
 
 

Delft University of Technology

Physics-Based Enrichment of Volumetric Velocity Measurements for Incompressible
Flows

Azijli, Iliass

DOI
10.4233/uuid:fbe7a67d-334d-4c4e-8a7b-e37618644c81
Publication date
2016
Document Version
Final published version
Citation (APA)
Azijli, I. (2016). Physics-Based Enrichment of Volumetric Velocity Measurements for Incompressible Flows.
[Dissertation (TU Delft), Delft University of Technology]. https://doi.org/10.4233/uuid:fbe7a67d-334d-4c4e-
8a7b-e37618644c81

Important note
To cite this publication, please use the final published version (if applicable).
Please check the document version above.

Copyright
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent
of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Takedown policy
Please contact us and provide details if you believe this document breaches copyrights.
We will remove access to the work immediately and investigate your claim.

This work is downloaded from Delft University of Technology.
For technical reasons the number of authors shown on this cover page is limited to a maximum of 10.

https://doi.org/10.4233/uuid:fbe7a67d-334d-4c4e-8a7b-e37618644c81
https://doi.org/10.4233/uuid:fbe7a67d-334d-4c4e-8a7b-e37618644c81
https://doi.org/10.4233/uuid:fbe7a67d-334d-4c4e-8a7b-e37618644c81


PHYSICS-BASED ENRICHMENT OF VOLUMETRIC
VELOCITY MEASUREMENTS FOR INCOMPRESSIBLE

FLOWS





PHYSICS-BASED ENRICHMENT OF VOLUMETRIC
VELOCITY MEASUREMENTS FOR INCOMPRESSIBLE

FLOWS

Proefschrift

ter verkrijging van de graad van doctor
aan de Technische Universiteit Delft,

op gezag van de Rector Magnificus prof. ir. K.C.A.M. Luyben,
voorzitter van het College voor Promoties,

in het openbaar te verdedigen op dinsdag 7 juni 2016 om 10:00 uur

door

Iliass AZIJLI

ingenieur Luchtvaart- en Ruimtevaarttechniek
geboren te Amsterdam, Nederland.



Dit proefschrift is goedgekeurd door de

promotor: prof. dr. ir. drs. H. Bijl
copromotor: dr. R.P. Dwight

Samenstelling promotiecommissie:

Rector Magnificus, voorzitter
Prof. dr. ir. drs. H. Bijl, TU Delft
Dr. R.P. Dwight, TU Delft

Onafhankelijke leden:
Dr. R.G. Hanea, Statoil, Noorwegen
Prof. dr. ir. A.W. Heemink, TU Delft
Prof. E. Mémin, INRIA, Frankrijk
Prof. dr. sc. techn. habil. J. Sesterhenn, TU Berlin
Ir. B. Wieneke, LaVision, Duitsland
Prof. dr. ir. P. Colonna, TU Delft, reservelid

Copyright © 2016 by I. Azijli

An electronic version of this dissertation is available at
http://repository.tudelft.nl/.

http://repository.tudelft.nl/


To all those who made this work possible, thank you
you know who you are





CONTENTS

Summary xi

Samenvatting xv

1 Introduction 1
1.1 Volumetric PIV . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Measurement noise . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.3 Limited resolution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.4 Measurement uncertainty . . . . . . . . . . . . . . . . . . . . . . . . . 6

2 Data assimilation 9
2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.2 A Bayesian perspective . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.2.1 The prior knowledge . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.2.2 The measurement model . . . . . . . . . . . . . . . . . . . . . . 11
2.2.3 The posterior . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.3 Assimilating spatial fields . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.3.1 The prior . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.3.2 The measurement model . . . . . . . . . . . . . . . . . . . . . . 14
2.3.3 The posterior . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
2.3.4 Variations and related methods . . . . . . . . . . . . . . . . . . . 14
2.3.5 1D example of Gaussian process regression . . . . . . . . . . . . . 15

2.4 Assimilating spatio-temporal fields . . . . . . . . . . . . . . . . . . . . . 17
2.4.1 Linear dynamics . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
2.4.2 Nonlinear dynamics . . . . . . . . . . . . . . . . . . . . . . . . . 18

3 Solenoidal filtering of tomographic PIV data 23
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
3.2 Solenoidal filters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

3.2.1 Helmholtz Representation Theorem . . . . . . . . . . . . . . . . . 24
3.2.2 Least-squares variational filters . . . . . . . . . . . . . . . . . . . 25
3.2.3 Reconstruction with a solenoidal basis. . . . . . . . . . . . . . . . 27

3.3 Solenoidal Gaussian process regression . . . . . . . . . . . . . . . . . . . 27
3.4 Efficient implementation . . . . . . . . . . . . . . . . . . . . . . . . . . 28

3.4.1 Computational cost . . . . . . . . . . . . . . . . . . . . . . . . . 28
3.4.2 Conditioning. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

3.5 Application to synthetic test cases . . . . . . . . . . . . . . . . . . . . . 31
3.5.1 Taylor-vortex. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
3.5.2 Vortex ring . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

vii



viii CONTENTS

3.6 Application to experimental test cases . . . . . . . . . . . . . . . . . . . 35
3.6.1 Circular jet in water . . . . . . . . . . . . . . . . . . . . . . . . . 37
3.6.2 Turbulent flat plate boundary layer in air . . . . . . . . . . . . . . 40

3.7 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

4 Solenoidal interpolation of sparse 3D-PTV data 45
4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
4.2 Parameter determination . . . . . . . . . . . . . . . . . . . . . . . . . . 47
4.3 Application to synthetic test cases . . . . . . . . . . . . . . . . . . . . . 49

4.3.1 Taylor-vortex. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
4.3.2 Vortex ring . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

4.4 Application to experimental data . . . . . . . . . . . . . . . . . . . . . . 54
4.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

5 Spatio-temporal interpolation of sparse 3D-PTV data 59
5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
5.2 Mathematical formulation . . . . . . . . . . . . . . . . . . . . . . . . . 60
5.3 Optimisation algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
5.4 Cost function calculation . . . . . . . . . . . . . . . . . . . . . . . . . . 64

5.4.1 Constraint handling . . . . . . . . . . . . . . . . . . . . . . . . . 64
5.4.2 Parameterization. . . . . . . . . . . . . . . . . . . . . . . . . . . 66
5.4.3 Model evolution . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

5.5 Cost function gradient calculation . . . . . . . . . . . . . . . . . . . . . 72
5.5.1 The tangent-linear code (forward mode). . . . . . . . . . . . . . . 73
5.5.2 The adjoint code (reverse mode) . . . . . . . . . . . . . . . . . . . 76

5.6 Application to experimental data . . . . . . . . . . . . . . . . . . . . . . 77
5.7 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

6 A posteriori uncertainty quantification of PIV-based pressure data 83
6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
6.2 Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

6.2.1 The velocity field uncertainty . . . . . . . . . . . . . . . . . . . . 86
6.2.2 Propagating through the source term . . . . . . . . . . . . . . . . 89
6.2.3 The pressure field uncertainty . . . . . . . . . . . . . . . . . . . . 90
6.2.4 A one dimensional example . . . . . . . . . . . . . . . . . . . . . 90

6.3 Numerical verification . . . . . . . . . . . . . . . . . . . . . . . . . . . 93
6.4 Application to experimental data . . . . . . . . . . . . . . . . . . . . . . 95
6.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

7 Conclusions and recommendations 107
7.1 Solenoidal filtering of tomographic PIV data . . . . . . . . . . . . . . . . 107

7.1.1 Recommendations . . . . . . . . . . . . . . . . . . . . . . . . . . 108
7.2 Solenoidal interpolation of sparse 3D-PTV data. . . . . . . . . . . . . . . 108

7.2.1 Recommendations . . . . . . . . . . . . . . . . . . . . . . . . . . 109
7.3 Spatio-temporal interpolation of sparse 3D-PTV data. . . . . . . . . . . . 109

7.3.1 Recommendations . . . . . . . . . . . . . . . . . . . . . . . . . . 109



CONTENTS ix

7.4 A posteriori uncertainty quantification of PIV-based pressure . . . . . . . . 110
7.4.1 Recommendations . . . . . . . . . . . . . . . . . . . . . . . . . . 111

A Test cases 113
A.1 Synthetic test cases . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113

A.1.1 Taylor-vortex. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113
A.1.2 Vortex ring . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115

A.2 Experimental test cases . . . . . . . . . . . . . . . . . . . . . . . . . . . 116
A.2.1 Circular jet in water . . . . . . . . . . . . . . . . . . . . . . . . . 116
A.2.2 Turbulent flat plate boundary layer in air . . . . . . . . . . . . . . 117

B Wendland functions and their second partial derivatives 121
B.1 Order 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121
B.2 Order 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122
B.3 Order 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122
B.4 Order 4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122

C Efficient adjoint-based cost function gradient calculation 125
C.1 sse∗ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126
C.2 H∗ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126
C.3 VIC∗ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127

C.3.1 Velocity inversion . . . . . . . . . . . . . . . . . . . . . . . . . . 127
C.3.2 Vorticity interpolation . . . . . . . . . . . . . . . . . . . . . . . . 129
C.3.3 Vortex stretching . . . . . . . . . . . . . . . . . . . . . . . . . . . 130
C.3.4 Blob advection . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130

C.4 C∗
k ,G∗

k . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130

C.5 box∗. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130

Bibliography 131

List of Publications 141

About the Author 143





SUMMARY

The goal of the present thesis is to enhance volumetric velocity data obtained from mea-
surements of fluid flow in the incompressible regime. We focus on measurements ob-
tained using tomographic particle image velocimetry (PIV) and three-dimensional par-
ticle tracking velocimetry (PTV). The usefulness of the measurement data can be limited
by a number of factors:

• measurement noise;

• limited resolution (spatial or temporal);

• absence of estimates for the measurement uncertainty.

The current state-of-the-art algorithms that extract velocity fields from the measure-
ments do not include physical models, raising the following question: can physics-based
methods increase the usefulness of the measurement data by applying them as a post-
processing step to the extracted velocity fields? Four postprocessing methods are devel-
oped and investigated to:

• reduce the measurement noise of instantaneous tomographic PIV data;

• increase the accuracy of instantaneous 3D-PTV data that suffers from low spatial
resolution;

• increase the accuracy of time-resolved 3D-PTV data that suffers from low spatial
resolution;

• augment PIV-based pressure data with uncertainty estimates.

To reduce the measurement noise of instantaneous tomographic PIV data, we use solen-
oidal Gaussian process regression (SGPR). For incompressible flow, mass conservation
dictates that the velocity field is divergence-free (solenoidal) and SGPR enforces analyti-
cally a divergence-free velocity field. SGPR is applied to synthetic and experimental test
cases and compared with two other recently proposed solenoidal filters. For the syn-
thetic test cases, SGPR is found to consistently return more accurate velocity, vorticity
and pressure fields. From the experimental test cases, two important conclusions are
drawn. Firstly, including an accurate model for the local measurement uncertainty fur-
ther improves the accuracy of the velocity field filtered with SGPR. Secondly, all solen-
oidal filters result in an improved reconstruction of the pressure field, as verified with
microphone measurements. Due to the sufficient spatial resolution of the PIV data, the
parameters of SGPR are chosen a priori. The results obtained with SGPR are found to be
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relatively insensitive to the exact choice of these parameters, demonstrating the robust-
ness of the filter.

To increase the accuracy of instantaneous 3D-PTV data that suffers from low spatial reso-
lution, SGPR is again investigated, but with an important modification from the previous
application: due to the sparseness of the data it becomes difficult to choose the param-
eters a priori. An efficient methodology is proposed that automatically finds the values
for optimum interpolation based on the information provided by the measurement it-
self. Two approaches to enforce a solenoidal velocity field are investigated:

(i) a two-step approach, where initially, the velocity components are interpolated in-
dependently from one another onto a (fine) regular grid, followed by the applica-
tion of a solenoidal filter, enforcing a divergence-free velocity field on a discrete
level;

(ii) a one-step approach, where SGPR is used.

The interpolation methods are applied to synthetic and experimental data and show that
enforcing the divergence-free constraint indeed results in consistently more accurate in-
terpolations, where the one-step approach of SGPR is found to be superior to the two-
step approach.

To increase the accuracy of time-resolved 3D-PTV data that suffers from low spatial res-
olution, we include additional physical knowledge in the form of the inviscid vorticity
transport equation, discretized using the vortex-in-cell (VIC) method. The resulting
spatio-temporal method is formulated as a minimization problem, where the objec-
tive function is the discrepancy between the measured velocity and the simulated ve-
locity. The unknowns of the minimization problem are the initial velocity field and the
time-varying velocity and vorticity boundary conditions. The minimization is efficiently
solved by using a quasi-Newton method, supplied with exact discrete gradients obtained
from a hand-coded adjoint code of the VIC method. Neglecting viscosity in the vortic-
ity transport equation makes the VIC method time-reversible, avoiding the requirement
from the adjoint to store the intermediate state. The spatio-temporal method is applied
to an experimental test case and compared with SGPR, which interpolates the veloc-
ity fields at each time instant independently from one another. The spatio-temporal
method results in clear improvements in the reconstructed velocity and vorticity fields.

Finally, to augment PIV-based pressure data with uncertainty estimates, we formulate a
method based on the Bayesian framework. Briefly, using Bayes’ rule, the posterior co-
variance matrix of the velocity field is obtained by combining the measurement uncer-
tainty of the PIV velocity field with prior knowledge, like incompressibility of the velocity
field. Once the posterior covariance matrix of the velocity is known, it is propagated
through the discretized Poisson equation for pressure. Numerical assessment of this
a posteriori uncertainty quantification method shows excellent agreement with Monte
Carlo simulations. The method is applied to an experimental test case obtained using
time-resolved tomographic PIV. The pressure reconstructed from the tomographic PIV
data is compared to a microphone measurement conducted simultaneously at the wall
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to determine the actual error of the former. The comparison between true error and
estimated uncertainty demonstrates the accuracy of the uncertainty estimates on the
pressure. In addition, enforcing the divergence-free constraint is found to result in a sig-
nificantly more accurate reconstructed pressure field. The estimated uncertainty con-
firms this result.

The developed postprocessing methods show that it is indeed possible to enhance vol-
umetric velocity measurements of incompressible flows by incorporating physics-based
numerical models.





SAMENVATTING

Het doel van dit proefschrift is om volumetrische snelheidsdata te verbeteren, dat ver-
kregen is met behulp van metingen van vloeistofstromingen in het niet-samendrukbare
domein. We richten ons op metingen verkregen door middel van tomografische particle
image velocimetry (PIV) en driedimensionale particle tracking velocimetry (PTV). Een
aantal factoren kunnen de bruikbaarheid van de meetdata beperken:

• meetruis;

• beperkte resolutie (in de ruimte of tijd);

• afwezigheid van een schatting voor de meetonzekerheid.

De huidige geavanceerde algoritmes die snelheidsvelden van metingen afleiden, bren-
gen fysische modellen niet in rekening, wat leidt tot de volgende vragen: kunnen op fy-
sica gebaseerde methodes de nuttigheid van de meetdata verhogen door ze toe te passen
als een nabewerkingstap op de verkregen snelheidsvelden? Vier nabewerkingmethodes
zijn ontwikkeld en onderzocht om:

• de meetruis van instantane tomografische PIV data te verlagen;

• de nauwkeurigheid van instantane 3D-PTV data, met een lage ruimtelijke resolu-
tie, te verhogen;

• de nauwkeurigheid van tijdsopgeloste 3D-PTV data, met een lage ruimtelijke re-
solutie, te verhogen;

• PIV afgeleide druk data te voorzien van onzekerheidsschattingen.

We gebruiken divergentievrije Gaussische proces regressie (SGPR) om de meetruis van
instantane tomografische PIV data te verlagen. Voor een niet-samendrukbare stroming
geldt, volgens de wet van behoud van massa, dat de snelheidsveld divergentievrij moet
zijn en SGPR forceert analytisch een divergentievrije snelheidsveld. SGPR wordt toe-
gepast op synthetische en experimentele testgevallen en vergeleken met twee andere
recent voorgestelde divergentievrije filters. Voor de synthetische testgevallen volgt dat
SGPR snelheids-, vorticiteits-, en drukvelden produceert die consistent nauwkeuriger
zijn. Twee belangrijke conclusies volgen uit de experimentele testgevallen. Ten eerste,
het meerekenen van een nauwkeurig model voor de lokale meetonzekerheid leidt tot
verdere verbetering van de nauwkeurigheid voor de met SGPR gefilterde snelheidsdata.
Ten tweede, alle divergentievrije filters leiden tot een verbeterde reconstructie van het
drukveld. Dit is geverifieerd door middel van microfoonmetingen. Doordat de PIV data
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voldoende ruimtelijke resolutie heeft, worden de parameters van SGPR van tevoren ge-
kozen. De resultaten verkregen met SGPR blijken relatief ongevoelig te zijn voor de exact
keus van deze parameters. Dit laat zien dat de filter robuust is.

SGPR wordt weer onderzocht om de nauwkeurigheid van instantane 3D-PTV data, met
een lage ruimtelijke resolutie, te verhogen. Echter, met een belangrijke modificatie ver-
geleken met de vorige toepassing: de lage ruimtelijke resolutie van de data maakt het
moeilijk om de parameters van tevoren te kiezen. Een efficí’ente methode is voorge-
steld dat automatisch de waardes vindt voor een optimale interpolatie, gebaseerd op de
informatie geleverd door de metingen zelf. Twee manieren zijn onderzocht om een di-
vergentievrije snelheidsveld af te dwingen:

(i) een tweestappen plan, waarbij de snelheidscomponenten eerst onafhankelijk van
elkaar worden ge’́interpoleerd op een (fijn) rooster, gevolgd door toepassing van
een divergentievrij filter, dat een divergentievrij snelheidsveld op een discreet ni-
veau afdwingt;

(ii) toepassen van SGPR (één stap).

De interpolatiemethoden worden toegepast op synthetische en experimentele data en
laten zien dat het afdwingen van een divergentievrij snelheidsveld inderdaad resulteert
in consistent nauwkeurigere interpolaties, waarbij SGPR superieur blijkt te zijn aan de
tweestappenplan.

Om de nauwkeurigheid van tijdsopgeloste 3D-PTV data, met een lage ruimtelijke reso-
lutie, te verhogen, rekenen we aanvullende fysische kennis mee in de vorm van de wrij-
vingsloze vorticiteit-transport vergelijking, gediscretiseerd door middel van de vortex-
in-cell (VIC) methode. De resulterende ruimtetijd methode wordt geformuleerd als een
minimalisatie probleem, waarbij de kostfunctie de discrepantie tussen het gemeten snel-
heidsveld en gesimuleerde snelheidsveld is. De onbekende variabelen van het minima-
lisatie probleem zijn het inití’ele snelheidsveld en de tijdsvarí’erende snelheids- en vor-
ticiteitsrandvoorwaarden. De minimalisatie wordt efficí’ent opgelost door middel van
een quasi-Newton methode, dat geleverd wordt met exact discrete gradí’enten verkre-
gen met behulp van een handgecodeerde geadjungeerde code van de VIC methode. Het
verwaarlozen van de viscositeit in de vorticiteit-transport vergelijking maakt de VIC me-
thode tijdsomkeerbaar. Dit vermijdt de behoefte van de geadjungeerde code om de tus-
senliggende condities op te slaan. De ruimtetijd methode wordt toegepast op een expe-
rimentele testgeval en vergeleken met SGPR, dat de snelheidsvelden voor elke tijdstap
onafhankelijk van elkaar interpoleert. De ruimtetijd methode leidt tot duidelijke verbe-
teringen in de gereconstrueerde snelheids- en vorticiteitsvelden.

Tenslotte, om PIV afgeleide druk data te voorzien van onzekerheidsschattingen, formu-
leren we een methode gebaseerd op de Bayes kader. In het kort, met de regel van Bayes
verkrijgen we de posterior covariantie matrix van het snelheidsveld door de meetonze-
kerheid van het PIV snelheidsveld te combineren met voorafgaande kennis, zoals niet-
samendrukbaarheid van het snelheidsveld. Zodra de posterior covariantie matrix van de
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snelheid bekend is, wordt het door de gediscretiseerde Poisson vergelijking voor druk ge-
voerd. Numerieke beoordeling van deze a posteriori onzekerheidskwantificatie methode
toont uitstekende overeenkomsten met Monte Carlo simulaties. De methode wordt toe-
gepast op een experimenteel testgeval, dat verkregen is door middel van tijdsopgeloste
tomografische PIV. De uit tomografische PIV gereconstrueerde druk wordt vergeleken
met een microfoonmeting dat op hetzelfde moment is toegepast op de wand om de fout
van de eerstgenoemde te bepalen. De vergelijking tussen de werkelijke fout en de ge-
schatte onzekerheid demonstreert de nauwkeurigheid van de onzekerheidsschattingen
voor de druk.

De ontwikkelde nabewerkingmethodes tonen aan dat het inderdaad mogelijk is om vo-
lumetrische snelheidsmetingen van niet-samendrukbare stromingen te verbeteren door
op fysica gebaseerde numerieke methodes mee te rekenen.





1
INTRODUCTION

Volumetric velocimetry techniques allow the three velocity components of a fluid flow to
be measured in a volume. In Section 1.1, we explain the workings of particle image ve-
locimetry (PIV), since the experimental data used in the present thesis were obtained with
this technique. A number of factors can limit the usefulness of the measurement data,
namely measurement noise (Section 1.2), limited resolution (Section 1.3) and the absence
of estimates for the measurement uncertainty (Section 1.4). In each of the mentioned sec-
tions, we outline the physic-based postprocessing methods we have developed and investi-
gated in the present thesis to deal with the limitations, therefore increasing the usefulness
of the measurement data. We emphasize that these methods are postprocessing methods,
meaning that they take the velocity data extracted from the measurement techniques as
the input. Therefore, these methods are applicable no matter which specific algorithm
was used to extract velocity fields from the measurements.

1.1. VOLUMETRIC PIV
A number of velocimetry techniques, that allow the determination of the three veloc-
ity components in a volume of fluid, have recently become available. In particular: 3D
particle tracking velocimetry (3D-PTV) (Maas et al, 1993), scanning particle image ve-
locimetry (PIV) (Brücker, 1995), holographic PIV (Hinsch, 2002), magnetic resonance
velocimetry (MRV) (Elkins et al, 2003), and most recently tomographic PIV (Elsinga et al,
2006). In the present thesis, we use data obtained from 3D-PTV and tomographic PIV
and we will therefore explain these methods in more detail. For simplicity, we first ex-
plain PIV using the traditional and more widely used planar PIV, which returns two ve-
locity components in a plane. Figure 1.1 illustrates the working principle. Briefly, PIV
works as follows. The flow is seeded with tracer particles and the measurement domain
is illuminated with a light source. Lasers are popular, since they can produce a high en-
ergy, pulsed, monochromatic light beam that can easily be shaped into a thin light sheet.
This allows the imaging device to clearly capture the tracer particles in an approximately
2D illuminated region. With two images captured in rapid succession, one can derive the

1
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Figure 1.1: Working principle of planar PIV (from Raffel et al (1998)).

displacement of the tracer particles. From the known time separation of these images,
the velocity of the tracer particles is obtained. Under the assumption that the tracer par-
ticles faithfully follow the fluid particles, the particle velocity is equal to the flow velocity.

In the above discussion, we mentioned the idea of extracting the particle displace-
ment from successive images. If the distance between distinct particles is much larger
than the displacement, then it is easy to evaluate the displacement from the individual
particles. This low-image-density mode of PIV is generally referred to as particle track-
ing velocimetry (PTV). Figure 1.2(a) shows an image representative for the application of
PTV. Figure 1.2(c) shows a simple schematic where PTV can be applied. The left figure
represent the first image, the right figure overlays the first image onto the second image.
It is easy to see that the displacement of individual particles can be tracked unambigu-
ously. The velocity vectors that PTV therefore returns are randomly scattered over the
domain, corresponding to the particle locations. If the particle displacement is larger
than the distance between distinct particles, it is no longer possible to unambiguously
track individual particles between the successive images. In this high-image-density
mode of PIV, the particle displacement is determined using a statistical approach, where
so-called interrogation windows containing a number of particles are cross-correlated
between the successive images. Figure 1.2(b) shows an image representative for the ap-
plication of the cross-correlation based technique in PIV. Figure 1.2(d) shows a simple
schematic where cross-correlation based PIV is applied. Again, the left figure repre-
sent the first image and the right figure overlays the first image onto the second image.
Clearly, it is difficult to track individual particles unambiguously. Due to the construction
of the interrogation windows, the velocity vectors returned by cross-correlation based
PIV are on a regular grid. In the following, we will refer to the high-image-density mode
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(a) (b)

(c) (d)

Figure 1.2: Low-image-density (PTV) (a), high-image-density (PIV) (b), schematic of PTV (c), schematic of PIV
(d). (a) and (b) obtained from Raffel et al (1998), (c) and (d) adapted from Tropea et al (2007).

or cross-correlation based technique of PIV as simply PIV and use the term PTV for the
low-image-density mode, despite the fact that the experimental setup of the two modes
is identical. Historically though, PIV has an advantage over PTV since higher particle
densities allow higher spatial resolutions to be obtained.

Going from planar PIV to volumetric PIV requires the use of multiple cameras at dif-
ferent viewing angles to measure the displacement of the particles. In addition, the il-
lumination source is now bundled into a volume rather than a thin light sheet. Similar
to the distinction we made for planar PIV between the cross-correlation based mode
and the particle tracking mode, we make a distinction for volumetric PIV. The cross-
correlation based mode will be referred to as tomographic PIV and the particle tracking
mode will simply be referred to as 3D-PTV. Tomographic PIV relies on a tomographic re-
construction of the particle distribution, followed by three-dimensional cross-correlation.
3D-PTV on the other hand triangulates the particle positions and aims to find matching
pairs in the successive images.

The current state-of-the-art algorithms that extract the three-dimensional velocity
fields from the particle images do not make use of the underlying governing equations.
Instead, they completely rely on the measurements. This holds both for the state-of-the-
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art algorithms of tomographic PIV (Lynch, 2015; Novara, 2013) and 3D-PTV (Novara et al,
2015; Schanz et al, 2014). However, since the volumetric techniques measure the three
velocity components in a volume, they enable the full velocity-gradient tensor,

∇u =


∂u
∂x

∂u
∂y

∂u
∂z

∂v
∂x

∂v
∂y

∂v
∂z

∂w
∂x

∂w
∂y

∂w
∂z

 ,

to be determined. Access to the full velocity-gradient tensor allows less ambiguous anal-
ysis of coherent structures, especially when the flow of interest is highly three-dimensional.
This is very relevant for the fundamental study of flows and turbulence. Also, as pointed
out earlier, it opens up the possibility to include the underlying governing equations
when processing the measurement data. For an incompressible flow, conservation of
mass yields:

∇·u = 0, (1.1)

where u is the fluid velocity. Eq.1.1 states that the velocity field is divergence-free (solen-
oidal). Conservation of momentum can be expressed as:

ρ
∂u

∂t
+ρ (u ·∇)u =−∇p +µ∇2u, (1.2)

where ρ is the fluid density, t is time, p is the pressure and µ is the dynamic viscosity.
Eq.1.2 are better known as the Navier-Stokes equations. The present thesis investigates
the use of physics-based postprocessing methods aimed at increasing the usefulness of
the measurement data. The usefulness of the measurement data can be limited by a
number of factors:

• measurement noise;

• limited resolution (spatial or temporal);

• absence of estimates for the measurement uncertainty.

The post-processing methods take the extracted velocity fields as input. Therefore, they
can be applied to tomographic PIV and 3D-PTV, independent of the specific algorithm
used to obtain the velocity field. The following three sections explain in more detail the
postprocessing methods we have developed and investigated in the present thesis to:

• reduce the measurement noise of instantaneous tomographic PIV data;

• increase the accuracy of 3D-PTV data that suffers from low spatial resolution;

• augment PIV-based pressure data with uncertainty estimates.

1.2. MEASUREMENT NOISE
Measurement noise can be reduced by applying an appropriate filter to the velocity data.
The simplest approach works through a convolution of the data using an (n ×n) kernel,



1.3. LIMITED RESOLUTION

1

5

with either equal weights or distance-based weighting, e.g. Gaussians. Due to their sim-
plicity, these averaging techniques are widely used, also in the field of PIV (Raffel et al,
1998). A more sophisticated approach is to fit a polynomial trough the measurement
points. For both approaches, the filtering can be done in space, time, or space and time
simultaneously (Scarano and Poelma, 2009). These filtering techniques do not take into
account physical knowledge in terms of the known underlying conservation laws.

An alternative is known as proper orthogonal decomposition (POD) ((Raiola et al,
2015) and references therein). As the name suggests, the basic idea of the method is to
decompose a dataset in such a way that the maximum amount of energy is captured by
the smallest amount of orthogonal modes. With the assumption that the physical phe-
nomena are contained in the high energy modes and the measurement noise in the low
energy modes, the method aims to reduce the noise by only retaining the most energetic
modes.

The above methods do not require volumetric measurements and do not restrict the
flow to the subsonic regime. More recently proposed methods that do attempt to specif-
ically enforce conservation laws in principle require incompressible flow and volumetric
measurements. For example, de Silva et al (2013) and Schiavazzi et al (2014) proposed
the use of solenoidal filters, which enforce mass conservation. Despite their restricted
use, the advantage of these methods is that they do not require the user to specify tuning
parameters, like kernel size or the number of modes to retain. In addition, application of
these solenoidal filters to both synthetic and experimental test cases revealed that they
result in a lower spatial attenuation, which is of course desirable since we do not wish to
lose the true physics in the process of reducing the measurement noise. Furthermore,
they do not require time-resolved data. Solenoidal filters can still be used if the mea-
surements are only available in a plane, provided that the out-of-plane velocity gradient
is negligible. Chapter 3 focuses on solenoidal filters and specifically we derive a version
of Gaussian process regression that also includes measurement uncertainty explicitly.
We call it solenoidal Gaussian process regression (SGPR).

