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1. INTRODUCTION

This thesis develops a new methodology for generating thrust diagrams in statically indeterminate structures, 
and offers an example of how this method can be used to design a form active structure that changes its 
configurations according to the changing load conditions. 

The occurrence of bending moments in constructions causes compressive and tensile stresses in the material, 
resulting in a deformation by bending. These bending moments usually are determinant in dimensioning 
the structural elements. This is no surprise, as the most efficient way to transfer loads is through axial forces 
instead of by bending. It is possible for a construction to have such a configuration that for a given load-
ing, no bending moments occur. When such a structure acts solely in compression or tension, it is called a 
‘funicular system’ [Block]. 

The term funicular is associated with cords or cables. While this may seem strange, in 1675, English scientist 
Robert Hooke discovered “the true... ...manner of arches for building,” which he summarized with a single 
phrase: “As hangs the flexible line, so but inverted will stand the rigid arch.” 
A flexible line, for example a cable or chain, cannot transfer bending moments, nor can it transfer compres-
sive forces. Therefore, all loads can only be transferred by tensile forces; a hanging cable’s shape will change 
according to its loading and will always act solely in tension.

The design of funicular structures, or compression 
only structures, has been an inspiration for many 
striking examples of architecture and construc-
tion. Because the forces in the structure are mainly 
axial forces, and there are few bending moments, 
the structure can be dimensioned much more slen-
der than non-funicular structures of the same size.
This type of design, in which form follows force, 
assumes one major load condition, usually the 
weight of the structure itself, and builds the shape 
of the structure in such a way that it is optimised 
for transferring the load of its own weight. The 
weight of the structure, i.e. a concrete shell, is large 
enough to render the effect of external loads such 
as the wind negligible. The bending moments cre-
ated by forces other than those for which the shape 
of the structure was designed, are considered small 
enough to not have a significant effect on the di-
mensioning of the structure.

fig. 1.1   funicular concrete shell. Heinz Isler

fig. 1.2   funicular concrete shell. Frei Otto
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However this leads to a paradox. On the one hand, the structure is considered heavy enough to nullify the 
effect of external forces as wind and snow, while at the same time, the fact that the structure has a funicular 
shape, allows for less material, resulting in a lower weight. Thus, building in a funicular shape allows for a 
reduction in weight, while weight is needed for the shape to be funicular under all circumstances.

Adaptive structures can be the answer to the para-
dox. A geometrically adaptive structure can change 
its configuration in order to adapt to meet certain 
requirements imposed by its context.

Where a static structure with a funicular shape 
is only optimal for one loading, usually its own 
weight, a geometrically adaptive structure can 
change its shape continuously in order to always 
have a funicular shape for its current loading.

These funicular shapes can be generated and ana-
lysed through various methods. For a long time, 
physical models were the primary tool for design-
ing funicular structures. These models were com-
prised from a multitude of hanging chains, hanging 
membranes, or soap bubbles, and when finished, 
their dimensions were measured and used to draw 
the actual structures. While they present an intui-
tive way of designing, they are not very flexible 
and building and measuring these scale models is 
time consuming. Therefore they might be suitable 
when designing a static structure, having just one 
configuration, but for an adaptive structure which 
constantly changes when load conditions change, 
they are not.

Over the course of history, other methods were de-
veloped to generate thrust lines for arches through 
graphical statics, or mathematical models. Math-
ematically determining funicular shapes is compli-
cated, and not easy to use as a part of the design 
process. Graphic statics on the other hand, are 
much easier to understand and use, but the pos-
sibilities for using graphic statics on three dimen-
sional systems are relatively limited.

fig. 1.3   minimal surface, soap film. Frei Otto

fig. 1.4   frozen cloth. Heinz Isler

fig. 1.5   hanging cloth models. Heinz Isler
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1.1 PROBLEM STATEMENT

From the previous discussion the following problem can be formulated, forming the basis for writing this 
thesis.

Existing methods for assessing thrust lines and networks through are either not advanced 
enough to be used effectively in the design process for funicular formactive structures, or are 
too complicated or unintuitive to be used as a design tool.

1.2 OBJECTIVE AND APPROACH

This thesis assesses the presumption that by providing a more advanced method to use graphic statics to 
generate thrust networks, in particular by adding a way to assess indeterminate systems, will provide an easier 
platform to work with when designing a form active structure that aims to reconfigure itself to the funicular 
shape. This will be done by developing the thrust network analysis further, and use the output as direct input 
for describing the configuration of an adaptive structure.

The objective of the thesis can therefore be formulated as: ‘Develop a method for assessing thrust networks 
for both statically determined and indeterminate systems, based on graphic statics, and model it in a para-
metric design software, where it can be used to describe the configuration of an adaptive structure’

In order to reach the stated objective, a series of secondary objectives is formulated:

a) Define a theoretical framework, stating which methods for generating funicular shapes ex-
ist, and use them to improve upon each other to achieve a more complete, intuitive graphical 
method

b) Use the newly developed method to assess the different funicular shapes that the form-active 
structure needs to facilitate within a certain range of load conditions

c) Define a reference framework, stating which adaptive systems already exist, and/or which 
non-adaptive systems can be made adaptive, and how they can be used to facilitate and exploit 
the configurations that fit the shapes acquired in ‘b)’

d) Illustrate the use of the form finding method in the design of a form-active structure

e) Implement the thrust network analysis method and the form-active structure into a para-
metric design software, and link them such that the output for the method developed in a) 
provides the input for the configuration of the form-active structure

f ) Evaluate performance of the analysis method and the form-finding tool
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1.3 THESIS OUTLINE

This thesis presents the proposed method for generating funicular shapes, and gives an example of how the 
method can be used in an interactive tool for designing a funicular form-active structure.

The thesis is comprised from five parts:

Part I introduces the subject, and defines the motivation and goal of the research.

Part II describes the development of the form finding method. The theoretical framework through a concise 
explanation of the theory behind the existing methods for generating thrust lines and networks, and the 
basic framework of the method for generating thrust diagrams. It describes the assumptions, fundamentals 
and key concepts; outlines the method in an overview of the main steps in the methodology; formulates 
the problem as a series of systems of linear equations and optimization problems; and explains the solving 
procedure. 

Part III describes the process for the conceptual design of the form-active structure. It explains the categori-
zation of existing systems that are form-active, or can be made form-active; the selection of the system that 
is used to illustrate the use of the method; and the process of adjusting and improving the system, in order 
for it to facilitate the required configurations.

Part IV elaborates on the combination of both the script that generates the thrust diagrams, and the script 
that defines the form-active structure, into one parametric model that changes the configuration of the struc-
ture in quasi real-time according to the change of load conditions, which are user defined.

Part V evaluates the form finding method, by discussing its relative strengths and weaknesses; and draws 
conclusions for the thesis project, defining whether and to what extend the initial goals of the research have 
been achieved. Additionally, it gives recommendations for future development of the method.



Graphic statics in funicular design

13



Graphic statics in funicular design

14



Graphic statics in funicular design

15

PART II
FUNICULAR FORM FINDING
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2 THEORETICAL FRAMEWORK

This chapter reviews the relevant literature. Existing methods for generating thrust diagrams in both 2D and 
3D systems and solving undetermined systems are discussed.

The emphasis in this thesis lies on expanding on the graphic statics methods in order to create a relatively 
simple solution for statically undetermined structures, which is to be implemented in a parametric model 
that gives instant feedback on a change in load or structural topography.

The selected methods are:

•	graphic statics
•	thrust network Analysis
•	complementary energy method
•	force density method

The following paragraphs contain a description of the theoretical framework by explaining the theory behind 
each method, and an example.
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2.1 GRAPHIC STATICS

In graphic statics, the forces acting on a structure 
are drawn into a force diagram, which is direct-
ly linked to their corresponding force polygons 
through geometrical constraints.  By changing ei-
ther the force diagram, or the force polygons, the 
other is affected through those constraints. 

The external forces on each structure are plotted to 
a scale of length to force on a load line. Working 
from the load line, the forces in the members of 
the structure are determined by scaling the lengths 
of lines constructed parallel to the members. The 
diagram of forces that results from this process 
is called the force polygon. Active Statics imple-
ments these graphical methods into an interac-
tive, real-time tool, which allows for an interactive 
design exploration, including an application for 
simulating a hanging cable, or arch [Greenwold 
and Allen, 2001]

The procedure works as follows:

A load is reduced to a series of forces with their work lines, distributed along the x-axis. The forces are num-
bered, and drawn as vectors, added together using the kopstaartmethode, in which the vector of the second 
force starts at the endpoint of the first vector; the vector of the third force starts at the endpoint of the second 
vector; etc. This results in a polyline, composed of the individual force vectors. 

