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Abstract—Scratch is increasingly popular, both as an in-
troductory programming language and as a research target
in the computing education research field. In this paper, we
present a dataset of 250K recent Scratch projects from 100K
different authors scraped from the Scratch project repository. We
processed the projects’ source code and metadata to encode them
into a database that facilitates querying and further analysis. We
further evaluated the projects in terms of programming skills and
mastery, and included the project scoring results. The dataset
enables the analysis of the source code of Scratch projects, of their
quality characteristics, and of the programming skills that their
authors exhibit. The dataset can be used for empirical research
in software engineering and computing education.

I. INTRODUCTION

Scratch [1] is a block-based programming language de-
veloped to serve as a stepping stone for children from 8
to 16 years old to the more advanced world of computer
programming. It offers a web-based programming environment
that enables creating games and interactive animations. The
public repository of Scratch programs contains over 19 million
projects and 16 million users.

A number of works in the computing education research
field attempt to assess the programming skills that novice
programmers develop in the Scratch environment. Some utilize
program data collected during specific programming courses
(e.g., [2], [3], [4]), while others utilize the dataset made avail-
able by the Lifelong Kindergarten Group at the MIT Media
Lab [5], which contains data for Scratch projects created until
2012 (e.g., [6], [7], [8]). In addition to identifying indications
of learning of programming concepts, static analysis of Scratch
programs has also been performed for identifying code smells
and bad programming practices [9], [10], and automated qual-
ity assessment tools have been proposed (e.g., Hairball [11]
and Dr. Scratch [12]).

While Scratch is receiving increasing interest as an intro-
ductory programming language, there is no recent dataset of
Scratch programs available to the research community. The
one made available from the MIT Media Lab concerns projects
created using the previous, initial version of the Scratch
application, before the introduction of the current Scratch
version (Scratch 2) and of the web programming interface in

2013. It is since then that the popularity of Scratch started
to increase.1 Scratch 2 introduced several features relating
to important programming concepts,2 like custom blocks (the
equivalent to procedure definitions), and therefore that dataset
does not include projects utilizing those features.

The goal of this paper is to present an open and timely
dataset of recent Scratch programs, along with their metadata,
that can facilitate quantitative research in the fields of source
code analysis and computing education. The dataset contains
250,000 Scratch projects, from more than 100,000 different
users, that were scraped from the Scratch project repository.
It is made available as a database3 which includes, for each
Scratch project, its metadata and the program data, along with
programming mastery scoring results from the Dr. Scratch
quality assessment tool [12].

II. DATASET CONSTRUCTION

A. Data Collection

To collect the data from the web interface of the Scratch
project repository, we built a scraping program. The web
scraping program starts by reading the Scratch projects page4

and thus obtains the project identifiers of projects that were
most recently shared. Subsequently, it retrieves a JSON file
for each of the listed projects5.

We ran the scraper on March 2nd 2016 for 24 hours
and, during that time, it obtained the JSON files for
250,163 projects. Out of those, we failed to parse and further
analyze 2,367 projects due to technical difficulties with the
JSON files. The scraper and all project files are available3.

Once we obtained the Scratch projects, we parsed the JSON
files according to the specification of the format6. This resulted
in a list of used blocks per project, within the sprites and
the stage of the project. We also cross referenced all blocks

1Monthly activity trends can be found at https://scratch.mit.edu/statistics/
2The complete list of features introduced in Scratch 2 can be found at

https://wiki.scratch.mit.edu/wiki/Scratch 2.0
3https://github.com/TUDelftScratchLab/ScratchDataset
4https://scratch.mit.edu/explore/projects/all/
5For a given project id x, the program’s JSON representation can be

obtained via https://cdn.projects.scratch.mit.edu/internalapi/project/x/get
6http://wiki.scratch.mit.edu/wiki/Scratch File Format (2.0)
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with the Scratch wiki to determine their shapes and category.
For example, When Green Flag Clicked is a Hat block
from the Events category. We included blocks from Scratch
extensions, such as the LEGO WeDo extensions, that were
found in the dataset.

