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Abstract

The Surface Water and Ocean Topography (SWOT) mission has the goal to observe global lakes and
reservoirs with a size as small as 1 ha and ocean circulations at sub-mesoscale with the help of the
Ka-band Radar Interferometer (KaRIn) wide-swath altimeter. Launched in 2022, SWOT is observing
an unprecedented amount of lakes globally at least once every 21 days. With a high spatial and tem-
poral resolution, SWOT can be used to measure global water storage changes and improve climate
modelling. This study contributes to assess the performance of SWOT in observing the Water Surface
Elevation (WSE) of lakes, by analysing SWOT observations of Ilce Marginal Lakes (IMLs) in southwest
Greenland. These lakes are particularly difficult to observe with SWOT because the region is moun-
tainous and the lake surfaces are covered in ice for most of the year. For this purpose, three lakes of
different sizes were chosen and the WSEs obtained from the two main SWOT lake data products were
compared to elevations from the Ice, Cloud, and land Elevation Satellite 2 (ICESat-2). While SWOTs
Pixel Cloud Data Product (PIXC) product contains more observations during the ice-covered period
and is better for finding error sources, the Lake Single Pass Vector Product (LakeSP) product is more
convenient for analysing large numbers of lakes and both products have a similar accuracy after data
editing. The SWOT-derived WSEs obtained in this study are not in compliance with the WSE mission
requirements (1o <10 cm for lakes >1 km? and 10 <25 cm for lakes <1 km?), because the average WSE
difference to ICESat-2 lies between 0.27-1.38 m for the three lakes that were analysed. This analysis
indicates that the main error-sources are ice cover - leading to a low Normalised Radar Cross-Section
(NRCS) and coherence, phase unwrapping errors and specular ringing - resulting in inconsistent lake
outlines. It is recommended that more strict editing should be applied to the SWOT LakeSP product
when observing IMLs, in particular regarding "dark water” pixels, and that the Prior Lake Database
(PLD) should be updated to include more ice marginal lakes.
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Introduction

1.1. Background

Lakes are among the most important components of terrestrial water storage and a key contributor
to the water cycle. Monitoring of lake water levels gives us valuable information about human water
consumption, industries, irrigation and prevention of droughts, but the distribution of observations is
heterogeneous [40][10]. In less populated areas such as Greenland, in-situ measurements of lakes
are sparse, and monitoring of lake areas or water levels is largely based on satellite observations. Out
of the 30 million estimated natural lakes on Earth (>1 ha), more than 150 000 are located in Greenland
[15][14], playing a vital role in transporting and storing meltwater from the Greenland ice sheet. Un-
derstanding and quantifying the role of freshwater storage (changes) in global hydrology can help to
improve hydrological- and climate models, which is why a good basis of lake observations is important.

Ice Marginal Lakes (IMLs) are characterised by their connection to a glacier or other ice margin, and
are therefore often subject to large freshwater influxes and major and frequent storage changes. The
more than 10 000 identified IMLs on Greenland play a significant role in the water cycle and pose the
risk of creating Glacial Lake Outburst Flood (GLOF) events [14]. Glacier Lake Outburst Floods are
natural events, characterised by sudden, large releases of water either from a moraine-dammed or
ice-dammed glacial lake [2]. When glacial lakes are dammed by a moraine or glacier with no outlet to
the ocean but are filled with meltwater over time, they reach a point of overtopping the moraine or lifting
the glacier to create a subglacial tunnel for the water to flow away into the ocean. These unpredictable
events can lead to huge amounts of water being drained from the lakes in a matter of hours or days, and
pose a risk of flooding downstream environments and changing ecosystems. Historically, GLOFs have
been recorded mostly in the Himalayas, where they have caused destruction of dams, farmland and
infrastructure on several incidents in the last century [42]. In Greenland, due to increasing meltwater
runoff from climate change, the frequency of GLOF events is already increasing, which reduces the
inland water storage and increases the freshwater flux to the ocean [14].

1.2. Previous Work

A study by How et al. (2021) [24] combined satellite observations from Sentinel-1 Synthetic Aperture
Radar (SAR) imagery, Sentinel-2 optical imagery and the ArcticDEM terrain model to create an inven-
tory of ice marginal lakes in Greenland, including more than 3300 IMLs (>0.05 km?). However, this
inventory only contains the lake outline and area, but not the water level, or changes of lakes over
time. While most studies of IMLs focus on one specific lake or small area, Dgmgaard et al. (2024) [14]
conducted a comprehensive analysis of IML water level changes covering 1300 IMLs in Greenland. By
using altimetry data from the Ice, Cloud, and land Elevation Satellite 2 (ICESat-2) and IceBridge ATM
missions, water level observations from 2003 until 2023 were combined to detect 541 GLOF events
over that period, including lakes with an area >0.2 km?2. Most observations in recent years (2018-2023)
were taken by ICESat-2, which produces only one observations roughly every 3 months and does not
cover the entire ground surface, thus lakes lying between ICESat-2 tracks are missing from the altime-
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2 1. Introduction

try observations. This leaves a gap between the 1300 lakes included in the study and the more than 10
000 IMLs identified by the Danish Agency for Data Supply and Infrastructure [11]. Monitoring the water
levels of IMLs is particularly challenging because the surface is often covered with calving ice from a
glacier front or surface ice due to low temperatures. Additionally, Greenland consists of very moun-
tainous terrain, posing obstacles for remote sensing methods using side-looking satellites or having a
low spatial resolution [39]. A high spatial resolution is essential to distinguish the height of lakes and
rivers in this area from their surrounding mountains.

NASA's Surface Water and Ocean Topography (SWOT) satellite mission has the goal to provide high-
resolution observations for global hydrology and climate modelling in unprecedented frequency com-
pared to previous missions, such as ICESat-2 with a revisit time of 91 days, which has observed more
than 220 thousand water bodies worldwide [41]. SWOT was designed to observe the ocean, rivers
and lakes as small as 250 m x 250 m (with a goal of 100 m x 100 m), thereby contributing to close the
observation gap of small lakes in altimetry. This provides a new opportunity to improve the observa-
tions of surface waters due to SWOTs special frequency range, wide-swath measuring technique and
short revisit time of 21 days. Combined, SWOT can observe lakes larger than 1 ha globally between
1-7 times per 21-day repeat orbit (see Figure 1.1) depending on latitude, making it possible to observe
the dynamics of terrestrial water storage as well as oceanography.
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Figure 1.1: Global map (excluding Antarctica) of lakes and reservoirs (a) with colours indicating how often a lake is observed in
a 21-day SWOT cycle. (b) and (c) show the water body distribution per latitude and longitude respectively [35].

Launched in December 2022, SWOT has collected approximately two years of data in its science orbit
so far and has already delivered promising results in the number of observed lakes and the accuracy
of their derived Water Surface Elevation (WSE). According to Wang et al. (2025) [36], SWOT observed
3 million lakes with at least one valid measurement in the first 4 months of its science orbit. A study on
water bodies in Australia obtained an accuracy in water surface elevation up to 3-6 cm (for large lakes)
with SWOTs Pixel Cloud Data Product (PIXC) product and 24 cm with the Lake Single Pass Vector
Product (LakeSP) product [25]. During the calibration and validation phase, initial investigations of the
Arzuma reservoir in Burkina Faso have shown that SWOT can obtain accurate water level and lake
surface area observations. Here, a 10 error of 9 cm in WSE compared to in-situ measurements and a
17% difference in lake area compared to Sentinel-2 were found, in line with the mission requirements
regarding WSE, which can be seen in Table 1.1.

1.3. Motivation

SWOT contains three data products from which lake WSEs can be derived. The main data product for
lakes and reservoirs is the LakeSP product, which provides geometries of all recognised lake features
and their WSEs for each SWOT overpass. The lower level PIXC product containing individually ob-
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Table 1.1: SWOT mission science requirements and goals for Water Surface Elevation (WSE) of lakes [3].

WSE error Requirement Goal

10 for lakes >1 km? <10 cm

10 for lakes >250x250 m? and <1 km? <25cm

Lake detection 250x250 m? 100x100 m?

served water pixels and the higher level Raster product with gridded data can also be used to obtain
water surface elevations of lakes. For gaining a better insight into the processing and underlying data of
the LakeSP product, the PIXC product will be analysed in addition to the LakeSP product in this study.
By including both of these data products it can also be compared how different processing impacts the
obtained WSE estimates and which data product is most suitable for a given application.

As no in-situ measurements of the water level are available for any IMLs in Greenland, other data such
as from satellite altimetry are needed to obtain a reference for the water surface elevation accuracy
derived by SWOT. Here the ICESat-2 altimetry data is an obvious choice for a height reference because
it contains observations during the same time period as SWOT and specifically covers polar regions
including Greenland well. This mission has a long record of high-accuracy measurements of surface
elevation (better than 3.3 cm bias [6]), including land ice, sea ice, and inland surface water.

If the WSE of IMLs can be obtained from SWOT with a high accuracy and consistency, they could pro-
vide valuable information for detecting GLOF events due to SWOTs sub-monthly coverage. Therefore,
this study has the purpose to assess the accuracy of the water surface elevations that can be derived
from SWOT observations of IMLs in Greenland. Simultaneously, it can be assessed how well SWOT
performs under difficult conditions due to Greenlands mountainous terrain and arctic climate. Due to
these difficult conditions it is particularly important to identify origins of error causes in the WSE and
what can be done to improve the accuracy of the obtained WSE estimates. Identifying causes of errors
can be challenging if errors cannot be attributed to a single cause. Therefore, the k-means clustering
method will be tested as a solution to find combinations of multiple causes.

1.4. Research Objective
The main goal of this research is summarised in the following research objective:

To assess the performance of SWOT in observing water surface elevation
and variability of Ice Marginal Lakes in Greenland

and accompanying sub-questions:

» When comparing the LakeSP and PIXC data products from SWOT, what are their main advan-
tages and drawbacks with regards to the retrieved lake surface elevations?
For users that wish to use SWOT data on lakes it is essential to know which product is most
suitable for a given application. For this comparison, the accessibility, computational efficiency,
WSE accuracy and consistency will be assessed.

* How do SWOT-derived water surface elevations of ice marginal lakes compare to those derived
from ICESat-2 altimetry data in terms of accuracy and consistency?
The accuracy is indicated by the difference between ICESat-2 WSE measurements and the WSE
obtained from each of the two SWOT products. The consistency describes the frequency of valid
SWOT observations and the WSE variability.

» What are the main issues for SWOT in detecting water surface elevations of ice marginal lakes
in Greenland?
It is important to determine what the limitations of the LakeSP and PIXC products are for obtaining
more accurate WSE estimates from SWOT. Also, possible errors introduced during observation
and processing should be identified in order to reduce the WSE error as much as possible. For
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this purpose, individual observations of the PIXC product will be analysed and optical imagery
from Sentinel-2 will be included for comparison.

* How can the water level estimates obtained via different SWOT data products be improved to
create reliable records with good accuracy and consistency?
For obtaining WSE records of IMLs from SWOT which are reliable enough to be used in other
applications, recommendations will be given on how to obtain good quality WSE measurements
from each SWOT lake product. These should include solutions to avoid influence from the main
observation and processing errors.

To provide the reader with a fundamental understanding of the SWOT mission, an introduction of the
measurement principle to obtain water surface elevations from SWOT is given in chapter 2. This is
followed by a description of the SWOT and ICESat-2 data which were analysed in this research. In
chapter 4 it is described how the WSEs over time of each IML included in this study were derived
from the SWOT data products and how they were compared to ICESat-2. Furthermore, the methods
used to identify error causes for the WSE are described. Chapter 5 shows the results of the WSEs
obtained from the LakeSP product, PIXC product and ICESat-2 as well as the results of the error anal-
ysis. Chapter 6 aims to answer the above research questions by interpreting the results and providing
recommendations for monitoring water levels of IMLs and improving the SWOT lake products. Last but
not least the conclusion will provide a summary of the key takeaways from this research.



Introduction to the SWOT Mission

Before describing the two SWOT datasets from which lake water surface elevations are obtained for
this study, a brief introduction to the the SWOT mission is given here, where it will be explained how
SWOT measures the WSE and what new capabilities SWOT has compared to other altimeter missions.

2.1. Mission Description

The Surface Water and Ocean Topography (SWOT) mission is a collaboration of the National Aero-
nautics and Space Administration (NASA) Jet Propulsion Laboratory and the Centre National d’Etudes
Spatiales (CNES) to create a global survey of ocean and inland surface water topography through the
Ka-band Radar Interferometer (KaRIn) instrument, which is a wide-swath altimeter [21][20][18]. Com-
pared to other altimeters which only obtain elevations of single point lines along the ground such as
CryoSat-2, Sentinel-3 and ICESat-2 [16], SWOT has the advantage that it covers a ground track of 140
km width in a single overpass by looking both left and right of the satellite track. In this way, the whole
globe can be covered in a repeat orbit of 21 days. A visualisation of the satellite geometry is shown in
Figure 2.1, which shows the 60 km swath tracks left and right of the nadir, separated by a 20 km strip,
to avoid bright backscatter close to nadir or overlap with the nadir looking point-altimeter.

Figure 2.1: KaRlIn viewing geometry of the wide-swath altimetry (left) showing the increase of spatial resolution towards the far
range. lllustration of the range difference used to calculate the height of ground points (right) [19].