Before proceeding, it is worth mentioning a recently proposed spatio-temporal fil-
ter that also includes the vorticity transport equation (Schneiders et al, 2015b). The
idea of the method is to combine a short-sequence in time-resolved tomographic PIV
measurements with multiple time-marching simulations, in which these simulations
were started at the various snapshots of the measurements and integrated (forwards and
backwards) towards the instantaneous time of interest. Like the solenoidal filters, a de-
sirable property is its reduced spatial attenuation. However, contrary to the solenoidal
filters, it requires time-resolved data.

1.3. LIMITED RESOLUTION
In the present thesis, we focus on limited spatial resolution instead of temporal resolu-
tion. The idea of increasing temporal resolution using underlying physical models has
been investigated by Scarano and Moore (2012), who used a linearized advection model,
and later by Schneiders et al (2014), who improved upon this idea by using the nonlinear
momentum equation instead.

Increasing the spatial resolution of the data is mostly a concern in the case of data
sets obtained with PTV, where the seeding concentration is lower than in PIV. In addi-
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tion, there is a trend to move tomographic PIV to large scale applications, enabled by the
use of helium-filled soap bubbles (HFSB) as seeding material (Scarano et al, 2015). The
major problem with this type of tracer is obtaining sufficient seeding concentration. The
low seeding density makes the use of particle tracking a preferred option and results in
sparse data sets, where the velocity vectors are non-uniformly scattered over the domain
of interest, corresponding to the location of individual tracer particles. This is contrary
to tomographic PIV, which returns velocity vectors on a regular grid, allowing easy flow
field visualization and obtaining derived quantities such as vorticity, vortex identifica-
tion metrics or pressure. Therefore, there is a need to use scattered data interpolation
methods, that are able to produce accurate fields on a regular grid, even for sparse data
sets. Scattered data interpolation methods like radial basis function interpolation can be
used for this (Casa and Krueger, 2013). A number of methods used Kriging (Gunes et al,
2006; Inggs and Lord, 1996; Lee et al, 2008). These methods only exploit the spatial infor-
mation in the measurements, thereby being applicable to instantaneous measurements.
Also, they do not include physical constraints. Chapter 4 uses SGPR to interpolate sparse
3D-PTV data, thereby enforcing the divergence-free constraint.

For time-resolved measurements, the possibility to exploit the temporal informa-
tion becomes an option. For PIV data with spatial gaps, due to the absence of particles
or limited optical access for illumination or imaging, Sciacchitano et al (2012a) used a
finite-volume method to solve the unsteady incompressible Navier-Stokes equations in
these gaps. The method essentially exploits the temporal information from the mea-
surements and combines it with a physics-based model of the flow evolution. However,
the method relies on fully specified time-resolved boundary conditions from the mea-
surements since they are used as input to the solver. Chapter 5 investigates a method
where the boundary conditions are part of the unknowns that need to be determined.
The Navier-Stokes equations are used in their velocity-vorticity form, thereby removing
the pressure term, which is not measured with PIV (Chorin et al, 1990):

∂ωωω

∂t
+ (u ·∇)ωωω= (ωωω ·∇)u+ν∆ωωω, (1.3)

whereωωω is the vorticity and ν is the kinematic viscosity.

1.4. MEASUREMENT UNCERTAINTY
One can argue that a measurement is useless if no estimate of the measurement uncer-
tainty is supplied with it. For a long time, the PIV community has relied on a priori esti-
mates for the measurement uncertainty, with the so-called empirical universal constant
of 0.1 pixels being a popular rule of thumb (Sciacchitano et al, 2013). The a posteriori un-
certainty quantification of PIV fields has only become possible recently (Charonko and
Vlachos, 2013; Sciacchitano et al, 2013; Timmins et al, 2012; Wieneke and Prevost, 2014).
In the present thesis, we will not focus on developing an additional a posteriori uncer-
tainty quantification for the velocity field. Instead, we will focus on augmenting the PIV-
based pressure fields with uncertainty estimates. With the velocity field available, the
pressure can be obtained by making use of the Navier-Stokes equations (van Oudheus-
den, 2013). Though extremely useful, not much attention has been given to a rigorous
quantification of the uncertainties associated with PIV-based pressure fields, which is
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understandable considering that a posteriori estimates for the velocity field have only
become available recently. Therefore, Chapter 6 focuses on quantifying the uncertainty
of PIV-based pressure data.





2
DATA ASSIMILATION

This chapter explains data assimilation in detail, since the present thesis focuses on the
application of physics-based postprocessing methods to measurement data. Specifically,
we rely on the statistical perspective of data assimilation based on the Bayesian frame-
work (Section 2.2), which provides a mathematically and statistically consistent formu-
lation. The physics-based postprocessing methods that will be explained in subsequent
chapters follow naturally from the Bayesian framework. In Section 2.3, we discuss data
assimilation methods that only assimilate spatial fields, while in Section 2.4, we discuss
data assimilation methods that assimilate spatio-temporal fields.

2.1. INTRODUCTION
The idea of combining measurements with physical models is commonly referred to as
data assimilation. Depending on the application and the people using it, there are a
number of competing definitions. An appropriate definition for the present work is from
Wikle and Berliner (2007):

Data assimilation is an approach for fusing data (observations) with prior knowl-
edge (e.g. mathematical representations of physical laws; model output) to obtain
an estimate of the distribution of the true state of a process.

So, to perform data assimilation, one needs the following components:

(i) a physical model (usually numerical);

(ii) experimental observations;

(iii) a (statistical) model relating physical model and observations, including an error
model for observations, and inadequacy of the physical model;

(iv) a means to fuse the two sources of information.

9
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Notice that the definition refers to the distribution of the true state of the process, mean-
ing that it refers to a statistical formulation of data assimilation rather than a determin-
istic one. Specifically, we will use the Bayesian perspective, which is described in more
detail in Section 2.2. The Bayesian perspective provides a mathematically and statisti-
cally consistent formulation of the state estimation problem, where the prior knowledge
and observations are both expressed in terms of probability density functions (pdf’s).
Indeed, the Bayesian approach is an inherently scientific approach since it is analogous
to the scientific method: one has a prior belief about a certain process, collects data and
then updates that belief given this new data.

Though general and powerful, the formulation that follows from Section 2.2 is com-
plex and generally requires assumptions and simplifications to be made to allow for its
practical application. Sections 2.3 and 2.4 will list a number of practical data assimila-
tion methods, state the assumptions they are based on and point out the equivalences
between them. Section 2.3 will focus on methods that only assimilate spatial fields, so
the temporal dimension is not included. Section 2.4 will consider spatio-temporal fields.
This subdivision reflects the type of volumetric velocity measurements we consider in
the present work and the type of physical knowledge we include.

2.2. A BAYESIAN PERSPECTIVE

The definition of data assimilation mentioned the state of a process1. In this chapter, we
will simply designate itφφφ (x, t ) : R3 ×R+ → Rnφ , i.e. it is a vector containing nφ variables,
where each variable is a function of space x and time t . In the present work, it will pri-
marily be the velocity field, but at this stage it is not important to mention what it entails.
The introductory section mentioned the prerequisites for data assimilation, namely sta-
tistical models for the prior, measurements and finally a means to fuse these two sources
of information, i.e. obtain the posterior.

2.2.1. THE PRIOR KNOWLEDGE
The state is defined on a spatial domain Ω with boundary Γ. The underlying physics of
fluids can be expressed generally as:

∂φφφ (x, t )

∂t
=M

(
φφφ (x, t )

)+q (x, t ) , (2.1)

φφφ (x, t0) =φφφ0 (x) =ΦΦΦ0 (x)+a (x) , (2.2)

φφφ (x, t ) |Γ =φφφb
(
ξξξ, t

)=ΦΦΦb
(
ξξξ, t

)+b
(
ξξξ, t

)
. (2.3)

Eq.2.1 expresses the time evolution of the state, where M is a nonlinear operator. The
initial condition is represented by Eq.2.2 and the boundary condition by Eq.2.3, where
the coordinate ξξξ runs over the boundary Γ. Unknown error terms representing the error
in the model, initial and boundary conditions are represented by the random processes
q, a and b, respectively.

1In the present work, we only consider the state estimation problem. For the more general combined param-
eter and state estimation problem, we refer to the book by Evensen (2009).
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2.2.2. THE MEASUREMENT MODEL

We express the measurements as:

d =H
(
φφφ (x, t )

)+εεε, (2.4)

where d ∈ Rm , i.e. m measurements and εεε represents the measurement error. Typically,
εεε ∼ N (0,R). With q,a,b = 0, Eqs.2.1-2.3 represent a deterministic system that is well-
posed. Therefore, adding the measurements from Eq.2.4 leads to an overdetermined
system. Such a system could be resolved with e.g. a least-squares approach but that
would be an arbitrary choice. Modeling the uncertainties in each equation using q,a,b
and εεε allows us to find an informed, statistical resolution.

2.2.3. THE POSTERIOR

Since q,a,b are random processes,φφφ,φφφ0,φφφb become random processes and d is a multi-
variate random variable. They will therefore be represented using a probability density
function ρ (·). Ultimately, we are interested in the following distribution:

ρ
(
φφφ,φφφ0,φφφb

∣∣d),

which we regard as the solution of the system (2.1-2.4). It represents the distribution of
the complete state (including initial and boundary conditions), given the measurements.
This distribution can be calculated by making use of Bayes’ rule. If for simplicity we
neglectφφφ0 andφφφb for now, we have:

ρ
(
φφφ|d)= ρ

(
φφφ

)
ρ

(
d|φφφ)

ρ (d)
, (2.5)

from the definition of conditional probability (Bayes, 1763). Naming the various terms:

(i) ρ
(
φφφ

)
is the prior, since the measurements have not been incorporated yet;

(ii) ρ
(
d|φφφ)

is the likelihood, the probability of observing the data for a given state;

(iii) ρ (d) is the evidence, the marginal probability of observing the data, independent
of the state and therefore a constant for the purposes of investigating ρ

(
φφφ|d)

;

(iv) ρ
(
φφφ|d)

is the posterior and ultimately the distribution we are interested in.

Neglecting the denominator in Eq.2.5, Bayes’ rule reduces to:

ρ
(
φφφ|d)∝ ρ

(
φφφ

)
ρ

(
d|φφφ)

. (2.6)
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Figure 2.1: Venn diagram of possible outcomes for X and Y .

SIDE NOTE: A GRAPHICAL DERIVATION TO BAYES’ RULE

Consider two events X and Y . Figure 2.1 shows a Venn diagram in the space of
possible outcomes for these two events. The red region represent the probability of
X occurring (ρ (x)), while the green region represents the probability of Y occurring
(ρ

(
y
)
). The yellow region is where both occur (ρ

(
x, y

)
). From Figure 2.1, it is easy to

see that

ρ
(
x|y)= ρ

(
x, y

)
ρ

(
y
) . (2.7)

Indeed, ρ
(
x, y

)
should be scaled with ρ

(
y
)

since Y has occurred. The same can be
done for the reverse conditional distribution:

ρ
(
y |x)= ρ

(
x, y

)
ρ (x)

. (2.8)

Combining Eqs.2.7 and 2.8 gives Bayes’ rule:

ρ
(
x|y)= ρ

(
y |x)

ρ (x)

ρ
(
y
) . (2.9)

Since the complete state is accompanied by the initial and boundary conditions, Eq.2.6
is slightly more involved. Consider the joint pdf:

ρ
(
φφφ,φφφ0,φφφb

)= ρ (
φφφ0

)
ρ

(
φφφb |φφφ0

)
ρ

(
φφφ|φφφ0,φφφb

)
. (2.10)

Assuming the boundary conditions and initial conditions are independent:

ρ
(
φφφb |φφφo

)= ρ (
φφφb

)
,

Eq.2.10 becomes:
ρ

(
φφφ,φφφ0,φφφb

)= ρ (
φφφ0

)
ρ

(
φφφb

)
ρ

(
φφφ|φφφ0,φφφb

)
. (2.11)
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Using Bayes’ rule, we get the following posterior distribution:

ρ
(
φφφ,φφφ0,φφφb |d

)∝ ρ
(
φφφ|φφφ0,φφφb

)
ρ

(
φφφ0

)
ρ

(
φφφb

)
ρ

(
d|φφφ)

. (2.12)

The term ρ
(
φφφ|φφφ0,φφφb

)
gives the prior density for the model solution given the initial and

boundary conditions. Eq.2.12 is the general formulation to fuse the measurement model
from Eq.2.4 with the prior physical model from Eqs.2.1-2.3. Though it looks simple,
evaluating these expressions for general distributions and a nonlinear physical model is
complicated and computationally expensive, especially for high dimensional problems.
These are indeed of interest considering that we are investigating time varying three-
dimensional flow fields. Therefore, a number of assumptions need to be made to allow
for simplifications, consequently resulting in computationally tractable procedures. A
key example is Gaussian processes, where we deal with multivariate normals and lin-
ear(ised) model operators. The next two sections describe a number of data assimilation
methods that can result from such simplifications.

A vast number of data assimilation methods have been developed and there are var-
ious ways to classify them. For example, methods for which the underlying physical
model is linear versus nonlinear. Another approach is to categorize into methods based
on estimation theory, control theory, direct minimization, and stochastic approaches
(Robinson and Lermusiaux, 2000). We do not prefer such a categorization since there is
a strong overlap between these groups. Instead, in the present work we choose a clas-
sification that follows the type of volumetric velocity measurements available, namely
single instantaneous measurements versus time-resolved measurements.

2.3. ASSIMILATING SPATIAL FIELDS
Removing the temporal dimension, the first obvious resulting simplification is that the
state only depends on the spatial location: φφφ (x). Therefore, there is no time-derivative
and no initial condition. In the following, we assume Gaussian processes for the prior
ρ

(
φφφ

)
and a Gaussian measurement model for the likelihood ρ

(
d|φφφ)

. This assumption
is not a major limitation and in fact will eventually lead to a powerful data fitting pro-
cedure known as Gaussian process regression (GPR) (Rasmussen, 2006). Additionally, we
discretize the process at n spatial locations.

2.3.1. THE PRIOR
Consider an unobservable Gaussian process with mean µ and covariance function ψ

(Rasmussen, 2006):

Φ∼GP
(
µ (x) ,ψ

(
x,xi ;χχχ

))
,

where x ∈ R3 is the spatial coordinate and χχχ ∈ Rh are hyperparameters. Discretizing the
process at n spatial locations, gives a multivariate normal random-variable:

ΦΦΦ∼N
(
µµµ,P

)
,

µi =µ
(
xi

)
,

P i j =ψ
(
xi ,x j ;χχχ

)
, i , j = 1, ...,n.

(2.13)
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Its realization is the state vector φφφ ∈ Rn . We assume a stationary process, i.e. the corre-
lation between two points xi and x j depends only on their separation, xi −x j , and not
their absolute positions. The covariance function then simplifies to ψ

(
r i j

)
, where r i j is

the Euclidean distance between the points xi and x j , defined as:

(r i j )2 =
3∑

k=1

(
xi

k −x j
k

γk

)2

, (2.14)

where parameter γk is the correlation length in the direction k.

2.3.2. THE MEASUREMENT MODEL
The measurement model is chosen as d = Hφφφ+εεε, where d ∈ Rm contains the m obser-
vations, H is the observation matrix and εεε∼N (0,R) (assuming unbiased noise). There-
fore, D|φφφ∼N

(
Hφφφ,R

)
. The matrix R is known as the observation error covariance matrix,

representing the measurement uncertainty. By using the matrix H , we assume the rela-
tion between the state and the observations is linear. This is acceptable since the mea-
surements in the present work are velocity measurements, and the state is the velocity
(or partial derivatives of the velocity potential). In addition, the PIV-filtering mentioned
in Chapter 3.1 is a linear operation.

2.3.3. THE POSTERIOR
Due to exclusion of the time evolution model, the posterior distribution given by Eq.2.12
reduces to:

ρ
(
φφφ|d)∝ ρ

(
φφφ

)
ρ

(
d|φφφ)

. (2.15)

Since both the prior and measurement model are assumed Gaussian and all operators
are linear, the posterior will be Gaussian as well (Wikle and Berliner, 2007). The posterior
mean and covariance are:

E (ΦΦΦ|d) =µµµ+PH ′ (R +HPH ′)−1 (
d−Hµµµ

)
, (2.16)

Σ (ΦΦΦ|d) =
(
I −PH ′ (R +HPH ′)−1 H

)
P. (2.17)

The term R +HPH ′ will be referred to as the gain matrix A, i.e.

A = R +HPH ′. (2.18)

2.3.4. VARIATIONS AND RELATED METHODS
Depending on the field of application, the described method goes by different names.
In machine learning it is most well known as Gaussian process regression (Rasmussen,
2006), which we have called it here as well to emphasize our use of a Gaussian prior and
measurement model. In geostatistics it is better known as Kriging (Krige, 1951; Math-
eron, 1971). Depending on the prior mean used, there are a number of variations. For
example, simple Kriging takes a known prior mean, ordinary Kriging takes a prior mean
that is constant but unknown and universal Kriging takes a linear function of covariates
for the mean (Cressie, 2015). In the fields of meteorology and oceanography, the method
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is better known as Optimal Interpolation (Talagrand, 1997). We specifically mention the
work by de Baar (2014), who focused on the application of Kriging to both experimental
fluid dynamics and computational fluid dynamics and in addition investigated the use
of gradient-enhanced Kriging.

It is interesting to mention radial basis function (RBF) interpolation, a widely used
method for scattered data approximation (Wendland, 2005). There are some equiva-
lences with GPR (Anjyo and Lewis, 2011; Fasshauer, 2011; Forrester et al, 2008). Rather
than expressing covariances between points using a covariance function, RBF interpo-
lation expresses the interpolant in terms of a sum of radial basis functions. Practically
though, they lead to the same prior covariance matrix P . Also, with RBF interpolation the
data are interpolated. With GPR, the sample points are treated as having measurement
uncertainty, which is expressed through the observation error covariance matrix R. In
essence then, RBF interpolation sets R = 0.

Finally, we present a more compact version of the posterior mean that will also be
useful in the following chapters. First of all, we set the prior mean equal to zero. This is
equivalent to simple Kriging. From Eqs.2.16 and 2.18 we can write:

c = A−1d. (2.19)

The vector c will also be referred to as the weight vector. Given a set of locations at which
we want to evaluate the posterior, we can compactly write this as:

φφφ=C c, (2.20)

where
C i j =ψ

(
xi ,x j

)
, (2.21)

with xi an evaluation point and x j a measurement location.

2.3.5. 1D EXAMPLE OF GAUSSIAN PROCESS REGRESSION
We present an artificial one dimensional fitting problem. Consider the true function

h(x) := exp
[−54(x −0.5)6] ,

observed at eleven equally spaced measurement locations on the interval [0,1] with
added noise. The measurements do not all have the same noise level (a common sit-
uation in e.g. PIV). For simplicity, we set the measurement uncertainty R to a diagonal
matrix (i.e. uncorrelated noise), where the elements on the diagonal are represented by
the vector

r =(10−4,10−2,10−2,10−2,0.25,0.25,0.25, ...

10−2,10−2,10−2,10−4).

Notice that the measurements at the boundaries of the interval are more accurate than
measurements in the center. We use a Gaussian covariance function

ψG

(
xi ,x j ;γ

)
:= exp

[
−

(
xi −x j

γ

)2]
,
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(a) (b)

(c)

Figure 2.2: Reconstructions of the function h(x) (red line) based on eleven measurements (black dots), as-
suming perfect observations (a), uniform measurement uncertainties (b) and spatially varying measurement
uncertainties (c). A reconstruction is given by a mean field (blue lines) with confidence intervals of ±3 standard
deviations (grey regions).
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Figure 2.3: Discretization of the state φφφk and the availability of the measurements dl in time (adapted from
Evensen (2009).

with γ= 0.15. Eqs.2.16 and 2.17 are then used to reconstruct the true function given the
eleven measurements, and the (known) error covariance. Figure 2.2 shows the result. We
have taken n = 101, uniformly distributed over the domain, so the function is evaluated
at significantly more points than the measurement grid. H is a sparse matrix with a few
1’s picking the 11 measurement points from the 101 points. We have considered three
cases in terms of our prior knowledge of the measurement uncertainty: (i) R = 0 (see
Figure 2.2(a)), wrongfully assuming that the measurements are perfect. As a result, the
reconstructed function interpolates the observed points. At these locations, the poste-
rior uncertainty is zero. Notice that due to our over-confidence in the accuracy of the
measurements, the true function is well outside the ±3 standard deviations region for a
large part of the interval; (ii) (see Figure 2.2(b)), taking into account measurement un-
certainty but wrongfully assuming that all measurements have equal uncertainty. The
reconstructed function is more accurate than in the first case. Furthermore, the poste-
rior uncertainty does not become zero at the measurement locations. Since we assume
homogeneous measurement uncertainty and the observations are equally spaced, the
confidence interval is very homogeneous throughout the interval; (iii) (see Figure 2.2(c)),
taking into account the correct measurement uncertainty. This gives the most accurate
reconstructed function of all three cases. Notice also that the process realizes the large
uncertainty in the center of the interval and as a result, relies more on the prior. This is
reflected by the large bounds of the confidence interval in this region.

2.4. ASSIMILATING SPATIO-TEMPORAL FIELDS
Since in practice the measurements will be available at a finite number of times and the
model will also be integrated in time in a discrete way, we will represent the model state
discretized in time. So, φφφ (x, t ) is represented as φφφk (x) =φφφ (x, tk ) with k = 0,1, ...,K . The
measurements d ∈ Rm are available at times tk(l ), where l = 1, ...,L, and dl ∈ Rml . Figure
2.3 shows how the state and measurements are available in time. It is common to assume
that the model is a first-order Markov process, meaning that the state at a new time tk

only depends on the state at the previous time step tk−1. We will use such a model in
Chapter 5. Indeed, assuming such a model is not a strong assumption or simplification.
Even if the assumption does not hold, meaning that the model errors are time correlated,
the problem can be reformulated as a first-order Markov process again by augmenting
the model errors to the model state vector (Evensen, 2003; Reichle et al, 2002). Due to



2

18 2. DATA ASSIMILATION

the assumption of a first-order Markov process, the joint pdf given by Eq.2.11 can be
expressed as follows:

ρ
(
φφφ1, ...,φφφK ,φφφ0,φφφb

)= ρ (
φφφb

)
ρ

(
φφφ0

) K∏
k=1

ρ
(
φφφk |φφφk−1,φφφb

)
. (2.22)

If dl only depends on φφφ
(
tk(l )

) = φφφk(l ) and the measurement errors are uncorrelated in
time, the pdf for the measurement model can be expressed as:

ρ
(
d|φφφ)= L∏

l=1
ρ

(
dl |φφφk(l )

)
. (2.23)

From Bayes’ rule the posterior becomes:

ρ
(
φφφ1, ...,φφφK ,φφφ0,φφφb |d

)∝ ρ
(
φφφ0

)
ρ

(
φφφb

) K∏
k=1

ρ
(
φφφk |φφφk−1

) L∏
l=1

ρ
(
dl |φφφk(l )

)
. (2.24)

As was done in Section 2.3, we will again assume Gaussian priors, making it possible to
represent the pdf’s using only the mean and covariance.

2.4.1. LINEAR DYNAMICS
In the case of linear dynamics, the Gaussian priors will remain Gaussian. Before mea-
surements are included, the mean and covariance of the state are obtained from the
model evolution. With the assumption of linear dynamics and due to the discretiza-
tion, the nonlinear operator M from Eq.2.1 becomes a matrix M . The model error is
expressed as q ∼N

(
0,Cqq

)
. Therefore we can write:

φφφk|k−1 = Mkφφφ
k−1|k−1, (2.25)

Pk|k−1 = Mk Pk−1|k−1M ′
k +Cqq,k . (2.26)

Eqs.2.25 and 2.26 are integrated forwards until a measurement becomes available. This
is when the following updating equations are used:

φφφk|k =φφφk|k−1 +Pk|k−1H ′
k

(
Rk +Hk Pk|k−1H ′

k

)−1
(
dl −Hkφφφ

k|k−1
)

, (2.27)

Pk|k =
(
I −Pk|k−1H ′

k

(
Rk +Hk Pk|k−1H ′

k

)−1 Hk

)
Pk|k−1. (2.28)

Compare Eqs.2.27-2.28 with Eqs.2.16-2.17; they are equivalent, since they follow from
Bayes’ rule, where all pdf’s are Gaussian and all operators are linear. The procedure rep-
resented by Eqs.2.25-2.28 is known as the Kalman filter (Kalman, 1960). It is the optimal
sequential data assimilation method for linear dynamics, given that the initial priors are
Gaussian and unbiased.

2.4.2. NONLINEAR DYNAMICS
In the case of nonlinear dynamics, the initial Gaussian priors will not remain Gaussian,
leading to the use of suboptimal methods. In this case, we will make a distinction be-
tween sequential methods that integrate the model step by step forwards in time, while
assimilating observations as they become available, and variational methods that han-
dle all observations at once.
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SEQUENTIAL METHODS

An alternative to the Kalman filter, known as the Extended Kalman filter (Anderson and
Moore, 2012), works by approximating the nonlinear model operator by linearising it
around the current state. This method is suboptimal and its usefulness depends on the
strength of the nonlinearity of the model dynamics. The method can be improved by
incorporating higher-order moments (Miller et al, 1994). However, this leads to larger
storage and computational requirements.

Improved methods take an alternative approach, where the nonlinear dynamics is
retained. Instead, the distribution of the state is approximated using a finite set of sam-
ples. The Unscented Kalman Filter (Julier and Uhlmann, 1997) chooses these samples
deterministically and requires the number of sample points to be of the same order as
the dimension of the state. The Ensemble Kalman Filter (Evensen, 1994) on the other
hand chooses the samples randomly but requires a significantly smaller set of samples.
According to Houtekamer and Mitchell (1998), an ensemble size of 100 members is often
considered ‘sufficient’.

VARIATIONAL METHODS

Contrary to the sequential methods which update the state whenever measurements are
available, for the variational methods the state depends on both future and past mea-
surements. This is enabled by incorporating these measurements into a scalar cost func-
tion J that subsequently needs to be minimised, therefore assimilating the observations
at once. We explain how this cost function is obtained. Recall the components needed
to calculate the posterior ρ

(
φφφ1, ...,φφφK ,φφφ0,φφφb |d

)
(see Eq.2.24). For clarity, we also refer to

the equations in Section 2.2 on which they are based:

(i) ρ
(
φφφ0

)
, the pdf of the initial condition (originally from Eq.2.2);

(ii) ρ
(
φφφb

)
, the pdf of the boundary conditions (originally from Eq.2.3);

(iii)
∏K

k=1ρ
(
φφφk |φφφk−1

)
, the pdf of the model evolution (originally from Eq.2.1);

(iv)
∏L

l=1ρ
(
dl |φφφk(l )

)
, the pdf of the measurement model (originally from Eq.2.4).

We assume Gaussian priors for all components. This gives for the error terms:

(i) initial condition: a ∼N (0,Caa);

(ii) boundary condition at time k: bk ∼N
(
0,Cbb,k

)
;

(iii) model evolution at time k: qk ∼N
(
0,Cqq,k

)
;

(iv) observations at time l : εεεl ∼N (0,Rl ).

We start with the initial condition:

ρ
(
φφφ0

)∝ exp

(
−1

2

(
φφφ0 −ΦΦΦ0

)′C−1
aa

(
φφφ0 −ΦΦΦ0

))
, (2.29)

whereΦΦΦ0 is the prior mean. Proceeding to the boundary condition:

ρ
(
φφφb

)∝ exp

(
−1

2

K∑
k=1

(
φφφk

b −ΦΦΦk
b

)′
C−1

bb,k

(
φφφk

b −ΦΦΦk
b

))
, (2.30)
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whereΦΦΦk
b is the prior mean of the boundary condition at time tk . For the model evolu-

tion:

K∏
k=1

ρ
(
φφφk |φφφk−1

)
∝ exp

(
−1

2

K∑
k=1

(
φφφk −φφφk−1

∆t
−M

(
φφφk

))′
C−1

qq,k

(
φφφk −φφφk−1

∆t
−M

(
φφφk

)))
,

(2.31)
Finally, the measurement model:

L∏
l=1

ρ
(
dl |φφφk(l )

)
∝ exp

(
−1

2

L∑
l=1

(
dl −Hl

(
φφφk(l )

))′
R−1

l

(
dl −Hl

(
φφφk(l )

)))
, (2.32)

Inserting Eqs.2.29-2.32 into Eq.2.24 gives:

ρ
(
φφφ1, ...,φφφK ,φφφ0,φφφb |d

)∝ exp

(
−1

2
J
(
φφφ1, ...,φφφK ,φφφ0,φφφb

))
, (2.33)

where the cost function is:

J
(
φφφ1, ...,φφφK ,φφφ0,φφφb

)= (
φφφ0 −ΦΦΦ0

)′C−1
aa

(
φφφ0 −ΦΦΦ0

)
+

K∑
k=1

(
φφφk

b −ΦΦΦk
b

)′
C−1

bb,k

(
φφφk

b −ΦΦΦk
b

)
+

K∑
k=1

(
φφφk −φφφk−1

∆t
−M

(
φφφk

))′
C−1

qq,k

(
φφφk −φφφk−1

∆t
−M

(
φφφk

))

+
L∑

l=1

(
dl −Hl

(
φφφk(l )

))′
R−1

l

(
dl −Hl

(
φφφk(l )

))
(2.34)

Since we are using Gaussian priors, maximisation of the posterior is equivalent to min-
imising the cost function J . Therefore, the variational methods typically find the mode
of the posterior. If the posterior is Gaussian, then the mode is equal to the mean. This
happens in the case of linear dynamics, where the sequential and variational methods
are equivalent.

