PARALLELIZATION 165

The results of a parallel algorithm are very much dependent on the design and actual imple-
mentation of the algorithm, related to the number of processors and architecture of the parallel
computing environment that is available. If one uses a parallel computer with only 10 pro-
cessors, other parallel designs will be necessary than when a massively parallel computer with
more than 1000 processors is used. The latter opens lots of possibilities, but it needs more
effort to design an algorithm that is sufficiently parallel so that all 1000 processors are doing
something useful all the time. Developing parallel algorithms will take much effort, and using
computation time on a massively parallel computer is expensive. Still, seeing the savings in fuel
cost that can be obtained by slightly improved loading patterns, it may pay off to invest more
research in the development of parallel algorithms for the reload pattern optimization problem.

166 CHAPTER 7. ALTERNATIVE APPROACHES

K EEND

l_
o
[EEEmE T

BER®
jEE: :j_U

Chapter 8

Summary, Conclusions and
Recommendations

The purpose of our research, as formulated in Section 1.3 on page 11 was

to explore the usefulness, to find the advantages and disadvantages, and to eval-
uate whether derivative based methods are potentially useful in loading pattern
optimization, by developing suitable mathematical models and algorithms.

In Section 8.1, we give a summary of the results that are collected in the intermediate chap-
ters, and a summary of the conclusions that are drawn in these chapters. Section 8.2 then gives
general conclusions with respect to the research goal. Section 8.3 lists a number of recommen-
dations for further research.

8.1 Summary

Many nuclear power plants are up and running all over the world. In all these power plants
a reload plan is made for every fuel cycle. The number of possible reload schemes for one
fuel cycle is astronomical, and it is not possible to find the reload plan that is guaranteed to
be the best one under the given objective. Instead, a reload pattern is sought that is expected
to be good, with an objective value that is close to the theoretically best attainable one. Such
reload patterns may be found using experience and the problem feeling of the designer, but
usually sophisticated mathematical optimization techniques are needed to get really good reload
patterns.

Most commonly, as we have seen in Chapter 3, heuristic techniques for discrete optimization
are employed. Given a computer code that calculates the characteristics of a fixed loading
pattern, these techniques generate and evaluate a series of patterns in a smart way, until a pattern
is found that cannot be further improved by the used technique. Hopefully, such a pattern has an
objective value that is not too far from the global best one. These techniques may be combined
with expert knowledge to improve the results, or perturbation theory can be employed to fasten
the search.

167

vy

168 CHAPTER 8. SUMMARY, CONCLUSIONS AND RECOMMENDATIONS

In this thesis, we have considered an alternative approach using gradient-based nonlinear
(continuous) optimization techniques. Instead of doing core calculations for a large number of
fixed trial patterns, all differential equations and related mathematical equations that describe
the reload operation and the neutron behavior in the forthcoming cycle, as well as all operational
constraints, are solved as one system of linear and nonlinear equations. An objective function
is associated with this system of equations, and a solution of the system is found for which the
objective function is optimal. This is done by using sophisticated techniques from the area of
operations research, especially from mixed-integer nonlinear optimization (Chapter 4).

The approach based on nonlinear mixed-integer optimization to solve the in-core fuel man-
agement problem is not completely new, as we have seen in Section 3.2. Most of the results in
literature however use either relatively simple algorithms, or use extremely simplified physical
models. To our knowledge, the current thesis is the most complete study until now, combining
sophisticated nonlinear optimization techniques and models that are realistic enough to give a
quite accurate ranking of the loading patterns in terms of the objective value (Section 2.1.8).

During our research it became clear very soon that it is not sufficient at all to do just some
standard implementation of a straightforward model using an arbitrary nonlinear mixed-integer
optimization package. Instead, we found that the robustness, the solution time and the quality
of the results were heavily influenced by the modeling, by the starting point supplied, by the
nonlinear optimization algorithm and its implementation, by the mixed-integer optimization
algorithm, and the tuning of algorithmic parameters.

Modeling
For the modeling, we found that the following items played an important role:

o Tightening of variable bounds (Section 5.2.1): using tighter variable bounds improved
the ability of the nonlinear optimization algorithms to find feasible solutions, and to stay
feasible during the optimization.

o The addition of constraints (Section 5.2.2): the addition of theoretically redundant linear

constraints k¢, < k¢ helps the nonlinear optimization in the same way as the bounds.

o Relaxation of constraints (Section 5.2.3): power peak constraint relaxation helps a lot in
obtaining feasible solutions, and to find good quality solutions.

o The formulation of constraints: the alternative reloading equation as shown in Section
5.2.5 is much more straightforward and simple than the tridiagonal one that we used, but
it introduces pathological behavior for non-integer assignment variables.

o The choice of variables: the introduction of the kE°C variables (Section 5.2.5) reduced

significantly the computation time for some solvers (but not so much for others).

o Choice of discretization: a coarser discretization may lead to faster algorithms, but pre-
cision decreases and instability may be introduced. Also, a grid that is not equidistant
may lead to a better compromise between precision and performance, as is discussed in
Section 5.2.6.

8.1. SUMMARY 169

o The behavior of the model in fractional solutions: the model that is used in most of the
tests has many local peaks in the integer solutions. The new fractional model of Section
2.3.3 has a much smoother objective function — at the price of a much larger number of
variables and nonzeros in the model.

o Use of engineering constraints (Section 5.2.4): though not used in our implementations,
constraints from engineering knowledge may guide the search away from local optima.
On the other hand they might disconnect the feasible area or make it otherwise more
difficult to reach one part of the feasible region starting from another part.

Starting point

As is discussed in Section 5.1 and shown in Section 6.2, the choice of a starting point has major
influence on the optimization procedure and on the obtained solution.

For the physical variables, meaningful starting points have to be supplied, otherwise the
nonlinear optimization packages are often unable to solve the system of nonlinear equations, and
no solution is found at all. This is not a problem, since a good approximation can be generated
using iterative methods for fixed-core evaluation. If the assignment variables are chosen such
that they represent a valid (possibly fractional) loading pattern, the fixed-core evaluation can be
done for this loading pattern, resulting in a starting solution that is up to some precision already
feasible for all constraints, except possibly the safety limitations (power peaking constraints).

The choice of the starting assignment is somewhat less critical than the choice of the physical
variables, but still has very much influence on the quality of the solution obtained. Since the
objective function is a nonconvex function of the assignment variables, starting in a bad part
of the search space may result in a poor-quality local optimal solution. Here we used some
engineering knowledge. In general, engineers have an idea of the general structure of a loading
pattern. Loading patterns that are good with respect to our objective use to exhibit some ring
structure. Our results show that it is important that the starting point contains somehow this
ring structure, although there remains some freedom in the specification of this structure. In
our basic model, it was important to generate non-integer starting points, since many integer
solutions are local optima.

The choice of starting with a ring structure has a drawback, since nobody knows for sure
whether there are possibly some other loading patterns, not having a ring structure, but having
even better objective values. If one has some idea about the possible structure of such a pattern,
itis a simple task to restart the algorithm with such a starting structure. The average result when
starting in an arbitrary point, however, will be worse than when starting with a ring structure,
so unless one has an idea of another good structure, starting with a ring structure is the best
thing that can be done. This observation is valid for any known algorithm applied to the reload
pattern optimization problem.

Nonlinear solver

Several nonlinear optimization packages that we have tested failed on many test sets to generate
a feasible solution. After much testing, we found that the two solvers CONOPT and MINOSS5
performed quite well on our problems. From the results presented in the thesis, we may con-
clude that CONOPT on average performed the best of all, both regarding solution quality and

170 CHAPTER 8. SUMMARY, CONCLUSIONS AND RECOMMENDATIONS

solution time. The relaxed solutions that were generated, with all modifications regarding the
model formulation and starting point taken into account, have very reasonable solution values,
that mostly compare favorably to the solutions found by other means. We have tried to fur-
ther improve these results by embedding the nonlinear solver in a cut-generating algorithm,
where problem-specific cuts are used (Section 5.4, Section 6.2.4). Unfortunately, our current
implementation of those cuts seldom improved the solutions.

Mixed-integer solver
Complete enumeration of all possible roundings of the solution returned by the nonlinear solver
works surprisingly well on our basic problems. This is due to the fact that the local optimal
solutions are almost integer and contain only a few fractional assignment variables.

It is especially striking that this enumeration of rounded solutions works better than starting
an outer approximation algorithm from the same solution of the nonlinear solver. Due to the
severe nonlinearity of the model, the subsequent linearizations in the outer approximation algo-
rithm redirect the solution to less favorable parts of the solution space. It is still an open question
whether a dedicated problem-specific linearization in the Outer approximation algorithm would
lead to better results than the standard straightforward linearization.

A straightforward application of the Branch-and-Bound principle is not suited for our prob-
lem, due to the nonconvexity. No conclusion can be drawn from a bad objective function high
in the tree, since fixing a variable may redirect the search towards a better local optimal solu-
tion. A simple relaxation of the node fathoming rule by enlarging the tolerance on the objective
value did not work: either the nodes are still fathomed too early, or the number of nodes to be
explored grows too fast.

Our improvement of the Pairwise Interchange (P1) algorithm provides generally better solu-
tions than standard PI, at the cost of a longer computation time (Section 6.2.3. An interesting
effect is that it enables the PI algorithm with immediate restart after improvement, to generate
solutions that are competitive with the standard PI, while the solution time is still smaller.

Alternative approaches

Until now, global optimization packages did not lead to interesting results. At the time of writ-
ing these conclusions, some work is still going on in this field on the reload pattern optimization
problem, but the results until know are not that promising. Semidefinite and Copositive opti-
mization are not yet suited for problems of the size of the reload pattern optimization problem.
Parallel optimization, possibly using a network to create a virtual parallel computer, may en-
large the computer power available to solve the reactor problem. Much research is still needed
to create powerful parallel MINLP algorithms.

8.2 General conclusions

In general, the results in this paper show that, with careful modeling and careful selection of
tools, nonlinear mixed-integer optimization is a suitable tool to generate good quality loading
patterns in relatively short time. Especially when combined with a simple and fast local search
heuristic at the end, it provides good solutions in not too large time.

8.3. RECOMMENDATIONS 171

A disadvantage of the method at the current time is that it is slightly less robust than many
heuristic methods. When the nonlinear optimization does not generate a feasible pattern as
occasionally occurs, the solution is so close to a feasible one that a local search heuristic at the
end will rapidly find a good quality feasible solution.

Another disadvantage may be that advanced knowledge of, and experience with nonlinear
optimization modeling and algorithms is needed for the development of the models and the
design and tuning of the algorithms. On the other hand, tuning a simulated annealing algorithm
or an evolutionary algorithm is also a matter of experience.

An advantage of nonlinear mixed-integer optimization is its speed. Since it does not calculate
the whole core behavior for a number of trial patterns, but instead used gradient information to
move in the continuous search space, it reaches faster a local optimal solution than discrete
search heuristics.

Another advantage, possibly the most striking one, is its flexibility because it allows to make
and solve more realistic models. Extensions like Burnable Poisons or control rods can all be in-
corporated in the optimization model. Problem specific knowledge and engineering constraints
are also easily added. Thereby, it makes in principle no difference whether all these extensions
are continuous or discrete, although straightforward implementation of discrete or nonconvex
extensions may decrease the robustness.

As a third advantage we may note that it can easily be combined with a search heuristic at the
end. If one is not completely satisfied with the result, or if, due to a robustness problem, it is not
possible to find a solution that satisfies exactly the safety constraints, then a few iterations by a
search heuristic, starting from the point supplied by the nonlinear optimization, will generally
lead to feasible, high quality loading patterns.