SWOT was launched into a calibration and validation orbit in December 2022. Only in July 2023 it

was manoeuvred into the nominal 21-day science orbit, in which it is now at a mean altitude of 905 km
above the WGS84 ellipsoid. The orbit inclination is 77.6°, which means that the northernmost region of

5



6 2. Introduction to the SWOT Mission

Greenland is not observed. Onboard the satellite are the Ka-band Radar Interferometer (KaRIn), dual-
frequency (Ku- and C-band) pulse-limited Nadir Altimeter (NAlt), three-frequency Advanced Microwave
Radiometer (AMR), Doppler Orbitography and Radiopositioning Integrated by Satellite (DORIS) re-
ceiver, Global Positioning System Payload (GPSP) receiver and a Laser Retroreflector Array (LRA)

9.

2.2. KaRIn Measurement Principles

Other satellites using Interferometric SAR imaging, such as Sentinel-1, tend to have one antenna and
rely on multiple overpasses to produce one INSAR image. What makes KaRlIn special is that it employs
two antennas separated by a distance (baseline) of 10 m from each other. When one of the antennas
sends out a pulse to either the left or the right ground-swath, the signal which is reflected on the surface
is received by both antennas. From the time delay of the response signal the range distance r from
the antenna to the target can be estimated:

r=— (2.1)

where c is the speed of light, t the time delay and the division by 2 comes from the round trip distance to
Earth and back. The Doppler effect can be used to determine the position of the target in the along-track
direction. If the satellite is flying towards the target, it will have a positive shift in frequency (positive
Doppler), and if the satellite is flying away from the target it will have a negative frequency shift (negative
Doppler). Because the range is the same for a target closer to the satellite with a lower elevation, than
for a target further away with a higher elevation, the key to obtain topographic heights or elevation
changes is to use Interferometric Synthetic Aperture Radar (InSAR).

INSAR is a method which combines two Synthetic Aperture Radar (SAR) images taken from different
locations and possibly at different points in time. The two antennas of KaRIn each capture a complex
SAR image with an amplitude and a phase. By complex conjugating the two SAR images which were
obtained simultaneously by the left and right antenna, the complex interferogram is obtained. If the two
complex images s; and s, each have an amplitude A and a phase ¢, the interferogram s, is defined
as

Sy1 = SISZ = AlAZej(¢2_¢1) = AZlej¢21 (22)

where A4, is the interferogram amplitude and ¢,, the interferogram phase [23]. If both antennas were
at the exact same location and received the same backscattered signal from a ground target, the phase
difference would be 0 and the images described as coherent. The interferogram phase is the phase
difference that arises because the range of the two antennas is different for a side-looking geometry.
The difference in range, as illustrated on Figure 2.1 is thus given by [19]:

A

Ar = @
"T oo

(2.3)

Here, the division by two comes from the round-trip of the phase, while the range difference is only the
one way distance. 1 is the Ka-band wavelength (8.4 mm) and & the unwrapped interferometric phase,
which is found from:

d=n-2r+¢ (2.4)

The interferometric phase measured between the two antennas ¢ is also called the wrapped interfer-
ometric phase, because it is obtained as a modulus of 27 radians. To determine the range difference
Ar, it is necessary to estimate the integer phase ambiguity number n which determine how many full
wavelengths make up the range difference. This results in an ambiguity height h, corresponding to a
phase change of 2x radians.
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Arsin G0k
g = —2

B cos 0,y (2:9)
Here the incidence angle 6;,. is the angle between the normal vector of the ground and the range
vector, while the look angle 8,,,x is between the satellite nadir-looking vector and the range vector to
take the curvature of the Earth into account. If the terrain is not known with an accuracy of h, /2 a priori,
spatial unwrapping can be used over a group of pixels, which are expected to have a phase difference
of less than +m to their neighbours. For lakes with a relatively flat surface this approach can be used to
spatially unwrap the phase over the lake before the absolute ambiguity is resolved for the entire lake.
By integrating the phase of the pixels in the cross-track direction and adding or subtracting one phase
cycle when the difference between two adjacent pixels is larger than +m, the relative spatial unwrapping
makes use of the assumption that the phase is varying slowly with respect to the cross-track distance
from the satellite. The process of finding the correct number of phase ambiguities n and adding them
to the wrapped phase to obtain the unwrapped phase is called phase unwrapping.

When looking at the satellite geometry on Figure 2.1, the range difference can also be expressed as:

Ar =1, —1r; = B sin(0) (2.6)

Where 6 is the look angle shown in Figure 2.1 (right) and B the baseline. Combining Equation 2.3 and
2.6 gives the following expression for the look angle:

0= in 24 2.7
= arcsin| zo— (2.7)

Once the look angle 8 is calculated, it is possible to determine the height of the ground point h with
respect to the reference surface:

h =H —rcos(6) (2.8)

The satellite altitude H with respect to the reference surface such as the WGS84 ellipsoid and range r
from the center of the satellite to the ground point is obtained from the GPS and travel time respectively.

2.3. Physical Phenomenon and Error Sources

KaRIn operates at the Ka-band frequency with a wavelength of A = 8.4 mm, which is shorter than other
radar altimeters. This has the advantage that the range difference can be resolved in more detail.
However, this also makes phase unwrapping more difficult because the ambiguity height is smaller.
By utilising the Ka-band frequency, even higher image resolution (approximately 5 m in azimuth and
0.75 m in slant range) than C- or X-band SAR missions such as Sentinel-1 (spatial resolution of 20 m
by 5 m) can be achieved [9][12]. Another advantage is that using a smaller wavelength allows for a
smaller baseline between the antennas and thus a more compact satellite design, whereas using C-
or X-band radars require a much larger separation distance between the antennas, such as 60 m for
the Shuttle Radar Topography Mission (SRTM) [3]. One of the drawbacks of a smaller wavelength is
that the signal is attenuated faster, and therefore the measurements are more sensitive to atmospheric
conditions. While radar altimeters are excellent for penetrating cloud cover, the Ka-band measurements
are more sensitive to rain and blowing snow than altimeters operating at longer wavelengths [19]. This
could be an additional issue for measurements in Greenland.

Two important parameters for working with SAR images are the coherence and Normalised Radar
Cross-Section (NRCS) (or g,). Coherence is a measure of how similar the two SAR images are and
how much random noise is in the interferogram. A good coherence means that the phase difference
between the two acquired images does not possess any random noise, while a bad coherence means
that the phase differences are randomly distributed between 0 and 2. The average power reflectivity or
scattering coefficient per surface area is characterised by g, Itis related to the power of the backscatter
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received by the antenna. Often, an area for which the observed g, is high is described as bright, while
an area with a low g, is described as dark.

The look angle 6 of the KaRIn instrument is very small (1-4°) compared to other SAR systems, which
typically have angles between 20-40° [19], meaning that the KaRIn instrument looks very close to nadir.
This is an advantage when observing inland water, which generally has a lower surface roughness than
land, because a small incident angle means that more of the signal will be reflected back in the direction
close to the satellite and not away from the satellite, as would be the case for larger look angles. In this
way, a decent backscatter signal from water surfaces can be obtained, which is needed to determine
the surface properties. On the other hand, such a small look angle is more prone to layover from
surrounding topography, which occurs if the terrain slope is larger than the look angle [39]. As seen
from the dashed range lines in Figure 2.2, a point located closer to nadir at a lower elevation and a point
further away at a higher elevation have the same range distance to the satellite. When the antenna
receives a backscatter signal from the whole area, the travel time can be used to calculate how far
away each point is, but if the slope is larger than the look angle, the point seems nearer to the satellite
and the signal ends up overlapping with the signal from the points closer to the antenna. Layover also
causes shadowing of the area behind the mountain in Figure 2.2, which then cannot be observed.
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Figure 2.2: lllustration of layover effect. P. L. Dekker, TU Delft [13].

While the area behind a mountain will be shadowed, the side facing the satellite will show up shortened
in the SAR image, because the sloped surface spans fewer pixels in the range direction (thus called
foreshortening). Additionally, more of the signal is reflected in the direction of the satellite, such that
these slopes often appear brighter than the surface would be otherwise. This can also lead to a bright
reflection from a sloped land surface being wrongly classified as inland water because inland water
surfaces are expected to appear brighter than the surrounding land. As stated in Fjgrtoft et al. (2010)
[19], any terrain feature, such as a mountain next to an observed lake, with a slope exceeding 1° in near
range and 4° in far range, will produce layover and thereby distort the lake water surface elevation. In
mountainous areas such as Greenland, a slope larger than 4 degrees is not uncommon and can have
serious impacts on observing lakes and rivers located down in the valleys. It is therefore important to
take potential layover influence into consideration in this analysis.

Apart from layover, other known error sources for SWOT data are specular ringing and phase unwrap-
ping errors. Specular ringing is a phenomenon caused by bright backscatter from points close to nadir,
such as flat water surfaces. When the signal is compressed in the range direction, the response signal
has side lobes which extend away from the point source in the across track direction. Usually, the the
o, of the side lobes is several orders of magnitude lower than the g, of the surrounding landscape, but
when targets at nadir become very bright compared to the rest of the observed area, the side lobes
also appear brighter than the surrounding landscape. This can create stripes of high g, in the images,
which are then classified as water surface belonging to an intersecting lake. Phase unwrapping errors
occur if the wrong number of phase ambiguities is added when unwrapping the phase, which can then
result in a wrong location and height of a given pixel. This can happen if the initial height estimate that
is used to perform the unwrapping is not accurate enough or the spatial unwrapping does not use a
fitting area. For IMLs in Greenland it is possible that mountains surrounding a lake are then included
in the same spatial unwrapping region as a lake, even though they have a much higher elevation.
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3.1. Selecting the Area of Interest

In this study, the southwest basin of Greenland was chosen as the area of interest, since this area
experiences some of the highest melt rates in Greenland and has a large number of ice marginal lakes
according to Dgmgaard et al. (2024) [14]. Out of all IMLs in southwest Greenland, three lakes of
varying sizes were chosen for an in-depth study and compared to ICESat-2 observations for reference.
The three lakes were selected because i) for most of the overpasses a WSE was computed in the
LakeSP product, and ii) they were covered by at least one ICESat-2 track. The location of the study
area and of these three lakes can be seen in Figure 3.1 including an ortophoto of each lake from the
Danish Agency for Data Supply and Infrastructure [11] (on different scales). The lake with the number
1 is unnamed with an area of 5.5 km? which will be referred to as the medium-sized lake. The largest
of these three lakes is the lake Isortuarsuup Tasia with 55 km?, which is number 2 on the map. Number
3 is the smallest lake with a size of 0.2 km?, which is also unnamed. The small lake is located 400 km
south of the medium-sized lake and 230 km south of the lake Isortuarsuup Tasia. By focusing on three
lakes of varying sizes, locations and elevations, an in-depth study was performed to compare the two
SWOT lake products and determine main error causes.

This research used data from the SWOT Level 2 High Rate Water Mask Pixel Cloud Data Product
(PIXC) as well as the SWOT Level 2 KaRIn High Rate Lake Single Pass Vector Product (LakeSP).
Both of these products provide data from individual satellite overpasses but the PIXC product contains
more detailed information than the LakeSP product. Therefore, data from the LakeSP product was
downloaded for the whole region of southwest Greenland (44-54°W, 60-69°N), while PIXC data was
only downloaded for the three chosen lakes.

Additionally, a fourth lake was included in the analysis initially, which is called lake Hullet and is located
at the southern tip of Greenland. This lake had to be discarded from the analysis because SWOT was
not able to detect it properly, but a few examples of this lake were still included in the report to show
what caused SWOT to wrongly detect this lake.

3.2. SWOT Pixel Cloud Data Product

The PIXC product is separated into files covering an area of 64 km x 64 km, where each file belongs to
one satellite pass of the left or right swath and contains around 5-10 million pixels. Because the goal
is to observe lakes as small as 100 m x 100 m, the high rate mode of SWOT has a pixel spacing of
approximately 20 m in the along track direction and 10-70 m in the cross-track direction, resulting in
data files of around 1 GB per file. The data is available for free via NASA’'s Earthdata portal in NetCDF
format. In this project, all PIXC data files covering one of the three chosen lakes were retrieved for the
period November 2023 to February 2025. The data was downloaded by finding the coordinates of the
three lakes and downloading all datafiles in the given period which cover those coordinates. Each lake
comprised of around 100 GB of data.
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Figure 3.1: Map of southwest Greenland, where the area of interest is marked in orange and the locations of the three chosen
lakes are indicated with numbers [4]. On the right an ortophoto of the (1) medium-sized lake, (2) lake Isortuarsuup Tasia and (3)
small lake is shown [11].

PIXC includes geolocated heights of all observed terrestrial water pixels and a multitude of properties
such as the complex interferogram, correction factors, classification and quality flags for each pixel [7].
The pixels are classified into seven categories, shown in Table 3.1, based on the level 1 Single Look
Complex (SLC) product and additional data on water occurrence. Open water is expected to have a
high backscatter (g,) and high coherence compared to the surrounding land, therefore classes 3 and
4 are the areas with the highest quality of water detection. Classes 1 and 2 are to mark land pixels,
which are included either because they lie close to water, or because they have a high backscatter in
SWOT, but are identified as land or ice in the auxiliary data. Classes 5-7 indicate less good quality,
because these pixels are either identified as dark water, meaning they have a low backscatter (class 5)
or as low coherence water (classes 6 and 7). Pixels in these three classes are best avoided, because
the geolocations and heights derived from them have shown significant noise and artifacts [37]. The
reason these pixels are identified as water is the external information on the probability of water being
present, even if no presence of water is detected by the satellite.

