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Abstract

The quasi-steady model (QSM) was developed to calculate the power output of a soft-wing airborne
wind energy (AWE) system operated in pumping cycles. The comparison with experimental data shows
that the original formulation of the model underestimates the power output. The model does not take
inertial forces into account and highly simplifies the reel-out flight path. In this work, these assumptions
are critically reviewed and their impact on the simulation results assessed.

The effect of inertial forces is analytically described for a helical flight path with fixed turning radius
around the downwind axis. The derived analytical solution for this flight path verifies the formulation
of inertial forces in spherical coordinates proposed in earlier studies. The proposed equations are
modified and added to the QSM. Both, the analytically developed set of equations and the QSM with
added inertia are compared for the helical flight case. It is observed that at larger cone angles where
the tether length is rather short, but the turning radius is large, the inertial effect increases the tether
force and the power output. With small cone angles this effect reverses. Based on the example case,
the impact of the inertial effects on the output power computed with the QSM is limited to 1-2% for
lightweight soft kites.

In the original formulation of the QSM the figure-of-eight maneuvers are not resolved. Instead, the
tether is reeled out at representative constant values for the elevation, azimuth and course angles.
QSM output based on real flight path coordinates is used as a benchmark to calculate the accuracy of
reel-out path simplifications. The power output error of resolving reel-out flight with constant angles is
on average 4.1% when compared to the reference simulations. An alternative flight path representation
is developed, fitting a known figure-of-eight, lemniscate, to measured asymmetric reel-out flight paths.
By flying the fitted figure in the QSM, the output power error caused by this path representation is
estimated to be only 1.7% in comparison to the reference simulations. It is recommended to use this
fitting method based on a class function/shape function transformation technique (CST), to parametrize
the reel-out flight path, despite the added complexity.

The study has shown that the accuracy improvement by including the inertial effects in the QSM
is marginal if the model is limited to lightweight soft wing simulation. As a follow-up study the inertial
effects should be tested with bigger kites and heavier rigid-wing systems. The adjusted CST fitting
method together with the inertial equations enable these maneuvering flight simulations in the QSM.
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Abbreviations

AWE Airborne wind energy

GWEC Global Wind Energy Council
HAWT Horizontal axis wind turbine
KCU Kite control unit

QSM Quasi-steady model

SLSQP Sequential Least Squares Programming
Coordinates

(r,6,¢) Spherical coordinate system
(Xx, Yk, zx) Coordinates of the kite
(Xw» Yw» Zw) Wind reference frame
(Xw, Ywr Zw) Turning reference frame

Greek Letters

a Inflow angle

B Elevation angle

X Course angle

A Shift of CST shape

6 Difference between L and Lq vectors
X Course rate

y Half of the cone angle

K Kinematic ratio

A Tangential velocity factor

u Non-dimensional parameter, links 1 and fx
W Angular velocity

1 Circumferential velocity factor

¢ Azimuth angle

p Air density

0 Inclination angle

6,. 6, projection onto tangential plane

6

€

Nomenclature

Angle between wind reference frame z,, and turning reference frame z,,



X Nomenclature

0 Non-dimensional turning radius
4 Power harvesting factor

Other Symbols

A Rotor area

a,b,c,d, e, cq,c, Weight parameters (universal parametric equation of lemniscate)

ag Width parameter of class function

B Bernstein polynomial

bg Height parameter of class function
Cp Drag coefficient

C, Lift coefficient

Cp Coefficient of performance

Cr Aerodynamic force coefficient

cg, cg Centre point coordinates of class function

Cpy  Drag coefficient of tether

d; Tether diameter

E Lift-to-drag ratio

f Reeling factor

fx Non-dimensional downwind speed

K Point of the kite

M Median value

m Mass of the kite

N Shape function

P Power generated

p Polynomial

p Search direction of optimizer

B. Power extracted by the rotor of turbine
B, Power in the wind

q Dynamic wind pressure

R Turning radius

r Radius, often as tether length in QSM

min  Minimal turning radius
Path length
Surface area of the wing

Time



Nomenclature

t

Completion rate between [0, 1] or time

w Weight of polynomial
L Lagranian function
Vectors
a Vector with optimization parameters
D Drag force
D, Tether drag

a Aerodynamic force
F, Force of gravity
F, Tether force

io Centrifugal force

; Inertial force

Lift force

L, Lift force projection onto x,y,-plane
v, Apparent wind velocity
Vi Kite velocity
Vi Measured wind velocity
v, Tether (radial) velocity
Vi Wind velocity
v,  Tangential component of apparent wind velocity
v, Radial component of apparent wind velocity
v Circumferential velocity of the kite
Vi,  langential kite velocity
v, Radial speed of the kite

Vk,x

Kite speed in downwind direction






Introduction

The global primary energy demand exceeded a yearly consumption level of 173,000 TWh during the
pre-pandemic era (2019) with an estimated growth of nearly 50% by the year of 2050 [5]. As the vast
majority of energy is originating from fossil fuels, the Paris Agreement driven urge for green revolu-
tion is about to increase the share of renewables in the energy generation pool. Since the biggest
green energy production method hydro power is limited by specific environmental constraints (e.g. the
existence of natural water reservoir), a relevance for wind and solar technologies emerges.

The horizontal axis wind turbine (HAWT) is a commonly used system for harvesting energy in wind.
It has a rotor installed on top of a tower and the energy is converted from spinning motion with a gen-
erator situated in a nacelle. Changes in rotor diameter increase the rotor area and consequently the
accessible wind power for HAWT. However, there are several limitations to HAWT. For on, scaling up
the rotor has economic limitations accompanied by structural complications associated with withstand-
ing environmental conditions. Furthermore, wind speed has a cubic relation to the available power
in moving air. Offshore wind farms ensure more stable wind conditions compared to onshore. Nev-
ertheless, the logarithmically increased wind speeds at altitudes above 200 m remain unavailable to
conventional wind turbines. Construction challenges of tall HAWT towers are the limiting factor here.
Meanwhile, at heights above 200 m wind speeds reach higher velocities and remain more persistent.
Therefore, it is desirable for humanity to attempt harvesting wind at higher altitudes. Consequently, al-
ternative solutions which could operate above HAWT levels are of great interest in terms of improving
wind generation in the future. One promising technology capable of operating at greater altitudes is
airborne wind energy.

Airborne wind energy (AWE) harvests wind energy at increased altitudes using a tethered aircraft
or a kite. The idea is to substitute the fastest moving and the most power-producing section of HAWT
rotor blades, the tips, with a kite. Furthermore, the tower and inner blades are replaced by a tether as
seen in Figure 1.1. Consequently, AWE could possibly have several advantages over HAWT, including
reduced material costs, shorter set-up time, and consistently higher wind speeds at altitudes above the
effective range of HAWTs. [20]

The AWE concept widely investigated at TU Delft and in its start-up Kitepower is defined more
specifically as the pumping kite power system. As the name indicates, this concept operates in periodic
pumping cycles, composed of reel-out (traction) and reel-in (retraction) phases. The kite is performing
figure of eight maneuvers during the traction phase as the tether is reeled out. At this stage the kite flies
between 70 to 90 km/h, generates traction force, and eventually electricity with the use of a generator
situated on the ground. When the maximum tether length has been reached, the kite changes its angle
of attack and goes into depowered flight mode, reducing the traction force by 80%. As such, the kite
is reeled back in. This reeling in operation consumes a small amount of energy leading to a positive
energy yield from the overall cycle. At minimal tether length the kite transitions to the start of the reel-out
phase and the whole cycle is repeated. [9]

The concept of pumping kite power systems has also been implemented in a simulation tool at
TU Delft to make realistic power estimations for the system of Kitepower. This tool is referred to as
a quasi-steady model (QSM). Yet, a comparison between the measured power data of flying the kite
and the QSM simulated power output has so far indicated inconsistencies in the model. This reduces

1
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Figure 1.1: AWE systems replacing the tips of rotor blades [6]

the accuracy of energy yield calculations done using the model. It is estimated that the power error
originates from the simplifications and assumptions made in the simulation tool in order to reduce
computational complexity. The purpose of thesis is to evaluate and improve some of the simplifications
made in the QSM about the reel-out phase concerning the maneuvering flight of the kite. In particular,
the aim is to improve QSM accuracy by including more details on the turning maneuvers of the
kite. In order to fulfil that aim, first the impact of inertia on the flight behavior is investigated. Thereafter,
QSM accuracy is improved by making changes to the reel-out flight path representation in the model.

In the evaluation of inertial effects, the aim is to first analytically develop a set of equations which
would solve the flight with inertial forces in a simplified simulation framework. These developed equa-
tions can be compared to the inertial force formulas proposed by previous authors. The impacts of
inertial effects on the flight of the kite are then simulated and investigated in the same framework.

With the reel-out flight path representation topic the idea is to set up reference QSM simulations
using the flight test measurements. The accuracy of the QSM tracking the flight path from a physical
flight test could be fixed as a reference. Alternative reel-out flight paths and the QSM output received
by flying them are compared to the reference simulations. The latter gives an indication about the
accuracy of investigated flight paths.

The thesis is divided into three main body chapters. The state of research description in Chapter 2
brings out the context-important developments in the AWE field so far. The literature study is followed
by the inertial force investigations in Chapter 3. This starts by formulating special flight frameworks of
flying circles and helical paths. The inertial force equations are analytically developed for these frame-
works using the free body diagrams. Later in the chapter the inertial effects are investigated from the
perspective of QSM. The chapter ends with a helical flight example case. Chapter 4 introduces alter-
native reel-out flight paths and their impact on the accuracy of QSM. At the beginning of the chapter
reference simulations are set up using QSM with minimal modifications. This is followed by an inves-
tigation of two alternative flight paths as QSM inputs. The first alternative considers finding a single
azimuth-elevation combination which would simulate similar power results as time-averaged reel-out
phase from the measurements. The second option tries to geometrically fit a figure to the measured
path and fly the fitted figure in the QSM. In the end of this chapter an attempt for finding the most
power-productive flight path is made. The latter is followed by Conclusions and Recommendations.



State of Research

This chapter gives a general description of AWE which is then narrowed down to a specific technology
and a simulation tool investigated at TU Delft. The first section focuses on the variety of institutes active
in the AWE field together with a description of various approaches to the concept. The scope is on AWE
technology pumping kite power system. With the general working principles settled, the fundamental
theory of flying tethered wings is presented. In chronological order the contributions to this theory by
various authors are discussed. The finalized set of equations for solving the flight as series of steady-
states is formed into a quasi-steady model. The latter is in the focus of this thesis. A validation of the
quasi-steady model by previous authors is also discussed here which brings out the relevant issues for
a research. The chapter ends by defining the research problem and questions based on it.

2.1. Airborne Wind Energy (AWE) in a Global Context

The Global Wind Energy Council (GWEC) emphasises in their latest "Global Wind Report 2021” the
installation relevance of new wind power plants. Despite the record-setting 93 GW of new capacity
added in the field in 2020 the wind power growth must triple over the following decade to meet the
global sustainability goal of net zero [4]. This worldwide urge for wind technology expansion undoubt-
edly opens up room for alternative form of wind power technologies, especially in locations where the
installation of huge HAWT foundations may not be possible. This is an opportunity for AWE pioneers
to build up a share in wind energy market.
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Figure 2.1: Institutions involved in AWE development (2018) [20]
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4 2. State of Research

Since from the 1970s, when Miles L. Loyd laid the foundation of analytical theory of AWE systems,
the growth of AWE has been going by fits and starts but reached a steady increase phase by the
beginning of the century. The early 2000s had only less than 10 developers in the field. Whereas,
in today’s date more than 60 institutions mostly in North-America and Europe are active in the AWE.
Figure 2.1 brings out the most significant examples of these representatives, TU Delft being one of
them. These companies and organisations are working hard to bring their AWE products to the market
and many already have a fully-functioning prototype. With the rapidly growing investments the AWE
could become considerable alternative to HAWT in the race for net zero emissions. [20]

2.1.1. AWE Concepts

A variety of AWE systems exists, which can be distinguished by the location of conversion from the
mechanical into electrical energy. The ground-generator AWE systems (ground-gen) have a power
generator situated on the ground and tethers transmit the aerodynamic forces from a kite towards the
ground. Kitepower and Ampyx are TU Delft examples in that field. In fly-gen AWE systems the energy
conversion is performed on a flying wing and at least one of the tethers is conductive and includes
electrical cables. Makani is an example for that class. [3] The more detailed classification of AWE
systems is shown in Figure 2.2.

Rigid wing

Fixed ground
station

—» Ground-Gen Flexible wing

Moving ground

station (concept
level)

AWE systems [—

Crosswind > Rigid wing

—> Fly-Gen

Non-Crosswind

Figure 2.2: Classification of airborne wind energy systems [26]

Among the ground-gen AWE systems fixed ground station is the most actively studied by private
companies. These systems work in pumping cycles, meaning the energy conversion is split at least into
two phases: reel-out and reel-in. During the reel-out phase the most commonly used flying technique
is the crosswind flight as the rigid or flexible wing aircraft/kite flies circular or eight-shaped figures.
On contrary, moving ground station AWE system is only a hypothetical concept without a working
prototype yet. The idea is to generate energy from the movement of ground station without winding the
tether. This way always positive power flow would be possible and the connection to the grid could be
simplified. However, the realisation of this system could be more complex due the movement of the
ground station. [3]

In the fly-gen AWE systems both crosswind and non-crosswind flying techniques are used. For
the crosswind flying manoeuvre the aircraft lifted by wings has turbines attached to it. This type of
aircraft harvests relative wind speed as it flies through the air. The turbines of crosswind fly-gen AWE
systems can operate at very high rotational speeds, meaning gearbox is made unnecessary and the
shaft could directly be connected to the generator. This way the system is lighter and more reliable in
terms of mechanical breakdowns. As opposed to, non-crosswind fly-gen AWE systems have bigger
operational variability. Usually the power is generated by using a turbine. However, the aircraft itself is
lifted by either using rotors and thrust or buoyancy effect from lighter-than-air-gas in the aerostats (e.g.
balloon). [7, 3]
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2.1.2. Rigid vs Flexible Wings

In ground-gen AWE systems both rigid and flexible wings are used, whereas for the fly-gen the choice
is only for rigid wings. These two approaches differ not only in the structure of the wing but also in what
forces act on it and how does it reflect in the flight path.

The rigid wings have a structure which maintains the shape no matter of ambient wind conditions
but it has more mass for the surface area. They are designed to fly faster than flexible wings and have
bigger lift-to-drag ratio. This feature makes them efficient in power generation but more influenced by
the gravitational and inertial effects. Both of these forces increase with bigger mass. The inertial effects
are also increased by the velocity of the kite and the latter tends to be large for rigid wing flight, meaning
the system is influenced more by dynamic effects. [7]

The flexible wings, on the other hand, retain their shape only due airflow and the aerodynamic load
distribution on wing. They weigh much less than rigid wings and are therefore safer to operate but
do not develop as high velocity of the wing. Due these characteristics the gravity and inertial forces
are also smaller in these systems. The flight of a flexible wing system is not driven by considerable
dynamic effects and they happen in a shorter time span. This observation becomes crucial if the flight
of the wing is simulated. The time period of dynamic effects is often approximated to be as short for
flexible wings that relatively accurate results could be achieved with steady-state calculations. This is
also a reason why the dynamic effects as inertia are often excluded from flexible wing simulations. [7,
25]

2.1.3. Pumping Kite Power System

The AWE concept widely investigated at TU Delft and in Kitepower belongs to a fixed ground generation
and flexible wing class marked with bold text in Figure 2.2. The system runs in three phases: reel-out
where the power is generated using traction force and the flight path resembles consecutive figures
of eight, reel-in where the starting tether length is restored and transition phase where the depowered
mode of the kite switches to powered flight. As can be seen in Figures 2.3 and 2.4 Kitepower pumping
kite power system uses an inflatable kite which flies these three phases as pumping cycles. The kite is
operated using a single tether and the heavy system components responsible for the energy conversion
from traction force to electricity are situated on the ground. The idea of a single tether is to minimize
the energy losses initiated from aerodynamic drag but at the same time making the kite uncontrollable
from the ground. Therefore, remote-controlling is required, meaning the kite control unit (KCU) needs
to be installed at the junction of a single tether and the bridle line system. The KCU forces the kite to fly
on a well-defined crosswind trajectory maximizing the energy yield. To synchronize the whole pumping
cycle, the KCU is exchanging data with the control centre and wind meter via wireless network. Both
of the latter units are situated on the ground together with a drum/generator module, power electronics
and a battery module, forming together the ground station. The presence of batteries is required to
store the energy during the reel-out when the kite flies figures of eight and to provide only a fraction of
stored energy for the reel-in process. The latter is possible due reduced traction force by aligning the
kite with wind. [24]

Airborne
componems

Ground
station

Figure 2.3: The pumping concept of Kitepower system [9] Figure 2.4: Kitepower system components [9]
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2.2. Loyd’s Theory

In 1980 Miles L. Loyd developed the fundamental relations in generating power with kites. In his
paper "Crosswind kite power” Loyd provides equations for two types of kite flying techniques: non-
maneuvering simple kite and maneuvering crosswind kite. As an assumption the weight of the kite is
neglected in his work together with any impact the tether has on the system. [11]

A simple kite is facing into wind and the power is generated with an unwinding tether from a drum.
The forces and velocities acting on this non-maneuvering kite are shown in Figure 2.5. Using the
aerodynamic force definition

F,=L+D, (2.1)
lift and drag force equations
1
L= EpCLv};S (2.2)
1
D= EpCDvéS (2.3)

and the relation F, = —F, for a massless kite together with the apparent wind velocity definition

V, =V, — Vg, (2.4)

Loyd finds the following relation for normalized tether force

R C[¢1+E%1—fﬁ—fr

S = Cg 112 (2.5)
In Equation 2.5 q is the dynamic wind pressure, E lift-to-drag ratio and f reeling factor of the kite.
1 3

q=5pVw (2.6)

E= L 27

= (2.7)

=2 2.8

f=5 (2.8)

The resultant aerodynamic force coefficient could be calculated from lift C; and drag €, coefficients

with
Cr = ’Cf + C[2, (2.9)

but Loyd assumed the power generation to be dominated by the lift force, meaning the lift-to-drag ratio
is large. This leads to C; = C,. The resultant aerodynamic coefficient C, based on that assumption
could be substituted with the lift coefficient C; if one wants to simplify Equation 2.5. [11]

Loyd uses a non-dimensional power harvesting factor

P sk 2.10
S=p5=Ios (2.10)
where power in wind is
1
B, = Epv‘f, (2.11)
and Equation 2.5 expands into
2
VT2 =715 - ]
¢ =Cg . (2.12)

1+ E?
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Iw

Xw

Figure 2.5: Forces and velocities on a weightless non- Figure 2.6: Forces and velocities on a weightless maneuvering
maneuvering simple kite [11] crosswind kite [11]

Equation 2.12 is later used for a numerical comparison with the crosswind kite.

As a second type of flight Loyd investigates a maneuvering kite. When the kite flies to a position
where the tether is aligned with wind direction the motion becomes crosswind. This crosswind flight to-
gether with forces and velocities is shown in Figure 2.6. Expanding the apparent wind velocity Equation
24to

Vy =Vy — Vi — Vi, (2.13)

where v, is the tether velocity and v, ; the tangential kite velocity, the non-dimensional tether force for
the crosswind kite becomes

Ft 2 2
q—5=CR(1+E a1 -1)=. (2.14)
Again one could assume E > 1 and change Cy to C;, and (1 + E?) to E? if further simplification is
required. Loyd writes the crosswind kite power harvesting factor as

{=Cr+EHf(1-f)2 (2.15)
With the optimal reeling factor
fopt = % (2.16)
Equation 2.15 becomes
2
Sopt = 24—7CR (g—z) . (2.17)

This also defines the upper limit for power one could harvest from wind using the crosswind kite. [11]
As a final part of his paper Loyd compares the simple (regular) kite with the crosswind kite. Accord-
ing to his results it is beneficial to fly the kite in crosswind motion since the power harvesting factor ¢
is much higher for that case. One could also see that from Figure 2.7 where Loyd’s equations are put
into practice for a kite of the same size. These diagrams show that with the simple kite the power gain
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is limited even if the lift-to-drag ratio approaches infinity. For the crosswind flight this is not the case as
increased E—L amplifies the power harvesting factor.
D

0.40

regular kite

o o
w W
S o,

o
N
Ul

o
NN
ul

power harvesting factor ¢ [—]
o o
= N
o o

0.05 1

0.00

—_——

G

\\
/ - s C[)
: R

R

140

cross wind kite

Cy

N -
00 o N
o o o

[en]
o

power harvesting factor ¢ [—]

00 02

04 06
reeling factor f [—]

0.8

1.0

fo])‘r

0.2

0.8

04 06
reeling factor f [—]

1.0

Figure 2.7: Power harvesting factor comparison: regular (simple) kite vs crosswind kite [20]

2.3. Introducing Spherical Coordinates

Loyd proved flying a maneuvering kite could give promising power harvesting results. For a represen-
tative of this flight technique: in a pumping kite power system the kite flies spherically around a fixed
ground station. It would be more suitable to describe these kite maneuvers in spherical coordinates
instead of Cartesian ones. The position of an object is given with three parameters in the spherical
coordinates: (r, 0, ¢). For a feasible flight these coordinates must be in certain ranges: e.g. the flight
does not happen underneath the surface of the Earth or cannot leave the half sphere of downwind.
These ranges together with an explanation of each coordinate are given in Table 2.1.

Coordinate | Name Range Definition

r radius 0<r<ow distance from the origin of axes
inclination | 0 <8 < g angle from the positive z-axis

o) azimuth —% <¢< % angle from the positive x-axis on x-y plane

Table 2.1: The explanation of spherical coordinates [28]

Itis possible to switch between the Cartesian and spherical coordinates using certain relations. For
that purpose Figure 2.8 shows how the two coordinate systems are connected to each other. One
could calculate (r, 8, ¢) values with Equations 2.18-2.20.

r=4x?+y?+2z2

6 = arctan

z

y
= arctan —
¢ X

(2.18)

(2.19)

(2.20)
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Figure 2.8: Spherical coordinate system [23]

2.3.1. Improvements by Argatov et al

Argatov et al introduced spherical coordinates in describing the flight of a kite. [1] They used Newton’s
law of motion as a fundamental equation for their analysis to investigate the total forces acting on the
kite. These total forces are described as a sum of aerodynamic and gravitational force

F=F,+F, (2.21)

where F, of the kite is calculated as

F, = —mg(cos fe, — sin fey). (2.22)

In this equation m is the mass of the kite, g is the gravitational acceleration of the Earth and the basis
vectors are denoted with e, and e4. For the aerodynamic force F, they expand the aerodynamic drag
with the impact of the tether. This means the effective lift-to-drag ratio becomes

L
where D, stands for the tether drag force acting on the kite. One could calculate it with
1
Dt = —pdtT‘CD,CUg. (224)

8

In Equation 2.24 d, is the tether diameter, r the length of the tether and Cp, . marks the drag coefficient
of a cylinder. Combining Equations 2.23 and 2.24 Argatov et al obtained effective lift-to-drag ratio as

Cy
CD,trdt h
4S

E= (2.25)

Cp +

Taking use of the new E the authors defined an equation for mechanical power of a kite wind generator.
Considering all the forces acting on the kite in parallel to tether, the power harvesting factor is calculated
as

(=f(CLE\/1+E2(sinecos¢—f)2+%>. (2.26)
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F, denotes all the forces acting in radial direction. This includes the aerodynamic, gravitational and
centrifugal components. The latter in radial direction is given as

F.; = mr(6% + ¢? sin®6). (2.27)

By the end of their paper the authors conduct a numerical example which gives them only 0.8% cor-
rection when counting for the gravitational, centrifugal and friction forces compared to the exclusion of
these impacts from the analysis. [1]

2.4. Solving Steady-States of Tethered Wings

In 2013 Schmehl et al developed a theory for solving the instantaneous stedy-states of a kite. [21]
Their work is mostly built on the contributions of Loyd and Argatov et al and is focused on the pumping
kite power system with the following assumptions.