Generally, we may conclude that the approach described in this paper deserves to be explored
further, to develop fast and stable dedicated algorithms that generate loading patterns of superior
quality. A number of recommendations for this will be given in the next section.

From a broader perspective the results are also very interesting. It is already discussed in
Section 1.2.3 that the reload pattern optimization problem belongs to a much broader class of
problems, characterized by differential equations, where the parameters of these equations can
be tuned to find good quality solutions. One might think of problems in engineering, construc-
tion, electronics, and a number of other application fields. Solving such problems using non-
linear (mixed-integer) optimization is a rather unexplored area. Our research shows that such
an approach is feasible. The general methodology of combining knowledge about differential
equations and knowledge of mathematical optimization may give powerful results.

8.3 Recommendations

Although we have examined and evaluated a lot of different methods on several models, the
research was certainly not exhaustive. Extra testing is needed and some problems have to be
resolved, and some possible improvements have to be investigated.

172 CHAPTER 8. SUMMARY, CONCLUSIONS AND RECOMMENDATIONS

New fractional model

One of the most promising new developments during the last months of our research was the
new fractional model. This model gives a better estimation of the objective function in case of
fractional loading patterns. This leads to a more smooth objective function, and the results for
the continuous optimization as shown in Table 6.6 are in many cases better than any result that
was obtained with any discrete optimization algorithm. Still, some problems with respect to
this model have to be resolved.

First of all, the number of variables and nonzeros grows very rapidly with the size of the
core. Introduction of BP or a multi-nuclide model also leads to a fast growth of the number of
variables of nonzeros. This slows down the nonlinear optimization algorithm and leads to large
memory requirements. It should be investigated whether reduction of the number of variables
is possible, for example by excluding node-bundle combinations that are likely to be very bad.
Possibly, a plain model with very few time steps can be used to identify such combinations. It
might also be investigated whether reduction of variables is possible by only counting separate
node-bundle variables for the 2 or 3 largest fractions of a bundle. Furthermore, during a run of
an optimization algorithm, it may be detected that some variables tend to zero, and then they
may be fixed to zero in an early stage.

Another issue regarding the new fractional model is how to derive integer solutions. Contrary
to the basic model used in this thesis, the fractional model gives fractional solutions that are
not close to integer. The complete enumeration of simple roundings may be costly or even
impossible, and does not necessarily generate good solutions. However, since the objective
function is much more smooth, a dedicated Branch-and-Bound algorithm may work very well.
It should also be considered whether the outer approximation algorithm can be applied using
some dedicated linearization.

Cuts

The algorithms with cuts did not improve the results. This does not imply that cuts will never
work. Cuts should be reconsidered and new types of cuts should be developed when the new
fractional model is introduced. The idea of using cuts still seems to be reasonable, although we
did not have enough time to work further on cutting or Branch and Cut algorithms.

Model extensions, model precision

Another point of study is the extension towards models that are more realistic. Hereby we
think of the inclusion of control rods, more types of nuclides, efc. Robust and efficient models
and algorithms are needed. It may be possible that a relatively simple model is used to identify
promising regions in the search space, and only then a more detailed model is introduced to do a
refined search. A related question that one should ask with every extension is, how much detail
is still helpful in an optimization context. It may be that the core analysis is not completely
accurate, but that the ordering of the loading patterns in terms of the objective function stays
the same.

8.3. RECOMMENDATIONS 173

Benchmarking

This also leads to the question of how our method performs in comparison with all the other
methods that are presented in literature. As already remarked in Section 3.4, a set of standard
problems should be designed that is accepted by the nuclear engineering community, so that
methods can really be compared with each other. Each problem in this test set should consist
of a data set describing core geometry, available fuel bundles, and all necessary physical pa-
rameters, together with a detailed fixed-core evaluation model and a well-defined objective and
operational constraints. A method that is to be tested then has to find a loading pattern with
the best obtainable objective function, and a test report should list the pattern found, together
with its objective function and the solution time, plus the starting point and other knowledge
that is used. Using this information, the results should be reproducible when using the same
implementation,

MINLP and Perturbation theory

One thing that we have not studied but that may have much potential is the combination of
MINLP and perturbation theory. Nonlinear optimization needs the computation of gradients.
Perturbation theory is a way of computing first order (and possibly second order) estimates of
the effect when one or a few variables are changed. The two methods have much in common,
and a collaboration between people with a mathematical optimization background, people with
nuclear engineering background and people with thorough knowledge of numerical differential
equations and perturbation theory, could possibly result in powerful algorithms, that may have
application areas far beyond fuel management only. As already mentioned in the previous para-
graph, many applications of optimization of differential equation parameters can be imagined,
and use of both MINLP, and (momentarily still farther away) its possible combination with
perturbation theory, is a field of research where much can be done.

174

CHAPTER 8. SUMMARY, CONCLUSIONS AND RECOMMENDATIONS

Appendix A

Nonlinear optimization algorithms

This appendix presents a more detailed mathematical description of the constrained nonlinear
optimization algorithms of Section 4.2.4. The basic optimization problem is
minimize f(x)
subjectto g;(x) <0, i=1,---,m, (A1)
hj(x) =0, j=1,---,p.

The Lagrange function or Lagrangian is
m P
L(x,u,w) = f(x)+ Zu,-g,-(x) + 2 wjhj(x), (A2)
i=1 j=1

which is defined for u; > 0,i=1,---,m. The elements u and w are known as the Lagrange mul-
tipliers. In the sequel, we assume that the objective and constraint functions are continuously
differentiable. We recall from Section 4.2.4 the Karush-Kuhn-Tucker conditions, that give first
order necessary conditions for a point x to be a minimizer.

Theorem A.1 (KKT-conditions) Given the optimization problem (A.1), where f, gi, i=1,---.m
and hj, j=1,---,p are continuously differentiable. Let X be a point satisfying all constraints,
and letVgi(x),i=1,---,mand Vhj(%), j=1,---, p be linearly independent at%. If X is a local
optimum of (A.1) then there exist scalars %;, i=1,--- ,mand Wj, j=1,---,p such that

(A.3)

A point (X, %, W) satisfying (A.3) is called a KKT point. Basically, the different NLP algorithms
aim at finding a KKT point, thereby risking that they sometimes end in a maximum, a saddle
point or an inflection point, as illustrated in Section 4.2.1.

In most constrained optimization algorithms, given a current solution vector x*, an iteration
k is basically comprised of the following steps.

175

176 APPENDIX A. NONLINEAR OPTIMIZATION ALGORITHMS

1. Convergence test. If the convergence criteria are satisfied, the algorithm stops with solu-

tion xX.

2. Search direction. A nonzero vector s* representing the search direction is calculated.

3. Line search. A certain positive step length A is calculated, such that f(x* + As®) < f(x%),
and the point x* 4+ As is feasible.

4. Update the current point. x***' = x* 4 As*, k = k+ 1, and the algorithm returns to step 1.

In steps 3. and 4. the term x + As* may be augmented by an additional term p*(1) in
order to maintain or restore feasibility.

This scheme is almost the same as the description of an iteration in an unconstrained optimiza-
tion algorithm as is shown in Section 4.2.2, but in the actual implementation there are a number
of differences. The calculation of the search direction is often performed by solving another,
simpler constrained or unconstrained optimization model. Some major solution algorithms are
discussed below.

A.1 Overview of algorithms

In most of the. descriptions below, we concentrate on step 2 of the algorithmic scheme as
sketched above. Methods for Line search (step 3) are discussed in Section A.2.2.

A.1.1 Sequential or Successive Linear Programming (SLP)

The search direction is computed by solving a linearization of the nonlinear problem around the
current solution x*;

minimize f(x*) + VF(F)T (x — %)

subject to gi(#) + Vi) (x—x¥) <0, i=1,---,m,
hi(k) + V()T (x =) =0, j=1,---,p,
—N < x—iF <Ak

Here, A¥ is a small positive number or vector, introduced since the linearization is only valid on
a local scale. An equivalent formulation is

minimize Vf(x*)7s*

subject to g;(x*) +Vgi(K)TsK <0, i=1,--,m,
hi(K) + Vi ()T =0, j=1,,p,
—Ak < $k < A

(A4)

A.1. OVERVIEW OF ALGORITHMS 177

The line search parameter A may be set to 1, or is determined by the techniques described in
Section A.2.2. The value AX can be constant during subsequent iterations, or it can be adjusted
based on the quality of the linear estimation in the previous iteration (see also Section A.1.7
about Trust Region methods).

Once a linear solver is available, SLP is extremely simple. The disadvantage is its relatively
slow convergence.

A.1.2 Sequential Quadratic Programming (SQP)

This is an enhancement of the SLP method. The search direction is computed by solving an
approximation of the problem with a quadratic objective function, subject to the linearized
constraints:
minimize Vf(x)7 sk + %skTHs"
subjectto g;(x*) + Vg;(65)Ts¥ <0, i=1,---,m,
h](xk)+th(xk)Tsk :07 J'_' 1)"'717’
— AR < sk < A,

(A.5)

In the basic form, A is the Hessian of the objective function. Commonly, the name SQP is used
for the Projected Lagrangian Method, discussed in the next section, in which H is the Hessian of
the Lagrange function. The Hessian matrix may be specified by the modeler, or approximated
by finite differences, but usually it is estimated by a Quasi-Newton algorithm, as discussed in
Section A.2.1. Since a Quasi-Newton method can be forced to generate positive semi-definite
approximations of the Hessian, fast dedicated algorithms to solve the quadratic subproblems
(A.5) can be used.

A.1.3 Projected Lagrangian Method (PLM)

As in SQP, the PLM solves a linearly constrained subproblem to find the search direction. The
objective function is related to the Lagrange function. In one variant, the Lagrange function
itself is minimized, subject to linearized constraints. It can be argued (see for example [45, p.
234]) that this is not a good choice. A better choice is to minimize a quadratic approximation of
the Lagrange function, where the gradient terms related to the constraints are removed (they are
stated explicitly in the linearized constraints). With this objective function, PLM is an extension
of SQP where the Hessian is taken to be the second derivative with respect to the x-variables of
the Lagrange function (A.2). In order to use the Lagrangian, not only an estimate x* has to be
available at the start of the kth iteration, but also estimates of the Lagrange multipliers u* and wX
must be available. The search direction is then computed by solving the following minimization

178 APPENDIX A. NONLINEAR OPTIMIZATION ALGORITHMS

problem.
minimize Vf(xk)Tsk 4 15k TV)ZL,CL(x", uk wk)sk
subject to g;(xXX) +Vg;(:F)Ts* <0, i=1,--,m,
() +Vh;(*)Tsk =0, j=1,--,p,
—AF < sk <Ak,

(A.6)

The Lagrange multipliers «**! and w**! are updated to be the Lagrange multipliers associated
to the constraints of problem (A.6) in the optimal solution.

A.1.4 Augmented Lagrangian method (ALM)

The Lagrange function for a general nonlinear optimization problem is usually not convex. A
minimum of the constrained optimization problem is even with the right Lagrange multipliers
not necessarily a minimum of the Lagrangian, but it can also be a saddle point or (for fixed
Lagrange multipliers) a maximum. One way to improve the PLM is addition of a quadratic
penalty term for the equality constraints to the Lagrange function. So we solve the following
problem at the kth iteration:

(4
minimize L(x,u*,w¥) + = ¥ A3 (x),

2 j=1 (A7)
—A < x—xk < AR

This problem can be solved by an algorithm for unconstrained optimization, where the line
search is restricted by the bound constraints. Extension of the augmented Lagrangian to in-
equality constraints can be done by addition of slack variables ([9, p.384]) or by maintaining a
list of active constraints at x* ([45, p.231]).