The polar coordinate is drawn. This is a point outside of the force polyline. Lines are drawn between the 
starting or endpoints from each force vector to the polar coordinate. This process generates a series of trian-
gles, which are the force polygons, describing the force equilibrium in the node of the structure on which 
each specific force acts. 
One side of the force polygon is the external force, drawn in the force polyline. The other two are the forces 
in the two members connecting the node to its adjacent nodes. 

fig. 2.1   graphic statics. pierre varignon

fig. 2.2   parallel loads are reduced to parallel pointloads fig. 2.3   pointloads are connected to polar coordinate
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As the objective is to construct a structural shape that transfers loads through axial forces only, the direction 
of the vector corresponds to the direction of the corresponding member.

Since each set of adjacent nodes share one member, they also share the axial force in that member, hence is 
why the two vectors in the force polygons are of the same length and direction.

The direction of the vectors describing the members of the arch can be used to draw the first member from a 
starting point to the first intersection with a working line. From that point, the direction of the next vector 
can be used to draw the second member, and so on until all members are drawn.

Changing the position of the polar coordinate affects the shape and size of the force polygons. Placing the 
polar coordinate further away from the force polyline increases the magnitude of the forces in the members, 
and results in a more gradual slope, and a lower height of the arch. Similarly, placing the polar coordinate 
closer to the force polyline gives smaller forces in the members, and results in a steeper slope, and a higher 
arch.
	        

The graphic static method for defining hanging cables or standing arches is very intuitive and powerful 
method for exploring funicular shapes, it is limited to 2 dimensional systems only, and therefore not appli-
cable for 3 dimensional structural designs.

fig. 2.4   three forces form a force polygon

fig. 2.6   placement of the polar coordinate affects the direction 
of the forces

fig. 2.7   placement of the polar coordinate affects the height of 
the thrustline

fig. 2.5   the direction of the forces represent the direction of the 	
corresponding parts of the thrust line



Graphic statics in funicular design

20

2.2 THRUST NETWORK ANALYSIS

Thrust network is a three-dimensional version of the thrust line analysis using reciprocal diagrams.  While 
primarily intended to assess the equilibrium in masonry vaults, it can also be used more as a design tool for 
funicular systems.

Like graphic statics, it uses a graphical representation of the forces in a system, using force polygons. Recip-
rocal figures are introduced to relate the geometry of the three-dimensional systems to their internal forces 
[Block].

It assumes structure is, or can be reduced to, a discrete network of forces, with discrete loads applied at the 
vertices, similarly to graphic statics. At the same time, it assumes all loads are vertical.

The method start by making a planar projection of the three-dimensional system, called the primal grid. This 
grid contains the horizontal components of all the members, and the x and y coordinates for all the nodes. 

  	  

Using the primal grid, the dual grid is created, which is the reciprocal force diagram of the primal grid. Re-
ciprocal figures are geometrically related such that corresponding branches are parallel and branches which 
come together in a node in one of the networks form a closed polygon in the other and vice versa [Maxwell, 
1864]. 
The force polygon for the forces acting on a node, is the reciprocal figure for the node and the members at-
tached to that node. Consequently, the reciprocal figure for a primal grid, represents the (horizontal) forces 
in that grid.

fig. 2.8   Thrust Network Analysis considers a planar projection of a structure. image: Philippe Block
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The dual grid contains all the information on direction of the forces, and their magnitude relative to each 
other. Their absolute magnitude is at this point undetermined. Given that the dual grid is a solution for a 
given set of external vertical loads, the magnitude of the forces in the dual grid determine the slope of the 
members. 
The magnitude of the dual grid compared to the magnitude of the vertical forces, is called the scale-factor. 
Assuming a higher scale-factor, results in larger horizontal forces. Since the vertical forces are constant, and 
the solution results in a funicular shape in which only axial forces exist, the slope of the every member will 
be smaller, and the force in the member will be larger. 

Assuming a smaller scale-factor, results in smaller horizontal forces, and therefore a steeper slope, and a larger 
height of the funicular shape.
This process of changing the scale-factor resembles the repositioning of the polar coordinate in graphic stat-
ics.

When the scale-factor has been decided, the magnitude of the horizontal forces is known. Since the magni-
tude of the vertical forces is also known, and the x and y coordinates of the nodes is determined by the primal 
grid, only the z-coordinates of the nodes are unknown at this point.
Since the x and y coordinates are known, and the horizontal forces are known, the horizontal equilibrium is 

fig. 2.9   reciprocal figures. image: Philippe Block

fig. 2.10   effect of changing the scale factor. image: Philippe Block
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also known. What is left is the vertical equilibrium, which depends on the z coordinates of the nodes. 
For every node, the vertical equilibrium can be described with a linear equation. This results in a number of 
equations equal to the number of nodes, and an equal number of variables, the z-coordinates.
From that point, the system is solved in a way similar to the force density method [2.1.4], to get the z-
coordinate for every node. The three-dimensional shape can then be drawn.

In the case of a network in which all nodes are three-valent, meaning that in every node, three members 
come together, the reciprocal figure consists of triangles. As three forces act on every node, their force poly-
gon automatically becomes a triangle. 
Since all the force polygons are triangles, the size of the force relative to each other is determined; if one 
force changes in magnitude, the two others will have to grow or shrink proportionally in order to keep the 
force polygon closed: there is only one solution for equilibrium. A three-valent network is therefore statically 
determinate.

For a node in which more than three members come together, more than one force polygon can be drawn 
that makes equilibrium. Consequently, for a primal grid with nodes having a valency higher than three, 
multiple, different, dual grids can be constructed. The system is then statically indeterminate, meaning that 
more than one force needs to be known in order to determine all the other forces in the system [Maxwell].

Although infinite possibilities exist for constructing a dual grid for a given statically indeterminate primal 
grid, all dual grids can be used to give a funicular shape as a result. However, this final shape will be different 
for different dual grids.

fig. 2.11   for a statically indeterminate system there are multiple solutions to make equilibrium. image: Philippe Block
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2.3 COMPLEMENTARY ENERGY

When a force acts on a bar, internal stress will occur. As a result, the bar will deform by either elongating 
or shortening, depending on whether it is under compression or tension. When the material behaves linear 
elastically, Hooke’s law will apply, and the magnitude of the stress will be proportional to the elongation, i.e. 
when the stress increases, the elongation will increase proportionally.

 

And since
 

 
 

Deformation energy can then be described by the formula

 

In figure 2.12, stress and elongation are plotted 
against each other for a linear elastic material. The 
red area under the curve is called the deformation 
energy. The blue area above the curve is called the 
complementary energy.

In this case, 

 

[Welleman]
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fig. 2.12 elongation as a function of stress 
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When a force acts on a node, the members that come together in that node exert forces on the node, such 
that the combination of all forces makes equilibrium. The forces acting on the node can be drawn as vectors, 
and when all vectors are drawn after each other, a polygon has been made, which is the force polygon. When 
the polygon is closed, the resulting force acting on the node is 0, and the node is in equilibrium.

When the force polygon exists from three forces, there is only one solution for equilibrium, as in a triangle 
for which all the angles are known, the magnitude of one side determines the magnitude of all the other 
sides.

When however, the force polygon consists of four or more forces, there are more than one polygon that can 
be drawn, while maintaining equilibrium. The system is then statically indeterminate.

Of course, in reality, there will be only one way in which the forces are distributed through the system. To 
determine how the forces will be distributed, the complementary energy can be used.

fig. 2.13   a node with three forces acting on it has only one possible force polygon

fig. 2.14   a node with more than three forces acting on it has only one possible force polygon
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Consider the topology of figure 2.15.
A node is supported by three bars, and a force F acts on the node. The force will be distributed between all 
three bars, but it is unknown how much force will act in every bar.
 	  

To solve this system, the system is regarded as if it is a statically determined structure, by removing the sec-
ond bar. The force that acts on the second bar is denoted as f and substracted from the force F. The system 
then consists of a node, supported by two bars, bar1 and bar3, and a force F-f acting on the node. Now, the 
forces in the two remaining bars can be calculated.

Given the dimensions of the system, 
the force in bar1 will be 
0,8 (F-f)

The force in bar3 will be 
0,6(F-f)

The force in bar2 will be
f
 

For every value of f, the force distribution between the bars will be different. Consequently, the complemen-
tary energy for the elongation of the bars will be different as well.

The forces will be distributed in a way which uses the least complementary energy. The system can then be 
solved by expressing the complementary energy for the entire system as a function of f, by substituting the 
term N in the formula for the force in the bar, for every bar.

The resulting equation for the complementary energy of the system can then be differentiated, in order find 
the value for f that results in the minimum energy.

fig. 2.15   a force F1 on a node supported by three bars

fig. 2.16   complementary energy expressed in f
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2.4 FORCE DENSITY METHOD

The force density method is currently probably the most used form-finding method for shells and mem-
branes. The force density method calculates the equilibrium state of a predefined initial net structure by 
transforming a system of non-linear equilibrium equations into a system of linear equilibrium equations 
by prescribing a constant force-density value. The force density method is based on the mathematical as-
sumption that the ratio between the length and tension within each cable element is a constant value [Lewis 
2003].