+ The kite has a relatively large surface-to-mass ratio, meaning the describable dynamic processes
have a short timescale compared to a complete pumping cycle. According to this the flight ma-
noeuvres could be described with a force balance between the aerodynamic, tether, gravitational
and inertial forces.

» Tether is considered inelastic in this analysis without any sagging.

» The forces acting on a wing are condensed into a single point K which is a point mass represen-
tation of the kite.

The authors use similarly to Argatov et al spherical coordinate system (r, 6, ¢) but introduce a tan-
gential plane T which is perpendicular to the tether. The course angle y shows the direction of the flight
on that local tangential plane by measuring the angle according to the right hand rule from the base
vector ey. The framework used by the authors is illustrated in Figure 2.9.

Xy

Figure 2.9: Wind reference frame (x,,, yw, z\,) together with spherical coordinates (r, 8, ¢), the decomposition of kite velocity
v, and apparent wind velocity v, = v,, — vy [21]

According to the steady-state analysis the kite has a certain velocity at each instance of time which
is composed of the reel-out speed (the radial component of velocity v, ,.) and the velocity of the kite
flying on the tangential plane (the tangential component v ;).

Vi = Vk’r + Vk‘l— (228)

Using Equations 2.28 and 2.13 the authors obtain the apparent wind velocity experienced by the kite
in spherical coordinates.
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sin 8 cos ¢ 1 0
v, =[cosbcosd|v, — |0 v, —[cos x|vy, (2.29)
—sin¢ 0 sin y

With the reeling factor f definition from Equation 2.8 and defining the kite tangential velocity factor 4 as

_ vk,‘r
A= -~ (2.30)

the finalized form of the apparent wind velocity could be written as

sinfcos¢ — f
v, = |cosfcos¢ — Acos y|v,. (2.31)
—sin¢g —Asiny

The apparent wind velocity Equation 2.31 and the definition of aerodynamic force Equation 2.1 give
Schmehl et al the fundamentals for developing the non-dimensional tether force and the power equa-
tions in spherical coordinates first for the massless kite and then counting for the mass together with
the effect of gravity and inertia.

2.4.1. Model with Negligible Effect of Gravity and Inertia
When the mass and the inertial contributions are negligible in the system the division of lift and drag
force becomes a fundamental substitution for the kinematic ratio x. This relation

_ Va,r _ £
K== (2.32)

is derived from the geometric similarity shown in Figure 2.10 where F, is aligned with v, ,. and D with
the aerodynamic velocity v, itself. These alignments give a justification for the geometric similarity.
[21]

F, L AZ,

Xy

Figure 2.10: The geometric similarity of v, and F, [21]

From the apparent wind velocity Equation 2.29 Schmehl et al write an equation for the tangential
components of the apparent wind velocity as

Vgr = v/ (cos B cos ¢ — Acos )2 + (sin ¢ + Asin y)2. (2.33)

Another way of presenting v, ; could be obtained by combining the fundamental relation Equation 2.32
and the radial components of Equation 2.29 into
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Var = (Sinf cos ¢ — f)vwg. (2.34)

Using both Equations 2.33 and 2.34 and solving for the tangential velocity factor 1 the authors calculate

2
L
A=a+jﬂ+w2—1+<5>(b—n{ (2.35)
where
a=cosfcos¢cosy—singsiny (2.36)
b = sin 6 cos ¢. (2.37)

The definition implies that this tangential velocity factor can only be positive. [21]
In the case of massless kite with no gravitational nor inertial effects the quasi-steady motion of a
wing experiences a force balance between the tether force and the aerodynamic force

F, = -F,. (2.38)

The authors modify Loyd’s non-dimensional tether force Equation 2.14 with azimuth ¢ and inclination
6 angle which enables solutions for cases when the tether is not perfectly aligned with wind direction.
Together with Equations 2.6 and 2.9 the non-dimensional power equation becomes

F :
o = Cg[1+ E?] (sinf cos ¢ — f)2. (2.39)
With the definition of power harvesting factor ¢ from Equation 2.10 the authors write
L 2
R — _ 3 _ 2
Z_PWS Cr 1+<D> lf(sm@cosqb ) (2.40)

for the massless maneuvering kite in spherical coordinates. For the maximum power of pumping kite
power system the optimal reeling factor becomes

1
fopt = 3 sin 0 cos ¢. (2.41)
This is also a more universal version of Loyd’s reeling factor given in Equation 2.16. [21]
2.4.2. Model with Gravity and Inertia

To improve the accuracy of steady-state calculations in spherical coordinates Schmehl et al use similarly
to Argatov et al the gravitational and inertial force corrections to satisfy the force balance

F,=-F,—-F;—F, (2.42)
The gravitational force is expressed as
—cos#f
F,=m| sin6 |g, (2.43)
0

where m is the mass and g the gravitational constant. For the inertial force the authors use Newton’s
law of motion and write

#—102 —rd?sin’ 0
F,=-m 76 + 270 — r¢p? sin 6 cos 6 ) (2.44)
r¢ sin b + 27¢ sin 6 + 2rf¢p cos @

where the first derivatives are given as
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7= fv, (2.45)

. Ay,

0= —cosx (2.46)

. Ay, siny

¢ = “r sinf (2.47)

and the second derivatives as

=0 (2.48)
6=-6 (; +)'(tan)(> (2.49)
(T 1 +d 1 250
¢$=-¢ r Xtan)( tand )’ (2:50)

Dividing Equations 2.22 and 2.44 into vector components of spherical coordinates (e, €y, €,) the aero-
dynamic force becomes into

Fo=—F0—Fpg (2.51)
Fap = —Fig (2.52)
E,,= |F? —F?,—F?,, )

. f—Flo—Fig (2.53)

where the radial components of these forces are balanced by the tether force. [21]

Schmehl et al bring an attention to the fact that with the additional force components (gravitational
and inertial forces) the geometric similarity in Equation 2.32 is not valid anymore for lift-to-drag substi-
tution. The tangential velocity factor equation remains

2
/1=a+\/a2+b2—1+<za'r) (b-1)? (2.54)

ar

and similarly it is not possible to directly calculate the non-dimensional tether force. Instead the appar-
ent wind velocity calculation holds as

2
Fa va‘r) .
— =Crl|1+(—= sin 6 cos ¢ — f)?. 2.55
25 = Cr (U l( R)) (2.55)
The lift-to-drag ratio could be now found with
2
_ Fava
E= (Fa 'Va) 1, (2.56)

but this equation requires an iterative solution process where each new kinematic ratio x;,, originates
from the difference of current E; value and the target E* value. The updated kinematic ratio is given as

E*
Kiy1 = K; F (257)
L

This iterative process becomes a core of quasi-steady solution in the pumping kite power system. [21,
25]
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2.4.3. Flight Cycle in Quasi-Steady Model (QSM)

In 2018 van der Vlugt et al published an article about making power estimations for pumping kite power
system using quasi-steady model (QSM). [25] This simulation tool is an implementation of theory devel-
oped by Schmehl et al discussed in Section 2.4 with an exception of excluding the inertial forces. The
authors justify it with the small impact of inertial effects on soft-wing kites. The whole concept of QSM
is based on solving steady-states for all three pumping phases separately with the phase-specific as-
sumptions and then adding them together to form a unified pumping cycle one could observe in Figure
2.11. The following subsections describe their approach for each phase.

250 T T T | T | T
retraction, i
200 [~ ta .
Io
150~ transition, x <
g g
S -
L v _
100 " traction, o
i
50~ .
B
Bo
0 | | | | | |
0 50 100 150 200 250 300 350 400
Xy [m]

Figure 2.11: Three phases of pumping kite power system [25]

Retraction (Reel-In) Phase
The retraction phase serves an essential task of reeling in the kite after a successful reel-out operation.
Since during this phase the energy is not generated but consumed the task in focus is to keep the
energy loss minimal. This is achieved by reducing the angle of attack to align the kite with the direction
of wind. The process starts at maximal tether length 7,,,,, and finishes at r,;,, meantime the energy
consumption being calculated with the instantaneous traction power P; over the reel-in time At;. [25]
The assumption made in the QSM fixes the values for aerodynamic lift C; and drag Cp coefficient
in depowered mode for the whole retraction phase. The kite is made to fly upwards with course angle
value y; = 180° during the reeling in process. The kite trajectory in this phase goes along ¢; = 0° plane
and the position of the kite is updated with

r(t + At) = r(t) + Vi (£)At, (2.58)

where At indicates the integration time step. [25]

Three possible control strategies could be used in the retraction phase to define the optimal reeling
factor f. These are: force control, velocity control and power control. The constant tether force F, ;
which has couple of benefits is used in this case. Firstly, the retraction time at given tensile strength
is reduced due minimal sagging with the force control. Secondly, the net power output of the system
is maximized since the reel-in phase with negative power is shortened. The reeling factor could be
calculated in this case with

E. .
f=sinfcos¢p + |————, (2.59)
L
qSCr [1 +(3) ]

where only the smaller value of reeling factor will be used, otherwise Equation 2.31 would calculate to
a negative v, when f > sin 6 cos ¢ is valid. This again means the aerodynamic force F, would point
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towards the ground station which cannot be the case. The retraction phase comes to an end when 7;,,;,,
is reached and the kite moves to a transition phase. [25]

Transition Phase

The transition phase serves as a switch between the retraction phase settings and the start settings
of the traction phase. During the transition the kite needs to fly from larger elevation angle g to lower
target elevation B, used for the reel-out. Another essential transitioning parameter is the tether force
F; which needs to increase from the low reel-in value to the desired traction phase F,,. The latter is
done by setting the aerodynamic coefficients €, and Cp, to power mode. In the transition phase the kite
is flying downwards, meaning the course angle is y = 0°. All these changes are conducted by the kite
control algorithm which aims to keep the tether tension between the feasible limits. This phase comes
to an end when the starting position for the traction phase is reached. [25]

Traction (Reel-Out) Phase

In the traction phase the kite is made to fly in a crosswind motion, resulting in maximized traction
force and mechanical power. In a real world pumping cycle, the kite is operated in figure of eight
manoeuvres during the reel-out phase. For the simulation time reduction purposes as well as in an
intention of keeping the model applicable for various crosswind manoeuvres, the position of the kite is
different than it appears in the measurements in the current QSM.

A constant flight state is used during the whole reel-out phase in the simulation to represent the
average power and the average traction force. This means the angular coordinates (8 and ¢) and
the course angle y have constant values during the traction phase. The values for these angles are
calculated using the time average of the experimental flight states. Since Equation 2.40 shows the
power dependence of the cosine of these angles, according to the authors the average power could
hypothetically be calculated using the time average of cos 6 (or elevation angle as cos ) and cos ¢.
This could be presented as

cos ¢y = cos ¢ (2.60)
and

cos fy = cos f3. (2.61)

Using the average term the location of the reel-out representative point situates in the centre of one
of the two figure of eight lobes. For course angle averaging the result is expected to be y, = 90° since
the kite is flying slower upwards than downwards due gravitational effect. Itis worth mentioning, despite
the constant angles the tether length is increased during the traction phase up to the point where 7,
is reached. [25]

Complete Pumping Cycle
Adding the mechanical power produced or consumed in all of the three phases together, the mean
mechanical power could be calculated as

_ PyAt, + PAt; + PAt,
™ Aty + At + Aty

where o refers to traction, i to retraction and x to transition phase. The authors use the definition of
power harvesting factor given in Equation 2.10 to calculate ¢ for the whole pumping cycle. [25]

The QSM also has an option for varying wind conditions with altitude, making use of a logarithmic
wind profile or a lookup table. However, for the validation of simulation concept itself, fixed average
wind speed could be used as an input.

: (2.62)

2.4.4. Simulations Using QSM

In 2020 Schelbergen and Schmehl wrote an article about the validation of QSM. They use a measure-
ment set of pumping cycles provided by Kitepower B.V. and describe the wind speed reconstruction,
the calculation of aerodynamic coefficients C; & C, and how the QSM kite velocity and power outputs
relate to the measurements of the same parameters. This section provides a brief overview of their
results which lay foundation for the research problem in the thesis. [19]
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Wind Input

In the dataset provided by Kitepower the measured wind speed v, is included. This parameter is
received using Pitot tube attached to the kite system. The measured wind speed could be decomposed
into apparent wind velocity in the measurement reference frame as

—cosa,
vt = v, 0 , (2.63)
sina,,

where a,, is the inflow angle if Pitot tube is aligned with x,,. The side slip angle in Equation 2.63 is
assumed to be zero for simplicity since this parameter is not measured. However, this equation results
in the apparent wind velocity in the measurement, not in the kite sensor reference frame where the
orientation of the kite is given. They use a set of equations based on the geometrical properties of the
kite to transform it from one into the other. Once this apparent wind velocity in the final form is known,
wind velocity can be calculated with Equation 2.4 which turns into

v, =V, +Vy, (2.64)

where vy, is the velocity of the kite. This wind speed is used as an input for the QSM. [19]

Aerodynamic Coefficients

For the aerodynamic lift and drag coefficient computation they reverse the calculation process pre-
sented in Section 2.4.2. The measurements include the tether force F,. Based on the mass and
properties of the system the force of gravity (both F , for kite and F ; for tether) and the tether drag
Fj . could be found. This enables the aerodynamic force calculation as

F,=- (Fg.k +Fge +Fpe+ F.). (2.65)
The equation above is based on the assumption the tether force measured at the ground F,,, has
roughly the same magnitude as the aerodynamic force F, and the latter is mostly responsible for the
counterbalancement of the traction force. The aerodynamic coefficients C; and Cj calculate from the
aerodynamic force as

Fk 1 2
] goalet o

CL

CD] , (2.66)
where superscript k indicates the kite sensor reference frame, FX, and Fx, are the components of the
aerodynamic force, p is the air density, v¥ ., marks the projected apparent wind speed, 4 is the projected
area of the kite and e’i & e are the unit vectors perpendicular and parallel to the apparent wind speed

I
vector. They use Equation 2.66 to define the aerodynamic coefficients for the QSM simulations. [19]

QSM Validation

The QSM validation is done by the authors in two parts. At first, they choose a good representative
cycle for the measurement dataset. Cycle number 73 is selected here and all the QSM calculations
are conducted for that cycle. Later they expand the calculations to the whole measurement set.

With Equations 2.63 and 2.64 the authors compute wind velocity for each point in data for the 73rd
cycle. This is followed by aerodynamic coefficients calculations (Equation 2.66). They reach to average
reel-out coefficients C; 4, = 0.71 & Cp 5y, = 0.14 and calculate C;, ;;, = 0.39 & Cp ;,, = 0.07 for the reel-in
phase. These are also given in Table 2.2. Using the defined parameters, the system properties and
the coordinates of the kite from the measurements Schelbergen and Schmehl find the tangential kite
velocity v, , output of the QSM to be in good agreement with the measurements. However, the reel-out
speed relation is poor. The authors reason it with the stiff rod assumption for the tether. In reality, tether
slacking and straightening motion is experienced and the direction of the tether force varies more than
it occurs in the calculation. This also indicates the aerodynamic coefficients calculated using Equations
2.65 and 2.66 are probably not accurate. [19]

In expansion of the QSM calculations to the whole set of measurements they use the tuned version
of aerodynamic coefficients calculated for the 73rd cycle. The authors keep the lift coefficients the
same but adjust the drag coefficients in a way that the QSM with coordinates from the file would give
accurate tether force for the 73rd cycle as it appears in the measurements. The new drag coefficients
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Aerodynamic Coefficients for QSM Simulations
Reel-out Reel-in
Cy, 0.71 0.39
Cp caic 0.14 0.07
Cp tuned 0.18 0.12

Table 2.2: The aerodynamic coefficients for the QSM validation [19]

are Cp oy¢ = 0.18 and Cp ;;, = 0.12. These values are exploited for all the measurement cycles. Now,
the QSM uses a reel-out assumption made with Equations 2.60 and 2.61 where the azimuth-elevation
pair is constant for the phase and only the radial distance changes. With the reeling-speed and tether
length properties originating from the measurements they reach to the following results:

+ the mean cycle duration experiences only -1.7% difference from the measurements;

+ the calculated QSM mean power is deviating from the measured mean power by -26.4%.

These results indicate first that the modeling choices of the QSM need to be reassessed. This
includes the assumption for time-averaging the reel-out coordinates of the kite. Additionally, the aero-
dynamic coefficients require tuning which means the direction of tether force is unclear with stiff rod
assumption and the values found with Equation 2.66 do not reflect the reality due the misalignment of
vector direction. [19]

2.4.5. Exclusion of Inertia from QSM

When realising the theory of solving the flight of the kite as series of steady-states van der Viugt et
al decided to exclude the inertial forces from the QSM (Section 2.4.3). This is in compliance with the
general comparison of flexible and rigid wing in Section 2.1.2. The smaller the mass and the velocity
of the kite the less impact the inertial forces have on the system. Due the current use of small flexible
wings in the simulations the inertia is omitted from the calculations.

In Section 2.4.4 Schelbergen and Schmehl show the QSM mean power output is off from the mea-
surements due the set of assumptions used. Even with the small expected impact the exclusion of
inertia from the QSM has definitely a part in this power deviation. Roullier has written a thesis in 2020
where he discusses the impact of turning on the performance of the flexible kite using measurements
and CFD. He claims that turning maneuvers could cause 5% decrease in the output performance of the
system, explaining it with the roll of the kite. This shows from the perspective of increasing the QSM
accuracy that the inertial effects should be included in the steady-state calculations. The relevance of
inertial calculations increases even more when larger kites come into use in the pumping kite power
system as bigger mass causes greater centrifugal force. The same goes for the expansion of QSM
to rigid wings where currently the dynamic models are preferred due the longer time-scale of inertial
effects. [18]

The inertial force Equations 2.44-2.50 provided by Schmehl et al are sophisticated and require
knowledge about the turning speed of the kite. The latter is a parameter one could calculate knowing the
tangential speed and the turning radius at the instantaneous moment. The turning radius is difficult to
be estimated without any information about the next steady-state point in time series. This complication
could also be a reason for the exclusion of inertial forces from the current QSM. One could overcome
this problem with a known or controlled turning radius which may require testing with simplified model
framework first to see how the QSM acts with the included inertial effects.

2.5. Problem Definition and Research Goals

The fundamental theory of pumping kite power system described in Section 2.4 brought up the possi-
bility to solve a flight of a kite in series of steady-state force equilibriums. From the consecutive force
balances and the respective traction power calculations, the energy production of a pumping kite sys-
tem can be approximated. Accurate calculations using weather data and system parameters could
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serve as a selling argument for the concept and prove the suitability of such a system to meet the
demands of the electricity consumer.

Yet, the deviations in output power of the actual system and the current QSM have shown room for
simulation tool improvements. This is described in Section 2.4.4. Two simplifications that may play a
role in this inaccuracy of the QSM are the exclusion of inertial forces, mainly the centrifugal force, and
the use of constant angles for the reel-out flight representation. The inertial forces for flexible wings
are described to be small and happen in a very short time span. The time period is so small that the
turning maneuvers are estimated to be irrelevant in the calculations and the flight of the kite becomes
describable as series of steady-states. The constant angle logic develops this idea even further by
stating the time-series of different angles the kite experiences when flying a figure of eight could be
condensed to a single azimuth-elevation combination and still calculate the same time-averaged power
as it appears in the measurements. The loss in power output accuracy by further distancing from
describing the flight maneuvers in the simulation becomes of question. The relevance of this topic
grows as the mass of the kite increases inducing bigger dynamic effects during the flight. Based on the
previous train of thought the thesis has the following goal.

To improve the accuracy of QSM simulations by including more information about the turning
maneuvers of the kite.

To have a structured approach for reaching the ultimate target, the thesis project is focused on the
main research question, supported by various sub-questions divided into two categories. The main
research question can be stated as:

How much accuracy in the QSM can be gained by including additional details on the turning
maneuvers of the kite?

To respond to the main research question, two categories of sub-questions are addressed. Firstly,
the impact of inertia on the flight behavior during turning maneuvers should be quantified. Secondly,
improvements to the reel-out flight path representation in the QSM should be investigated. These topics
are expanded by grouped sub-questions as follows:

1. How can the simulated reel-out turning maneuvers be resolved with inertial effects?
* What information about the turning maneuvers is required to include the inertial effects in
the simulations?
* How can the inertial force equations proposed by previous authors be verified?

» What modifications to the QSM are required to include the inertial effects in the steady-state
solution?

* How much does the accuracy of simulation improve by including inertia in the maneuvering
flight of the kite?

2. Which representative reel-out flight path in the QSM simulations yields the most accurate power
output?
* How can the accuracy of QSM with alternative reel-out flight paths be quantified?

» What is the accuracy of solving the reel-out flight path along a straight line with constant
elevation and azimuth angle based on an average reel-out state of the kite?

* What other parameterizations of reel-out figure of eight motions can be used and what impact
do they have on the QSM power output accuracy?

* Which figure of eight shape yields the maximal time-averaged power output?



Inertial Effects in a Modified Simulation
Framework

The impact of inertial effects on soft wing kites is discussed previously in Section 2.4.5. The inertial
effects are considered to be rather small on these type of wings and happen in a short timescale. This
has been a reason for the exclusion of inertia from the QSM. However, as the mass of the kite increases
or the QSM is expanded to a rigid wing flight the inertial effects become relevant. In this chapter the
inclusion of inertial effects is investigated in a simplified simulation framework which could be expanded
to a regular reel-out figure of eight in a follow-up study.

The chapter starts by setting up simulation frameworks of circular and helical flight. This is followed
by an analytical development of tether force and power equations considering the inertial effects for
these frameworks. The equations are presented in Cartesian coordinates. The implementation of
inertial effects in spherical coordinates and in the QSM is presented in the second half of the chapter.
In the end helical flight simulations are run using the QSM with inertia and the analytically developed
set of equations. This is followed by a discussion of the results.

3.1. Circular and Helical Flight Frameworks

The inertial forces in the QSM and in spherical coordinate system combine a set of complex equations of
motion (Equations 2.44-2.50). Furthermore, flying crosswind figure of eight maneuvers with a tethered
wing introduces a new parameter of turning radius when calculating the impact of centrifugal force in
the force balance of the kite. The necessity of this turning radius (R) parameter could be presented as
centrifugal force equation

Viw

By =m—, (3.1)

where m denotes the mass and vy ,, the circumferential speed of the kite. This parameter R is unknown
for asymmetric figures of eight. To overcome the absence of a known turning radius and to investigate
the centrifugal force impact on tether force and power calculations the flight path is simplified to a helical
flight with fixed R in Cartesian coordinates. This new framework is an extension of Loyd’s fundamental
theory of crosswind kite power with inertial effects and verifies the complex implementation of inertial
forces in the context of QSM. [8]

Building a simplified flight test case starts by defining the geometric parameters. Two different flights
are distinguished here: a circular flight with constant tether length and a flight on helical trajectory while
tether is being reeled out. For both scenarios the tether sweeps a conical surface around axis coinciding
with wind vector v,, and the turning radius R is kept constant throughout the simulation. The described
cases can be seen in Figures 3.1 and 3.2 where the kite is shown as a point mass K.

A new reference frame (x,, Y., Z,) is introduced to describe this particular flight. It rotates around
v,, With a constant angular speed w. The x,, of the new reference frame coincides with the direction of
x,, of wind reference frame while the direction of z, is given with 6,, from z,, according to the right hand
rule when thumb is pointed in the wind direction. The parameters (xy, yx, z;) define the position of the

19
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€w

Figure 3.1: Geometric parameters of a circular flight path at constant tether length

€, w

Figure 3.2: Geometric parameters of a helical trajectory flight with reeled out tether

kite in Cartesian coordinates in the wind reference frame. Using Equations 2.18 - 2.20 the values of
these parameters are given as

X, =rcosficos¢p =rcosy, (3.2)
Yy, = rcos fsin ¢, (3.3)
z =rsinf, (3.4)

from which the radius of the circular path or in other words the turning radius could be derived as

R=+r2—x,2=7rJ1-cos?Bcos?¢p =r{1—cos?y. (3.5)
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These geometrical relations and the framework of circular or helical path provide the fundamentals
needed for extending the Loyd’s theory in Section 3.2.