The cost function J has a global minimum, but it may not be unique in the case of
nonlinear dynamics. It may also have a number of local minima. Therefore, there may
be a risk that we do not converge to the global minimum. Taking a closer look at the cost
function, we see that in the absence of measurements, the minimum is obtained at J = 0.
In this case, the solution is equal to the prior model solution. On the other hand, in the
presence of measurements, and more specifically accurate measurements, the posterior
state will rely less on the simulation. This again emphasizes the inherently scientific
approach of the Bayesian framework: if we do not have measurements, we completely
rely on our prior physical knowledge. If we do have measurements, we will rely more on
the measurements provided that they are accurate.

Comparing the variational with the sequential methods further, the first we note is
that the variational method incorporates all time steps simultaneously. Even though we
assumed the model errors to be uncorrelated in time and the measurement errors to be
uncorrelated in time as well, the variational method does not require this. An additional
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difference between the two methods is that the variational method does not automati-
cally return the uncertainty associated with the predicted state. Instead, as stated earlier,
the solution we find is the mode of the posterior distribution. If gradients can be calcu-
lated efficiently using the adjoint approach, requiring one backward model integration,
and assuming that the convergence is achieved quickly in the minimisation, variational
methods can be more efficient than sequential methods.





3
SOLENOIDAL FILTERING OF

TOMOGRAPHIC PIV DATA

This chapter investigates the use of Gaussian process regression to filter spurious velocity
divergence from tomographic PIV data, returning analytically solenoidal velocity fields.
We denote the filter Solenoidal Gaussian Process Regression (SGPR) and formulate it within
the Bayesian framework to allow a natural inclusion of measurement uncertainty. In Sec-
tion 3.2, we present a number of solenoidal filters proposed in the literature that have been
applied to filter out spurious divergence from volumetric velocity measurements. In Sec-
tion 3.3 we derive SGPR. The practical implementation of SGPR is subsequently discussed
in Section 3.4. SGPR and two other recently proposed solenoidal filters are applied to syn-
thetic test cases in Section 3.5 and experimental data in Section 3.6. For the synthetic test
cases, we find that SGPR consistently returns more accurate velocity, vorticity and pressure
fields. From the experimental test cases we draw two important conclusions. Firstly, it is
found that including an accurate model for the local measurement uncertainty further
improves the accuracy of the velocity field reconstructed with SGPR. Secondly, it is found
that all solenoidal filters result in an improved reconstruction of the pressure field, as ver-
ified with microphone measurements. The results obtained with SGPR are insensitive to
correlation length, demonstrating the robustness of the filter to its parameters. Conclu-
sions are drawn in Section 3.7.

3.1. INTRODUCTION

From the mass conservation equation for incompressible flows it follows that the ve-
locity field is divergence-free: ∇ ·u = 0. In the present chapter, we are concerned with
PIV data, where the velocity field is obtained using the cross-correlation technique. A
suitable model for the workings of the cross-correlation based PIV method is a weighted

Parts of this chapter have been published in Experiments in Fluids (Azijli and Dwight, 2015).
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mean over the particles in the interrogation window:

û =
N∑

i=1
ρi u (xi ) , (3.1)

where u (xi ) is the incompressible velocity field evaluated at xi , ρi is the weighting at xi ,
N is the number of particles in the window over which we sum and û is the final veloc-
ity corresponding to the particular window. The question arises whether the obtained
velocity û is still divergence-free. To this end, we take the divergence of Eq.3.1:

∇· û =∇·
(

N∑
i=1

ρi u (xi )

)
=

N∑
i=1

ρi∇·u (xi ) =
N∑

i=1
ρi ·0 = 0. (3.2)

If the divergence is evaluated analytically and no noise is present in the measurements,
the low pass filtered divergence-free field is therefore still divergence-free. In practice
though, the divergence is evaluated discretely and there is measurement noise. There-
fore, the measured fields will have spurious non-zero divergence. It is possible to reduce
this spurious divergence somewhat through ad hoc smoothing of the data, as shown by
Zhang et al (1997). However, this results in a loss of resolution, without achieving a per-
fectly divergence-free velocity field. A more physically consistent approach is to enforce
mass conservation in the filter itself.

It can be particularly advantageous to include this constraint when calculating physics-
based derived quantities. For example, Sadati et al (2011) found a significant improve-
ment in the calculation of stress and optical signal fields from velocity measurements
of a viscoelastic flow when enforcing the divergence-free constraint. In this chapter, we
demonstrate improvements in the calculation of pressure fields. Additionally, it is essen-
tial when the measurements are to be used as input for numerical simulations, e.g. for
temporal flow reconstruction. In particular, in the field of PIV, Sciacchitano et al (2012a)
proposed a method that uses the unsteady incompressible Navier-Stokes equations to
fill spatial gaps. Similarly Schneiders et al (2014) proposed a vortex-in-cell method to fill
temporal gaps. These methods currently build a solenoidal velocity field from measure-
ment data in an ad hoc way, without accounting for measurement noise. This introduces
an error in their input which pollutes the temporal reconstruction. Both methods could
benefit from a preprocessing step that handles the noisy data and imposes mass conser-
vation consistently.

3.2. SOLENOIDAL FILTERS
We have identified three general approaches to filter spurious divergence in the litera-
ture, based on three different principles.

3.2.1. HELMHOLTZ REPRESENTATION THEOREM
The first approach is based on the Helmholtz Representation Theorem. This states that
any finite, twice differentiable vector field u can be decomposed into a solenoidal vector
field usol plus an irrotational vector field uirrot (Segel, 2007):

u = usol +uirrot =∇×a+∇ψ, (3.3)
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where a is a vector potential and ψ is a scalar potential. Taking the divergence on both
sides of Eq.3.3 and applying ∇·usol = 0 gives a Poisson equation:

∇2ψ=∇·u. (3.4)

Solving Eq.3.4 gives ψ, from which the solenoidal velocity field can be obtained using
Eq.3.3. Difficulties arise in the specification of the boundary conditions, as in the ab-
sence of walls the boundary conditions are unknown. One extreme is to specify ∇ψ ·n =
u ·n, i.e. the irrotational velocity normal to the boundary is equal to the measured veloc-
ity. As a consequence, the solenoidal velocity field normal to the boundary will be zero.
The other extreme is to specify ∇ψ ·n = 0; the irrotational velocity normal to the bound-
ary is zero, meaning that the solenoidal velocity normal to the boundary is equal to the
measured velocity. This will result in an ill-posed PDE if the measured velocity field is
not globally mass conserving. An additional complication arises when the vorticity field
is to be calculated, because the vorticity of the solenoidal velocity is equal to that of the
measured velocity (an irrotational velocity field has vanishing curl). Since the measured
velocity field is contaminated by noise, the vorticity field of the solenoidal field will not
be improved. A number of authors have followed the approach of the Helmholtz Rep-
resentation Theorem in filtering velocity measurements Song et al (1993); Suzuki et al
(2009); Worth (2012); Yang et al (1993).

3.2.2. LEAST-SQUARES VARIATIONAL FILTERS
The second approach is to define a minimisation problem. Liburdy and Young (1992)
and Sadati et al (2011) defined an unconstrained minimisation problem, where the ob-
jective function consists of three terms:

(i) the discrepancy between the measured and filtered velocity field, expressed as a
sum of squared differences;

(ii) the smoothness of the velocity gradients;

(iii) the divergence of the velocity field.

The latter two terms are multiplied with weighting parameters that must be supplied by
the user. Sadati et al (2011) proposed using generalized cross validation to find optimum
weights.

de Silva et al (2013) defined a constrained minimisation problem, thereby avoiding
the use of weights in the objective function. They called their method the divergence cor-
rection scheme (DCS). The objective function is only the discrepancy between the mea-
sured and unknown filtered velocity fields, expressed as a sum of squared differences.
The divergence-free condition is introduced as a linear equality constraint. The method
was applied to a tomographic PIV experiment and an improvement in the prediction of
turbulence statistics was shown. Formally, it defines the following optimisation prob-
lem:

min
usol

1

m

m∑
i=1

[
3∑

j=1

(
ui

sol, j −ui
PIV, j

)2
]

subject to (3.5)

∇·usol = 0. (3.6)
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The divergence-free condition in Eq.3.6 is approximated using a second-order central
difference scheme on the regular measurement grid. To solve the optimisation problem,
de Silva et al (2013) use MATLAB’s solver fmincon. It possesses the two most powerful
algorithms for solving general constrained nonlinear multivariable minimisation prob-
lems, namely sequential quadratic programming (SQP) and the interior-point method
(Wright and Nocedal, 1999). However, a closer look at the defined optimisation problem
reveals that it can be restated as a quadratic programming problem with linear equality
constraints (Wright and Nocedal, 1999), therefore avoiding the need for either SQP or
the interior-point method. Instead, it will results in one linear system of equations that
needs to be solved. The quadratic programming problem can be stated as follows:

min
usol

1

2
u′

solQusol +d′usol subject to (3.7)

Dusol = 0, (3.8)

where usol =
(
usol,1 usol,2 usol,3

)′, Q = (2/m) I (I is the identity matrix),

d =− (2/m)
(
uPIV,1 uPIV,2 uPIV,3

)′ ,

and D is the discrete divergence operator. The solution to the optimisation problem can
be obtained by solving the following linear system of equations:[

Q D ′
D 0

][
usol

λλλ

]
=

[−d
0

]
, (3.9)

where λλλ are Lagrange multipliers. The system matrix is sparse indefinite and can be
solved using SYMMLQ or MINRES (Paige and Saunders, 1975).

Our reformulation of DCS as a quadratic programming problem with linear equality
constraints reveals that it is equivalent to the Helmholtz Representation Theorem. To
show this, we extract the first row from Eq.3.9:

Qusol +D ′λλλ=−d, (3.10)

which can be rewritten as
usol = uPIV −D ′λλλ. (3.11)

The transpose of the divergence operator (D ′) is the nabla operator or gradient G (Ma
et al, 2013):

usol = uPIV −Gλλλ. (3.12)

Taking the curl on both sides of Eq.3.12 and recalling the vector identity that the curl of
the gradient operator is zero, we find that the vorticity of the solenoidal velocity field is
equal to the vorticity of the measured field. As stated in Section 3.2.1, this is equivalent to
the result obtained through The Helmholtz Representation Theorem. Despite this, the
advantage of DCS is that it does not require the user to specify boundary conditions. DCS
is one of the solenoidal filters that will be assessed in the present chapter. For it to work
optimally, one could apply smoothing to the noisy velocity field first before introducing
the solenoidal filter itself. However, we have decided to use it as it was defined by de Silva
et al (2013).



3.3. SOLENOIDAL GAUSSIAN PROCESS REGRESSION

3

27

3.2.3. RECONSTRUCTION WITH A SOLENOIDAL BASIS

A third approach is to use a solenoidal basis, which by construction will return solenoidal
velocity fields. There are several possible choices of basis. Solenoidal wavelets were pro-
posed by Battle and Federbush (1993). Narcowich and Ward (1994) devised solenoidal
radial basis functions (RBF). Lowitzsch (2005) subsequently derived a density theorem
stating that any sufficiently smooth solenoidal function can be approximated arbitrar-
ily closely by a linear combination of solenoidal RBFs. Therefore any incompressible
flow may be represented by this construction. Solenoidal wavelets and RBFs have been
applied in computational fluid dynamics to solve incompressible flows (Deriaz and Per-
rier, 2006; Schräder and Wendland, 2011; Urban, 1996; Wendland, 2009). Applications
of these methods to reconstruct solenoidal velocity fields from velocity measurements
have been reported as well (Busch et al, 2013; Ko et al, 2000; Vennell and Beatson, 2009).

Another choice of basis is described in the work by Schiavazzi et al (2014), who in-
troduced a method, referred to in the following as solenoidal waveform reconstruction
(SWR). It works by first defining a Voronoi tessellation of the measurement grid. Then,
the observed velocities uPIV are converted to face fluxes g. Vortices with unknown strengths
ααα are defined around all edges of the grid (in 2D, vortices are defined around nodes).
This ensures that the reconstructed velocity field, which is a sum of these vortices, will
be solenoidal. The vortex strengths ααα are found by solving the system Wααα = g in the
least-squares sense, where the sparse matrix W contains the influence of the solenoidal
waveforms in terms of the flux they generate. Schiavazzi et al (2014) propose a sequential
matching pursuit algorithm to solve the underdetermined system. Here, we use LSQR
(Paige and Saunders, 1982), a conjugate-gradient type method for sparse least-squares
systems. Once the vortex strengths have been found, the fluxes g∗ are used to recon-
struct the divergence-free velocities usol. The basis functions used in this method are
the smallest possible solenoidal waveforms compatible with the measurement grid. The
advantage of this is that large local measurement errors only disturb reconstructed ve-
locities at neighboring grid points. The disadvantage of this minimal support is that it
becomes difficult to reconstruct gappy fields, i.e. regions with missing data.

3.3. SOLENOIDAL GAUSSIAN PROCESS REGRESSION
This section describes a modification to Gaussian process regression, described in Chap-
ter 2.3, that enforces the divergence-free constraint analytically. In the context of recon-
structing measured velocity fields using Gaussian process regression, previous works
took the route of reconstructing the velocity components independently from one an-
other, precluding enforcement of mass conservation or other physical constraints (de Baar
et al, 2014; Gunes et al, 2006; Inggs and Lord, 1996; Lee et al, 2008). In these works the
state is chosen as

φφφ= (
u1 u2 u3

)′ ∈R3n ,

where uk are the Cartesian velocity components. The m observations are defined by y =(
uPIV,1 uPIV,2 uPIV,3

)′ ∈R3m . The covariance matrix P ∈R3n×3n is a 3×3 block diagonal
matrix, with elements Pk , k = 1,2,3 on the diagonal (see the last expression of Eq.2.13).
The off-diagonal blocks are zero by assumption of uncorrelated velocity components.

To include the divergence-free constraint, we use the vector calculus identity which
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states that the curl of a vector potential a is divergence-free. We therefore choose the
state vector

φφφ= (
a1 a2 a3

)′ ∈R3n ,

where ak are the Cartesian vector potential components. The observation matrix H ∈
R3m×3n , when multiplied with the vector potential, should return its curl, therefore en-
suring that the resulting vector will be divergence-free:

H =
 0 −∂3· ∂2·
∂3· 0 −∂1·
−∂2· ∂1· 0

 , (3.13)

where ∂k is the partial derivative with respect to xk . The covariance matrix P ∈R3n×3n is
a 3×3 block diagonal matrix, with elements Pk , k = 1,2,3 on the diagonal, representing
the covariance between the components of the vector potential. The off-diagonals of
the covariance matrix are zero since the different components of the vector potential
are assumed to be uncorrelated. In the most general case there is no a priori physical
knowledge to assume that there is a relation between them. The component HPH ′ of
the gain matrix A (see Eq.2.18) is equal to∂3,3P2 +∂2,2P3 −∂1,2P3 −∂1,3P2

−∂1,2P3 ∂3,3P1 +∂1,1P3 −∂2,3P1

−∂1,3P2 −∂2,3P1 ∂2,2P1 +∂1,1P2

 . (3.14)

It can easily be verified that the columns and rows of Eq.3.14 are divergence-free. By
taking the same covariance function for all directions of the vector potential (P1 = P2 =
P3) and assuming perfect measurements (R = 0), the gain matrix reduces to:(

∆I −∇∇′)P1. (3.15)

This turns out to be proportional to the operator constructed by Narcowich and Ward
(1994) in the context of RBF interpolation. Our method can therefore be seen as a gen-
eralization of their method, that allows different covariance functions to be used for the
different vector potential components, and that includes measurement uncertainty in
the reconstruction via R. This latter property is a natural consequence of the Bayesian
approach we followed.

3.4. EFFICIENT IMPLEMENTATION
The practical implementation of SGPR is discussed in this section, in which the primary
concern is the storage, conditioning and inversion of the (in general) dense gain matrix
A. This is critical given that tomographic data sets containing 105 −106 vectors are typ-
ical (Scarano, 2013). By exploiting the Toeplitz structure of the gain matrix we make the
method highly efficient.

3.4.1. COMPUTATIONAL COST
To evaluate the divergence-free velocity field at any point one first has to solve the linear
system Ac = y, where A ∈ R3m×3m (see also Eq.2.19). This is the most expensive com-
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ponent of SGPR. The gain matrix is per definition symmetric. For scattered observa-
tions, this requires storing 3m (3m +1)/2 entries. If the covariance function used is pos-
itive definite, the matrix will also be positive definite (Narcowich and Ward, 1994). The
Cholesky factorization, with a computational complexity of O

(
27m3

)
, can therefore be

used as a direct solver. Alternatively, the conjugate gradient (CG) method, with a compu-
tational complexity of O

(
9k ·m2

)
(k is the number of iterations required to reach a given

tolerance), can be used as an iterative solver. The dominant operation per iteration is
the matrix-vector multiplication Ac. For large data sets, the cost of SGPR therefore be-
comes prohibitive. One approach to deal with this is to use a covariance function with
local support: φ (r ≥ rd ) = 0, where rd is the support radius. If the support radius is
much smaller than the size of the measurement domain, the gain matrix will be sparse,
resulting in storage and computational savings. However, the optimum support radius
may be large for a given flow field (Schaback, 1995), and we do not wish to be limited by
computational considerations.

If the measurements are (i) available on a regular grid, as is the case in scanning
PIV and tomographic PIV; and (ii) all observations have equal measurement uncertainty,
then the gain matrix will have a small displacement rank (Kailath et al, 1979), allowing
memory and time savings. To be more specific, the gain matrix will have a Toeplitz struc-
ture. For the present problem, it is a 3× 3 block matrix where each block is a 3-level
symmetric Toeplitz matrix. It is a 3-level Toeplitz matrix as we are dealing with a three-
dimensional space, and the 3× 3 block structure is due to the structure of Eq.3.14. A
3-level symmetric Toeplitz matrix T is defined as follows:

T =



T1 T2 ··· ··· Tm3

T2

. . .
. . .

...
...

. . .
. . .

. . .
...

...
. . .

. . . T2
Tm3 ··· ··· T2 T1

 , Ti =



t1 t2 ··· ··· tm2

t2

. . .
. . .

...
...

. . .
. . .

. . .
...

...
. . .

. . . t2
tm2 ··· ··· t2 t1

 , ti =



τ1 τ2 ··· ··· τm1

τ2

. . .
. . .

...
...

. . .
. . .

. . .
...

...
. . .

. . . τ2
τm1 ··· ··· τ2 τ1

 , (3.16)

where m = m1m2m3 and mk , k = 1,2,3, is the number of observations in the k-direction.
The gain matrix can now be stored using 3m entries. Fast and superfast direct solvers of
complexity O

(
9m2

)
and O

(
3m log2 (3m)

)
, respectively, are available (Ammar and Gragg,

1988).
If the measurement uncertainty is not the same at all points, the gain matrix will have

arbitrary displacement rank and no fast direct solvers are available for such a system (Ng
and Pan, 2010). However, when the CG method is used, accelerations can be achieved.
First, the gain matrix A is decomposed into a diagonal matrix D , containing the unequal
measurement uncertainties, and a 3×3 block matrix G , where each block Gi is a 3-level
symmetric Toeplitz matrix:

A = D +
G1 G4 G6

G4 G2 G5

G6 G5 G3

 . (3.17)

The multiplication Dc can be carried out in O (3m) operations. The matrix-vector mul-
tiplication Gc can be accelerated by embedding each 3-level Toeplitz matrix Gi ∈ Rm×m
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Table 3.1: Relative correlation length γ/L at which κ (A) = 1015. The spatial dimension is 3 and the data points
are defined on a regular 15×15×15 grid with size L×L×L.

φ3,1 φ3,2 φ3,3 φ3,4 φG

GPR 508.35 21.617 6.1209 3.2370 0.5175
SGPR 4.4558×109 408.63 18.503 5.4604 0.4884

into a 3-level circulant matrix Ci ∈ R8m×8m and then using 3D FFTs to carry out matrix-
vector multiplications at a cost of O

(
8m log(8m)

)
(Chan and Jin, 2007). The compu-

tational complexity of the CG algorithm now becomes O
(
72k ·m log(8m)

)
. Normally,

the CG method is used in combination with a preconditioner to speed up convergence.
Unfortunately, Capizzano (2002) has shown that preconditioners for multilevel Toeplitz
matrices are not super linear. So in the present work we have implemented SGPR with-
out a preconditioner.

Note that the assumption of observations on a regular grid should not be seen as a
significant limitation. Consider two common situations where we have (i) a regular mea-
surement grid with missing data (e.g. from removed outliers); (ii) an irregularly scattered
data set that can be approximated as a subset of a regular grid. In these cases, we can set
the values of the unobserved points equal to the mean of the observations (either global
or local) and specify a large measurement uncertainty at these points. The size of the
gain matrix increases, but this may be out weighted by the benefits of having a Toeplitz
structure.

3.4.2. CONDITIONING

The most important factors that influence the condition number of the gain matrix,
κ (A), are the covariance function, the separation distance of the data, the correlation
length and the observation error (Davis and Morris, 1997; Narcowich and Ward, 1994).
Decreasing the separation distance, increasing the correlation length and decreasing the
measurement uncertainty all increase the condition number. An ill-conditioned gain
matrix causes inaccurate results (in the form of numerical noise in the reconstruction),
and reduces the convergence speed of the CG method. In fact, the gain matrix can be-
come so ill-conditioned that it stops being numerically positive definite (i.e. in finite-
precision arithmetic), even though it will always be analytically positive given a positive
definite covariance function (de Baar, 2014). Since our solution methods, Cholesky and
CG, both rely on positive-definiteness, they cannot be applied. We therefore aim to avoid
ill-conditioning by a suitable choice of the covariance function φ. Table 3.1 summarizes
at which correlation length κ (A) becomes 1015. The functions φd ,k , k = 1,2,3,4 are the
Wendland functions with smoothness C 2k and spatial dimension d (Wendland, 2005).
The Gaussian (φG ), an infinitely smooth function, is defined asφG (r ) = exp

(−α2r 2
)
. The

constantαwas set to 3.3 to make it resembleφd ,3 as closely as possible. Unlike the Gaus-
sian, the Wendland functions have compact support: φd ,k = 0 for r ≥ 1. The Gaussian
covariance function appears to be the most ill-conditioned, a property attributed to the
fact that it is infinitely differentiable (Davis and Morris, 1997). The smoother the Wend-
land function, the more it approaches the Gaussian (Chernih et al, 2014). The idea that
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the level of differentiability is related to the conditioning of the gain matrix (Chernih et al,
2014), is supported by the observation that for the Wendland functions, the gain matrix
for SGPR becomes numerically not-positive definite at a larger γ. The reverse happens
for the Gaussian. For SGPR, the covariance function is differentiated twice (see Eq.3.14),
reducing the level of differentiability of the resulting function for the Wendland func-
tions, explaining the better conditioning of the matrix. Clearly, φG limits our choice of
correlation length, whereas Wendland functions are always suitable. Appendix B gives
the analytical expressions of the Wendland functions (k = 1,2,3,4), together with their
second derivatives.

3.5. APPLICATION TO SYNTHETIC TEST CASES
The performance of SGPR is assessed using the two synthetic test cases of incompress-
ible flow described in Appendix A. It is compared with three other filters. The first does
not enforce the divergence-free constraint, and works through a convolution of the data
using a 3×3 smoothing kernel with equal weights (BOX3×3), a simple yet widely used ap-
proach to dealing with noisy data (Raffel et al, 1998). The two solenoidal filters we com-
pare with are DCS and SWR. They were described in Section 3.2.2 and 3.2.3, respectively.
The covariance function we use when applying SGPR is the Wendland function with or-
der k = 2 and smoothness C 4: φ3,2 (r ) (see Eq.B.5). The choice for using this function
is computational efficiency; it is the lowest-order Wendland function with continuous
second order velocity components, which are needed for calculating the pressure field,
and as was concluded in Section 3.4.2, using lower order covariance functions improves
the conditioning of the gain matrix and as a result improves the convergence speed of
the conjugate gradient method. Recall from Eq.2.14 that the radial distance r is scaled
with a correlation length γ. The user can either specify its value a priori or its optimum
value can be pursued by using an optimisation algorithm. Choosing between the man-
ual and automatic approach is a trade-off between computational cost and accuracy. In
this chapter, we suggest to set this parameter a priori. The reasoning is that in practice,
for a tomographic PIV data set, an experimenter will already know what the flow looks
like before applying SGPR. So the parameter could be set equal to a representative flow
feature, like the size of a vortex. In Chapters 4 and 5, where the experimental data such
as from 3D-PTV is sparse, we will use an optimisation algorithm to determine the opti-
mum parameter. In this section and the next, we will investigate how the reconstructed
fields are influenced by the choice of the parameter and then determine how the a priori
choice compares with the actual optimum value.

We set R = λI , where λ simply acts as a regularization parameter. Many different
methods have been proposed in the literature to choose this parameter, however there
is no generally accepted approach. For an extensive review of available approaches, the
reader is referred to Bauer and Lukas (2011). We chose λ = 10−2 for reasons of compu-
tational efficiency; satisfactory convergence speeds were then obtained for all test cases
when using the CG method.

To simulate PIV noise, we add spatially correlated Gaussian noise to the true velocity
field. However, the error of one velocity component is assumed to be uncorrelated from
the error of the other velocity components. This is typically the case in PIV. Therefore,
noise will be added to each velocity component independently. For each velocity com-
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Table 3.2: Taylor-vortex: noise reduction Q of velocity magnitude, vorticity and pressure.

BOX3×3 DCS SWR SGPR

velocity 14.9% 29.6% 35.8% 59.2%
vorticity 26.3% 0% 15.8% 70.4%
pressure 42.7% 83.0% 88.1% 92.3%

ponent, we express the covariance of the measurement uncertainty between point i and
j as:

Si j = Cov
[

ui
PIV,u j

PIV

]
=σiζi jσ j ,

where σi and σ j are the standard deviations of the measurement noise at points i and
j , respectively. We take this standard deviation equal to a fraction of the local velocity
magnitude. For point i :

σi =α||ui
PIV||2,

where we have taken α = 0.1, i.e. the standard deviation is equal to 10% of the local ve-
locity magnitude. Therefore, the measurement uncertainty is spatially varying. This is
representative of the situation in a real PIV experiment, see e.g. Figure 3.5. The corre-
lation ζi j we use is based on results obtained by Wieneke and Sciacchitano (2015), who
investigated the spatial correlation of measurement noise between PIV velocity vectors
as a function of overlap and interrogation window size. We used the results for an over-
lap of 75% and an interrogation window size of 32 voxels in each direction, which are
the most frequently used settings for tomographic PIV (Scarano, 2013). To sample noise
with the desired spatial covariance structure, we compute the Cholesky decomposition
of S = LL′, and multiply L with a vector containing uncorrelated noise from a standard
Gaussian distribution. This noise is added to the analytical velocity fields.

The filters we will use work on the velocity field. To get the vorticity field, we take the
curl. With SGPR we can calculate this field analytically due to the use of the covariance
function. For the other filters we use finite differencing, as velocities are only available
on grid nodes. To allow for a fair comparison, we also use finite differencing to compute
curl when using SGPR.

For the first test case we will also calculate the pressure field. The pressure field is ob-
tained from the velocity field by using the Navier-Stokes equations. Chapter 6 describes
in detail how this can be achieved. Neumann boundary conditions are imposed, and the
reference pressure in the center is set to act as a Dirichlet boundary condition. All the
derivatives are calculated using second-order accurate finite difference schemes.

The metric we use to compare the filters is a noise reduction percentage (Q), defined
as:

Q =
(
εo −εf

εo

)
×100%, (3.18)

where εo is the root-mean-square error of the measured (observed) field and εf is the
root-mean-square-error of the filtered field.
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3.5.1. TAYLOR-VORTEX
We use a regular grid (tomographic PIV case) with 101 points in both directions, totaling
10,201 observation points. For simplicity, we use the same correlation length in both di-
rections. Since the whole domain contains one vortex, we set its value equal to the size
of the domain: γ= γ1 = γ2 = 2L0. Table 3.2 shows the noise reduction Q for the velocity
magnitude, vorticity and pressure fields, averaged over the 26 time frames. Comparing
SGPR with the other filters, we see that it provides the highest noise reduction for all
fields. Comparing BOX3×3 with DCS and SWR, we see that BOX3×3 returns a more accu-
rate vorticity field, but less accurate velocity and pressure fields. Notice that for DCS the
noise in the vorticity field is not reduced, so the vorticity of the solenoidal field is equal
to that of the observed field. This confirms that it is equivalent to the Helmholtz Repre-
sentation Theorem. Comparing the three solenoidal filters, SGPR has the highest noise
reduction, followed by SWR and then DCS.

To get a qualitative impression of the reconstructed fields, we refer to Figure 3.1. First
of all, notice that the noise we have added to represent the PIV noise is indeed spatially
correlated. The fields returned by SGPR do indeed look better than the ones obtained
with the other filters, especially when looking at the velocity and vorticity fields. The
improvement in the pressure field is less noticeable, as verified from Table 3.2.