The net structure consists of a number of points (nodes) which are connected by lines (branches). There are 
two types of nodes: fixed nodes, and free nodes. For the fixed nodes, the x, y and z coordinates are known. 
For the free nodes, the x, y and z nodes are unknown. The x, y and z components of the external forces acting 
on each node are also known.

The method then searches for the equilibrium shape of the tension network. The equilibrium for a node can 
be described by three equations.

Consider the topology of figure 2.17. In order for 
the construction to be stable, there must be force 
equilibrium in each of the free nodes. This force 
equilibrium can be described for every node, as 
equilibrium in the x, y and z direction. This pre-
sents the following equations:

 

For node 1
Force equilibrium in the x direction:
 

 
Force equilibrium in the y direction:
 

Force equilibrium in the z direction:

 

( ) ( ) ( ) ( )4 1 4 5 4 7 4 3 ;4;4 : 0fa d c
x

a d f c

nn n nX x x x x x x x x F
l l l l

− + − + − + − − =∑

( ) ( ) ( ) ( )4 1 4 5 4 7 4 3 ;4;4 : 0fa d c
y

a d f c

nn n nY y y y y y y y y F
l l l l

− + − + − + − − =∑

( ) ( ) ( ) ( )4 1 4 5 4 7 4 3 ;4;4 : 0fa d c
z

a d f c

nn n nZ z z z z z z z z F
l l l l

− + − + − + − − =∑

fig. 2.17   planar projection of a system with two free nodes
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For node 2
Force equilibrium in the x direction:
  

Force equilibrium in the y direction:

 

Force equilibrium in the z direction:
 

This brings us 6 equations, with a number of 20 unknown variables. Since the number of equations is 
smaller than the number of variables, the problem cannot be solved. 

By specifying a value for the Force Density (Q), which is the ratio between the force acting on a branch, and 
the length of the branch, the term    can be replaced by a known value Q.  

The number of unknown variables is thereby reduced to 6. Having 6 unknown variables, and 6 equations, 
the problem can be solved, providing the x, y and z-coordinates for every free node and the three-dimen-
sional net can be constructed.

If constant force densities are used throughout the network except at the corners and edges where stress con-
centrations can occur its shape forms a minimal surface between the given boundaries. However, the value 
chosen for the force density can be completely arbitrary, and changing the value for force density in one or 
more branches changes the output for the three-dimensional net.

( ) ( ) ( ) ( )5 2 5 6 5 8 5 4 ;5;5 : 0gb e d
x

b e g d

nn n nX x x x x x x x x F
l l l l

− + − + − + − − =∑

( ) ( ) ( ) ( )5 2 5 6 5 8 5 4 ;5;5 : 0gb e d
y

b e g d

nn n nY y y y y y y y y F
l l l l

− + − + − + − − =∑

( ) ( ) ( ) ( )5 2 5 6 5 8 5 4 ;5;5 : 0gb e d
z

b e g d

nn n nZ z z z z z z z z F
l l l l

− + − + − + − − =∑

n
l

fig. 2.18   different values for force density gives different solutions
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2.5 SUMMARY

Graphic statics provides a powerful and intuitive method for assessing thrust lines, where the graphical 
representation of a force as a vector is directly linked to the force polygon, describing the equilibrium in 
the system. Changes in either the forces or the force polygons directly influence the other, and thus shows 
the direct geometrical relation between the force analysis and the load transfer in a structure. However, the 
method is limited to two-dimensional systems only. 

A three-dimensional variant has been developed by Block, thrust network analysis. Thrust network analysis 
however, does not provide a clear answer to statically indeterminate systems, where multiple solutions for 
equilibrium force polygons can be drawn. Instead, it defines it as a quality, giving the architect and engineer 
more freedom to design a funicular shape. 
Block does mention that one specific solution can be found using linear elasticity, but does not expand fur-
ther on how to implement this in the thrust network analysis method.

A statically indeterminate system can indeed be solved using linear elasticity and complementary energy, but 
the process has to be done by hand, for every knot individually, which is a slow and inconvenient process.

Finally, the force density method can also solve statically indeterminate systems, using force density, the ratio 
between the length of a branch and the force acting on it. By introducing force density, the force equilib-
rium in the system can be formulated in a number of linear equations, with an equal amount of unknown 
variables, meaning that it can be solved. Which values to choose for force density is arbitrary, and different 
values can give completely different solutions. There doesn’t seem to be a straightforward method for decid-
ing which values to use. Also, the force density method is completely computational, lacking the graphical 
feedback of graphic statics and the thrust network analysis method.

In general, it can be concluded that several very powerful methods exist for assessing funicular shapes. The 
main aspect that is lacking in the described methods, is the combination between the possibility to solve 
more complicated systems, and a strong graphical representation of the solution. 
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3. THE METHOD 

3.1 KEY CONCEPTS

3.1.1 Defining the force polygon for a four-valent knot

A four-valent system can be solved by substituting one force for phi and expressing the complementary 
energy as a function of phi, after which the solution for the minimum energy can be calculated. However, 
this method is not very convenient as the user has to decide which force is to be substituted, and there is no 
visual reference to what is being calculated.

To give the user a graphical representation of the calculation, the solutions are drawn as force polygons rather 
than mathematical formulas.
 

In a force polygon consisting of three forces, there is only one solution, since all angles are known. One force 
determines the other two forces. Drawing the force polygon is easy.

For a force polygon consisting of four forces, knowing the magnitude of one force is not sufficient for de-
termining the other forces. For any value for F1, there are infinite possible combinations for F2, F3 and F4 
to make equilibrium. 

 

fig. 3.1   a node with three forces acting on it has only one possible force polygon

fig. 3.2   for four forces there are multiple ways to make equilibrium
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In order to determine all forces, the ratio between two forces needs to be fixed. The two remaining forces 
can then be calculated, since all angles are known. When F1 and the ratio F1:F2 are determined, F2 is known.
F3 and F4 can then be found using the following equations.

 

So, rather than expressing the solutions as a value for F1 and the value phi for a certain, user defined member, 
the solutions are constructed as force polygons, defined by the ratio F1:F2. The force polygon contains the 
magnitude of all the forces, which can then be used to calculate the complementary energy for each solution.
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3.1.2 Defining the force density for a four-valent knot

Individual nodes
When several force polygons are constructed for one statically indeterminate system, they are usually not 
directly comparable. If one solution gives equal forces for all four members in a four-valent system, and a 
second solution appoints a larger force to one of the members, the forces in the other members will have to 
become smaller, in order for the polygons to be a solution for the same load.

In figure 3.3, a four-valent knot with a vertical load is considered. Two force polygons are constructed to 
describe the horizontal components of the axial forces in the members.

Since the dimensions of the system are known, using the horizontal forces, the support reactions and the 
magnitude of the vertical force can be determined.
For the two solutions of horizontal force equilibrium, a different vertical force is achieved. The two force 
polygons are therefore not solutions for the same problem, and cannot be compared directly.

4 4 4 4 3,2
5 5 5 5
+ + + =∑ 2 8 2 8 4

5 5 5 5
+ + + =∑           FD=						      FD=

fig. 3.3   an indeterminate system with a single free node and two possible solutions for equilibrium

fig. 3.4   two solutions result in  a different force density, and a different vertical force
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In figure 3.6, the same 4-valent system with a ver-
tical load is considered. Again, two force polygons 
are constructed to describe the horizontal force 
equilibrium. However, in this case, the second 
force polygon is scaled such that the force density 
for the complete system is the same for both poly-
gons. Using the horizontal components and the 
dimensions of the system, the support reactions 
and vertical load can again be calculated. 

For both solutions for horizontal force equilibrium, the same vertical force is achieved. They are solutions for 
the same system and load, and can therefore be compared directly.

FD=						            FD=
4 4 4 4 3,2
5 5 5 5
+ + + =∑ 1,6 6,4 1,6 6,4 3, 2

5 5 5 5
+ + + =∑

fig. 3.5   the solutions are scaled to match force density

fig. 3.6   the two solutions result in the same force density, and the same vertical force
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Systems with multiple nodes
When a system of multiple nodes is considered, multiple force polygons can be pasted together to form a 
grid. This is the reciprocal grid, as the force polygons are reciprocal figures for the nodes in the original grid. 
Every node shares a member with the node it is connected to by that member. Therefore, the force acting 
in that member is also shared by both nodes. The force polygons for those nodes can therefore be pasted 
together, by overlapping the corresponding forces, which then have to have the same value. Again, infinite 
solutions for equilibrium are possible, as long as the polygons are closed, and the corresponding forces are 
of the same magnitude. 