3.2. Analytical Extension of Loyd’s Theory with Inertial Forces

The impact of inertial forces, especially the centrifugal force, on tether force and consequently on gen-
erated power is investigated as a free body diagram where the forces act on a point mass. For simplicity
the kite is located at the highest point in z,, direction with angle 8,, = 0° in the following analysis. This
means the kite is at the top of the circular or helical flight path and the directions of (x,,, v, z,) and
(xw. Yw» 2w ) coincide. The force balance equations formulated from the free body diagram could be con-
sidered as a core for the following analytical framework. The equations are developed in two groups.
First, the crosswind kite flight trajectory is a circle with constant tether length. The second group of
equations are developed for the helical flight trajectory which adds the effect of reeling factor to the
analysis. This part is investigated in Section 3.2.2. It is important to note only the inertial force impact
is analysed in the framework without considering any gravitational effect. This simplifies the problem
and makes the system changes caused by the inertial forces more perceptible.

3.2.1. Flying Perfect Downwind Circles

For this flight configuration the tether sweeps a conical surface with apex angle 2y and both the tether
length r and the turning radius R are constant. With constant y the speed of the kite traveling the circle
Yk IS equal to the tangential kite velocity v, , known from the spherical coordinate framework. This
equality is possible due the fact that both velocity vectors (v, & v ;) coincide with the intersection line
of the kite tangential plane (perpendicular to tether in spherical coordinates) and the crosswind plane
(perpendicular to wind vector). Therefore, the kite tangential velocity factor A defined as

_ Uk

A= v (3.6)
and the circumferential velocity factor 2 which one could calculate as

7= Jke

A= vy (3.7)

are also equal (1 = E) for this particular circular flight path. One could also substitute the tangential
velocity factor or the circumferential velocity factor with a special case of lift-to-drag ratio as

>y vk,w LO

A= v, =D (3.8)
where L, is the lift force projection onto x,y,-plane. Both, the projected lift force vector L, and the
drag force vector D act also on x,,y,,-plane (when 6, = 0° as here) in Figure 3.3. This figure is a top
view diagram of the flight. The substitution in Equation 3.8 becomes possible due geometric similarity
where drag force D is aligned with the apparent wind velocity v,. Equation 3.8 becomes a fundamental
relation for further developing the circular flight path case.

The analysis is based on four different possibilities for y all shown in Figure 3.4. These diagrams are
the force projections on plane II that can be seen in Figure 3.3. The particular plane I is formed by Lg
and the centrifugal force vector. The drag force vector D is perpendicular to that plane. The projection
of tether force vector F, onto plane Il is (F; + D) which originates from the basic principle of vector
summation and the definition of projection. One needs to pay attention the sub-figures differ between
y values but the angle is not marked in the diagrams since it is measured on x,z,-plane instead as
shown in Figures 3.1 and 3.2 but not on the special plane I1. The kite is pictured as a point mass (black
dot) in the free body diagrams.

The sub-figure A in Figure 3.4 depicts the hypothetical flight situation developed by Luchsinger
(2013) with tether aligned with wind and the centrifugal force being perpendicular to the tether. This
Luchsinger flight situation is also presented in a 3D view in Figure 3.5. In his framework the tether
sweeps a cylindrical path instead of conical, meaning the point where the tether is attached to follows a
similar circular path as the kite itself. The lift force vector L is rolled towards the centre of the circle with
an angle Yy to keep the kite in a circular movement and he develops a hypothetical minimal turning
radius R,,;, the kite can fly if Y = 90°. This R,,,;,, is defined as
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‘.
.

Figure 3.3: Top view of a circular flight. The kite is positioned at the highest point in z,, direction on the circular path and 6, =
0°. I is a plane formed by the centrifugal force vector (pointing towards the viewer) and L. That plane is perpendicular to D.

2m

Foin = 37 (3.9)

and becomes useful for nondimensionalizing the circular flight path equations in the following para-
graphs. [13]

Figure 3.4: Circular flight IT-plane view. Case distinction of centrifugal force impact at different y values.

In sub-figure B of Figure 3.4 another special case is shown where induced roll shifts L as much
from —(F; + D) alignment that L becomes equal to L,. That means for the case B where L = L, the
circumferential velocity factor Equation 3.8 could be expanded to

- D L

L
=g =5=E (3.10)
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Figure 3.5: Kite flying a circle. The hypothetical case of tether aligned with wind developed by Luschsinger (2013). The kite is
rolled towards the centre of the circle with an angle yg. [13]

where E is a nondimensional lift-to-drag (L/D) ratio. The angle y where this special case becomes
possible is denoted as y*. To calculate the latter a brief digression from Il-plane is required to x,,z,-
plane (or x,z,-plane due 6, = 0°) where y is measured. The centrifugal force already acts on the
plane under scope but Lq projection from II to x,, z,,-plane becomes L, + D. One can observe from the
top view Figure 3.3 that these L, and D vectors form a right-angled triangle and Pythagorean theorem
can be used to calculate the magnitude of that projection. On x,, z,,-plane the projection of the special
lift force and the centrifugal force combine a new right-angled triangle and the tangent function property
of opposite and adjacent side division can be used to calculate y* as

2 =2 2
N mug , 2mEA (vw)
any* = = —
2 2 ,
L+ D% pser(fe) +1 0
P , (3.11)
ERan A Rmin ( E )
R [ ) 2 R \VEZ+1
1 +1 (,1 + 1)

where Equation 3.10, the definition of lift force (Equation 2.2) and R,,,;,, (Equation 3.9) are used together

2
with (”—W> substitution as

Va

VE =V, + VS (3.12)

2
(”—“) 741 (3.13)

Vw

The angle y* is necessary to distinguish between the sub-figures ¢ and D.

Heading back to II-plane and Figure 3.4, in the case of C the angle y is larger than y*, whereas
for the case D it is the opposite. This distinction is necessary for the creation of force balance. Here
vector & is used which shows the difference between L and L, and has a positive direction pointing
downwards. Vector § needs to be added to the centripetal force (red vector) to form a right-angled
triangle together with —(F, + D) and L, in the case of C. For small angles of y (case D) § changes
direction by becoming —4 and needs to be subtracted from the centripetal force for a similar right-angled
triangle to be present. The centripetal force has the same magnitude as the centrifugal force. Using



24 3. Inertial Effects in a Modified Simulation Framework

case-dependent relations and the fact that the length of —(F; + D) vector on I1-plane can be calculated
with Pythagorean theorem as F? — D? the following force balances could be written

2

v2

Lg+|{m—— — =F*—D* fory <y= .

2 ’;‘*’ 2 —Dp?, f (3.14)
v2 2

Lg+|{m—— + =F—D* fory >y=x*. .

z R“’ 5 2_Dp? f (3.15)

In a combination with the top view diagram (Figure 3.3) additional relations using the Pythagorean
theorem are defined

124682 =12 (3.16)
L3 + D? = F? cos?y. (3.17)

Combining all these four Equations 3.14-3.17 together the final force balance becomes

2 2 2 2
2, [\ IE+D
LA+ |m——=+ [[2-1%2) = - D2 3.18
0 ( R — 0 cos?y ( )

Equation 3.18 is solved as

v 13 + D?
12 Lo 4 Ji2-13) =2 — D?
0+<m R — 0) cos?y
2
VE o »_2) _ L§+ (@ —cos?y)D?
m—e 4 22 =
R cos?y
2
VE o ,_ 2\ _ 1—cos’y 5 319
mop = 1y) = — e (1 + %) (3.19)

mv,%lw_i_ L\ L_(,Z:siny Lo 2+1
DR — D D cosy D

where Equation 3.8 (not to confuse with Equation 3.10 which is valid only for y = y*) and the nondi-
mensial lift-to-drag ratio E = % are taken of use. Using the relation where the drag force definition
(Equation 2.3) and Equation 3.13 are used

2 2 2 2E
%W: Yw__ - (3.20)

1 2 2 4
~PSCovE  psc, (/1 +1) pSC, (/1 +1)

the force balance Equation 3.19 becomes

2mE
pSCLR_‘/ /'l —tany\’ +1 (3.21)

With the definition of R,,;, (Equation 3.9) this can also be written as
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A EZm 1+ E? -1 _y
1+/1)
. (3.22)
-2 =2\ 2
A Ry E? -1
3E T;m_ — = tany.
2 1+

(147)

Equation 3.22 could be considered as the final nondimensional form of a circular flight force balance
and can be used to find 1 through iterations at given E, R, R,;, and y. With further approximations
about the flight framework one could simplify the Equation 3.22 to eliminate the iterative technique from
the solution process. These approximations are investigated in Section 3.2.3.

Once the circumferential velocity factor becomes a known variable for the circular flight simulation,
tether force could be calculated. But developing an equation for the tether force requires first some
modification to the drag force definition (Equation 2.3) which makes the usage of Equation 3.13 later
possible. The drag force becomes

2

1 C v
- _ 2 2 a
D= ZpSCDva 2pS <Uw> , (3.23)
where lift-to-drag ratio as E = = is implemented. With Equations 3.23 and 3.17, the latter being taken

directly from the top view dlagram of Figure 3.3, the step-by-step buildup of the tether force equation
could be written as

J2+D% 1 pscC ? =
t= cos "~ cos 30 cos pZELU2 (U_a> A +1
Y Y Y Wi (3.24)
1 pScC, 2 1 pSC, 2
/’1 1 /1 +1= v2 </1 1)
cosy 2E + cosy 2E +
By substituting some of the parameters with the dynamic wind pressure
1
q= 5pPviy (3.25)
the non-dimensional form of the tether force becomes
3
E__L (12 + 1)E 3.26
qS  Ecosy ' (3.26)

Since the power generation requires tether to be reeled out and this is not the case for the simple circular
flight the particular framework is just limited to tether force. The power equations are presented in the
following section describing the helical flight.

3.2.2. Flying Downwind Helical Trajectory

In this flight configuration the tether sweeps a conical surface around the wind vector v,, and R is kept
constant similarly to the circular flight situation with the exception the tether is now reeled out. This
leads to a helical flight trajectory and changing angle y. For simplicity the speed in downwind direction
U« 1S kept constant. The latter is a new parameter which could be calculated with

Vkx = fwi» (327)

where f, is a constant non-dimensional downwind speed (not to confuse with the reeling factor f).
However, v , is not the only new velocity component in this helical trajectory path. A small velocity
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vector is also induced by the changing y value in this type of flight. This is supported by the reel-out
speed of the tether. The relation between these three new velocities is shown in Figure 3.6 which is
now the side view of the flight and not showing II-plane. For simplicity the kite is still positioned at the
top of the flight path (6, = 0°) and the directions of (x,,, Y, zw) and (x, Y., Z,) coincide, meaning the
three velocities act on both x,, z,-plane and x,,z,,-plane in this diagram.

Figure 3.6: Helical flight side view with tether reeling out, decreasing y and constant R

Based on Figure 3.6 one could write v, , using the Pythagorean theorem as

Uiy = (frw)? + (r7)?. (3.28)

To keep the R constant the velocity in z,, (and here as well in z,,) direction needs to be zero. The
velocity in downwind direction is perpendicular to z,, and does not have any impact on it. The same
goes for the circumferential velocity v ,,. Using the other velocity components the following relation
becomes present

Uz = 0= fv,siny +rycosy
0=fv, tany +ry
ry = —fy, tany (3.29)
7
y = —fTW tany.

With Equations 3.28 and 3.29 a connection between the non-dimensional downwind speed f, and the
reeling factor f could be drawn as

vl%,x = (fvw)z + (fvw)z tan’ Y
vZ, = (1+tan’y)(fvy)?

Vkx = fl +tan®y(fu,) (3.30)

Uk = f 1,
X cosy W
where
f
_ ) 31
fe cosy (331)

In the helical trajectory flight with additional velocity components Equations 3.8, 3.12 and 3.13 do not
hold anymore. Therefore, to expand the force balance equations in the helical flight these relations need
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to be redefined. With v, acting in the direction of wind and using Equation 3.31 the circumferential
velocity factor 2 could be written as

vk,w — L_O
Vw — Vkx D
Lo
Ukw = E(vw — V)
3.32
D Uy,
- L
Z=2(1-f).
The Equations 3.12 and 3.13 become
vg = vl%,w + (v — Uk,x)z (3.33)
2
—2
(v—“> =7 +(1-f)2 (3.34)
vW

These Equations 3.32 and 3.34 together with the definitions of R,,;, (Equation 3.9) and lift (Equation
2.2) could be used in the force balance Equation 3.19 to adjust for the helical flight trajectory in the
following way:

(3.35)

A R,,; 2 1 _2 1
S O e
7 +A-£) ) )

Equation 3.35 describes the force balance of the kite flying helical trajectory and could be used to
iteratively solve for the circumferential velocity factor . However, this equation can be simplified further
by introducing another non-dimensional parameter p which is a relation of A and f:

(3.36)

With u Equation 3.35 becomes

(3.37)

R. . :
# E—/—" 4+ E2 — 2 =tanyJu? +1,

u>+1" R
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which is the final non-dimensional form of the force balance. For y < y* one uses negative sign in front
of the left hand side square root and for y > y* the positive sign becomes relevant. Equation 3.37 will
be used in Section 3.4 for a iterative solution example in the helical trajectory flight.

The tether force equation for this framework is developed similarly to the circular flight. The dif-
2

ference originates from =2 and (v ) which according to Equations 3.32 and 3.34 have an additional
component of f,.. Using Equatlons 3.23 and 3.17 the tether force can be written as

t= cosy  cosy D

2
JI2+D D L
0 = <—°> +1=

1 pSCL 2[
- 7+ (- £
cosy 2E (3.38)
1 pSC, 2[ ] 1 [—2
= 1-— - 1-— 2
o5y 28 W [F FA- £ T L +-f)
1 pSCy. 2[ ]
~ (1-f,)cosy 2E A A1)
With Equation 3.25 the non-dimensional form of the tether force for the helical flight is
ke ! [ +(1- ] 3.39
as " U-focosy B [+ TR 59)

The power generation with the kite flying helical trajectory becomes possible since tether experi-
ences reel-out velocity v,. This velocity given by fv,, is changing with the angle y to keep the constant
speed vy, in the downwind direction. The power is calculated as a multiplication of this tether velocity
v, and the tether force F,. With the help of Equations 3.38 and 3.31 the power equation is expanded as

P = Fv,
1 pSCy, 2 [ ]
T (- focosy 2E A +Q =) fow
S s 72 z (3.40)
= f p va3v I:/,{ +(1—fx)2]2
(1-fy)cosy 2E
3
_ fx  pSC 3[ ]
B (1 _fx) 2E A + (1 fx)
The power density in wind is computable with
1
P, = Epv‘f, (3.41)

and by using that equation one can give a non-dimensional fraction of power being harvested with the
given kite setup and flight trajectory. This finalized power equation is

3
Pk

. s
=S ToE s [,1 +a-£2" (3.42)

3.2.3. Approximations for Analytical Simplifications
Section 3.2 extended Loyd'’s fundame_ntal flight theory with centrifugal acceleration and Equations 3.21
and 3.37 were developed for finding A4 and u using the iterative process. These values could be used
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for the non-dimensional tether force calculations in Equations 3.26 and 3.39 and for the helical flight
power estimation in Equation 3.42. However, with further approximations for special cases of flight
one could remove the iterative technique from the solution finding process, making it much simpler.
Additionally, some of these approximations could tie the non-dimensional power Equation 3.42 to theory
developed by Luchsinger (2013) where tether is always aligned with wind (shown in Figure 3.5). The
approximations are presented in two groups: first for the circular flight and then followed by the flight
on helical trajectory.

Approximations for Circular Downwind Flight

The first approximation is made for the fast-flying kites on the circular path. This means the circum-
ferential kite velocity is much larger than the kite-experienced wind velocity: v, > v,. That leads
to

Va = Vk,w (343)
-2

— _2
A»landl +1=21. (3.44)

Equation 3.21 could be written with these simplifications as

E Rmin —2

w o EE2 -1 = Atany. (3.45)
By defining terms a and b
_ ERmin
a=— (3.46)
b =tany (3.47)

the equation becomes

— -2
a—bli\/Ez —71 =0. (3.48)

Equation 3.48 is a quadratic equation and could be_solved analytically. To keep the solution mathe-

matically feasible E > 2 all the time. The maximum Amax = E is also Loyd’s solution for f = 0.
The second approximation goes for aligning tether with wind. This gets closer to the theoretical
solution provided by Luchsinger. When y = 0 the following relations are present

tany =0 (3.49)
y < y*, only ”-” used in the force balance. (3.50)

Equation 3.45 reduces further to

R \2 (3.51)
(%)

T _ Rmin
P 1o (B’

which provides a solution for 2 without the use of any quadratic equation solving techniques.
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Approximations for Helical Downwind Flight
The first approximation in helical downwind flight is similarly to circular flight made for the fast-flying
kites. If u is considered to be u > 1 then Equation 3.37 could be written as

R. .
E% +VE? —u? = utany. (3.52)

This means E > u for a real solution and consequently from the definition of u (Equation 3.36)

E> (3.53)

1- fx
If £, = 0 and the kite flies circles then imax = E. For any f, > 0 the value of Zmax =E(1-f).
The second approximation aligns tether with wind, meaning Assumptions 3.49 and 3.50 are valid
again. This makes Equation 3.52 into

2
R.. :
2 _ 2 _ min
2 3.54)
Rmin (
R

By using the non-dimensional power Equation 3.42, the newly defined Equation 3.54 for 1, the assump-

tion of fast flying kite 2 > 1 — £, and tether being aligned with wind f = £, one could find similar power
equation to Luchsinger:

P =3 f C

P,S 1-fE

Rmin
=E3(1-/)3 [1 - (T)

= CE (- f)? [1 - (RL>

3
2

T-FF (3.55)

Using optimal reeling factor f = § the equation becomes

272
P 4 R
T _* 2 _ min
s = CLE [1 ( : )l , (3.56)

opt

which corresponds to Luchsinger (2013) Equation 3.53 from [13]. This also verifies the theory and the
assumptions made in the analytical framework so far.
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3.3. Inertial Forces in QSM

The previous Section 3.2 developed analytically the equations for including the inertial force impact in
the steady-states of the kite. The circular or helical flight framework was given in Cartesian coordinates.
In the QSM, however, the centrifugal acceleration and the other inertial forces act in the spherical
coordinates. In this coordinate system the inertial forces are given with Equation 2.44. The kite velocity
is decomposed into three components in Equations 2.45-2.47. These are the projections of v in
three directions: (r, 8, ¢). The corresponding accelerations in Equations 2.49 and 2.50 are the time-
derivatives of § and ¢. Considering that the time-derivatives of the tangential kite velocity vy and the
radial kite velocity vy ,- are small due steady-state simulation, meaning

Uy, ~ (3.57)

Uiy = 0, (3.58)

one could find the accelerations in e, and e, directions in the following way:

5

ao d (Vg —TVg,COSY+T (1‘7,(,1 COS X — Uy X Sin )()
dt dt T
—TVy 1 COS X — TV X SIN Y TUgrCOSY TV ¥Siny
72 - 72 - 72

Vg r COS X 7;+'t Ay f‘+'t -5 7;+'t
" ~tytany)=-——cosy| -+ ytany | = -t xtany

(3.59)

and

¢ = dtza r sin@

—Vy . Sin y(7sin 6 + r6 cos 0) + r sin 0 (Vg sin y + vy ¥ cos x)

B d¢ d (v,m sinx)

r2sin’ @
_ —TVSinfsiny — rvk_ré sin y cos § + rvg .y sinf cos y (3.60)
r2 sin® 6
_ PUeSiny  Ugeycosy Vg Osinycos®  veesiny (71 .1
"~ rZsin6 rsinf rsinZ 0 __Tsin6<7_*_xtan)(+ tanB)

Ay, sin 7 1 .1 T 1 .1
== X(;—;{ +6 >=—¢<;—;{ +6 )

r sinf tan y tan 6 tan y tan 6

The Equations 3.59 and 3.60 are equal to Equations 2.49 and 2.50, respectively, which are provided
by Schmehl et al.

It can be observed from the spherical coordinate inertial equations and the steady-state model
description presented in Section 2.4 that all the other parameters except y are already used in the
QSM iterative algorithm. This single undefined variable y, named course rate, shows at what speed
the kite tangential velocity v, . changes its direction on the tangential plane. The course rate has a
similar purpose to the angular velocity w acting on the crosswind plane in the circular/helical flight.
The positive direction for both w and y is defined with the right-hand rule when thumb is pointing in
the direction of wind. This is symbolized in Figures 3.7 and 3.8 where the connection between the
crosswind and the kite tangential plane in circular/helical flight framework is shown. In circular flight
the velocity component caused by the changing y value is nonexistent since the tether is not reeled out
and y is kept constant.

In order to perform the force balance calculations in the circular or helical flight case with the QSM it
is essential to first link the positional arguments of the kite between the Cartesian and the spherical co-
ordinates. With Equations 2.18-2.20 (r, 8, ¢) values could be acquired. For course angle y and 6,, the
connection becomes much more difficult since it is dependent on the direction of the circular movement.
Additionally, these angles are measured on different planes: y on tangential plane 7 (perpendicular to
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tangential plane

crosswind plane

Figure 3.7: Crosswind plane in helical flight. Looking into up- Figure 3.8: Tangential plane in helical flight. Looking into up-
wind direction (e, pointing towards the viewer). wind direction (e, pointing towards the viewer).

tether) and 6, on crosswind plane C (perpendicular to wind). As the kite rotates the angles between
these two planes change. The following provides a description on how to link 6, and y. After that
equations for course rate y are presented.

The course angle y is measured on 7 plane from the positive direction of ey to vector v, .. The
angle 6, shows the directional difference between the wind reference frame unit vector e,,, and the
kite reference frame vector e, ,, on plane C. The connection between the two angles in scope has four
components and their required projections from one plane to another. These start from the vector e4
and end with v, . which give the value for y. The four steps are presented in form of a list and followed
by a longer description of each element.

+ Find the measured angle from e4 to the projection of e, ,, on plane 7.

* Investigate the change in angle 6,, when the latter is projected onto = and becomes 6,,,. This
defines the angles between the projected e,,, and e, .

* Look how the angle measured from e, , to v, ,, may change due C-t projection.

+ Geometrically acquire the angular difference between v, ,, and v, , that could be observed from
Figure 3.8.

The vector ey shows the direction of elevation/inclination change in spherical coordinates and is
pointing downwards on plane 7. In Cartesian coordinates z, has somewhat similar purpose with a
difference the unit vector e, ,, is pointing in the increasing direction of elevation. Figure 3.9 shows that
the vector e, ,, can be projected onto tangential plane with the elevation angle . The projection on ©
becomes e, ,, cos § and aligns with ey but in the opposite direction. Hence, the difference between the
two vectors, e,,, cos f and ey, is m.

To investigate the change of 8,,, when the latter is projected onto tangential plane as 6,, ;, an ad-
ditional projection of vector e, , is required. Since this vector acts on the same plane where angle y
is measured on, the projection becomes e, , cosy. As one could see from Figure 3.9 the vectors e,
and e, ,, and their projections on plane t formulate an oblique pyramid. This geometric shape could be
used to define the angle 6, , between e, , cos f and e, , cosy.