The correlation length we used was determined based on the fact that the field con-
tains one vortex that encompasses the entire domain, so we set γ/L0 = 2. Figure 3.2
shows how the noise reduction for the velocity, vorticity and pressure fields is influenced
by the correlation length. The three graphs share the following characteristics:

(i) there is an optimum noise reduction inside the interval;

(ii) small values of the correlation length lead to an abrupt decrease in noise reduc-
tion;

(iii) around the optimum, the graph is relatively flat.

The optimum correlation length is around γ/L0 = 9, resulting in noise reductions of 78%,
93% and 93% for velocity, vorticity and pressure, respectively. Though our choice of cor-
relation length was therefore suboptimal, the a priori physical knowledge we used has
still given us better noise reduction than the other filters. It is only when we would have
chosen a length smaller than γ/L0 = 0.45 that SWR would have been better. The fact that
the graphs are relatively flat around the optimum is a desirable property as it implies
robustness of SGPR. As long as the user makes an educated guess for the correlation
length based on a priori physical knowledge, SGPR is relatively insensitive to the exact
value chosen.

3.5.2. VORTEX RING
We take a regular grid with 21 data points in the 1-direction and 41 data points in the 2-
and 3-directions. So there are 35,301 data points in total. We use a correlation length of
10R0 in each direction. So the support radius spans the complete vortex ring. Table 3.3
shows the noise reduction for the velocity and vorticity magnitude. Again, BOX3×3 results
in the lowest noise reduction for the velocity field. However, as for the previous test case,
it returns more accurate vorticity fields than DCS and SWR, where DCS again leaves the
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(a) (b)

(c) (d)

(e) (f)

Figure 3.1: Taylor-vortex: true (left side of (a), (c), (e)), measured (right side of (a), (c), (e)) and filtered ((b), (d),
(f)) velocity magnitude (top), vorticity (center) and pressure (bottom) fields. Filters (clock-wise, starting at top
left): BOX3×3, DCS, SWR, SGPR. The second frame is shown.
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Figure 3.2: Taylor-vortex: noise reduction of the velocity (circle), vorticity (square) and pressure (diamond)
fields as a function of correlation length using SGPR.

Table 3.3: Noise reduction Q of velocity magnitude and vorticity for the vortex ring.

BOX3×3 DCS SWR SGPR

velocity 16.6% 17.6% 27.5% 27.4%
vorticity 18.5% 0% 15.1% 20.7%

measured vorticity field unchanged. SGPR results in the highest noise reduction for the
vorticity field, but for the velocity field SWR is marginally better.

To get a qualitative impression of the methods, Figure 3.3 compares the true vortex
ring with the filtered ones. Figure 3.4 shows how the noise reduction is influenced by the
choice of correlation length. The value we chose (γ/R0 = 10) is close to the optimum at
γ/R0 = 14. At this value, the noise reduction of velocity and vorticity is 30.4% and 23.2%,
respectively. Similar to the Taylor-vortex, the current graph has three characteristics,
namely an optimum inside the interval, a large decrease in noise reduction for small
correlation lengths and a relatively flat curve around the optimum.

3.6. APPLICATION TO EXPERIMENTAL TEST CASES
We will not consider the non-solenoidal BOX3×3 filter, since such filtering steps have al-
ready been applied to obtain the velocity fields from the particle images, especially the
effect of the PIV interrogation windows. To assess the reconstruction accuracy of the
solenoidal filters, we use different approaches for the two test cases: for the circular jet
in water, we use a posteriori estimates of random uncertainty for the measurements in
terms of the velocity field and investigate to what extent the filtered velocities are in-
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(a) (b)

Figure 3.3: Vortex ring: top view and contours of the out-of-plane velocity. True (left side of (a)), observed (right
side of (a)) and filtered (b) fields.

Figure 3.4: Vortex ring: noise reduction of the velocity (circle) and vorticity (square) fields as a function of
correlation length using SGPR.
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Figure 3.5: Circular jet in water: velocity magnitude slice in the axial plane. Isosurfaces of measurement un-
certainty in terms of velocity magnitude standard deviation at 0.035 m/s.

side the uncertainty bounds; for the turbulent boundary layer in air, we reconstruct the
pressure field from the velocity data and compare with microphone measurements.

3.6.1. CIRCULAR JET IN WATER
Since we are considering experimental data, there is no perfect reference solution. To
make a quantitative performance assessment of the solenoidal filters, we use a recent
method that estimates a posteriori random uncertainty for measurements locally (Sci-
acchitano, 2015). It is also applicable to tomographic PIV. It expresses the distribution of
error for each vector component in terms of standard deviation (1 σ). Figure 3.5 shows
isosurfaces of the standard deviation at a velocity magnitude of 0.035 m/s. Clearly, the
measurement uncertainty varies in space. Also notice how the uncertainty is localized
inside the jet, as opposed to outside where the flow is practically at rest. In particular,
we can identify ring shapes (compare with the vortex rings in Figure A.3(a)). These are
regions with strong velocity gradients so it is reasonable to expect larger uncertainties
there (Sciacchitano et al, 2013).

When using SGPR, we consider two scenarios. In the first, we do not include the a
posteriori measurement uncertainty in the reconstruction. In the second scenario we
take it into account in the R matrix. The covariance function we use is the Wendland
function with order 2 (see Eq.B.5). The correlation length spans 15 vectors in each direc-
tion, which is approximately the diameter of a vortex ring, i.e. dvortex = 15h. To investi-
gate the influence of the correlation length on the reconstructed velocity field, we under
sample the data set by halving the measurement resolution in each direction. The data
points in between are taken as validation, which we then use to calculate the root-mean-
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Figure 3.6: Circular jet in water: root-mean-square error as a function of correlation length.

square error. Figure 3.6 shows the result. The behaviour is very similar to what we found
for the synthetic data sets in the previous section: (i) there is an optimum correlation
length inside the interval; (ii) small values of the correlation length lead to an abrupt in-
crease in root-mean-square error; (iii) around the optimum, the graph is relatively flat.
Again, we emphasize that the latter characteristic is a desirable one from a robustness
point of view. It turns out that our choice of correlation length γ/dvortex = 1 was a very
good one. Not only are we in the flat region, we are at the beginning of it. This is ad-
vantageous since a smaller correlation length leads to a better conditioned gain matrix,
resulting in faster convergence. Note that we have only under sampled to understand
the relation between reconstruction accuracy and correlation length. In the following,
we use the full data set. Figure 3.7(a) shows isosurfaces of the velocity divergence at 15
1/s. Before removing the spurious divergence, we first quantify how far from divergence-
free the data set is. The following metric is due to Zhang et al (1997):

δ= (∂u1/∂x1 +∂u2/∂x2 +∂u3/∂x3)2

(∂u1/∂x1)2 + (∂u2/∂x2)2 + (∂u3/∂x3)2 . (3.19)

The mean ofδwill lie between 0 and 1. When δ̄= 0, the velocity field is exactly divergence-
free. When δ̄ = 1, the velocity components are independent, random variables. Zhang
et al (1997) showed that smoothing of the data can significantly reduce this value. For a
turbulent flow measurement in a square duct using hybrid holographic PIV, they showed
how using a Gaussian filter decreased δ̄ from 0.74 to 0.50. For the dataset used in the
present paper, we found that δ̄= 0.66. Figure 3.7(b) shows the isosurfaces of velocity di-
vergence after applying SGPR. The mean of the normalized divergence is δ̄= 0.09. Note
that even though SGPR defines an analytically divergence-free field, we see some spu-
rious divergence. This is because divergence was calculated using finite differencing to
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(a) (b)

Figure 3.7: Circular jet in water: isosurfaces of velocity divergence at 15 1/s of the original data set (a) and after
applying SGPR (b).

compare with the original data set. Therefore, the spurious divergence we observe for
SGPR is completely due to truncation error. We can conclude that the spurious diver-
gence observed in the data set is for a large part not due to truncation error, but other
sources that arise from measurements, like random measurement errors. The reason
that we do not show the velocity divergence after applying DCS or SWR is because they
are defined to return divergence-free fields on a finite-difference and finite-volume level,
respectively. So, the divergence calculated with these methods at the data points is zero.

We quantify the performance of the filters by using the following metric:

ξi (x) =
∣∣usol,i (x)−uexp,i (x)

∣∣
σi (x)

, i = 1,2,3 (3.20)

where usol,i (x) is the solenoidal velocity field in the i -direction, obtained with DCS, SWR
or SGPR and uexp,i (x) is the experimental velocity in the i -direction. The a posteriori
standard deviation of the random uncertainty in the i -direction is given by σi (x). Ide-
ally, all reconstructed data points should have ξi ≤ 3, i.e. the error should be within 3
standard deviations of the measurement uncertainty (99.7% certainty). Figure 3.8 shows
the cumulative distribution of ξ1. The plots for the other two directions look very similar.
The results for DCS and SWR are practically identical. When the a posteriori measure-
ment uncertainty information is not included (i), SGPR is only slightly better than the
other filters. However, when this information is included in the reconstruction (ii), the
method is clearly better in reconstructing a solenoidal velocity field within the measure-
ment uncertainty. At ξi = 3, F (ξi ) is 1, whereas for DCS and SWR the value is around 0.9,
meaning that 10% of the data points have a deviation from the measurements greater
than 3 standard deviations. With regards to the average ξ1, DCS and SWR are equal to
2.0. For SGPR, it is 1.8 when no measurement uncertainty is included, but it reduces
to 0.3 when this information is incorporated. In conclusion, when including local mea-
surement uncertainty, SGPR is able to return a divergence-free velocity field that follows
the measured velocity field much more faithfully than any other known technique.
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Figure 3.8: Circular jet in water: cumulative distribution of ξ1 using DCS (circle), SWR (square) and SGPR (i)
(times, solid) and SGPR (ii) (times, dashed).

3.6.2. TURBULENT FLAT PLATE BOUNDARY LAYER IN AIR

Since the particle images were not available to us at the moment of the calculations, we
were unable to use the approach by Sciacchitano (2015) to estimate the measurement
uncertainty, as was done in the first experimental test case. Therefore, for SGPR the ob-
servation error covariance matrix R is set to the identity matrix multiplied with λ= 10−2.
We again use the Wendland function with order 2 as the covariance function. Recall that
for the circular jet in water, we chose the correlation length equal to the diameter of the
vortex ring. The present turbulent boundary layer does not have such a distinguishable
feature. One can suggest using the boundary layer thickness δ and set the correlation
length equal to it. However, the boundary layer thickness is approximately 9.4 mm and
the height of the measurement volume is 4.2 mm, i.e. the measurement volume is com-
pletely immersed in the boundary layer. For this reason, we simply chose an a priori
correlation length equal to the height of the measurement volume H . Indeed, as was ex-
plained before, larger correlation length results in a more ill-conditioned system matrix,
which increases the computational time.

To investigate the influence of the correlation length on the reconstructed velocity
field, we again under sample the data set by halving the measurement resolution in each
direction. The data points in between are taken as validation, which we then use to
calculate the root-mean-square error. Figure 3.9 shows the result. We observe that our
a priori correlation length of γ/H = 1 is close to the optimum. Before applying SGPR,
δ̄= 0.74. After application of this filter, it reduces to δ̄= 0.03.

Contrary to the previous experimental test case, no a posteriori estimates of ran-
dom uncertainty for the velocity measurements are available. Instead, to quantify the
reconstruction accuracy of the solenoidal filters, we compute pressure fields from the
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Figure 3.9: Turbulent boundary layer in air: root-mean-square error as a function of correlation length.

time-resolved velocity field measurements and compare the results with a pinhole mi-
crophone located on the wall. The boundary conditions imposed are the same as dis-
cussed in Pröbsting et al (2013), so Neumann boundary conditions at all sides except the
top side closest to the free stream, where the pressure is prescribed (Dirichlet boundary
condition).

Three approaches are followed to evaluate the acceleration, required for the pressure
calculation:

(i) the Eulerian scheme (eul), where the material acceleration is evaluated with re-
spect to a stationary reference frame;

(ii) the ‘standard’ Lagrangian scheme (lag), where the material acceleration is calcu-
lated by following a fluid particle. The specific method used is that mentioned by
van Oudheusden (2013), i.e. a first-order reconstruction of the particle track with
a central difference scheme for the material acceleration at the next and previous
time instances;

(iii) a least-squares regression of the fluid parcel’s velocity using a first-order polyno-
mial basis (lsrN ), as proposed by Pröbsting et al (2013). Here, N is the number of
velocity fields over which the particle trajectory is followed.

The two latter approaches are both Lagrangian methods. According to Violato et al
(2011), Lagrangian methods are more accurate for convection dominated flows, like bound-
ary layer flows. For the synthetic test case of the (non-convecting) Taylor-vortex (Section
3.5.1), we only used the Eulerian scheme.

To determine the microphone location on the wall (the particle images were not
available), we cross-correlated the time series of the microphone measurement with the
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Figure 3.10: Turbulent boundary layer in air: cross-correlation between microphone pressure time series and
PIV-reconstructed pressure time series, as a function of location on the wall.

PIV-based pressure fields. Figure 3.10 shows the cross-correlation coefficient taken at a
region where we believed the microphone was located. We clearly see a peak and this is
where the microphone is most likely located.

Following Pröbsting et al (2013), we show the pressure time series for a subset of the
data in Figure 3.11. Both the microphone and PIV-based pressure signals were band
pass-filtered over the range 300 Hz to 3 kHz. We have not shown the signals obtained
with the other solenoidal filters to avoid obscuring the plots, however they are very simi-
lar to SGPR. As expected, the worst reconstruction is obtained with the Eulerian scheme.
Improvements are obtained by switching to the Lagrangian scheme. The best results are
obtained when using the least squares regressor, where 9 velocity fields were used for
the particle trajectory. Comparing the results before and after applying SGPR, we clearly
see that SGPR improves the reconstruction. The improvement is most noticeable for
the Eulerian scheme and the least for the least squares regressor with 9 velocity fields,
in which case the random errors seem to be sufficiently suppressed, leaving out mainly
bias errors. However, we emphasize that using many velocity fields to reconstruct a par-
ticle trajectory is in principle undesirable since this results in a larger number of particles
to fall outside the measurement domain, potentially cropping a large part of the recon-
structed pressure field. Therefore, it is indeed an important advantage that the solen-
oidal filters result in a significant improvement when using the Eulerian and standard
Lagrangian schemes.

For completeness, Table 3.4 shows the cross-correlation coefficients achieved using
the various solenoidal filters and the various acceleration calculation schemes. As stated
previously, the solenoidal filters return similar results and they always result in an im-
proved pressure signal. This is independent of which scheme is used to calculate the



3.6. APPLICATION TO EXPERIMENTAL TEST CASES

3

43

(a)

(b)

(c)

Figure 3.11: Turbulent boundary layer in air: pressure time series obtained with the microphone (black), tomo
PIV with the original data (blue) and SGPR (red) using the Eulerian (a), standard Lagrangian (b) and least-
squares regression (lsr9) (c) approaches. δ is the boundary layer thickness, u∞ is the free stream velocity, q∞
is the free stream dynamic pressure and p ′ the pressure fluctuation.
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Table 3.4: Turbulent boundary layer in air: cross-correlation coefficient achieved with the original data (org)
and the solenoidal filters.

eul lag lsr3 lsr5 lsr7 lsr9

org 0.38 0.46 0.46 0.55 0.60 0.62
DCS 0.51 0.55 0.56 0.62 0.63 0.65
SWR 0.51 0.54 0.55 0.61 0.62 0.63

SGPR 0.51 0.55 0.56 0.62 0.63 0.65

acceleration, though the gain becomes less noticeable as more velocity fields are used to
reconstruct a particle trajectory using lsr.

3.7. CONCLUSION
In this chapter, we investigated the use of an analytically solenoidal filter based on Gaus-
sian process regression (SGPR) to remove spurious divergence from tomographic PIV
measurements. We formulated the filter from a Bayesian perspective. Measurement un-
certainty can therefore be included naturally. To allow filtering large data sets, we have
exploited the Toeplitz structure of the resulting gain matrix to speed up matrix-vector
multiplications in the CG method. This can be done when the measurements are on
a (near) regular grid. We used two synthetic test cases to assess the accuracy of the
filtered velocity and derived vorticity and pressure fields and compared with conven-
tional (non-physics-based) filtering and two other recently proposed solenoidal filters
that have been applied to volumetric velocity measurements as well. We have used a re-
alistic model of PIV noise with correlated random errors. We found that SGPR has better
noise reduction properties. The advantage of the other solenoidal filters is that they do
not require a parameter. SGPR on the other hand does, but we found that as long as the
user makes use of his a priori physical knowledge of the field of interest, the results are
quite insensitive to the exact value chosen. This demonstrates that the method is robust
to its parameters. The first experimental data set showed that by including the mea-
surement uncertainty, SGPR is able to reconstruct a solenoidal velocity field that more
faithfully follows the measurements. The second experimental data set showed that all
three solenoidal filters improve the reconstructed pressure signal, independent of which
scheme is used to evaluate flow acceleration.



4
SOLENOIDAL INTERPOLATION OF

SPARSE 3D-PTV DATA

This chapter investigates whether enforcing the solenoidal (divergence-free) constraint
can improve the interpolation of velocity (and derived) fields obtained from sparse three-
dimensional particle tracking velocimetry (3D-PTV) of incompressible flows. We investi-
gate two approaches to enforce a solenoidal velocity field: (i) a two-step approach, where
initially, the velocity components are interpolated independently from one another onto
a (fine) regular grid, followed by the application of a solenoidal filter, enforcing a diver-
gence-free velocity field on a discrete level; (ii) a one-step approach, where solenoidal
Gaussian process regression (SGPR) is used, returning analytically solenoidal velocity fields
(see Chapter 3). In the first step of the two-step approach, we consider both linear inter-
polation and Gaussian process regression (GPR). Since GPR and SGPR have parameters
that need to be specified, we propose an efficient methodology in Section 4.2 that auto-
matically finds the values for optimum interpolation based on the information provided
by the measurement itself. We apply the interpolation methods to synthetic data in Sec-
tion 4.3 and experimental data in Section 4.4, and show that enforcing the divergence-free
constraint indeed results in consistently more accurate velocity and derived fields. Specif-
ically, we find that the one-step approach of SGPR is superior to the two-step approach.
Conclusions are drawn in Section 4.5.

4.1. INTRODUCTION
3D particle tracking velocimetry (3D-PTV) returns velocity vectors non-uniformly scat-
tered over the domain of interest, corresponding to the location of individual tracer par-
ticles at a single time-instant (Maas et al, 1993). To carry out flow field visualization or
obtain derived quantities such as vorticity, vortex identification metrics or pressure, the
velocity measurements need to be converted to a regular grid, for which a variety of data
interpolation methods can be used. The simplest approach is to construct a triangula-
tion (for example, a Delaunay triangulation) based on the measurement points, followed
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by piecewise (nearest-neighbor, natural-neighbor, linear) interpolation. Other methods
popular in the field of 3D-PTV are the adaptive Gaussian window (Agüí and Jimenez,
1987) and local trivariate polynomial interpolation (Malik and Dracos, 1995). The use of
radial basis function (RBF) interpolation (Casa and Krueger, 2013) as well as Gaussian
process regression (GPR) or Kriging (de Baar et al, 2014; Gunes et al, 2006; Venturi and
Karniadakis, 2004) has also been explored. These two methods do not require a triangu-
lation or grid to be defined.

None of the above methods enforce the velocity field to be divergence-free. Includ-
ing this constraint can potentially improve the accuracy of the interpolated velocity and
derived fields, especially if the number of measurement points is low, i.e. sparse data
sets. This has become particularly relevant with the recent trend to move tomographic
PIV to large scale applications, enabled by the use of helium-filled soap bubbles (HFSB)
as seeding material (Scarano et al, 2015). The major problem with this type of tracers
is obtaining sufficient seeding concentration. The low seeding density makes the use of
particle tracking a preferred option and results in sparse non-uniform data sets. A vari-
ant of the adaptive Gaussian window that incorporates the divergence-free constraint
was proposed by Zhong et al (1992). However, their method only imposes this constraint
at pre-selected points. It was Narcowich and Ward (1994) who introduced a method that
returns an analytically divergence-free vector field throughout the domain. In fact, as
stated by the authors, it is impossible to produce such a vector field with scalar basis
functions. Chapter 3 proposed solenoidal Gaussian process regression (SGPR) to filter
spurious divergence obtained from tomographic PIV data, where the main concern was
not the spatial resolution of the measurements but rather the measurement noise. This
method returns analytically divergence-free velocity fields.

The focus of the present chapter is to investigate whether the interpolation accuracy
can be improved by enforcing the divergence-free constraint . Especially as the spatial
resolution of the measurements decreases, incorporating this constraint may result in an
increased benefit. We investigate two approaches to enforce a solenoidal velocity field:

(i) a two-step approach: the velocity components are interpolated independently
from one another onto a (fine) regular grid, followed by the application of a solen-
oidal filter, enforcing a divergence-free velocity field on a discrete level;

(ii) a one-step approach: SGPR.

The second approach is preferred preferred since it works in one step and returns ana-
lytically divergence-free velocity fields.

Though the formulation of SGPR as presented in Chapter 3 does not change, the two
important differences when applying it to 3D-PTV data instead of tomo-PIV data are:

(i) the choice of the correlation length or width of the covariance function used;

(ii) the procedure for solving the system matrix.

With regards to the first difference: for a well-resolved flow field, this length can be cho-
sen a priori based on the size of relevant flow features, like vortices. In Chapter 3, it was
found for a number of test cases that the accuracy is insensitive to the exact choice, in-
dicating robustness of SGPR. However, if the data set is sparse, choosing a correlation



4.2. PARAMETER DETERMINATION

4

47

length based on a priori knowledge is not straightforward. Increasing the width usually
improves the accuracy significantly (Fornberg and Wright, 2004). However, this results
in dense system matrices and subsequently larger computational time and memory re-
quired. Also, it is by no means a general fact that larger widths always result in a more
accurate interpolation. For these reasons, this chapter proposes an automatic method
for finding the optimum correlation length. With regards to the second difference: when
applying SGPR to 3D-PTV we cannot exploit a Toeplitz structure of the system matrix,
since the measurements are not available on a regular grid. With measurements dis-
tributed randomly, we are forced to store the full matrix. However, memory and com-
putational time savings can be achieved by using compact covariance functions instead
of covariance functions with global support. Following Chapter 3, this chapter will also
use Wendland functions. These two differences seem to indicate that SGPR is less suited
for 3D-PTV than it was for tomo-PIV. However, that is not necessarily the case. Indeed,
the number of measurements from 3D-PTV is significantly smaller than tomo-PIV data,
especially when using HFSBs, a primary motivation for the present chapter.

4.2. PARAMETER DETERMINATION
To find the optimum parameters (correlation length γγγ from Eq.2.14 and the regulariza-
tion parameter λ discussed in Section 3.5), we follow an approach popular in machine
learning (Suthaharan, 2015). With Np measurement points coming from the tracked
particles:

xp j ∈R3, j ∈ P = { j ∈N|1 ≤ j ≤ Np },

the set P is split into two disjoint sets T and V , representing the training set and valida-
tion set, respectively. The Ntrain points belonging to the training set are denoted x̂p and
the Nval points belonging to the validation set are denoted x̆p . The training set is used
to fit the interpolation method to the velocity measurements in the training set, ûp . The
resulting interpolation is then evaluated at the locations of the validation set, giving the
predicted velocity ŭ∗

p . We define the following objective function:

J
(
γγγ,λ

)=
√√√√ 1

Nval

Nval∑
k=1

(
ŭ∗

p,k − ŭp,k

)′ (
ŭ∗

p,k − ŭp,k

)
,

which simply represents the root-mean-square error between the predicted velocity ŭ∗
p

and measured velocity ŭp of the validation set. The arguments of the objective function
are the parameters we are looking for. The optimum parameters are found by minimising
J . The reason for using a validation set, separate from the training set, is to avoid over-
fitting. Figure 4.1 illustrates how the objective function is calculated.

With regards to choosing the relative size of the training and validation set, there
is no universal rule. A common approach is 80% for the training set and 20% for the
validation set (Suthaharan, 2015). This is known as the Pareto principle and is the rule
we have followed for the synthetic cases in Section 4.3.

For the experimental case in Section 4.4 we have defined a training set in addition to
the fitting and validation sets. After finding the optimum parameters, the velocity field
is evaluated at the locations of the test set and compared to the test set measurements,
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Figure 4.1: Calculation of the objective function J to be minimised. The measurement set is randomly split
into the disjoint sets T and V , containing the training and validation points, respectively.

from which we can calculate the root-mean-square error. This gives a final metric for the
quality of the interpolation and allows us to compare with other interpolation methods.
We have chosen the following subdivision for the experimental case: 70% for the training
set, 15% for the validation set and 15% for the test set. We therefore stay relatively close
to the Pareto principle. Of course, for the synthetic cases there is also test set, but since
we can evaluate the true fields anywhere in the domain, we can choose a large number
of points for this, without taking them from the original ‘measurement set’.

As stated earlier, large values of the correlation length result in dense system matri-
ces and subsequently larger computational time and memory required. For that reason,
we suggest not to use a gradient-free optimisation algorithm that requires bracketing
the interval, since we would like to avoid evaluating at large correlation lengths. Using a
gradient-based method is preferred since it requires an initial point. Obviously, choosing
the initial point at the lower bound of the interval is ideal. For the correlation length, this
would be the mean distance between the locations in the training set. For the regulariza-
tion parameter, one could choose a number in the order of machine-precision, resulting
in interpolation. With regards to the type of optimisation algorithm, Newton’s method is
better than the steepest descent method. Not only does it show quadratic convergence
(Wright and Nocedal, 1999), it does not carry out a one-dimensional line search, which
again requires bracketing the interval.

This approach of splitting the data for parameter determination is not necessarily
better than maximum likelihood estimation (Cressie, 2015). The main reason for choos-
ing it is computational efficiency. Indeed, by splitting the measurement set into a train-
ing and validation set, we decrease the size of the training set and subsequently compu-
tational time. Maximum likelihood on the other hand uses all data points.
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4.3. APPLICATION TO SYNTHETIC TEST CASES
The synthetic test cases are the same as described in Appendix A and also used in Chap-
ter 3. The following interpolation methods are considered:

(i) linear interpolation (LIN), where the velocity components are interpolated inde-
pendently from one another;

(ii) linear interpolation followed by application of a solenoidal filter (LIN + DCS). First,
the measurement points are interpolated onto a fine regular grid using linear in-
terpolation. Then, the solenoidal filter proposed by de Silva et al (2013), known as
the divergence correction scheme, is applied creating a solenoidal velocity field on
a finite-difference level at the resolution of the regular grid;

(iii) Gaussian process regression (GPR), where the velocity components are interpo-
lated independently from one another;

(iv) Gaussian process regression followed by application of the divergence correction
scheme (GPR + DCS);

(v) solenoidal Gaussian process regression (SGPR).

The results will be presented as an interpolation improvement with respect to linear
interpolation in percentages, denoted Q. The metric is defined as follows:

Q =
(
εlin −εinterp

εlin

)
×100%, (4.1)

where εlin is the root-mean-square error of the field obtained with linear interpolation
and εinterp is the root-mean-square error of the field obtained with the other interpola-
tion methods.

4.3.1. TAYLOR-VORTEX
The first synthetic test case is the two-dimensional Taylor-vortex (see Appendix A.1.1),
for which analytical expressions of the velocity, vorticity and pressure fields are avail-
able. Figures 4.2-4.4 show how the improvement with respect to linear interpolation
changes with the number of measurement points Np for the velocity, vorticity and pres-
sure fields, respectively. The number of measurement points we consider is between 10
and 200. Starting with LIN + DCS, i.e. application of the discrete solenoidal filter after
linear interpolation, we see a consistent improvement in the velocity field (see Figure
4.2) of around 10%. The vorticity field however (see Figure 4.3) is unaltered. This was
already concluded in Chapter 3, where it was found that DCS leaves the vorticity field
unaltered, equivalent with the Helmholtz Representation Theorem. The improvement
in the pressure field (see Figure 4.4) starts out at approximately 10% for the lowest num-
ber of measurements and gradually increases to around 70%.

Proceeding to GPR, we observe that it actually produces less accurate fields than lin-
ear interpolation at the sparsest measurements. This does not completely come as a
surprise considering that we split the measurement points into a training and validation
set for GPR to find the optimum parameters. Therefore, fewer measurement points are
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Figure 4.2: The Taylor-vortex: improvement with respect to linear interpolation (Q) as a function of number of
measurement points (Np ) for the velocity field.

Figure 4.3: The Taylor-vortex: improvement with respect to linear interpolation (Q) as a function of number of
measurement points (Np ) for the vorticity field.
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Figure 4.4: The Taylor-vortex: improvement with respect to linear interpolation (Q) as a function of number of
measurement points (Np ) for the pressure field.

actually used for the interpolation. Linear interpolation on the other hand does not re-
quire parameters, so we use both the training and validation as one set for interpolation.
However, when we use approximately 30 measurement points and more, GPR becomes
more accurate. As we further increase the number of measurement points, the improve-
ment of GPR becomes higher, until it almost reaches 100%. Again, this behaviour is ex-
pected since GPR exhibits spectral convergence. Application of the solenoidal filter after
GPR (GPR + DCS) consistently results in more accurate velocity and pressure fields. The
vorticity field however is not affected, as explained earlier.

Finally, we investigate SGPR. Contrary to GPR, which results in a poorer field than
linear interpolation for the sparsest measurements, SGPR always produces more accu-
rate fields. At the lowest number of measurements, the velocity, vorticity and pressure
fields are approximately 40% more accurate. Additionally, it is always better than GPR or
GPR + DCS. However, as more measurements are added, the improvement of SGPR with
respect to GPR and GPR + DCS decreases. These observations indeed confirm that it
becomes more beneficial to include the divergence-free constraint for very sparse mea-
surements.