B. Calculation of Programming Mastery Scores

We analyzed the projects with Dr. Scratch, a tool that stati-
cally inspects Scratch projects’ source code to assign scores on
seven dimensions of computational thinking: abstraction and
problem decomposition, logical thinking, synchronization, par-
allelism, algorithmic notions of flow control, user interactivity
and data representation. These dimensions are given a value
from 0 to 3. The mastery score is the aggregated punctuation
of the seven dimensions, and therefore ranges from 0 to 21.

Dr. Scratch also detects: intra-project software cloning, i.e.,
repetition of code; the use of custom blocks, which is the way
functionality can be reused in Scratch programs; and the use
of instances of sprites, a feature labeled in Scratch as clone
creation. These values are included in the dataset.

Out of the 250,163 projects, 231,050 were successfully
analyzed with Dr. Scratch. This was due to problems with non-
official extension blocks and with some non-ASCII characters
in sprites names.

C. Importing the Data

All scraped project data and metadata, including the list
of used blocks and parameters, were imported in a relational
database. We also imported the data on the shapes and the
categories of the Scratch blocks. We then used SQL queries
for normalizing the data and bringing it in its final schema,
outlined in Table I.

III. DATASET DESCRIPTION

A. Data Representation

The projects’ data are stored in a relational database. Each
of the projects is identified by its Scratch project ID,
stored in field p_id, while its author is identified by the
username7. If a project is a remix of another one, the original
project can be found in the remixes table. Table grades
stores the Dr. Scratch results for the programming mastery
metrics per project.

The schema of the database, outlined in Table I, reflects
the structure of the Scratch programs. Projects contain sprites,
which are entities with their own associated code. The code is
organized into scripts, i.e., groups of Scratch code blocks,
each script belonging to a sprite named sprite-name. In
the example in Figure 1 there are 3 scripts, one initiated when
the green flag is clicked, one then the sprite is clicked, and
the ‘backflip’ custom block definition. Those custom blocks
are the equivalent of procedure definitions, with their names
and arguments stored in the procedures table.

7Each project and author page can be accessed in the Scratch web
interface at https://scratch.mit.edu/projects/〈p id〉 and https://scratch.mit.edu/
users/〈username〉 respectively

Table Key Attribute(Description)
projects PK p_id (Scratch project ID)

project-name (name given to project)
username (author’s Scratch username)
total-views (project views number)
total-remixes (project remixes number)
total-favorites (total users favoriting)
total-loves (users ‘loving’ the project)
is-remix (calculated column, true if project
is a remix of another one)

scripts PK script_id (auto increment)
FK project_id (*...1 projects:p_id)

sprite-type ([sprite|stage|procDef ])
sprite-name (name of sprite the script is in)
script-rank (project-level ranking of
script)
coordinates (x-y location of script in
Scratch editor)
total-blocks (calculated column, number
of blocks comprising the script)

procedures PK,FK script_id (1...1 scripts:script_id)
proc-name (name given to custom block)
total-args (number of input arguments)

blocks PK,FK script_id (*...1 scripts:script_id)
PK block-rank (script-level ranking of block)

block-type (*...1 blockTypes:b-type)
parameter-1 (value of 1st input parameter)
...
parameter-24 (value 24th input parameter)

blockTypes PK b-type (Scratch name of predefined block)
category (Scratch block category)
shape (One of 8 block shapes in Scratch)
is-input (true if block receives user input)

remixes PK remix_id (project_id of created project)
from-project_id (project_id of origi-
nal project)

grades PK,FK project_id (1...1 projects:p_id)
Abstraction (Score)
Parallelism (Score)
Logic (Score)
Synchronization (Score)
FlowControl (Score)
UserInteractivity (Score)
DataRepresentation (Score)
Mastery (Dr. Scratch total mastery score)
Clones (number of software clones)
CustomBlocks (number of user defined
blocks)
InstancesSprites (true if project uses
Scratch clones)

