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Abstract

This thesis investigates two types of classical capacities of both classical and quantum channels,
giving rise to four different settings. The first type of classical capacity investigated is the ordinary
capacity of a channel to transmit classical information with a probability of error which becomes
arbitrarily small as the channel is used arbitrarily many times. The second type of classical capac-
ity investigated is the capacity of a channel to transmit information with zero probability of error,
called the zero-error classical capacity. The first setting which is studied is the ordinary capacity of a
classical channel. The noisy channel coding theorem is proven in two different ways: one using the
Markov inequality and the Law of Large Numbers and one using typical sets. The additivity of this
capacity is also discussed. The second setting is the zero-error capacity of a classical channel. Lower
and upper bounds on this capacity are proven, and its superadditivity is discussed. The third setting
is the ordinary classical capacity of a quantum channel. The Holevo-Schumacher-Westmoreland
theorem is proven using typical subspaces and the packing lemma, and the superadditivity of the
Holevo information is discussed in terms of entanglement at the encoder. The fourth and last set-
ting investigated is that of the zero-error classical capacity of a quantum channel. It is shown that
this capacity can be achieved using only pure input states and that this capacity never exceeds the
ordinary classical capacity. Moreover, a detailed investigation of superactivation of the zero-error
classical capacity is presented. A topic for further research would be an exposition of the analo-
gous concepts in the case of the quantum capacity of quantum channels. Another topic for further
research would be an explicit construction of two quantum channels whose zero-error classical ca-
pacity is superactivated.
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1
Introduction

Almost a century ago, the theory of quantum mechanics was invented by physicists such as Dirac,
Heisenberg, Schrödinger and others, and was then given a rigorous mathematical foundation, chiefly
by von Neumann. Quantum mechanics exhibits a plethora of counter-intuitive phenomena, one of
which is called entanglement, which was described by Einstein as "spooky action at a distance".

Today, quantum theory has found direct applications in modern technology. An important ex-
ample of such an application is quantum communication. The idea of quantum communication is
to transmit information over so-called quantum channels, rather than over classical channels. By
exploiting quantum phenomena such as entanglement, quantum communication has great advan-
tages over classical communication, such as unbreakable encryption of messages.

Communication, in the above sense, is simply the transmission of information over some kind of
channel. If every channel were perfectly reliable, then such transmission of information would pose
few problems. In reality, however, channels are almost never completely devoid of noise. The point
of communication theory, therefore, is to understand how one can reliably transmit information
over a noisy channel.

An important property of a channel in communication theory is its capacity. The capacity is,
generally speaking, the amount of information that can be reliably transmitted per use of the chan-
nel. The exact definition of the capacity, however, depends crucially on the type of information one
wishes to transmit, on whether one uses a classical or quantum channel and on what one calls re-
liable communication. Indeed, there are many different types of capacities that can be defined for
different channels. These can all serve as a measure of the performance of a channel.

Perhaps the most important distinction between different types of capacities is the one between
classical and quantum capacity: one can transmit both classical and quantum information over a
quantum channel. In this thesis we focus solely on the transmission of classical information and
therefore on classical capacities. Now, a pivotal point to understand is that classical information
over quantum channels can still make use of quantum phenomena. The classical information is
encoded into quantum states which are subsequently transmitted over the channel. The quantum
states are then decoded again into classical information. Overall, one thus transmits classical infor-
mation, but by encoding into quantum states and subsequently decoding into classical information
again, one can still exploit the features of the quantum world.

Although we only study classical capacities in this thesis, we do make two other distinctions.
First of all, we study classical capacities of both classical channels and quantum channels. In the
case of classical channels, one does not encode classical information into quantum states like with
quantum channels. Instead, one encodes classical messages into classical symbols, which are sub-
sequently transmitted over the channel. The classical output of the channel is then decoded again
into classical information.
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Secondly, we distinguish classical capacities by their measures of reliability. The first type of
reliability is one of an asymptotically vanishing probability of error. This means that we define the
classical capacity of a channel as the greatest amount of information one can transmit per channel
use with an arbitrarily small probability of error when one is allowed to use the channel arbitrarily
many times. In other words, the communication does not have to be perfect, but it must be such
that the probability of an error occurring approaches zero when the channel is used arbitrarily many
times. We call the capacity defined this way the ordinary classical capacity.