Figure 3.10 shows the base of the formed pyramid. One needs to calculate the edge x which is
necessary for the triangle plotted in Figure 3.11. The latter is the lateral face of the pyramid on tangential
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1. e,y cosf

2. e,,cCO8Y

€,w

€xw

Cyw

Figure 3.9: Intersection of crosswind plane C and tangential plane 7. Vectors with solid lines act on the original planes: e,
and e, ,, on plane C and eg on plane 7. The vectors with dashed lines indicate the projections of unit vectors from crosswind C
to tangential plane 7. Together with the original vectors they form a pyramid.

x T plane cut

Figure 3.10: Base of the pyramid formed by vectors e,,, and Figure 3.11: Lateral face of the pyramid shown in Figure 3.9.

e, and their projections e,,, cos 8 and e,,, cosy onto tan- This triangle has the projection of 6, onto tangential plane:

gential plane T O,z

plane and has 6,,, as apex angle. The edges of the base (Figure 3.10) can be calculated with the
projections of unit vectors. Here the vector notation is dropped and the edges are given as scalar
values. From the same angles  and y one could find two sides for the base by using trigonometric
functions. The side that acts on plane C is also the base for isosceles triangle formed by e, ,,, e, ,, and
the angle 6, between them. The property that the unit vectors are the same length and the height of the

triangle splits angle 6,, into two is taken of use. Two right-handed triangles each with a side of sin bw

are formed. The sides are summed together to find the third edge for the base of the pyramid. Since

the unit vectors e have a scalar value of 1, the missing side x is simply calculable with the Pythagorean
theorem as

2

X = (2 sin %") — (siny — sinﬂ)z. (3.61)

Now all the sides of the triangle shown in Figure 3.11 are known and one cold calculate the value
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of 8, ; by using

(3.62)

(b2 +c? —a2>
A = arccos| —— |,

2bc
where A denotes the angle (here 6, ;) and a, b, ¢ are the sides, a being opposite to A. [2] From this
formula the value for 6,, , becomes

.26 . .
1—2sin 7“’—smﬁsmy

0y = arccos (3.63)

cos B cosy

The third step in the search for y equation would be to look at the angle formed between the projec-
tion e, , cos y and vy, ,, on the tangential plane. The circumferential velocity acts on the intersection line
between the planes C and t. The original vector e, ,, is perpendicular to the velocity vector. Due these
properties the unit vector would be rotated around the velocity vector with an angle y. This means the
projected vector e, ., cos y retains the perpendicularity to v, ,, and one could mark the angle between
them as =.

The last missing angle to compose yx is between the two kite velocities (v ;, v ) on plane .
Looking at Figure 3.8 these two vectors form a right-angled triangle with the small velocity component
caused by the changing angle y due reel-out. This enables the use of a trigonometric function in
the calculation of angle between v, and v ,,. The small velocity component of changing y can be
calculated with

ry = —fy, tany, (3.64)

which originates from Equation 3.29. One should note since in helical flight the value of y is negative
due decreasing y value in the reel-out process, a negative sign should be in front of the term to use it
in the calculations.

Four different angles (m, 6, ;, g and the angle from the trigonometric function) set the value for y
from eg to v, ; in the helical flight framework when the kite is moving in the positive direction of w (or y).
As the circumferential kite velocity direction is flipped (flight opposite to the right hand rule) the course
angle becomes smaller by  and the value from the trigonometric function should be subtracted as well.
The latter can be explained by the shift from vy, ,, to v, ; which happens in that case in the negative
direction of y. By composing the four step analysis into two cases for course angle, dependent on the
direction of the circular movement, the following y equations could be defined

3 —
¥ = (9(‘,,, + 7”) + arcsin( - y)) dir. according to right hand rule (3.65)
k,T
X = <9w_r + g) — arcsin (; y)’ dir. opposite to right hand rule (left hand rule), (3.66)
k,T

where 6, ; (Equation 3.63) is the projection of 6,, on T and ry is the velocity caused by the changing
cone angle (Equation 3.64). The calculated course angle can be used in the inertial Equations 2.44-
2.50.

The next step would be to define the angular speed on the tangential plane which is the course rate
x- Since the angular velocity w is a division of the kite velocity component acting on the crosswind
plane and the turning radius being perpendicular to that velocity vector

vk,w
w=—p (3.67)
one could find the course rate using a similar logic. This means the calculation components need to
be projected from the crosswind to the tangential plane. The circumferential kite velocity v, ,, becomes
the tangential kite velocity v , and the velocity-perpendicular component of R is used. Again two cases
are set as the positive direction of course rate is defined with the right hand rule. The course rate could
be written as
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v, v,
¥ = ;j = ot , dir. according to right hand rule (3.68)
2

Rcosy |1 — (i)

Vit

x= Der _ Pkt , dir. opposite to right hand rule (left hand rule), (3.69)

R, 2
Rcosy 1_<v_y>
k,T

where R is the constant turning radius of the circular/helical path and R, is the projection of that radius
from the crosswind to the tangential plane (R cos y) and then the perpendicular component to v, , taken
from that projection.

These course angle and course rate calculations with Equations 3.65, 3.66, 3.68 and 3.69 are only
valid for that particular circular or helical flight framework investigated in this chapter. If more general
course rate calculation for solving the figures of eight becomes of interest one needs to find the turning
radius in different ways as described in Section 3.4.1. The defined equations for linking the analytical
approach coordinates and velocities to the QSM framework provide all the necessary parameters to
calculate the inertial force with Equation 2.44 and add it to the force balance Equation 2.42 to solve the
steady-states of the kite in a simplified simulation framework.

3.4. Numerical Example of a Helical Trajectory Flight with Inertial
Effects

The numerical example of the helical trajectory flight has a twofold purpose. First of all, the simulation
example provides a validation for the analytically developed force balance with the inertial equations
(hereafter analytical approach) in Section 3.2 specifically tailored for this type of simulation problem.
Similarly, the example includes the adjusted QSM with the inertial forces. Since the only difference
between these approaches is the used coordinate system the output results are expected to be identi-
cal. Secondly, the helical trajectory flight example serves as a powerful tool for observing the impact of
inertial forces on the kite and compare the massless kite flight situation with the one with inertial forces.

Both approaches for the flight problem follow the corresponding theory presented in Sections 3.2
and 3.3. To make the comparison between the two methods simpler the effect of gravity is eliminated
similarly to the analytical approach from the QSM force balance. The latter enables another simplifica-
tion in the simulation: angle 6,, and the projection onto 6, ., can be kept constantly zero throughout the
example. This is based on the following logic.

» The gravity could have a boosting or decreasing effect on the output of the simulation which is
dependent on the orientation of the kite velocity vector v,.

» Theinertial effects have the same impact on the kite no matter in which point of the helical/circular
path the kite is located. The centrifugal force is always pointing outwards from the centre of the
flight path.

» Without the effect of gravity in uniform flight conditions the simulation could be carried out in a
way that the kite is always located in a point where 6,, = 0°. Only the radial coordinates of the
kite change due the reel-out speed.

* This assumption simplifies the Equations 3.65 and 3.66 which can be used without 6,,  in them.

The analytical approach starts by u calculation through iterations. The initial guess for u; could
be u; = 0. To find the value for u;,, one could square Equation 3.37. It is important to note this
mathematical operation of squaring simplifies the problem by eliminating the sign distinction from the
analytical approach. The equation for u;,, could be written as

2

2 R. .
Hiv1 = JEZ - (tany /#f +1- #Z”jr TE ’;”l) ,fori=1,..,n. (3.70)
L




36 3. Inertial Effects in a Modified Simulation Framework

where for the first iteration the position of y; is filled by p,. For the consecutive iterations the value for u;
becomes p;,, calculated in the last cycle up to the point where y; ., = p;. With the calculated u value
the circumferential velocity factor A, the non-dimensional tether force and the power can be found by
using Equations 3.36, 3.39 and 3.42.

In the QSM the inertial force given with Equation 2.44 is added to the force balance. This simulation
tool has an iterative solving mechanism built around the kinematic ratio. That parameter is missing
from the analytical approach but could be calculated by writing the apparent wind components in the
helical flight framework as

Vor = Jv,f.w + (U — Vi x)? sin’y (3.71)

Vgr = (Vw = Vk,x) COSY. (3.72)

From the kinematic ratio Definition 2.32 and Equation 3.32 this leads to

2
2
= + tan®y
(Vw — Vkx)? cos?y (Vw — Vi) cosy]

2 _ 2 win2
K_\]vk,w+(vw Vgx)?sin”y _\/ Uk

(3.73)

— 2

A
=tany || ————| +1
[(1 ~f) smyl
Therefore, the kinematic ratio becomes suitable for the comparison of two approaches.
In the QSM the tangential kite velocity factor 1 is the key output parameter for describing the flight of
the kite. In the analytical approach it is substituted with the kite circumferential velocity factor 1. To de-

fine how 2 relates to 1 Equation 3.64 is used. When the kite flies the helical trajectory the circumferential
velocity factor can be written as

1= \//12 — f2tan’y = \//12 — f2sin®y. (3.74)

With the linked parameters of kinematic ratio and circumferential velocity factor all the necessary
tools for the two approach comparison are defined. In this example Kitepower 20 kW pumping kite
power system is used. The properties for the chosen kite are presented in Table 3.1. It is relevant to
mention since the analytical approach considers only the inertial effects on the kite and the impact of
tether is eliminated from the framework the same is done for the QSM. This means the tether has only
length but no drag nor mass in the simulation.

20 kW Pumping Kite Power System Properties

Kite projected area | 19.75 m? | C, for powered flight* ~0.60 | Tether drag** Cp 1.1
Kite mass 22.8 kg Cp for powered flight* ~0.13 | Min tether force limit | 300 N
Tether diameter** 0.01m C,, for depowered flight* | =0.36 | Max tether force limit | 5000 N
Tether density** 724 % Cp for depowered flight* | =0.12 | Min reeling speed 0 %
Max reeling speed 10 2

Table 3.1: The properties of 20 kW Kitepower system. [28] The aerodynamic coefficients marked with one asterisk (*) are the
results of an optimization described in Section 4.1.2. The tether parameters marked with two asterisks (**) are excluded from
this simulation. Only the tether length is considered.

In this example the kite is made to fly a helical path in uniform downwind conditions with constant
speed in the downwind direction. The setup is similar to what could be observed from Figure 3.2 with
an exception 6, = 0° throughout the simulation. The R is kept constant meaning if the kite reels out the
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Helical Flight Properties
Wind speed 8.5 g Helix radius R 30m
Air density p 1.225 % Starting tether length 7514+ | 150 m
Downwind speed factor f,, | 0.37 Ending tether length 7,4 700 m

Table 3.2: Helical flight properties for the example simulation

cone angle 2y decreases. For the start and stop tether length, values which show the relevant case
distinction points in graphs are selected. The flight parameters can be seen in Table 3.2.

The simulations are run in two sets. First, the kite has the mass property defined and the inertial
forces have impact on the simulation outputs. As was already mentioned, the effect of gravity is ex-

cluded from the simulation.

In the second set of simulations the kite is considered to be massless.

This means only the aerodynamic and tethgr force act in the force balance equation. The results are
compared in circumferential velocity factor 4, kinematic ratio x, non-dimensional tether force and non-
dimensional power. These output parameters are plotted in Figures 3.12-3.15 and discussed in Section

Circumferential velocity factor dependence on tether length;
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Figure 3.12: Circumferential velocity factor 2 difference be-
tween the QSM and the analytical approach at helical flight
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Figure 3.14: % difference between the QSM and the analytical
approach at helical flight
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Figure 3.13: Kinematic ratio k difference between the QSM and
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Figure 3.15: % difference between the QSM and the analyt-
ical approach at helical flight

In addition to comparative parameters two relevant points are marked in the figures as red and blue
dots. The red marker shows the tether length which in triangular formulation with R would give y*.
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This angle is calculated with Equation 3.11 and symbolizes the point between the case distinction in
Equations 3.14 and 3.15. The other blue marker shows the point where the inertial forces when going
to either direction in tether length could increase the tether force (shorter tether lengths) or decrease
that parameter (longer tether lengths). The representative angle for this distinction is y’. The simulation
is at y’ when on plane II the vectors —(F; + D) and L are symmetrically set around L, the projection
of lift force on x,y,,-plane. Both vectors —(F; + D) and L have also an equal magnitude at this angle.
Figure 3.16 shows the special case for y = y'.

Figure 3.16: Helical/circular flight IT-plane view. The special case of y = y'. For larger y values the centrifugal force
contributes to the tether force. For smaller y the centrifugal force reduces the tether force.

One could calculate this ¥’ by knowing the value for y* and using formula

tany”*

2 )
which originates from the geometric similarity. The values for these angles in the particular example
case are given in Table 3.3.

tany’ = (3.75)

Case Distinction Angles

Sign distinction parameter y = 5.61°

Tether force increase/decrease distinction parameter y’ | 2.81°

Table 3.3: Case distinction angles in helical flight example

3.4.1. Discussions About Helical Flight Example

The observations and discussions in this section are mainly based on Figures 3.12-3.15 which provide
an overview for both approaches to the helical flight problem as well as bring out the unique properties
of inertial force impact dependence on cone angle. The following remarks could be drawn.

+ All the figures show a perfect overlap in results received with both methods. This means the
analytical approach validates the inertial equations provided by Schmehl et al and vice versa.

» The maximum value of parameter y,,,, is lift-to-drag ratio E. Since the downwind speed factor
f. is kept constant and 1 and u are tied together via Equation 3.36 the maximum circumferential
velocity factor under these example conditions cannot exceed the value of 2.932. This is marked
with the red dot in Figure 3.12. That observation also means the maximum power with inertial
force flight is reached at the very same spot according to Figure 3.15. From the power generation
perspective it is beneficial to fly turns which together with the turning radius R and the tether length
r would form the angle y*. Although, the power increase caused by the inertia in this example
from the massless flight is only 1.45% at the red marker position.

» The tether force does not peak at y = y=* but has bigger values at certain points where y >
y*. The justification for that kind of behavior originates from Equation 3.39 where cosy is in
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the denominator and division with smaller numbers occurs at larger y values. The 2 does not
experience sudden drop close to the red marker which could diminish the effect caused by cosy.

» The inertial force could also have a decreasing effect on the kite circumferential velocity 2, tether
force and power compared to the massless situation. That happens at angles y < y’, meaning
the turning radius R is very small in relation to tether length. Keeping in mind the principle of
power maximization then these small value of R & big value of r combinations should be avoided.
However, further distancing from the perfect downwind position with bigger flight path shapes and
R values could have the opposite effect on these three output parameters (4, tether force and
power). A follow-up study is required here.

* Despite the small change in 2 the kinematic ratio x remains similar for both the massless and the

inertial cases. This can be justified by the dampening effect of these 2 changes by mathematical
operations performed in Equation 3.73.

The helical flight at the perfect downwind conditions, without the effect of gravity and constant speed
v« IS an idealized flight situation. For further studies a step towards more realistic reel-out flight paths
(e.g. figures of eight) flown at azimuth-elevation combinations close to the measurement values would
be recommended. The value for turning radius R could be problematic in these cases. Three possible
ways to set R in these situations are listed.

* Make R a simulation control parameter.

» Use turning radius from the measurements. For instance, the average R of figure or phase could
be used as a constant.

* Include the coordinates of the previous or the following steady-state in the instantaneous steady-
state calculations. By observing the change in course angle the course rate can be estimated.






Modeling Pumping Operation

The certain level of deviation in the QSM power output from the measurements has been presented in
Section 2.4.4. This inaccuracy is considered to be caused by a set of simplifications and assumptions
in the QSM. One of these simplifications is the reel-out flight path used in the model. This chapter is
investigating different approaches to generate the flight path in the QSM during the reel-out phase. The
accuracy of these methods from an output power perspective is quantified. An attempt to optimize the
flight path for the output power maximization is also made.

The chapter starts by setting up reference QSM simulations. The idea is to compare the QSM
power output when flying different reel-out flight paths to the reference case. The first attempt for the
reference simulations is made by using the default QSM with the aerodynamic coefficients proposed
in Section 2.4.4. This is followed by a tuning of C; and C, as an optimization problem which sets the
reference simulations. The accuracy of a constant azimuth-elevation combination is investigated next.
The second half of the chapter focuses on finding a method for reel-out figure of eight parameterization
and the QSM power accuracy is estimated by flying fitted figures with the least geometrical deviation
from the measurement flight paths. The chapter ends with an optimization for power-maximizing figure
of eight.

4.1. Setting Up Reference QSM Simulations
The QSM calculates the instantaneous output power of a pumping kite power system by assuming
a force balance between tether, aerodynamic, gravitational and/or inertial forces. The model is built
on several assumptions described in Section 2.4. If the evaluation and improvement of some of these
assumptions becomes of interest one needs to have a fixed reference simulation case. Further changes
to the model would be compared to these fixed values. The objective is to provide reference simulations
using a set of measurement data and adjust the QSM inputs for that particular dataset.

The measurement data used for setting up the basis QSM simulations is provided by Kitepower B.V.
[9] With their 20 kW pumping kite power system Kitepower run 87 pumping cycles on 8 October 2019
in Valkenburg (the Netherlands). 86 of these cycles have a complete set of measurements together
with instantaneous and phase-averaged wind data. The latter has been transformed and reconstructed
into correct reference frame by Schelbergen and Schmehl as described in Section 2.4.4. For the QSM
simulations based on the data only some parts of the measurements are relevant. The following list
brings out these key parameters.

» Time [s] tells when each measurement is taken. The points are measured with 0.1 s interval.

» Coordinates of the kite. These are given in Cartesian coordinates in [m] but could be converted
into spherical coordinates. The coordinates include course angle y.

» Wind speed [m/s]. Both, the instantaneous and average wind for each phase in the correct ref-
erence frame are provided by previous authors (Section 2.4.4).

* Reel-out speed of the kite [m/s].

41
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+ Tether force [N].

+ Radial distance from the ground station to the kite [m]. This is considered as the tether length in
the QSM.

» Phase and pattern description. That indicates in which phase the kite is running in at the particular
time instance and which figure of eight is in action. The kite completes three figures of eight during
the reel-out.

The idea is to take the environmental properties, the coordinates of the kite together with the radial
distance from the measurements and based on the phase description calculate the reel-in or reel-out
power with the QSM. The target power originates directly from the measurements as the multiplication
of reel-out speed and tether force. For the reference simulation case the mean (or median) QSM error
from the simulations is fixed. Then for instance by implementing the simplification of substituting the
measurement coordinates with the time-averaged values using Equations 2.60 and 2.61 one could
calculate the new power deviation from the measurements and compare the results to the reference
simulation. This gives an estimation about the accuracy of an implemented change. To set up the
reference simulations with minimal error a suitable set of aerodynamic coefficients could be used as
QSM inputs.

4.1.1. Quantifying the Default QSM Accuracy

The accuracy of QSM is presented in Section 2.4.4 where Schelbergen and Schmehl run the QSM
simulations for the same set of measurements used in this section. They calculate the aerodynamic
coefficients as simulation inputs using Equation 2.66. However, the authors discuss these calculated
parameters do not reflect the reality due a stiff rod assumption for the tether. Based on that discov-
ery they tune the generic aerodynamic coefficients and run the QSM for all the measurement cycles.
Combining the retraction, transition and traction power they find the QSM to underestimate the power
with -26.4% in comparison to measured results.

In the context of estimating the accuracy of aerodynamic coefficients for setting up a reference
simulation reel-in and reel-out phases are the most relevant. The transition phase is much more com-
plicated in that sense the switching instance from the depowered flight parameters to the powered ones
may differ between the cycles. This makes it problematic to correctly calculate €, and C,. Therefore,
the QSM simulations are done here for the traction and retraction phase using as an input:

+ tuned aerodynamic coefficients proposed in Table 2.2;

+ system properties (except C;, and Cp) from Table 3.1;

+ exact kite coordinates from the measurements, including the radial distance;
* reel-out speed from the measurements;

+ average wind input for each phase.

The result is compared to the measurement power P, (t) of the same time instance t calculated with

B () = E (v (1), (4.1)

where F,(t) is the tether force of the same measurement point and v, (t) the reel-out speed. One arrives
at relative power difference [%] with

P(t) = PQSM(;) (—t)Pm(t)

where Pysy (t) is the QSM calculated power for that measurement instance, B, (t) the measured power
and P,(t) the power error. Equation 4.2 is used for the reel-out relative power difference calculation.
For the reel-in phase Fysy (t) and B, (t) switch positions in the numerator due negative power values
during the reel-in. That way a QSM negative error in relative power difference from the measurements
would be an indication the QSM output power is also more negative than what is measured. This
means in the model more energy would be consumed during the reel-in when compared to the reality.
Positive error would show the opposite.

x 100, (4.2)
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This type of simulation quantifies the default QSM accuracy as it is proposed by previous authors.
The reel-in and reel-out relative power difference between the QSM and the measurements can be seen
in Figures 4.1 and 4.2 where the averaged QSM output error is showed with red line, median error with
orange and the light blue line represents the target measurement value at 0% relative difference. The
calculation is done for all the measurement points in the phase for 86 cycles and the QSM relative error
is divided into 5% bins.

Reel-in phase power difference from measurements. Reel-out phase power difference from measurements.
QSM power with coordinates ¢, B & x from measurements. QSM power with coordinates ¢, B & x from measurements.
Target measured power Target measured power
800, == Mean QSM power diff. 2500 A ==+ Mean QSM power diff. [%]
Median QSM power diff. Median QSM power diff. [%]
20004
¥ 600 2
£ £
3 2 1500 1
bS] G
g 400 4 g
1000 -
2004
5004
0- 0-
—200 -150 —-100 -50 0 50 -100 -50 0 50 100 150 200
Relative power difference [%] Relative power difference [%]

Figure 4.1: Reel-in phase QSM relative power difference from Figure 4.2: Reel-out phase QSM relative power difference from
measurements. The used aerodynamic coefficients are pro- measurements. The used aerodynamic coefficients are pro-
posed in Table 2.2 posed in Table 2.2

Reel-In and Reel-Out Phase Default QSM

Power Relative Difference from Measurements

Parameter | Method Reel-in Reel-out
Median | -47.274% 1.219%
Mean -44.670% 9.441%

Power

Table 4.1: Reel-in and reel-out phase default QSM power output relative difference from the measurements. These numbers
are achieved by running the simulation over 86 cycles

Table 4.1 where the median and mean comparison results between the QSM power output and the
measured power are written brings the attention to a substantial error in the reel-in power accuracy.
The negative error is an indication the QSM on average or in median calculates to a bigger power
usage by absolute value than it appears in the measurements. The large negative error also shows
that even with the slightly tuned aerodynamic coefficients from the calculated values the misalignment
of tether force in reality is much different than assumed in the calculations. The overall QSM power
underestimation with the tuned aerodynamic coordinates presented by Schelbergen and Schmehl is
consequently mainly driven by the reel-in phase. The exact ratio of reel-in negative and reel-out positive
error for the overall cycle error depends on the duty cycle of these phases.

The results received in the reel-out phase have in contrary a marginal error. The median power
deviates from the measurements only by 1.2%. However, this result presents the accuracy of flying
measurement coordinates for the reference simulation. The error one gets representing the reel-out
flight path in the simulation differently than it appears in the measurements is currently unknown but
investigated in the later sections of this chapter.

Based on the observations of running the QSM with measurement inputs and C; & C values pro-
vided by previous authors the aerodynamic coefficients require further tuning to minimize the error
between the QSM outputs and the measurements. The error is significantly large in the reel-in phase
which should be in the focus of that process. Additionally, the same tuning methods could be applied
to the reel-out phase as well to eliminate even the smallest errors from the reference simulations.
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4.1.2. Aerodynamic Coefficients Optimization

To set up a reference QSM simulation which does not deviate in relevant results (power, kite velocity)
from the measurements, a new tuning for finding €, and Cj, is conducted. The aerodynamic coefficients
for the reel-in and reel-out phase are optimized using the best fit principle for the given Kitepower
measurement dataset. Since power is the ultimate output parameter of the QSM that is of interest for
the client-user of pumping kite power system the optimizer is set up for fitting the QSM output power to
the measurement power. To avoid the possibility of faulty measurements for some time instances in any
of the dataset parameters having a substantial impact on average power the median power difference
between the QSM calculations and the measurements is minimized instead. Since the median splits
the error distribution in half the error bin spread in both sides of the target value is expected to be more
homogeneous.