To find the optimal solution, all reciprocal grids can again be scaled to a reference force density, and com-
pared for complementary energy. However, for a grid of multiple nodes, the force density is not calculated 
over all members and forces. Only the support reactions and their corresponding members are to be used.
Figure 3.7 shows a system consisting of two, connected nodes, and two possible solutions for equilibrium. 
When force density is calculated for all members and forces, both solutions have the same result. However, 
when the vertical components are calculated, it is clear that they are solutions for two different load cases.
When both solutions are scaled such that they result in  the same force density when it is calculated for the 
support reactions only, they are solutions for the same load case.

In short: in order to directly compare different force polygons that make equilibrium for a given load on a 
given system, they have to be scaled in order to match force density in the support reactions. For individual 
nodes, all forces are support reactions. For a system of multiple nodes, the forces that are shared between two 
nodes are not to be taken into the calculation, as they are not support reactions.

fig. 3.7   the free branch is not to be used in calculating the force density



Graphic statics in funicular design

36

3.2 PROCEDURE

This chapter describes the main steps in the procedure. For every step, the key steps will be discussed, and 
the actual actions will be illustrated with an example. The following steps will be described, in order of op-
eration:

•	Generating the primal grid
•	Extracting relevant information
•	Solving the horizontal load distribution
•	Adding the vertical loads
•	Formulate equilibrium equations
•	Constructing the three-dimensional shape

Additionally, some aspects that can still be improved upon are discussed:

•	Solving nodes individually
•	Adding non-vertical loads
•	Solving nodes with a higher valency
•	Optimising the scale factor
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3.2.1 Generating the primal grid

In the first step of the procedure, the primal grid is defined. The primal grid is considered a planar projection 
of the funicular shape that will eventually be generated. 

This is done by inputting all the fixed nodes and their x, y and z coordinates, all free nodes and their x and 
y coordinates, and by defining which nodes are connected to which other nodes. Using this information, all 
the information needed , such as the angles between intersecting branches and their length can be calculated. 
This information will be needed as input for the following step.

Consider a primal grid consisting of 21 nodes, of which 12 nodes are fixed, and 9 nodes are free. (figure) 
The free nodes are numbered from left to right, from top to bottom, then the fixed nodes are numbered in 
clockwise order. The members connecting the nodes are listed clockwise from outside inwards, such that all 
members containing support reactions are listed first.
 

fig. 3.8   the primal grid: nodes fig. 3.9   the primal grid: branches
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3.2.2 Extract relevant information for every knot

A knot is a node and the set of branches that come together in that node. Since the x and y coordinates are 
known for all nodes, the length of each branch can be calculated using the difference between the x coordi-
nates of two nodes and the difference between the y coordinates. Knowing the coordinates of begin and end 
points of each branch also means that the direction of the branches are known. Therefore, the angle between 
two branches can be calculated as well.

 

fig. 3.9   the primal grid: extracting information on length, angles and connectivity
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3.2.3 Solving the horizontal load distribution

When all angles between members are known, these can be used to draw a reciprocal grid. The reciprocal 
grid consist of force polygons for every individual node, which are put together by overlapping their cor-
responding forces. To draw the grid, not all forces need to be determined beforehand. A certain number of 
forces is needed. In the example, only six forces are needed, for example the forces in a, b ,c ,d, e and f.

When a-f are determined, two of the forces for the force polygon of node 1 are known, and knowing the 
angles between the forces, the remaining two forces can be constructed. This provides the second force for 
node 2 and 4, which can then be constructed as well. This then provides additional forces for additional 
nodes, until the reciprocal grid is completed.

In order to draw a reciprocal grid, an assumption has to be made for (the ratio between) the initial forces. 
Consequently, different assumptions lead to different reciprocal grids, which are all possible solutions for 
equilibrium. 

To determine which reciprocal grid is the optimal solution, they are compared for complementary energy. 
In order to compare reciprocal grids, they are first scaled to match a reference force density for the support 
reactions. Then, the complementary energy is calculated for every solution. Whichever solution results in the 
lowest complementary energy, is the optimal solution.

Since there are infinite possible solutions, and every extra force which is needed to determine the  grid en-
larges the solution space, this process is better done using an automated solver rather than searching by hand.

fig. 3.10   there are multiple possible solutions for the reciprocal grid
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3.2.4 Determine the vertical loads

The loads acting on the structure are abstracted to discrete loads acting on the vertices of the grid. Distrib-
uted loads are therefore discretized into point loads

3.2.6 Formulate equilibrium equations

For every node, the x and y coordinate are known, as well as the vertical force acting on it. For the fixed 
nodes, the z coordinates are also known. Now that the exact reciprocal grid has been determined, it can be 
used to calculate the force density for every member.

Using a similar strategy as in the force density method (and the same as in the thrust network analysis meth-
od) the system can be solved by formulating the equations that describe the force equilibrium in the nodes. 

The difference between this method and the force density method, is that here, the x and y coordinates for 
every node are known. Therefore, only the force equilibrium in the z direction has to be formulated. When 
the equations are formulated, the problem can be solved through a series of matrix operations.

Force equilibrium in the z direction for node1:
 

( ) ( ) ( ) ( )1 17 1 2 1 5 1 21 ;1;1: 0f ja e
z

a f j e
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3.2.7 Constructing the three-dimensional shape

When the equilibrium solutions are solved, the z-coordinates for all nodes are known, and the three dimen-
sional force pattern can be constructed. 

fig. 3.11   using the z-coordinates, the three-dimensional shape can be generated
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3.3 FRAMEWORK

Figure 3.12 summarizes the framework

fig. 3.12   step by step flow-chart
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3.4 ADDITIONAL CONSIDERATIONS

3.4.1 Scale factor

As the scale factor determines the magnitude of the horizontal forces and the force density in the branches, 
it also determines the slope of the elements in the three-dimensional structure. 

When the scale factor is smaller, the height of the structure will increase, and the axial force in the members 
will decrease as the horizontal component is smaller. When the scale factor is larger, the structure will be 
lower, and the axial forces will be higher as the horizontal components increase.

Just as in the graphic statics method, there is an optimal scale factor, providing the optimal height for the 
structure. This optimal height can be found by calculating the complementary energy for the entire structure 
over a number of values for the scale factors. The value for the scale factor that results in the lowest comple-
mentary energy is the optimal value. 

When the structure is meant to facilitate a certain function, there can be a requirement for a minimum or 
maximum height. 

When a specific height is required, the scale factor can be chosen, such that the result has the required height.
When the requirement is only a minimum or maximum height, or a range within which the height must 
be, the scale factor can be optimized for that specific constraint, by again calculating the complementary 
energy for several scale factors, excluding the one that result in a height that does not meet the minimum or 
maximum requirements. The optimal result may lay beyond the constraints, but for the given constraints, 
there can still be found an optimum.

fig. 3.13   the scale factor affects the size of the forces
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3.4.2 Non-vertical loads

In reality, loads are rarely exactly vertical. Wind loads occur quite often, and can be significant. 

When the vertical and non-vertical loads can be reduced to non-vertical, but parallel, loads, the easiest solu-
tion is to, instead of working with non-vertical loads, rotate the entire system, such that the loads become 
vertical, and the grid is under an angle. A new projection is then made, giving the new x and y coordinates 
for all nodes, and the z coordinates for the fixed nodes has to be adjusted to match the inclined grid.
The system can then be solved as if it were a regular vertically loaded system. When the z coordinates are 
extracted, the 3 dimensional shape can be constructed, and the system can be rotated back to its original 
position. 

When this is not the case, the horizontal component of the non-vertical forces can be drawn in the reciprocal 
figure, after which the system can again be solved as if it was vertically loaded. 
However, before adding the horizontal components of the non-vertical loads to the dual grid, the scale factor 
will have to be determined first. Searching for the optimal scale factor can then become a time consuming 
and tedious task, as the extra horizontal components have to be added again, after adjusting the scale factor.

fig. 3.14   when a load acts under an angle, the primal grid is rotated, and a new projcetion is made

fig. 3.15   non-vertical forces can be drawn into the reciprocal grid. image: Philippe Block
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3.4.3 Nodes with a greater valency

When five or more members come together at a node, the problem cannot be solved by the described 
method for solving four-valent knots. The method can be adjusted to accommodate higher valencies. For a 
four-valent knot, F1 is set and F2  is determined first through choosing the ratio. They can then be used to 
determine the two remaining forces F3 and F4. 

In the case of a knot with a valency of five, there are three forces that need to be determined before the re-
maining two can be calculated. This can be done by again setting F1 to 1, assuming a ratio for F1:F2, and 
then assume a ratio for F3 compared to F1 and F2 combined. The two remaining forces, F4 and F5 can then 
be determined, and a force polygon can be drawn and scaled.

By keeping the ratio for F1:F2 constant, and changing the ratio for F3, multiple force polygons can be con-
structed, scaled, and compared in order to find the optimum ratio for F3, for that specific value for F1:F2.