TABLE I
DATABASE SCHEMA: TABLES AND ATTRIBUTES

Fig. 1. Example of a Scratch program with three scripts in the same spite
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mean min Q1 median Q3 max
Projects per username 2.3 1 1 1 2 868
Sprites pp 5.3 0 1 2 5 525
Scripts pp 16.2 0 2 4 11 3,038
Blocks pp 144.3 0 9 26 69 34,622
Custom block def. pp 0.6 0 0 0 0 372
Total views pp 5.8 0 1 1 4 27,993
Total remixes pp 0.1 0 0 0 0 306
Total favorites pp 0.5 0 0 0 0 2,582
Dr.Scratch mastery pp 8.9 0 6 8 11 21

TABLE II
SUMMARY STATISTICS OF THE DATASET (pp STANDS FOR PER PROJECT).

Projects 250,163
Non-empty projects 233,491
Projects analyzed by Dr. Scratch 231,050
Remixes of other projects 12,167
Usernames 109,960
Scripts 4,049,356
Blocks 36,085,654
Custom block definitions 204,018

TABLE III
DATASET CONTENTS

The coding elements in the Scratch environment are the
blocks, which can receive input parameters, like block ‘go
to x:0 y:0’ in the figure. Custom clock invocations are stored
in this table just like regular blocks. To cater for the varying
number of input parameters that those blocks can have, this
table can store up to the maximum number of input parameters
found in the dataset, which is 24. The ordering of the blocks
in the scripts can be retrieved using the block-rank field,
which represents a depth-first ranking of the blocks. In the
script of the ‘backflip’ custom block definition in the example,
the ranking of the blocks would be ‘define backflip’, ‘set
counter to’, ‘+’, ‘counter’, followed by the rest of the blocks.
The clocks can be of different shapes and categories. In table
blockTypes we have stored the encoding of all types of
Scratch blocks and of the blocks from Scratch extensions.

B. Dataset Contents

As shown in Table III, the dataset contains the metadata of
250,163 Scratch projects, and the code of 233,491 of those that
are non-empty. The projects were created by 109,960 different
users. Most of the users, as shown in Table II, have created a
single project. However, 40,000 users have created more than
one and up to 868 projects in the dataset.

The majority of the projects have been viewed only once,
and they have not been favorited or remixed. Around 10,000 of
the total projects have been remixed at least once, while there
are cases of very popular projects with more than 100 remixes
and even one thousand cases with more than 100 views.

Table II also reveals the median project in the dataset:
it contains 2 sprites, 4 scripts, 26 blocks, no custom block
definitions, and receives a mastery score of 8 our of 21, which
is considered a medium level of computational thinking skills
development. The table highlights the existence of surprisingly
complex projects, with 525 sprites and over 34,000 blocks.

IV. ENABLED RESEARCH AND DATASET EXTENSION

The evaluation of block-based languages in general, and
Scratch in particular, as tools for programming education is
receiving significant research attention. A number of studies
have been carried out during the last years on understanding
the programming practices of learners in those environments,
on the programming skills they develop, and on the quality of
their programs.

The first research direction that this dataset can be utilized
for concerns the assessment of the programming skills that
novice programmers develop in the Scratch environment. The
dataset can be used for examining indications of learning of
programming concepts and abstractions, as in [10]. Existing
works in this research direction include the work by Maloney
et al. [4], who analyzed 536 Scratch projects created in an
after-school clubhouse for blocks that relate to programming
concepts and found that within the least utilized ones are
Boolean operators and variables. Another study on the in-
ternalization of programming concepts with Scratch with 46
students was presented in [2], where it was found that students
had problems with initialization, variables and concurrency.

Towards this research direction, the dataset makes the source
code of the Scratch programs available for static analysis and
can be used for quantitatively evaluating the application of
programming concepts and abstractions through the presence
of Scratch blocks of the corresponding types.