The geolocation flag geolocation qual is a particularly valuable quality indicator because it is a
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Table 3.1: The classification variable of the PIXC product contains an integer value from 1 to 7 indicating which of these
classes the pixel is categorised as [9].

Class Definition

Land

Land near water
Water near land
Open water
Dark water

Low-coherence water near land

N OO g AW N -

Open low-coherence water

bitwise flag indicating possible issues with the calculated geolocation. Each possible issue is assigned
a value, from the least significant issue having a value of 2° to the most significant issue having a
value of 231, The value of each pixel is the sum of flagged issues, making it possible to mark multiple
issues in one value and distinguishing which issues apply by simple reverse calculations. Values of 2°,
2! and 22 tell, respectively, that the layover is significant, the phase noise is suspect, and the phase
unwrapping is suspect. If all these three are the case, a total value of 2° + 2! + 22 = 7 would be
assigned to the pixel. If a pixel has no issues, the value becomes 0 and the geolocation is known to be
reliable. A table of all possible issues is shown in Figure A.2 sorted by severity. The binary quality flag
sig0_qual indicates the quality of the oy, with 0 indicating good quality and 1 indicating bad quality.

Two other parameters which were included in the analysis are the height sensitivities to the phase and
the range. The height to phase sensitivity describes how much the height changes per radian of phase
change, while the height to range sensitivity describes how much the height changes for a one meter
change in range. The height to phase sensitivity is similar to the ambiguity height if we divide by 27 (a
full phase cycle):

dh _ Ar sin glook

d¢ ~ 2mB cos Oy, 3.1
If the height to phase sensitivity is high, a small phase error can lead to a large height error, but since
the sensitivity differs in the across track direction, this variable can also show how a phase error will
affect different areas of the image. The height to range sensitivity works similarly but for the range
instead.

This product can be used in combination with the Pixel Cloud Auxiliary Data Product (PIXCVec) to
extract pixels by their assigned lake id because the PIXCVec product utilises the LakeSP product to
assign a lake id to each pixel corresponding to the lake identified in the Prior Lake Database (PLD).
In case this approach fails because the PLD is not sufficient or because the lakes cannot be extracted
from the observation, employing the PIXC product offers a different method for observing lakes than
the LakeSP product. By using the PIXC product in combination with lake outlines from an ice marginal
lake dataset as boundary, only the pixels located within the desired lake are extracted.

3.3. Background on how the LakeSP Product is Produced

Before describing the LaksSP data used in this study, it is beneficial to understand how the water surface
elevations in the LakeSP product were obtained such that they can be recreated from the PIXC product
and compared to the LakeSP product. Below, it is described how the LakeSP product was derived from
the PIXC product in combination with the PLD by the data providers (CNES and JPL) according to the
LakeSP product description [30].

Initially, the water pixels intersecting river reaches which are identified in the SWOT river database are
removed in order to obtain only water pixels which belong to lakes and not to rivers. The remaining pix-
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els are aggregated into lake geometries using the PLD and processed into three different sub-products
as shown in Figure 3.2 [36]:

 observation oriented lake geometries intersecting water features present in the PLD,
» PLD-oriented lake geometries, where observed lakes are assigned to pre-identified lakes,

» unassigned features not identified in the river or lake databases.

(a) (b)

o)
D O\ D
NN

_Prior O _Unassigned

Figure 3.2: lllustration of the three LakeSP product results, where (a) shows the observed water features (solid) along with lakes
in the PLD (dashed), (b) shows the observation oriented (LakeSP_Obs) product, each colour represents a different water feature.
(c) shows the PLD-oriented (LakeSP_Prior) product and (d) the unassigned features in the LakeSP_Unassigned product [36].

This project focuses on the PLD-oriented product, which uses the observed water features to assign
them to existing lakes in the PLD and should therefore provide the most consistent lake features over
time. The observation-oriented product uses the PLD to know where water is expected, but does not
assign water features to the lakes already existing in the PLD. Instead, the water features are recorded
in the shape that they are observed in. This product could have been chosen to obtain lake features
most in line with the actual satellite observations.

For each lake, the identified pixels from the PIXC product are used to determine the observed lake
outline, lake area and Water Surface Elevation (WSE) as primary variables of the LakeSP product.
The WSE in the LakeSP product is the mean height-constrained height of all pixels in the lake. The
height-constrained geolocation for each pixel in the lake is calculated to reduce the geolocation noise,
and thus obtain a more precise height and location estimate. By assuming that all pixels of one lake
observation should have roughly the same surface elevation, a target height is computed, which is
used to constrain the geolocation of each pixel. This is either obtained from calculating an uncertainty-
weighted average height or fitting a polynomial model to the pixel heights across the lake, if the water
body is large enough to experience height variation. As described in chapter 2, the known range to
the target pixel and its Doppler create a circle with the satellite in the center, along which the point
can be moved. The target height directs where we have to move along the range circle to obtain the
expected height of the pixel. Because the height and the coordinates are connected, the coordinates
of the height-constrained geolocation will also be different than the previous coordinates of the pixel.

The uncertainty-weighted average surface elevation is calculated as follows:

¥, w, - WSE,
WSEpmeqn = a2 (3.2)
mean Zp Wp

where w,, are the weights of each pixel calculated from the height STD of each pixel w, = 1/0&,59,1,.
W SE, is the height-constrained height of each pixel with reference to the EGM2008 geoid model, which
is calculated as follows:
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WSE, = H — geoid_hght — solid_tide — load_tide_fes — pole_tide (3.3)

Where H is the geocentric height of the water surface with respect to the WGS84 ellipsoid taken from
the PIXC height. The geoid height geoid hght is the height of the provided geoid model in me-
ters above the reference ellipsoid, and the other three terms are corrections for tidal effects. The
three tide corrections are based on models and remove the solid earth tide (solid tide), load tide
(load tide fes)and pole tide (pole tide)components from the observed height. Corrections for
media (atmospheric) delays are already taken into account in the PIXC height. This WSE,, .., is then
applied as the target height to compute the height-constrained geolocation of each pixel in the lake,
which are used to calculate the mean WSE of the lake.

3.4. SWOT Lake Single Pass Vector Product

The LakeSP product consists of lake features in the form of shape files and include information such as
the lake area, water surface elevation and geolocated lake geometries. From the layover error of each
pixel in the PIXC product, the mean layover error was included in the LakeSP product. Each datafile
contains the identified water features of one full swath (both left and right side of one overpass) over one
continent area. Since Greenland was assigned its own continent area, data from four SWOT tracks over
Greenland was downloaded, which extend in 128 km wide strips across Greenland. These four tracks
are part of different orbits during SWOTs 21-day cycle, and are thus obtained on different days. They
were chosen because they collectively cover the study area of southwest Greenland and also contain
many overlapping areas, to achieve the highest possible frequency and number of observations for
this study. All available overpasses from those four tracks were downloaded over the period November
2023 to February 2025. The filesizes are around 50 MB, making this product favorable for investigating
larger areas or longer time periods.

In addition to the measured hydrological parameters, several quality indicator variables are given in the
lake product in the form of quality flags [29]. The quality f variable gives an overall indicator for the
observation quality, it is O if more than 70% of pixels in the observation were good and 1 otherwise.
The ice cover flag ice £ is O if the lake is ice-free, 1 if there is partial or uncertain ice cover and 2
for full ice cover. The ice cover classification is based on an empirical model of ice conditions from
2010-2020, and indicates the expected ice cover conditions for a given lake [36]. The dark water flag
dark frac indicates the percentage of the lake pixels which are classified as "dark water”, either due
to low backscatter or because it is not really detected as water [9]. Last but not least is the quality flag
of the cross-over calibration xovr cal g, where 0 is good, 1 is suspect, and 2 is bad.

3.5. ICESat-2 ATL06 Product

The ATLAS instrument aboard the Ice, Cloud, and land Elevation Satellite 2 (ICESat-2) is a photon-
counting lidar altimeter [33], measuring the time it takes for a laser pulse to travel from the instrument
to the Earth and back. It has three pairs of beam tracks, to the left, center and right of the nadir,
which are separated by approximately 3 km in the across track direction. Each pair has a weak and a
strong beam (left and right) separated by approximately 90 m in the across-track direction [8]. ICESat-2
measurements are available since October 2018.

Because ICESat-2 has a 91-day repeat orbit and individual beam tracks, it will not cover all lakes ob-
served by the SWOT wide-swath altimeter, and observed lakes will have fewer overpasses, roughly one
every three months from one ICESat-2 track. However, lakes which are covered by multiple ICESat-2
tracks are able to obtain more frequent WSE observations. This is an advantage when comparing the
WSE measurements of one lake from SWOT to ICESat-2, because SWOT is able to obtain more ob-
servations in time than ICESat-2. It has to be noted that the ICESat-2 observations can have large time
differences to the SWOT observations they are being compared to. Therefore, ICESat-2 cannot pro-
vide real-time validation for the SWOT WSEs. The location of the ICESat-2 tracks could be identified
via the web portal OpenAltimetry [26].

The ATLAS/ICESat-2 L3B Slope-Corrected Land Ice Height (ATLO6) product of ICESat-2 has a much
better coverage than the inland surface water ATL13 product, and also covers large amounts of land
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and lakes in Greenland [32]. That is why the ATLO6 product was preferred to the ATL13 product in this
project to maximise the amount of available reference observations.

The ATLOG6 product is stored in HDF5 files with one file covering 1/14th of an orbit for one pass. Included
for each of the six ground tracks are the land ice height, residual histogram and quality assessment
of the observation. The land ice height is given as the mean surface height averaged along 40 m
of ground track, which is sampled every 20 m. Through precise orbit determination using GPS, the
latitude, longitude and height is found with reference to the WGS84 ellipsoid. This reference is the
same as for the PIXC product and can easily be derived from the LakeSP product. As part of this study,
ATLO6 data from the period August 2023 — February 2025 for all available overpasses intersecting
each of the three lakes was downloaded. The coordinates of each lake were used to download all
datafiles covering these coordinates. Each datafile contains the measured height, coordinates and
several quality indicators of each sample point along the three beam pairs.

The quality flag at106 quality summary indicates the overall quality of a data point based on four
characteristics, where 0 means no likely problems and 1 means one or more likely problems are en-
countered. The four characteristics are given in Table 3.2, where the threshold defines when the quality
can be accepted as good. PE stands for Photon Events, which are the photons returned to the ICESat-
2 detector. Apart from this, several other quality flags are given, to indicate the impact of blowing snow
or clouds, which can have an impact on the photon-scattering. The Multiple Scattering Warning flag
msw_flag provides a summary on these other quality flags, and will be used for simplicity. Two error

Table 3.2: Overview of the four requirements which all need to be fulfilled for the quality summary to receive a value of 0 [33].

Characteristic Threshold Description
Errors in surface
h 1i sigma <1m height are moderate
or better
o Surface detection
snr significance <0.02 )
- blunders are unlikely
Signal selection
signal selection source <=1 must be based on

ATLO3 photons

The vertical density
of photons in the
final surface window.

>1 PE /m for weak
beams, >4 PE/m
for strong beams

n fit photons/w_surface window final

sources which cannot be corrected for in processing are Atmospheric forward scattering and subsur-
face scattering. If the atmosphere is cloudy, photons may be scattered but still reach the surface and
return to the satellite with delay. This results in a lower estimate of the surface elevation because the
time delay determines the distance to the ground. Similarly, photons may be scattered inside an ice or
snow surface before returning to the satellite, which also leads to a lower estimated surface elevation.

The main features of the three different types of satellite data used in this analysis are summarised in
Table 3.3 for comparison.

Table 3.3: Main features of the three data products included in this study with emphasis on the main differences.

SWOT PIXC SWOT LakeSP ICESat-2 ATL06
observational record since Nov. 2023 since Nov. 2023 since Oct. 2018
repeat orbit 21 days 21 days 91 days

coverage
Instrument
data format

140 km wide swath
KaRIn (radar)
pixel cloud

140 km wide swath
KaRIn (radar)
lake geometries

3 groundtrack pairs
ATLAS (laser)
pixel tracks



Methodology

In this chapter it is described how the SWOT and ICESat-2 data were processed to obtain the WSE for
all IMLs in southwest Greenland from the LakeSP product and to obtain the WSE for the three selected
lakes from the PIXC product and ICESat-2 ATLO6 product.

Initially, the LakeSP data was used to analyse all IMLs in the area of interest to find out how many
IMLs are observed by SWOT and which errors occur in the LakeSP product. Furthermore, three lakes
were selected for which the SWOT-derived WSE was compared to ICESat-2 elevations. Because the
LakeSP product alone cannot answer what is causing the errors in the WSE, the PIXC product was
included in addition to the LakeSP product. The WSE derived from the PIXC data was compared to the
WSE from the LakeSP data and ICESat-2, and a detailed error analysis was performed on the PIXC
data. Finally, all WSE results of the three lakes were compared quantitatively to assess the accuracy
of SWOT in observing water surface elevations of IMLs.