The second sense of reliability which we consider is more straightforward to define: we call
communication reliable if the probability of an error occurring is zero. That is, we do not even allow
a very small probability of error, but we require zero probability of error. This type of capacity is
called the zero-error classical capacity.

In short, we investigate four types of classical capacity in this thesis. These four types are char-
acterised by two parameters: whether we use classical or quantum channels and whether we allow a
very small error or require no error whatsoever. Each of these four capacities has its own properties,
of which we focus on two main ones. The first of these is simply the expression for the capacity of a
channel in terms of the properties of that channel. These expressions sometimes provide a precise
characterisation of the capacity, as is the case for the ordinary capacity of a classical channel. In
other cases, however, the best we can do is bound a particular capacity.

The second property of a capacity which we investigate is what happens when two channels are
used together. One might expect the capacity of two channels to simply be the sum of the individual
capacities, but it turns out that this is the case only for the ordinary capacity of a classical channel.
The other capacities exhibit a phenomenon called superadditivity, which is when two channels to-
gether have a greater capacity than the sum of their individual capacities. In the case of quantum
channels this phenomenon can be attributed to entanglement, but in the case of zero-error capac-
ities this is not ncessarily true, as can be seen from the fact that superadditivity even occurs for
zero-error communication over classical channels.

Since both the quantum and zero-error aspects of communication seem to trigger non-additivity
phenomena, it is natural to wonder if these two aspects combined give rise to an even more extreme
phenomenon. As was shown in [CCH11], this is the case. Indeed, the zero-error capacity of a quan-
tum channel exhibits a property called superactivation, which is when two channels individually
have no zero-error capacity, but their combined channel has strictly positive zero-error capacity.

Before we outline the structure of this thesis we remark that quantum information theory is a
field of physics that relies heavily on a wide range of mathematical concepts. The linear algebra of
vectors in and operators on Hilbert spaces always plays a paramount role in quantum mechanics,
but in this thesis we encounter a lot of probability theory and graph theory as well. We also mention
or sketch proofs which rely heavily on abstract algebra and even some algebraic geometry. More-
over, quantum information theoretic concepts can naturally be formulated in the theory of operator
algebras. We develop most notions along the way, but we do assume familiarity with linear algebra,
probability theory, basic graph theory and basic abstract algebra.

This thesis is divided into two parts: classical communication and quantum communication,
which respectively investigate classical channels and quantum channels. Each part is then again
subdivided into a chapter on the ordinary capacity and a chapter on the zero-error capacity. Part II
also contains a chapter which introduces the quantum mechanical notions of quantum information
theory.

Chapter 2 introduces the basic concepts of communication theory and presents a pivotal the-
orem in classical communication theory: the noisy channel coding theorem. This theorem gives
the ordinary capacity of a classical channel. We proof this theorem in two ways: using the Markov
inequality and the Law of Large numbers, and using the notion of a typical set. The first of these
proofs is simplest, but the second generalises to quantum channels.
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In chapter 3 we then treat the zero-error capacity of classical channels. We show that this ca-
pacity can be expressed in graph-theoretical language. This formulation in terms of graphs allows
us to prove several results on the zero-error capacity. We also consider the zero-error capacity of a
product of two channels and show that the capacity of the product channel can be greater than the
sum of the capacities of the individual channels. This is the first example of superadditivity.

Chapter 4 then presents the basic notions of quantum mechanics and of quantum information
theory in order to prepare us to investigate the classical capacities of quantum channels. It starts
with the postulates of quantum mechanics, then treats the theory of composite quantum systems
and entanglement, then introduces the quantum entropy and ends by introducing the trace dis-
tance between two quantum states, which is a measure of how close two quantum states are.

In chapter 5 we first generalise the concept of typicality from chapter 2 to the quantum setting,
and then state and prove the packing lemma. Quantum typicality and the packing lemma are then
subsequently used to prove the generalisation of the noisy channel coding theorem to the case of
quantum mechanics, which is called the Holevo-Schumacher-Westmoreland theorem and is one
of the main results of this thesis. It expresses the ordinary classical capacity of a quantum channel
in terms of a quantity called the Holevo information. We then end the chapter by discussing the
superadditivity of the Holevo information.