Figure 4.5 shows the velocity component in the horizontal direction for the true ve-
locity field (see Figure 4.5(a)) and resulting from the interpolation methods (Figures
4.5(b)-4.5(f)) for the lowest number of measurement points considered, namely Np = 10.
The black dots are the measurement points. SGPR is the only method that captures the
vortex.
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(a) (b)

(c) (d)

(e) (f)

Figure 4.5: The Taylor-vortex: true velocity in the horizontal direction (a); velocity in the horizontal direction
with 10 measurement points using (b) LIN, (c) LIN + DCS, (d) GPR, (e) GPR + DCS and (f) SGPR.
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(a)

(b)

Figure 4.6: The vortex ring: improvement with respect to linear interpolation (Q) as a function of number of
measurement points (Np ) for the velocity (a) and vorticity (b) fields.
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4.3.2. VORTEX RING
The second synthetic test case is the three-dimensional vortex ring, for which analytical
expressions of the velocity and vorticity fields are available (see Appendix A.1.2). Fig-
ure 4.6 shows how the improvement with respect to linear interpolation changes with
the number of measurement points. The number of measurement points we consider
is between 50 and 3000. Starting with LIN + DCS, we see a consistent improvement in
the velocity field around 5%. Again, no improvement is obtained in the vorticity field.
Proceeding to GPR, we again observe for the sparsest data set that it is worse than lin-
ear interpolation. However, around 100 measurement points, the two methods give the
same results. With increasing number of sample points, the improvement obtained with
GPR increases monotonically. Looking at the velocity field, applying the DCS filter (GPR
+ DCS) consistently results in an improvement, although the improvement decreases
with increasing number of sample points. Finally, SGPR consistently returns the most
accurate velocity and vorticity, although the gain with respect to GPR or GPR + DCS de-
creases as the data set becomes larger.

Figure 4.7 shows isosurfaces of the vorticity magnitude, viewing the vortex ring from
the top. We show the results for 50 measurement points, i.e. the lowest number of mea-
surement points considered. We do not show the result when DCS is included, since it
leaves the vorticity field unchanged. Notice that SGPR is the only method that returns
the vortex ring.

4.4. APPLICATION TO EXPERIMENTAL DATA
We use the experiment of the circular jet in water, described in Appendix A.2.1. The data
set used in Chapter 3 was obtained using a cross-correlation based technique, resulting
in measurement points on a regular grid. In this chapter, we use a particle tracking al-
gorithm instead (Schneiders et al, 2015a). The data set contains 5,678 velocity vectors
scattered over the measurement domain. This translates to a seeding concentration of
9.5× 10−5 particles per voxel (ppv). Neutrally buoyant polyamide particles were used
as tracers for the experiment, resulting in relatively high seeding concentration as com-
pared to an experiment where helium-filled soap bubbles are used. The advantage of
using this experiment though is that we can investigate the influence of the seeding con-
centration on the interpolation accuracy by deliberately reducing the size of the mea-
surement set. The data is randomly divided into a training (70%), validation (15%) and
test set (15%). To investigate the influence of the seeding concentration on the inter-
polation accuracy, we have also reconstructed velocity fields by randomly leaving out
fractions of the training and validation data. We went as low as effectively reducing the
ppv with an order of magnitude. Figure 4.8 shows the improvement with respect to linear
interpolation, evaluated on the test test. Application of the solenoidal filter after linear
interpolation results in an improvement around 10%. Using GPR results in an improve-
ment of 20% for the lowest seeding concentration to around 45% for the highest con-
centration considered. Application of the solenoidal filter to GPR results in a further im-
provement of around 5%. Finally, SGPR consistently returns the most accurate velocity
fields, with improvements of around 35% for the lowest concentration to approximately
55% for the highest concentration.

To get a qualitative understanding of the interpolation accuracies, Figure 4.9 shows
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(a) (b)

(c) (d)

Figure 4.7: The vortex ring: isosurfaces of vorticity magnitude, viewing the vortex ring from the top. The true
field (a), results obtained with LIN (b), GPR (c) and SGPR (d). 50 measurement points are used.
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Figure 4.8: Circular jet in water: improvement evaluated on the test set with respect to linear interpolation, as
a function of the seeding concentration (ppv).

the resulting fields using the interpolation methods at the lowest (left-hand side) and
highest (right-hand side) particle concentrations. From Appendix A.2.1 (Figure A.3) we
see that vortex rings are shed from the nozzle. For the lowest concentration, linear in-
terpolation does not reproduce all vortex rings. GPR returns the top three rings, but not
the bottom ring. SGPR on the other hand returns all rings. For the highest seeding con-
centration, all methods show four vortex rings. GPR and SGPR return smoother fields, as
expected, but there is little difference between them.

4.5. CONCLUSION
We investigated whether enforcing the divergence-free constraint can improve the in-
terpolation of velocity (and derived) fields obtained from sparse 3D-PTV data of incom-
pressible flows. Since GPR and SGPR have parameters that need to be specified, we pro-
posed an efficient methodology that automatically finds the values for optimum inter-
polation based on the information provided by the measurement itself. We found that
incorporating the constraint analytically using SGPR results in more accurate interpo-
lations than applying a discrete solenoidal filter to a linearly interpolated field or a field
obtained using GPR. In addition, we found that SGPR consistently returns the most accu-
rate velocity, vorticity and pressure fields. The improvement is most pronounced for the
sparsest data sets. These observations were confirmed using both synthetic test cases
and an experimental data set.



4.5. CONCLUSION

4

57

(a) (b) (c)

Figure 4.9: Circular jet in water: interpolated axial velocity (contour-plots) and vorticity magnitude (isosur-
faces) fields for the lowest (left-hand plots) and highest (right-hand plots) seeding concentrations using LIN
(a), GPR (b) and SGPR (c).
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SPATIO-TEMPORAL

INTERPOLATION OF SPARSE

3D-PTV DATA

This chapter investigates how incorporating the temporal information of particle tracks in
3D-PTV can improve the reconstructed velocity and vorticity field. To incorporate tempo-
ral information, we use the momentum conservation equation formulated in the vorticity-
velocity form via the vorticity transport equation, in addition to mass conservation. We
model these equations using the vortex-in-cell (VIC) solver. Section 5.2 presents a mathe-
matical formulation of the data-assimilation problem, using the results obtained in Chap-
ter 2 as the starting point. As was explained in that chapter, inevitably some assumptions
and simplifications need to be made to allow for a practical implementation. The re-
sulting algorithm is formulated as an optimisation problem, i.e. the solution to the data-
assimilation problem lies in finding the variables that minimize a cost function. Section
5.3 describes the optimisation algorithm we use and Section 5.4 shows how the cost func-
tion is calculated. The optimisation algorithm requires the gradient of the cost function.
Section 5.5 shows how it can efficiently and exactly be obtained. Section 5.6 applies the
algorithm to an experimental data set and compares it with solenoidal interpolation as
explained in Chapter 4, which interpolates the snapshots independently from one an-
other, therefore not taking the temporal information into account. We find clear improve-
ments in the reconstructed field when incorporating temporal information. Conclusions
are drawn in Section 5.7.

5.1. INTRODUCTION
Recall how we classified data-assimilation methods in Chapter 2: in Section 2.3, we de-
scribed methods that assimilate spatial fields; in Section 2.4, we described methods that
assimilate spatio-temporal fields. In the previous two chapters, we considered the for-
mer methods: in Chapter 3, we reduced noise in tomographic PIV data and in Chapter
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4 we interpolated sparse 3D-PTV data. In both cases, we did not require time-resolved
measurements and only included the divergence-free constraint as the physical knowl-
edge.

Naturally, one could ask whether spatio-temporal data-assimilation methods can
provide a further improvement in noise reduction and spatial resolution of volumetric
velocity measurements.

The topic of noise reduction has recently been investigated by Schneiders et al (2015b).
Their goal was to reduce the random error of instantaneous velocity fields. The method
they used was to combine a short-sequence of time-resolved tomographic PIV mea-
surements with multiple time-marching simulations, in which these simulations were
started at the various snapshots of the measurements and integrated (forwards and back-
wards) towards the instantaneous time of interest. The simulations, or physical knowl-
edge, was based on the momentum conservation equation formulated by the vorticity
transport equation (see Eq.1.3) and solved using the vortex-in-cell method. With re-
gards to improving spatial resolution, this has recently been investigated by Schneiders
et al (2015a), where again the vortex-in-cell method was used as the flow solver. The
present chapter is a proof-of-concept study that focuses on the topic of increasing spa-
tial resolution in sparse volumetric velocity measurements. The method used follows
from the mathematical formulation of the data-assimilation problem outlined in Chap-
ter 2, where a number of assumptions and simplifications have been made to allow for a
practical implementation. By making additional simplifications, the method presented
by Schneiders et al (2015a) follows.

Before proceeding, it is worth mentioning other works in the field of experiments in
fluids that have explicitly exploited the temporal information from time-resolved veloc-
ity measurements. For correlation-based techniques, a number of methods have been
proposed to reduce random and bias errors and enhance measurement robustness (Jeon
et al, 2014; Lynch and Scarano, 2013; Sciacchitano et al, 2012b). These methods are not
limited to volumetric measurements and can be applied to 2D PIV as well. Other meth-
ods have explicitly been developed for volumetric velocity measurements (Lynch and
Scarano, 2015; Novara et al, 2010; Schanz et al, 2013). These methods do not take into
account the physical conservation laws. In the field of optical flow, a number of authors
have investigated the use of physics-based constraints to reconstruct velocity fields, di-
rectly from particle images. We refer to the review paper by Heitz et al (2010) and the
references therein. At the end, one of the perspectives they provide is the following:

This move to three dimensions plus eventually time will likely enable physics-based
models and methods to provide accurate inspection tools for experimental fluid
mechanics.

The present chapter is aimed as a contribution towards that goal.

5.2. MATHEMATICAL FORMULATION
A particle tracking algorithm returns the location of a particle p j at snapshot-time tl :

xl
p j

∈R3,
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where j = 1, ..., Np and l = 1, ..., Nt , i.e. there are Np particles and Nt snapshots. Polyno-
mials can be fitted through each particle track, resulting in a reduction of the random
measurement error (Schanz et al, 2013). Taking the time derivative of a particle track
gives the particle velocity, which is considered the measured velocity

Ul
p j

∈R3.

The state we are interested in is the velocity field as a function of space and time: u (x, t ).
The time evolution of the state follows from the Navier-Stokes equations, as expressed by
Eq.1.2. In the present chapter however, we use the vorticity-velocity formulation of the
Navier-Stokes equations, since it does not contain the pressure. Therefore, it is more
suitable in the present work where the measurements are of velocity. The vorticity-
transport equation was given by Eq.1.3. For completeness, we state all the relevant equa-
tions below:

∂ωωω

∂t
=− (u ·∇)ωωω+ (ωωω ·∇)u+ν∆ωωω, (5.1)

∇·u = 0, (5.2)

∇×u =ωωω. (5.3)

Eq.5.3 simply states that the vorticityωωω is the curl of the velocity field. The above system
is completed with initial and boundary conditions:

u (x, t0) = u0 (x) , (5.4)

u (x, t ) |Γ = ub
(
ξξξ, t

)
, (5.5)

ωωω (x, t ) |Γ =ωωωb
(
ξξξ, t

)
. (5.6)

Note that in addition to time-varying boundary conditions for velocity, the vorticity-
velocity formulation also requires time-varying boundary conditions for the vorticity.
Section 5.4.3 shows what happens if we omit the time-varying vorticity boundary condi-
tions. We proceed by discretising the field in space and time, where we define n spatial
locations and K time intervals. The discretisation is carried out on a regular grid for the
vortex-in-cell method, where the volume of each cell is

V =
3∏

l=1
∆xl . (5.7)

The subscripts l = 1,2,3 represent the three Cartesian coordinate directions. To distin-
guish the continuous variables from the discretized variables, we use the symbol ·̂ for the
latter. So we have

ûk ∈R3n ,

where k = 0,1, ...,K . In light of the velocity and vorticity boundary conditions from Eqs.5.5
and 5.6, respectively, we augment the complete state with ûk

b and ω̂ωωk
b , with k = 1, ...,K .

Considering the nonlinearity of the vorticity transport equation, we can either use a
sequential or variational method as the data-assimilation algorithm (see Section 2.4.2).
We choose the latter because of two reasons. Firstly, we can process all measurements
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simultaneously since the particle tracks will all be available from the particle tracking
algorithm: no on-line assimilation is required. Secondly, in the present chapter we are
not interested in quantifying or propagating the uncertainty of the state. Rather, our
goal is to increase the spatial resolution of the measurements. Adding to this the fact
that in Section 5.5 we will describe an efficient method to calculate gradients of the cost
function with respect to the state, the variational method is preferred.

We proceed by stating some simplifications. First of all, we reduce the state to the
initial velocity field and the time-dependent velocity and vorticity boundary conditions:

φφφ=
(
û0, ûk

b ,ω̂ωωk
b

)
,

where k = 1, ...,K . This means that we assume the underlying model is perfect. In the
field of weather forecasting, this results in the well-known variational algorithm known
as 4DVAR (4-dimensional variational method) (Talagrand and Courtier, 1987). The dis-
advantage of this simplification is that it limits the time interval over which the model
can be integrated, i.e. the number of snapshots that can be assimilated. This is also a
well-known limitation of 4DVAR. The second simplification is removing the terms con-
taining the discrepancy with the priors of the state. Practically, these terms tend to avoid
that the solution will deviate too much from the prior or initial guess. From an optimi-
sation point of view, they aim to replace an originally constrained problem by an uncon-
strained one by acting as penalty terms (Wright and Nocedal, 1999). The advantage is
that unconstrained optimisation algorithms can be used to solve the problem. The dis-
advantage is that one needs to specify how to weigh these terms with the other terms in
the cost function. From a Bayesian point of view, these weights are expressed in terms
of the inverse of the covariance matrices (see Eq.2.34). Taking the mentioned simplifica-
tions into account, the cost function from Eq.2.34 that needs to be minimised becomes:

J
(
û0, û{1:K }

b ,ω̂ωω{1:K }
b

)
=

Nt∑
l=1

Np∑
j=1

zl
j
′ 1

σl
j

2 zl
j , (5.8)

where the vector zl
j is defined as:

zl
j = Ul

p j
−H

(
ûl ;xl

p j

)
. (5.9)

The only term in the cost function that has remained is the term representing the dis-
crepancy of the model with the measurements. The standard deviation of the measure-
ment uncertainty at location j and time step tl is σl

j , and we have assumed that the

measurement uncertainty of the different particles is uncorrelated with each other. Re-
call that for PIV data, where overlapping interrogation windows are used, it naturally
follows that the measurement uncertainty of neighboring points will be correlated. With
particle tracking on the other hand, the particles are tracked individually. We therefore
assume the measurements to be uncorrelated. From this it follows that the measure-
ment uncertainty matrix is diagonal, resulting in the scalar term in Eq.5.8. The operator
H in Eq.5.9 uses the velocity field on the regular grid ûl at time tl and carries out an in-
terpolation to obtain the velocity at the measurement position xl

p j
. We will also denote
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Figure 5.1: The interpolated value at xl
p j

is obtained from the vertices of the cell containing xp j using trilinear

interpolation.

it as:

Ûl
p j

=H
(
ûl ;xl

p j

)
. (5.10)

Specifically, since the interpolation is carried out from a relatively fine regular grid onto
a sparse set of randomly distributed points, we use trilinear interpolation:

Ûl
p j

=V l
111

V
ûl

p j ,000 +
V l

011

V
ûl

p j ,100 +
V l

001

V
ûl

p j ,110 +
V l

101

V
ûl

p j ,010 + ...

V l
110

V
ûl

p j ,001 +
V l

010

V
ûl

p j ,101 +
V l

000

V
ûl

p j ,111 +
V l

100

V
ûl

p j ,011

(5.11)

We use Figure 5.1 to explain the components. Given a particle location xl
p j

we obtain

its velocity from the grid nodes of the cell in which it resides. ûl
p j ,abc is the velocity at

the point xl
g j ,abc of the regular grid. V l

de f is the volume of the rectangle opposite xl
g j ,abc ,

across the diagonal of the cell. As an example we have plotted the transparent rectangle
in Figure 5.1, which has a volume V l

000. It lies opposite xl
g j ,111 across the diagonal of the

cell.
Before proceeding, it is worth mentioning the cost function used by Schneiders et al

(2015a).

J = Ju + JDu + Jr . (5.12)

The first component Ju is similar to Eq.5.8, with two differences: in the present chap-
ter multiple time frames can be assimilated. In other words, Nt = 1 in Schneiders et al
(2015a). The second difference is that in the present chapter, the velocity measurement
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uncertainty has explicitly been taken into account. The second component JDu rep-
resents the discrepancy of the material acceleration between the model and the mea-
surements. The third and final component contains the sum of squares of the velocity
divergence and the vorticity divergence. Due to the parameterization discussed in Sec-
tion 5.4.2, the method used in the present chapter does not require explicitly defining
the third component.

5.3. OPTIMISATION ALGORITHM
To find the minimum of the cost function J , we use a quasi-Newton method, known
as limited-memory BFGS (L-BFGS) (Liu and Nocedal, 1989). Quasi-Newton methods
can be seen as providing a good compromise between steepest descent methods and
Newton’s method. They only require the gradient of the cost function J like the steepest
descent methods. Therefore they are computationally cheaper than Newton’s method,
which requires second derivatives but shows quadratic convergence behaviour near the
minimum. However, since quasi-Newton methods attempt to approximate the second
derivatives of the objective function they show better convergence properties (super-
linear) than the steepest descent method, which shows linear convergence behaviour.
The specific method we use to approximate the second derivatives with the gradient in-
formation alone is the BFGS method, which is the most popular method (Wright and
Nocedal, 1999). The limited-memory variant is useful for the present problem, since
the initial condition and time-dependent boundary conditions together result in a large
state. Like all local optimisation algorithms, L-BFGS requires an initial point to be sup-
plied. Due to the nonlinearity of the cost function, there may be multiple local minima.
Choosing a suitable initial condition is therefore crucial. To this end, we interpolate
each frame of the sparse measurement independently from one another, as described
in Chapter 4.

5.4. COST FUNCTION CALCULATION
Figure 5.2 illustrates how the cost function is calculated. The boxes called ‘box’ apply
the constraints, as discussed in Section 5.4.1. The boxes with ‘C0’ and ‘Ck|Gk’ represent
an (S)GPR transformation, where the inputs are weightings (akin to c in Eq.2.19) and the
outputs are the interpolated fields (akin toφφφ in Eq.2.20). They are explained in more de-
tail in Section 5.4.2, together with the inputs in red. The box ‘VIC’ is the vortex-in-cell
method we use to evolve the velocity field forward in time and is described in Section
5.4.3. The box ‘H’ represents the trilinear interpolation from Eq.5.11 and evaluates the
simulated velocity field from the regular grid at the particle locations. Finally, ‘sse’ eval-
uates the sum of squared errors or discrepancy between the simulated and measured
velocities, as expressed by Eq.5.8.

5.4.1. CONSTRAINT HANDLING

For robustness and computational efficiency, it is desired to constrain the optimisation
algorithm. With regards to robustness, we need to avoid that it converges to an unphys-
ical field. With regards to computational efficiency, we need to avoid that it wastes time
on evaluations in unphysical domains. In 4DVAR this is typically achieved without ex-
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Figure 5.2: Diagram to calculate the cost function J from Eq.5.8.
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Figure 5.3: Transformation to ensure the unconstrained problem with φ̃ results in φl b ≤φ≤φub .

plicitly using a constrained optimisation algorithm. Instead, the first two terms in the
cost function from Eq.2.34, representing the prior initial condition and prior boundary
conditions, are used for this. From an optimisation point of view they act as penalisation
terms, therefore hindering the optimisation algorithm to converge to solutions ‘too far’
from the prior. The disadvantage is the need to specify how to weight the different terms
in Eq.2.34. We constrain the optimisation by applying a transformation of the variables.
The domain in which the optimisation algorithm works is unbounded but the transfor-
mation ensures that the result will be within the specified bounds. The advantages are
that we still can use the unconstrained optimisation algorithm L-BFGS and we can re-
move the penalization terms in the original cost function in the form of the priors (see
Eq.2.34), therefore avoiding the need to specify weightings. Indeed, the cost function
from Eq.5.8 that we minimise does not contain the prior terms.

The transformation works as follows. We require a variable φ to remain within a
predefined interval:

φlb ≤φ≤φub ,

where φlb and φub are the lower and upper bounds, respectively. We replace this con-
strained variable by an unconstrained variable φ̃ and introduce the following transfor-
mation:

φ=φl b +
1

2

(
φub −φl b

)(
sin φ̃+1

)
. (5.13)

We can now use an unconstrained optimisation algorithm with variable φ̃with the guar-
antee that the optimum will be inside the defined interval (see also Figure 5.3).

5.4.2. PARAMETERIZATION

The reduced state, containing the initial velocity field û0, the time varying velocity bound-
ary condition û{1:K }

b and the time varying vorticity boundary condition ω̂ωω{1:K }
b , is defined

on a regular grid as required by the VIC solver. Initially, we had parameterized the state
by directly defining the (velocity and vorticity) components on the nodes of the regular
grid. This resulted in the optimisation routine returning unphysical initial and bound-
ary conditions, containing peaks. This approach was also followed by Schneiders et al



5.4. COST FUNCTION CALCULATION

5

67

(2015a). To avoid unphysical results, we therefore define the state through a parameter-
ization using SGPR, ensuring a smooth solenoidal field. SGPR therefore acts as a regu-
larization term. In this section, we both explain the parameters we defined and how we
find a first-guess for the optimisation algorithm.

We give a detailed explanation for the initial velocity field. The procedure for the ve-
locity and vorticity boundary conditions is the same. The initial velocity field is defined
as:

û0 =C0c0. (5.14)

Covariance functions are placed at each node on the regular grid. Therefore, C0 is the 3-
level symmetric Toeplitz matrix from Chapter 3 and defined by Eq.3.16. The parameter
for the initial velocity field is c0, which we denote a weight vector. To find a first-guess
for it, we interpolate the velocity measurements at the initial snapshot U0

p onto the reg-
ular grid. Following Eq.2.19, which showed how a weight vector can be obtained from
measurements, we write:

c̄0 = A−1
0 U0

p , (5.15)

where A0 is the solenoidal gain matrix from Eq.3.14 corresponding to the measurement
locations x0

p . Once we have found c̄0 from Eq.5.15, we interpolate onto the fine grid.
Following Eq.2.20, we get:

û0 = C̄0c̄0, (5.16)

where C̄0 is simply the solenoidal covariance matrix representing the covariance be-
tween the points on the regular grid and the measurement locations x0

p . Finally, we

obtain a first-guess for c0 by solving the linear system:

c0 =C−1
0 û0, (5.17)

As stated before, the procedure for the velocity and vorticity boundary conditions is
the same. Starting with the velocity boundary condition at time tk , it is defined as:

ûk
b =Ck ck

b . (5.18)

The parameter for the velocity boundary condition is the weight vector ck
b . The covari-

ance functions are placed on the nodes of the regular grid corresponding to the bound-
ary. Finding a first guess for ck

b can be achieved in the same way as was done for the
initial velocity field. Finally, the vorticity boundary condition:

ω̂ωωk
b = Dk gk

b . (5.19)

The parameter for the vorticity boundary condition is the weight vector gk
b . The covari-

ance functions are placed on the nodes of the regular grid corresponding to the bound-
ary. The same procedure as followed for the velocity boundary condition is used to find
a first guess for gk

b , except that we now take the curl of the interpolated velocity fields.

Summarizing, the optimisation variables are c0, c{1:K }
b and g{1:K }

b . With the constraint
handling described in Section 5.4.1, the optimisation problem becomes:

min
c̃0,c̃{1:K }

b ,g̃{1:K }
b

J
(
c̃0, c̃{1:K }

b , g̃{1:K }
b

)
. (5.20)
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Figure 5.4: One time integration step of the VIC solver.

5.4.3. MODEL EVOLUTION
To calculate the time evolution of the velocity field, we use the vortex-in-cell (VIC) solver
(Cottet and Koumoutsakos, 2000). We neglect viscous diffusion from the vorticity trans-
port equation by removing the term ν∆ωωω in Eq.5.1, making the equation time-reversible.
This will later allow efficient calculation of the cost function gradient by the adjoint
method (see Section 5.5.1). Neglecting the viscous term is not a major limitation in case
the time intervals we consider are small, no wall is present in the domain and the flow
is convection dominated. In the context of volumetric velocity measurements, the VIC
solver has been used before by Schneiders et al (2014) to increase the temporal resolu-
tion of tomographic PIV. For two experimental test cases namely a turbulent wake at a
free stream velocity of 14 m/s and the circular jet from Appendix A.2.1 they show that
the method is able to reconstruct detailed temporal dynamics using data subsampled at
a rate far below the Nyquist frequency.

Figure 5.4 shows one time integration step of the VIC solver. We start out with a
velocity field ûk and its corresponding vorticity field ω̂ωωk . As stated earlier, velocity and
vorticity boundary conditions, ûk+1

b and ω̂ωωk+1
b respectively, are also needed to get the

velocity ûk+1 and vorticity ω̂ωωk+1 fields at the new time step. The VIC solver works on a
regular grid and defines vortex blobs at each node with a vorticity that corresponds to
that node.

VORTEX BLOB ADVECTION

The first step illustrated in Figure 5.4 is vortex blob advection1. Each node or vortex blob
on the regular grid is advected according to the current underlying velocity field:

dxvb

d t
= u (x, t ) .

1Normally, the term particle is used instead of blob. We use the term blob to avoid confusion with the tracer
particles used in PTV.
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(a) (b) (c)

Figure 5.5: Vorticity magnitude of the circular jet in water (a), simulated with a finite difference discretization
of the vorticity transport equation (b) and with the VIC solver (c). Notice the growth of numerical instabilities
in (b) due to the CFL-condition violation.

We use a first-order Euler scheme to approximate the above expression:

xvb = xg +∆t · ûk , (5.21)

where xg are the coordinates of the nodes on the regular grid and xvb are their locations
after they have been advected along the velocity field ûk . ∆t is the time integration step.
Treating the advection part of the vorticity transport equation by advecting the particles
gives the VIC solver an important advantage in terms of stability. It is linearly uncondi-
tionally stable, while for nonlinear stability the requirement is that the particles do not
collide (Cottet and Poncet, 2004). Therefore, traditional CFL-type stability conditions do
not impose a limitation for the VIC solver, allowing larger time steps for the time inte-
gration. Figure 5.5 compares a time-integration of the VIC solver with a finite-difference
discretization of the vorticity transport equation with the same time step. Figure 5.5(a)
shows the final vorticity magnitude at the symmetry plane from the reference solution
(see Appendix A.2.1). Both the finite-difference and VIC approaches have been inte-
grated for 28 time steps. The CFL number reaches a value around 1.2 in the high velocity
region. The finite-difference solver, given by Figure 5.5(b) has formed unphysical oscil-
lations, while the VIC solver, given by Figure 5.5(c) is able to accurately reproduce the
reference solution.

VORTEX STRETCHING

In a two dimensional inviscid flow,
Dωωω

Dt
= 0,

where D ·/Dt is the material derivative. The initial vorticity field is simply advected with
the underlying velocity field, meaning that the vorticity associated with each advected
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vortex blob stays constant. For a three dimensional flow however, this is not the case due
to the term (ωωω ·∇)u in the vorticity transport equation, which represents vortex stretch-
ing. The new vorticity field is calculated as follows:

dωωω

d t
=ωωω ·∇u.

Again we use a first-order Euler scheme for the above expression:

ω̂ωωk+1
vb = ω̂ωωk +∆t ·ω̂ωωk ·∇ûk . (5.22)

The new vorticity values correspond to the vortex blob locations at their new position.

VORTICITY INTERPOLATION

The VIC solver requires that the new vorticity field is evaluated at the grid nodes of the
regular grid to enable calculation of the new velocity field in the velocity inversion step.
To this end, the vorticity field should be interpolated from the new vortex blob location
ω̂ωωk+1

vb to the regular grid ω̂ωωk+1:

ω̂ωωk+1
j = 1

V

Np∑
i=1

ω̂ωωk+1
vb,i

3∏
l=1

ζl

(
xl ,g , j −xl ,vb,i

∆xl

)
, (5.23)

where V is the volume of a cell in the regular grid (see Eq.5.7). The function ζl we use is
known as the M ′

4 kernel (Monaghan, 1985):

ζl (α) =


0 |α| ≥ 2
1
2 (2−|α|)2 (1−|α|) 1 < |α| < 2

1− 5
2α

2 + 3
2 |α|3 |α| ≤ 1

 . (5.24)

The advantage of this function is that it conserves total circulation and linear and angu-
lar impulse. Note from Figure 5.4 that next to the new vortex blob locations and their
vorticity, the Vorticity interpolation block also takes vorticity boundary conditions as in-
put. It is overlaid on the boundary after the interpolation.