The ratio F1:F2 can then be changed to a different value, after which the optimum ratio for F3 can be sought 
again. The force polygons that are optimum for the different F1:F2 ratios can be compared again, to find the 
optimum ratio for F1:F2.

While this method provides a solution, the calculation times increase exponentially when the valency grows. 
A three-valent system requires only one calculation to generate the triangular force polygon, as there is only 
one solution. If we assume that the method needs to calculate 50 different values for the F1:F2 ratio in a 
four-valent system, a five-valent system requires 50 calculations for F3, for 50 values of F1:F2, increasing 
calculation time again 50 times. 

Instead of doing 50^6 calculations for knots with a valency of 9, a smarter approach would be to take the 
knot apart, and instead model several three-valent nodes close to each other, which should be a close enough 
approximation.

fig. 3.16   nodes of a high valency can be  converted to a group of lower valent nodes
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3.4.4 Determining vertical loads 

Assuming that the structure is loaded by an evenly distributed vertical load, the nodes from the primal grid 
can be used to make a voronoi diagram to determine which parts of the distributed load act on which nodes.
Extra external loads can then be added to the corresponding nodes. All point loads can then be added to-
gether to get the final vertical load for each node.

fig. 3.17   determining loads through a venn-diagram
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3.4.5 Solving nodes individually

While calculating the entire reciprocal grid at once is a valid approach for solving the horizontal load dis-
tribution, its large solution space requires an automated calculation method, using advanced algorithms to 
efficiently find the solution. It is something which is effectively undoable by hand.
A preferable method would be to find a relation between the geometry of the grid, and the shape of the force 
polygons, such that no optimization, or at least a simpler one, is needed.

In a regular grid, the magnitude of the forces in the force polygon for a specific node is directly related to 
the geometry of the grid. To be more precise, the distance from the node to the supports it transfers its load 
to, the loadpath.

fig. 3.18   for regular grids there is a direct relation between the length loadpaths and the force polygon

fig. 3.19   for irregular grids the relation is not evident

For an irregular node, it is more difficult to find a relation between the geometry of the node, and the shape 
of the force polygon. 
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PART III
ADAPTIVITY
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4. REFERENCE FRAMEWORK

This chapter will focus on the reference framework for developing a form-active structure, as outlined in 
objective c.:

“Define a reference framework, stating which adaptive systems already exist, and/or which non-adaptive 
systems can be made adaptive, and how they can be used to facilitate and exploit the configurations that fit 
the shapes acquired in ‘b)’”

The reference framework acts the starting point for developing the form-active structure, that is specifically 
tailored to facilitate the configurations that are generated by the thrust diagram tool. A categorization will be 
made for adaptive structures and structures that may not exist in an adaptive form, but can be adjusted to 
become adaptive. The categorization will serve as a reference pool from which a suitable system can be taken, 
depending on the defined criteria, and used directly, or improved upon.

The categorization is not meant to be exhaustive, but does intend to provide the most relevant systems from 
a broad range, thus giving a representative image of the possible solutions.
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4.1 NOMENCLATURE

It has to be noted that over the range of papers regarding this subject, various terms are used to describe the 
same things, or the same terms for different things, depending on the author and specific context. Therefore, 
the terms used in this chapter and their intention will be outlined, to prevent misunderstandings.

Adaptive 
Adaptive systems or structures, or are generally systems that can adapt. The way in which they adapt can be 
multitude, and the things they adapt to as well. In this thesis, adaption refers to the ability to change the 
geometry of the structure. It is used as a synonym to reconfigurable systems.

Form-active
Form-active refers to adaptive structures that do not change their geometry, but do so in an active man-
ner. Instead of reconfiguring as a natural result of the external influences, the form-active structure actively 
monitors those influences, and decides the proper response. As an example, the form-active structure will 
reconfigure itself to lean into the wind.

Kinematic
Kinematic structures are structures with a single kinematic degree of freedom (rotational or translational); 
meaning that the position of one node relative to the others determines the geometry of the structure 
[Hanaor]. Kinematic systems are not to be confused with reconfigurable systems. A reconfigurable system is 
any system which can reconfigure its geometry. All kinematic structures are reconfigurable, however not all 
reconfigurable structures are kinematic.
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4.2 CATEGORIZATION

Adaptive systems can be subdivided into two main categories: 

discrete systems
continuous systems. 

This distinction is based on the deformation of the system, which can be either discrete, or continuous. 

In a continuous system, the deformation occurs throughout the material. A rotational deformation is achieved 
by bending of the element. A translational deformation is achieved by positive or negative elongation of the 
element. This deformation is continuous, in that it occurs everywhere throughout the system. (figure)

In a discrete system, the deformation occurs at specific points instead of throughout the material. This can 
be either a rotational connection between members (hinge) or a translational connection.  The rotation or 
translation occurs at those points only, the material itself is considered stiff.

  	  

 	  

The category of discrete systems can be subdivided again, into two smaller groups, based on the elements 
used in them. The first group is systems which consist of plates  and have linear or point  connections; the 
second group is that of systems which consist of bars and have point connections.

The category of continuous systems consists mainly of systems in which a membrane is used. 

For each group, several typologies will be described. Since most systems only exist in a static form, the static 
structure will be described, followed by possible ways of making it (more) deformable.

fig. 4.1   continuous elongation versus discrete elongation fig. 4.2   continuous curvature versus discrete curvature
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4.2.1 Discrete systems

In a discrete system, loads are carried through elements which are attached to each other by either rotational 
and/or translational connections. The deformation occurs at these connections only, rather than throughout 
the material. The elements can either be lattices or plates.

Lattice structures
Lattice structures consist of skeletal elements which are connected through joints.  These structures can be 
single layered or multiple layered.

Single layered lattice structures are often used to build a polygonal representation of a curved design  (fig. 
4.3). The lattices or bars are all within the same, curved, surface. Constructional height is the same as the 
height of each individual bar.  Often, a triangular grid is used to create a stable structure

There are two approaches for making an adaptive single layered lattice. 
First, instead of a triangular grid, a quadrangular (or more) can be used. This has the result that the structure 
is instable when all connections are hinges. The shape of the structure can then be altered by actively chang-
ing the rotation of the hinges and fixing the joints when in the correct position.

Second, a triangular grid can be used, with members that can actively elongate and shorten to change the 
geometry of the grid, and thereby changing the shape of the structure. Rotational connections have to be 
used again, but in this case, the joints do not have to be fixed, as the structure is stable when the length of 
the members has been fixed.

fig. 4.3   DZ Bank, Gehryfig. 4.2   adaptivity through hinges and/or elongating bars
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With multiple layered grids, the construction height is increased by placing several (usually two) layers above 
each other with some, and connecting them to act as one structure. Common examples of these structures 
are spaceframes, which are static two layered grids.

Double layered grids can be adaptive when members that can elongate are introduced in one of the layers, 
or in both layers. When the bars in the bottom layer shorten, while the corresponding bars in the top layer 
are kept constant, or elongate, the structure will curve inwards. 

Variable geometry trusses are the linear equiva-
lent of the double layered lattice structure. Vari-
able geometry trusses are trusses in which several 
elements can elongate, usually telescopic bars. The 
joints connecting the elements are hinged. Vari-
able geometry trusses can change their configura-
tion by elongation of specific elements. Depend-
ing on the geometry and the number and position 
of elongationable elements, the variable geometry 
truss can have curvature and rotation. In order for 
the variable geometry truss to be stable, either the 
joints will have to be fixed once the desired con-
figuration is achieved, or all elements must form 
triangles, such that the system becomes stable, and 
only the telescopic bars need to be fixed to their 
proper length.

fig. 4.4   adapting a double layered grid by elongating certain 
members

fig. 4.5   Palafolls sports hall. Arata Isozaki

fig. 4.6   variable geometry truss
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A variation on the double layered bar grids is cable strut system. In this system, the rigid members that are 
loaded only with tension, are replaced with cables. 

A special type of cable strut system is the tensegrity structure.  In tensegrity structures, no compressive 
member touches any other compressive member. Everything is held together by cables, and by removing 
the tension from one or multiple cables, the geometry of the structure can be altered, or the structure can 
collapse. This can be achieved by actually releasing tension on the cables, or by adjusting the length of the 
struts, resulting in more or less tension in the cables.

Pantographic structures, also known as scissor 
structures, “consist of two straight bars connected 
through a revolute joint, called the intermediate 
hinge, allowing the bars to pivot about an axis per-
pendicular to their common plane” [De Temmer-
man]

They are special in that they can expand and con-
tract, due to their scissor like connections. These 
structures are deployable; the structure can fold to 
a relatively small package, or unfold into a much 
larger structure. 