4.1. Derive WSE Time Series from the LakeSP Product

For all IMLs in the area of interest, which are present in the LakeSP product, a time series of the SWOT-
derived WSE was created. The process of extracting WSE estimates from the LakeSP product and
comparing them to ICESat-2 is summarised in Figure 4.1. As a first step of assessing the water surface
elevation in the LakeSP product, all observations of IMLs were extracted from the LakeSP data. The
inventory of ice marginal lakes from How et al. (2021) [24] was utilised to extract the IMLs on a basis
of spatial intersection. Next, the data over the whole time period was combined for each lake in the
LakeSP product.

S Extract SWOT Combine data For each

observed IML's from all timesteps lake:

not enough check if the Change reference remove single remove
U =
ski Iaie & number of > togelli e = computeMAD > outliersbasedon > observations with
2 observations is >7 = wse difference STD>2m

Extract tracks Filter data based Get time & mean Plot time series of

-> inside lake -> ey —— —> WSE of eachtrack —————————— >  ICESat-2 & LakeSP WSE
boundary a yitiad over one lake with quality flags

Figure 4.1: Flowchart of the LakeSP processing to obtain water surface elevations and compare them to ICESat-2 elevations.
The process for ICESat-2 is only performed for the three chosen lakes. The flowchart was created with Figma [17].
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4.1.1. Remove SWOT Observations Affected by Specular Ringing

To compare the ice marginal lakes detected by SWOT to those in Demgaards and Hows datasets, maps
of the lake locations and outlines were created. These maps can also show impacts from specular
ringing or errors in the geolocation on the lake outlines and locations. To avoid errors from specular
ringing in the SWOT dataset, the lake geometries from How et al. (2021) were used to replace the
geometries from the SWOT observations. If a lake observation has an area larger than the largest lake
in southwest Greenland (which has an area of 73 km?), that observation of the lake was removed from
further processing. Furthermore, assessing the variability of lake surface elevation becomes unreliable
if too few observations are present, therefore lakes with fewer than 8 observations were removed from
the data.

4.1.2. Indicate Data Quality with Flags

Ideally, one should also remove observations identified as bad quality, indicated by the quality flags in
the data. In the case of ice marginal lakes in Greenland, doing this would remove up to 89% of the
observations, which is why this part of the processing was omitted. Instead, the quality flags were used
to mark potential problems with the data when plotting the time series of water surface elevation for
each lake. The summary quality flag quality f was used to mark observations where the overall
quality of the observation is not good (these have the value 1). The observations of lakes partially or fully
covered in ice were flagged with the ice f flag and have a value of 1 or 2, respectively. Additionally,
the observation was flagged if more than 85% of pixels in the observation were classified as dark water,
meaning a dark water fraction of more than 85%, and if the observation has a suspect or bad crossover
calibration indicated by the xovr cal ¢ flag.

Since ICESat-2 measures the elevation with reference to the WGS84 ellipsoid, and the ATL06 product
does not contain elevations wrt. the geoid or geoid heights above the ellipsoid, a reference change
had to be performed on the LakeSP elevations, to change their height reference from the EGM2008
geoid to the WGS84 ellipsoid. This was done by adding the geoid height, which is given in the LakeSP
product, to each WSE observation.

4.1.3. Assess Uncertainty Through the MAD

As a robust method of calculating variability against the influence of outliers, the Median Absolute
Deviation (MAD) was calculated for each lake over the whole time period. This method of estimating
variability is more robust against outliers than the Standard Deviation (STD). The MAD was calculated
as follows:

MAD = med(]WSE; — med(WSE)|) 4.1)

Where WSE; is the observed WSE at each time step in the LakeSP data and med(WSE) is the median
WSE of all time steps.

Based on this, time series with the water surface elevation, indicators for quality flags and the MAD
over the entire period were obtained for all observed ice marginal lakes in southwest Greenland.

4.2. Error Analysis Based on LakeSP

As a first step of the error analysis, a histogram of the MADs from all IMLs was plotted. Here, the MAD
represents the WSE uncertainty between observations as an alternative to the STD. Each of the IMLs
in the LakeSP product with a valid time series was represented by one MAD of the WSE over time.
Because only very few observations possessed an MAD larger than 20 m, the MAD-axis was cropped
to 20 m to clarify the distribution of smaller MAD values.

Furthermore, the Pearson Correlation coefficient r was computed for eight parameters of the LakeSP
data in relation to the MAD: the total lake area, detected lake area, distance from nadir, layover error,
number of observations, ice cover flag, dark water fraction and crossover calibration flag. For each of
these parameters, the average value of all observations of each lake was taken, therefore it is possible
for quality flags to produce non-integer values. Correlations between the MAD and the eight parameters
were analysed based on all IMLs. The total and detected lake areas can indicate whether the MAD is
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correlated to the (observed) size of the lake. The total lake area includes the detected water area as well
as the area which is classified as water based on prior water probability data. Calculating the correlation
between the MAD and the distance from each lake to nadir could provide a clue on errors coming from
the look angle, backscattering or similar properties related to the viewing geometry, while the layover
error can tell us more about the effect of the terrain on the MAD. Apart from the three quality flags for
ice cover, dark water classification and cross-over calibration, the correlation between the MAD and
the number of observations of each lake was calculated as well. This can give an indication whether a
higher number of observations can reduce the WSE uncertainty or not. It would be expected that lakes
with less observations have a higher MAD because single outliers will have a large influence, while
lakes with more observations should possess more observations close to the median, showing more
stable time series.

4.3. Comparison to ICESat-2 WSE

Out of all detected IMLs, only the three chosen lakes were compared to ICESat-2 observations for
reference. By selecting only the points within the lake geometry of the corresponding ice marginal lake
from Hows dataset, the amount of ICESat-2 points was reduced significantly. In Figure 4.2 the lake
outlines are shown together with the ATLO6 heights from the available ICESat-2 tracks for each lake.
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Figure 4.2: Maps of the lake Isortuarsuup Tasia (top), medium-sized lake (bottom left) and small lake (bottom right) with overlying
points from all ICESat-2 tracks covering the lakes. The colour of the points indicates the ICESat-2 measured elevation. Note
that the maps are not on the same scale.

The large lake Isortuarsuup Tasia (top) is covered by three ICESat-2 tracks (including 7 beam pairs in
total), and thus has more observations in time to compare to the SWOT-derived elevations, while the
medium (bottom left) and small lake (bottom right) are only covered by one beam pair each.

Additionally, the quality flag at106 quality summary was used to remove data points with one or
more likely problems. By plotting the "multiple scattering warning” flag it was found that the data over
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the lakes were not affected by any blowing snow or cloud cover, therefore no further quality flag data
editing needed to be applied in this instance.

For each ICESat-2 pass, the date and median elevation of the pixels covering the lake were extracted
and plotted in a time series together with the LakeSP WSEs referenced to the ellipsoid height. Further
data editing was applied to the LakeSP data based on Dgmgaard et al. (2024) and Maubant et al.
(2025) [14][25] to remove outliers in the time series. Therefore, all observations with a STD in height
>2 m and a layover error >1 m were removed. The STD present in the LakeSP product declares the
uncertainty in height between pixels of that particular observation. For the medium-sized lake a stricter
threshold of STD >1 m was applied, because outliers with a low STD were present. The ice-free
period is indicated with a green or blue background in the time series. It was determined by inspecting
Sentinel-2 optical images for each of the three lakes in this analysis. Since the optical images are not
available on a daily resolution, and the lakes can experience several days of partly ice cover, the exact
day on which the lake becomes completely ice free had to be estimated.

4.4. Derive WSE Time Series from the PIXC Product

The WSE for the PIXC product was derived for the three chosen lakes in accordance with the docu-
mentation of the LakeSP processing, therefore the WSE time series of the PIXC product was obtained
similarly to the WSE time series of the LakeSP product. A summary of the processing is shown in
Figure 4.3. To increase the processing efficiency, the first step was to exclude all SWOT pixels outside
the lake of interest.

Extract

Combine data For each
ti f
= observationsfor = from all timesteps observation:
one lake
apply tide filter out bad pixels . calculate mean, remove outliers
. . a Extract pixels 3 N
correctionsto  —> with class, sigma0& —> N - median, STDand - withSTD>20m
ellipsoid height quality flags MAD or MAD >10 m
Extract tracks Filter data based Get time & mean Plot time series of
-> inside lake -> e ——— —> WSE of each track ——— ————— > ICESat-2 & PIXC WSE
boundary q v tlag over one lake (mean and median)

Figure 4.3: Flowchart showing how the PIXC product is processed to obtain the mean and median WSE and compared to
ICESat-2 elevations. This whole process was only performed for the three chosen lakes. The flowchart was created with Figma
[17].

By utilising the classification variable in the PIXC dataset, pixels which are classified as "land”,
"dark water” or "water with low coherence” were removed from the data. Ideally, the geolocation quality
flag should be used to remove bad and suspect pixels with a value of 4 or more, but that leaves too
few pixels (in many cases none) for performing a robust analysis. Instead, the threshold for removing
pixels was set at a value of 8 or more, which means that pixels with a "suspect phase unwrapping”
are still present in the data. Following Maubant et al. (2025) [25], pixels with a bad interferogram or g
quality and pixels where g, is lower than -36 dB were removed. Following the same approach as for the
LakeSP product, the lake outlines from Hows IML inventory were applied to the PIXC data to remove
all pixels outside of the lake area. From the remaining valid pixels, the heights were then corrected for
the solid earth tide, load tide and pole tide components, to recreate the processing steps of the LakeSP
product, but without changing the height reference from the ellipsoid to the geoid. From here, the mean
and median water surface elevations could then be calculated along with the standard deviation and
mean absolute deviation over all lake pixels for each observation.

For each observation in time a map with all good-quality pixels was created to show which parts of the
lake were covered by the pass and which locations experience large deviations or gaps due to bad
pixels. This helped provide a better understanding of potential problems influencing the water surface
elevation measurements and determine the cause of outliers.

Furthermore, a time series with the mean and median WSE derived from the PIXC product was created
including the ICESat-2 derived elevation as WSE reference. Additional data editing based on the
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standard deviation and MAD was applied, to remove outliers in the WSE time series. Observations
which have a standard deviation of >20 m or an MAD of >10 m were removed, because they both
indicate that the WSE estimate will be unreliable. Single outliers were combatted by removing pixels
that deviate from the previous and following observation by more than 10 m. These thresholds were
set through trial and error and should be considered as a trade-off between the amount of data that is
left and the accuracy of the results. The layover error was not used as a criterion here, because it could
already be taken into account when removing individual pixels. Comparison of the PIXC and LakeSP
time series provided insight on the advantages and limitations of both SWOT data products.

4.5. Error Analysis Based on PIXC

Out of the WSE time series from the LakeSP product, the points which deviate the most are selected
as WSE outliers and analysed in more detail with the PIXC product. For this purpose, relevant data
variables were chosen from the PIXC data as well as available information from quality flags to perform
an error analysis on a pixel-by-pixel basis.

4.5.1. Using the NRCS and Coherence

By visualising the unfiltered pixel cloud over the whole lakes for those outliers, it was possible to spatially
locate patterns that indicate causes of WSE errors in the observations. Several relevant attributes in
the PIXC product such as the coherent power, the g, and height sensitivities were plotted alongside
the water surface elevation to analyse the reasons for errors in the WSE of individual pixels.

The coherent power is an expression of the coherence, which together with the g, are the two funda-
mental observation characteristics. To find out if water has been detected, the prior water probability
(as decimal values from 0 to 1, indicating 0 to 100%) and surface classification, with values described
in Table 3.1 were plotted as well. In addition to the layover error and quality flags, parameters which
indicate the sensitivity of the height measurements were also included.

4.5.2. Using k-means Clustering

Based on these maps, a visual analysis was conducted comparing single characteristics to the WSE,
but not all errors could be identified from looking at individual parameters. That is why the k-means
clustering algorithm was employed as a method to detect error causes which are intertwined in multiple
parameters and to get an idea which parameters have the largest influence on the WSE.

The principle of k-means clustering is to group a dataset of any number of dimensions into k number of
clusters and determine the centroid of each cluster based on the cluster mean value in all dimensions
(the whole method is described in section A.1 of the Appendix). There are several methods to determine
the optimal number of clusters to use for a given application, but in this application five clusters were
chosen for simplicity. The result of the method were five cluster centroids, which group all pixels of
one lake observation. Since the centroids were computed for all relevant parameters simultaneously,
including the WSE, it was explored how the combination of multiple parameters can influence the WSE.
Here the WSE obtained from ICESat-2 was useful to know which centroid lies closest to the true WSE
and which centroid has the highest errors.

To take a closer look at the two fundamental observation characteristics, scatter plots between the
coherent power, g, and the height were created for the outliers of each lake and compared to the
results from the k-means clustering. As part of this, the PIXC outliers were edited to only include open
water pixels and compared with the PIXC data where all different water classifications were included.
Furthermore, the phase unwrapping and water classification were analysed for example observations,
such that errors connected to these aspects can be better understood and avoided.

4.5.3. Naive Approach to Solve Phase Unwrapping Errors

Since phase unwrapping errors are a known problem for lakes and rivers in the SWOT data, NASA
has suggested an approximate solution on how to remove a phase unwrapping error without having to
repeat the whole phase unwrapping [38]. Instead of adding or subtracting phase ambiguities of 27 to
the absolute phase, the geolocation sensitivities with respect to the phase, were added to the latitude,
longitude and height, respectively. In this way the location of each pixel was moved with an integer
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number of phase ambiguities, towards or away from the satellite, therefore a change in height also
results in a change in latitude and longitude. To test how many ambiguities need to be added, different
integer values between +5 were tested.