Figure 5.6 aims to illustrate the importance of also imposing the vorticity boundary
condition. Using the same geometric and flow parameters as the circular jet in water
experiment discussed in Appendix A.2.1, we simulated the flow using the commercial
package Comsol. It uses the Finite Element Method, with the Navier-Stokes equations in
their standard form (see Eq.1.2), i.e. velocity and pressure. The results obtained are used
as the reference solution. We then used the VIC solver and imposed the initial condition
seen in Figure 5.6(a), which is a subdomain of what we simulated in Comsol. The final
condition from Comsol can be seen in Figure 5.6(b). Figure 5.6(c) shows the final con-
dition from the VIC solver if we only impose velocity boundary conditions. We clearly
see that the new vortex ring from the bottom does not convect into the domain. Figure
5.6(d) shows the results if we impose both velocity and vorticity boundary conditions.
Specifying the vorticity boundary condition is therefore important, especially if we inte-
grate forwards over multiple time steps. Though this is in many ways not surprising, it
is important to note considering that the velocity-pressure formulation is the most com-
monly used approach in computational fluid dynamics.
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(a) (b)

(c) (d)

Figure 5.6: Simulated circular jet in water: True initial (a) and final (b) vorticity fields; final vorticity fields from
imposing velocity boundary condition alone (c) and both velocity and vorticity boundary conditions (d). Flow
direction: bottom to top.



5

72 5. SPATIO-TEMPORAL INTERPOLATION OF SPARSE 3D-PTV DATA

Figure 5.7: The original (nonlinear) forward code to obtain the cost function J from the input state φφφ, via the
intermediateψψψ.

VELOCITY INVERSION

The final step is to obtain the new velocity field on the regular grid. Taking the curl on
both sides of Eq.5.3, which simply states that the vorticity is the curl of the velocity, gives
the following:

∇× (∇×u) =∇×ωωω. (5.25)

The curl of the curl is:
∇× (∇×u) =∇ (∇·u)−∇2u,

and since the velocity field is divergence free, it reduces to:

∇× (∇×u) =−∇2u. (5.26)

Combining Eqs.5.25 and 5.26 gives a Poisson equation which allows to calculate the new
velocity field from the new vorticity field:

∇2u =−∇×ωωω. (5.27)

Of course, velocity boundary conditions need to be supplied to solve the Poisson equa-
tion, as illustrated in Figure 5.4.

5.5. COST FUNCTION GRADIENT CALCULATION
To find the minimum of the cost function J , the optimisation algorithm L-BFGS requires
the gradient ∇J . The easiest method to calculate the gradient is finite differencing, since
it treats the evaluation of the cost function as a black box and therefore does not require
any specific further code development from the user. Figure 5.7 shows a simplified flow
diagram to obtain the cost function J ∈ R from the input stateφφφ ∈ Rn . The intermediate
stateψψψ ∈Rm is related to the input state through the nonlinear model operator M :

ψψψ=M
(
φφφ

)
. (5.28)

The cost function J is calculated from the intermediate state using the nonlinear cost
function operator H :

J =H
(
ψψψ

)
. (5.29)
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With respect to a reference stateφφφ0, calculating the i -th component of the gradient with
first-order finite differencing simply requires the evaluation:

∂J

∂φi

∣∣∣∣
φφφ0

≈ J
(
H

(
M

(
φφφ0 +hei

)))− J
(
H

(
M

(
φφφ0

)))
h

, (5.30)

where h is the user-specified step size and ei is the standard unit basis vector with 1 on
the i -th entry and 0 everywhere else. The full gradient is calculated by evaluating Eq.5.30
n times. So, the code from Figure 5.7 needs to be evaluated a total of n+1 times. Despite
its simplicity, finite differencing has two drawbacks:

(i) the calculated gradient is an approximation, dependent on the chosen step size h;

(ii) the cost of the gradient calculation scales with the size of the state, making it pro-
hibitively expensive for our purposes.

. The first drawback can be negated by using an exact method. With this we do not mean
symbolic differentiation of the code shown in Figure 5.7, which would lead to inefficient
code and difficulties in converting the computer program into a single expression. In-
stead, we mean automatic differentiation (AD). It is based on two important concepts:

(i) every computer program, irrespective of its complexity, can be reduced to a se-
quence of elementary arithmetic operations and functions;

(ii) the chain rule.

So, for the flow diagram in Figure 5.7, we can write the i -th component of the gradient
as:

∂J

∂φi

∣∣∣∣
φφφ0

=
m∑

j=1

∂J

∂ψ j

∣∣∣∣
φφφ0

∂ψ j

∂φi

∣∣∣∣
φφφ0

.

Practically, there are two approaches to obtain the gradient using automatic differenti-
ation: the forward mode and the reverse mode. Both approaches require access to and
modification of the original code. The resulting codes are better known as the tangent-
linear and adjoint code for the forward and reverse modes, respectively. There are al-
gorithms available that can automatically generate these codes from the original code2,
though they will not necessarily generate the most efficient code. In the present work
however, we have generated these codes manually for optimal efficiency.

5.5.1. THE TANGENT-LINEAR CODE (FORWARD MODE)
Figure 5.8 shows the tangent-linear code of the original nonlinear code from Figure 5.7.
The linearisation is with respect to the reference state φφφ0. The figure shows how a dis-
turbance in the input state, δφφφ, propagates into a disturbance in the cost function δJ .
Mathematically,

δψψψ= Mδφφφ, (5.31)

2http://www.autodiff.org/?module=Tools

http://www.autodiff.org/?module=Tools
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Figure 5.8: The tangent-linear code of the original nonlinear code from Figure 5.7.

where M ∈Rm×n is the matrix of the linearized model operator M . Its row j and column
i are defined as:

M j i =
∂ψ j

∂φi

∣∣∣∣
φφφ0

.

The second block represents the operation:

δJ = Hδψψψ. (5.32)

H ∈R1×m is the linearisation of the operator H . Its element j is defined as:

H j = ∂J

∂ψ j

∣∣∣∣
φφφ0

.

The full propagation from the input disturbance to the cost function disturbance can be
written as follows:

δJ =
n∑

i=1

m∑
j=1

∂J

∂ψ j

∣∣∣∣
φφφ0

∂ψ j

∂φi

∣∣∣∣
φφφ0

δφi . (5.33)

If we specify the input disturbance e1, the tangent-linear code returns:

δJ =
m∑

j=1

∂J

∂ψ j

∣∣∣∣
φφφ0

∂ψ j

∂φ1

∣∣∣∣
φφφ0

.

This is the first element of the cost function gradient ∇J . So, to obtain all elements of
∇J , we need to go through the tangent-linear code n times, supplying the inputs ei ,
i = 1, ...,n. Therefore, the only advantage of this approach compared to finite differenc-
ing is that it is exact. The reverse mode, explained in Section 5.5.2 is more efficient. Be-
fore proceeding though, we explain how to setup the tangent-linear code for the present
cost function given by Eq.5.8, since we will need the tangent-linear code to generate the
adjoint code.

To explain the tangent-linear code of the VIC solver, we refer to Figure 5.4, where
each variable (·) should be replaced by its disturbed version (δ·).

VORTEX BLOB ADVECTION

Recall that we used a first-order Euler scheme for vortex blob advection (see Eq.5.21).
The tangent-linear version is simple, since the original code is already linear:

δxvb =∆t ·δûk , (5.34)
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VORTEX STRETCHING

The tangent-linear version of the vortex stretching block (see Eq.5.22) is more involved
due to the nonlinear term ω̂ωωk ·∇ûk :

δω̂ωωk+1
vb = δω̂ωωk +∆t ·ω̂ωωk ·∇δûk +∆t ·δω̂ωωk ·∇ûk . (5.35)

Note that contrary to the tangent-linear of the vortex blob advection block, which did
not require the current state, the vortex stretching does require it. Therefore, the original
nonlinear code needs to be run next to the tangent-linear code to supply the intermedi-
ate states.

VORTICITY INTERPOLATION

The vorticity interpolation block is also nonlinear (see Eq.5.23) due to multiplication of
the vorticity with the M ′

4 kernel, which contains the advected vortex blob position. The
tangent-linear version is:

δω̂ωωk+1
j = 1

V

Np∑
i=1

(
δω̂ωωk+1

vb,i

3∏
l=1

ζl

(
xl ,g , j −xl ,vb,i

∆xl

)
+ω̂ωωk+1

vb,i Z j i

)
, (5.36)

where:

Z j i = δζ1, j iζ2, j iζ3, j i +ζ1, j iδζ2, j iζ3, j i +ζ1, j iζ2, j iδζ3, j i . (5.37)

The element ζl , j i is a shorthand for

ζl , j i = ζl
(
αl , j i

)= ζl

(
xl ,g , j −xl ,vb,i

∆xl

)
.

With regards to the perturbation δζl , j i , we have:

δζl , j i =
∂ζl

∂α

∂α

∂xl ,vb,i
δxl ,vb,i , (5.38)

where

∂ζl

∂α
=


0 |α| ≥ 2

−sgnα (2−|α|)(1−|α|+ 1
2 (2−|α|)2

)
1 < |α| < 2

−5α+ sgnα 9
2 |α|2 |α| ≤ 1

 , (5.39)

and
∂α

∂xl ,vb,i
=− 1

∆xl
.

VELOCITY INVERSION

Finally, the tangent-linear block of velocity inversion is again simple, since the Laplace
and curl operators (see Eq.5.27) are linear. Therefore,

∇2δu =−∇×δωωω. (5.40)
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Figure 5.9: The adjoint code of the tangent-linear code from Figure 5.8.

5.5.2. THE ADJOINT CODE (REVERSE MODE)
As the name suggests, in the reverse mode of differentiation, we traverse the code from
output to input (see Figure 5.9). The corresponding adjoint code can be derived from
the tangent-linear code by converting the matrices by their transpose or adjoint. Note
that all variables have been replaced by their adjoint counterpart by denoting them with
(*). The operation from Eq.5.32 now becomes:

δψψψ∗ = H ′δJ∗, (5.41)

and the operation from Eq.5.31 becomes:

δφφφ∗ = M ′δψψψ∗, (5.42)

So combining Eqs.5.41 and 5.42 we get:

δφφφ∗ = M ′H ′δJ∗. (5.43)

Note that Eq.5.33 can also be written as:

δJ =∇J ′δφφφ= H Mδφφφ. (5.44)

Therefore, the gradient we are interested in is simply:

∇J = M ′H ′. (5.45)

Comparing Eqs.5.43 and 5.45, we clearly see that if we set δJ∗ = 1 and go through the
adjoint code once, we get the full gradient of the cost function. So, comparing the for-
ward and reverse modes of differentiation we see that even though they both give the
exact gradient, the reverse mode can achieve this with one model evaluation rather than
n. For that reason we use the reverse mode in the present work.

It is important to note that the adjoint code comes with a disadvantage that the
complete nonlinear trajectory needs to be stored, since we traverse the tangent-linear
code from output to input. So, the benefit of reduced computational time of the ad-
joint method comes at the price of increased storage requirements. A number of meth-
ods have been proposed to deal with this, the most prominent being checkpointing
(Griewank and Walther, 2000). The idea is simple and illustrated by Figure 5.10. In-
stead of storing the complete nonlinear trajectory from t0 to tN , we only store the states
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Figure 5.10: Checkpointing.

at Ti , i = 0, ...,3. To start the adjoint code, we integrate the nonlinear code forward from
T3 and save all the intermediate states. Then we integrate the adjoint code backward to
T3 and afterwards delete all the states in interval IV . We then integrate the nonlinear
code forward from T2 and store all the states in the interval I I I , integrate the adjoint
backwards from T3 to T2 and subsequently delete the states in I I I . This procedure is
continued until we reach t0, where we eventually get the full gradient. For the present
problem though, where we have neglected viscosity, the vorticity transport equation is
time-reversible. Therefore, we do not need to store the full nonlinear trajectory. Rather,
we start with the final state and integrate it backwards in time by changing the sign of
the velocity. In this way, the nonlinear trajectory is available for the adjoint code at each
time instant.

Creating the adjoint code is simple but tedious. As explained earlier, one simply
needs to transpose the matrices from the tangent-linear code (Giering and Kaminski,
1998). However, explicitly creating a matrix and then taking the transpose will lead to in-
efficient code, even though it is the simplest way to create the adjoint code. In addition,
we have not explicitly created matrices for the operations in the tangent-linear code. Ap-
pendix C explains in detail how we created the adjoint code, in which we have avoided
this simple approach.

5.6. APPLICATION TO EXPERIMENTAL DATA
In this section we apply the spatio-temporal interpolation method to the circular jet in
water from Appendix A.2.1. We compare the method with SGPR, which does not include
the temporal dimension and only enforces mass conservation. Figure 5.11(a) shows
4,868 particle tracks from 15 consecutive snapshots. The same particle tracking algo-
rithm as applied in Chapter 3 was used (Schneiders et al, 2015a). The tracks have been
colour-coded with velocity magnitude and one can clearly identify the jet issuing from
the middle of the domain and the vortex rings forming at the shear layer. Figure 5.11(b)
shows the sparse data set we consider, which only contains 487 particle tracks from 15
consecutive snapshots. SGPR interpolates the velocity field from each snapshot. The re-
sulting fields are taken as the initial guess by the spatio-temporal method, as required by
the optimisation algorithm. As explained earlier, the elements of the state vector are the
velocity field at the first snapshot, and the velocity and vorticity boundary conditions at
the subsequent snapshots. Figures 5.12(a) and 5.12(d) compare the first and final snap-
shots, respectively in terms of the axial velocity and iso-surfaces of the vorticity magni-
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(a) (b)

Figure 5.11: Circular jet in water: 4,868 (a) and 487 (b) particle tracks from 15 consecutive snapshots. Colour-
coded with velocity magnitude.
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tude, reconstructed with SGPR using all 4,868 particle tracks. Figures 5.12(b) and 5.12(e)
show the same results, but with the reduced data set of 487 particle tracks. Finally, Fig-
ures 5.12(c) and 5.12(f) show the results achieved with the spatio-temporal method. The
improvement achieved with the spatio-temporal method is evident. For completeness,
Figure 5.13 shows a time history of the vorticity magnitude, evaluated at a point in the
shear layer. The spatio-temporal method is indeed closer to the reference solution. In
addition, notice the significant improvement in the temporal coherence. Of course, this
is to be expected since the time history is obtained by integrating the VIC solver from the
guessed initial field.

5.7. CONCLUSION
We investigated how incorporating the temporal information of particle tracks in 3D-
PTV can improve the reconstructed velocity and vorticity field. To incorporate this infor-
mation, we have used the momentum conservation equation formulated in the vorticity-
velocity form via the vorticity transport equation, in addition to mass conservation. We
modeled this using the vortex-in-cell (VIC) solver. To combine the physical knowledge
from the model and the measured tracks we used a variational method. Starting from
the Bayesian framework, we formulated all the assumptions that eventually lead to the
algorithm used in the present chapter. The result was an optimisation problem, which
we solved using a quasi-Newton method. To calculate gradients efficiently, we exploited
the reverse mode of differentiation, which we hand coded. The assimilation algorithm
was applied to an experimental test case of a circular jet in water. We compared it with
solenoidal interpolation, which interpolates the snapshots independent from one an-
other, therefore not taking the temporal information into account. We found clear im-
provements in the reconstructed field when incorporating temporal information.
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(a) (b) (c)

(d) (e) (f)

Figure 5.12: Circular jet in water: first (top) and final (bottom) fields obtained with the full data set (a,d), the
sparse data set and interpolated with SGPR (b,e) and with the spatio-temporal method (c,f).
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Figure 5.13: Circular jet in water: time history of the vorticity magnitude at a point in the shear layer from the
reference solution using the full data set (black), SGPR (blue) and the spatio-temporal method (red).





6
A posteriori UNCERTAINTY

QUANTIFICATION OF PIV-BASED

PRESSURE DATA

This chapter proposes a methodology for a posteriori quantification of the uncertainty
of pressure data retrieved from PIV. It relies upon the Bayesian framework introduced
in Chapter 2. Section 6.2 introduces the proposed methodology. Section 6.3 presents a
numerical assessment with an analytical test case, where the proposed method is com-
pared with Monte-Carlo simulations and linear uncertainty propagation. We find ex-
cellent agreement with Monte-Carlo simulations, while linear uncertainty propagation
underestimates the uncertainty in the pressure by up to 30%. In Section 6.4, the method
is applied to an experimental test case of a turbulent boundary layer in air, obtained us-
ing time-resolved tomographic PIV. The pressure reconstructed from the tomographic PIV
data is compared to a microphone measurement conducted simultaneously at the wall to
determine the true error of the former. The comparison between true error and estimated
uncertainty demonstrates the accuracy of the uncertainty estimates on the pressure. In
addition, enforcing the divergence-free constraint is found to result in a significantly more
accurate reconstructed pressure field. The estimated uncertainty confirms this result. Con-
clusions are drawn in Section 6.5.

6.1. INTRODUCTION
PIV is nowadays recognized as a reliable tool for the determination of the instantaneous
static pressure in two or three dimensional flow fields (van Oudheusden, 2013). The
main advantage of the PIV-based pressure reconstruction with respect to conventional
pressure probes (e.g. pressure transducers or microphones) is the instantaneous 2D or
3D pressure field determination, without the need of an expensive design and manu-
facturing of models where densely distributed sensors are installed (Ragni et al, 2011).

Parts of this chapter have been published in Experiments in Fluids (Azijli et al, 2016).
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PIV-based pressure measurements are made possible for applications where probes can-
not be installed, such as micro aerial vehicles. Additionally, they convey a quantitative
visualization of the flow structures responsible for the aerodynamic forces acting on
the model. Industrial tests typically require pressure information, for the evaluation of
forces. Pressure fluctuations are important when dealing with fatigue studies and aeroa-
coustic source measurements (Haigermoser, 2009; Pröbsting et al, 2013).

The computation of the pressure field relies upon PIV measurement of the veloc-
ity and acceleration and is conventionally performed by spatial integration of the pres-
sure gradient or by solution of the Poisson equation, provided appropriate boundary
conditions. The formulation of the problem in terms of the Poisson equation is often
employed because it avoids accumulation of errors in the reconstructed pressure (van
Oudheusden, 2013). Applying the divergence operator to the momentum equation and
assuming incompressible flow, the following Poisson equation for pressure follows:

∇2p =−ρ∇· (u ·∇)u. (6.1)

To solve Eq.6.1, appropriate boundary conditions on the pressure (Dirichlet) or its spa-
tial gradient (Neumann) must be specified. It is important to remark that, although no
temporal derivative appears in Eq.3.4, its boundary conditions are time dependent and
require the computation of the flow acceleration at the boundary of the computational
domain. In practice, the discretization of Eq.3.4 results in an algebraic system of equa-
tions:

Ap = f, (6.2)

which is then solved. A is a discrete representation of the Laplace operator, obtained for
example by finite differences and f will be referred to as the source term.

When solving Eq.6.2 to determine the static pressure field, several factors contribute
to the overall uncertainty. According to van Oudheusden (2013), the most relevant for
the accuracy of the reconstructed pressure field are:

• the accuracy of the underlying velocity data;

• the spatial and temporal resolutions, which affect the accuracy of velocity deriva-
tives;

• the approach used to evaluate the velocity material acceleration (Eulerian or La-
grangian approach);

• the boundary conditions;

• the pressure-gradient integration procedure;

• for PIV-based pressure reconstruction of planar PIV data, application of a 2D model
to a 3D flow.

As a result, the uncertainty of the static pressure is a complex function of the parameters
above. Quantifying the uncertainty of the pressure measurement is of primary impor-
tance for the determination of a confidence interval where the true pressure value lies.



6.1. INTRODUCTION

6

85

Furthermore, it constitutes the basis for estimating the uncertainty of the aerodynamic
forces (e.g. lift and drag) acting on a model.

Several works have focused on evaluating the contribution of the above mentioned
factors to the error of the reconstructed pressure. For example van Oudheusden (2013)
derived an analytical expression of the error of the material acceleration for both Eule-
rian and Lagrangian approaches. In both approaches, the laser pulse-separation ∆t has
opposite effects on truncation and random error. Increasing ∆t increases truncation er-
ror, but decreases the relative random error. Furthermore, the error of the material accel-
eration is typically smaller when it is calculated with the Lagrangian approach. Violato
et al (2011) introduced a criterion for the selection of the minimum and maximum ∆t
that accounts for the maximum allowed error on the material acceleration and the effect
of the out-of-plane displacement of the particles. The authors found that the Lagrangian
approach features a random error about 1.5 times smaller than that estimated for the Eu-
lerian approach. The difference between the two approaches is less pronounced when
looking at the resulting pressure field, due to the error suppression during the pressure
gradient integration. Several schemes for the integration of the pressure gradient have
been proposed, including the space-marching integration (Baur and Köngeter, 1999),
the omni-directional integration (Liu and Katz, 2006) and the Poisson equation for pres-
sure (Gurka et al, 1999). In de Kat and van Oudheusden (2010) a comparative assessment
of pressure integration methods is conducted. Although the upshot was that the integra-
tion method has minor impact, and only the space-marching approach is clearly inferior,
their conclusions were based on statistical analysis and not on the instantaneous pres-
sure uncertainty. In fact, no quantitative information about the uncertainty of computed
pressure fields was provided in these early studies. Charonko et al (2010) reported that
the error of the velocity field has a major influence on the accuracy of the reconstructed
pressure. In their work, the pressure result became ‘unusable’ as soon as very small lev-
els of random error were introduced. Extensive data post-processing was required to
reduce the velocity error and make accurate pressure reconstructions feasible. However,
Murai et al (2007) reported that a fairly simple smoothing of the velocity data is sufficient
for accurate pressure results. Charonko et al (2010) also investigated the effect of off-axis
measurement and out-of-plane velocity. They found that schemes performing well in
2D conditions continued to do so for misalignments up to 30 degrees.

In turbulent flows, PIV-based pressure reconstruction presents two major challenges:
the small magnitude of the pressure fluctuations and the large dynamic range. Ghaemi
et al (2012) conducted time-resolved PIV (TR-PIV) measurements to investigate the pres-
sure fluctuations in a turbulent boundary layer at Reθ = 2400. The agreement between
the PIV-based pressure and that measured by a surface microphone was evaluated via
the cross-correlation coefficient, which was equal to 0.6. The probability density func-
tions of the two signals agreed up to 3 kHz for tomographic PIV data and up to 1 kHz
for planar data. Similarly Pröbsting et al (2013) carried out the PIV-based pressure re-
construction in a turbulent boundary layer at Reθ = 730. The data were validated by
comparison with a surface microphone and with DNS data. Also in this case, the PIV-
based pressure signal showed fair agreement with the microphone signal, but the cross-
correlation coefficient between the two did not exceed 0.6. Despite the relatively high
correlation coefficient achieved, those studies opened several doubts on the accuracy of
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the PIV-based pressure reconstruction. Acoustic emissions of the flow over a rectangu-
lar cavity were investigated by Koschatzky et al (2011). The fluctuating pressure fields
computed from TR-PIV were used as input for the prediction of the sound emission.
The authors found that the hydrodynamic pressure computed from the PIV data had a
frequency spectrum comparable to that of the direct pressure measurement at the cavity
walls. The main frequency tone and the first harmonic were correctly captured, although
the amplitude was significantly underestimated. At locations where the pressure fluctu-
ations were weak, the PIV measurement uncertainty strongly affected the accuracy of
the reconstructed pressure.

From the discussion above, it emerges that PIV-based pressure is often highly inac-
curate due to the many error sources that contribute to the total error. As a result, quan-
tifying the uncertainty of the reconstructed pressure is of primary importance to the fu-
ture use of these methods. Furthermore, a posteriori uncertainty quantification could
be used to inform the choice of experimental and postprocessing parameters, along
with the pressure reconstruction approach, to maximize the precision of the pressure
field. The present chapter discusses the mathematical framework for the uncertainty
propagation from the velocity field to the pressure field. It uses the Bayesian frame-
work, explained in Chapter 2. The measurement uncertainty of the velocity field from
PIV can therefore be naturally combined with prior knowledge of the velocity field (e.g.
divergence-free) (Wikle and Berliner, 2007). A number of a posteriori approaches have
recently been proposed to quantify the PIV measurement uncertainty. We refer to Sciac-
chitano et al (2015) for a comparison of these methods. The present framework can also
propagate the uncertainty of the velocity spatial- and temporal-derivatives, when infor-
mation on the latter is available. The uncertainty due to the application of a 2D model
to a 3D flow – i.e. pressure from planar PIV – is not addressed here.

6.2. METHODOLOGY
The method to propagate the uncertainty from the velocity field to the pressure field is
split into three successive steps and explained in their respective sections:

• characterize the uncertainty in the velocity field u (Section 6.2.1);

• propagate the uncertainty from the velocity field to the source term f (Section
6.2.2);

• propagate the uncertainty from the source term to the pressure field p (Section
6.2.3).

Section 6.2.4 illustrates the complete methodology for a simple one dimensional exam-
ple. The uncertainty of a variable will be expressed through a probability density func-
tion (pdf) ρ (·).

6.2.1. THE VELOCITY FIELD UNCERTAINTY
To characterize the uncertainty in the velocity field we follow the approach described in
Chapter 2, where we define a statistical model for the prior ρ0 (u), the PIV measurement
ρ (uPIV|u) and obtain the posterior ρ (u|uPIV) using Bayes’ rule.
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THE PRIOR ON THE VELOCITY FIELD

We discretize the velocity field at n spatial locations of interest x ∈Rd ·n . This gives a vec-
tor u ∈ Rd ·n , describing the d dimensional velocity components at these locations. Due
to the assumption of Gaussian processes and the discretization, we have the following
multivariate normal distribution:

u ∼N
(
µµµ0,P

)
,

with µµµ0 and P the prior mean and prior covariance matrix, respectively. We start the
discussion with the prior mean µµµ0 ∈ Rd ·n . For simplicity, we assume each velocity com-
ponent to be a constant field. This is not a limiting simplification since the complexity of
the field that can be reconstructed is contained in the prior covariance used. The prior
covariance matrix is defined as:

P i j = τ2φ
(
r i j

)
, (6.3)

where r i j represents the (scaled) distance between xi and x j :

(
r i j

)2 =
d∑

k=1

(
xi

k −x j
k

θk

)2

, (6.4)

where θk is the correlation length in the direction k. φ
(
r i j

)
is a covariance function and

represents the correlation between xi and x j . It is a function of their separation distance
due to the assumption of a stationary process. We use the Wendland function of order 2
(see Eq.B.5).

Ultimately, one can either setup a prior covariance matrix for each velocity compo-
nent independently (de Baar et al, 2014) or a single covariance matrix that constrains the
velocity components according to mass conservation. The latter approach was intro-
duced in Chapter 3. Whichever method is used, two parameters have resulted that need
to be determined, namely the prior variance τ2 from Eq.6.3 and the correlation length θk

from Eq.6.4. They can either be specified a priori or through a maximum likelihood op-
timization. In Chapter 3, we followed the a priori approach. This was possible because
the PIV data had sufficient spatial resolution, which is the same situation in the present
chapter.

THE PIV MEASUREMENT UNCERTAINTY MODEL

We define the vector uPIV ∈ Rd ·m , since there are m measurements. When defining the
prior, we could have either taken n equal to or larger than m. If equal to m, we will ob-
tain the pressure field on the same mesh as the PIV field. If larger than m, we attempt
to obtain the pressure field on a finer mesh. The measurement uncertainty is also as-
sumed to come from a Gaussian distribution, where the mean represents the bias error
and the standard deviation represents the random error (Sciacchitano et al, 2015). Once
quantified, the bias error can be subtracted from the measurements. Therefore, the mea-
surements

uPIV = Hu+εεε ∈Rd ·m

can be represented as a multivariate Gaussian distribution, where εεε ∼ N (0,R) is the
measurement error of the velocity field, assumed to be Gaussian noise with zero mean
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and covariance matrix R. The matrix H maps the velocities from the n locations of in-
terest to the m measurement locations. In the most general case, H would represent
an arbitrary interpolation matrix (representing for example polynomial or radial basis
function interpolation). In the present work, the measurement locations are taken to
be a subset of the locations of interest, therefore H is a Boolean matrix. In particular, if
m = n then H is the identity matrix, giving

uPIV = u+εεε.

This situation where the pressure field is evaluated at the same locations where the ve-
locity measurements are available is the most common (van Oudheusden, 2013).

THE POSTERIOR ON THE VELOCITY FIELD

Having defined the prior and carried out the measurements, they are combined to obtain
the posterior distribution. The prior and likelihood are both Gaussian distributed, and
since all operators defined are linear, the posterior is Gaussian distributed as well. Its
mean and covariance were given in Chapter 2, but we repeat them for clarity:

E (u|uPIV) =µµµ+PH T (
R +HPH T )−1 (

uPIV −Hµµµ
)

, (6.5)

Σ (u|uPIV) = P −PH T (
R +HPH T )−1

HP, (6.6)

respectively. In the present chapter, we will also consider the situation where we con-
struct the pressure field by completely relying on the PIV data, i.e. no prior knowledge is
taken into account and the velocity is only assumed to be known at the locations coming
from the measurements. Mathematically, this can be expressed by taking P = τ2I , where
τ=∞, and H = I . Eq.6.5 becomes

E (u|uPIV) =µµµ+τ2I
(
R +τ2I

)−1 (
uPIV −µµµ)

. (6.7)

The term τ2I
(
R +τ2I

)−1
becomes I for infinitely large prior variance, so Eq.6.7 reduces

to

E (u|uPIV) = uPIV. (6.8)

The posterior covariance from Eq.6.6 becomes

Σ (u|uPIV) = τ2I −τ2I
(
R +τ2I

)−1
τ2I . (6.9)

With the prior variance approaching infinity, Eq.6.9 can be rewritten to reveal

Σ (u|uPIV) = R. (6.10)

In words, Eqs.6.8 and 6.10 state that the posterior mean and covariance are equal to the
measured velocity field and measurement uncertainty, respectively. This makes sense
intuitively, but it is important that it also follows naturally from the framework.
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6.2.2. PROPAGATING THROUGH THE SOURCE TERM
The posterior distribution of the velocity (see Eqs.6.5 and 6.6) needs to be propagated
through f to obtain the mean E (f) and covariance Σ (f) of the source term. However, this
is not straightforward since f, derived from the Navier-Stokes equations, has a nonlinear
dependence in the velocity. We consider two options to obtain the mean and covariance
of the source term.