Pantographic structures are reconfigurable, in that 
they change their configuration from their folded 
state to their deployed state, and all configurations 
in between. The freedom for reconfiguration is 
limited by the property that the position of one 
node determines the position of all other nodes. 
Pantographic structures are usually meant to be 
used as static structures. They can be transported 
as a relatively small package to their site, where 
they are deployed once, and then fixed to become 
static.
A larger variety of possible configurations can be 
achieved by splitting the structure into multiple 
groups of pantographic elements, which can fold 
and unfold independent of each other.
 		   

fig. 4.8   contracted pantographic structure

fig. 4.9   pantographic structure principle

fig. 4.7   expanded pantographic structure
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Plate structures
Plate structures are structures made of multiple 
plates, connected to each other along the edges, or 
at certain points.

Static plate structures are comparable to single 
layered lattice structures, in which the polygonal 
shapes, created by the members, are filled with ma-
terial. The connection between the plates can ei-
ther be hinged or fixed. When the connections are 
fixed, the structure will be stable. When hinged, 
the structure has to be double curved in order to 
be stable.

In order to make an adaptive plate structure, the same principles apply as with the single layered lattice 
structures. By using rotational connections, the structure, when it has the appropriate geometry, can deform 
by folding, like origami.

Theoretically, a plate structure can also be made deformable by using elements which can elongate and 
shorten. Where lattices are one dimensional, plates are two dimensional, and depending on the desired con-
figuration, the elements will have to elongate in two directions.

 	    

fig. 4.10   origami plate structure

fig. 4.11   linear hinge fig. 4.12   pointlike hinge
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4.2.2 Ccontinuous systems

In continuous systems, the deformation is continuous, in that it occurs throughout the material. In building 
practice, continuous systems are always tensioned membrane structures. 

No structure can be purely tensional: some compressive elements have to exist to maintain equilibrium 
[Hanaor]. This compressive element can either be rigid elements, i.e. bars, or compressed air.

Pneumatic structures
In a pneumatic structure, the compressive force is obtained by air pressure. Within pneumatic structures, 
two types can be distinguished: low pressure structures, and high pressure structures.

In a low pressure structure, the air in the functional space, covered by the membrane, is pressurised. The 
force created by the pressured air tensions the membrane. The needed pressure is relatively low.

In high pressure pneumatic structures, the structure consists of closed cellular spaces, filled with air under a 
relatively high pressure. These spaces are not part of the functional space, which is not pressured, though it 
can be.

fig. 4.13 High pressure pneumatic structureYellow Heart. 
Haus-Rucker-Co   

Pneumatic structures are generally static, but can 
be deformed by changing the air pressure inside 
the cellular spaces (in a high pressure structure), 
or by manipulating the shape with elements such 
as cables, struts and bar grids. As the stability and 
rigidity is obtained by tensioning the membrane 
through internal air pressure, changes in the ex-
ternal air pressure can influence the shape of the 
structure. When a wind load is introduced, the 
asymmetric change in air pressure will cause the 
structure to change shape, more so than for con-
ventional rigid structures.
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Tent and ribbed structures
In tent and ribbed structures, the compressive force is obtained by using skeletal elements which interact 
with the membrane.

The skeletal elements in tent structures are usually masts, which are external to the membrane surface. In 
ribbed structures, the skeletal elements are usually part of the surface and interact structurally with the 
membrane.

These structures are also usually static. They can be deformed by altering the geometry of the skeletal ele-
ments, so that the forces that tension the membrane change. 

fig. 4.14 Munich olympic stadium, Frei Otto
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5. APPLICATION OF A SYSTEM

Using the thrust network tool, a series of funicular shapes can be generated that have to be facilitated by the 
adaptive structure. From the categorized systems, one system, or a combination of systems can be chosen to 
develop the form-active structure. 
After choosing a system, and knowing the method for reconfiguring it, a thorough analysis can be made of 
the exact requirements for the structure.
Knowing the requirements, the existing variants of system can be analyzed, and checked if a suitable variant 
is readily available. When this is not the case, the key concept for operating the system and its limitations 
are to be analyzed, after which an improved variant can be developed that can be used for the specific task. 

5.1 SELECTION CRITERIA

When designing an adaptive structure, the structure will often have a specific function, which sets certain 
requirements. Using these requirements, a set of selection criteria can be generated. Based on those criteria, 
some systems may prove to be more suitable than others, and an informed decision can be made.
For this thesis project, the form-active structure has no specified function. The aim is to give an example 
of one possible way, which may not be the optimal option for such a structure, but at least a possible one. 
The only criterion therefore is that the system can be adjusted to facilitate the funicular shapes required for 
optimal load transfer. Theoretically, every system from the categorization can be made suitable.

Therefore, the choice for a specific system has been made based on practical criteria. Since the objective is 
to develop a descriptive virtual model, a system which can be described more easily is preferred over more 
complicated systems. The main selection criteria are therefore

1. a system for which the description of the geometry and configuration of the system must be 
suitable for description in the software package. 

2. the number of controls needed to describe and adjust the configuration of the system is 
preferred to be lower, in order to keep the virtual model manageable.

3. the number of different relations that need to be described is preferred to be lower.

4. the structure must be feasible

Criterion 1 is not so much a property of the system itself, as it is dependent on the ability of the user to 
describe certain configurations and actions in the software.  Criteria 2 and 3 are meant to keep the focus on 
the linking the system to the script that generates the required configurations, rather than to spend too much 
time on the problems for describing the system in the first place.
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The continuous systems require tensioned membranes. The relation between the tension in the membrane, 
and the resulting shape is complicated and requires the implementation of a structural analysis to calculate 
that shape, which is beyond the scope of the thesis. Therefore, using a discrete system is in this case more 
appropriate.

From the discrete systems, single or double layered grids or trusses are more suitable for the required configu-
rations than plate structures, for which there are few precedents that can be referred to, and no precedents 
that show the adaptiveness that is required. While pantographic systems are relatively easy to describe and 
control, the funicular shapes that are required cannot be described a number of configurations in between 
two extremes.

Variable geometry trusses have been chosen over single and double layered grids, on the basis that while 
the controls for changing the geometry are similar, the VGT needs a lot less elements and is much easier to 
describe and control than the double layered grid, and the reconfiguration of a single layered grid seems less 
feasible due to snap-through behaviour during the active reconfiguration.

Thus, a grid of variable geometry trusses will be used, mainly for practical reasons, while noting that other 
systems may be just as feasible.
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5.2 REQUIREMENTS

As the adaptive system is a discrete system, deformations occur at the connections between elements only. 
The deformations that may need to be possible are elongation, curvature and twisting.

To analyse the extent to which the system needs to facilitate these deformations and where, the developed 
method for generating funicular shapes is used to generate several of the extreme shapes. 
For a selected group of knots, where two VG trusses intersect, the geometrical configuration has been ana-
lysed for every shape. The differences between the different configurations were then measured and docu-
mented. 

Three aspects were documented. The first is the length of the branches between two nodes. As the structure 
changes shape, the individual nodes change their position, which changes the distance between the nodes.
The second is the change in curvature in each arch. At every vertex, the truss elements meet under an angle, 
which is different depending on the configuration. The minimum and maximum angle determine the vari-
ance. The elements that connect in the joint have to accommodate the variance.

The third aspect is twist. Each joint has a local coordinate system, defining an x y and z direction. This co-
ordinate system is determined by the geometry of the structure, and changes when the configuration of the 
structure changes. The truss elements in between the joints also have a local coordinate system. The x-axis lies 
parallel to the branch connecting the joints. The z-axis for the joints may not have the same direction. The 
z-axis for the branch is the medium between the z-axes of the two joints. Twist is the differencein rotation 
around the x-axis between the z-axis of the joint and the branch.

The results show that the curvature difference for one knot has a maximum of 40 degrees. This means that 
when all knots can facilitate a curvature between 180 and 140 degrees, the VG truss can assume all required 
curvatures. The required elongation between two knots can be as high as +130%. The maximum twist is less 
than 15 degrees.
Curvature has to be facilitated at the joints. Twist and elongation can occur throughout the entire branch.
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5.3 PRECEDENT ANALYSIS

Currently there are two precedents for variable geometry truss systems. 

-prismatic variable geometry truss
-octahedron variable geometry truss

The prismatic VG truss has been applied at the movable monument for the 2005 Expo, and consists of a 
prismatic triangular truss with extensible actuators, so the monument’s shape can be changed variably by 
controlling the length of each of its extensible actuators [Inoue]. 
The actuators are located in the longitudinal members of the truss, enabling it to change from a straight line 
to a three-dimensional curve. 

The octahedron VG truss is originally developed as a deployable truss structure, but has great potential as a 
permanent adaptive structure. It consists of a series of octahedral truss modules, for which the lateral truss 
members are extensible actuators [Miura].
Varying the length of the actuators, allows the VG truss to follow a three-dimensional curve and change its 
length.