4.6. Quality Assessment of the WSE

Finally, all results of the SWOT-derived water surface elevations were compared quantitatively by data
product, lake, and different measures of accuracy.

In this study only ICESat-2 measurements were available as reference for the WSE, which did not
provide enough observations at a similar time as SWOT observations to be able to perform a real
validation of the SWOT data. Thus, the quality of the two SWOT data products for the three chosen
IMLs was assessed with three different quantitative measures of accuracy:

1. WSE variability between pixels
First, the height variability of the observed pixel heights was calculated based on the filtered PIXC
data. The STD over all pixels of one lake observation was calculated for each observation and
then the mean STD was calculated over all observations.

2. WSE variability between observations
Second, from the LakeSP and PIXC products the WSE STD of all observations in time was ob-
tained including all points in the time series of Figure 5.5, 5.8 and 5.11. This variability shows how
large the spread of the WSE estimates from different observations is and can give an indication
of the internal WSE precision of each SWOT product.

3. WSE difference between SWOT and ICESat-2
As the third measure, the accuracy of the SWOT data was estimated by calculating the difference
in WSE between each point and the closest available ICESat-2 measurement in time. This is the
closest resemblance to a measure of the SWOT accuracy and the best way to take the temporal
variation into account in the absence of gauge measurements.

4.7. Utilising the DelftBlue High Performance Computing system
For efficient processing of the large SWOT data volumes, especially over longer time scales, the Delft-
Blue High Performance Computing (HPC) system was utilised. By uploading the chosen SWOT data
and a Python- and batch script with the processing code, DelftBlue could produce the results in min-
utes, which would otherwise have taken hours on a normal laptop. This is because HPC systems
are not only powerful computers with many Core Processing Units (CPUs), but they are also ideal for
processing tasks in parallel. As part of this project, parallel processing was implemented to process
several SWOT data files in parallel, reducing the runtime significantly and leading to a more scalable
processing method. In this project, 3 parallel tasks were run with 8 CPUs each, therefore a time limit
of 20 min was enough in most cases. The parallel processing approach is very useful for upscaling the
processing of large amounts of satellite data such as analysing many lakes simultaneously.



Results

First, the observations based on the analysis of SWOT data across the whole southwest basin of
Greenland are presented in this chapter followed by the main results for each of the three chosen
lakes. Finally, the outcome of the error investigation is presented together with the analysis of outliers.

5.1. General Observations from the LakeSP Product

In total 515 000 lake features were obtained from the LakeSP product over the period November 2023
to February 2025, distributed over 23 000 recognised lakes. In Figure 5.1 (left) a map of all 535 IMLs
which could be extracted from the LakeSP product with the help of How’s IML inventory are shown.
The yellow circles indicate the location of the three lakes of interest. The other map (right) shows
one dot for each IML with more than 7 observations, with the size of the dot indicating the lake area
observed by SWOT, and the colour indicating the number of SWOT overpasses in which each lake is
recognised via their lake id. These maps show that a large amount of IMLs in all sizes are present
along the whole southwestern border of the Greenland ice sheet, and that most larger lakes seem to
have a high number of observations.
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Figure 5.1: Map of all ice marginal lakes observed by SWOT in southwest Greenland (left). In the center of the yellow circles
are the locations of the three chosen lakes. The map on the right shows how many observations are available for each lake and
they are categorised by lake area. The minimaps show the location of the analysed region as one of seven drainage basins from
Brils et al. [5].

From Figure 5.2 (a) it can be seen that many of the lake geometries observed by SWOT (green and
red) are affected by specular ringing, indicated by unrealistic lake outlines and stripes going out from
the lakes. The IMLs detected via Demgaards dataset (red in Figure 5.2 (a)) show many lake outlines
which are affected by specular ringing, while IMLs detected with Hows dataset (green in (b)) show a
lot of smaller lake areas than the observed lake areas in (a). It can also be compared from Figure 5.2
(b) how well the two datasets of IMLs align, and it seems that How captures more small lakes than
Demgaard, which is an advantage.
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Figure 5.2: Zoomed-in map of a) all lakes recorded in the LakeSP product (green), IMLs in Demgaards dataset (blue dots) and
lakes which were observed by SWOT and intersect with IMLs from Dgmgaards dataset (red) b) observed IMLs by SWOT which
intersect IMLs from Hows dataset (green) and IMLs in Demgaards dataset. (blue dots). Comparing the red lakes in a) and the
green lakes in b) shows the discrepancies between the SWOT-observed IMLs obtained with Demgaards and Hows datasets.

5.2. Time Series of WSE from SWOT and ICESat-2

For the three chosen lakes, the water surface elevations found from both SWOT products are presented
in time series with ICESat-2 as reference both before and after outlier removal.

5.2.1. Lake Isortuarsuup Tasia

Results from LakeSP and ICESat-2

Based on the quality flagging criteria described in subsection 4.1.2, the WSE time series of all LakeSP
observations for lake Isortuarsuup Tasia is shown in Figure 5.3 including quality flag indicators of af-
fected values. The black line and points around 492 m show the water surface elevation obtained from
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Figure 5.3: Time series of the water surface elevation with respect to the WGS84 ellipsoid at lake Isortuarsuup Tasia as recorded
in the SWOT LakeSP product (green and purple points) and by ICESat-2 (black points) for reference.

ICESat-2 as reference for the "true” water level in the absence of in-situ measurements. Most of the
points are purple, showing that the overall quality of these observations is deemed suspect or bad,
while only a few of the points are green, meaning they have a good overall quality. In the ice free
period, several points are green and have no quality flag markings, while the ice covered period con-
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tains almost exclusively purple points, indicating a lower data quality. There is also a clear difference
in the WSE variability, because the majority of points in the ice-free period intersects the black line
from ICESat-2, which is not the case during the ice-covered period. Even though the time series only
spans one year, there are 36 observations of this lake, meaning an average of 3 valid observations
per month. However, the observations are not uniformly distributed, since a large data gap is present
from March to June 2024. Upon further investigation, it was discovered that the reason for this is, that
the lake recognition algorithm which assigns the lake ids failed, so that no lake ids were assigned to
any lakes in the pixel cloud. Since the LakeSP product depends on lake id’s to know which feature is
observed, these observations could not be included in the product. However, they are present in the
PIXC product.

As can be seen from the y-axis scale, some observations deviate from the ICESat-2 water level by
more than 10 m, resulting in a large MAD of 19.5 m. This voices the need for further data editing,
described in section 4.3.

Results from PIXC and ICESat-2

The time series of water surface elevations derived from the PIXC product over lake Isortuarsuup
Tasia can be seen on figure Figure 5.4 with both the median (green) and mean (orange) WSE of each
observation. Additionally, the median and mean WSE is also shown including bad pixels in a more
opaque colour.

—e— ICESat-2
540 4 PIXC unfiltered mean
= PIXC unfiltered median
E » PIXC filtered mean
-g 520 L ¢ P ® PIXC filtered median
g ]
@ ® 2
] L ]
@ 500
(%)
o ] ( ] 280 S
= | Ll o & e o &= L i 55—
2
w 480 4
[
)
= .
460 4
° L4 ° Ice-free Period °
T T T T T T
2024-01 2024-03 2024-05 2024-07 2024-09 2024-11
Time

Figure 5.4: Time series of the water surface elevation at lake Isortuarsuup Tasia derived from the SWOT PIXC product median
(green) and mean (orange) with ICESat-2 (black) for reference. Here it is shown how the values change when quality flag filtering
is applied.

From this result it was observed that the SWOT-derived mean WSE is often overestimated and that the
WSE variability of the edited data is smaller. Even though the edited data still have several outliers in the
order of meters, in most cases the mean and median WSE of the edited data lie closer to the ICESat-2
observations. Particularly, the median values are in close proximity to the ICESat-2 observations, while
the mean tends to overestimate the WSE.

Comparison of the Two SWOT Products

In Figure 5.5 both the LakeSP- and PIXC-derived WSE were plotted for comparison, after removing
outliers based on the criteria described in chapter 4, but only the median WSE was included for the
PIXC product.

Both SWOT data products seem to have captured a yearly cycle in water level, which is also present in
the ICESat-2 data. The observed cyclical variation in WSE can likely be attributed to meltwater runoff
from the margin glacier and surrounding mountains, increasing the lake storage in spring and summer,
when the snow and glacier experienced melting, followed by a slow decrease in water level in autumn
and winter when the lake returned to its equilibrium water level. While both datasets experienced gaps
in the ice-covered period, the PIXC product managed to produce more observations with valid data than
the LakeSP product, because it could capture lake pixels even when the lake itself was not recognised
through the lake id.

In the ice-free period, where the SWOT-derived WSE is most consistent in time, there seems to be a
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Figure 5.5: Time series of the water surface elevation at lake Isortuarsuup Tasia after removing WSE outliers from the SWOT
LakeSP (orange) and PIXC product (purple) based on the STD and MAD of each point. ICESat-2 observed elevations (black)
are given as reference.

peak in water level, which is higher than what is observed by ICESat-2. However, this peak cannot
be disregarded as an error in water level, because the ICESat-2 observations are too sparse to know
whether the true water level indeed increased to this amount. This difference in temporal coverage, and
the fact that ICESat-2 itself is a satellite altimeter with a certain accuracy, means that we cannot compute
an error estimate between SWOT and the true water level at the time of observation. Overall, the
SWOT-derived WSE on lake Isortuarsuup Tasia after data editing was able to capture annual variability
in greater detail than ICESat-2.

5.2.2. Small Lake

Results from LakeSP and ICESat-2

The WSE time series of the small lake obtained from the LakeSP product is shown in Figure 5.6 includ-
ing quality flagging and ICESat-2 as a reference WSE. A notable difference with respect to the lake
Isortuarsuup Tasia is that the small lake has much fewer observations (both from SWOT and ICESat-2)
than the lake Isortuarsuup Tasia and therefore also has fewer outliers and a much smaller MAD of 0.37
m. Almost no observations outside of the short ice-free period were available, but the observations in
the ice-free period seem to be in good agreement with the reference elevation from ICESat-2.
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Figure 5.6: WSE time series of the SWOT LakeSP observations (green and purple), and ICESat-2 observations (black) of the
small lake.

Results from PIXC and ICESat-2

For the small lake, the number of observations from the PIXC product (Figure 5.7) is significantly higher
in the ice-covered period, and many of the observations provide a good WSE estimate when compared
to ICESat-2 observations. These water surface elevations were obtained from PIXC after removing
bad-quality pixels, similar as done for the lake Isortuarsuup Tasia. In this case it can be seen, that the
median WSE does not provide better estimates than the mean.
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Figure 5.7: Time series of the small lake with the PIXC-derived median (green) and mean (orange) WSE after removing "bad
pixels” based on quality flags, including ICESat-2 elevations (black) for reference.

Comparison of the Two SWOT Products

The WSEs obtained from the two SWOT data products are shown together with their uncertainties in
Figure 5.8 after filtering out outliers based on the STD and MAD as before. The problem of ice cover
becomes apparent, since observations in the ice-covered period have a much larger uncertainty (STD
or MAD) than the observations in the ice-free period. However, all of these observations are within 1
m of the ICESat-2 mean WSE.
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Figure 5.8: WSE time series of the small lake after removing WSE outliers from the SWOT LakeSP (orange) and PIXC product
(purple). The STD of the LakeSP points and MAD of PIXC points are shown as error bars. ICESat-2 observed elevations (black)
are shown as reference.

5.2.3. Medium-sized Lake

Results from LakeSP and ICESat-2

As can be seen in Figure 5.9 the water surface elevation is around 673 m above the reference ellipsoid
according to ICESat-2. The points in green and purple in Figure 5.9 show the derived WSE mean from
the LakeSP product together with an indication of quality for the four main quality flags in the product.
It should be noted that the scale on the y-axis spans a broad height range due to outliers. Thus, the
MAD over these SWOT observations is 3.09 m.

Results from PIXC and ICESat-2

The WSE derived from the PIXC product in Figure 5.10 shows, that the median lies closer to the
reference WSE than the mean in most cases, such as for the lake Isortuarsuup Tasia. Although these
WSE estimates were calculated from the good-quality pixels in the lake observations, they still have a
large variability.

Comparison of the Two SWOT Products
The results from the LakeSP and PIXC product after removing outliers of the WSE are shown in Fig-
ure 5.11 in orange and purple, respectively, together with the ICESat-2 estimated height in black for
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Figure 5.9: WSE from the LakeSP product of the medium-sized lake for good quality (green) and bad quality observations
(purple) compared to ICESat-2 (black). The other markers indicate whether specific quality flag issues are encountered.
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Figure 5.10: WSE from the PIXC product of the medium-sized lake based on the mean WSE (orange) and median WSE (green)
for each observation compared to ICESat-2 (black).

reference. Since one outlier is still present after filtering, the scale is coarser than for the other two

680

—&— ICESat-2

6791 @ PIXC median
LakeSP

® PIXC MAD

677 4 LakeSP STD

Ice-free Period
678

676

6754

674 4 .
@ Ld

- T : | ®  ® —e—e 4 .