The first is through carrying out Monte-Carlo simulations (Metropolis and Ulam,
1949), a popular method for uncertainty propagation. Briefly, random realizations of
the posterior distribution (u|uPIV) are generated. In practice, a random realization with
the required covariance structure specified by Σ (u|uPIV) can be obtained by computing
the Cholesky decomposition

Σ (u|uPIV) = LLT ,

followed by multiplying L with a vector containing uncorrelated random realizations
from a standard Gaussian distribution (Gibbs, 2011). Subsequently, for each realization
the source term f is then evaluated. From this one can construct E (f) and Σ (f).

The second method enables exact uncertainty propagation as opposed to the Monte-
Carlo method. A closer look at the Navier-Stokes equations reveals that the nonlinear
term contains a product of two variables. As a result, it is possible to calculate the ex-
pected value and covariance exactly. For generality, we define four random variables a,
b, c and d . For the expected value, one can use the definition of covariance:

E (ab) = E (a)E (b)+σ (a,b) , (6.11)

where σ (a,b) represents the covariance between a and b. For the covariance between
two products of random variables ab and cd , Bohrnstedt and Goldberger (1969) derived
the following expression:

σ (ab,cd) =E (a)E (c)σ (b,d)+ ...

E (a)E (d)σ (b,c)+ ...

E (b)E (c)σ (a,d)+ ...

E (b)E (d)σ (a,c)+ ...

σ (a,c)σ (b,d)+σ (a,d)σ (b,c) .

(6.12)

Eq.6.11 is valid no matter what the distributions of a and b are, since it is simply a rewrite
of the definition of covariance. Eq.6.12 on the other hand is valid if the distributions
are Gaussian. Indeed, this is what we have done in the present work. The source term
however is not Gaussian distributed anymore.

It is important to state that the exact method is only possible if the material accelera-
tion is evaluated with respect to a stationary reference frame, i.e. the Eulerian approach.
If the Lagrangian approach is used, products arise with more than two random variables.
Brown and Alexander (1991) derived general expressions for the covariance of a product
of n random variables with a product of m random variables. However, these are not
usable unless the terms containing products with three terms and higher are neglected,
resulting in an approximation. The Monte-Carlo method can straightforwardly be ap-
plied no matter which approach is used.
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Figure 6.1: Flow diagram of the a posteriori uncertainty propagation method, giving the probability distribu-
tions function ρ (·) (pdf) of the different components.

6.2.3. THE PRESSURE FIELD UNCERTAINTY
The discretization error arising from solving the discrete system in Eq.6.2 contributes to
the overall uncertainty in the calculated pressure. This error can be reduced by interpo-
lating the measurements onto a finer numerical mesh, which is possible with GPR, and
then solving the (larger) resulting system. However, there is a moment the interpolation
error starts to dominate therefore limiting the total error reduction. Fortunately, with
GPR the interpolation is accompanied by confidence intervals through the posterior co-
variance matrix Σ (u|uPIV). The interpolation error is therefore included in the pressure
field uncertainty, provided that the system is solved on a sufficiently fine mesh.

The mean and covariance for the pressure follow rather straightforwardly from the
identities of the expected value and covariance since the Laplacian operator given by
the left-hand side of Eq.6.2, is a linear operator:

E
(
p
)= A−1E (f) , (6.13)

Σ
(
p
)= A−1Σ (f) A−T . (6.14)

Figure 6.1 summarizes the steps involved to propagate the uncertainty from the velocity
to the pressure field.

6.2.4. A ONE DIMENSIONAL EXAMPLE
We use a simple one dimensional example to clarify each step of the proposed methodol-
ogy. Extension to two and three dimensional problems is relatively straightforward, and
will be explained in Sections 6.3 and 6.4, covering a synthetic test case and experimental
data, respectively. Consider the following one dimensional example:

d 2p

d x2 = 2u
du

d x
, ∀x ∈ (0,1) , with p (0) = 0, p (1) =π. (6.15)

Eq.6.15 is similar to the Poisson equation Eq.6.1 in that the second derivative of the pres-
sure is taken and the right hand side is nonlinear in the velocity u. The problem is com-
pleted with Dirichlet boundary conditions. If we take

u (x) = sin(2π · x),

it can be verified that the pressure is

p (x) =π · x − 1

8π
sin(4π · x).
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(a) (b)

Figure 6.2: The one dimensional example. (a) True function evaluations (black dots), observations (red
crosses), prior mean (blue line), prior variance scaled with τ2 (black line); (b) posterior mean (blue line), pos-
terior variance scaled with prior variance τ2 (black line).

We take six uniformly distributed measurement locations (m = 6) but discretize the ve-
locity at 41 points to illustrate the ability of GPR to interpolate the measurement points
(n = 41).

For the prior mean, we assume the zero vector, soµµµ0 = 0. The prior covariance matrix
is set up according to Eq.6.3, where we have used the Wendland function from Eq.B.5 as
the covariance function. The correlation length θ and the prior variance τ2 are found us-
ing a cross-validation approach (Viana et al, 2009) and are set to 2 and 0.48, respectively.
The black dots in Figure 6.2(a) are the true function evaluations at the n locations of in-
terest. The thick blue line represents the prior mean. The bottom plot of Figure 6.2(a)
shows the prior variance, scaled with τ2.

Measurement noise is included, with a variance of σ2 = 2.5 ·10−5. It is assumed that
the measurement uncertainty at the locations are uncorrelated to each other, therefore
R =σ2I , where I is the identity matrix. Since there are 6 uniformly distributed measure-
ment locations and the state contains 41 uniformly distributed points, the observation
operator H ∈R6×41 is simply a Boolean matrix with H i j = 1 at j = 8i −7 (i = 1,2, ...,6) and
H i j = 0 everywhere else.

With all the relevant components defined, we can calculate the posterior mean and
covariance with Eqs.6.5 and 6.6, respectively. Figure 6.2(b) shows the results. Starting
with the mean (top plot): combining the prior and measurements we obtain a poste-
rior that agrees well with the true function evaluations. Proceeding to the bottom plot,
the posterior variance is strongly decreased with respect to the prior variance from the
bottom plot of Figure 6.2(a). Also, we can clearly see a decrease in the variance at the
measurement locations and an increase in between. Indeed, the measurements are in-
formative and the larger the distance from them, the larger the uncertainty in the recon-
struction. Note that the variance is not decreasing to zero at the measurement locations,
since we included measurement noise with a variance of σ2 = 2.5 ·10−5.

To illustrate how the exact propagation method presented in Section 6.2.2 compares
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(a) (b)

Figure 6.3: The one dimensional example. Exact standard deviation of calculated pressure (black line), and
Monte-Carlo results using N realizations. (a) Perfect pressure measurements at boundaries, (b) assumingσp =
1 ·10−4 at x = 0 and σp = 5 ·10−4 at x = 1.

with Monte-Carlo simulations, we refer to Figures 6.3(a) and 6.3(b). They show how the
random velocity error eventually propagates into the pressure. The difference with the
two figures is due to the accuracy of the pressure measurements at the boundaries. In
Figure 6.3(a), it is assumed that the pressure can be measured with perfect accuracy. In
Figure 6.3(b), we have taken standard deviations of 1 ·10−4 and 5 ·10−4 for the pressure
measurements at the left and right boundaries, respectively.

Finally, we shift our focus to Section 6.2.3 on the influence of discretization and inter-
polation errors. In the absence of measurement noise (σ= 0) and measurements avail-
able at all locations (m = n), the error reduces with a finer mesh (larger n or decreas-
ing mesh distance h), as illustrated by the red line in Figure 6.4. Since we used second
order finite difference schemes to discretize the differential operators, we observe sec-
ond order convergence. However, with measurements only available at the six locations
(m = 6), GPR can be used to interpolate the measurements onto the finer mesh. The
magenta line in Figure 6.4 illustrates the plateau that occurs once the interpolation er-
ror starts to dominate the discretization error, therefore hindering the initial monotonic
decrease of the total error. With the blue line we have included the measurement noise:
the initial decrease and the plateau are still present, however as expected we observe the
influence of the noise and a larger final error.

In the above discussion we were able to calculate the error since we know the true
pressure. In practice though, the true pressure is unknown and we aim to estimate it,
which is of course the goal of the present work. The black line in Figure 6.4 represents
the estimated error resulting from solving Eq.6.14 and shows that it is a good approxima-
tion of the true error, therefore illustrating the ability of the method to also include the
interpolation error in the error estimate.
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Figure 6.4: The one dimensional example. Root-mean-square error (rmse) of the reconstructed pressure as a
function of mesh size h = 1/(n −1). When m = n, σ = 0, the observations are available at all points, without
measurement noise; m = 6, σ 6= 0 represents six equally spaced observations, with σ2 = 2.5 ·10−5; m = 6, σ= 0
represents six equally spaced observations, without measurement noise; ‘estimated’ is the estimated error
following from Eq.6.14 when σ2 = 2.5 ·10−5.

6.3. NUMERICAL VERIFICATION

The proposed numerical procedure for uncertainty quantification of PIV-based pressure
reconstruction is compared to a reference solution obtained using Monte-Carlo with
10,000 samples. The Monte-Carlo simulation employs exactly the same statistical mod-
els as our proposed approach, so that in this section we are verifying only the numerical
procedure, and not the statistical modelling. The considered flow field is a two dimen-
sional incompressible Lamb-Oseen vortex. In a polar reference system with radius r and
azimuthal angle θ the analytical expressions of azimuthal velocity Vθ and radial velocity
Vr are, respectively:

Vθ =
Γ

2πr

(
1−exp

[−r 2/4νt
])

, (6.16)

Vr = 0, (6.17)

where Γ is the vortex circulation, ν is the kinematic viscosity, and t is time. A steady
simulation is conducted with t = 1 s. The values of dynamic viscosity and density are
set to µ = 2.4 ·10−7 Pa · s and ρ = 1.2 kg/m3, respectively, yielding a kinematic viscosity
ν = 2.0 ·10−7 m2/s. The vortex circulation is Γ = 0.02 m2/s. The analytical expression of
the pressure field is obtained from integration of the Navier-Stokes equations in polar
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(a) (b)

Figure 6.5: (a) Exact velocity field of the Lamb-Oseen vortex (in m/s); (b) exact pressure field (in Pa).

coordinates, yielding:

p = ρΓ2

4π2

[
− 1

2r 2 + exp
[−r 2/4νt

]
r 2 − 1

2

exp
[−2r 2/4νt

]
r 2 +Ei

(
2r 2

4νt

)
1

4νt
−Ei

(
r 2

4νt

)
1

4νt

]
,

(6.18)
where Ei is the exponential integral function. The square domain has a size of 20 mm,
and the center of the vortex coincides with the center of the domain at

(
x, y

)= (0,0). The
domain is divided into 50 grid points in both horizontal and vertical directions, resulting
in a grid spacing d = 0.4 mm. The analytical velocity and pressure field are illustrated
in Figure 6.5; the pressure in the vortex core is pcore = −9.78 Pa. To simulate noise in
the velocity measurements, zero-mean white Gaussian noise is added to the two velocity
components, with a standard deviation ranging from 0% to 30% of the maximum velocity
magnitude Vmag: R = U 2I , where U = αVmag. α is between 0 and 0.30. The pressure
field is reconstructed from the velocity data using the Poisson equation approach with
pure Dirichlet boundary conditions. The pressure at the boundary of the measurement
domain is computed via the incompressible flow momentum equation.

For all values of noise level, the standard uncertainty of the reconstructed pressure
is evaluated with two approaches: (i) the Bayesian framework presented in Section 6.2;
(ii) linear uncertainty propagation (Wieneke and Sciacchitano, 2015). In the latter ap-
proach, it is assumed that the two velocity components have the same uncertainty U
and that the velocity errors are uncorrelated in space, which is true for the current sim-
ulation, but not in typical PIV experiments due to the finite interrogation window size.
The expression of the uncertainty of the pressure evaluated by the linear uncertainty
propagation reads as:

Up =U
ρdp

6

√(
∂u

∂x

)2

+
(
∂u

∂y

)2

+
(
∂v

∂x

)2

+
(
∂v

∂y

)2

. (6.19)

The uncertainty results from both approaches are compared with the results obtained
by Monte-Carlo simulations. The results at the center of the vortex are shown in Figure
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Figure 6.6: The Lamb-Oseen vortex. Comparison between the standard deviation of the pressure error from
Monte-Carlo simulations, the Bayesian framework and linear uncertainty propagation, as a function of the
uncertainty of the velocity.

6.6: the pressure error increases linearly from 0.3% to 10% of pcore as the uncertainty
of the velocity is increased. The Bayesian framework and linear uncertainty propagation
reproduce the linear behavior of the uncertainty. However, the linear approach underes-
timates the uncertainty by about 30% with respect to the Monte-Carlo results, whereas
the agreement between the Bayesian framework and Monte-Carlo results is excellent.
For illustration purposes, we show the comparison between the standard deviation com-
puted with the different methods. Figure 6.7(a) illustrates the standard deviation of the
pressure error obtained via Monte-Carlo simulations for the case where the standard de-
viation of the added noise is 15% of the velocity magnitude; the pressure error is below
1% outside the vortex core and increases up to 4% in the vortex center. The Bayesian
framework for uncertainty propagation (Figure 6.7(b)) shows excellent agreement with
the Monte-Carlo results. The linear error propagation however (Figure 6.7(c)) signifi-
cantly underestimates the uncertainty.

6.4. APPLICATION TO EXPERIMENTAL DATA
The experimental test case considered is the fully developed turbulent boundary layer
over a flat plate in air, described in Appendix A.2.2. This experiment is particularly use-
ful for the present chapter since microphone measurements were conducted simultane-
ously with the tomo-PIV measurements. Specifically, a pinhole microphone located at
the wall. According to Pröbsting et al (2013), the uncertainty of the microphone does not
exceed 500 µPa, which is approximately 0.05% of the measured pressure fluctuations.
The microphone measurements can therefore be used as a reliable ground truth, en-
abling the possibility to assess the usefulness of the proposed uncertainty propagation
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(a) (b)

(c)

Figure 6.7: The Lamb-Oseen vortex: comparison between the standard deviation of the pressure error from
Monte-Carlo simulations (a), the Bayesian framework (b) and linear uncertainty propagation (c). The results
are normalized with |pcore| and in percentage. The noise level on the velocity: 15% of the maximum velocity
magnitude.
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Figure 6.8: Schematic representation of the PIV-based pressure pPIV, ‘true’ pressure from the microphone pmic
and error δ, and estimated uncertainty U .

method. The assessment is done in the following way: the instantaneous error at time
instant ti is defined as the difference between the pressure from the microphone pmic

and the PIV-based pressure pPIV, evaluated at the microphone location xmic:

δ (ti ) = pPIV (xmic, ti )−pmic (ti ) . (6.20)

With the uncertainty propagation method described in the present chapter, the standard
deviation of the PIV-based pressure at location x j and time instant ti follows from the
pressure covariance matrix, given by Eq.6.14:

δ̂
(
x j , ti

)=√
Σ

j j
i

(
p
)
. (6.21)

Σ
j j
i represents the j -th diagonal term of the covariance matrix at time instant ti . When

evaluated at the microphone location, we will denote Eq.6.21 as δ̂mic. With the expanded
uncertainty U = kδ̂mic, a certain percentage of |δδδ| should be smaller than U . Timmins
et al (2012) referred to this as the ‘uncertainty effectiveness’. Assuming a Gaussian distri-
bution, a 68.3% confidence level is obtained when k = 1 and 95% when k = 1.96 (Cole-
man and Steele, 2009). Figure 6.8 illustrates the definitions we have introduced.

To carry out the uncertainty propagation, we start out with identifying the prior. Two
cases are distinguished:

(i) we completely rely on the PIV measurement and take no prior physical knowledge
into account. Therefore, the posterior mean and covariance are simply the PIV
field (Eq.6.8) and its uncertainty (Eq.6.10), respectively;
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Figure 6.9: The experimental boundary layer flow. Streamwise velocity in [m/s] before (top) and after (bottom)
applying the solenoidal filter

(ii) realizing the flow is incompressible, we enforce the divergence-free constraint by
applying the solenoidal filter SGPR. The solenoidal filter is linear, therefore the
posterior distribution will remain Gaussian distributed.

Proceeding to the measurement uncertainty, the uncertainty of the PIV field is ex-
pressed through the observation error covariance matrix R. A number of methods are
nowadays available to calculate a posteriori the uncertainty from PIV (Sciacchitano et al,
2015). However, since the particle images were not available at the moment of the cal-
culation, we have used a different method. Considering that the flow velocity should be
divergence-free, we use the measured spurious velocity divergence as an estimator for
the uncertainty in the velocity field. This has already been observed by others (Scarano
and Poelma, 2009; Violato, 2013). In the present chapter, we use the following approach:
we apply the solenoidal filter to the PIV data uPIV, rendering an analytically divergence-
free velocity field usol. Figure 6.9 shows the streamwise velocity at the center plane before
(top) and after (bottom) applying the solenoidal filter at one time instant. The difference
between uPIV and usol is an approximation of the true error. With 1500 samples, the
variance of the error in time is taken as an approximation for the variance of the mea-
surement uncertainty, i.e. the diagonal terms in the observation error covariance matrix
R. Figure 6.10 shows pdf’s of uPIV−usol for the 1500 samples at two locations, namely the
microphone location (bottom) and the upper side of the measurement domain directly
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Figure 6.10: Pdf’s of uPIV −usol for the 1500 samples, evaluated at the microphone location (bottom) and the
upper side of the measurement domain directly above the microphone (top).

above the microphone (top). The pdf’s look approximately Gaussian, so our assump-
tion of a Gaussian distribution for the PIV measurement uncertainty seems acceptable.
Comparing the top plots with their bottom counterparts, notice the increase in variance
of the bottom plots, indicating a larger measurement uncertainty closer to the wall. To
investigate this further, Figure 6.11 shows the standard uncertainty of each velocity com-
ponent at the center plane. We clearly see a spatially varying measurement uncertainty
for each velocity component. In particular, we observe that the uncertainty increases
closer to the wall. The PIV data were processed with a 32×16×32 interrogation window
with 75% overlap. Due to the use of overlapping windows, the measurement error will
be spatially correlated. Mathematically, the off-diagonal terms of the observation error
covariance matrix R are unequal to zero. Wieneke and Sciacchitano (2015) investigated
how the spatial correlation of the measurement uncertainty depends on the overlap and
interrogation window sizes using Monte-Carlo simulations. From their analysis, they
found correlation values for different grid spacings. Rather than directly inserting them
into R, we have approximated these values by fitting the Wendland function of order
2 (see Eq.B.5) through them. This ensures that R will be numerically positive definite,
thereby the matrix can be inverted.

The boundary conditions we impose are the same as applied by Pröbsting et al (2013),
namely Dirichlet at the top boundary and Neumann at all other boundaries. We use
both the Eulerian and the Lagrangian approaches to evaluate the material acceleration.
According to Violato et al (2011), the Lagrangian approach should result in a more ac-
curate reconstructed pressure field, since the boundary layer flow is a convection dom-
inated type of flow. Whether this is indeed true should not only follow from compar-
ison with the microphone measurement, but is also expected to be represented by a
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Figure 6.11: Standard uncertainty in [m/s] for the streamwise (top), wall normal (middle) and spanwise (bot-
tom) velocity components.
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smaller uncertainty in the reconstructed pressure. To propagate the uncertainties, we
carry out Monte-Carlo simulations using 100 realizations. This is the number suggested
by Houtekamer and Mitchell (1998) in the context of the Ensemble Kalman Filter.

Following Pröbsting et al (2013), Figure 6.12 shows the pressure time series for a sub-
set of the data. The red lines in the plots are the microphone signal. The results are
normalized with the free stream dynamic pressure q∞ ≈ 60 Pa. The fluctuations of the
microphone signal are in the order of 2% of the free stream dynamic pressure, which is
around 1.2 Pa. The black lines in Figure 6.12 are the PIV-based pressure signals. The re-
sults represent four cases. From top to bottom: without applying the prior knowledge
of divergence-free velocity fields through the solenoidal filter and using the Eulerian
approach; without the prior knowledge using the Lagrangian approach; including the
solenoidal prior and using the Eulerian approach; including the solenoidal prior and us-
ing the Lagrangian approach. From the figure we can already deduce the observations
made by Violato et al (2011), namely that the Lagrangian approach results in more accu-
rate pressure reconstruction than the Eulerian approach, and the observations made in
Chapter 3 that using the solenoidal prior improves the pressure reconstruction.

In addition to the PIV-based pressure signals we have also plotted the estimated un-
certainty. The bounds of the gray region are pPIV (xmic, ti )± kδ̂mic (ti ), where we have
taken for the coverage factor k = 1, so an 68.3% confidence level for a Gaussian distribu-
tion. We have not plotted the 95% confidence level (k = 1.96) since it would obscure the
figures. Already from the plots we can observe that the bounds indeed become tighter
when switching from the Eulerian to the Lagrangian approach and when including the
solenoidal prior.

Table 6.1 quantifies the above observations. First of all, it shows the standard devia-
tion (std) of the error δ between the microphone and PIV-based reconstruction. The er-
rors range from 1.2 Pa without the solenoidal prior and the Eulerian approach to approx-
imately 0.6 Pa when using the solenoidal prior together with the Lagrangian approach.
The focus of the present work is how the estimated uncertainty compares with this. The
rightmost column of Table 6.1 shows the standard deviation of the approximated error
δ̂mic, averaged over the 1500 fields in time. First of all, we notice the excellent agreement

Table 6.1: Standard deviation of the true error, std(δ) and the standard deviation of the approximated error
averaged over the 1500 fields in time, δ̂mic,avg. Distinctions made between using no prior knowledge in terms
of divergence-free (solenoidal) velocity fields and including this knowledge, and using the Eulerian approach
and Lagrangian approach. The results are normalized with the free stream dynamic pressure q∞ ≈ 60 Pa.

std(δ)/q∞ δ̂mic,avg/q∞

no solenoidal prior (Eulerian) 0.022 0.021
no solenoidal prior (Lagrangian) 0.015 0.013

solenoidal prior (Eulerian) 0.012 0.015
solenoidal prior (Lagrangian) 0.011 0.010

between the true and estimated errors. In addition, we observe that switching from the
Eulerian to the Lagrangian approach indeed results in a decrease of the estimated un-
certainty. The uncertainty is further decreased when including the prior knowledge of
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Figure 6.12: Pressure time series obtained with the microphone (red) and PIV (black). From top to bottom:
without applying the prior knowledge of divergence-free velocity fields through the solenoidal filter and using
the Eulerian approach; without the prior knowledge using the Lagrangian approach; including the solenoidal
prior and using the Eulerian approach; including the solenoidal prior and using the Lagrangian approach.
δ is the boundary layer thickness, u∞ is the free stream velocity, q∞ is the free stream dynamic pressure
and p ′ the pressure fluctuation. The gray regions represent the estimated uncertainty, where the bounds are
pPIV

(
xmic, ti

)±kδ̂mic
(
ti

)
.
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divergence-free velocity fields. Table 6.2 shows the results for the uncertainty effective-
ness for the 68.3% and 95% confidence levels. In conclusion, the approximated error

Table 6.2: The uncertainty effectiveness.

Uncertainty effectiveness Theoretical value
(%) of uncertainty

effectiveness
(%)

no solenoidal prior (Eulerian) 67 ; 93 68.3 ; 95
no solenoidal prior (Lagrangian) 61 ; 90 68.3 ; 95

solenoidal prior (Eulerian) 81 ; 98 68.3 ; 95
solenoidal prior (Lagrangian) 68 ; 94 68.3 ; 95

that follows from the uncertainty propagation method is indeed useful, given that the
uncertainty effectiveness is close to the theoretical value. We used coverage factors cor-
responding to a Gaussian distribution. Though the velocity uncertainties we started out
with were Gaussian, due to the nonlinearity of the Navier-Stokes equations the pressure
need not be Gaussian distributed anymore. A Gaussian distribution is known to have
skewness 0 and a kurtosis of 3. Since we used Monte-Carlo simulations to propagate the
uncertainties, we have the full probability distributions of the pressure. The skewness
and kurtosis of the velocity at the microphone location were 0.034 and 3.02, respectively,
since we used a finite number of random realizations, i.e. 100. Table 6.3 shows the result-
ing values for the pressure distributions, extracted from the position of the microphone
in the PIV field. There is indeed a departure from the Gaussian observable, though not
considerable. Therefore, it is acceptable to use the Gaussian coverage factors.

Table 6.3: Skewness and kurtosis of the velocity and pressure distribution, extracted from the microphone
position in the PIV field.

skewness skewness kurtosis kurtosis
velocity pressure velocity pressure

no solenoidal prior (Eulerian) 0.034 -0.20 3.02 2.93
no solenoidal prior (Lagrangian) 0.034 -0.024 3.02 2.44

solenoidal prior (Eulerian) 0.034 -0.15 3.02 2.59
solenoidal prior (Lagrangian) 0.034 0.15 3.02 2.89

To appreciate how the PIV measurement uncertainty propagates to the calculated
pressure field, we refer to Figure 6.13. It shows the standard uncertainty of the recon-
structed pressure field as a function of the distance from the wall where the microphone
is located. Notice the decreasing uncertainty as we move away from the wall and com-
pare with Figure 6.11, which shows the standard uncertainty of the PIV measurement.
Similarly, we notice a decrease in the standard uncertainty with increasing distance from
the wall.
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Figure 6.13: Standard uncertainty of the reconstructed pressure field as a function of the distance from the
wall. Excluding (blue) and including (red) solenoidal filter, using the Eulerian (solid) and Lagrangian (circles)
approaches.

6.5. CONCLUSION

This chapter proposed a methodology for the a posteriori quantification of the uncer-
tainty of pressure data retrieved from PIV measurements. The approach relies upon
the Bayesian framework, where the posterior distribution (probability distribution of the
true velocity, given the PIV measurements) is obtained from the prior distribution (prior
knowledge of the velocity, e.g. within a certain bound or divergence-free) and the dis-
tribution representing the PIV measurement uncertainty. Once the covariance matrix of
the velocity is known, it is propagated through the Poisson equation. Provided the ve-
locity uncertainty is Gaussian and the Eulerian approach is used, the uncertainty can be
calculated exactly. Otherwise, Monte-Carlo simulations can be used. Numerical assess-
ment of the method on a steady Lamb-Oseen vortex showed excellent agreement of the
propagated uncertainty with Monte-Carlo simulations, while linear uncertainty propa-
gation underestimates the uncertainty of the pressure by up to 30%. The method was
finally applied to an experimental test case of a turbulent boundary layer in air, obtained
using time-resolved tomographic PIV. The pressure reconstructed from tomographic PIV
data was compared to the surface measurement conducted by a microphone to deter-
mine the actual error of the former. The PIV uncertainty was quantified by applying a
solenoidal filter to remove spurious divergence. In addition, spatial correlation of the
PIV uncertainty was included. It was found that close to the wall, the velocity uncer-
tainty increases, most likely due to the increased velocity gradient closer to the wall.
This was observed to be propagated into the pressure field as well. The comparison be-
tween actual and approximated error showed the effectiveness of the proposed method
for uncertainty quantification of pressure data from tomographic PIV experiments. The
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Lagrangian approach resulted in more accurate reconstructed pressure fields than the
Eulerian approach, reducing the errors from approximately 2% of the free stream dy-
namic pressure to approximately 1.5%. Also, enforcing the divergence-free constraint
was found to result in a more accurate reconstructed pressure field, eventually reducing
the errors to 1%. Both observations also followed from the uncertainty quantification
through a decrease in the estimated uncertainty. In addition, the estimated errors were
in excellent agreement with the actual error of the pressure.





7
CONCLUSIONS AND

RECOMMENDATIONS

In this chapter we give conclusions regarding the physics-based postprocessing methods
developed in the present thesis and our recommendations for future research in this field.
We subdivide this chapter according to the postprocessing methods that were developed:
Section 7.1 describes SGPR for the filtering of tomographic PIV data (Chapter 3); Section
7.2 describes SGPR applied to increase the spatial resolution of sparse 3D-PTV data (Chap-
ter 4); Section 7.3 describes the spatio-temporal method applied to increase the spatial
resolution of time-resolved sparse 3D-PTV data (Chapter 5); Section 7.4 describes the a
posteriori uncertainty quantification method for PIV-based pressure fields (Chapter 6).

7.1. SOLENOIDAL FILTERING OF TOMOGRAPHIC PIV DATA
For volumetric velocity measurements of incompressible flows, spurious velocity diver-
gence arises due to measurement noise and finite resolution. To remove this spurious
divergence from tomographic PIV measurements, we investigated the use of an ana-
lytically solenoidal filter based on Gaussian process regression (SGPR). Inspired by a
number of recently proposed a posteriori PIV measurement uncertainty methods, we
formulated the filter from a Bayesian perspective to allow natural inclusion of mea-
surement uncertainty. We used two synthetic test cases to assess the accuracy of the
filtered velocity and derived vorticity and pressure fields and compared with conven-
tional (non-physics-based) filtering and two other recently proposed solenoidal filters
that have been applied to volumetric velocity measurements as well. The advantage of
the other solenoidal filters is that they do not require a tuning parameter. SGPR on the
other hand does, but we found that as long as the user makes use of his a priori physi-
cal knowledge of the field of interest, the results are quite insensitive to the exact value
chosen. This demonstrated that the method is robust to its tuning parameters. The first
experimental data set showed that by including the measurement uncertainty, SGPR is
able to reconstruct a solenoidal velocity field that more faithfully follows the measure-
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ments. The second experimental data set showed that all three solenoidal filters improve
the reconstructed pressure signal, independent of which scheme is used to evaluate flow
acceleration. Though we eventually found that similar accuracies could be achieved by
applying a least-squares regression of the fluid parcel’s velocity using a first-order poly-
nomial basis that includes nine snapshots, applying the solenoidal filters is preferred.
The least squares regression is a Lagrangian approach that advects measurements for-
ward and backward, therefore cropping of the measurement results. The more snap-
shots are used, the more cropping occurs. The solenoidal filters on the other hand only
carry out spatial filtering, thereby leaving the measurement volume unchanged while at
the same time they do not need time-resolved measurements.