Yet, the power cannot be the only parameter used in the search for the best combination of lift and
drag coefficients. By looking at the non-dimensional power Equation 2.40 the ratio of lift and drag is
relevant for the power calculation. However, the same E could be achieved with various sets of C; and
Cp. Therefore, there is no particular answer for the exact values of aerodynamic coefficients. For two
optimization variables two equations to find the best fit for are required. The other parameter used for
fitting could be the velocity of the kite vj,.

The total kite velocity is given with Equation 2.28 and consists of the radial v, and the tangential
kite velocities vy ;. In optimization, v ,- can be imported directly from the measurements as the reel-out
speed of the kite. For v ; the tangential kite velocity factor 1 is calculated with QSM using Equation
2.54 which also directly depends on the values of C; and C,. One could observe that by looking at the
gravity-excluded version of 2 Equation 2.35 where the lift-to-drag ratio is included. Similarly to power
error Equation 4.2 the kite velocity error vy, , [%] becomes

Vi, osm (£) — Ve (1)
Uk,m (t)

where vy ., (t) is the measured and v o5y the calculated kite velocity for that time instance. With the
velocity of the kite and power two relevant target and QSM output parameters exist for the aerodynamic
coefficients optimization.

To set up the optimization problem the Sequential Least Squares Programming (SLSQP) and the
least square fitting technique are used. These terms are opened more in a form of a brief discussion in
Appendix A. Two different cases of optimization problems are distinguished here. The first optimization
finds C;, and Cj, for the reel-in phase. The second optimization calculates these coefficients for the reel-
out phase. Both cases are similar in structure but differ in measurement data inputs and optimization
variable boundaries set.

Vie(t) = x 100, 4.3)

Reel-In Phase Aerodynamic Coefficients Optimization

The aim of the reel-in phase is to restore the starting tether length for the reel-out phase. Since this
process consumes energy the perspective is to minimize the losses by aligning the kite with the di-
rection of wind. Hence, the lift and drag coefficients are reduced in comparison to the reel-out phase
coefficients. To find these specific and justified C; ;, and Cp;;,, values for the measurement set the
optimizer requires boundaries. The work of Arthur Roullier presented in [18] provides relevant lift and
drag coefficient measurements to set up these boundaries. In his work the soft-wing kite measurement
points for C; ;,, fall between [0.18, 0.4] and for Cp ;,, between [0.05, 0.18]. It is necessary to mention
since his work excluded the KCU from the calculations the drag of the pumping kite power system could
be underestimated. Here, the kite drag coefficient is optimized counting for all the flying parts of the
system except the tether which has its separate drag coefficient implemented. Using the boundaries
and basing on the SLQSP optimization theory the optimization problem for the reel-in aerodynamic
coefficients becomes

min [MP,e (CL,in' CD,in: a)z + Mv,e (CL,L'n: CD,in' a)z] (4-4)
subject to €y ;, € [0.18,0.4], Cp;y, € [0.05,0.18], (4.5)

where Mp , and M,, ., denote the QSM output median power and the median kite velocity error from the
measurement values. The error is calculated with Equations 4.2 and 4.3. The vector a includes all the
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relevant arguments for the optimizer to find the solution. The arguments include the system properties,
the environmental parameters, the reel-in speed of the kite and the exact coordinates (7, 5, ¢) & x of
the kite from measurements. The same inputs are used here as provided in the list in Section 4.1.1 with
the exception aerodynamic coefficients are made optimization variables. The optimization is carried
out using all the reel-in measurement points from 86 cycles. The aerodynamic coefficients obtained for
the reel-in phase are shown in Table 4.2.

The Optimized Aerodynamic Coefficients
0.355 0.597
0.118 0.128

CL,in CL,out

CD,in CD,out

Table 4.2: The optimized aerodynamic coefficients for the measurement data provided by Kitepower

Running the simulations again for the reel-in phases now with the optimized C; ;, and Cp;, the
point-wise comparison between the measured power and kite velocity values and the QSM calculated
parameters indicates very little median deviation. These results are shown as Figures 4.3 and 4.4. The
target measurement values are given as light blue lines and the median and mean error values of the
QSM outputs for the 86 reel-in phases as orange and red lines. According to Table 4.3 the median
power difference is only 7.764e-5% and the respective number for kite velocity is -1.726%. These
numbers set a reference case for the point-wise comparison.

Reel-in phase kite velocity (vi) difference from measurements.

Reel-in phase power difference from measurements.
QSM v with coordinates ¢, B & x from measurements.

QSM power with coordinates ¢, B & x from measurements.
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Figure 4.3: Reel-in phase QSM relative power difference from
measurements. The optimization is done for aerodynamic co-
efficients using all the measurement points.

Figure 4.4: Reel-in phase QSM relative v, difference from
measurements. The optimization is done for aerodynamic co-
efficients using all the measurement points.

Optimizing using each data point from the measurements finds the best fit between the QSM outputs
and the measurements. However, several assumptions about the flight path could change the number
of steady-state points QSM calculates the power output for. In other words, with fewer calculations in
the QSM the power and the kite velocity estimations for the whole phase are attempted. This makes the
point-wise comparison between the QSM and the measurements difficult. For that reason a reference
case for the average phase values is needed. This means the particular parameter is time-averaged
first for the phase in both measurements and QSM outputs and the averaged values are compared
instead. The power averaging goes by equation

1 Tena
P, - f P(t)dt,

vg =
T Tstart

(4.6)

end Tstart

where T+ and T,,4 are the start and the end time instances of the phase. P(t) denotes either
measured power P, (t) or calculated power Fygy(t) at time t depending on whether the calculation
goes for the measurement or the QSM output time-average calculation. For the time-averaged kite
velocity similar equation could be written as
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1 Tend

% = — v (t)dt, 4.7)
foavg Tend - Tstart -’;‘Smrt *

with the difference of including v, (t) in the calculation instead.

Using the same point-wise optimized C, ;,;, and Cp ;, the reference case for the phase-averaged
values is given here as Figures 4.5 and 4.6 and in Table 4.3. Since the coefficients are not optimized
for the usage of averaged phase values the results are more off. However, this could still be used as a
case for comparison after modifications to the QSM are made.

Reel-in phase power difference from measurements. Reel-in phase kite velocity (v) difference from measurements.
QSM power with coordinates ¢, B & x from measurements. QSM v with coordinates ¢, B & x from measurements.
12+ Target measured power 14 4 Target measured vy
===+ Mean QSM power-diff. [%] —=- Mean QSM vy diff. [%]
104 ==+ Median QSM power diff. [%] 121 —~. Median QSM v diff. [%]

101

No. of phases
No. of phases
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Figure 4.5: Reel-in phase QSM relative power difference from Figure 4.6: Reel-in phase QSM relative v, difference from
measurements. The same aerodynamic coefficients are used measurements. The same aerodynamic coefficients are used
as the results of the optimization for the points. as the results of the optimization for the points.

Reel-In Phase QSM Output Relative Difference from Measurements

Parameter | Method | All measurement points | Time-averaged phases
Median 7.764e-5% -7.656%
Power
Mean 1.270% -7.735%
) ) Median -1.726% -3.422%
Kite velocity
Mean -4.064% -3.91%

Table 4.3: Reel-in phase QSM output relative difference from the measurements. These numbers are achieved by running the
simulation over 86 reel-in phases

Reel-Out Phase Aerodynamic Coefficients Optimization

Similarly to the reel-in phase the measurement point-wise QSM modification is done for the reel-out
phase. The list of QSM inputs presented in Section 4.1.1 is still valid here. The search for the most
suitable C ,,,+ and Cp ;¢ for the given measurement set starts by defining the optimization boundaries.
In the work of Roullier the C, ,,,, measurements fall between [0.4, 0.8] and for Cp, 4,,¢ in [0.1, 0.4]. [18]
Using these bounds the optimization problem could be set up as

min [MP.e(CL,out: CD,out: a)z + Mv,e (CL,out' CD,out' a)z] (48)
subject to €y ,,,¢ € [0.4,0.8], Cp oye € [0.1,0.4]. (4.9)

The coefficient results for the reel-out phase point-wise optimization are shown together with the reel-in
phase respective coefficients in Table 4.2.

Using the optimized coefficients in the QSM reel-out phase simulation it could be observed from
Table 4.4 the median accuracy over 86 cycles is comparable to the reel-in simulation in power but
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Reel-out phase power difference from measurements.
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Figure 4.7: Reel-out phase QSM relative power difference from
measurements. The optimization is done for aerodynamic co-
efficients using all the measurement points.

Reel-out phase kite velocity (vi) difference from measurements.
QSM vy with coordinates ¢, B & x from measurements.
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Figure 4.8: Reel-out phase QSM relative v, difference from
measurements. The optimization is done for aerodynamic co-
efficients using all the measurement points.

better in kite velocity for the reel-out phase in comparison to the reel-in phase. This can be explained
by looking at Figures 4.4 and 4.8. For the reel-out phase the kite velocity v, has a more uniform error
and the deviations bigger than 75% from the measurement target are rare. Whereas for the reel-in
phase v, error up to 100% is common. In the QSM tether is considered inelastic without sagging.
However, sagging is a usual phenomenon during the reel-in when the tether experiences less tension
compared to the reel-out phase. It has a direct impact on the reel-in speed. This is one reason for
bigger inaccuracy between the measurement and the QSM calculated vy,.

Reel-out phase kite velocity (vk) difference from measurements.
QSM v, with coordinates ¢, B & x from measurements.

Reel-out phase power difference from measurements.
QSM power with coordinates ¢, B & x from measurements.
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Figure 4.9: Reel-out phase QSM relative power difference from
measurements. The same aerodynamic coefficients are used
as the results of the optimization for the points.

Figure 4.10: Reel-out phase QSM relative v, difference from
measurements. The same aerodynamic coefficients are used
as the results of the optimization for the points.

The reel-out flight path simplification and analysis on the accuracy of this assumption needs a ref-
erence reel-out phase simulation using the averaged phase values. These are calculated again with
Equations 4.6 and 4.7. The simulation results using the point-wise optimization coefficients for the
time-averaged phase values are presented in Figures 4.9 and 4.10. The most significant error in this
type of simulation is experienced in median power (-3.923%) but at the same time mean power gives
more accurate results (-0.606%) according to Table 4.4. The latter serves as one of the most important
reference values since the reel-out phase flight path is investigated in the following sections and the
impact on average power is the key value in comparison between different approaches.
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Reel-Out Phase QSM Output Relative Difference from Measurements

Parameter | Method | All measurement points | Time-averaged phases
Median 0.002% -3.923%
Power
Mean 9.022% -0.606%
. ) Median 0.125% -0.435%
Kite velocity
Mean 0.390% 2107%

Table 4.4: Reel-out phase QSM output relative difference from the measurements. These numbers are achieved by running
the simulation over 86 reel-out phases.

4.2. Reel-Out Flight Path Representation

Reel-out phase is responsible for the majority of energy production in pumping kite power system.
Therefore, it is essential to resolve the sequential steady-states during this phase with the highest
accuracy to measurements. Itis observed from Section 4.1.2 that QSM gives relatively good power and
kite velocity estimation on average (or in median) when the aerodynamic coefficients are optimized and
the steady-states are calculated with kite coordinates originating from the measurements. Using the
measurement (7, 8, ¢) & y eliminates any deviations in simulation flight path from reality. However, that
type of approach cannot be adapted for future power estimations which do not have the measurement
data available. The same goes for locations which have comprehensive weather data but no flight test
results. In both cases a simple flight model derived from the experimental data but with the capabilities
of reproducing the flight path based on environment and kite properties is required.

Two different approaches are investigated in this section together with a comparison to reference
case set in Section 4.1.2. The first simplified reel-out phase representation is theoretically introduced
in Section 2.4.3. The constant azimuth and elevation combination for the whole reel-out phase is
employed in the current QSM. The second approach is to describe the reel-out with a generalized
equation for figure of eight and modify it to have a better geometrical fit to the actual flight path. This is
described in Section 4.2.2.

4.2.1. Reel-Out Flight with Constant Angles
Constant azimuth and elevation angle combination for the whole traction phase is based on the logic
there exist certain angles which as an input for the steady-state calculations would result in the same
time-average traction force and power as flying the actual figures of eight with the kite coordinates
originating from measurements.

This angle combination is hypothesized to be calculated taking the time-average of trigonometric
functions of ¢ and B as could be seen from Equations 2.60 and 2.61. Following the same logic the
average course angle would be

COS Yoy = COS X. (4.10)

The latter is essential for the apparent wind velocity decomposition (Equation 2.31) and the tangential
kite velocity factor A calculation (Equation 2.54) having impact on power production. As shown by
Schmehl et al when course angle y approaches 180° the power production decreases and increases
when the angle approaches 0°. This concept becomes relevant in the following sections.

Single Figure of Eight

In order to give an example how this time-averaging theory finds a representative combination of angles,
a flight test case together with the measurement data by Kitepower is used. [9] This dataset of 86 cycles
is introduced in Section 4.1. The 56th pumping cycle is chosen here for the reference cycle since no
anomalies are experienced in the wind conditions nor in the operation of system.

Figure 4.11 shows the third figure of eight from the reel-out phase of the 56th cycle. Applying
Equations 2.60, 2.61 and 4.10 an example representative point for this particular figure together with
the course angle is found. The latter is measured on tangential plane from unit vector eg as shown in
Figure 2.9.
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Third reel-out figure of eight of 56. cycle
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Figure 4.11: The third figure of eight of reel-out phase of the 56th cycle. Green point is received by taking the time average of
trigonometric functions cos ¢ and cos . Arrow shows the direction of tangential kite velocity with a course angle from cosy.

To estimate the accuracy of such a combination of fixed angles three different ways of calculating
the average power are used. The first method finds power with measured tether force and reel-out
speed of the kite. In this case the average power is calculated with Equation 4.6 with the difference
Terare @nd T.,4 are the start and end time instances of figure of eight and P(t) (Equation 4.1) is a
multiplication of measured tether force F; ,,(t) and measured reel-out speed v, ,,,(t). Equation 4.6 is
also used for the second approach with the difference now Pysy (t) is calculated with the QSM using
all the measured coordinates from data. The third method takes use of time-averaged trigonometric
functions of measured coordinates and the power is calculated with a single representative point for
the whole figure of eight. For this case it is essential to mention several other parameters in addition
to kite coordinates are also the time averages of measurement data: the reel-out speed and the radial
distance. Using these parameters the single point QSM average power is calculated with a steady-state
iterative algorithm described in Section 2.4. The results for three calculation approaches are shown in
Table 4.5.

Third Figure of Eight from 56. Reel-Out Phase: QSM vs Measurement Data

Measured average power 3405 W

QSM average power (measured coordinates) | 2756 W

QSM average power (averaged coordinates) | 2640 W

Table 4.5: The time average power output from the measured data and from the QSM using measured coordinates and
constant angles for the third figure of eight of the 56th cycle

The QSM underestimates the average power in both cases. Comparing the results of QSM with
coordinates directly originating from measurements to Figure 4.9 it can be hypothesized the selected
figure of eight might belong to a reel-out phase with a lower end of power accuracy. Averaging the
coordinates reduces the accuracy for that figure of eight even more. To investigate whether latter is an
usual trend or not requires expansion of the method to all 86 reel-out phases. This expansion is looked
into in the end of this section.

In parallel it is investigated how this constant azimuth-elevation-course angle set could be improved
to increase the accuracy of power output. If the angles calculated by time-averaging the trigonometric
functions give a result which underestimates the average power, there may exist another azimuth-
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elevation-course angle combination which would result in an accurate steady-state power instead. For
this reason Figure 4.12 is plotted as the result of an optimization problem

. 2
min [PQSM(¢: a) - Pavg,m] (411)
subject to ¢ € [0,90°], (4.12)

where P4 is the measured time average power for the figure and Fy ), is the QSM calculated value.
Vector a includes a fixed set of course angles y close to what is calculated with Equation 4.10 and
elevation g € [0,90°] values are passed to the optimizer. Indeed, different course angles y have var-
ious azimuth-elevation pairs that would result in the target measured average power. These azimuth-
elevation points are situated on the curves.

Third reel-out figure of eight of 56. cycle and optimized flight states
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Figure 4.12: For various course angles there exist multiple azimuth-elevation combinations that as a QSM steady-state
calculation would result in the same power output as the time average from the measurement data. These azimuth-elevation
points are situated on the curve of the corresponding course angle.

Similarly, for a fixed azimuth-elevation combination there should be a course angle that would result
in desired target power output from the steady-state calculations. This statement is valid if the power
belongs to a certain region: power cannot be indefinitely adjusted with the change in a single angle
parameter. Even though such angle modification is not justified, meaning the kite has specific angles
during the reel-out and artificially introducing angle combination that is e.g. not an average represen-
tation of these angles but more of a compensation of inaccuracy in other steady-state inputs is not
correct, then this solution is investigated as a mathematical exercise.

Keeping that in mind, two graphs as Figure 4.13 and 4.14 are shown. These contour plots indicate
regions of azimuth and elevation combinations at a fixed course angle. The course angle chosen is the
time average of trigonometric function (Equation 4.10) of the third figure of eight of the 56th cycle. The
colors in Figure 4.13 show how much the QSM calculated power using these particular three angles
would deviate from the measurement time average power. The Figure 4.14 has a similar principle but
here instead of power difference, the generated power values are given. It can be observed more
power is generated as the kite situates closer to the perfect downwind position (0°,0°). The black dot
indicates the coordinates of the point calculated in Figure 4.11. The graphs show that indeed there
exist azimuth and elevation angles that would result in the target measurement power with the course
angle received from cos .

Expanding the Simplification to the Whole Phase
Before the theory of time-averaging the trigonometric functions of relevant angles and other essential
input parameters could be adapted to the whole reel-out phase, the error of such an expansion should
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Figure 4.13: With fixed course angle the difference from mea-
sured time-average power various azimuth-elevation combina-
tions would give for the third figure of the 56th cycle. The black
dot is the time-averaged combination of angles.
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Figure 4.14: Different QSM output powers various azimuth-
elevation combinations would give with fixed course angle. The
black dot is the time-averaged combination of angles used for
calculating the result in Table 4.5

be investigated. Whether only one point in the mid-radial distance of the reel-out phase, two points
(one at the starting tether length, second at the ending tether length) or more radial locations should be
used for power calculations is of interest. It is important to mention the angles at each radial distance
are the same, only the tether length varies. This is shown in Figures 4.15 and 4.16.

Power convergence at different no. of radial points
between start and end of reel-out
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Figure 4.15: Power convergence with constant wind for heights
between the start and the end of the reel-out phase. 5 radial
points for the reel-out representation is enough and gives an
average power accuracy of more than 99.9%

No. of radial points

Figure 4.16: Power convergence with logarithmic wind for
heights between the start and the end of the reel-out phase. 5
radial points for the reel-out representation is enough and gives
an average power accuracy of more than 99.9%

Both of these graphs indicate how much the output power accuracy varies when a certain number
of radial points are used for the calculation. 100 points are considered to give an absolute power value
and fewer points give a power deviation from that threshold. In Figure 4.15 constant wind speed is kept
for the altitudes between the start and the end of the reel-out phase. Figure 4.16 has logarithmically
changing wind conditions with the altitude. From both graphs it could be noted the percentage wise
difference is very small at already minimal radial points. 5 radial distances ensure the accuracy of
power calculations at height-varying wind speeds is more than 99.9%. Therefore, this number is used
for future calculations considering the whole reel-out phase.

By implementing the specified number of 5 radial distances and using the time-averaged measure-
ment parameters as QSM inputs, the calculations are done for all the 86 reel-out phases. All the other
QSM inputs are kept the same as introduced for the reference case in Section 4.1. The only differences
are the use of a constant angle combination (Equations 2.60, 2.61 and 4.10) and an average reel-out
speed for the whole phase. The QSM calculates output with the given set of 5 radial points and the
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results are then averaged to a single power value. This value is compared to the time average power
of the given phase received from the measurements using Equation 4.6. The results are plotted as
Figure 4.17 and Table 4.6.

It turns out time-averaging the key QSM input parameters has a very little impact on the accuracy of
power calculations. With kite flying the figure of eight from measurements the QSM has a small power
underestimation on average (-0.6%) and in median (-3.9%). These values come from the reference
simulation Table 4.4. Now with the averaged parameters the small underestimation has turned into a
small overestimation of power. The median and average power have experienced 4-5% positive shift.
Yet, the differences are marginal and the small positive trend should be validated with an alternative
set of data.

Similar comparison between the QSM and the measurements can be made in the kite velocity

calculated with
v = fv,%’r + V¢, (4.13)

where v, is the tangential kite velocity and vy, the reel-out speed of the kite. Figure 4.18 and Table
4.6 present the results for that case. In v, the QSM is showing underestimation compared to the
measurements. A negative shift in the same parameter is experienced in comparison to the reference
simulation as well. Since the reel-out velocity vy, is the same in Figure 4.18 and 4.10 QSM cases
where the phase average kite velocity is calculated the difference could originate only from v, ;. This is
calculated through A and dependent on course angle y. Apparently cos y estimated y > 90° calculates
the kite to fly slower on tangential plane than it actually on average does. This y is compensated by
¢ and B values which as a result of cos ¢ and cos 8 are close to a downwind position. Only this way
the generated power can increase while the kite velocity goes down. This observation should also be
checked with an alternative set of measurements.

Reel-out phase power difference from measurements. Reel-out phase kite velocity (vi) difference from measurements.
QSM power calculated with cos¢, cosf, Cosy. QSM vy calculated with cos¢, cosf, COsy.
12+ Target measured power 16 1 Target measured v
==+ Mean QSM power diff-{%] 14 —=- Mean QSM v, diff. [%]
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Figure 4.17: Relative power difference of measurement time- Figure 4.18: Relative kite velocity difference of measurement
averaged reel-out power per phase vs steady-state power cal- time-averaged reel-out v, per phase vs steady-state v, cal-
culated using the QSM and the angles from time-averaged culated using the QSM and the angles from time-averaged
trigonometric functions cos(¢), cos(B) and cos(x) as an in- trigonometric functions cos(¢), cos(8) and cos(y) as an in-
put. put

The same kite position vs speed of the kite idea is described with Figures 4.12 - 4.14. Applying this
mathematical exercise here the QSM power accuracy of every single phase is improved. Keeping ¢
and B as given with Equations 2.60 and 2.61 but taking y as an optimization variable is one way to do
it. The optimization problem becomes

. 2
min [PQSM(X' a)— Pavg,m] (4.14)
subject to y € [-180°,180°], (4.15)

where Fy;,4 m @nd Fysy are the time-averaged power from the measurements and the power calculated
with the QSM. The vector a includes fixed ¢ and 8 angles. Running this optimization for all the 86 cycles
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Reel-Out Phase QSM Output Relative Diffreence from Meaurements
Using Time-Averaged Coordinate Angles in QSM

Parameter | Method Time-averaged phases

Median 0.516%
Power
Mean 3.470%
) ) Median -6.150%

Kite velocity

Mean -5.037%

Table 4.6: Power and kite velocity difference on average over all 86 reel-out phases between the measurements and using
QSM with fixed angle combination for each of the reel-out phase.

the optimizer tends to increase the course angle as plotted in Figure 4.19. This can be explained with
the following logic.

1. The kite generates the least power when flying upwards. The tangential kite velocity also goes
down.

2. While keeping the other parameters fixed the smallest possible power production is reached
therefore at course angle y = 180°.

3. Small power overestimation is experienced when all the angles originate from time-averaging the
trigonometric functions of measurement coordinates.

4. By increasing the course angle this power overestimation could be reduced to zero.

Therefore, in Figure 4.19 the course angle difference by subtracting the previous time-averaged y value
from the optimized y tends to be positive. The color bar in Figure 4.19 has more positive differences
since the distribution of power overestimated reel-out phases is wider than for the underestimated
phases. This is observed from Figure 4.17 where the overestimation green bars reach 45% whereas
the underestimation blue bars have a maximum at 35%.