672

Water surface elevation [m]

671

T T T T T T T T
2023-09 2023-11 2024-01 2024-03 2024-05 2024-07 2024-09 2024-11
Time

Figure 5.11: Time series of the WSE at the medium-sized lake after removing WSE outliers from the SWOT LakeSP (orange)
and PIXC product (purple) based on the STD and MAD for each point. ICESat-2 observed elevation (black) is given as reference.

lakes, but the majority of points are within 1 m from ICESat-2 similarly to the results at the other two
lakes. The remaining observations from both SWOT data products are spread out more evenly over the
observation period than for the other two lakes, showing that more LakeSP observations were available
in the ice-covered period. The ICESat-2 measurements also show a variation in time, indicating that
the water level might have a yearly cycle as well, but due to only four observations from one ICESat-2
track being available, it is difficult to tell how much of the variation is truly from the water level and how
much stems from measurement uncertainty in ICESat-2.
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Collectively, these time series of the three IMLs showed that the median WSE is the preferred choice
for retrieving the most accurate WSE from the PIXC data to reduce the influence from pixel outliers
which are common for IMLs. Since the ice-free period is small for IMLs in Greenland, the observations
obtained by the PIXC product are valuable for providing information during the ice-covered period
because the LakeSP product often provides very few WSE estimates in that period. However, both
products experience high uncertainties during the ice-covered period, meaning these observations are
not very reliable. The small lake showed that reasonable WSE estimates can be derived from SWOT
for IMLs with an area as small as 0.2 km?.

5.3. Results from LakeSP Error Analysis

The error analysis based on the LakeSP dataset of all observed IMLs in southwest Greenland, is shown
here to understand where the uncertainty in the LakeSP product comes from and if any patterns are
present when observing IMLs with SWOT.

From the histogram of MADs for each observed IML in Figure 5.12 it can be seen that many lakes have
a small MAD <1 m, but a MAD of <5 m is not uncommon either. This suggests that many ice marginal
lakes in Greenland have significantly larger WSE variations between LakeSP observations than would
be expected, except if a GLOF event occurred. The x-axis was cut off at 20 m to show the distribution
in better detail, because only very few lakes possessed a MAD above 20 m. Such a high uncertainty
can be the result of several factors, which is why the correlations between several chosen parameters
and the MAD are shown in Figure 5.13 together with the Pearson correlation coefficient r. Each dot

25
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Figure 5.12: Histogram of the MADs calculated for each SWOT observed IML in the LakeSP product. Each lake produces one
MAD calculated across all observations of that lake in time, therefore the MAD shows the WSE uncertainty of each lake as
observed by SWOT.

corresponds to one IML, for which the average value of each parameter over the whole observation
period is shown. There seems to be no indication that the size or location of the lake with respect to the
satellite has any correlation with the MAD, and neither do any of the quality flags. It should be noted that
the average layover errors of the lakes have an order of magnitude of 1072 —10° m, meaning that many
IMLs in the LakeSP product have errors up to several decimeters in the water surface elevation. The
parameter with the highest Pearson correlation coefficient is the number of observations (r = 0.46),
indicating that more observations of a lake result in a higher MAD. However, this r value is still quite
low and therefore should not be given too much significance. In Appendix A, Figure A.4 one of the
time series with a very large MAD and many observations is shown, where the large WSE differences
and multiple WSE estimates from the same date indicate that multiple lakes have been observed and
classified into one lake-id.

To conclude, it was not possible to find the error causes in the LakeSP product by only analysing the
LakeSP product itself through the MAD. In order to understand the causes of the high MADs, the PIXC
product was utilised for a more detailed error analysis.
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Figure 5.13: Pearson correlation coefficient r and scatter plots between LakeSP MAD and different parameters from the LakeSP
product. Each dot represents one IML.

5.4. Results from PIXC Error Analysis

For several outliers present in the WSE time series of each lake, the analysis of the PIXC data is shown
here. An overview of all analysed parameters can be seen in Appendix A, Figure A.5, Figure A.6 and
Figure A.7. On Figure 5.14 a SWOT observation from the 17.09.2024 of lake Isortuarsuup Tasia can
be seen. At locations where the coherence and g, are high (upper right of the lake), the height is closer
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Figure 5.14: Pixel cloud data of Isortuarsuup Tasia from an observation on the 17.09.2024 showing the WSE, o,,, coherent power
and classification of each pixel.

to the ICESat-2 measured WSE around 492 m, but at locations where they are low, the heights deviate
more and a higher variability between pixels is observed. This indicates that the o, and the coherence
have a strong influence on the estimated height, which is true for most of the observations. These
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two parameters in turn influence the classification, where it is observed that pixels with high ¢, and
high coherence are classified as 'open water’, while pixels with low coherence and g, are more often
classified as 'dark water’ or 'low coherence water’.

5.4.1. Using the NRCS and Coherence

An example of how important the NRCS (g,) and coherence are, is lake Hullet. It is present in the
LakeSP product as well as the PIXC product with its own lake id, but the observed water levels are
consistently more than 100 m higher than the ICESat-2 reference and other sources such as the Danish
Agency for Data Supply and Information [11]. As can be seen in Figure 5.15, the area where lake Hullet
(outlined in black) should be, is only observed with a low g, (left) and a low coherence (right), while
other water bodies are bright due to a high g, and high coherence. This means that the lake could not
really be detected and is only classified as 'dark water’ because the Prior Lake Database determined
that the lake should be present at that location.
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Figure 5.15: NRCS (a,) (left) and interferometric coherence (right) show that lake Hullet (outlined in black) is not detected by
SWOT because it has a low backscatter and low coherence. The pixels are shown in the radar coordinates with range distance
(m) on the x-axis and azimuth distance (m) on the y-axis. The plots only contain pixels classified as water.

By plotting the g, and coherence against the height for the above mentioned outlier of the lake Isortuar-
suup Tasia (see Figure 5.16), it was confirmed that both parameters show a spike of high coherence/ag,,
around 492 m, where the real WSE should be according to ICESat-2. However, the spike is not always
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Figure 5.16: The NRCS (a,) (left) and coherent power (right) for the PIXC product of lake Isortuarsuup Tasia on the 17.09.2024
show a peak around 492 m height, which is in agreement with the expected WSE according to ICESat-2.

as clear as the coherence shows in this figure, and it is also important to know what the connection
between these two parameters is.

In Figure 5.17, where the g, is plotted against the coherence, the relationship becomes clearer. When
both parameters are plotted on a logarithmic scale, a linear relationship is observed, meaning that for
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increasing gy, the coherent power also increases, except at the lower left end. The pixels with the
highest g, and coherence are mostly blue, so their height lies close to the true WSE of 492 m, while
pixels with low values of both parameters give height estimates that show much larger discrepancies.
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Figure 5.17: Pixel cloud data of lake Isortuarsuup Tasia from the outlier on the 17.09.2024 showing the linear relationship between
the g, and coherent power, with the WSE of each pixel indicated in colour. The ICESat-2 measured height is around 492 m.

5.4.2. Using k-means Clustering

After applying k-means clustering to an observation of the medium-sized lake, including the height,
height to phase sensitivity, coherence, layover error and g, among others, the five centroids shown in
Table 5.1 were obtained.

Table 5.1: k-means clustering result of a medium-sized lake observation from the 09.07.2024 calculated with 5 cluster centroids
and 5 of the PIXC parameters.

Height (m) dHeight/dPhase (m/rad) Coherence (-) Layover error (m) g, (dB)
675.98 7.03 7.57e+05 0.082 -1.77
673.48 7.19 2.33e+07 0.33 16.57
674.20 7.18 9.90e+06 0.15 12.91
673.56 7.17 2.17e+08 0.36 26.36
673.37 7.19 4.66e+07 0.41 19.25

The centroid with the lowest coherence and lowest g, also has the worst height estimate, while the
opposite is the case for the centroid marked in bold. Similar to the visual analysis, the strongest con-
nection was observed between the values of height (WSE), coherence and g, followed by a weaker
connection to the height to phase sensitivity and layover error, while the values of other parameters
showed no clear patterns related to the height values of each centroid. Unfortunately, from the cen-
troid results of other outliers it was concluded that the k-means clustering method does not always find
centroids with good WSE estimates. Several of the outliers encountered additional problems, which
could not be resolved by k-means clustering alone.

Two of these problematic outliers are shown in Figure 5.18 of the medium-sized lake on the 13.02.2024
(left) and the small lake on the 21.02.2024 (right). On these scatter plots the true water level is not
distinguishable from the pixel cloud.

This medium-sized lake outlier does not show the expected WSE for pixels with high o, and coherence,
or through k-means clustering, which should be around 673 m. Also in this case, most of the pixels
were classified as dark water. Only by using exclusively bright and open water pixels a realistic WSE
estimate of 674.6 m could be achieved from the median, which is still approximately 1 m too high. If
the scatter-plot is recreated with only open water pixels (see Figure 5.19), it can be seen that they all
have a high g, and high coherence as they should. Even so, there are many open water pixels with
large deviating height estimates.
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Figure 5.18: Scatter plots of the g, against the coherence including the height in colour of two outliers from the medium and
small lake, respectively.
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Figure 5.19: Observation of the medium-sized lake from the 13.02.2024 only including open water pixels. All pixels have high
coherence and o, but have a large water level variability.

When looking at the small lake outlier in Figure 5.18, determining the error causes becomes more
complicated. In Figure 5.20 the water surface elevation is shown next to the g,, coherence and clas-
sification. Here it can be seen that the areas with high g, and coherence have a much lower water
level than ICESat-2, which measured a WSE around 931 m. Also, these areas were classified as low
coherence water and it seems like an error occurred in geolocating the pixels, because the right side
of the lake is not covered.

k-means clustering showed that the centroid with the highest coherence and ¢,,, which should include
the best quality of observations, resulted in a WSE estimate of 913 m, a lot lower than the expected
WSE of 931 m. Still, the obtained median WSE for all pixels of 931.88 m lies close to the ICESat-2
reference. Through analysis of the individual classes (see Table 5.2), it was observed that open water
pixels (class 4) alone resulted in an underestimation of the height estimate. Even though the other
classes have very wrong height estimates, they manage to counterbalance the underestimation of the
surface height from class 4, which can be noticed in the high MAD and STD of this observation.

To illustrate how much data is available if only open water pixels would be used to calculate the WSE,
all open water pixels from an observation of the large, medium and small lake are shown in Figure 5.21.
As could be expected, the small and medium-sized lakes were affected significantly more, since some
observations of the small lake already contained less than 10 points including dark water pixels, or
only consisted of dark water pixels such as lake Hullet. Larger lakes such as lake Isortuarsuup Tasia
were less affected by a loss of observations, because they are observed more often and contain more
pixels per observation. However, this observation of the lake Isortuarsuup Tasia also shows that pixels
can be wrongly classified as open water and posses large WSE variations, because Sentinel-2 images
showed that the lake was fully ice covered at the time of observation. This is another reason for the
data gap in the time series of the lake Isortuarsuup Tasia, where this observation was not included.
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Figure 5.20: Small lake Outlier from the 21.02.2024 showing the WSE, a,, coherence and classification.

Table 5.2: WSE of the small lake derived from the PIXC data from the 21.02.2024. Here the mean and median were calculated
for the pixels of each surface class (4=open water, 5=dark water, etc.) separately.

mean 994.04 930.01 941.07 934.71 922.98 932.18
median 1033.40 930.80 939.51 936.84 924.52 931.88
std 59.89 4.53 14.37 5.35 10.85 15.24
MAD 56.60 1.69 3.44 1.56 7.12 6.30

5.4.3. Phase Unwrapping Errors

Some of the outliers have also shown signs of phase unwrapping errors, such as the observation of
the medium-sized lake from the 02.13.2024 shown on Figure 5.22. Here, a large slope is present in
the WSE going perpendicular to the satellite track because it is known that the satellite was located
South-East of the lake and looking North-West towards the lake in this observation. From the right map
it can be seen that the further away from the satellite a point is, the more sensitive the height calculation
becomes to the phase. Therefore, if an error occurred in the phase unwrapping, the height of the lake
closer to the satellite was affected differently than the height on the distant side of the lake.

By plotting a cross section of the lake in the range direction away from the satellite (Figure 5.23), it was
seen that the height to phase sensitivity is linearly related to the height residual, which was calculated
by subtracting the mean ICESat-2 height (673 m) from the PIXC height. This confirmed that a slope in
height is an indicator of a phase unwrapping error. When the same parameters were plotted with all
lake pixels, the same linear relationship was present but less clear than in the cross-section.
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Figure 5.21: Map of only open water pixels for the lake Isortuarsuup Tasia (top), medium-sized lake (bottom left) and small lake

(bottom right) from outliers.

Water Surface Elevatio

n (m)

65.495 -

65.490 -

65.485

Latitude

65.480

65.475

65.470

tC}OpFnStreerMIap contnblumrE ; :
—50.19 —50.18 -50.17 —50.16 -50
Longitude

T T
.15 -50.14 -50.13

690

Height/Phase sensitivity (m/rad)

65.495

65.490

65.485 1

Latitude

65.480 1

65.475 1

65.470 1

£<

-

=7.75

—7.80

—7.85

—7.90

—7.95

—8.00

—8.05

-8.10

—8.15

(C) OpenStreetMap contributors
T T T T T

T T
—50.19 -50.18 —50.17 -50.16 -50.15 -50.14 -50.13

Longitude

Figure 5.22: WSE of the medium-sized lake outlier from the 02.13.2024 shows a slope in surface height (left) connected to the
Height to Phase sensitivity (right) and distance to the satellite.