An important conceptual difference between the PLM and the ALM is the unconstrained
minimization in ALM. In practical optimization, (A.7) is often not solved to optimality when
the multipliers u*, w* and the parameter § are updated. If the updates are done after each
iteration of an unconstrained optimization method, the ALM becomes nearly equivalent to the
PLM method ([45, p.232]).

A.1.5 Reduced Gradient method (RGM)

The RGM solves problems with nonlinear objective function and linear constraints. It is based
on the ideas of the linear simplex method. For simplicity we assume that only equality restric-
tions and nonnegativity constraints are present:

minimize f(x)

subjectto Ax = (A.8)

b,
x > 0.

A.1. OVERVIEW OF ALGORITHMS 179

The matrix A has size p x n, where p < n, and the rows of A are assumed to be independent.

Before continuing, we need to define the concept of a basis and a basic feasible solution. If
the feasible region of (A.8) is nonempty, each nondegenerate vertex of this region is defined by
the set of p equality constraints, plus n — p inequalities that are active. This means that n — p
variables are zero, and that the other variables are uniquely determined by the equality con-
straints. The n — p variables at zero are called non-basic variables, and the dependent variables
are the basic variables. Suppose that the vector of variables is ordered such that the set of basic
variables, denoted by xp, comes first, followed by the set of non-basic variables, denoted by xn.
The set of equalities in (A.8) can then be written as

EN()= (A.9)

where B is a p x p matrix, called a basis. The solution (x},x%) is a basic solution for (A.8). Tf
a linear optimization problem has an optimal solution, it always has an optimal basic solution.
For a problem with linear constraints and a nonlinear objective function, this need not to be the
case. Still any solution can be partitioned into parts (xg,x;,) such that xg > 0, xy > 0 and the
columns in the matrix A corresponding to xg form a basis.

At the start of an iteration of the RGM a basis B is available, together with a feasible solution
()T, (xk)7T) satisfying (A.9), such that x& > 0. Such a solution can e.g. be obtained by Phase
1 of the linear simplex method. A search direction (s%, s) must be found such that’

Bsk+Nsk = 0 (A.10)
Vef() sk + Vv)Tk < 0 (A.11)
s > oifxk=o0. (A.12)

Here, Vg f(x*) and Vy f(x*) denote the gradient of f with respect to the basic and non-basic
variables, respectively. Since B is invertible, we may rewrite (A.10) as

sk = —B7INsk. (A.13)
This can be used to eliminate S’f; from (A.11):
(=Vef(X) BN+ Vyf(M)Tsk .= rTsk S 0. (A.14)

The gradient r is called the reduced gradient. The computation of a search direction reduces to
the computation of a vector sk satisfying (A.14) and (A.12). In a steepest-descent like setting,
this can be done by choosing the elements of sfi, such that s’J‘. = —r;ifr; <0, and slj‘- = —xjr;if
rj >0, d. [9, p. 459]. There it is proved that this algorithm will give s* = 0 if and only if xis a
KKT-point. As an alternative to a steepest-descent like search direction, a Quasi-Newton type
update may also be applied {45, p. 221] (also applied in the linearly constrained - nonlinear
objective subsolvers of CONOPT and MINOSS). The computation of the search direction is
completed by computing s’,‘g from s’,‘\, using (A.13).

IThe sign S for a vector-inequality is used to denote that at least one of the inequalities must be strict.

180 APPENDIX A. NONLINEAR OPTIMIZATION ALGORITHMS
Finally a line search has to be performed in the original search space. Since the direction
s¥ is by construction in the null-space of A, this line search is restricted by the nonnegativity

constraints only:

minimize f(x* + As¥)

—x*
min —% ifs££0

subjectto 0 <A< 1<j<msh<0 8
o0 ifs£>0

After computing the step length and x**!, the basis must possibly be changed. An easy rule
is to sort the variables in decreasing order, and then, starting from the largest variable, enter p
independent coefficient vectors into the basis for the next iteration.

Linear inequality constraints can be treated in the RGM in two different ways. One option is
to make them equalities by the addition of slack variables. The other way is to use an active set
strategy. This is a more complex method, but can be considerably faster for large problems.

A.1.6 Generalized Reduced Gradient (GRG) method

The standard RGM is applicable when only linear constraints are present. The GRG method is
an extension to nonlinear constraints. As for the RGM, we treat only equality and nonnegativity
constraints:

minimize f(x)
subjectto hj(x) =0, j=1,--,p,
x> 0.

Given a feasible solution x*, the constraints are linearized around x*:
hi(x*) + VR () (x—) =0, j=1,---,p.
If the constant terms are placed on the right hand side:
Vhi(X) x = V(8T —h(0h), j=1,--,p,

this can be viewed as a linear system of equations of the form Ax = b and the search direction
s¥ can be found in the same way as in the RGM. Due to the linearization of the constraints, s*
may point outward the feasible set. This is corrected by adding an extra term:

A =K sk +pk(h),

where p¥(1) is orthogonal to s*. For a given A, p¥(A) is found by iteratively solving the nonlinear
system of equations
hi(+Ask 4 pkA) =0, j=1,-.p

180 APPENDIX A. NONLINEAR OFTIMIZATION ALGORITHMS

Finally a line search has to be performed in the original search space. Since the direction
sk is by construction in the null-space of A, this line search is restricted by the nonnegativity
constraints only:

minimize f(x* + Ast)

] min —2 ifsk#0
subjectto 0 <A< 1<j<msi<0 §

o ifsk>0

After computing the step length and x**1 the basis must possibly be changed. An easy rule
is to sort the variables in decreasing order, and then, starting from the largest variable, enter p
independent coefficient vectors into the basis for the next iteration.

Linear inequality constraints can be treated in the RGM in two different ways. One option is
to make them equalities by the addition of slack variables. The other way is to use an active set
strategy. This is a more complex method, but can be considerably faster for large problems.

A.1.6 Generalized Reduced Gradient (GRG) method

The standard RGM is applicable when only linear constraints are present. The GRG method is
an extension to nonlinear constraints. As for the RGM, we treat only equality and nonnegativity
constraints:

minimize f(x)
subjectto hj(x)=0, j=1,"--,p, {
x> 0.
Given a feasible solution x*, the constraints are linearized around x*:
hj(x*) + Vh;(M) T (x—2) =0, j=1,--,p.
If the constant terms are placed on the right hand side:

Vhj (&) x = Vi ()T = (&), j=1,--,p,

this can be viewed as a linear system of equations of the form Ax = b and the search direction
sk can be found in the same way as in the RGM. Due to the linearization of the constraints, s*
may point outward the feasible set. This is corrected by adding an extra term:

A=A+t),

where p* () is orthogonal to s*. For a given A, p*()) is found by iteratively solving the nonlinear
system of equations
R At +p5A) =0, j=1,0p

A.1. OVERVIEW OF ALGORITHMS 181

by using a Newton-Raphson process. It may be that during this correction step one of the basic
variables tends to become negative. In that case a change of the basis is needed. For more
details about the computation of p*(A) one may consult e.g., [45, p. 222].

The correction p*(A) may be computed only after the line search is finished, or at each trial
solution in the line search. The latter case is computationally more expensive, but is more
robust.

The GRG method is more complex than all previous methods, but its greatest advantage is
that it maintains feasibility once a feasible solution is found. This is unlike the previous meth-
ods, where complete subproblems are solved to optimality with one set of linearized constraints.
In that case the objective may be evaluated in points that satisfy the linearized constraints, but
that not necessarily satisfy the real constraints. In the GRG method, if the correction pX (1) is
computed at each trial solution in the line search, the objective function only has to be evaluated
in feasible points.

A.1.7 Augmented-Lagrangian Trust-region method (ALTR)

Trust-region methods differ from all previous methods because they do not have a separate line
search after the computation of the search direction. Instead, the search direction depends on a
trust region like the box constraints A¥ in SLP. Let

9 P
La(x,u,w) = L(x,u,w) + 5 z’[h3(x)
j:

be the augmented Lagrangian of our problem, with gradient vector g€ and Hessian matrix H* at
a given point (x*, ¥, wX), where the gradient and Hessian are calculated with respect to x only.
Then the following problem is solved in iteration :

. T K T 17k
minimize s+ (s%) Hs

(&) (s) (A.15)
subjectto ||| < A,

where || - || is usually the 2-norm or the co-norm, and A is some positive parameter. The solution
is the same as the solution of the unconstrained minimization problem

minimize (g)7s* 4 (s5)T (H + ad)s*,

where o is an appropriately chosen parameter. If oe = 0, then s* is the unconstrained Newton
direction in (A.15). If A — 0 then ot => . In that case (H + o) — o/, and s* approaches the
steepest descent direction (although its norm tends to zero).

The solution s* of (A.15) defines the Cauchy point x* + sk, Once it is obtained, the real
reduction of the objective function f(x* + s*) — f(x*) is compared to the reduction predicted by
the quadratic estimate. There are three possibilities:

1. if the prediction is very good, then X**! = x* 4+ s* and the trust region value A is increased;
p Y& g

182 APPENDIX A. NONLINEAR OPTIMIZATION ALGORITHMS

2. if the prediction is moderate, then x*t! = x* + s, but the trust region value A remains
unchanged;

3. if the prediction is poor, then x*! = x* and the trust region value A is decreased, because
the quadratic approximation is apparently not reliable for the current A.

Trust region methods need not necessarily use the augmented Lagrangian, but also other
objective functions are possible. Furthermore, a trust region method may be combined with one
of the previous methods (for example, the ALM), by adding the linearized constraints to (A.15).

A.1.8 Interior point methods (IPM)

An alternative to Lagrangian-based methods is given by barrier methods. In a classical barrier
method, terms are added to the objective function such that both the objective function and its
first derivative go to infinity when, starting from some feasible point, the solution approaches
the boundary of the feasible area. In this way, we can make sure that subsequent iterations
will generate points that are feasible, and that they only in the limit may reach (but not cross)
the boundary of the feasible region. Methods employing such barrier functions are known
as interior point methods. For linear optimization, these methods have been proven to be very
successful during the last years, and they are more efficient then the traditional simplex methods,
especially for large problems. Interior point methods for general nonlinear programming are
being developed nowadays, and they are more and more competitive with traditional algorithms.
We will illustrate one of the currently available IPM algorithms for nonlinear optimization,
based on [115]. This paper shows also another variant. Other variants exist, e.g., as described
in [14].

We start with our standard problem (A.1), where the inequality constraints are turned into
equalities by addition of slack variables:

minimize f(x)

subjectto gi(x)+z;=0, i=1,---,m,
h](x):O’ jzla"'7p7
220, i=1,-,m.

In a logarithmic barrier approach, the nonnegativity constraints of the z; are replaced by loga-
rithmic penalties in the objective:

m
minimize f(x)—u ¥ In(z;)
i=1
subjectto gi(x)+z=0, i=1,---,m, (A.16)
h}(‘x) :O, J: 1,...7p_
Here, u is some suitable penalty parameter. The Lagrangian Ly (x,u,w) for (A.16) is given as

Ly, 2 ,w) = f(x)—piln(zi>+§ui<gi(x>+z»+ 3 wihi (o),

j=1

A.1. OVERVIEW OF ALGORITHMS 183

and the first order optimality conditions are given by

Vilp(x,2,u,w) = 0, (A.17)
V.Ly(x,z,u,w) = 0, (A.18)
hix) = 0, j=1,,p, (A.19)
g(x)+z = 0, i=1,---,m. (A.20)

Condition (A.18) can be worked out and written as
zip=p, i=1,---,m.

For u = 0, the solution of (A.17)-(A.20) is exactly a solution to the KKT conditions of the
original problem. So, one might want to use Newton’s method for solving the system with =0
directly. It is well-known, however, that Newton’s method has good (quadratic) convergence
properties only if the initial solution is not ‘too far’ from the true solution. Interior point methods
start with a nonzero g, for which it is by construction (see below) easier to solve the system of
equations. Then u is gradually reduced to zero.