Current elongable members are limited to a maximum extension of about 30%, before they lose their struc-
tural capacities. This is related to the nature of the extension, which is achieved by telescopic bars. After 
extending a bar, the overlap between the inner and outer bar needs to be large enough in order to preserve 
the stiffness of the telescopic bar as a whole [turrin].

fig. 5.1   prismatic VGT. Inoue fig. 5.2   octahedral VGT. Miura
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5.3.1 Prismatic VG Truss module

The prismatic vg truss module can be regarded as two equilateral triangles, for which every corner point 
is connected to two other corner points. The members connecting the corner points are supplied with an 
extensional actuator. By elongating specific members, the truss module can change its curvature, length or 
twist.

Considered is a module with side faces of 0,5 by 0,5 meters, for which the longitudinal and diagonal mem-
bers can elongate.

Twisting is possible by elongating the longitudinal 
members, while keeping the diagonals’ length con-
stant, or vice versa. The total length of the module 
will then grow or diminish. This is not conveni-
ent. Therefore the module will be regarded as if 
the elongation will be half of its maximum. The 
minimum length of the longitudinal members will 
then be 0,435m; the maximum will be 0,565m.
The maximum twist in one direction is limited by 
the geometry, which will intersect with each other 
at a rotation of 60 degrees.

The maximum curvature change is about 16,7 de-
grees degrees. This is achieved by the maximum 
length of two longitudinal members, and the min-
imum length of the third.

 

fig. 5.3   curvature and twist
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5.3.2 Octahedral VG Truss module

The octahedral truss module is composed of eight equilateral triangles, for which the lateral members are 
supplied with an extensional actuator. By elongating specific members, the truss module can change its 
configuration.

Considered is a module built from members with a 0,5 meter length, for which the members that compose 
the top and bottom triangle can elongate.
By elongating one member, the corners that the member attaches to drop, slightly, providing a change of 
curvature. Additionally, the opposite result can be achieved by elongating the two other members. The cor-
ner point that they both connect to, will drop.
The module can increase its length, when three members forming either the top or the bottom triangle, 
shorten. The length of the module can be decreased by elongating the members forming either the top or 
bottom triangle.

If we consider the basic configuration of the mod-
ule, and assume that the top and bottom triangle 
members are extended halfway their maximum 
length, the maximum change in curvature will be 
around 10 degrees. The maximum length of the 
module will be 0,43m, while the minimum length 
will be 0,38m. The octahedral truss module does 
not allow twisting.

fig. 5.4   curvature and elongation
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5.3.3 Summary

As the maximum differences for curvature, twist, and elongation are compared to the requirements, it is clear 
that the existing VG truss systems are not suitable for the form-active structure. Some adjustments will have 
to be made in order for them to become suitable, if at all possible.

		  requirement		  Octahedral truss module		 Prismatic truss module
Twist		  15 o			   Not possible			   60 o

Curvature	 20 o			   10 o				    16,7o

elongation	 +130% / -76%		  +13% / -12%			   +30%

The octahedral truss module appears to be very limited. However, for the referenced projects in which it is 
used, it performs much better in all aspects. This is explained by the fact that the limit of 30% elongation is 
much lower than the elongation that was possible in the reference projects [Miura]. No specific information 
has been found on the exact system and limitations. Therefore, the limit of 30% will be kept, severely limit-
ing the potential of the octahedral truss module.
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5.4.1 Truss module

The truss module has to facilitate an extension of +130%. The modules from the precedent project are not 
sufficient in their current form. The prismatic module achieves the elongation by elongating the longitudinal 
members. This elongation is limited by the 30% limit, and cannot be improved easily. 

However, the octahedral module elongates by shortening the lateral members, in order to change the ratio 
between the lateral and longitudinal members. The greater the difference, the greater the elongation. By not 
only shortening the lateral members, but also extending the longitudinal members, the difference in ratio, 
and therefore the elongation, can be increased.

As the elongation of every member is limited, the initial ratio between longitudinal and lateral members 
determines the maximum elongation. The shorter the longitudinal members are relative to the lateral, the 
greater the maximum elongation can be. Thus, shorter elements allow greater elongation.
When longitudinal members start at a length, double that of the lateral members, the element can elongate 
up to four times its original length.

5.4 ADJUSTMENT AND IMPROVEMENT

As neither of the two modules is sufficient, both will be examined for possible improvements. The modules 
that are used in the joints have to facilitate curvature and twist, while the modules in the trusses have to 
facilitate elongation. Therefore, for each module, an improved version will be made, focusing on either goal. 

fig. 5.5   joints facilitate curvature and twist fig. 5.6   trusses facilitate elongation

fig. 5.7   elongation of the variable geometry trusses
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5.4.2 Joint

The joint elements have to facilitate both twist and curvature differences. Additionally, they have to rotate 
around the z-axis of the joint. The elements will therefore converge from the triangular cross section of the 
truss, to a linear hinge to which four elements are attached in each joint. 

Curvature difference can be achieved by rotating the triangular face around a virtual point on the hinge. The 
members connecting the hinge to the face will elongate or shorten in order to achieve this reconfiguration.
The ratio between the length of the hinge and the height of the triangular face influences the needed (local) 
elongation. A relatively shorter hinge allows for a greater angle for the same elongation. A second factor is 
the distance between the hinge and the face, which is the radius of the circle along which the face rotates. A 
greater radius requires less elongation.

Since the structure requires an angle of just 20 degrees per joint element, the minimum size of the element 
is limited, not by the elongation of the members, but the rotation about the hinge. The elements must have 
freedom to rotate without touching each other. 

fig. 5.8   joint geometry fig. 5.9   possible hinge detail

fig. 5.10   joint and four VG trusses in two different configurations
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5.5 COMPLETING THE STRUCTURE

The structure consists now of truss elements that can elongate and shorten, and joint elements that can 
provide curvature and twist.
As the joint module cannot elongate, the elongation of the entire truss, including the joint elements, has to 
be arranged by the truss elements. It is therefore preferred to keep the joint elements as small as possible. The 
truss elements however are preferred to be as long as possible, in order to keep the amount of members lower.
However, a longer element can’t elongate as much. Therefore, in order to use a smaller amount of truss ele-
ments while still being able to elongate the required amount, the cross-section of the element also has to 
increase.  This leads to a greater construction depth, which is also not preferred.
A compromise between these aspects, construction height and number of elements, has to be sought.

Assuming the distance between two nodes is l. 

The length of the joint elements is a. 

The truss elements fill the remaining length (l-2a). 

To increase the entire length of l to 2.5 l, the truss elements have to elongate (l-2a) to (2.5l-2a)

The length:depth ratio of a truss element is defined by the elongation that is needed. The size 
of the joint element (a) defines the size of the trusselement.

When a increases, the number of elements decreases. However, the needed elongation increas-
es, resulting in smaller truss elements, and therefore more elements.

If b = (l-2a)/(2.5l-2a)*4a

Then the optimal number of truss elements is 8, with a being 1/8th of the maximum distance.

fig. 5.11   VGT division
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5.6 SUMMARY

The required funicular shapes have been analysed to find the maximum differences in configuration for the 
form-active structure. These differences have to be facilitated by the variable geometry truss modules. Two 
existing types have been tested to those requirements, and were not suitable for direct implementation. 
Using the two existing types as a basis, a joint was designed, combining four modules of a new variant, to 
facilitate both curvature and twisting of the vg trusses. A different variant was developed to facilitate elonga-
tion in the trusses, between the joints.
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PART IV
IMPLEMENTATION
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6. CONNECTING SHAPE AND STRUCTURE

This chapter will describe the how the method for generating funicular shapes can be implemented 
in the software package, how it generates its output, how this output is used as input for the form-
active structure, and finally how the structure itself is generated.

6.1 LAYOUT OF THE PARAMETRIC MODEL

The parametric model is set up using the Grasshopper plug-in for Rhinoceros 4. The grasshopper 
package allows for graphical scripting of 3D geometry with the Rhino software, and also allows 
Visual Basic scripting. It therefore can communicate with other softwares too.
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6.2.1 Input

The user starts by defining the grid of the structure through modelling points in Rhino, and assigns them 
in the correct order to the Grasshopper point collections. These points are used to generate branches to and 
from all nodes.
Reading the points from the 3D model instead of defining them within the script, allows the user to change 
the geometry of the grid by moving individual points, rather than re-inputting the coordinates. When the 
points are assigned to the point groups in the script, any change in coordinates is automatically recognised 
and updated.