Reel-out flight states with course angle difference:
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Figure 4.19: Reel-out flight states of azimuth and elevation angle calculated using the time-averaged trigonometric functions
cos ¢ and cos B. The color bar shows the difference in course angle when the latter is calculated using cos y or optimized for
reaching the target power output. Positive difference shows cos y results in overestimation of output power. Therefore, if average
reel-out power from measurements becomes the target value the optimizer increases course angle to reduce the steady-state
power and vice versa.

Based on the optimization and the concept of using a fixed combination of angles in the QSM
calculation various observations and conclusions could be drawn.
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» The concept does not have significant impact on the mean output power accuracy compared to
the reference simulation (+4.1%). This rule applies on average power. The statement should be
checked with an alternative set of measurements.

» The small deviations in accuracy result in increased output power but decreased velocity of the
kite when substituting the measurement coordinates with a fixed angle combination in the QSM.
This is possible if the kite flies slower but is positioned closer to the downwind direction.

+ By fixing the azimuth and elevation angles and optimizing the course angle for zero power dif-
ference from the target measurement time average power one could get the same power results
with the QSM. However, this type of modification of y is not justified for the future power estima-
tions with the QSM since it compensates the inaccuracy of other QSM inputs without solving the
incorrect simplifications themselves.

» The approach requires existing measurements where the calculations could be based on.

4.2.2. Parameterizing Reel-Out Figure of Eight

An alternative way of describing the traction phase to what is used in Section 4.2.1 is to fly the reel-
out figures of eight. However, the measured figures are asymmetrical and different from each other
without any equation describing them. This makes it difficult to reproduce these figures for future
power estimations. A solution would be to select a general case of figure of eight which could be
plotted using a mathematical equation and modify it with certain parameters to have a better match with
the shapes from the measurements. This way connections between the environmental conditions and
these modifying parameters could be drawn and the base shape of figure of eight, given by an equation,
can be used for future energy vyield predictions. The accuracy of such results, based on artificially
reproduced figures, solely depends on how good is the fit to an actual flight path. In other words,
the modifying parameters must be optimal, meaning the number of parameters should be enough to
describe the asymmetric shape but minimal to keep the figure relatively simple and time-saving from
the perspective of computations.

Third reel-out figure of eight of 56. cycle
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Figure 4.20: Measured third figure of eight from the 56th reel-out phase

For this purpose, two different approaches for flight data fitting are introduced here. The target
measurement figure of eight is plotted in Figure 4.20. Both of these fitting methods are based on the
general shape of figure of eight called the lemniscate. The concept is to place a symmetric figure of
eight to a measured shape and introduce the asymmetries to lemnsicate with an attempt of reducing
the geometrical azimuth and elevation difference between the two figures.

The first fitting approach tries to modify the lemniscate shape directly using constant parameters.
These parameters are included in the general equation of lemniscate and could be found via optimiza-
tion.

The second approach introduces a shape function in the fitting process. The lemniscate is consid-
ered as a general class function which defines the symmetric figure of eight. The shape function adds
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the asymmetric properties to the figure. The multiplication of the shape and class function leads to a
fitted figure of eight. In this case the optimization variables are the shape function parameters.

Optimizing the Parametric Equation of Generalized Lemniscate
In mathematics the eight curve is also known as lemniscate of Gerono. This symmetric shape could
be given in a generalized form as

x* =a?(x? —y?) (4.16)

in Cartesian coordinates or be presented as parametric equations
x =asint (4.17)
y=asintcost (4.18)

where t € [0,2m]. [27] If a = 1 Equation 4.16 becomes

x*—x?+y2=0 (4.19)

and the initial form of lemniscate of Gerono could be plotted as in Figure 4.21.

Lemniscate of Gerono
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Figure 4.21: Lemniscate of Gerono

This figure of eight can be easily reproduced and x-y coordinates passed to the steady-state cal-
culations as azimuth ¢ and elevation g in radians. However, this simple figure is off by size when
compared to the measurement geometry in Figure 4.20 and does not reflect the asymmetric properties
(e.g. not skewed). Therefore, the original Equation 4.16 requires additional parameters to make it a
more generalized case of lemniscate suitable for fitting purposes.

To tilt the figure another xy term is introduced. Additionally, by looking at Figure 4.20 the left and the
right lobe of the measurement shape are not the same by size. To apply for this asymmetric property x3
termis required. In a symmetric and regular lemniscate both of these new terms would be equal to zero
(xy = 0 and x® = 0). Weights different than initial symmetric conditions have a shape-changing impact.
The more the weight deviates from the initial condition the more dominantly is the figure influenced by
this particular term. The expanded lemniscate equation together with the weights looks as follows:

ax* — bx? + cy? + dxy + ex3 = 0. (4.20)

This equation has the right amount of flexibility for figure of eight fitting. The shape could be changed in
size in horizontal and vertical axis, be tilted and have one lobe larger than the other. As the last addition
the centre point coordinates of lemniscate are adjusted. The new form of Equation 4.20 may mimic the
shape of figure of eight but around the origin point of axes (0), meanwhile in reality the kite flies figures
in the sky around centre with different azimuth and elevation coordinates. This means the horizontal
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centre point adjusting coefficient c; and the vertical adjusting coefficient ¢, are added to Equation 4.20.
The finalized form becomes

a(x—c)*—b(x—c))?+c(y—c)?+d(x—c))(y—c3) +e(x —cy)® =0. (4.21)

This generalized lemniscate equation has enough flexibility to fit the reel-out figure of eight to measure-
ments. [22]

The fitting is done as a SLSQP (description in Appendix A) minimization optimization problem with
optimization variables (a, b, c, d, e, ¢, c;) and Equation 4.21 as an optimization function. The idea is
to pass azimuth ¢ as x and elevation g as y to the optimizer and find (a, b, ¢, d, e, ¢4, ¢;) combination
that would minimize the residuals (right-hand side of function) in Equation 4.21 in as many as possible
occasions. In other words the problem becomes

min F(x,y,(a,b,c,d,e, cq,c3)), (4.22)

where x = {x4,..,x,} and y = {y,,..,y,} are series of azimuth and elevation parameters from the
measurements and F denotes the sum of squared function f values. [12]

This type of optimization requires certain boundaries for the optimization variables in order not to
lose the characteristic shape of lemniscate. The search space is investigated to understand how each
one of these weight parameters influences the shape of the figure and to determine suitable boundaries.
Figures 4.22-4.29 show the impact of each weight parameter which will be discussed in detail hereafter.

Lemniscate search space validation: change in [a] Lemniscate search space validation: change in [b]
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Figure 4.22: Change of [a] in generalized lemniscate Figure 4.23: Change of [b] in generalized lemniscate

Change in weights a and b have both impact on the characteristic size of the lemniscate as shown
in Figures 4.22 and 4.23. Parameter a maintains the horizontal and vertical ratio whereas changes in b
have more vertical impact on the shape compared to the horizontal direction. An important note is that
smaller shape is obtained when a increases whereas b has similar effect with decreasing values. Since
figures of eight from the data are usually between ~ [—0.3,0.3] rad, the original shape of lemniscate
needs to shrink. Based on the observations the defined boundaries are a € [0.1,20] and b € [0.01, 5].

Parameter c only changes vertical properties of figure, maintaining the horizontal size. This is shown
in Figure 4.24. The essence of vertical modification becomes obvious when looking at the measurement
figure of eight (Figure 4.20). The measured shape has much narrower lobes in vertical direction than
the original lemniscate of Gerono. Nevertheless, parameter b has also a notable impact on the shape
in vertical direction, meaning the combination of b and ¢ may lead to a magnifying function required
from c. From these observations the ¢ boundaries are set wide ¢ € [0.1,50]. The letter c is also used
for denoting the centre point coordinates of the lemniscate. As shown in Figure 4.25 ¢, is used for
centre point azimuth adjustments and ¢, for changing the elevation of figure of eight without having
any impact on the shape itself. Since azimuth is physically limited with [—%, g] rad and elevation with
[0, g] rad these are set as the boundary conditions for c¢; and c, respectively.

Parameters d and e represent the weights for extra terms added to the generalized Equation 4.16

of lemniscate. They are responsible for the asymmetrical changes in the shape. As could be noted in
Figures 4.26 and 4.27 the parameter d changes the tilt in vertical direction. Positive d values raise the
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Lemniscate search space validation: change in [c] Lemniscate search space validation: change in [c1] & [c2]
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Figure 4.24: Change of [c] in generalized lemniscate Figure 4.25: Change of [c;] and [c,] in generalized lemniscate
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Figure 4.26: Change of [d] in positive direction in generalized Figure 4.27: Change of [d] in negative direction in generalized
lemniscate lemniscate

left lobe above the right one and vice versa. Because in reality the reel-out figure of eight has right and
left lobe difference smaller than 0.1 rad only small d values are required and the boundary is set to be
d € [-0.5,0.5]. Similar logic could be applied to the size difference between the lobes (Figures 4.28
and 4.29). One lobe is never more than twice the size in vertical direction compared to the other one
and the boundary for e could be e € [-0.5,0.5].

Lemniscate search space validation: change in [e] Lemniscate search space validation: change in [e]
as(1,1,1,0,e,0,0) as(1,1,1,0,e0,0)
1.0 1.04 —
0.51 0.54 —
k) k=)
° C
T 0.0 T 0.01
o o
—0.51 -0.51
—-1.01 —-1.01
-15 -10 -05 00 05 10 15 -15 -10 -05 00 05 10 15
[-1or [rad] [-] or [rad]

Figure 4.28: Change of [e] in positive direction in generalized Figure 4.29: Change of [e] in negative direction in generalized
lemniscate lemniscate
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Combining the boundaries for weight parameters (a, b, ¢, d, e, ¢, c;) the following optimization
problem is formed

i
min Z [f (b B @, b, C,d, €, c1, )] (4.23)
n=1
subjectto a € [0.1,20], b € [0 01,5], ¢ € 0.1,50] (4.24)
d € [<05,05], e € [~0.5,0.5]

cel35) ep]

where f is the generalized function of lemniscate (Equation 4.21), ¢,, and B, are the azimuth and
elevation pairs from the measurements for the given figure of eight and i is the number of measurement
instances. This optimization problem is solved using the SLSQP algorithm.

Lemniscate fitting to third figure of 56. cycle 2 Lemniscate fitting to reel-out phase of 56. cycle
---- Figure from measurements PR Figures from measurements
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Figure 4.30: Lemniscate fitting to the third figure of eight from Figure 4.31: Lemniscate fitting to the reel-out phase of the 56th
the 56th cycle cycle (three figures)

Parameters of Lemniscate Fitting of the 56th Reel-Out Phase
a b c d e cq cy Objective f. value
Third figure | 2.482 | 0.240 | 1.716 | -0.422 | -0.027 | 0.006 | 0.618 0.0005
Whole phase | 2.540 | 0.283 | 1.746 | -0.406 | 0.033 | 0.008 | 0.611 0.0061

Table 4.7: The weight parameters of fitting lemniscate of Gerono to the third reel-out figure of eight or to the whole traction
phase of the 56th cycle

The results obtained with fitting to the traction phase of the 56th cycle or to the third figure of eight
from the same phase are plotted in Figures 4.30 and 4.31. The corresponding weight parameters
could be seen in Table 4.7. For a single figure fitting the azimuth and elevation pairs are passed to
the optimizer about one figure of eight. For the whole reel-out phase fitting the coordinates of three
figures are given as a list. What can be observed from Figure 4.30 is that the fitted lemniscate matches
relatively well to the right lobe but has some fitting problems with the left one. Since the measured figure
of eight is not connected at the centre the optimizer has issues finding a suitable location for the centre
point. This causes geometrical deviations of fitted figure from the measurement shape. Another figure
of eight fitting technique is investigated hereafter which could potentially give better results. The QSM
output power when flying the fitted figures comparison to the measurements is done for the method
that provides a better fit out of two techniques. This is done in the end of this section.
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Optimization Using Universal Parametric Geometry Representation Method

The second approach for figure of eight fitting involves the universal parametric geometry represen-
tation method or in other words the class function/shape function transformation technique (CST) that
has been developed to reduce the number of coordinates and variables required to describe specific
geometries. The idea is to form figures using a combination of class and shape function. The class
function has a purpose of defining general classes of geometries, whereas for describing the specific
shapes in a geometry class the shape function is used. The resultant multiplication of the class and
the shape function gives the desired geometry output. [10]

To describe the general reel-out figure of eight, lemniscate of Gerono carries the essential charac-
teristics to fulfill the class function requirements. It is general enough to be the basis shape for mod-
ifications which would give the actual figure of eight. The class function lemniscate with parametric
Equations 4.17, 4.18 and a = 1 is shown in Figure 4.32.

To introduce the asymmetric properties in class function, the shape function is used. Every shape
function should have an initial condition of 1, which by multiplying with the class function gives an
output geometry equal to the latter. Additionally, the shape function should carry enough flexibility for
various modifications. Bernstein polynomials are commonly used to form the shape function. These
polynomials are given by equation

ny\ . .
Bin(t) = (i)tl(l — )0, (4.25)

where (’;‘) is a binomial coefficient, n denotes the order of polynomials, i is the number of that particular
polynomial between 0 & n and t € [0, 1] are the points on the horizontal axis which serve as an input
to the function. Figure 4.33 shows an example of order 4 Bernstein polynomials. The shape function
is the sum of these polynomials. This sum is 1 if the weight of each polynomial is 1, meaning the
polynomials are not modified. [15]
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Figure 4.32: Class function lemniscate (lissajous) for the CST Figure 4.33: Bernstein polynomial makes up a shape function
method used for the class function modification in the CST method

Bernstein polynomials are generally a good tool for shape function formulation but not all polyno-
mials of them are periodical in a certain range of t € [0, 1], meaning the first derivative at t = 0 and
t = 1is 0 for only one or few polynomials depending on the polynomial order chosen. Non-periodical
polynomials in shape function for lemniscate modification could lead to unexpected kinks in the curve.
Figure 4.34 shows the only periodical Bernstein polynomial out of order 4 polynomials. This n = 2
polynomial that peaks at t = 0.5 is the only Bernstein polynomial used here for smooth figure of eight
fitting. One could observe that it is also symmetrical from the vertical axis and not coupled to any other
polynomial, enabling the one-by-one addition of polynomials.

Since a single polynomial is not enough to form the shape function, a new method for shape function
formulation is developed here. As a first step the width of the chosen polynomial is reduced by a half.
This way the polynomial could have more local impact on the figure. Secondly, multiples of polynomial
are made and shifted evenly from the original position. Ten polynomials shifted with an interval of 0.1t
are formed. The number ten is conservatively selected here to prepare the fitting method for even the



60 4. Modeling Pumping Operation
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Figure 4.35: Shifted Bernstein polynomial n = 2 of order 4
Figure 4.34: The periodical Bernstein polynomial n = 2 which polynomials. The curve is shifted from the centre (t = 0.5)
has the first derivative equalto 0 att =0and t =1 with even steps of 0.1t.

most asymmetrical figures of eight. One could change this number based on the shape of measurement
figure if computational speed is of relevance. These ten polynomials are plotted in Figure 4.35. Looking
at the class function parametric Equations 4.17 and 4.18 which could be written as

x = asin (t * 2m) (4.26)
y = asin (t * 2m) cos (t * 2m), (4.27)

where t € [0, 1] is the same t used for polynomial plotting and a defines the width and height of a single
lobe, then both lobes of figure of eight have equally 4 polynomials for modification and 2 polynomials
are peaking at the centre. This means the lemniscate plotting goes through the centre when t = 0
and t = 0.5 and the maximum and minimum azimuth values are plotted when t = 0.25 and t = 0.75
respectively.

When the shape smoothness issues are believed to be resolved with the new combination of ten
polynomials another problem occurs. The summation of modified polynomials does not equal 1 as
it is for the full set of Bernstein polynomials. This could be solved by making the initial weights of
polynomials 0 and adding 1 to form the default shape function (N). The calculation of the latter goes
now as

N=w-p+1, (4.28)

where w is a vector of weights and p a matrix of polynomials. The shape function with a value of 1
does not make any changes to the geometry defined by the class function. If the weights deviate from
0 the original shape function value changes and the output of class and shape function multiplication
is also modified, introducing the asymmetries to the geometry.

Before investigating how changes in the newly defined shape function have impact on the outputs
of CST, final modifications to class function parametric equations should be implemented. First of all,
the Equations 4.26 and 4.27 plot first the right-hand lobe (positive azimuths) of figure of eight and then
the lobe on the left (negative azimuths). Inversely the kite according to the measurement data flies
first the left lobe (negative azimuths) before moving to the right one. This becomes relevant when
optimization problem for fitting is set. Fortunately, the class function can be easily flipped by adding
minus sign to x (or ¢) term. Secondly, the optimizer would have more options to make a better fit to the
measurement reel-out figure of eight if the height and the width of the class function could be modified
as extra parameters. The same goes for the lemniscate centre point adjustments which could lift the
shape to comparable elevations with the measurement figure. Making these changes the parametric
equations of the class function become
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e = —ag sin (t * 21) + ¢y (4.29)
B = bg sin (t  41) + cg, (4.30)

where a4 denotes half of the class function maximum width (or width of a single lobe) and bg marks half
of the class function maximum height. These parameters are measured in rad. For the class function
example shown in Figure 4.32 these values are a, = 1 and bg = 0.5. The coefficients c4 and ¢ are
the lemniscate centre point coordinates. For the example case these values are (0, 0).

With the presented theory about forming the class function (Equations 4.29 and 4.30) and calculat-
ing the shape function (Equation 4.28) a minimization optimization problem could be set up. According
to Appendix A the idea is to minimize the sum of squared differences between the fitted and the mea-
surement figure. For a more accurate fit both the azimuth ¢ and elevation § coordinates of the class
function are modified with a separate set of polynomials (set for ¢ & set for 8). This is somewhat differ-
ent than in previous parametric equation optimization technique where ¢ and g coordinates originate
from the measurements and the residue of Equation 4.21 is minimized. Now, an extra parameter which
links the measurement ¢ and g to the CST output ¢ and g is required. This parameter t is already in
use in the class function Equations 4.29 and 4.30 but is missing from the measurements. Path length
S of the measured figure of eight is used to find the values of t for the measurement figures. This S is
a cumulative sum of

SOZO

(4.31)
Sn+1 = Sn + v (bns1 — Bn)* + Buss — Bu)?

where S, is the path length of figure of eight up to that point n. The last element S, in this array gives the
total path length of figure of eight. The parameter t which belongs to t € [0, 1] could also be considered
as a completion rate. The starting path length S, corresponds to t = 0 and the final path length S to
t = 1. All the t values are calculated as

S 51 Sy
t = [5, 55| (4.32)

This array of t values is passed to the class function parametric Equations 4.29 and 4.30 to calculate
the corresponding ¢. and g, values. These values are modified with the shape function to get ¢csr
and Bcsr which could be compared to measured ¢,, and g,, for the same completion rate t. For fitting
the SLSQP is used.

Counting all the parameters together the optimization gets a total of 24 optimization variables. The
shape function Equation 4.28 can be used for both azimuth and elevation changes. These two shape
functions are denoted as Ny and Ng respectively and both of them have ten polynomials with ten differ-
ent weights w. The 20 weights all together make 20 optimization variables. The four missing variables
from the complete set come from the class function Equations 4.29 and 4.30 where the optimizer could
find suitable values for ag, bg, ¢4 and cg. Since the weights do not have any restrictions in this type
of fitting it is difficult to find any boundaries for them. However, to keep the optimizer from placing
the class function at an arbitrary non-feasible location for figure of eight flight (out of the wind sphere,
below the ground) and then modifying it with a dominant shape function to bring the figure back to
the feasible region, one could define boundaries for class function variables. The figures of eight from
the measurements are hardly ever wider than 60° which sets a4 boundaries using a4 = width/2 to
ag € [0,0.5] rad. The value for by is usually two times smaller than a4 and the bounds could be written
as bg € [0,0.25]. The figure of eight cannot leave the downwind sphere and the centre point of the

class function is therefore restricted with ¢, € [—g g] and c; € [O, g] Together with the bounds the
optimization problem can be stated as
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1
min Z [(Pesre — Pme)? + Besre — Bme)?] (4.33)
=0

with [W¢,_1,..., W¢’10,Wﬁ‘1,..., Wﬁ‘lo,a(p,bﬁ,C(b,Cﬁ]
subject to a, € [0,0.5], b € [0,0.25] (4.34)

w1 Y
wel-33] weloz]

where ¢csr ¢ & Best e are the CST calculated coordinates at the given t and ¢,,, . & S, are the mea-
surement values. It is important to mention that ¢ is in reality a continuous function between [0, 1] but
the steps are defined by the measurement instances. In principle the corresponding CST coordinates
¢dcste & Best,e to t would be the result of a simple class and shape function multiplication. However,
figures of eight from the measurements tend to cross ¢ = 0 rad at some points. This has an impact
on the CST results since the shape function cannot have any shape-changing impact on these points
due a multiplication with zero. Another CST method modification is introduced here step-by-step to
overcome this problem.

1. Class function without any parameters a4, bg, ¢4 and cg is used first. This class function is shifted
with an arbitrarily selected value A to avoid any lemniscate zero crossings.

Gear =—sin(t*2m) +A (4.35)
Pear =sin(t x4m) + A (4.36)

2. Then the shifted class function is multiplied with the shape function as

dar = (¢c,A,t)(N¢,t) (4.37)
Bat = (Beat)Ng,t), (4.38)

where the shape functions (N) are calculated using Equation 4.28.

3. The displaced positions are shifted back to the origin of coordinates.

$or = Par —A (4.39)
ﬁo,t = .BA,t —A (4.40)

4. The final CST output could be received when bringing the class function parameters into the
calculations.

beste = (ag)(Po,e) + ¢y (4.41)
Beste = (bg)(Bo,e) + cp (4.42)

The defined minimization problem with Equation 4.33 is practiced on the measured reel-out phase
of the 56th cycle. Fitting is done for the third figure of eight of the given phase as well as for the whole
phase. For the single figure case ¢,,, and f,,; values together with the completion rate t for only the
third figure of eight are passed to the optimizer. The class and shape function of this optimization can
be seen as Figures 4.36 and 4.37. These functions are achieved with parameters presented in column
"Figure” in Table 4.8 and the objective function value with optimized weights is given in Table 4.9. The
latter is used in the end of this section to select the best fitting technique for the expansion to the whole
set of 86 measurement cycles.
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Figure 4.36: Class function for the third figure of eight fitting of Figure 4.37: Shape function for the third figure of eight fitting of
the 56th cycle the 56th cycle

The multiplication of the class and the shape function results in a fitted figure of eight plotted in Figure
4.38. As it could be visually observed the CST method gives a relatively good fit to the measured figure
of eight. The problematic left lobe fitting that occurred in the parametric equation direct optimization
one can see in Figure 4.30 is disappeared. Yet, there is a sharp turn in the fitted figure at the loose
ends of the measured figure of eight. The biggest error between the measured and the fitted figure
situates indeed at the end value of t = 1 as it is shown in the error plot in Figure 4.39. This sharp turniis
believed to be smoothened if more figures are included in the optimization since the end of measured
figure of eight serves as a starting point for the next figure and the curve is continuous.