Interior point methods are based on the assumption that an initial value £ is known such
that (A.19) and (A.20) are satisfied for nonnegative values z?, i=1,---,m, and that values w?,
j=1,---,mand u? >0, i=1,---,m are found such that (A.17) is approximately satisfied?.
Starting from k = 0, the kth iteration then proceeds as follows.

1. Convergence test. If system (A.17)-(A.20) is satisfied for y = O up to a given precision,
then stop.

2. Search direction. Let Tk
pC
m

for some 6* € (0, 1). For this fixed u, and starting from solution (x*, 2% uk, W), a Newton
direction (8x, 8z, du, dw) for system (A.17)-(A.20) is computed.

3. Line search. A step length A < 1 is computed, to ensure that infeasibility of the system
is reduced, that z and u stay positive, and the values of the different products z;u; do not
diverge,

4. Update the current point. (x,z,u,w)**' = (x,z,u,w)* + A(8x,8z,8u,8w), k = k + 1, and
the algorithm returns to step 1.

This is a very general description and several variants are possible. For linearly-constrained
problems, TPM’s turn out to be very effective, especially for large-scale problems. For nonlinear
problems, some encouraging implementations are available, and there is still a huge amount of
research going on by a lot of people in order to find the most efficient methods for different
types of problems.

2This assumption seems rather restricting, but there are some ways to work around it. The current description
is only to sketch the ideas of IPMs. More details can be found, e.g., in different papers in [126].

184 APPENDIX A. NONLINEAR OPTIMIZATION ALGORITHMS

A.2 Tools for nonlinear optimization algorithms

A.2.1 Quasi Newton updates of the (inverse) Hessian

The computation of a search direction in unconstrained optimization, or in a reduced gradient
environment, is usually performed using a steepest descent algorithm or by a variant of New-
ton’s method, in which the search direction s* is solved from the system

sk = —HV ()

where H = (V2f(x*))~1, the inverse of the Hessian matrix. This method requires second deriva-
tives, which are not always available. A widely used variant is the use of a guasi Newton ap-
proach. In this case, the Hessian is not computed explicitly, but its inverse is approximated
by using the first derivatives from the previous iterates. The iterative procedure starts as usual
at some point x° and an initial approximation of H, H is given, usually the identity matrix.
Let Hy be the current approximation of the inverse Hessian, let s* = —H,V f(x*) be the search
direction, and let ¥**! = x¥ 4 s be the next iteration point. Define

of = Ask=xktl_x
W= VAR Z V().
Assuming that the Hessian is constant (i.e., the objective function is quadratic), it holds that
of=H yk
for the exact inverse Hessian matrix H, but generally it is true that
ot #* Hkyk.

Hence, the vectors 6* and y* to update the approximation of the Hessian by addition of a cor-
rection term Dy, satisfying the quasi Newton property:

of = (Hk+Dk)yk.

The correction term Dy must be chosen such that information in Hj gathered from previous
iterations remains valid. So, if

Gi:Hkyiy =1, k-1,
then the new matrix Hy,1 = Hy + Dy must satisfy the hereditary property
Gi:Hk+1yi7 i=1,---,k-1,

implying Dy’ =0, i=1,-- k—1. A lastrequirement is that Hy,, should be positive definite,
so that the next quadratic model has a unique local minimum, and

sk = —H V(>

A.2. TOOLS FOR NONLINEAR OPTIMIZATION ALGORITHMS 185

is a downhill direction.

Several rules for computing Dy, are known in literature. One of the most popular update rules
is the Broyden-Fletcher-Goldfarb-Shanno (BFGS) formula:
_ w(0*)(6") — (6O He — Hi(y)(6M)T
Dy = KT (Vk
(670"

where
OMTHGY)

CORVOR
Under some well-defined circumstances, a BFGS update may lead to a matrix Hy that is
not positive semidefinite, but it is easy to work around this situation (see e.g., [45, p.121] for
details). In practice, numerical errors also may cause H.; to be not PSD. This can be avoided
by an update strategy in which a Cholesky factorization of the Hessian matrix is updated. For
a low-rank quasi Newton update, an update of the Cholesky factorization is relatively fast, and
makes sure that the Hessian stays PSD.

The hereditary property with the BFGS formula is only guaranteed if A = 3K 4 Ask was
obtained by an exact line search. In practice this is seldom a problem. Also for general objective
functions, the Hessian is not constant, so information from previous iterations is anyhow of
limited use. In some practical algorithms, the (inverse) Hessian approximation is therefore
reset to the identity matrix when low progress is made in a number of subsequent iterations, so
that the first next iteration is a steepest descent step. This may speed up the convergence of an
algorithm.

=1+

A.2.2 Line search methods

Al discussed algorithms except ALTR require that after the computation of a search direction
s*, a line search is performed in which the following one dimensional optimization problem has
to be solved:

minimize f(x* + As¥).

Amin <)< Amax
In line search algorithms, it is assumed that the function to be minimized is at least unimodal
in the given range [A™" A™a] _ which means that there is some A € [A™", A™#] such that the
function is non-increasing on the interval [7&“““,5»] and non-decreasing on the interval [5», Amax].
(Note that A determines a global minimum on [A™%, 4]; also note that unimodality is a much
weaker requirement than convexity).

There are a number of methods that always find the global optimal solution for the line search
when the function is unimodal. Among them are golden section search, quadratic interpolation
and cubic interpolation. In practical nonlinear optimization, an exact line search is too expensive
since it requires too much function evaluations. On the other hand, sufficient decrease of the
objective function should be obtained, in order to ensure convergence of the overall optimization
algorithm. A practical rule that is often applied is the Goldstein-Armijo rule (see e.g., [45,
p.100] or [9, p.281]). This rule, and a possible line search algorithm based on this rule, are
discussed in the remainder of this section.

186 APPENDIX A. NONLINEAR OPTIMIZATION ALGORITHMS

Goldstein-Armijo rule

The Goldstein-Armijo rule defines a range of acceptable step lengths by specifying criteria for
the minimal and the maximal allowed step length. Let

8(A) = f(x* +2s)
and hence
0'(0) = V()T sk
A first order approximation of 8(A) is given by
0(0) +210'(0).

The Goldstein-Armijo rule relates the actual function value 8(A) to this approximation and
considers a step A acceptable if

8(0) +£,A6(0) < B(A) < 6(0) +£210'(0) (A21)

for some £ and &, satisfying 1 > €; > €; > 0. Graphically this corresponds to the requirement
that O(A) is in some cone, ¢f Figure A.1. The Goldstein-Armijo rule may be used in the
following step length algorithm.

8(0)— /
o -

0(0) + £2A0'(0)

0(0) +A8'(0)

“m@+awm)

FIGURE A.1: Illustration of the Goldstein-Armijo criterion. Step length should be such that 8(A) is in
the cone surrounded by the dashed lines.

Goldstein-Armijo based unit step algorithm

This is a fast method in which only function values and no gradients are computed. The method
starts with a step length A. If (A.21) is satisfied, then either A is selected as the step size, or a
sequence of values wix,i =0,1,---is computed for some factor w > 1, to find the largest i that
satisfies (A.21). Such a sequence of values is also computed if the left inequality of (A.21) is
not satisfied. If on the other hand the right inequality of (A.21) is not satisfied, then a sequence
of values wik,i = 1,2, - is computed to find the smallest ; for which (A.21) is satisfied.

The selection of good values for A and w depends on the algorithm being used. One practical
setting is A = 1 and w = 2. This setting works well if the step length is expected to be approxi-
mately I, for example when using a Newton search direction on a model that is approximately
quadratic.

T

Appendix B

Some proofs

This appendix contains a collection of mathematical proofs and sketches of proofs for some
theorems that were stated in this thesis. These results are needed to justify the validity of the
solutions which are obtained with our models.

B.1 Results on eigenvalues and eigenfunctions

All our models contain a space-dependent eigenvalue equation that contains the flux as an eigen-
function and the effective multiplication factor as an eigenvalue. In the text after (2.7) on page
21 it is stressed that it is important to know that the eigenfunction corresponding to the largest
eigenvalue is everywhere nonnegative and, up to a constant factor, unique, while no other eigen-
function is nonnegative over the whole space. In Section B.1.1 this is shown for the discrete
inverse equation that is actually used in our models. In Section B.1.2 a sketch of a proof, to-
gether with pointers to literature, is given for the continuous case.

B.1.1 Discrete inverse equation (2.15)

Theorem B.1 Consider the discrete eigenvalue equations (2.15)

k., = GKiby, t=1,---,T, (B.1)
where G is the matrix of discretized Green function values,

T 0
Kt = T .

0 kT
and ¢.; = (@1, ,¢,,,)T. Let, according to our normalization constraint (2.16), Ki9., be nor-
malized to a positive constant, which is without loss of generality set to 1:

Ko, =1, t=1,---,T. (B.2)

There exists exactly one nonnegative solution 9., to (B.1).(B.2). This is the only eigenvector
associated with the largest eigenvalue k& of (B.1).

187

188 APPENDIX B. SOME PROOFS

Theorem B.1 follows from the Perron-Frobenius theorem if GK; is an irreducible matrix. There-
fore it suffices to show that GK; is an irreducible matrix. We start with a definition of irreducibil-
ity of a matrix.

Definition B.1 A nonnegative n x n matrix A is irreducible if for any pair (i,j), 1 <i,j < n,
there is a positive integer p = p(i, j) < n such that (AP);; > 0.

Lemma B.1 The matrix GK; is irreducible.

Proof: Since K; is only a scaling to the matrix G, it is sufficient to show that G is irreducible.
Recall the physical meaning of G:

o G;;: the probability that a neutron produced in node j will be absorbed in node i.

The main diagonal of G is strictly positive, so p(i,i) = 1, i = 1,...,n. For the case i # j, recall
that the probability G; ; is nonzero for two neighboring nodes. Furthermore there is no subset
of nodes in the core that is separate from the other nodes, so that each node can be reached by
each other node by jumping at most n — 1 times from one neighbor to another. In other words,
given two arbitrary nodes i and j, a chain of nodes i = iy,i3,---,i, = j, p < n can be found
such that two adjacent nodes in the chain are are neighbors in the core, thus G;, ;,,, > 0 for
k=1,---,p~ 1. This implies that G’ ; > 0, showing that G is irreducible. O

hin

Theorem B.1 now follows directly from the Perron-Frobenius theorem stated below, that,
with a complete proof, can be found in e.g., [7, Th. 1.4.4].

Theorem B.2 (Perron-Frobenius theorem) Let A > 0 be an n X n irreducible matrix. Then

1. Ay = Mgy for some Ay > 0, y > 0.

2. The eigenvalue Ay is simple, i.e., its eigenspace is one-dimensional.

3. Ao is maximal in modulus among all the eigenvalues of A.

4. The only nonnegative eigenvectors of A are just the positive scalar multiples of y.

This theorem shows that there exists exactly one nonnegative, (even strictly positive) solution
of the discrete eigenvalue equation in our problem, associated with the largest eigenvalue.

B.1.2 Continuous diffusion equation (2.9)

Theorem B.3 Consider the diffusion equation (2.9)

—LFVE(r) + o(r) = M=(r)o(r), (B.3)

B.1. RESULTS ON EIGENVALUES AND EIGENFUNCTIONS 189

where A ;= e With the boundary condition (2.11)

o(r) = 0, where ris on the boundary around the core (B.4)

and the normalization from (2.13), that without loss of generality is set to 1:

/X O(Ik(r) dr = 1. (B.5)

There exists exactly one nonnegative solution ¢, to (B.3),(B.4),(B.5). This is the only eigenfunc-
tion associated with the smallest eigenvalue A of (B.3).