6.2.2 Load direction

After inputting the grid vertices, the user can alter the direction of the loads. Since the calculations assumes 
vertical loads, the direction is altered by rotating the grid, rather than the loads. The user has two sliders 
to control load direction. One controls the angle of the loads relative to the ground plane, ranging from a 
completely vertical force, 90 degrees, and combination of an equal vertical and horizontal force, 45 degrees. 
The other slider controls from which direction the force acts on the structure, as a rotation around the z-axis.
The entire grid is rotated according to the slider-values, and a new projection is made on the ground plane. 
From this projection, the new lengths and angles are determined, and outputted to the calculation software.

fig. 6.1   points in rhino are the input for the primal grid fig. 6.2   the primal grid is generated by connecting the points
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6.2.2 Force network

When the grid has been generated, all information on length of branches and their respective angles is ana-
lysed, and outputted to an external software (Microsoft Excel) containing the optimisation algorithm. The 
reciprocal grid can be defined knowing the respective angles between branches, and the magnitude of half 
of the support reactions (left and top side). All other forces can be expressed as a function of the angles and 
the support reactions. 

fig. 6.3   worksheet in Excel optimises the force polygons for the reciprocal grid

fig. 6.4   the reciprocal grid is generated

The reciprocal grid is then optimised by exploring different values for the support reactions, while complying 
with two constraints, being all forces must be equal to or larger than 0, and the force density in the supports 
must be equal to the reference force density, which is predefined.
By ensuring all forces are equal to or greater than 0, tensile forces will be excluded as options for a solution. 
Keeping the force density for the supports constant, makes sure that all solutions are comparable.
The algorithm intelligently compares different solutions to narrow down the solution space, and finds the 
solution for minimum Energy.

The optimisation routine is repeated every time a specific value 
in the worksheet is changed. This happens every time grasshop-
per outputs variables. So every time the user adjusts the primal 
grid by moving one or more points, the calculation is updated 
automatically.

The grasshopper script then retrieves the values for every force 
from Excel, and uses them to generate the reciprocal grid. This 
step can be omitted for the calculation, but the reciprocal grid 
acts as the visual representation of the force distribution within 
the structure, and is therefore needed for the user to see and 
understand the solution. Additionally, the user can check the 
solution for equilibrium. In some cases, the grid has no funicu-
lar solution, and tensile forces are required to make equilibrium. 
The algorithm will then stop calculating, and output the last 
values it used. Grasshopper retrieves them, while they are not 
the solution, and generate a reciprocal grid. The grid will not 
be a closed polygon. The user can identify this easily due to the 
graphical representation.
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6.2.3 Force density and equilibrium equations

Now that the magnitude of every force has been determined, and the length of each branch is known, the 
force density is calculated for every branch. These values are then used to fill in the matrix containing the 
equilibrium equations in the z-direction of every node.
The matrix is pre-scripted to match the connectivity of the nodes in the grid, and only needs values for the 
force density in every branch.

A second matrix contains the ‘answers’ to the equations, being the magnitude of the forces and the z coordi-
nates of the fixed nodes. The magnitude of the forces can be altered by the user.
To solve the equilibrium equations, the matrix is inverted first; then multiplied with the second matrix to 
get the z-coordinates for every node.

fig. 6.5   the equilibrium equations are formulated in a matrix

fig. 6.6   the matrix is solved, presenting the z-coordinates for the nodes
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6.2.4 Drawing the funicular shape

The z-coordinates are retrieved, and combined with the x and y-coordinates, to draw the points of the 3D 
funicular shape. All points are again connected as was the primal grid, and the shape is completed. The ge-
ometry is the rotated back to a level position.

fig. 6.7   the three dimensional shape is generated

6.2.5 Drawing the trusses

At the nodes, a line along the z axis is drawn, and both endpoints are connected. Halfway the branch, a line 
is drawn perpendicular to the branch, to the line connecting the z-axes of the knots. This line represents the 
z-axis of the branch
The construction depth and length of the joints can be defined by the user using a slider. For every branch, 
the number of truss elements is predefined. The length of the branch, minus the joints, is divided into the 
number of elements. At every division point, a triangle is generated, of which every second triangle is ro-
tated 180 degrees, and the corners of the triangles are connected to the corresponding corners of the other 
triangles.

6.2.6 Drawing the joints

Joints are drawn by generating a line along the z-axis of the joint, representing the hinge. The start and end 
points are then connected to the triangles of the outer truss elements.

fig. 6.8   the structure is generated on top of the funicular shape
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6.2 LIMITATIONS

Although the model is fully functional and provides a certain degree of interactivity, as a design tool it still 
has limitations:

•	The number of rows and columns (of nodes) is predefined. It is therefore not possible to 
calculate more refined grids or more rectangular layouts without adjusting the script itself. 
•	Only 4 valent nodes are possible. While the method would work for nodes of a lower or 
higher valency as well, the script can only handle 4 valent nodes.
•	It is not possible to enter radial grids.
•	An interaction with Microsoft Excel is needed. This is required to solve the reciprocal grid, 
and to solve the equilibrium solutions.

These restrictions can be solved by rewriting the script in order to provide options for a more broad user 
input, regarding the number of nodes and their connectivity. The user would have to provide more informa-
tion in order for the  script to work with, but can be limited to node coordinates and their connectivity. The 
model would have to be more intelligent in assessing the reciprocal grid. When the valency of a node can 
be different from 4, the amount of forces, and which ones, needed to determine the reciprocal grid changes 
from case to case. The need for an external calculation software could be eliminated. Solving matrices, for 
equilibrium equations, can be done within the grasshopper package through the use of VB scripting and 
Mapack [Oosterhuis]. Solving the force distribution is done through an algorithm, which is implemented 
in Excel, but the algorithm, or a similar one, could be scripted in VB script within Grasshopper as well. 
When the method is improved such that the grid can be examined on a node by node base, the need for an 
algorithm is eliminated entirely.

Regarding the limitations of the current model, it should not be regarded as a finished form-finding tool, 
but rather as a proof of concept.
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PART V
RESULTS
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7. RESULTS AND DISCUSSION

7.1 PERFORMANCE OF THE FORM FINDING METHOD

Regarding the performance of the method, compared to the already existing methods, the following can be 
stated:

•	The method maintains the strong graphical representation of the force distribution in a sys-
tem as the thrust network analysis method and graphic statics, while adding the functionality 
for solving statically undetermined structures by calculating the minimal complementary en-
ergy. 

•	In its current form, the method is limited to four-valent systems or less, which did not pre-
sent a problem for the Thrust Network Analysis method. A valid approach to solve knots with 
a higher valency has been suggested. 

•	The method can optimize the scale factor using the complementary energy again, resulting in 
the most optimal solution.

•	The method is limited to parallel loads. A workaround is suggested to cope with parallel non-
vertical loads. The suggestions by Block for implementing the horizontal components into the 
reciprocal grid are still viable. 

One alternative approach to solve non-vertical loads might be to keep the x and y coordinates of the free 
nodes fixed during the creation of the reciprocal grid, but release them during the calculation of the z coordi-
nates. The value for the force density can then still be based on the primal and the dual grid, but non-vertical 
loads can be entered into the equilibrium equations, and solved. However, there is no guarantee that the 
values for force density are still correct. This has to be validated.



Graphic statics in funicular design

86

7.2 IMPLEMENTATION FOR A FORM-ACTIVE STRUCTURE

While the method still has some limitations, it proved useful for the preliminary design of the form-active struc-
ture. This is based on the assumption that the governing loads will be the static weight of the building, roughly 
equal to an evenly distributed load, and the wind load. As long as all loads can be reduced to parallel forces acting 
on the vertices of the grid, the system can be solved. When this is the case, the output from the script can be used 
as direct input for the configuration of the form-active structure.

When the design for the form-active structure is developed further, a method will be needed which can cope with 
different non-vertical loads more easily. This could be the force density method, with the addition of fixed x and y 
coordinates. However, the force density method lacks the graphical representation, and is therefore not very trans-
parent to the user. 

The fact that the Grasshopper package runs within the Rhinoceros environment meant that the results of the struc-
tural analysis and the 3D model could be solved within one software package. No interaction with other programs 
was needed, providing a quasi-real-time feedback.
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8. RECOMMENDATIONS

With respect to the development of the method for analyzing thrust networks, the following recommenda-
tions can be made:

The solution for four-valent knots can be made more elegantly by formulating the problem as a linear equa-
tion, which can then be differentiated to find the minimum, instead of narrowing down the range in which 
the solution lies. A similar approach might prove useful for knots with a higher valency

Instead of scaling the individual force polygons during the creation of the reciprocal grid, a relation can be 
sought to determine a value for the reference force density, such that all polygons are calculated at the same 
scale

The parametric model for the form-active structure may be combined with the kangaroo package for struc-
tural analysis, which also runs in the Rhinoceros environment, to enable direct feedback on the structural 
performance
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9. FINAL REFLECTIONS

Reflecting on the main objective for this thesis it can be said that it was successfully achieved within this 
thesis project: ‘Develop a method for assessing thrust networks for both statically determined and undeter-
mined systems, based on graphic statics, and model it in a parametric design software, where it can be used 
to describe the configuration of an adaptive structure.’

The developed method, while it still has limitations, has been used effectively to generate the optimal shapes 
regarding load transfer, which made it possible to form a conceptual design for a form-active structure that 
can reconfigure its geometry to achieve optimal structural performance.
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