5.5. Results of Quality Assessment of WSE 35

—7.85 -
,/_ 740
65.495 i
4 —7.90
—7.951 & 720
—5.00 § 710
\ _8.05 1 700

~
S
65.475 KJ { 2 5101 )
— &U es i 680

©65.470 1

65.490

65.485 4

Latitude

65.480

Water Surface Elevation {(m)

[=2]
o
o

Height/Phase sensitivity (m/rad)

[ ]

T T T T T T T T T T
-50.19 -50.18 -50.17 -50.16 -50.15 -50.14 -50.13 0 10 20 30 40 50 60 70
Longitude Height residual (m)

Figure 5.23: Cross-section through the medium-sized lake perpendicular to the satellite track shows slope in water surface
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Naive Approach to Solve Phase Unwrapping Errors

In Figure 5.24 the result of the naive approach to solve phase unwrapping errors is shown for +1 phase
ambiguity. While the height to phase sensitivity over the lake is purely negative, the observed WSE is
both higher and lower than the "true” water level (ICESat-2 mean).
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Figure 5.24: Attempt to solve phase unwrapping error by adding one height to phase sensitivity to each pixel. This still results in
a large surface elevation slope over the lake, but all elevations are now lower than before.

5.4.4. Dark Water Errors

When looking at a partially ice-covered observation of the medium-sized lake on the 09.07.2024 in
Figure 5.25, the ice-covered part is fully classified as dark water, experiences a lot of WSE variability
between pixels and produces overall worse WSE estimates. Meanwhile, the area with open water

experiences more consistent height measurements that lie closer to the ICESat-2 reference around
673 m.

5.5. Results of Quality Assessment of WSE

The average pixel-to-pixel variability (STD) for the large, small and medium-sized lake are 6.90 m, 7.31
m and 3.58 m respectively. From Table 5.3 it can be seen that the WSE variability between observations



36 5. Results

65.495

@

65.490 1

65.485

Latitude
[
Classification

65.480

Water Surface Elevation (m)

ES

65.475

65.470 -
660 (e r“ T T T T T T 3
-50.19-50.18-50.17-50.16-50.15-50.14-50.13
Longitude

(C) 0
=50.19-50.18-50.17-50.16-50.15-50.14-50.13
Longitude

Figure 5.25: Copernicus Sentinel-2 L2A true color image (11.07.2024) processed in Copernicus Browser (left) [1]. SWOT Ob-
servation with partial ice cover of the medium-sized lake from the 09.07.2024 (middle and right).

of the LakeSP product is quite high for the large and medium-sized lake and surprisingly low for the
small lake. In comparison, the PIXC product has decimeter precision in all three cases. It makes
sense that the lake Isortuarsuup Tasia has a higher observation-to-observation variability, because the
temporal WSE variation is not taken into account, and a clear WSE variation in time was observed in
the order of meters. The medium-sized lake has one large outlier that affects the variability, because
the outlier itself has a small STD and MAD, and was therefore not captured during the data editing.
Meanwhile, the small lake has less observations and not much temporal change in WSE, leading to a
lower variability.

Table 5.3: Comparison of WSE variability between observations for the time series of each lake separated into the observations
of each data product. The last two lines show the WSE difference between SWOT observations and the closest ICESat-2 point.

PIXC WSE variability (m) 0.90 0.46 0.30
LakeSP WSE variability (m) 4.43 0.30 2.19
PIXC difference to ICESat-2 (m) 0.40 0.55 0.27
LakeSP difference to ICESat-2 (m) 1.38 0.85 1.22

Last but not least, it can be seen from Table 5.3 that the variability for both products with respect to
the ICESat-2 WSE is lower than the point-to-point variability in almost all cases. And even though
the magnitude of these accuracy estimates is still a lot larger than the mission requirements, most of
them are in the decimeter range. From these results it was concluded that the precision and quality
of the WSE estimates which can be gained from the PIXC product are significantly better than from
the LakeSP product, but users should be aware that this also depends on the applied data editing and
number of valid observations. Around 80% of all observations of the lake Isortuarsuup Tasia which
were recorded in the PIXC product made it to the LakeSP product, and around 45% of those remained
after the strict data editing. Out of the total number of observations, between 26-36% remained in the
LakeSP product after data editing for the three lakes analysed here.



Discussion and Recommendations

6.1. Discussion

6.1.1. Comparison of SWOT-derived WSE to ICESat-2

The results presented in chapter 5 have shown that the WSE obtained from the PIXC and LakeSP
products are subject to variations in the order of several meters from observation to observation. This
emphasises the need for extensive data editing in order to retrieve WSE estimates which have a mean
deviation of only 0.27 - 1.38 m from the reference WSE measured by ICESat-2. According to a study
of rivers and reservoirs in India by Patidar et al. (2025) [27], the 68th percentile of reservoirs achieved
a WSE accuracy of 9-14 cm from SWOT observations validated with in-situ measurements from Indias
Central Water Commission. Similarly, a study from Australia by Maubant et al. (2025) [25] obtained
accuracies of 26 cm for the LakeSP product and around 5 cm for the PIXC product, compared to
station gauges provided by the Australian Bureau of Meteorology. Maubant also concluded that some
Australian lakes are missing from the PLD, which affects the LakeSP product. Both of these studies
were able to achieve WSE accuracies similar or higher than the mission requirements, which was not
the case in this study. However, this can be largely attributed to the different conditions (particularly no
ice cover) of the lakes in those two studies, and the availability of sub-daily in-situ measurements.

6.1.2. Comparison of Results Between LakeSP and PIXC

While the LakeSP product could be used to obtain WSE timeseries from 535 IMLs in southwest Green-
land, the PIXC product provided key insights into error causes such as phase unwrapping, ice cover,
and dark water issues. The Median Absolute Deviation across all observations of each lake, which
was found from the LakeSP product, showed no strong correlations. This could be because there was
too much averaging involved. Since the LakeSP product contains one averaged WSE per lake obser-
vation, the MAD could only be calculated across all observations of the given time period. However,
parameters such as the dark water classification or layover error are individual from pixel to pixel, as
was observed from the PIXC product. The analysis of the PIXC product and k-means clustering were in
agreement that the g, and the coherence are the two main indicators for good WSE estimates. These
two fundamental parameters also play a role in the determination of lake outlines and pixel classification
such as determining dark water pixels.

As was seen in Figure 5.2, many lake observations in the LakeSP product were affected by specular
ringing. This significantly impacts the recorded outline and area of the lakes, but also suggests that
additional erroneous pixels could be included in the WSE calculation of the LakeSP product. Ideally,
the lake outline of each observation could be used to detect if the water level has changed and update
the PLD accordingly, but the issues with specular ringing show that the observed lake outlines are far
too unreliable for this purpose yet. Therefore, this research resorted to using the lake outlines from
How et al. (2021) [24] to make sure that the lake outlines are realistic and avoid impact from specular
ringing as far as possible.

Even though the lake surface area was not analysed here, it is apparent that the lake identification
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based on the pixels that are present creates unrealistic and highly varying lake outlines in many cases,
resulting in bad estimates of lake area and potentially affecting the calculation of the WSE. It should be
investigated whether the WSE is affected by checking the area wse variable in the LakeSP product,
but the variable is missing from the data files, even though it is mentioned in the documentation. This
could give an indication on how realistic the lake area is, over which the WSE is calculated. If the
area_wse is much larger than the PLD lake area, the WSE estimate might not be very representative.
One solution to this is to use PLD lake outlines for retrieving pixels, but then lake extent changes cannot
be captured, which also results in errors for the lake surface area and storage change of the LakeSP
product.

By comparing the LakeSP and PIXC product of these three lakes, it has been observed that the data
points of the two products are often not in the same locations, even though the two products are based
on the same satellite observations of the lakes and similar processing. There are two main causes for
this, one of them is that some observations are removed in the processing, and are therefore missing
from either of the two products. This means that two points lying close together in time from the PIXC
and LakeSP product in fact originate from two different satellite overpasses, which can occur with only
few days in between. Since the lake Isortuarsuup Tasia is covered by 4 SWOT overpasses, there are
4 potential observations every 21 days, which could be utilised to gain a higher temporal resolution, if
the quality of them was better. Combining the two products can take advantage of different processing
methods to obtain more valid observations within the given time.

Another reason for different locations is that the processing differs slightly because the data editing of
pixels and the derivation of the WSE were adapted for IMLs. Since the uncertainty-weighted mean
WSE present in the LakeSP product produces many large outliers, the median was chosen for the
PIXC product. Together, these reasons influence the resulting WSE estimates, which is why some
PIXC points are located directly above or below the LakeSP points of the same satellite observation.

6.1.3. Determining Main Error Sources

The time series from the LakeSP product with particularly many observations and a high MAD sug-
gested that several lakes have been combined into one lake id. The probable reason is that the lakes
could not be distinguished, and therefore the WSE of multiple lakes were mixed together in one time
series - leading to a large MAD.

For lake Hullet, the overestimated surface heights most likely occurred due to the lake being categorised
into the same phase unwrapping region as the surrounding pixels with low coherence and low g,. Since
the lake lies in a valley, it is not unlikely that most of the other noisy pixels lie at higher elevations in the
mountains, resulting in a higher WSE estimate for lake Hullet as well.

The main issues when looking at the PIXC data from the three chosen lakes were, that many pixels
experienced bad geolocations, and many pixels were classified as dark water or low coherence water.
Combined, these issues resulted in a very large height variability between different pixels of the same
lake observation (3.58 - 7.31 m on average for the three chosen lakes) and thus large uncertainties
which propagated to further SWOT data products such as the LakeSP product. For the LakeSP prod-
uct, this large variability was overcome by using a height-constrained geolocation, but using an average
WSE also removed the ability to spatially distinguish any patterns from the height. Since the geolo-
cation is closely connected with the height estimate, an error in geolocation can also lead to over- or
underestimating the height of the water pixels. It was seen that dark water pixels often resulted in bad
height estimates, therefore this research concluded that it would be better to remove bad geolocation
pixels and dark water pixels completely.

Another argument for avoiding 'dark water’ pixels is that ice cover on lakes often is classified as dark
water. Since the ice cover changes the backscattered signal, the water surface becomes more difficult
to recognise, and is therefore categorised as dark water. When the backscattered signal is less strong,
the height becomes more difficult to estimate, leading to increased WSE errors from dark water pixels.
Fortunately, the dark water classification of ice-covered lakes works quite well, as can be seen from this
example of a partially ice-covered lake. Therefore, by removing dark water pixels, most ice-covered
pixels are also removed in this case. This results in a summer-bias in the yearly data record, because
the summer period where the lake is ice-free contains more data and better consistency.
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The naive approach to solve phase unwrapping errors showed that adding or subtracting an integer
multiple of height to phase sensitivities could remove the slope in surface elevation, but for the case
analysed here, this approach would result in a much lower surface elevation than what is measured
by ICESat-2 because many phase ambiguities would have to be added. Furthermore, this approach is
only valid for adding or subtracting a small number of phase ambiguities, but since this would not be
enough to remove the surface slope of 20 m across the medium-sized lake, the better solution in this
case is to recalculate the spatial unwrapping and phase unwrapping from scratch.

6.1.4. Limitations for Observing Small Lakes

Another important thing to mention is that the three chosen lakes have some of the best SWOT data
records in their size category, because the lakes were chosen based on the available number of ob-
servations. Therefore, the resulting WSE error estimates are likely a lower boundary when considering
all observed IMLs in Greenland. This is justified by the fact that only one year of observations were
available and that it makes most sense to analyse the lakes which have the most observations to have
enough data to draw significant conclusions. Lakes with fewer observations will eventually achieve
more observations for future analysis. However, this bias was counteracted by choosing sample lakes
of different sizes, such that the smallest lakes having the least amount of observations are still repre-
sented in the analysis.

Since SWOT has the goal of observing lakes as small as 1 ha (0.01 km?) in area, it would have been
best to include a lake of this size in the analysis as well, but this is not possible without a reference for
the water surface elevation and gauged lakes are limited in Greenland. Since ICESat-2 only covers
the ground beneath the narrow paths of the six beam tracks, smaller lakes may not be captured in the
ICESat-2 observations if they lie between tracks. Finding such a small lake with reference data from
ICESat-2 is challenging, which was already the case for finding the small lake included in this analysis.
Additionally, the IML inventory of How et al. [24] only includes IMLs >0.05 km?, which means that lakes
smaller than 5 ha cannot be extracted from the SWOT data with this approach. Different sources than
ICESat-2 could be used as reference for the mean WSE, such as a Digital Elevation Model (DEM) of
Greenland. The problem with this approach would be that most sources (such as ArcticDEM) are at
least a few years old, in which time IMLs can experience water level changes over several meters due
to glacier melt or GLOF events. Thus, the water surface elevation in the DEMs will be outdated in many
cases, making it impossible to distinguish whether the SWOT observations are wrong or the DEM is
outdated if a discrepancy in water level is present.