In the one-dimensional case, the diffusion equation is just a special case of the Sturm-Liouville
equation. For this equation, many results exist (see e.g., [12, 72]). Among others, we know that
all eigenvalues are real and simple, all eigenfunctions are real, and for any two eigenfunctions
01,92, we have

K00t dr = 0.

The most important property for us is given in the Sturm-Oscillation theorem [72]:

Theorem B.4 (Sturm Oscillation Theorem) There exists an infinitely increasing sequence of
eigenvalues Ny, ..., Ay, ... of the boundary-value problem given by (B.3), (B.4), defined over the
one-dimensional space [a,b], and the eigenfunction corresponding to the eigenvalue A, has
precisely m zero’s in the interval (a,b).

In order to be able to prove Theorem B.3 in the multi-dimensional case, one needs to use
the theory of linear operators in Hilbert space. A Hilbert space is, roughly speaking, a space
of vectors or functions in which certain operators like addition and scalar multiplication are de-
fined, as well as an inner product, and where each Cauchy sequence converges to an element in
the space'. In our case, the Hilbert space consists of all functions ¢(r) that satisfy the boundary
conditions, and the inner product of two functions ¢;(r) and ¢»(r) is defined as

< 01,02 >= /X<D1(r)¢z(’) dr.

(Note that we omit the operand from the functions for clarity of presentation where this is
possible.) On this space, one can define operators M, that are positive if the inner product
< M@, 0 > is positive for any nonzero function ¢. It is easy to show that

M[o] == —LFV*0 + ¢

is a positive linear operator in our Hilbert space using Greens’ theorem. For any nonzero func-
tion ¢ it holds that

<MPlo> = [(~L3(730)0 + 00) dr

!

/ (~L2Vo-)odr + /L%(V¢)2dr+ / o dr (B.6)
ox JX JX

> 0,

'For more details and precise definitions of Hilbert spaces and opcrators one may consult e.g., [48].

190 APPENDIX B. SOME PROOFS

where dX is the boundary, 7 is the normal vector at the boundary, and the positivity follows
since the first term is zero due to the boundary conditions, while the second and third terms
are integrals over quadratic functions that are nonzero. Birkhoff [10, 11] mentioned that for
positive operators in Hilbert spaces, an earlier theorem of Jentzsch can be extended to show that
there exists a unique eigenfunction associated with the smallest eigenvalue. This eigenfunction
is strictly positive on the interior of the space where the differential equation is defined, and the
associated eigenvalue is also positive.

We still have to justify that none of the other eigenfunctions can be everywhere nonnegative.
In the case as is used in our work, the operator M is symmetric, which is due to the fact that
the probability for a neutron emitted at x to be absorbed at y is the same as the probability in
the opposite direction (for a mathematical definition of symmetric operators see e.g., [48]). The
symmetry property implies [48] that all eigenfunctions are real and orthogonal to each other.
This implies that the positive eigenfunction associated with the smallest eigenvalue is the only
eigenfunction that is everywhere nonnegative.

B.2 Mathematical proof that i~ decreases during a cycle

In footnote 3 in Section 5.2.1 on page 93 the following lemma is stated, which is used to sharpen
bounds in nonlinear optimization.

Lemma B.2 From the model equations of the basic reload pattern optimization model, it fol-

lows that
kP =k =1, Lt =1, T,

Although this is intuitively clear for physical reasons, we can also deduct a proof from the
assignment constraints, the reloading equations and the burnup equations:

1
ZVixi,Z,m = 1> ezla"'7Lam:17""M (B'7)
i=1
L M
> > xiem = 1, i=1,0,1 (B.8)
f=1m=1
& fresh
;’:’1 — in,l,mkres
m=1
L M i
+ 2 2 Xiem), Vixie-1mkis i=1,1 (B.9)
1=2m=1 j=1
Kiry1 = ki — OAK Ry, i=1 0 t=1..-T—-1 (B.10)

In the proof we will use the notation

k= (ke k)T

B.2. MATHEMATICAL PROOF THAT K DECREASES DURING A CYCLE 191

For ease of notation we further introduce

M
’J _Z Zxrfm JXjl—1ms Bl' z-xi,l,m B.11)

=2m=1 m=1

Using this notation, the reloading equations (B.9) are written in matrix form as
k7 = AR+ PRt (B.12)

Before starting the actual proof of Lemma B.2 we state and proof another lemma.

Lemma B.3 Let A be given as defined in (B.11), then for any vector z,

(I-A)z<0=z<0. (B.13)

Proof of Lemma B.3: Suppose that z; > 0 for one or more i. We will show that then also
[(T—A)z]; > 0 for some j. Let
p = argmax z. (B.14)

s=1,ee1
Using the definition of A and the assignment constraints (B.7) and (B.8), it holds that

L M

-2 X Xp,tm Z VY-xs[1,mZs
{=2m=1
i > é v, (since 7, >)
Xpdn X5 0 1.m2 since z Z

(= e pt,m 5,6 1,m<p p = <s (B.15)
L M)
= 222 2 XpimZp (using (B.7))

m=1

> 0 (using (B.8)).

Il

[(1-A)z],

IV

We now show that a p exists such that the inequality is strict. Suppose that equality in (B.15) is
obtained for some i that satisfies (B.14), i.e.,

Zi = maxzs > 0.
§

Let us consider the consequences.

1. xi1,m = 0 for all m due to the last inequality of (B.15), hence at least one pair (£,m), £ > |
exists with x; ¢ ,, > 0. Let £ be the smallest £ for which such a pair exists.

2. Given this pair ((7, m) there exists a r such that x,; ,, > 0. Furthermore, r # i since 7
was chosen as the smallest £ for which x; ¢, > 0.

3. Since x;7,, > 0 and x,;_, , > 0 it holds that z, = z;; otherwise the first inequality of
(B.15) would have been strict for i. This implies that r is another solution of (B.14), and
(B.15) also holds for p = r, but we know that x,.¢,,, > 0 for £ = Z— 1. If (B.15) still holds
with equality for i = r, then we can repeat our reasoning from step | above, but ultimately

192 APPENDIX B. SOME PROOFS

we will find an index j such that still z; = z; > 0, but either the first inequality of (B.15)
becomes strict, or otherwise x;,1,» > 0 for some m, hence the last inequality of (B.15)
becomes strict. In any case we find that

zi > 0= [(I —A)z]; > 0 for some j

which proves (B.13).2 0

Now we are ready for the Proof of Lemma B.2: From the burnup equations (B.10) and non-

negativity of R;, it follows that k% < k°,, hence the reloading equation (B.12) can be rewritten
g y s i,T i1 g¢q

as
(I — Ak < B, (B.16)

From the assignment constraints (B.7) and (B.8) it follows that
M L M
Bi+(Ae)i= X xiimt+ X X Xigm-1=1,
m=1 £=2m=1

so that B = (7 — A)e, and (B.16) is written as

(I —A) (K7, — ek™™) < 0. (B.17)

Application of Lemma B.3 with z := k7, — k'™ proves Lemma B.2. a

2An alternative proof of (B.13) was possible using the theory of Markov chains. It can be shown that A is an
(incomplete) transition matrix without closed subsets, for which (B.13) is a well-known property (e.g., [50)).

Bibliography

[1] E. Aarts and LK. Lenstra. Local Search in Combinatorial Optimization. Wiley & Sons,
Chichester, 1997,

[2] D.H. Ahn and S.H. Levine. Direct placement of fuel assemblies using the gradient pro-
jection method. Transactions of the American Nuclear Society, 46:123-125, 1984,

[3]1 V.V. Amel’kin. Differential Equations in Applications. Mir Publishers, Moscow, 1990.
[4] LP. Androulakis, C.D. Maranas, and C.A. Floudas. aBB: A global optimization method
for general constrained nonconvex problems. Journal of Global Optimization, 7:337-

363, 1995.

[5] J K. Axmann. Parallel adaptive evolutionary algorithms for pressurized water reactor
reload pattern optimizations. Nuclear Technology, 119:276-292, 1997.

[6] J.W. Bandler, R.M. Biernacki, S.Hua Chen, R.H. Hemmers, and K. Madsen. Electro-
magnetic optimization exploiting aggressive space mapping. IEEE Transactions on Mi-
crowave Theory and Techniques, 43:2874-2882, 1995.

[7] R.B. Bapat and T.E.S. Raghavan. Nonnegative Matrices and Applications. Cambridge
University Press, Cambridge, 1997.

[8] C.Barnhart, J. Desrosiers, and M.M. Solomon (eds.). Focused issue on air transportation.
Transportation Science, 32(3):205-301, 1998.

[9] M.S. Bazaraa, H.D. Sherali, and C.M. Shetty. Nonlinear Programming. Theory and
Algorithms. Wiley & Sons, New York, 1993.

[10] G. Birkhoff. Extension of Jentzsch’s theorem. Transactions of the American Mathemat-
ical Society, 85:219-227, 1957.

[11] G. Birkhoff. Reactor criticality in neutron transport theory. Rendiconti di Matematica e
delle sue Applicazioni, 22:1-25, 1963.

[12] W.E. Boyce and R.C. DiPrima. Elementary Differential Equations and Boundary Value
Problems. Wiley & Sons, 1986.

[13] A. Brooke, D. Kendrick, and A. Meeraus. GAMS: A User’s Guide, Release 2.25. The
Scientific Press, 1992.

193

hakh 6

194 BIBLIOGRAPHY
[14] R.H. Byrd, M.E. Hribar, and J. Nocedal. An interior point algorithm for large scale
nonlinear programming. July 1997.

{15] J.N. Carter. Genetic algorithms for incore fuel management and other recent develop-
ments in optimisation. Advances in Nuclear Science and Technology, 25:113-154, 1997.

[16] H. Casanova, J.J. Dongarra, and K. Moore. Network-enabled solvers and the netsolve
project. SIAM News, 31(1):1,8, 1998.

[17] Y. Censor and S.A. Zenios. Parallel Optimization, Theory, Algorithms and Applications.
Oxford University Press, New York, Oxford, 1997.

[18] R.G. Cochran and N. Tsoulfanidis. The Nuclear Fuel Cycle: Analysis and Management.
American Nuclear Society, La Grange Park, Illinois, USA, 1992.

{19] A.R. Conn, N.LM. Gould, and Ph. L. Toint. LANCELOT: A Fortran Package for Large-
Scale Nonlinear Optimization (Release A). Springer-Verlag, Berlin, 1992.

[20] A.R.Conn, K. Scheinberg, and Ph.L. Toint. On the convergence of derivative-free meth-
ods for unconstrained optimization. In M.D. Buhmann and A. Iserles, editors, Approxi-
mation Theory and Optimization, pages 83—108. Cambridge University Press, 1997.

[21] A.R. Conn, K. Scheinberg, and Ph.L. Toint. Recent progress in unconstrained nonlinear
optimization without derivatives. Mathematical Programming, 19:397-414, 1997.

[22] Cute: Constrained and unconstrained testing environment. http://www.cse.clrc.
ac.uk/Activity/CUTE.

[23] G.B.Dantzig. Programming in a linear structure. Econometrica, 17:73—74, 1948. Report
of the Sept. 9, 1948 meeting in Madison.

[24] G.B. Dantzig and M.N. Thapa. Linear Programming 1: Introduction. Springer, New
York, 1997.

[25] M.D. DeChaine and M.A. Feltus. Fuel management optimization using genetic algo-
rithms and expert knowledge. Nuclear Science and Engineering, 124:188-196, 1996.

[26] M. Dell’ Amico, F. Maffioli, and S. Martello. Annotated Bibliographies in Combinatorial
Optimization. Wiley & Sons, Chichester, 1997.