7.1.1. RECOMMENDATIONS

The component HPH ′ of the SGPR gain matrix given in Eq.3.14 is formulated in its most
general form, allowing different covariance functions to be used for the different direc-
tions of the vector potential. Also, from Eq.2.14, the radial distance required by the co-
variance function can be scaled differently in each coordinate direction by using differ-
ent correlation lengths. In the present work, we used a single covariance function and a
single correlation length for all coordinate directions. This allowed us to choose a priori
a correlation length, therefore avoiding a potentially costly optimisation. Future work
could aim to investigate to what extent the results from SGPR can be further improved
by using anisotropic correlation lengths, for example to account for flow anisotropy.
This would complicate an a priori choice of the correlation lengths, therefore calling for
an optimisation routine to be used for this based on for example maximum likelihood
estimation. To avoid excessive computational time, one could follow the approach by
de Baar et al (2013) who enabled fast estimation of these parameters by carrying out the
optimisation in the frequency-domain. They applied it to Gaussian process regression,
so modification to solenoidal Gaussian process regression would be our recommenda-
tion for future work.

7.2. SOLENOIDAL INTERPOLATION OF SPARSE 3D-PTV DATA

Having formulated SGPR for the solenoidal filtering of tomographic PIV data, we subse-
quently investigated whether enforcing the divergence free constraint can improve the
interpolation of velocity (and derived) fields obtained from sparse 3D-PTV data of in-
compressible flows. For this type of data, choosing an appropriate correlation length a
priori proved to be more difficult since, coming from sparse data, the underlying veloc-
ity field is more difficult to identify. We therefore proposed a methodology inspired by
procedures common in the machine learning community to find the optimum tuning
parameters. We found that incorporating the constraint analytically using SGPR results
in more accurate interpolations than applying a discrete solenoidal filter to a linearly
interpolated field or a field obtained using GPR. In addition, we found that SGPR consis-
tently returns the most accurate velocity, vorticity and pressure fields. The improvement
is most pronounced for the sparsest data sets. These observations were confirmed using
both synthetic test cases and an experimental data set.
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7.2.1. RECOMMENDATIONS

To obtain the pressure field from sparse velocity measurements, it is customary to first
interpolate the velocity field onto a regular grid, allowing the pressure field to subse-
quently be obtained with finite-differencing. Recently though, increased attention has
been paid to extracting pressure fields directly from the sparse measurements, bypassing
conversion to the regular grid. We refer to Neeteson and Rival (2015) and the references
therein. Having confirmed that SGPR can increase the spatial resolution of the mea-
surements, future work could focus on combining SGPR with these methods to further
enhance the derived pressure field.

A second recommendation is to investigate an irrotational version of Gaussian pro-
cess regression (Scheuerer and Schlather, 2012), that could be denoted irrotational Gaus-
sian process regression (IGPR). Starting with the Navier-Stokes equations (see Eq.1.2) and
neglecting the viscous term, we get:

∇p =−ρDu

Dt
, (7.1)

where Du/Dt is the material derivative of the velocity field, which can easily be obtained
by taking the derivative along the particle tracks. Barring the constant density and the
minus sign, Eq.7.1 states that the material acceleration is equal to the gradient of the
pressure field, which is a scalar. From vector calculus it therefore follows that the ma-
terial acceleration is irrotational. In the same way that SGPR improved the spatial res-
olution of solenoidal velocity fields, IGPR could improve the spatial resolution of the
irrotational material acceleration. This could subsequently result in an improvement of
the estimated pressure field.

7.3. SPATIO-TEMPORAL INTERPOLATION OF SPARSE 3D-PTV DATA
We carried out a proof-of-concept study to investigate how incorporating the tempo-
ral information of particle tracks in 3D-PTV, and adding the momentum conservation
equation as prior knowledge, can improve the reconstructed velocity and vorticity fields.
Specifically, we used the vorticity-velocity formulation of the momentum conservation
equation and the vortex-in-cell (VIC) method to solve it. The data assimilation method
we used is similar to 4DVAR, therefore the problem reduces to an optimisation problem.
The cost function to be minimized is a least-squares sum of the discrepancy between
the time-varying measurements and the simulated field. The optimisation variables are
the initial velocity field and the time-varying boundary conditions. To calculate gradi-
ents efficiently, we exploited the reverse mode of differentiation, which we hand coded.
The assimilation algorithm was applied to an experimental test case of a circular jet in
water. We compared it with SGPR, which interpolates the snapshots independent from
each other, therefore not taking the temporal information into account. We found clear
improvements in the reconstructed field when incorporating temporal information.

7.3.1. RECOMMENDATIONS

Considering that the investigation of the spatio-temporal interpolation was a proof-of-
concept, we can propose a number of recommendations for future work. First of all, to
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make the method applicable for more general flow cases, we need to include the viscos-
ity term in the vorticity transport equation. This will enable the method to be used for
wall-bounded flows, as well as allow integrating over longer time domains, i.e. assimi-
late longer particle tracks. Including the viscosity term will have implications for the VIC
solver, which needs to be modified to accommodate it, and subsequently the adjoint
code as well. When including the viscous term, the inviscid vorticity transport equation
is not time-reversible anymore. Consequently, the full state needs to be stored when
running the adjoint code. Checkpointing was already mentioned as a possible solution,
so one would need to investigate how to explicitly implement this or an alternative.

Another recommendation, which will again have computational implications, is to
augment the state with the full unknown velocity field. Mathematically, we then ac-
knowledge that the model is not perfect. For the inviscid vorticity transport equation.
In the field of 4DVAR, this modification is known as weak constraint 4DVAR, as opposed
to the strong constraint 4DVAR we have used.

7.4. A posteriori UNCERTAINTY QUANTIFICATION OF PIV-BASED

PRESSURE

We proposed a methodology for the a posteriori quantification of the uncertainty of pres-
sure data retrieved from PIV measurements. The approach relies upon the Bayesian
framework to combine the PIV measurement uncertainty with prior knowledge, like
the divergence free constraint. Once the posterior covariance matrix of the velocity is
known, we propagated it through the Poisson equation. Provided the velocity uncer-
tainty is Gaussian and the Eulerian approach is used, the uncertainty can be calculated
exactly. Otherwise, Monte-Carlo simulations can be used. Numerical assessment of the
method on a steady Lamb-Oseen vortex showed excellent agreement of the propagated
uncertainty with Monte-Carlo simulations, while linear uncertainty propagation under-
estimates the uncertainty of the pressure by up to 30%. The method was finally applied
to an experimental test case of a turbulent boundary layer in air, obtained using time-
resolved tomographic PIV. The pressure reconstructed from tomographic PIV data was
compared to the surface measurement conducted by a microphone to determine the ac-
tual error of the former. The PIV uncertainty was quantified by applying a solenoidal fil-
ter to remove spurious divergence. In addition, spatial correlation of the PIV uncertainty
was included. It was found that close to the wall, the velocity uncertainty increases.
This was observed to be propagated into the pressure field as well. The comparison be-
tween actual and approximated error showed the effectiveness of the proposed method
for uncertainty quantification of pressure data from tomographic PIV experiments: for a
95% confidence level, 93% of the data points fell within the estimated uncertainty bound
with the Eulerian approach, and 90% with the Lagrangian approach. When using the
prior knowledge that the velocity field should be divergence free, these values were 98%
with the Eulerian approach and 94% with the Lagrangian approach. The Lagrangian
approach resulted in more accurate reconstructed pressure fields than the Eulerian ap-
proach. Also, enforcing the divergence free constraint was found to result in a more
accurate reconstructed pressure field. Both observations also followed from the uncer-
tainty quantification, through a decrease in the estimated uncertainty.
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7.4.1. RECOMMENDATIONS
The uncertainty due to the application of a 2D model to a 3D flow has not been tackled.
However, as it stands, the method can be applied to it. Practically, the unmeasured ve-
locity components are specified through the prior but they will not be updated by the
measurements. The challenge therefore lies in the hands of the experimentalist to come
up with a proper estimation of the prior. To verify the method for this, one can take
a time-resolved tomographic PIV experiment, choose a plane to represent the planar
PIV experiment and carry out the uncertainty quantification method. The estimated
mean pressure together with its accompanying confidence intervals can then be com-
pared with the pressure obtained using the full volumetric data.

Another recommendation is to propagate the uncertainty one step further: to forces.
In industrial wind tunnel applications, force measurements are of course very common
so an augmented version of the proposed method may become very useful indeed.





A
TEST CASES

In this appendix, we present the test cases used in Chapters 3 to 6 to assess the physics-
based postrpocessing methods developed in the present thesis. We make a distinction be-
tween synthetic test cases, discussed in Section A.1, and experimental test cases, discussed
in Section A.2. The test cases were chosen on the basis that they represent incompressible
flow, their prior use in the PIV literature, the ability to properly assess the data assimilation
methods and that they challenge the methods.

A.1. SYNTHETIC TEST CASES
Assessing the synthetic test cases is straightforward since the exact velocity and derived
fields are available. In addition, they are exactly divergence-free. The first test cases also
exactly satisfies the Navier-Stokes equations, whereas the second test case is based on
the linearised vorticity equation for incompressible flows. The data was generated point
wise, meaning that a velocity measurement at a specified point is obtained by evaluat-
ing the analytical velocity field at that particular point. Gaussian noise is added to the
evaluated velocity field to represent measurement noise. In Chapter 3, we generated cor-
related noise to model the filtering effect of the interrogation windows. More details can
be found in that chapter.

A.1.1. TAYLOR-VORTEX

The Taylor-vortex is a single decaying counter clock wise rotating vortex flow defined in
2D (Panton, 2013). The velocity field is solenoidal and in addition satisfies the Navier-
Stokes equations. The tangential velocity is defined as:

uθ =
H

8π

r

νt 2 exp

(
− r 2

4νt

)
, (A.1)

where H is the total angular momentum of the vortex, r is the radial distance from the
center of the vortex, ν is the kinematic viscosity and t is time. The radial velocity is zero.
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(a) (b)

(c) (d)

Figure A.1: Taylor-vortex: (a) velocity magnitude and velocity vectors at t = 0.05 s; (b) velocity magnitude, (c)
vorticity and (d) pressure of all samples at x2 = 0 m, 0 ≤ x1/L0 ≤ 1. Arrow directed towards increasing time.

The vorticity is given by:

ω=−H
(
r 2 −4νt

)
16πν2t 3 exp

(
− r 2

4νt

)
. (A.2)

The pressure is given by:

p =− ρH 2

64π2νt 3 exp

(
− r 2

2νt

)
+p∞, (A.3)

where ρ is the constant fluid density and p∞ is the pressure at an infinite distance from
the vortex center.

For the present problem, we take H = 1×10−6 m2, ν= 1×10−6 m2 s−1, ρ = 1000 kg m−3.
The domain size is −L0 ≤ xi ≤ L0, i = 1,2, where L0 = 1×10−3 m. Samples are taken be-
tween t = 0.05 s and t = 0.30 s with a sampling frequency of 100 Hz. These same settings
were also used by Charonko et al (2010). They used this test case to investigate the ef-
fects of a number of factors on PIV-based pressure reconstruction, namely the noise level
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(a) (b)

(c) (d)

Figure A.2: Vortex ring: (a) isosurface of vorticity magnitude and velocity field at the symmetry plane; (b)
vorticity magnitude, (c) velocity in the horizontal direction and (d) velocity in the vertical direction, evaluated
at the symmetry plane.

of the velocity measurements, the pressure integration algorithm used, the spatial and
temporal resolution and out-of-plane velocities. Figure A.1 shows the velocity, vorticity
and pressure fields.

A.1.2. VORTEX RING

The vortex ring has become a popular test case to numerically assess reconstruction
methods in tomographic PIV since its use in Elsinga et al (2006). However, the displace-
ment field, applied to artificial particles, does not result in a divergence-free velocity
field. Therefore, we have used a different model proposed by Kaplanski et al (2009).
They derived analytical expressions for the velocity and vorticity fields by linearizing the
vorticity equation for incompressible flows. The axial (ua) and radial (ur ) velocities are
defined as:

ua =πθ2
∫ ∞

0
µF

(
µ,η

)
J1

(
θµ

)
J0

(
σµ

)
dµ, (A.4)
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ur =−πθ2
∫ ∞

0
µF̃

(
µ,η

)
J1

(
θµ

)
J1

(
σµ

)
dµ, (A.5)

where J0 and J1 are Bessel functions. The functions F
(
µ,η

)
and F̃

(
µ,η

)
are:

F
(
µ,η

)= exp
(
ηµ

)
erfc

(
µ+ηp

2

)
+exp

(−ηµ)
erfc

(
µ−ηp

2

)
, (A.6)

F̃
(
µ,η

)= exp
(
ηµ

)
erfc

(
µ+ηp

2

)
−exp

(−ηµ)
erfc

(
µ−ηp

2

)
. (A.7)

The parameters σ, η and θ are:

σ= r

l
, η= x1

l
, θ = R0

l
.

The vorticity is given by:

ω= Γ0R0p
2πl 3

exp

[
−1

2

(
σ2 +η2 +θ2)] I1 (σθ) , (A.8)

where I1 is the modified Bessel function. Contrary to the Taylor-vortex, we do not have
an analytical expression for the pressure field. Also, the field is not time-resolved. To
obtain a vortex ring with a similar shape to the experimental test case in Section A.2.1, we
have chosen the following parameters: R0 = 0.0067, l = 0.0031, Γ0 = 4πR0. The domain
size is −2.5R0 ≤ x1 ≤ 2.5R0 and −5R0 ≤ x2, x3 ≤ 5R0. The coordinate direction 1 is taken
as the axial direction. Figure A.2 shows the velocity and vorticity fields of the vortex ring.

A.2. EXPERIMENTAL TEST CASES
Both experimental data sets were obtained using time-resolved tomographic PIV. As-
sessing the methods is however not as straightforward as it was for the synthetic test
cases. This is because it is more difficult to obtain a reliable ground truth. For the first
experimental test case, we exploit a recently proposed a posteriori PIV uncertainty quan-
tification method to obtain an estimate of the measurement uncertainty. For the second
experimental test case, we exploit the availability of simultaneous microphone measure-
ments that were carried out, enabling comparison of the PIV-based pressure with the
microphone signal.

A.2.1. CIRCULAR JET IN WATER
The experiment of the circular jet in water was carried out by Violato and Scarano (2011)
(see Figure A.3). The jet velocity at the nozzle exit is 0.5 m/s, so incompressible flow is
an excellent approximation. The nozzle diameter is 10 mm, giving a Reynolds number
based on this diameter of approximately 5,000. The jet periodically sheds vortex rings
due to the growth of Kelvin-Helmholtz instabilities, at a frequency of approximately 30
Hz. This can clearly be seen from Figure A.3(a). Since the acquisition frequency of the
measurements is 1 kHz, this large scale vortex shedding is captured with good temporal
resolution. The measurement volume is approximately 42 mm in the jet direction and
20 mm in the cross directions. The dataset consists of 289,328 vectors and is defined on
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a regular grid, with 107 vectors in the jet direction and 52 vectors in the cross directions.
Further downstream, the jet becomes turbulent, however in the volume considered the
flow is laminar. The high shear and rotation occurring within the interface between the
jet core and the surrounding stagnant fluid and the strong streamlines curvature and
acceleration resulting from the vortex shedding has made the circular jet in water a pop-
ular test case, both for testing PIV reconstruction methods (Lynch and Scarano, 2013;
Novara, 2013; Sciacchitano et al, 2012b; Wieneke, 2013) and data assimilation methods
(Scarano and Moore, 2012; Schneiders et al, 2014; Sciacchitano et al, 2012a).

A.2.2. TURBULENT FLAT PLATE BOUNDARY LAYER IN AIR
An experiment of the fully developed turbulent boundary layer over a flat plate in air was
carried out by Pröbsting et al (2013). The free stream velocity is 10 m/s, so incompress-
ible flow is again an excellent approximation. Figure A.4(a) shows the instantaneous
velocity component in the free stream direction at the center plane of the measurement
volume. The boundary layer thickness δ is 9.4 mm. The Reynolds number based on
the boundary layer thickness is Reδ ≈ 6,240. The acquisition frequency of the mea-
surements is 10 kHz and 1500 samples were obtained during the measurements. The
measurement volume spans 19.7 mm in the stream wise (x) direction, 4.2 mm in the
wall-normal (y) direction and 41.3 mm in the span wise (z) direction. The dataset con-
sists of 185,484 vectors and is defined on a regular grid, with 58 vectors in stream wise,
26 vectors in the wall-normal and 123 vectors in the span wise direction. A microphone
was located on the wall to measure the pressure fluctuations. The microphone measure-
ments were carried out simultaneously with the PIV measurements, allowing compari-
son of the microphone based pressure signal with the PIV-based pressure signal. This
test case is therefore very suitable to assess the a posteriori uncertainty quantification
method for PIV-based pressure, which is the subject of Chapter 6. Figure A.4(b) shows
the stream wise velocity fluctuations from the PIV data (top), evaluated at the bottom of
the measurement volume at the microphone location and the pressure signal from the
microphone (bottom).
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(a)

(b)

(c)

(d)

Figure A.3: Circular jet in water: (a) velocity vector slice in the symmetry plane and isosurfaces of vorticity
magnitude at ω = 220 1/s; (b) vorticity magnitude, (c) cross flow velocity and (d) stream wise velocity at the
symmetry plane.
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(a)

(b)

Figure A.4: Turbulent flat plate boundary layer in air: (a) stream wise instantaneous velocity component at
the center plane of the measurement volume; (b) stream wise velocity fluctuations from the PIV data (top),
evaluated at the bottom of the measurement volume at the microphone location and pressure signal from the
microphone (bottom). δ is the boundary layer thickness, u∞ is the free stream velocity, q∞ is the free stream
dynamic pressure, u′ is the free stream velocity fluctuation and p ′ the pressure fluctuation.





B
WENDLAND FUNCTIONS AND THEIR

SECOND PARTIAL DERIVATIVES

This appendix gives the Wendland functions φ3,k with orders k = 1,2,3,4 and smoothness
C 2k , together with analytical expressions of their second partial derivatives as required by
the gain matrix of SGPR (see Eq.3.14).

Placing the covariance function at
(
xi , y i , zi

)
, the scaled radial distance with a point

at
(
x, y, z

)
is defined as:

r =
√(

x −xi

γ1

)2

+
(

y − y i

γ2

)2

+
(

z − zi

γ3

)2

, (B.1)

where γl , l = 1,2,3 is the correlation length in the x-,y- and z-directions, respectively.
In the following sections, the term (1− r )+ means that (1− r )+ = 0 for r ≥ 1. Also, we
will show the expressions for ∂2φ/∂x2 and ∂2φ/∂x∂y . Of course, the derivatives with
respect to the other coordinate directions can easily be obtained from them. Figure B.1
illustrates the four Wendland functions.

B.1. ORDER 1
φ3,1 = (1− r )4

+ (4r +1) (B.2)

∂2φ3,1

∂x2 = 20(r −1)2+
rγ2

1

(
r 2 − r + 3

(
x −xi

)2

γ2
1

)
(B.3)

∂2φ3,1

∂x∂y
= 60(r −1)2+

(
x −xi

)(
y − y i

)
rγ2

1γ
2
2

(B.4)
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Figure B.1: The Wendland functions φ3,k with orders k = 1,2,3,4.

B.2. ORDER 2

φ3,2 = (1− r )6
+

(
35

3
r 2 +6r +1

)
(B.5)

∂2φ3,2
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3γ2

1
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(B.6)
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(B.7)

B.3. ORDER 3
φ3,3 = (1− r )8

+
(
32r 3 +25r 2 +8r +1

)
(B.8)
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(B.10)

B.4. ORDER 4

φ3,4 = (1− r )10
+

(
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5
r 4 +90r 3 +42r 2 +10r +1

)
(B.11)
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C
EFFICIENT ADJOINT-BASED COST

FUNCTION GRADIENT

CALCULATION

This appendix explains how to efficiently calculate the gradient of the cost function J from
Eq.5.20. To this end, we have hand-coded the adjoint of the flow diagram from Figure
5.2. Also, we have avoided the simple yet inefficient approach of setting up matrices and
taking their transpose, which is the essence of the adjoint operator.

The flow diagram of the adjoint is illustrated by Figure C.1. As we can see from the
diagram, the flow of variables is reversed and we start at the bottom now. Also notice
that all variables (·) have been replaced by their adjoint counterparts δ (·)∗. Starting at
the bottom now, we set

δJ∗ = 1.

In the original code,

J =
Nt∑

l=1
J l ,

see also Eq.5.8. This can also be written as:

J = 1′J, (C.1)

where 1 ∈ RNt is a vector composed of all ones and J ∈ RNt is a vector with components
Ji = J i , i = 1, ..., Nt . The adjoint is obtained by replacing the order of the variables in
Eq.C.2 and taking the transpose of 1′:

δJ∗ = 1δJ∗. (C.2)

Since we set δJ∗ = 1, this value flows unchanged into its components, i.e. :

δJ∗l = 1, (C.3)

l = 1, ..., Nt . In the following sections, we explain the adjoint blocks from Figure C.1.
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Figure C.1: Adjoint of the flow diagram from Figure 5.2.

C.1. SSE∗
The ‘sse∗’ block calculates the sum of squared errors. We have:

δÛ∗l
p j

=− 2

σl
j

2

(
Ul

p j
− Ûl

p j

)
, (C.4)

Eq.C.4 follows from Eqs.5.8-5.10 and Eq.C.3. We do not calculate δU∗l
p j

, i.e. the other term
that comes out of the ‘sse’ block, since it does not contribute to the top variables of the
flow diagram in Figure C.1, which form the components of the gradient ∇J we want to
calculate.

C.2. H∗
The adjoint operator of H (see also Eq.5.11) that applies trilinear interpolation of the
velocity from the regular grid to a particle position is given by:

δû∗l
gi

= ∑
j∈L

V l
i j

V
δÛ∗l

p j
. (C.5)

To explain the components in Eq.C.5, we use Figure C.2. The black dot is the point on
the regular grid xgi for which we want to calculate the adjoint velocity δû∗l

gi
. We take

the eight cells surrounding this grid point and look for the particle locations (red dots)
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Figure C.2: Workings of the adjoint operator of trilinear interpolation.

they contain, forming a set L. Figure C.2 explains for the point xl
p j

what the volume Vi j

represents, namely the volume formed between xl
p j

and the point opposite xgi across
the diagonal of the cell. If the eight surrounding cells would not contain any particles,
we would have δû∗l

gi
= 0.

We could have followed the simple yet inefficient approach of constructing the ma-
trix that represents the operator H and then form its transpose. Instead, using Eq.C.5
is much more efficient and in addition illustrates the physical meaning of the adjoint.
Where the forward tangent-linear represents how disturbances from the grid points prop-
agate into the interpolation at a particle location, the adjoint represents the particle lo-
cations that a grid point has affected.

C.3. VIC∗

This section explains the adjoint code of the VIC method. Like Chapter 5, we distin-
guish the four steps blob advection, vortex stretching, vorticity interpolation and velocity
inversion. However, we now traverse the components in reverse order and replace the
variables by their adjoint counterparts, as shown by Figure C.3.

C.3.1. VELOCITY INVERSION

The original velocity inversion step was expressed by Eq.5.27. The tangent-linear ver-
sion (see Eq.5.40) was simple since the Laplace and curl operators are linear. To explain
the adjoint, we split the step into two sub-steps, starting with the Poisson equation and
followed by the curl operation.
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Figure C.3: One time integration step of the adjoint VIC solver.

POISSON EQUATION

The tangent-linear of the Poisson equation can be expressed as:

Aδûk+1
int = δf̂k+1, (C.6)

where A is the discrete Laplacian operator, δûk+1
int the disturbance of the internal points

of the new velocity field and δf̂k+1 the disturbance of the contributions from the curl of
the vorticity field and the velocity boundary condition:

δf̂k+1 = δĝk+1 +δĥk+1

= Iδĝk+1 + Iδĥk+1

= [
I I

](
δĝk+1

δĥk+1

)
,

(C.7)

where I is the identity matrix, δĝk+1 is the discretization of −∇×ωωω at the internal grid
points and δĥk+1 is the contribution from the velocity boundary condition. The adjoint
counterpart of Eq.C.6 is:

Aδf̂∗k+1 = δû∗k+1
int , (C.8)

where we have used the property that the Laplacian operator is self-adjoint, i.e. A = A′;.
Solving Eq.C.8, we obtain δf̂∗k+1. The adjoint of Eq.C.7 is:(

δĝ∗k+1

δĥ∗k+1

)
=

[
I
I

]
δf̂∗k+1, (C.9)

so
δĝ∗k+1 = δĥ∗k+1 = δf̂∗k+1

Finally, the adjoint of the velocity boundary condition δû∗k+1
b is obtained by adding the

boundary points from δû∗k+1, denoted δû∗k+1
bnd and δĥ∗k+1.
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To explain how δω̂ωω∗k+1 is obtained from δĝ∗k+1, we investigate the continuous counter-
part first to enable a clear interpretation. Consider

g =−∇×ωωω, (C.10)

which we write for the present purposes as

gx

g y

gz

=−

 0 − ∂·
∂z

∂·
∂y

∂·
∂z 0 − ∂·

∂x
− ∂·
∂y

∂·
∂x 0


ωx

ωy

ωz

 . (C.11)

Taking the adjoint of Eq.C.11,

δω∗
x

δω∗
y

δω∗
z

=−

 0 ∂·∗
∂z − ∂·∗

∂y

− ∂·∗
∂z 0 ∂·∗

∂x
∂·∗
∂y − ∂·∗

∂x 0


δg∗

x
δg∗

y

δg∗
z

 . (C.12)

Since the first derivative operator is skew-symmetric (e.g. ∂ ·∗ /∂x = −∂ · /∂x), Eq.C.12
becomes δω∗

x
δω∗

y

δω∗
z

=−

 0 − ∂·
∂z

∂·
∂y

∂·
∂z 0 − ∂·

∂x
− ∂·
∂y

∂·
∂x 0


δg∗

x
δg∗

y

δg∗
z

 . (C.13)

C.3.2. VORTICITY INTERPOLATION

Referring back to the flow diagram in Figure C.3, we see that the adjoint variable δω̂ωω∗k+1

goes in and the three adjoint variables δω̂ωω∗k+1
b , δω̂ωω∗k+1

vb , and δx∗vb come out. δω̂ωω∗k+1
b is

obtained by simply extracting the boundary nodes from δω̂ωω∗k+1. This is because in the
forward mode, the vorticity boundary condition is overlaid after interpolating the vor-
ticity from the vortex blobs to the regular grid. Proceeding to δω̂ωω∗k+1

vb , from the forward
code explained in Section 5.4.3, we know that the new vorticity field on the regular grid is
obtained by interpolating the vorticity field formed by the vortex blobs, see also Eq.5.23.
Similar to the adjoint of trilinear interpolation, discussed in Section C.2, the adjoint of
the vorticity at the vortex blobs is obtained by interpolating the adjoint of the vorticity
field from the regular grid:

δω̂ωω∗k+1
vb, j = 1

V

n∑
i=1

δω̂ωω∗k+1
i

3∏
l=1

ζl

(
xl ,vb, j −xl ,g ,i

∆xl

)
, (C.14)

Finally, we provide the expression for δx∗vb :

δx∗
vb, j = ω̂x,vb, j

n∑
i=1

δω̂∗k+1
x,i

δζ1, j i

δx
ζ2, j iζ3, j i . (C.15)

Similar expressions are obtained for δy∗
vb, j and δz∗

vb, j .
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C.3.3. VORTEX STRETCHING

Two variables flow out of the vortex stretching block, namely δω̂ωω∗k and δû∗k . Following
the tangent-linear vortex stretching term from Eq.5.22, it can be shown that we get:

δω̂ωω∗k = δω̂ωω∗k+1
vb +∆t∇ûkδω̂ωω∗k+1

vb , (C.16)

∇δû∗k =∆tω̂ωωk
(
δω̂ωω∗k+1

vb

)′
. (C.17)

The adjoint of the velocity can be obtained from Eq.C.17. We have for the velocity in the
i -direction:

δu∗
i =−∇· (∇δu∗

i

)
. (C.18)

C.3.4. BLOB ADVECTION
Finally, the adjoint of the velocity is obtained by adding Eq.C.18 to ∆t ·δx∗vb .

C.4. C∗
k ,G∗

k
The matrices Ck and Gk are square symmetric matrices and therefore self-adjoint. There-
fore

δc∗0 =C0δû∗0,

δc∗k
b =Ckδû∗k

b ,

δg∗k
b =Gkδω̂ωω

∗k
b ,

C.5. BOX∗
The original expression for the constraint handling comes from Eq.5.13. Its adjoint is:

δφ̃∗ = 1

2

(
φub −φl b

)
cos φ̃δφ∗. (C.19)

Using Eq.C.19, we can obtain δc̃∗0 from δc∗0, δc̃∗k
b from δc∗k

b and δg̃∗k
b from δg∗k

b . These
are the components of the gradient of J .
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