Third figure of eight from 56. cycle Fitting error compared to measurement figure
and CST fitted figure for the third figure of eight of 56. cycle
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Figure 4.38: Measured and CST fitted third figure of eight of Figure 4.39: Fitting error in azimuth and elevation direction for
the 56th cycle the third figure of eight of the 56th cycle

As a following step the CST method is expanded to the whole reel-out phase of the 56th cycle.
Now the difference is the optimizer takes three figures of eight simultaneously as optimization inputs
instead of one. The boundaries previously set remain the same but the objective function changes
from Equation 4.33 to

1 3
min 3" [@esre — $mne)? + Besre = Bmno)’] (4.43)
t=0n=1
with [W¢’1, s Wb, 100 WB, 15 = WB 105 Agh» bB' Ch» c,g]
subject to a4 € [0,0.5], bg € [0,0.25] (4.44)

e[-53] welo3]
C¢ 2;2 1Cﬁ ;21
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where ¢, . and B, . are the measured coordinates of the nth figure in the reel-out phase. Running
the optimization with Equation 4.43 the class function in Figure 4.40 and the two shape functions in
Figure 4.41 are received. A relevant observation is that the class function is not centering close to
¢ = 0°. This is the result of A shift which has an impact on how the optimizer chooses ay, bg, ¢ and
cp values. This class function is plotted using Equations 4.29 and 4.30 but in the optimization process
the class function is shifted by A = 1 rad.
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Figure 4.40: Class function for the whole reel-out phase fitting Figure 4.41: Shape functions for the whole reel-out phase fitting
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Figure 4.42: Measured and CST fitted figure for the whole reel-  Figure 4.43: Fitting error in azimuth and elevation direction for
out phase of the 56th cycle the reel-out phase of the 56th cycle

The fitting using the CST method results in a figure of eight that is shown as Figure 4.42. As expected
the sharp turn in the centre of the figure is smoother than in the fit for a single figure. Otherwise, the
figures look visually similar. Due the fact that the errors from three figures are summed up as in Equation
4.43 the total error shown in Figure 4.43 increases in comparison to the single figure fitting. The error
peaks around t = 0.25 and t = 0.75 when the kite is flying the furthest azimuth points from the centre.
This error is mainly caused by one measurement figure which is wider than the two alternative paths.
One could clearly observe the ¢.,.-o, has the biggest share in the total error at these points. The square
of the total error parameter is used in the following comparison with the parametric equation fitting
technique in order to choose a suitable method for the reel-out phase power calculations considering
all the 86 measurement cycles.

Power and Kite Velocity Calculations Using Fitted Figures of Eight
The power calculations for the whole set of measurement cycles are conducted using the method with
the best fit. The criterion for defining the best fit is to calculate which one of the fitting approaches has
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Parameters of CST Fitting of the 56th Reel-Out Phase

Figure | Phase Figure | Phase Figure | Phase Figure | Phase
wgq | -0.0134 | 0.1857 | wg, | 0.3326 | 0.4290 | wys | -0.0795 | -0.4278 | wyo | 0.1437 | 0.1562
wgo | 0.3121 | 0.4084 | wgg | -0.6592 | -0.2714 | wy, | -0.1463 | -0.5115 | wy 4o | -0.0956 | -0.2140
wgs | -0.7440 | -0.3126 | wgoe | 0.7978 | 0.8822 | wys | 0.1930 | 0.0435 o -0.0420 | 0.1390
wgs | 0.7104 | 0.7370 | wgq | -0.3573 | 0.0663 | wye | 0.0091 | -0.1157 o 0.6165 | 0.3894
wgs | -0.5040 | 0.0048 | wg; | 0.1055 | -0.0471 | wy, | -0.0520 | -0.2439 | a4 0.1744 | 0.1117
wge | 0.1418 | 0.2600 | wy, | 0.0178 | -0.1432 | wyg | 0.2095 | 0.2382 bg 0.0805 | 0.0943

Table 4.8: The values of optimization variables for CST fitting. The process is done for the third figure of eight of the 56th cycle
and the whole reel-out phase. Single figure fitting parameters are marked in column "Figure” and phase fitting parameters in
column "Phase”. The numbers are given in [rad].

the smallest fitted figure difference in both azimuth ¢ and elevation § compared to the measurement
figure of eight. In the CST method the sum of the squared ¢ and g errors is the objective function
to be minimized. These objective function values with optimized parameters are presented in Table
4.9 in rows considering the "CST method”. In contrary, this error value is missing from the technique
involving the use of weight parameters directly on the parametric equation of figure of eight. This
method is described in the previous subsection and the minimized residue of the function in Equation
4.23 cannot be directly considered as the error parameter in ¢ and 8. Therefore, the error requires
additional calculation after the optimization process is finished.

One could define the fitted figure azimuth and elevation values at certain completion rate t similarly
to the measurement figures. This invloves the calculation of path length with Equation 4.31 followed
by defining the completion rate vector with Equation 4.32. With the calculated t values that link the
measurement and the fitted figure corresponding coordinates, the error for generalized lemniscate
parametric equation optimization technique could be calculated as

1
D [@rre = ) + Bore = bme)?], (4.45)
t=0

where ¢pr . and fpr ¢ are the parametric equation azimuth (x) and elevation (y) values from Equation
4.21 with optimized weights (a, b, ¢, d, e, c1, ¢;). Both the lemniscate parametric equation optimization
and the CST results for the same measurement figure and for the same 56th reel-out phase are given
in Table 4.9. It can be seen that the CST method provides a better fit with smaller error than the
alternative approach. Therefore, the CST fitting is expanded to all the 86 reel-out phases and the fitted
figure becomes an input for the QSM power and kite velocity calculations.

Sum of Squared ¢ and g Errors Between Fit and Measurements
[rad] [deg]
Parametric Eq. | Figure | 0.0566 3.2418°
method Phase | 0.5009 28.6981°
Figure | 0.0162 0.9278°
CST method
Phase | 0.2439 13.9693°

Table 4.9: The sum of squared azimuth and elevation errors between the fitted figure and the figure from the measurements.
The fitting is done with two alternative techniques for the third figure of eight of the reel-out phase of the 56th cycle and for the
whole phase.

With the best of two fitting approaches defined still methodological questions concerning the reel-
out power calculations remain. It is yet unknown how many points on the fitted figure of eight should
be used as QSM inputs. For that reason another convergence study is conducted. Looking at the
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measurement figures of eight a single figure is usually given with around 200 points. Depending on
the size of the figure and the speed parameters of the kite this number varies. For this convergence
study a very conservative figure with 250 points is considered as the ultimate accuracy target. It is
then investigate how much the average power calculated deviates form the 250 point value when less
points for the fitted figure are used. This power difference in percentage is plotted in Figure 4.44. The
power starts rapidly converging when more than 50 points are used for the power calculation. A round
number of 100 figure of eight points gives 99.5% accuracy to 250-point value. In an attempt to minimize
the computational time yet to keep the accuracy level high the selected number of points is the same
100.

Power convergence at different no. of
evenly spaced figure of eight points

Power convergence
4] with cycle-average wind speed

Target 250 points
fffff 99.5% accuracy

Power difference [%]
N

0 50 100 150 200 250
No. of figure of eight points

Figure 4.44: Power convergence using the 56th cycle averaged wind and fitted third figure of eight from the same reel-out
phase as QSM inputs. 100 evenly spaced points forming the fitted figure give 99.5% power accuracy compared to 250 points.
This accuracy could be considered sufficient.

The defined number of figure of eight points enables a good approximation for a single figure of
eight but when it comes to the reel-out phase the different radial distances become relevant. For that
an additional convergence study is not made and the results from Figures 4.15 and 4.16 are used. As
it could be noted the difference between using two radial distances (one at the starting tether length
and the other at the ending tether length) and averaging the value gives about 99.85-99.9% accuracy
to an alternative of using 100 radial distances. Therefore, the selected number of radial distances has
less impact on power results as one would expect. Since the reel-out phase has three figures of eight
the number of radial distances selected is three.

For each reel-out phase the kite in the QSM simulation flies three phase-fitted figures of eight with
100 figure points at three different radial distances. The radial distance is kept constant (but the reel-out
speed is introduced) during the flight of a single figure and the tether length value changes when the
simulation moves to the next figure. The three radial distances are at the start of the corresponding
measurement reel-out phase, at the end and a value in the middle. It is important to mention that in
reality the power generation cannot happen if the kite is not reeled out but the tether length is kept
constant. However, in the QSM the opposite is currently introduced. To enable power calculation
the mean reel-out speed from the measurement cycle is passed to the QSM but with a fixed tether-
length. This is possible since the QSM makes the power calculation for the current steady-state without
knowing the information if the tether length changes for the next steady-state or not.

The other input parameters for the QSM are similar to what are used in the reference simulation in
Section 4.1. Each phase has a cycle-averaged wind input and the aerodynamic coefficients as system
properties are the optimized values for the reference case. Running the QSM for 86 measurement
cycles and using the reference simulation inputs with an exception of kite coordinates and reel-out
tether length the phase-averaged power and the kite velocity v, are calculated for the CST fitted figures
of eight. These parameters are again compared to the measured values and the relative difference is
plotted in Figures 4.45 and 4.46.

Both the phase-averaged power output and the velocity of the kite experience change in accuracy
when compared to the reference simulation in Section 4.1. According to Table 4.10 the median and
the mean power experience a negative shift when compared to the reference values in Table 4.4. In
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Figure 4.45: Relative power difference of measurement time- Figure 4.46: Relative kite velocity difference of measurement
averaged reel-out power per phase vs steady-state power cal- time-averaged reel-out v, per phase vs steady-state v, calcu-

culated using the QSM and the CST fitted figures of eight lated using the QSM and the CST fitted figures of eight
Reel-Out Phase QSM Output Relative Difference from Measurements
Using Fitted Figures of Eight in QSM
Parameter | Method Time-Averaged Phases
Median -6.604%
Power
Mean -2.313%
, . Median -3.474%
Kite velocity
Mean -1.196%

Table 4.10: Power and kite velocity difference on average over all the 86 reel-out phases between the measurements and

using QSM with fitted figures of eight

median value the accuracy has reduced by -2.7%. The same number in mean is -1.7%. Kite velocity
v, follows a similar trend to power accuracy when the QSM is made to follow fitted figures of eight.
The median value has turned from reference -0.245% into -3.474%. In case of mean the reduction in
accuracy has been -3.3%. The previous accuracy of 2.107% is now -1.196% when compared to the
measurement kite velocity.

Hence, both the power and the kite velocity results have a negative shift in accuracy when going
from the reference simulation and flying the measured flight path to a flight of fitted figure of eight. The
explanation could be threefold.

Due the loose ends of measurement figure the optimizer has problems placing the centre point of
fitted figure of eight. This misplacement is dragging the kite from the ideal straight flight trajectory.
One could see that in Figure 4.42. The usual straight flight paths in the middle of the figure of
eight (between [—10, 10] deg) are rather winding. These are the paths the kite is flying upwards
and the power generation and the kite speed are lower for that section. Due winding flight path
the upwards flight becomes more dominant in time-average than it is in the measured flight.

Separately the simplifications of using few radial distances and a limited number of figure of eight
points have small impact on the power accuracy. The difference is ~0.15% and 0.5% from the
selected ideal situation. However, the combination of small errors may lead to a bigger power
deviation than expected.

In the QSM calculations with fitted figure the average reel-out speed of the kite is used. This
averaged number belongs to the measured figure of eight. If the coordinates of the fitted figure
differ from the measurement path the reel-out speed of each steady-state point should also be
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different and the resulting average reel-out speed varies from the measurements. Now, the mea-
surement reel-out speed is forced on the CST fitted figure. Additionally, the steady-state points
on the fitted figure are distance-wise evenly spaced. This is not the case in the measurement
coordinates where the points are measured after a time interval of 0.1 s. This has an additional
impact on the kite speed parameters.

4.2.3. Discussions About Reel-Out Flight Path Alternatives

Reel-Out Phase QSM Output Relative Difference From Measurements

Using Various Flight Paths as an Input

Parameter | Method | Measured Coordinates (ref. sim.) | Time-Averaged Coordinates | Fitted Figure
Median -3.923% 0.516% -6.604%
Power
Mean -0.606% 3.470% -2.313%
) ) Median -0.435% -6.150% -3.474%
Kite velocity
Mean 2.107% -5.037% -1.196%

Table 4.11: Power and kite velocity difference on average/median over all the 86 reel-out phases between the measurements
and using QSM with alternative flight path inputs

In Sections 4.2.1 and 4.2.2 two alternative reel-out path representations are described and used
in the QSM calculations. One focuses on finding a single azimuth-elevation angle combination from
time-averaging the trigonometric functions of measurement coordinates. The angle pair is passed
at different radial distances to the QSM steady-state calculations. The other approach fits a general
figure of eight, describable with parametric equations, to the measurement figures and the steady-state
calculations follow the coordinates from the fitted path. Two techniques for fitting are demonstrated:
deforming the general lemniscate equation directly with parameters or using polynomial-formed shape
function for the figure of eight modifications. The latter, named the CST method, shows more accurate
fitting results and is tested for the power calculations.

The results of alternative flight path representations together with the reference case are condensed
into Table 4.11. Comparing the fitted figure of eight QSM output accuracy to using a time-averaged co-
ordinates representation the mean power accuracy is improved and closer to the measurement values
with the CST fit. The same goes for the mean kite velocity parameter. Some general comments could
be added on this comparison.

» The CST fitted figure of eight QSM input tends to underestimate the time-averaged output power
and kite velocity when compared to the measurements.

» With the single reel-out azimuth-elevation set the trend is not so clear as the power estimation
goes from the reference simulation power underestimation to overestimation with this technique.
In the speed of the kite the opposite is experienced, meaning the time-averaged trigonometric
function of course angle is probably not an accurate representation of the reel-out phase.

» Both reel-out path methods show less than +/-7% deviation from the measurement values. The
reference simulation where the kite flies measured coordinates in the QSM has an accuracy of
more that 99% to the measured power on average (deviation -0.606%). This is a good reference
parameter. The fixed azimuth-elevation combination for the whole phase as QSM input has a
mean power accuracy loss of ~4.1% from that reference parameter, the CST fit only ~1.7%.

» Based on the example simulations for 86 reel-out phases the CST fitted figure as QSM input tends
to be ~2-3% more accurate than by using a fixed set of coordinates. The dilemma for choosing
the best method for power calculations goes between few arguments.

— The CST method requires approximately 300 steady-state points for the reel-out phase cal-
culations if the example in Section 4.2.2 is used. Using the time-averaged values of coordi-
nates only needs about 5 steady-state points, each at different radial distance to calculate
the average phase power. The use of CST method is suggested to improve the output power
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accuracy of the QSM. However, from the perspective of computational complexity one needs
to critically evaluate if the accuracy improvement of 2-3% justifies the selection for a slower
method.

— The suitability of method for future power calculations is of question. Time-averaging the
measurement coordinates for a fixed set requires the presence of measurement dataset.
In the CST method the class function of figure of eight does not need the measurements
to be created. But the asymmetries are introduced with an optimized shape function to
make a fit to the measurement figure. However, an attempt for finding general weights for
shape function could be made by comparing a variation in weight parameters to a change
in environmental conditions. This would be a good follow-up study enabling the use of CST
method in the future power estimation process.

4.3. Power Optimization of Reel-Out Figure of Eight

The flight of a reel-out figure of eight is based on a principle the relative velocity at maneuvering flight
increases in comparison to a non-maneuvering simple kite. This is already proven by Loyd and dis-
cussed in Section 2.2. With higher velocity the aerodynamic force and consequently the traction force
and the generated power increase. The KCU is responsible for keeping the kite on right maneuvering
course to maximize the system output power. Although, in reality the kite deviates from the defined
path due weather conditions. This issue is in the scope of control system developers but here the topic
of ideal reel-out flight path is discussed from the perspective of mathematical optimization. The idea
is to deform a figure of eight into the most optimal path for power production and few examples with
discussions are presented.

The figure of eight is a good shape for the reel-out phase. First of all, it enables the maneuvering
of the kite while keeping it around ¢ = 0° and close to downwind direction. Secondly, this type of
movement does not twist the tether as much as a circular or a helical path for instance would do.
Therefore, the objective is to keep the principle of figure of eight unchanged but vary the size and the
shape of the lobes. The analysis is split into two different elevation cases.

* Flight around ¢ = 0° and 8 = 0°. This could be denoted as downwind flight. Although, small
deviations from the perfect downwind point appear.

» Flight above = 30°. Looking at the measurements this is about the elevation the kite is usually
operated.

The question in scope is: how does the shape of an optimized figure of eight change due cosine loss
in these two different elevations? According to Diehl in an ideal flight (without mass) the aerodynamic
force is aligned with tether but not with the direction of wind if the kite is operated at an elevation angle
larger than zero. This means the total power in wind is reduced. One could calculate this power as

Pyina = VwFy cosy, (4.46)

where y is the angle between the tether and the vector of downwind. This is the same angle used in
the inertial force simulation framework in Chapter 3. The power a flying wing could extract from wind
reduces with the decreasing values of a cosine function. This means at small y angles not much power
is lost but at bigger angles the drop in power occurs faster. This is expected to become the key principle
in the selection of path the optimizer chooses for the kite to fly at different elevations. [7]

4.3.1. Flight at Ground Elevation

The flight around ¢ = 0° and g = 0° is investigated in two situations. First, a simplified straight flight
path is introduced. This is a bit too ideal case to reflect the reality but provides relevant information for
further optimization. As a second situation an optimization for maneuvering reel-out figure of eight is
investigated in these downwind conditions.

Straight Flight Path
Before moving to a figure of eight optimization the average power output at different course angles be-
comes of interest. This could provide some insight about the preferred and the optimal flight directions.
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The idea is to fly a straight path horizontally, vertically and at a 45° angle. The kite flies on the given
path in both ways when the time-averaged power is calculated. The length of the path is optimizer to
select but the total flight time is constrained. Looking at the measurements the kite completes a single
figure of eight with approximately 19-21 s. Currently 20 s is chosen for the straight path example. The
measurements are also looked at to define a suitable reeling factor f for the QSM calculations. In the
56th cycle during the reel-out it is ~ 0.13. The wind speed is arbitrarily selected to be 10 ? Other
system and environmental properties that are unique for this simulation together with the explained
values are given in Table 4.12. These are the additional system properties to the ones already defined
in Table 3.1 about Kitepower 20 kW system also used in this section.

Environmental and System Properties for Straight Flight Path Power Opt.
Wind speed 10 g Reeling-factor 0.13

Air density | 1.225 =3 Time 20's
Tether length 250 m

Table 4.12: Environmental and system properties that are unique for the straight flight path optimization problem

Since the SLSQP is capable of only minimizing the objective function the average power output
is made negative for the optimizaton while keeping the absolute value the same. The optimization
problem for this type of experimental straight flight path could be written as

min — Fosm(S,a) (4.47)
subject to Typrq = 20, (4.48)

where P,y is the power calculated with the QSM, S denotes the objective variable path length, a is
a vector of relevant QSM inputs for the calculation and T;,.,; is the total time to complete the path in
seconds. One of the variables optimizer receives in a is a selection of possible course angles. For
example for the vertical flight these parameters are y = 0° and y = 180°, meaning the kite needs to fly
down and up to complete the straight flight path in 20 s. Four sets of course angles are possible and
these paths could be seen in Figure 4.47.

Two-way straight flight paths with fixed duration of 20 seconds

30
— x=0°&180°
X =45° & 225°
201 —— x=90° & 270°
—— x=135°&315°
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Figure 4.47: Flying a straight path at four different sets of course angles. The target is to finish the two-way flight in 20 s. The
length of the path differs since the speed of the kite varies with y.

Table 4.13 shows the results for the optimization problem presented with Equation 4.47. The highest
time-average power results are achieved with the horizontal flight (y = 90° and 270°) which is followed
by the diagonal flight and the vertical flight is placed as third. This gives an indication it is beneficial
to keep an uniform speed of the kite as it is for the horizontal case. When kite is flying vertically at
downwards flight the speed of the kite is boosted by gravity and the path is finished quickly. In contrary
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Flying Kite on Straight Flight Path for 20 s (2 ways total)

Course angles y on paths | Total path length [deg] | Time-averaged power [W]
x =0°and 180° 113.53° 8504.42 W
x = 45° and 225° 116.56° 8800.04 W
x =90° and 270° 119.40° 9074.59 W
x = 135° and 315° 116.56° 8797.43 W

Table 4.13: Results of the kite flying a straight path. The objective is to maximize the QSM power but fly exactly 20 s.

when the kite is flying at y = 180° the kite velocity vy, is slow and also the power generation at this angle
is low. Calculating the time-average power the slower upwards flight becomes dominant and hence the
calculated power is also smaller than for the alternative flights. The horizontal flight is preferred over
flying vertically up and down. Understandably this is not the case anymore if the kite flies only one way
at y = 0° (and not back at y = 180°) when the power is maximized according to Schmehl et al. [21]

Flying Figures of Eight

The horizontal flight is a very simplistic case with course angles fixed at known values. Now, the opti-
mization is expanded to figure of eight shape which introduces a broader set of ¢, f and y combinations.
This creates a need for additional constraints. To define them a default figure of eight as a starting point
for the optimization should be specified. The already known lemniscate shape is used here together
with the observations from the measured figure of eight. The measurement figure provides an approx-
imate width and height parameters for the lemniscate.

To get a rough indication about the figure of eight parameters Figure 4.11 where the third figure
of eight of the 56th cycle is plotted is looked at. This figure has width around 37° and height about
11°. These values bring to coefficients ay = 0.32 and bg = 0.01 in parametric lemniscate Equations
4.29 and 4.30. The lemniscate is plotted with ¢, = 0 and ¢z = 0 and the corresponding coordinates
are passed to the QSM for the flight with default figure. With the environmental and system properties
used in the straight flight path optimization (Tables 4.12 and 3.1) the kite completes the flight in 13 s.
This time span is shorter than for the measurement figures of eight but it can be explained with better
wind conditions and higher kite velocities due flying around ¢ = 0° and § = 0°. This becomes the time
constraint for that optimization problem. However, it is used as an inequality constraint to avoid the
optimizer from calculating too small figure of eights but to leave enough freedom for the optimization
due more complex shape than the straight line.

Environmental and System Properties for
FO8 Power Opt. at Downwind Position
Wind speed 10 g Time | 13s
Air density | 1.225 -2 | Ry, | 32m
Tether length 250 m Rpinm | 10m

Reeling-factor 0.13 Rpinr | 13m

Table 4.14: Environmental and system properties that are used for downwind figure of eight optimization. These are the
additional properties to the ones presented in Table 3.1 for Kitepower 20 kW system.

In the previous simplistic optimization the maneuvering capabilities of the kite are not considered.
Depending on the shape and the size of the kite a minimal turning radius could be defined. To show the
difference in optimized shape various turning radiuses could have, three approaches are considered
for that constraint. The first R,,,;,, calculation technique originates from Luchsinger. His R,,;,, definition
is used in Chpater 3 and given with Equation 3.9. This is a hypothetical absolute minimum which
corresponds to kite roll 1z = 90°. With Kitepower 20 kW pumping kite power system characteristics
given in Table 3.1 the minimal turning radius calculates to Ry,;,,;, = 3.2 m. [13]
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Another approach for R,,;, calculation is presented by Fechner and Schmehl. [8] They define a
non-dimensional turning radius with

R 4.49
0= T" ( . )
which is a division of turning radius R and tether length r. For 20 kW Kitepower system the estimated
value for the non-dimensional turning radius is ¢ = 3° = 0.052 rad. With tether length r = 250 m
the minimal turning radius becomes R,,;;, r = 13 m. This is a significantly larger number than what
is provided with Luchsinger’s method of calculation. The third value to validate these calculations is
needed which would be realistic and somewhere in between.

This third minimal turning radius parameter is taken from the measurement third figure of eight of the
56th cycle. Knowing the change in course angle with step dy and the particular time interval between
the measurements T, one could calculate the course rate as

dy
Tstep .

¥ = (4.50)

Taking the tangential component of the kite velocity v, , from the measurements then according to
Equation 3.68 the turning radius could be calculated as

R = k. (4.51)

X

Conducting these calculations for every measurement step of figure of eight the smallest of these
measurement values is Ry,inm =~ 10 m. With the third alternative value of turning radius a complete
set of input parameters required for the optimization is defined and presented in Table 4.14.