[27]1 A.S. Drud. A large-scale GRG code. ORSA Journal on Computing, 6(2):207-216, 1992.
[28] J.J. Duderstadt and L.J. Hamilton. Nuclear Reactor Analysis. Wiley & Sons, 1976.

{291 M. Dumas and D. Robeau. Fuel management optimization for a PWR. In Proc. Int.
Topical Meeting on Advances in Math. Methods for the Solution of Nuclear Engineering
Problems, pages V.2 357-367. Miinchen, 1981.

[30] M.A. Duran and LE. Grossmann. An outer approximation algorithm for a class of mixed-
integer nonlinear programs. Mathematical Programming, 36:307, 1986.

BIBLIOGRAPHY 195

[31] J. Beasley (ed.). Advances in Linear and Integer Programming. Oxford University Press,
Oxford, 1996.

[32] A.V. Fiacco and G.P. McCormick. Nonlinear Programming: Sequential Unconstrained
Minimization Techniques. Classics in Applied Mathematics. SIAM, Philadelphia, 1990.
Formerly published by Wiley, New York, 1968.

[33] R. Fletcher and S. Leyffer. Solving mixed integer nonlinear programs by outer approxi-
mation. Mathematical Programming, 66:327-349, 1994.

[34] C.A. Floudas. Nonlinear and Mixed-Integer Optimization; Fundamentals and Applica-
tions. Topics in Chemical Engineering. Oxford University Press, New York, 1995.

[35] E. Galligani, V. Ruggiero, and L. Zanni. Parallel solution of large scale quadratic pro-
grams. In R. De Leone et al. , editor, High Performance Algorithms and Software in
Nonlinear Optimization, pages 189-205. Kluwer Academic Publishers, Boston, 1998.

[36] A. Galperin and Y. Kimhy. Application of knowledge-based methods to in-core fuel
management. Nuclear Science and Engineering, 109:103-110, 1991.

[37] GAMS Development Corporation, Washington, DC. GAMS - The Solver Manuals.

[38] R. van Geemert. Evaluation and optimization of fuel assembly shuffling schemes for a
nuclear reactor core. Technical Report IRI-131-95-016, Delft University of Technology,
1995.

[39] R.van Geemert. Nuclear Reactor Reload Pattern Optimization by Application of Heuris-
tic Search and Perturbation Theoretical Methods. PhD thesis, Delft University of Tech-
nology, 1999.

[40] R. van Geemert and J.E. Hoogenboom. A two-dimensional analytical nodal core model
for use in a reload pattern optimization procedure. In Proceedings of the 9th Topical
Meeting, Moscow, MEPRI, h/c Volga”, September 4-8, 1994.

[41] R. van Geemert, J.E. Hoogenboom, and A.J. Quist. In-core fuel management optimiza-
tion by incorporation of a perturbation theoretical approach in a heuristic search proce-
dure. In Proceedings International ANS Conference on the Physics of Nuclear Reactors
(PHYSOR’98), Long Island (New York), pages V1.91-101, 1998.

[42] R. van Geemert, A.J. Quist, and J.E. Hoogenboom. Reload pattern optimization by
application of multiple cyclic interchange algorithms. In Proceedings of PHYSOR96,
pages 138-147. Mito, Japan, 1996.

[43] R. van Geemert, A.J. Quist, and J.E. Hoogenboom. Application of depletion perturba-
tion theory and sensitivity analysis for minimizing the required feed enrichment for an
equilibrium cycle. In Proceedings of the Topical Meeting Advances in Nuclear Fuel
Management I, Volume 2, pages 15-1-15-9. American Nuclear Society, 1997.

196 BIBLIOGRAPHY

[44] R. van Geemert, A.J. Quist, J.E. Hoogenboom, and H.P.M. Gibcus. Research reactor
in-core fuel management optimization by application of multiple cyclic interchange al-
gorithms. Nuclear Engineering and Design, 186:369-377, 1998.

[45] PE. Gill, W. Murray, and M.H. Wright. Practical Optimization. Academic Press, 1981.

[46] E. Glover. Future paths for integer programming and links to artificial intelligence. Com-
puters and Operations Research, 13(5):533-549, 1986.

[47] F. Glover. Tabu search — part I. ORSA Journal on Computing, 1:190, 1989.
[48] 1. Gohberg and S. Goldberg. Basic Operator Theory. Birkhiuser, 1981,

{49] R.E. Griffith and R.A. Stewart. A nonlinear programming technique for the optimization
of continuous processing systems. Management Science, 7:379-392, 1961.

[50] G.R. Grimmett and D.R. Stirzaker. Probability and Random Processes. Oxford Univer-
sity Press, Oxford, 1990.

[S11 A. Hertz and D. Kobler. A framework for the description of population based methods.
Technical Report RR ORWP 98/04, Dept. of Mathematics, EPF-Lausanne, Switzerland,
1998.

[52] G.H. Hobson and P.J. Turinsky. Automatic determination of pressurized water reactor
core loading patterns that maximize beginning-of-cycle reactivity within power-peaking
and burnup constraints. Nuclear Technology, 74:5-13, 1986.

{53] K. Holmberg. On the convergence of the cross decomposition. Mathematical Program-
ming, 47:269, 1990.

[54] J.E. Hoogenboom and H. van Dam. Reactor physics (in dutch). Lecture Notes Delft
University of Technology, 1994.

[55] R. Horst and PM. Pardalos. Handbook of Global Optimization, volume 2 of Nonconvex
Optimization and its Applications. Kluwer Academic Publishers, Dordrecht, 1995.

[56] T. Hoshino. In-core fuel management optimization by heuristic learning technique. Nu-
clear Science and Engineering, 49:59-71, 1972.

[57] T. Hoshino, M. Takahashi, and Y. Fujii. Optimization of in-core fuel management, cycle
period and power scheduling of nuclear power plants by large scale nonlinear program-
ming. In Proc. Conf. on Comp. Methods in Nuclear Engineering, pages V1. HI-115-1II-
134. Charlestone, South Carolina, April 15-17, 1975.

[58] ILOG Inc., Incline Village. Using the CPLEX Callable Library. Version 6.0.

[59] AlJ. de Jong. Reloading pattern design for batch refuelled nuclear reactors. Technical
Report IRT 131-95-010, Delft University of Technology, 1995.

BIBLIOGRAPHY 197

[60] H.G. Kim, S.H. Chang, and B.H. Lee. Optimal fuel loading pattern design using an arti-
ficial neural network and a fuzzy rule-based system. Nuclear Science and Engineering,
115:152~163, 1993.

[61] H.G. Kim, S.H. Chang, and B.H. Lee. Pressurized water reactor core parameter predic-
tion using an artificial neural network. Nuclear Science and Engineering, 113:70-76,
1993.

[62] T.K.Kim and C.H. Kim. Determination of optimized PWR fuel loading pattern by mixed
integer programming. In Proceedings of PHYSOR96, pages 176-185. Mito, Japan, 1996.

[63] T.K. Kim and C.H. Kim. Mixed integer programming for pressurized water reactor fuel-
loading-pattern optimization. Nuclear Science and Engineering, 127:346-357, 1997.

[64] Y.J. Kim, T.J. Downar, and A. Sesonske. Optimization of core reload design for low-
leakage fuel management in pressurized water reactors. Nuclear Science and Engineer-
ing, 96:85-101, 1987.

[63] E. de Klerk, T. Illés, A.J. de Jong, C. Roos, T. Terlaky, J. Valkd, and J.E. Hoogen-
boom. Optimization of nuclear reactor reloading patterns. Annals of Operations Re-
search, 69:65-84, 1997.

[66] D.J. Kropaczek and PJ. Turinsky. In-core nuclear fuel management optimization for
pressurized water reactors utilizing simulated annealing. Nuclear Technology, 95:9-32,
1991.

[67] T. Kubokawa and R. Kiyose. Optimization of in-core fuel management by integer linear
programming. In Proc. Conf. on Comp. Methods in Nuclear Engineering, pages V. I11-
135-111-149. Charlestone, South Carolina, April 15-17, 1975.

[68] H.W. Kuhn. Nonlinear programming: A historical note. In Lenstra et al. [71], pages
82-96.

[69] J.C. Lagarias, J.A. Reeds, M.H. Wright, and PE. Wright. Convergence properties of
the Nelder-Mead simplex method in low dimensions. SIAM Journal of Optimization,
9(1):112-147, 1998.

[70] J.-L. Lagrange. Théorie des fonctions analytiques. 1813. Reprinted as: J.-A. Serret (ed.)
(1881). Oeuvres de Lagrange, Tome IX, Gauthier-Villars, Paris.

[71] J.K. Lenstra, A.-H.G. Rinnooy Kan, and A. Schrijver, editors. History of Mathematical
Programming: A Collection of Personal Reminiscences. Elsevier Science Publishers,
Amsterdam, 1991.

[72] BM. Levitan and L.S. Sargsjan. Sturm-Liouville and Dirac Operators. Kluwer Academic
Publishers, 1991.

[73] S. Leyffer. Integrating SQP and Branch-and-Bound for mixed integer nonlinear pro-
gramming. Technical Report NA/182, Dundee University Numerical Analysis Report,
1998.

198 BIBLIOGRAPHY

[74] S. Leyffer. Personal communication, Fall 1997. Dundee University.

[75] C. Lin, J-1. Yang, K-J. Lin, and Z-D. Wang. Pressurized water reactor loading pattern
design using the simple tabu search. Nuclear Science and Engineering, 129:61-71, 1998.

[76] F.A. Lootsma. Parallel non-linear optimization. In H.W. Tyrer, editor, Advances in Dis-
tributed and Parallel Processing Volume Two: Applications in Optimization, Fluid Dy-
namics, and VLSI, chapter 2, pages 5-33. Ablex Publishing Corporation, Norwood, NJ,
1994.

[77]1 Y.P. Mahlers. Core loading pattern optimization for pressurized water reactors. Annals
of Nuclear Energy, 21:223-227, 1994.

[78] Y.P. Mahlers. Core loading pattern optimization for research reactors. Annals of Nuclear
Energy, 24(7):509-514, 1997.

[79] G.I. Maldonado and P.J. Turinsky. Application of nonlinear nodal diffusion generalized
perturbation theory to nuclear fuel reload optimization. Nuclear Technology, 110:198—
219, 1995.

[80] G.I. Maldonado, P.J. Turinsky, and D.J. Kropaczek. Employing nodal generalized pertur-
bation theory for the minimization of feed enrichment during pressurized water reactor
in-core fuel management optimization. Nuclear Science and Engineering, 121:312-325,
1995.

[81] G.P. McCormick. Computability of global solutions to factorable nonconvex programs:
Part I - convex underestimating problems. Mathematical Programming, 10:147-175,
1976.

[82] J.0. Mingle. In-core fuel management via perturbation theory. Nuclear Technology,
27:248-257, 1975.

[83] H. Motoda, J. Herczeg, and A. Sesonske. Optimization of refueling schedule for light-
water reactors. Nuclear Technology, 25:477-496, 1975.

[84] T.S. Motzkin. Signs of minors. In O. Shisha, editor, Inequalities, pages 225-240. Aca-
demic Press, 1967.

[85] K.G. Murty. Linear Programming. Wiley & Sons, New York, 1983.

[86] K.G. Murty. Some NP-complete problems in quadratic and nonlinear programming.
Mathematical Programming, 39:117-129, 1987.

[87] B.N. Naft and A. Sesonske. Pressurized water reactor optimal fuel management. Nuclear
Technology, 14:123-132, 1972.

[88] S.G. Nash and A. Sofer. Linear and Nonlinear Programming. McGraw-Hill, New York,
1996.