Only very few lakes smaller than 1 km? were recognised in the SWOT data with more than 7 obser-
vations, which can partly be attributed to smaller lakes being observed less often, having fewer pixels,
which leads to more observations being filtered out and being recognised less often as individual water
bodies because they are missing in the PLD. This is part of the quality-quantity trade-off in obtaining
SWOT observations, where choices have to be made between more data or better quality, such as
with filtering out suspect geolocation quality pixels, setting a threshold for filtering out outliers based on
STD and MAD and filtering out observations with too few pixels. According to Williams et al. [37], the
geolocation and height show significant noise for land, dark water and low-coherence water, meaning
that more accurate WSE estimates would be obtained if stricter filtering was applied. However, this
would affect small lakes in particular, reducing their number of valid observations and thus excluding
more small lakes from the observation records. On a global scale, the number of lakes increases with
decreasing size. Thus, it is critical to include small lakes in the SWOT observations.

Initial results showed that SWOT-derived water surface elevations of ice marginal lakes are not accurate
or consistent enough to find Glacial Lake Outburst Floods, which can happen from one observation to
the next. For obtaining reliable storage changes from these data, it is necessary to look at longer time
scales in the order of months or years, such as the change in water level which could be seen in the
time series of lake Isortuarsuup Tasia.
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6.2. Recommendations
6.2.1. Apply Strict Data Editing

This research has shown that strict data editing is required to obtain good quality WSE observations of
ice marginal lakes in Greenland from the SWOT PIXC and LakeSP products. Based on this analysis,
the most important data editing which should be applied to the PIXC product before retrieving WSE
estimates are summarised below:

* Remove tidal components from PIXC height, as described in section 4.4 but do not use height-
constrained geolocations because this will average the pixel heights.

* Remove land pixels, dark water and low coherence water with the classification parameter.

* Remove pixels with a bad geolocation, for which the value of the geolocation qual variable
is >28800 or even >4 to also remove suspect values.

Restrict pixels to be included to reliable lake outlines from How et al.’s IML inventory or similar.

* Remove outliers with a difference to the following and previous point of more than 10 m (ad-
justable).

+ After computing the STD and MAD of the height for all lake pixels of each observation, observa-
tions with a STD >20 m and MAD >10 m should be removed.

Some of the thresholds cannot be set objectively and have to be adjusted to the area of interest or
the application for which the data is used. In this analysis, the threshold for the STD and MAD had
to be adjusted for one lake individually, while the appropriate geolocation threshold was the same for
all three lakes. It should also be considered to employ a time-dependent threshold. By setting a high
threshold for the STD and MAD, more observations during the ice-covered periods will be obtained,
but for the ice-free period a lower threshold is beneficial.

If a SWOT data user wishes to only use the LakeSP product and not the PIXC product for easier access,
the following data editing should be applied to reduce the uncertainty of the WSE estimates depending
on set thresholds:

« Remove lake features with an area larger than 131 km? (size of Romer Sg, the largest lake in
Greenland).

» Use only lake observations intersecting Hows IML database or a similar database of IMLs.

» Use lakes which contain T or more observations, where the threshold T should be adjusted per
application (in this study T = 8).

+ Filter out outliers with a difference to the following and previous point of more than 10 m (also
adjustable).

* Remove observations with a dark water fraction >85%.
* Remove observations with a WSE STD >2 m.
* Remove observations with a layover error >1 m.

Based on this filtering, the SWOT data should be validated against real-time gauge measurements if
they are available.

Furthermore, the k-means clustering method can be used as a tool to find the high quality pixels of an
observation, to provide a more accurate WSE estimate than the mean or median of all pixels without
having to rely on the classification of pixels, but purely based on the coherence and g,. This method
differs from simply filtering by classification or g, alone, because it can combine the influence of multiple
parameters simultaneously. In this way it is more robust to noisy pixels which by accident have a high
o, but not a high coherence or pixels which are wrongly classified as dark water.

6.2.2. Expand LakeSP Product
To be able to fully recreate the processing method of the LakeSP product and find solutions for improv-
ing the derived WSE, it is necessary to include additional variables which the WSE is based on, such
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as the area and the outline over which the WSE is calculated. As a recommendation to the product
managers, the area wse and the geometry of this area should be included in the LakeSP product at
least, to allow users a better understanding of the underlying data and provide a better possibility for
error analysis.

Additionally, two changes to the LakeSP product should be taken into consideration. The first recom-
mendation is to calculate the median WSE as well as the mean WSE for all lake observations, because
this research showed how the mean can be influenced a lot more by individual pixels with erroneous
height observations than the median. By implementing this small addition, users could choose the most
fitting metric depending on the application, which would especially benefit challenging regions such as
the Arctic or mountainous regions.

The second recommended change is to consider removing pixels classified as dark water and low
coherence water entirely for calculating the LakeSP WSE, but this can have quite significantimpacts on
the number of available pixels, as has been discussed in chapter 4. An alternative would be to provide
both a LakeSP product with dark water pixels and without dark water pixels, but since this would require
large additional data storage, a more feasible approach is to use the dark frac parameter to filter
out observations with large percentages of dark water pixels. The difference is however that a product
without dark water pixels can give good observations, even when the dark water fraction is high, while
those observations will be filtered out when using the simpler approach.

In the end, inclusion of dark water pixels should always be based on an individual case-by-case evalu-
ation. If the focus is on smaller lakes it may be necessary to keep them and resort to the other methods
used here, but for larger lakes or for applications where less temporal resolution is needed, it is advised
to remove them to reduce the uncertainty in water surface elevations.

Depending on the application, it should be decided whether a larger number of observations or a higher
accuracy is favoured, such as to avoid error propagation. For large-scale hydrological modelling it can
be more important that as many small lakes as possible are included to gain a better estimate of the
total water storage. However, if the observation uncertainty is already in the order of 1 m or higher, the
modelling becomes less accurate as well. To calculate storage changes or discharge, the accuracy
can be more important than the number of observations because a decimeter difference in water level
already has a large impact on the storage.

6.2.3. Improve the PLD

An extensive PLD provides the foundation for recognising and categorising lakes from the SWOT data.
A detailed and accurate PLD is therefore essential for obtaining a good LakeSP product; however, this
is not the case for Greenland. Initial investigation of IMLs in Greenland showed that several large lakes
with documented GLOF behavior are missing from the PLD, such as lake Tordensg, lake Catalina and
lake lluliartoq. It has been documented that these lakes have experienced enormous storage changes,
and it would therefore be especially beneficial to monitor their water level through SWOT observations.
Furthermore, some IMLs are only partly present, such as lake Hullet shown in Figure 6.1. On the left
side an optical image from Sentinel-2 is shown where the lake is partly covered by calving ice from
the glacier front at the southern margin of the lake. This floating ice seems to cause a problem for the
water detection in the PLD, because the right side shows the pixel cloud of the lake in blue, based on
how it is present in the PLD. Notice that the missing part of the lake coincides quite well with the area
covered by floating ice, where it is more difficult for SWOT to detect the underlying presence of water.
This is especially an issue for ice marginal lakes, because they are often covered in calving ice from
adjacent glaciers, making it more difficult to consistently detect the water surface. The floating ice can
even persist in summer, when the rest of the lake surface is open water. An important recommendation
is therefore to add ice marginal lakes present in other datasets to the PLD and thereby include more
IML observations in the SWOT dataset.

6.2.4. Analyse Smaller Lakes

For continuous improvement and validation of the SWOT data it is highly recommended to analyse
smaller lakes with areas of 1 ha or lower. These are still underrepresented in global validation efforts
due to a lack of real-time reference data such as from gauges, and because fewer observations are
available. Future research should determine how well these very small lakes are observed compared
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Figure 6.1: Lake Hullet as observed by Sentinel-2 (left) opposed to the pixel cloud from SWOT (right, in dark blue), which does
not cover the lower part of the lake due to a wrong lake outline in the Prior Lake Database. The Sentinel-2 L2A true color image
(01.08.2024) was downloaded via the Copernicus Browser [1].

to larger lakes, how small lakes can be observed consistently by SWOT and what role they play in
global hydrology. This study aims to provide an initial step in answering these questions and should be
regarded as a stepping stone, in particular, for using SWOT to observe lakes in challenging conditions
and regions.



Conclusions

This research contributes to assess the performance of the Surface Water and Ocean Topography
(SWOT) mission in observing the Water Surface Elevation (WSE) of lakes, with a focus on Ice Marginal
Lakes (IMLs) in southwest Greenland as they are particularly challenging to observe.

Overall, SWOT has detected 535 IMLs in southwest Greenland, including small lakes which are often
not covered by other altimeters such as ICESat-2, and provides an unprecedented frequency of lake
elevation observations, even able to capture seasonal variation in the water surface elevation of lakes.

By comparing SWOT-derived WSEs from the Lake Single Pass Vector Product (LakeSP) and Pixel
Cloud Data Product (PIXC) data products, it was found that the LakeSP product contains large data
gaps when lakes are ice covered and experiences large WSE variability between observations. The
PIXC product can be used to gain more good-quality observations during the ice covered periods by
applying targeted filtering adapted to IMLs and employing the median WSE instead of the mean, which
is more robust to outliers. However, PIXC is also computationally more expensive, while the LakeSP
product is more efficient to analyse larger numbers of lakes or longer time periods. During the ice-
free period, the LakeSP and PIXC products result in quite similar WSE estimates. For the three lakes
analysed in this study, the WSEs show high consistency with ICESat-2 ATL06 height measurements.
The WSE difference between SWOT observations and ICESat-2 (bias of 3.3 cm) for the three observed
lakes are in the order of decimeters (0.27 - 1.38 m). Between SWOT observations a variability of 0.30
- 4.43 m was obtained depending on the lake and data product.

Before using either of these two SWOT data products to calculate the WSE, extensive data editing
needs to be applied to reduce the WSE variability in order of several meters. In the PIXC product the
large variability was already present between pixels in a single observation, while a large variability was
present between observations in the LakeSP product. The main issues in the PIXC product are phase
unwrapping errors, errors in the geolocation of pixels and ice cover leading to a low coherence and low
Normalised Radar Cross-Section of the backscattered signal, characterised by dark water classifica-
tion. Since the LakeSP product is a higher level product than the PIXC product, the aforementioned
issues also affect the LakeSP product in addition to issues which are introduced in the processing.
The main limitations for the LakeSP product are the specular ringing effects included in lake outline
determination, insufficient assignment of lake ids, missing lakes and flawed outlines in the Prior Lake
Database, and the influence of pixel outliers on the WSE determination.

Analyses of the WSE estimates from the LakeSP product and outliers from the PIXC product have
shown that the WSE obtained from the LakeSP product can be improved through strict filtering based
on the standard deviation, layover error and dark water fraction. However, it is not recommended to
filter out observations based on the general quality flag or the ice cover flag because this would remove
too many observations, including otherwise good observations.

To improve the PIXC product, bad geolocation quality, dark water and low coherence pixels should be
filtered out because they often result in bad estimates of WSE. Additionally, single outliers and pixels
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with a large STD or MAD (> 10 m) should be filtered out to reduce the large variability of WSE estimates.

A common problem for IMLs in Greenland seems to be a trade-off between quality and quantity of
usable observations, therefore thresholds for data editing should be set depending on what the data
are used for. The SWOT mission requirement for the WSE accuracy is not yet accomplished for IMLs in
Greenland, but this research has shown that SWOT observations are under all circumstances providing
far more frequent observations than ICESat-2 and are promising for observing more small lakes even
under harsh conditions.
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Appendix

A.1. Introduction to k-means Clustering

k-means clustering is a common machine learning algorithm useful to group data into k number of
clusters based on similarity [34]. The algorithm requires the number of clusters k to be specified and
initial centroid points of the clusters to be set, either from estimates or at random. If X = {x;,..x,} is
our data set in d dimensions, and A = {a,, ..a; } are the cluster centroids up to k clusters, the objective

function to minimise is [31]:
n k
J@A) = gl = P (A1)

i=1c=1

Here, ||x; — a.||? is the euclidean distance between each data point x; and each cluster centroid a,
and z;. is a n X k matrix of binary variable describing which cluster each data point is assigned to:

1L ifflx = acll? = mingeeer |lx; — acll?
Zic —{ ‘ : (A.2)

~ |0, otherwise

Thus, each d-dimensional data point x; is assigned to the cluster which has the smallest euclidean
distance to its centroid a..

From all points belonging to a cluster, a new centroid is found, minimizing the within cluster sum of
squares (WCSS) or variance:

n
e Zi X
ac = —Z‘—nl — (A.3)

Yi=1Zic
Essentially, this sums up all values of points belonging to the cluster (for which z;. = 1) and divides
by the number of points in the cluster to find the cluster centroid in each dimension. Based on these
new centroids, the euclidean distances of each point to each centroid is calculated again and assigned
to the cluster with minimum distance. This process is repeated until the centroids no longer change
significantly or a maximum number of iterations has been reached, thus minimising the objective func-
tion and the WCSS. In Figure A.1 it is illustrated how the clustering would look in 2D, but the analysis
performed in this study contains many dimensions.
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Figure A.1: Basic Example of k-means clustering in 2D [22].
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Figure A.2: Bitwise geolocation quality flag showing all declared issues and their corresponding bitwise and decimal value, from

the less severe to the more severe issues.
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Figure A.6: Observation of the small lake on 21.02.2024 with maps of the height, and relevant parameters from the PIXC product.



A.2. Additional Figures
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Figure A.7: Observation of the medium-sized lake on 13.02.2024 with maps of the height, and relevant parameters from the
PIXC product. The WSE shows a strong gradient over the lake, thus resulting in a bad WSE estimate.
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