Another promising research direction relates to the quality
of the programming artifacts developed in the Scratch envi-
ronment. The dataset has already been used for quality assess-
ment, for the identification of programming smells [10], and
for exploring indications of harmful programming habits [13].
Existing works in this direction include a study in a classroom
setting [9], which highlighted two bad programming habits in
Scratch, namely bottom-up development and extremely fine-
grained programming. The authors connected the later to the
reduced use of if-blocks and finite loops and the increased
use of infinite loops. Related to smell detection are the Scratch
automated quality analysis tools Hairball [11], a static analysis
tool that can detect initialization problems and unmatched
broadcast and receive blocks, and Dr. Scratch [14], which
extends Hairball to detect two bad programming habits: not
changing the default object names and duplicating scripts.

This dataset will enable examining code quality and code
smells on a large set of Scratch projects. Static analysis of
the source code can also be performed for the identification
of other types of smells [15] that might be common in the
artifacts of novice programmers.

Moving from the software engineering to the computing
education research field, a research direction with increased
data requirements concerns the learning progressions of novice
programmers. This includes examining the factors that support
learning and improving their programming skills. Existing
works in this area have used the dataset of the previous version
of Scratch programs, created until 2012, and described in the
Introduction. They include the works of Dasgupta et al., who
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investigated how project remixing relates to the adoption of
new computational thinking concepts [8], and Yang et al., who
examined the learning patterns of programmers in terms of
block use over their first 50 projects [7].

Research towards this direction requires extending the
dataset with the complete set of projects for the included users,
along with their creation dates. This would enable examining
how their programming skills and mastery evolved through
time, possibly through remixing the projects of others. An even
richer extension of the dataset would be with periodical snap-
shots of the included projects that are still in development. This
would enable reconstructing project versioning information,
not available from the Scratch interface, and thus examining
how the projects are developed and evolve over time.

Apart from quantitative studies, the dataset can support the
design of experiments and field studies, whose material often
includes Scratch programs with specific characteristics. For
example, in [16] examples of Scratch programs exhibiting spe-
cific smells were used in a controlled experiment to determine
how the smells affect the understanding and the modification
of the programs. This queryable dataset can support finding
example programs with characteristics according to the exper-
iment design and the field of the study.

V. LIMITATIONS

The only information about the authors of the Scratch
projects contained in the dataset is their username. This
suffices for creating project portfolios of the authors and for
facilitating research in the directions described in the previous
section. However, other directions in the computing education
research field require richer author data, and especially data
on their gender and age. There are, for example, indications
that specific programming concepts are better understood
after certain ages —Seiter and Foreman [17] analyzed 150
Scratch projects from primary school students and found that
design patterns requiring the understanding of parallelism,
conditionals and, especially, variables were under-represented
by all grades apart from 5 an 6. The effect of gender and
account age were also examined in [6] in relation to the use of
programming concepts. However, this dataset does not include
information on the gender and the age of authors and cannot
be extended to do so using the current Scratch web interface
because this information is not available in the user profile
page7, even though it is provided by users upon registration.

Another limitation of this dataset is that we did not scrape
a random sample of Scratch projects, but the most recent ones
during the time that we run the scraper. It could be the case
that the programming habits of Scratch users are changing
over time. However, we counterbalanced that by collecting a
large dataset which comprises around 1.3% of all 19 million
shared Scratch projects, and is the most recent one to be made
available to the research community. Projects in the dataset are
the ones that their authors shared publicly when the scraper
run. The dataset contains cases of projects that are no longer
publicly shared and are thus no longer accessible through the
Scratch web interface.

VI. CONCLUSION

We presented a dataset of recent Scratch programs scraped
from the Scratch project repository. It is made available as
a database3 which includes the source code of the Scratch
projects, their metadata, and their programming mastery scor-
ing results. The dataset can facilitate research in software
engineering and computing education, for topics like the
assessment of the programming skills that novice programmers
develop, the exploration of their learning progressions, and
issues related to the quality of the programs, such as the
identification of smells and bad programming habits.
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