BIBLIOGRAPHY 199

[89] J.L. Nazareth. Computer Solution of Linear Programs. Oxford University Press, New
York, 1987.

[90] G.L. Nemhauser and L.A. Wolsey. Integer and Combinatorial Optimization. Wiley &
Sons, New York, 1988.

[91] NEOS: Network enabled optimization software server. http://www-
neos.mcs.anl.gov/neos/.

[92] Y. Nesterov and A.S. Nemirovskii. Interior Point Polynomial Algorithms in Convex Pro-
gramming. SIAM Studies in Applied Mathematics, Vol. 13. STAM, Philadelphia, 1994.

[93] NetSolve:. http://www.cs.utk.edu/netsolve/.

[94] E. Nissan and A. Galperin. Refueling in nuclear engineering: the FUELCON project.
Computers in Industry, 37:43-54, 1998.

[95] A. Osyczka. Multicriterion Optimization in Engineering. Wiley, New York, 1984.

[96] C.H. Papadimitriou and K. Steiglitz. Combinatorial Optimization. Prentice-Hall, Engle-
wood Cliffs, 1982.

[97] G.T. Parks. An intelligent stochastic optimization routine for in-core fuel cycle design.
Transactions of the American Nuclear Society, 57:259-260, 1988.

[98] G.T. Parks. Advances in optimization and their applicability to problems in the field of
nuclear science and technology. Advances in Nuclear Science and Technology, 21:195—

253, 1990.

[99] G.T. Parks. An intelligent stochastic optimization routine for nuclear fuel cycle design.
Nuclear Technology, 89:233-246, 1990.

[100] G.T. Parks. Multi-objective pressurized water reactor reload core design by nondomi-
nated genetic algorithm search. Nuclear Science and Engineering, 124:178-187, 1996,

[101] J. Pintér. LGO - A Model Development System for Continuous Global Optimization.
User’s Guide. Pintér Consulting Services, Halifax, NS, 3rd revised edition.

[102] J.D. Pintér. Global Optimization in Action, volume 6 of Nonconvex Optimization and its
Applications. Kluwer Academic Publishers, Dordrecht, 1996.

[103] S. Poljak, F. Rendl, and H. Wolkowicz. A recipe for semidefinite relaxation for 0,1-
quadratic programming. Journal of Global Optimization, 7:51-73, 1995.

[104] PW. Poon and G.T. Parks. Application of genetic algorithms to in-core fuel manage-
ment optimization. In Proceedings Joint International Conference on Mathematics and
Supercomputing in Nuclear Applications, pages Vol. 1, 777. Karlsruhe, 1993.

[105] M.J.D. Powell. Direct search algorithms for optimization calculations. In A. Iserles,
editor, Acta Numerica, Vol. 7, pages 287-336. Cambridge University Press, 1998.

200 BIBLIOGRAPHY

[106] A.J. Quist, R. van Geemert, J.E. Hoogenboom, T. Illés, E. de Klerk, C. Roos, and T. Ter-
laky. Application of nonlinear optimization to reactor core fuel reloading. Annals of
Nuclear Energy, 26(5):423-448, 1998.

[107] AJ. Quist, E. de Klerk, C. Roos, and T. Terlaky. Copositive relaxation for general
quadratic programming. Optimization Methods and Software, 9:185-208, 1998.

[108] M.V. Ramana. An Algorithmic Analysis of Multiquadratic and Semidefinite Program-
ming Problems. PhD thesis, The Johns Hopkins University, Baltimore, 1993.

[109] M.V. Ramana and PM. Pardalos. Semidefinite programming. In Terlaky [126], pages
369-398.

[110] C. Roos, T. Terlaky, and J.-Ph Vial. Theory and Algorithms for Linear Optimization; an
Interior Point Approach. Wiley & Sons, Chichester, 1997.

[111} H.S. Ryoo and N.V. Sahinidis. A Branch-and-Reduce approach to global optimization.
Journal of Global Optimization, 8(2):107-139, 1996.

[112] N.V. Sahinidis. BARON: A General Purpose Global Optimization Software Package.
University of Ilinois, 1995.

[113] T.O. Sauar. Application of linear programming to in-core fuel management optimization
in light water reactors. Nuclear Science and Engineering, 46:274-283, 1971.

[114] A. Schrijver. Theory of Linear and Integer Programming. Wiley & Sons, Chichester,
1986.

[115] D.E Shanno, M.G. Breitfeld, and E.M. Simantiraki. Implementing barrier methods for
nonlinear programming. In Terlaky [126], pages 399-414.

[116] N.Z. Shor. Quadratic optimization problems. Soviet Journal of Computer and System
Sciences, 25(6):1-11, 1987.

{117] T. Smuc, D. Pevec, and B. Petrovi¢. Annealing strategies for loading pattern optimiza-
tion. Annals of Nuclear Energy, 21:325-336, 1994.

[118] W.M. Stacey, Jr. Space-Time Nuclear Reactor Kinetics. Academic Press, 1969.

[119] R.E. Steuer. Multiple Criteria Optimization Theory, Computation, and Application. Wi-
ley, New York, 1986.

[120] J.G. Stevens, K.S. Smith, K.R. Rempe, and T.J. Downar. Optimization of pressurized
water reactor shuffling by simulated annealing with heuristics. Nuclear Science and
Engineering, 121:67-88, 1995.

[121] R.B. Stout and A H. Robinson. Determination of optimum fuel loadings in pressurized
water reactors using dynamic programming. Nuclear Technology, 20:86-102, 1973.

BIBLIOGRAPHY 201

[122]

[123]

[124]

[125]

[126]

[127]

[128]
[129]

[130]

{131]

[132]

[133]

[134]

1.S. Suh and S.H. Levine. Optimized automatic reload program for pressurized water
reactors using simple direct optimization techniques. Nuclear Science and Engineering,
105:371-382, 1990.

E.D. Taillard, L.M. Gambardella, M. Gendreau, and J.-Y. Potvin. Adaptive memory
programming: A unified view of metaheuristics. Technical Report IDSIA-19-98, IDSIA,
Lugano (Switzerland), 1998.

M. Tawarmalani, S. Ahmed, and N.V. Sahinidis. Convex extensions of l.s.c. functions
and reformulations of rational functions of 0-1 variables. Submitted to Mathematical
Programming, tawarmal @alexander.scs.uiuc.edu, 1999.

A.B. Tayler. Mathematical Models in Applied Mechanics. Clarendon Press, Oxford,
1986.

T. Terlaky, editor. Interior Point Methods of Mathematical Programming. Kluwer Aca-
demic Publishers, Dordrecht, 1996.

W.B. Terney and E.A. Williamson, Jr. The design of reload cores using optimal control
theory. Nuclear Science and Engineering, 82:260-288, 1982.

Ph. L. Toint. Private communication, April-May, 1998. FUNDP.

V. Torczon. Multi-directional Search: A Direct Search Algorithm for Parallel Machines.
PhD thesis, Rice University, Houston, 1989.

L. Vandenberghe and S. Boyd. Semidefinite programming. SIAM Review, 38:49-95,
1996.

S. Wei and C. Pingdong. A new approach for low-leakage reload core multi-cycle opti-
mization design. In Proceedings of PHYSOR96, pages 186-195. Mito, Japan, 1996.

A. Yamamoto. Comparison between equilibrium cycle and successive multicycle opti-
mization methods for in-core fuel management of pressurized water reactors. In Pro-
ceedings of the Joint International Conference on Mathematical Methods and Super-
computing for Nuclear Applications, pages 769-781, Saratoga Springs, New York, 1997.
American Nuclear Society, Inc.

PL. Yu and M. Zeleny. The set of all nondominated solutions in linear cases and a mul-
ticriteria simplex method. Journal of Mathematical Analysis and Applications, 49:430—
468, 1975.

N. Zavaljevski. A model for fuel shuffling and burnable absorbers optimization in low
leakage PWR’s. Annals of Nuclear Energy, 17(4):217-220, 1990.

202 BIBLIOGRAPHY

7
EERND

T
1

P

| EEEEN

0

List of symbols

Symbols related to the physical model

o
of

=
-

fresh
a,m

10 Mxe <2

M

14

Xitm

(in basic model) Scaling constant, 36

(in BP model) Scaling constant, 38

Energy distribution function of fission neutrons, 19

Diffusion coefficient, 19

Measure of power peak constraint violation in the cut algorithm, 111
Length of the time interval starting at time step ¢, 25

Maximum allowed ratio between maximum and average local power peak, 35
Green function matrix, 23

Effective multiplication factor, 20

Infinite multiplication factor, 22

Artificial infinite multiplication factor where BP is neglected, 33
Infinite multiplication factor of a fresh bundle, 25

I x I diagonal matrix with entries k7, on the main diagonal, 187

Fast diffusion length, 22

Fission energy, 22

Particle density (which particle should be clear from the context), 16
Average number of neutrons produced per fission, 19

Constant power level, 22

Neutron flux, 18

Neutron removal rate, 36

Macroscopic cross section, 17

Microscopic cross section, 16

BP cross section in the fresh bundle of trajectory m, 33

Volume of a node i, 34

Neutron velocity, 18

Binary variable indicating whether node i contains a bundle of age £ from tra-
jectory m, 32

Sub- and superscripts on cross sections

w g o -.m o

absorption, 17

capture, 18

fission, 17

applied to Burnable Poisons only, 26
scattering, 17

203

204

Model size constants

I

NE >

Number of nodes in an octant core, counting each individual diagonal node as

one, 31
Number of age groups in the core, 31
Number of trajectories in an octant core, 32

Number of time steps in the discretization (i.e., the number of time intervals

plus one), 24

Assumptions on the names of indexing subscripts

(&) Index on energy group

i,j Indices on node numbers

£ Index on age group

m Index on trajectory number

t Index on time step

q Index on nuclide type

BoC Time index t = 1

EoC Time indext =T

Mathematical symbols

B Cone of completely positive matrices, 159
N Cone of nonnegative matrices, 159

S Cone of positive semidefinite matrices, 158
&(r) Dirac & function, 23

H Hessian (second derivative) matrix
L{x,u,w) Lagrange function, 59

vV, Gradient with respect to x

Trace of a matrix X (sum of its diagonal elements), 157

LIST OF SYMBOLS

TG
t =

T
[

oBB

Al
ALM
ALTR
AMPL
AP

BARON
BFGS-formula
BoC

BP

CONOPT
CPLEX
CPU

CR

CRP
CRPR
CUTE

DC
DICOPT
DLL
DONLP2

EA
EoC
ER

FILTER

GA
GAMS
GBD
GCD
GOA
GPT
GQP
GRG
GUI

List of abbreviations

a software package for global optimization, 118, 155

Artificial Intelligence, 49

Augmented Lagrangian method, 67, 178

Augmented Lagrangian Trust Region method, 67, 181
a modeling language for optimization problems, 153
Augmented Penalty, 75

a software package for global optimization, 118, 156
Broyden-Fletcher-Goldfarb-Shanno formula, 185
Begin of Cycle, 13

Burnable Poison, 26

a software package for NLP, 117

a software package for MIP, 117

Central processing unit, 127

our algorithm using CONOPT and a rounding algorithm, 145
our algorithm using CONOPT, rounding, and PI, 145

our algorithm using CONOPT, rounding, and modified PI, 145
Library of NLP test problems, 155

our algorithm using DICOPT, 145
a software package for MINLP, 118
Dynamic Link Library, 117

a software package for NLP, 153

Evolutionary Algorithms, 46
End of Cycle, 25
Equality Relaxation, 75

a software package for NLP, 154

Genetic Algorithms, 42

a modeling language for optimization problems, 117
Generalized Benders Decomposition, 78
Generalized Cross Decomposition, 78