The optimization problem itself is based on the CST method described in Section 4.2.2. However,
since the objective is not finding the best fit to measured figure of eight but to provide an optimal shape
for the power generation, the method is modified. Still ten polynomials as shown in Figure 4.35 are
used but only for g direction modifications, not in ¢ direction. This reduces the number of optimization
variables significantly and the modifications happening to the shape are more controlled. Additionally,
the weights could be found for only polynomials considering a single lobe and then the modifications
simply mirrored from the vertical axis, meaning the weights could be identical as wg; = wg g, wg, =
Wg7, Wg3 = Wgg, Wg4 = Wpgo, Wgs = Wp 1. Furthermore, the centre point of the figure of eight could
be placed by cg and the polynomials peaking at t = 0 and t = 0.5 which have a direct impact on
the centre point of the figure are eliminated from the optimization and set to zero as wg; = wg¢ = 0.
This can be justified by moving from the figure of eight fitting where the loose ends of measurement
figures require extra parameters for centre point modification to an optimization where the asymmetries
to centre are less relevant. Similarly, the centre point location ¢y in azimuth direction can be set to zero
to ensure the vertical mirroring axis of lobes is situated on ¢ = 0 and both lobes experience a similar
misalignment from the perfect downwind position. The g direction modifications can be applied with
the shape function and an extra class function height parameter is not required. Therefore, b; is also
given as a constant to the optimizer (bz = 0.01) but the width a is left to be chosen by the optimization
algorithm. One could see all the optimization variables used in this problem as column names in Table
4.15.

As a last step before stating the optimization problem the boundaries are defined. It is experienced
in the CST fitting the polynomials have large impact on the shape at already small values of weights.
In the fitting results Table 4.8 all the weights are between [—1,1]. Derived from that observation the
weight boundaries are also set for that gap in the power optimization. Looking at the measurements
the width of the whole figure of eight is believed not to be below 20° and also not above 60°. This
means the width parameter representing the width of one lobe could have bounds a4 € [0.175,0.524]
rad. The centre point ¢4 is believed not to deviate too much from the downwind but the boundaries are
set for cp € [—0.262,0.262] rad. Accordingly, all the parameters for optimization are defined and the
problem becomes
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min — PQSM (Wﬁlz, Wﬁ,3’ Wﬁ’4, Wﬁls, Cﬁ, a¢, a), (452)
subject to Typtqr = 13, R = Riyin, (4.53)
Wg2..Wg s € [-1,1],
agp € [0.175,0.524],
cp € [—0.262,0.262].
The results with the three different R,,;,, values are plotted in Figure 4.48 and the weight parameters
together with the time-average power are given in Table 4.15. To understand the flight path optimizer

has selected the instantaneous power, the course angle and the kite tangential velocity dependence
on time are shown in Figures 4.49 and 4.50.

Figure of eight power opt, downwind situation
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N

Default figure
_8 < CST fit, Rmin = 3.2m
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Figure 4.48: Power-optimized figures of eight around downwind position. The figures differ in R,,,;;, constraint set.

Power and x dependence of time, downwind situation Power and v, dependence of time, downwind situation
ol [ Default 2y Default
s 114 Rmin=3.2m s 114 Rmin=3.2m
= —— Rmin=10m % = —— Rmin=10m
g 104 —— Rmin=13m ; g 104 —— Rmin=13m :
o i o $
91 / 94 /
0 2 4 0 2
1004 = Default 344 Default g
_ Romin=3.2m ~ = Remin =3.2m \.
g ol = Rmn=10m E 324 — Rmn=10m \
E —— Rmin=13m . —— Rpin=13m
g 30 =
—~100 J
] | ‘ | ! | ] 281 ] ] ] ]
0 2 4 6 8 10 12 0 2 4 6 8 10 12
Time [s] Time [s]

Figure 4.49: Power and course angle y variation in time for Figure 4.50: Power and tangential kite velocity v , variation in
downwind figure of eight simulation time for downwind figure of eight simulation

The differences between the results with various R,,,;,, values for downwind figure of eight optimiza-
tion one could observe from Figure 4.48 are very small. The R,,;,, = 3.2 m enables the kite to turn faster
and the figure follows a more optimal path after each turn than for the other two figures. But in a bigger

picture the shapes are similar and the comments are conducted on a general level and applicable for
all the three figures.

+ At elevation angles close to zero the cosine losses are small. This means the optimizer is not
necessarily trying to flatten the figure of eight at ground level § = 0° and the deviations in vertical
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direction could be beneficial for the power generation if the kite experiences better course angles
(x close to zero).

» The kite starts the flight from the centre point with the left lobe first and the upper half of the lobe
is passed for a start. If the kite needs to increase the elevation angle the changes are preferably
done keeping the course angle as close to y = 135° or —135°. These angles have the best
elevation change pace vs power generation balance. This way the kite manages to increase the
elevation and as could be seen in Figure 4.49 the power does not drop too much below 9 kW.

» Flying downwards results in a bigger power production. To increase the time-averaged power
the objective is to keep the kite in decreasing elevation flight for as long as possible. The course
angles y = 45° and —45° are beneficial in that sense. The peak power becomes lower than
compared to the default figure of eight, where for a short time the kite flies almost vertically down-
wards, but high power is kept for a longer period in optimized flight path. This results in higher
overall power generation.

» The idea is to keep the tangential kite speed as uniform as possible (Figure 4.50). This means
reducing the maximum kite velocity at power peaks to keep the kite in that position for prolonged
period of time and increase the velocity at lower power periods to get through these low generation
phases as fast as possible.

» The kite is shifted below the ground level because of the radial component sign of gravity. From
Equation 2.43 the gravity points downwards on the tangential plane in both cases when the kite is
above or below the ground level but the radial component switches the sign and increases tether
force below B < 0°. It is preferred to conduct upwards flights with lower power production below
the ground level to increase the tether force in these conditions.

» The figures have some parts above the ground level because shifting it more into negative ele-
vation would lose the benefits of being close to the downwind position.

The optimized path is very logical from the scope of maximizing the power and the chosen combination
of angles could be justified based on the previous list of observations.

Figure of Eight Power Optimization Results. Downwind Situation. Coeff. in [rad]
wg1 &wpe | Wgp, &wgy | wgs &wgg | wga &wpo | Wps &wg g cp ag Avg. power
Default 0 0 0 0 0 0 0.3229 | 99374 W
Ruin=3.2m 0 -0.5676 0.7116 -1.0000 0.5868 -0.0305 | 0.3366 | 10018.4 W
Ripin =10m 0 -0.2838 0.5188 -0.6697 0.5116 -0.0333 | 0.3276 | 10002.7 W
Rpin =13 m 0 -0.1794 0.4727 -0.5603 0.5185 -0.0341 | 0.3243 | 9998.3 W

Table 4.15: Optimization variables from the downwind figure of eight optimization together with the objective function final value
as the time-averaged power output.

As a mathematical exercise to investigate how the average power changes, one of the optimized
figures of eight is flipped vertically from the ground level. This approach could be seen in Figure 4.51
and the time variation of parameters in Figures 4.52 and 4.53. Two figures are compared to each other.

» The power of the flipped figure of eight is lower than it is for the optimized and default figures.
This is presented with Table 4.16.

» The power curve of the flipped figure of eight is also a mirrored version of optimized graph but with
small deviations. The peak power is lower for the flipped figure and lower power level between
6-9 s lasts longer than for the optimized variant.

» The drop in power for the flipped figure could be explained by reversed effect of gravity vector.
Due the orientation of the radial gravity component above the ground (negative) the latter has a
small decreasing effect on tether force and generated power.
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Figure 4.52: Power and course angle y variation in time of op-  Figure 4.53: Power and tangential kite velocity v , variation in
timized and vertically flipped figure of eight time of optimized and vertically flipped figure of eight

+ For maximized power output the objective is to keep vy, as uniform as possible. However, flipping
the figure works against that principle and the difference between the highest and the lowest
velocity is large for that figure.

Because of the directional change of radial component in gravity the optimizer chooses the selected
path for a reason and flipping it would have a reverse impact of power reduction due the asymmetrical
properties of the figure. This type of optimization has given an insight of possible factors having an
impact on figure of eight. However, flying below the surface of the ground or even at low elevations close
to the ground is unrealistic. Therefore, the optimization is expanded to the measurement elevations
where the figures are flown on usual basis.

4.3.2. Flight at Measured Elevations

The optimization concept of maximizing figure of eight time average power which is introduced in Sec-
tion 4.3.1 is modified here for measurement elevations. The default starting point figure of eight is the
same lemniscate representation of the third figure of the 56th reel-out phase which is optimized with an
additional constraint of flying above 30°. This is the elevation region the figure appears in the measure-
ments. To make an estimation about the new time limit for the optimization the default figure is placed
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Optimized Figure vs Flipped Figure Power. Downwind Situation.
Default 9937.4 W

Ryuin = 10 m, original 10002.7 W

Rpin = 10 m, flipped 9814.0 W

Table 4.16: Time-averaged power of default, optimized and vertically flipped optimized figure of eight

to centre at ¢ = 0° and 8 = 35.5°. This ensures the lower elevation limit of figure is at 30° and the rest
of the figure remains at larger elevations. Flying the kite with the same fixed environmental and system
properties the QSM calculates 19 seconds for the duration. This is a very realistic number since the
completion time of a single measured figure is about the same. With the newly defined constraint the
properties for this type of elevated simulation are given in Table 4.17.

Environmental and System Properties for
FO8 Power Opt. at g > 30°
Wind speed 10 = Time | 19s
Air density | 1.225 “% | Ry, | 32m
Tether length 250 m Rpinm | 10m

Reeling-factor 0.13 Rpinrg | 13m

Table 4.17: Environmental and system properties that are used for figure of eight optimization above 30°. These are the
additional properties to the ones presented in Table 3.1 for Kitepower 20 kW system.

The optimization boundaries for the elevated flight remain mainly the same as defined in Section
4.3.1. The one exception originates from the vertical centre point location cz which is now essentially
out of the previous bounds due the elevation change. The lower end is limited with 30° while the upper
end could be allowed to go about 60°. Above that elevation the aerodynamic force due misalignment
with wind vector tends to be too small to keep the particular kite in the air. In radians these bounds
mean cg € [0.52,1.05] rad. All the other bounds and constraints which are not directly influenced by
the elevation change stay the same as in the previous section. This goes also for the case distinction
of minimal turning radius. The optimization problem becomes

min — PQSM(Wﬁ,Z’Wﬁ,3’Wﬁ,4’ Wﬁls, Cﬁ, a¢,a), (454)
subject to Typrqr = 19, R = Riyin, (4.55)
Wg2..Wg s € [-1,1],
a, € [0.175,0.524],
cp € [0.523,1.046),

where vector a includes all the environmental and system properties passed to the objective function.
The resultant figures of eight of the optimization problem Equation 4.54 are presented in Figure 4.54
with the optimization variables presented in Table 4.18.

One could clearly see from the graphs the optimized figures have lost their characteristics of figure
of eight. The reasons for these results together with other observations are discussed.

» At angles above 30° the cosine loss from Equation 4.46 starts to increase rapidly. This is due
the specific features of a cosine function. The loss with every extra degree in elevation conse-
quently causing bigger misalignment with wind vector is larger than the potential gain the system
could earn from varying the course angle. The optimizer attempts to lower the elevation at every
possible flight point as much as possible.
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Figure 4.55: Power and course angle y variation in time for Figure 4.56: Power and tangential kite velocity v , variation in
B = 30° figure of eight simulation time for B = 30° figure of eight simulation

» The difference between various R,,;, constraints is well distinguished in Figure 4.54. The op-
timizer increases the elevation just as much the kite could make the turn with minimal turning
radius and fly back.

+ As could be seen from Figure 4.55 the default figure of eight gets comparably high power level
to optimized figures as it gets close to § = 30° at ~ 6 & 16 s. But the power output is also similar
right before the peaks when the kite is at higher elevations but flies downwards. This the only not
at the minimal elevation flight condition that could show similar results. Although, to fly at y = 0°
the kite needs to gain elevation first and this is a big loss.

+ The tangential kite velocity v ; is more uniform for the optimized flight paths. This is also logical
since the kite flies mostly horizontally where the velocity vector is perpendicular to the gravity
vector.

The defined constraints are not restricting the optimizer enough to keep the characteristic features of
figure of eight. Although, from minimal turning radius R,,;,, perspective this type of flight could hypo-
thetically be possible it is not very realistic. The figure of eight is only flat because the minimal elevation
constraint. In reality the kite would fly below that elevation but causing a new set of problems (e.g. re-
duced safety). An alternative approach for elevated figure of eight optimization should be used. Some
insight with the directions for the follow-up study are suggested in Section 4.3.3.

4.3.3. Discussions About Figure of Eight Power Optimization

Sections 4.3.1 and 4.3.2 show flying the most optimal reel-out figure of eight is crucial from the perspec-
tive of time-averaged power generation. The optimization results at elevation angles above 30° show
an improvement from the default figure of eight time-averaged power 5120.9 W to the most promising
power result of 6077.8 W from the optimized figure. However, this gain comes with a cost of losing
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Figure of Eight Power Optimization Results. Min g = 30°. Coeff. in [rad]
W1 & Wge | Wpo &Wp s | Wes &wpg | Wgu &Wpo | Wps &wg o cp ag Avg. power
Default 0 0 0 0 0 0.6196 | 0.3229 | 51209 W
Rpin =3.2m 0 -0.2827 -0.5801 0.3628 0.5270 0.5261 | 0.4352 | 6077.8 W
Rpin =10m 0 -0.0691 -0.8122 0.6860 0.7256 0.5276 | 0.4028 | 5921.3 W
Rpin =13 m 0 -0.2148 -0.6107 0.4816 -0.7285 0.5309 | 0.3862 | 5777.3W

Table 4.18: Optimization variables from above 30° figure of eight optimization together with the objective function final value as
the time-averaged power output.

the characteristic shape of figure of eight and with viable figure solution the increase would probably
be smaller. The solution for a more realistic power output change requires further optimizations with a
different approach and/or using additional optimization constraints.

The selected flight path gets a new level of importance when inertial forces are included in the
simulation framework. Equation 3.1 shows how the magnitude of centrifugal force is directly dependent
on turning radius R. The smaller the turning radius the bigger impact of centrifugal force the system
has. According to the results presented in Section 3.4 at certain larger cone angles y this could have
gaining impact on tether force and output power. Yet, the centrifugal force caused roll could serve an
opposite effect at smaller y values as well. Supported by other inertial forces (e.g. coriolis force) the
power results could be very different to what one is calculating with the current QSM. Especially, if
the simulations are conducted for rigid wing where the inertial effects are more perceptible due bigger
mass and higher velocity of the wing. This again shows the importance of selecting R for optimizations
correctly. Based on this train of thought some general remarks for the future optimizations could be
brought out.

* When running the simulations around the perfect downwind position the effect of gravity has un-
real impact on the system due flight below the ground level. The small cosine losses at elevations
close to zero retain the characteristic shape of figure in optimizations but one cannot be sure the
output shape is the most optimal in realistic flight conditions. A flight close to ground but with an
additional constraint of § = 0° could be experimented with. This solves the issues with gravity.

+ In the flight with inertia R is a more relevant parameter than in the current QSM. One could
optimize for the balance between R big enough to keep the centrifugal impact low but just as
small to complete the turning maneuvers rapidly and keep the kite on optimal path. This turning
radius problem requires more information from tested systems as the kite can fly R,,;, under
certain conditions. These constraints that define the possible minimal turning radius could be the
speed of the kite and the tether length. Additionally, due inertia the change from one turning radius
to another experiences delay which is currently not considered in the optimization framework.

» The most optimal size for the reel-out shape is yet unknown. This is a balance between keeping
the kite close to ¢ = 0° where the alignment with downwind is better vs keeping the tangential
kite speed v, ; as uniform and high as possible which requires a change in ¢ and f coordinates
at optimal course angles y. The current size of the figure of eight is forced on the optimizer with
the time constraint. The latter should be investigated as well.

+ Alternative optimization techniques could be used. Classical optimization approach (used here)
which creates a single point in each iteration and uses gradient to calculate the direction for the
next point might not be the best option in a complex optimization problem. Some of the results
could be local minimas but not global. Another approach would be genetic algorithm which makes
a population of points at each iteration and selects the minimal value points. The next population
is generated and the selected points are compared. This may give better results since the problem
is not very deterministic and linear in the flight path optimization. [14]



Conclusions and Recommendations

An earlier validation study showed that the output power of the quasi-steady model (QSM) deviated from
the flight measurement power. This has been an indication that the assumptions and simplifications
made in the model need to be reassessed. In this thesis, the assumptions concerning the turning
maneuvers of the kite have been investigated. The question in scope was how much accuracy in the
QSM could be gained by including additional details on the turning maneuvers of the kite. To answer the
main research question, two sub-questions were tackled. First, it was researched how the simulated
reel-out paths can be resolved with inertial effects. These inertial effects had been excluded from the
QSM as a simplification in earlier studies. In this thesis the inertial forces were added to a simplified
reel-out flight framework and the effect of inertia was quantified for a lightweight soft wing kite. Second,
it was studied which representative reel-out flight paths in the QSM simulations yield the most accurate
power output. In a pevious study, the QSM reel-out path had been assumed to follow a straight line
without any turning maneuvers. In this thesis, the loss of QSM output power accuracy caused by this
simplification was estimated. This was complemented by an investigation of reel-out figure of eight
parameterization. Flying the developed geometry representation of the figure of eight enabled turning
maneuvers in the simulation. The QSM accuracy gain from this addition was quantified. Subsequently,
the figure of eight parameterization technique was used for a different purpose: to find the figure of
eight that maximizes the power output.

To address the first research sub-question of resolving the reel-out turning maneuvers with inertial
effects inertial force equations were studied first. These equations required setting the turning radius to
solve them. The first step to overcome the absence of a known turning radius in asymmetric figures is
to fly a path with a predefined radius and observe the impact of inertia at first in a simplified simulation
framework. For that purpose, both circular and helical trajectory flight paths were investigated in the
thesis. First, the inertial equations were analytically derived in Cartesian coordinates for the simplified
simulation framework. The developed set of equations could be used to verify the inertial force equa-
tions proposed by previous authors. This was followed by adapting the inertial equations presented by
Schmehl et al (2013) in spherical coordinates and in QSM. This implementation required an introduc-
tion of a new parameter in the QSM called the course rate. The latter shows the rotation speed of the
kite on a tangential plane.

Both the analytically developed set of equations and the new contribution to the QSM were tested
in a specific helical flight simulation where the tether sweeped a conical surface around the downwind
axis. The two alternative approaches reached the same results in this framework and verified each
other. It was observed at larger cone angles, meaning the tether length was rather short but the turning
radius was large, that the inertial effect can increase the tether force and the power output. With small
cone angles the effect was the opposite. Based on the example case, the impact of the inertial effects
on the output power computed with the QSM is limited to 1-2% for lightweight soft kites. This marks
a simulation accuracy improvement with the inclusion of inertia in the maneuvering flight of a flexible
wing.

In response to the second sub-question about reel-out flight paths and their impact on the output
power accuracy of QSM, reference simulations were set up. As a QSM input, a flight measurement
set of 86 reel-out phases provided by Kitepower was used. The objective was to have minimal median
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power and kite velocity error between the QSM outputs and the measurements assuming the kite is
made to follow the exact coordinates from the flight data. This way QSM was tuned for particular
measurements by optimizing a suitable set of reel-out aerodynamic coefficients: C; 4, = 0.60 and
Cpout = 0.13. The reference simulations were used to quantify the accuracy of alternative reel-out
flight paths.

With the fixed reference simulations the impact of two alternative approaches for the reel-out flight
path on the QSM output accuracy were compared. The first method did not resolve the maneuvering
flight but made the kite fly a straight line with a constant azimuth, elevation and course angle. These
fixed angles were calculated by time-averaging the trigonometric functions of measurement angles.
This path representation was in use in the QSM. Applying the time-averaging technique to all mea-
surement 86 reel-out phases the average power accuracy loss experienced was +4.1% compared to
the reference simulations.

The second option for reel-out path representation examined considered fitted figures of eight to
the measured flight path. Two figure of eight parameterization techniques were investigated. The
first technique used a parametric equation of a known figure of eight, lemniscate of Gerono, which has
weights included for asymmetric modifications to the figure. An optimization problem was set for finding
these weights to minimize the geometric difference between the lemniscate and the measured figure.
The second technique used a general equation for the figure of eight as a class function. To introduce
asymmetric properties on the fitted figure a shape function was used. The optimization variables in this
optimization problem were the weight parameters in that shape function. The multiplication of the class
and the shape function led to a fitted figure of eight. This method is named class function/shape function
transformation technique (CST). The latter also showed better results in the least squares fitting and
was, therefore, the only fitting technique used when expanding the approach to the 86 measurement
reel-out phases. Making the kite fly the fitted figure in QSM and comparing the power outputs to the
reference simulations the CST fit showed a -1.7% deviation in time-averaged power results. Hence,
the CST-fitted figure of eight as the QSM input yielded more accurate power output results than flying
a straight line with constant angles.

The CST technique was also tested on the figure eight modification with the objective to find the
most optimal path for maximizing power generation. The optimizations were conducted for flying the
figure in perfect downwind elevation g = 0° (unrealistic) and above g = 30° (realistic) conditions using
a set of constraints. For the downwind case, the optimized path retained the characteristics of the figure
of eight and a power improvement of ~1% was observed from the generalized lemniscate shape with
the approximated size of measurement figures. Above 30° elevations the optimizer tried to lower the
elevation coordinates in every possible figure of eight point and the path was deformed to an unrealistic
shape for the kite to fly. This indicated that the flight path optimization requires additional constraints
to count for the cosine loss of power in winds at elevated heights.

Follow-up studies to this thesis could be conducted in three fields. Firstly, the inertial equations in
the circular path could be expanded to a reel-out figure of eight. The inclusion of a turning radius of the
kite in simulations is likely to become a key problem, but three options are suggested to overcome this
issue.

» The turning radius can be made into a simulation control parameter with the limiting values origi-
nating from the theories of Luchsinger (2013) or Fechner (2018).

» The turning radius variable can be calculated from measurements by, for example, averaging the
parameter and using it for the particular figure or phase.

* A specific turning radius can be used for each steady-state point. This requires the kite coordi-
nates from the previous or following steady-state to estimate how much the course angle changes
between steady-state steps which gives directly the course rate needed in inertial equations.

For the second follow-up study, the CST fitting and fixed azimuth-elevation combination approaches
should be tested with more flight data to confirm the small impact on power output accuracy of these
simplifications. Finally, the search for the most optimal reel-out flight path requires a reassessment of
the chosen constraints. These include flight time and turning radius. Additional constraints may be
required to ensure that the figure of eight is feasible for the kite to fly. It is also recommended to try to
solve this complex power maximizing optimization with genetic optimization which may perform better
than classical optimization algorithms in the context of the given problem.



Optimization with Quadratic
Programming

In this paper the commonly used optimization technique is the Sequential Least Squares Programming
(SLSQP). This optimization tool is a part of SciPy library and aims to minimize the function. By definition
the optimization problem SLSQP algorithm tackles is

min f(x)
subjecttoc;(x) =0, i € & (A.1)
ci(x)=0,i€d.

When linearizing the constraints the problem becomes

; T 1 T2
min f, + Vf, p + Ep VexLip

subject to Ve;(xg)7p + ¢;(xx) = 0, i € € (A-2)

Ve (x )T+ ci(xx) =0, i €7

where L, is the Lagranian and p the search direction. [17]

Depending on the optimization problem the function to be minimized is defined uniquely. For exam-
ple, in figure of eight power maximization it is the negative value of time-averaged QSM power output
that is to be minimized when the kite is flying a figure of eight. In the search for the best fit the sum of
squared residuals between the function output and the measured value is to be minimized. In the latter
the least square fitting technique is used where the sum of squared residuals is given as

Sk = ) i~ )l (A3)
i=1

In this equation a denotes the vector of all the arguments used in the function which would give from
input x; the corresponding function output y; ». This is subtracted from the measurement value y;. In
this paper the least square fitting technique is used in various similar optimization problems (e.g. for
finding the optimal aerodynamic coefficients). [16]
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