Generalized Outer Approximation, 76

Generalized Perturbation Theory, 52

General Quadratic Programming, 157

Generalized Reduced Gradient method, 68, 180
Graphical User Interface, 117

205

206

IPM
KKT-conditions

LANCELOT
LGO

LNZ

LOQO

LP

LWR

MI
MILP
MIMD
MINLP
MINOS5
MIP

MP

NEOS-server
NLNZ
NLP

OA

PD
PI
PIR
PLM
PMA
PSD

PWR

QP
RGM

SA
SDO
SIF
SIMD
SISD
SLP
SNOPT
SOS
SQP

TS
ZOOM

LIST OF ABBREVIATIONS

Interior Point method, 69, 182
Karush-Kuhn-Tucker conditions, 59, 175

a software package for NLP, 117, 154

a software package for global optimization, 118, 156
Linear nonzero’s, 131

a software package for NLP, 153

Linear Programming, 55

Light Water Reactor, 53

Multiple Interchange, 43

Mixed-integer Linear Programming, 75

Multiple Instruction Multiple Data, 160

Mixed-integer Nonlinear Programming, 55

a software package for NLP, 117

Mixed-Integer Programming, commonly used in the sense of MILP
Mathematical Programming, 55

a web server for optimization, 117
Nonlinear nonzero’s, 131
Nonlinear Programming, 57

Outer Approximation, 74

Positive definite, 61

Pairwise Interchange, 43

our modified PI algorithm, 145
Projected Lagrangian Method, 177
Population Mutation Annealing, 48
Positive semidefinite, 61
Perturbation Theory, 52
Pressurized Water Reactor, 53

Quadratic (convex) Programming, 153

Reduced Gradient Method, 66, 178
Righthand side (of a constraint)

Simulated Annealing, 45

Semidefinite optimization, 156

Standard input format for NLP models, 117
Single Instruction Multiple Data, 160

Single Instruction Single Data, 160
Sequential Linear Programming, 65, 176

a software package for NLP, 154

Special Ordered Set, 141

Sequential Quadratic Programming, 67, 177

Tabu Search, 47
a software package for MIP, 118

artificial intelligence, 49
atomic number, 15
augmented lagrangian method, 67, 178

augmented lagrangian trust region method,

67,181

barrier function, 69

basic solution, 179

basic variables, 179

basis, 179

binding energy, 15

black box optimization, 58, 79
bounds cooling, 46

branch and reduce, 80
Branch-and-Bound, 51, 72, 105
burnable absorbers, see burnable poison
burnable poison, 26, 147

caption, 16
cauchy point, 181
completely positive matrix, 159
control rod, 3
control theory, 51
convex envelope, 81
convex hull, 77
convexity, 56
copositive optimization, 158
cross section
macroscopic, 17
microscopic, 16
cross-over, 47
cuts, 76, 108-117, 146

derivative based methods, 42
direct search methods, 42
dynamic programming, 44

effective multiplication factor, 20

- Index

engineering constraints, 52, 97
equilibrium cycle condition, 32
evolutionary algorithms, 46

fast diffusion length, 22

fast group, 20

first order conditions, 59
fission, 16

flux, see neutron flux

fuel breeding, 29

fuel bundle, 4

fuel element, see fuel bundle
fuel management, 1

generalized benders decomposition, 78

generalized cross decomposition, 78

generalized reduced gradient method, 68,
180

global optimal solution, 56

global optimization, 79, 155

global to local search, 48

Goldstein-Armijo rule, 186

Green function, 23

Hessian, 61, 184
Hilbert space, 189
hybrid algorithm, 49

infinite multiplication factor, 22
interior point methods, 69, 182
irreducible matrix, 188

isotope, 15

KKT-conditions, 59, 175

Lagrange
function, 59, 175
multipliers, 59, 175
line search, 62, 183, 185

207

208

Lipschitz continuity, 79
loading pattern, 13, 31
local optimal solution, 56
local search methods, 42

Markov chain, 192

mass number, 15

mathematical optimization, 6
Monte Carlo method, 49
multigroup diffusion equations, 20
multiple interchange, 43

mutation, 47

neural networks, 49
neutron, 15
neutron density, 17
neutron flux, 18
neutron transport equation, 18
Newton

direction, 63

method, 63
nucleus, 15
nuclide, 15

density, 16

outer approximation, 74, 104

pairwise interchange, 43, 107, 142
parallelization, 159-165
Perron-Frobenius theorem, 188
perturbation theory, 52

population mutation annealing, 48

positive semidefinite matrix, 61, 158

power peaking factor, 35
projected lagrangian method, 177
proton, 15

quasi Newton, 184

reduced gradient, 179

reduced gradient method, 66, 178
reload pattern, see loading pattern
rounding, 103

rounding heuristics, 71

scattering, 16
second order condition, 61

INDEX

selection (in evol.alg), 47
sequential linear programming, 50, 65, 176
sequential quadratic programming, 51, 67,
177
simplex method
linear, 7
nonlinear, 58
simulated annealing, 45
Slater regularity condition, 60
steepest descent, 63
Sturm oscillation theorem, 189
Sturm-Liouville equation, 189
symmetry, 33

tabu search, 47

task partitioning, 160

task scheduling, 160

task synchronization, 160

thermal group, 20

transition matrix, 192

transport equation, see neutron transport
equation

trust region method, 64

unimodal function, 185
vector computer, 160

warm start, 114

Dankwoord

Toen ik aan mijn huidige chef enkele dagen vrijaf vroeg om dit dankwoord te schrijven —en om
nog een aantal zaken rondom het proefschrift te regelen— herinnerde hij mij aan de (blijkbaar
internationale) gewoonte om de laatste zin van het dankwoord te wijden aan de personen die
het dichtst bij je staan. Inderdaad ben ik mijn familie veel dank verschuldigd. Allereerst mijn
ouders, die mij gelegenheid gaven om een wiskundestudie te doen, en me op vele manieren
geholpen hebben in mijn Delftse periode. Daarnaast dank ik de rest van mijn familie, die mij
verlof gaf voor het spitten van de tuin, terwijl ik wel van de vruchten mag genieten. Ook bedankt
voor de keren dat jullie mij van het station kwamen halen als de trein weer eens vertraging had,
en voor het leggen van de plavuizen in mijn huis, terwijl ik naar een (achteraf vrij onbelangrijke)
conferentie ging. Laat me hier ook Arend-Jan noemen, die zijn vader in de laatste anderhalf
jaar hielp door de meeste nachten stil te zijn, ondanks de soms wat magere aandacht overdag.
Bijzondere dank gaat naar jouw, Elma, die alleen al door je aanwezigheid rust uitstraalt, die
rustig kan luisteren naar technische uiteenzettingen die zelfs voor wiskundige vrienden niet
altijd evident zijn, en die altijd zorgt voor de dingen in het leven die niet te maken hebben met
wiskunde of computers.

In tegenstelling tot wat misschien verwacht kon worden uit de inleiding, was dit niet mijn
laatste zin, want er zijn vele andere mensen die een bijdrage gegeven hebben aan de totstand-
koming van dit proefschrift.

In de eerste plaats noem ik mijn begeleiders die me de gelegenheid gaven om dit onderzoek
te doen, en me met raad en daad hebben bijgestaan. Het is geen gewoonte dat een promovendus
een kamer deelt met zijn begeleider, en het is niet moeilijk om enkele nadelen op te sommen:

1. Als je elkaar zo veel ziet, is het moeilijk om besprekingen te plannen, in het bijzonder als
één van de twee het erg druk heeft. En hadden we dan eindelijk een serieuze bespreking
dan was er altijd wel de telefoon of iemand aan de deur om ons te storen. Bij tijd en wijle
was de meest efficiénte manier van communiceren. .. via email.

2. Je moet als promovendus uitkijken wat je zegt tegen je computer. Bij een "hoera” is het
verleidelijk voor de begeleider om onmiddellijk mee te kijken over je schouder. Dit kan
pijnlijk zijn als de "hoera™ gebaseerd was op voorbarige conclusies. Ik zal hier niet verder
uitweiden over het effect van andere uitroepen. ..

Ondanks deze opmerkingen, Tamas, wil ik je hartelijk bedanken voor je ondersteuning, voor
alle discussies over het project en allerhande andere zaken, voor je lessen hoe om te gaan met

209

210 DANKWOORD

onwillige bureaucraten aan de andere kant van de telefoon, en voor je vertrouwen in verschil-
lende situaties.

Ook de overige begeleiders wil ik bedanken: Kees Roos, Eduard Hoogenboom en, als waakhond
op wat verdere afstand, prof. Freerk Lootsma. Ik ben verder de Reactor Fysica groep van het
Interfacultair Reactor Instituut erkentelijk, die dit onderzoek financieel mogelijk heeft gemaakt.

Daarnaast bedank ik René van Geemert voor alle discussies, en voor het wedstrijdelement
tussen allerhande zelfgemaakte lokale zoekmethoden enerzijds, en geheeltallige nietlineaire op-
timalisatie algoritmen anderzijds. Tibor Illés arrived just in time to revive the project with some
fresh ideas during the ‘second-year dip’. Thanks! Veel dank ben ik verder verschuldigd aan
Etienne de Klerk, voor al de bemoedigende en ontmoedigende opmerkingen, voor de nuttige
discussies en de prettige samenwerking.

Als volgende noem ik de mede-organisatoren van de workshops on High Performance Opti-
mization. De organisatie kostte meer tijd en inspanning dan ik van te voren had ingeschat, maar
het was leuk werk.

Verder bedank ik (in alfabetische volgorde) Bernd, Dima, Erling, Jan, Jiming, Joost, Linda,
Lucie, Reza, Vladimir, alle Twaio’s, de secretaresses, de systeembeheerders, en alle andere
collega’s van de vakgroep en daarbuiten. Ook denk ik met plezier aan de andere promovendi van
het LNMB. Bijzondere dank gaat naar Henk en Michael voor de 1156 emails die ik terugvond
in mijn mailfolders, plus al die mailtjes die ik niet heb bewaard. Tk bedank iedereen die nog niet
is genoemd, maar die op welke wijze dan ook mijn periode als promovendus heeft opgefleurd,
en zo een bijdrage aan de totstandkoming van dit proefschrift heeft geleverd.

Omdat ik mijn familie als eerste genoemd heb, lijkt dit dankwoord nu af. Als laatste wil ik
echter mijn dank uitspreken aan God, mijn Schepper, die me gezegend heeft met de talenten, de
gezondheid en dagelijkse krachten om het werk te doen dat geresulteerd heeft in dit proefschrift.

e

Curriculum Vitae

Arie Quist was born in Tholen at July 22, 1972. After finishing the secondary school at the
Calvijn College in Goes in 1990, he studied Applied Mathematics at the Faculty of Technical
Mathematics and Informatics of the Delft University of Technology. Starting in 1994, he per-
formed his graduation work at Philips Research N.V. in Eindhoven. In this project he worked
on the development and solution of a mathematical optimization model used in the control of
MRI medical scanning apparatus.

After obtaining his Master’s degree in 1995, he continued working at the optimization group
of the Faculty of Technical Mathematics and Informatics of the Delft University of Technology,
this time as a PhD-student. The PhD-research was part of a project that was performed in coop-
eration with, and granted by the Nuclear Reactor Physics Department of the Interfaculty Reac-
tor Institute at the same University. Aim of the project was to investigate whether mathematical
optimization techniques can be useful in nuclear reactor core reload pattern optimization. The
main results of the research are summarized in this thesis.

Since June 1999 he works for OM Partners N.V. in Brasschaat, Belgium. This company is
specialized in long, medium and short-term planning software, and uses mathematical optimiza-
tion tools for automatic planning. The author is one of the developers of these mathematical
optimization tools.

211