Chapter 6 generalises the ideas developed in chapter 3 to quantum channels, i.e. it investigates
the zero-error classical capacity of quantum channels. Like with the zero-error capacity of classical
channels, we express this capacity in graph-theoretical language, which allows us to prove that the
zero-error classical capacity of a quantum channel can be achieved using only pure input quantum
states. Lastly, we present the main idea of the proof which shows that two quantum channels can
individually have no zero-error classical capacity, but together can have positive zero-error classical
capacity. This phenomenon is called superactivation.

This thesis was written as part of the double bachelor’s degree in Applied Mathematics and Ap-
plied Physics at Delft University of Technology.
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2
Classical Shannon Theory

We begin our study of capacities of communication channels by introducing several ubiquitous
concepts of classical information theory which were invented by Claude Shannon. For this reason,
we use the term Shannon Theory. We feel obliged to remark, however, that Shannon also laid the
foundations for other topics in information theory. He is, however, most famous for the results
presented in this chapter, and his landmark paper [Sha48] remains his most cited paper by far.

The main result of this chapter is the noisy channel coding theorem. We first present a simple
proof of this theorem based on the Markov inequality and law of large numbers. In the section after,
however, we will introduce different tools for proving the direct part of the noisy channel coding
theorem, which can be more easily generalised to the case of quantum channels.

2.1. Noisy Channel Coding Theorem
In this section we introduce the fundamental notions communication theory: channels, codes,
rates, errors and capacities. We do this in the setting of the ordinary capacity of classical chan-
nels. We then present and prove the main theorem on the ordinary capacity of classical channels:
the noisy channel coding theorem.

2.1.1. Codes, Rates and Errors
We first define a coding scheme over a noisy channel. To this end, we follow [Wil19]. Our situation
is as follows: Alice wishes to send some messages to Bob, and she has a noisy channel N (we will
shortly characterise this channel) which she can use multiple times and independently for this.

There is a finite set M of possible messages that Alice could send to Bob. Bob also knows the con-
tents of this message set, i.e. he knows what messages Alice might send him. Moreover, there is
a finite alphabet set X , which consists of the symbols that Alice could put into the channel. Bob
knows what this alphabet looks like. The finite alphabet of possible outcomes of the channel that
Bob might receive is Y . The channel is represented by a conditional probability distribution pY |X ,
so for every letter x ∈ X that Alice might put into the channel, the probability for Bob to receive
a letter y ∈ Y is PY |X (y |x). This type of channel is called a discrete memoryless channel, because
its input is a discrete alphabet, and its output depends only on the current input. In the following
discussion we will always be considering a fixed channel pY |X (y |x). Alice sends a message to Bob
by encoding this message into symbols which can be put into the channel:

Definition 2.1. An encoder is a map E n that translates a message into a codeword:

E n :M→X n . (2.1)

5



2.1. Noisy Channel Coding Theorem 6

She uses the encoder to encode some message m ∈M and then exploits n uses of the channel
N in order to send the codeword xn(m) = E n(m) belonging to the message. Bob will receive some
sequence yn ∈Yn according to the conditional probability:

pY n |X n (yn |xn) = pY |X (y1|x1)...pY |X (yn |xn), (2.2)

where yn = (y1, ..., yn) and xn = (x1, ..., xn). Now Bob needs to determine what message Alice sent
him, so he uses a decoder:

Definition 2.2. A decoder is a map Dn that translates output sequences into messages:

Dn :Yn →M. (2.3)

We define the rate R of this above coding scheme (i.e. the message set, encoder and decoder) as:

Definition 2.3. The rate R of a coding scheme (M ,E n ,Dn) is defined as:

R = log(|M|)
n

. (2.4)

Where the logarithm is base 2, so that the rate is measured in bits per channel use. We now
define the probability of error for a coding scheme as:

Definition 2.4. The probability of error of a coding scheme is the maximum probability that a mes-
sage is incorrectly decoded:

pe = max
m∈M

Pr(Dn(N n(E n(m))) 6= m). (2.5)

Thus, the probability of error is simply the maximum probability (over all messages that Al-
ice might want to send) that Bob thinks that Alice sent a different message than she actually did.
Although the meaning of the above definition is clear, it is not very rigorous. Indeed, to make it
rigorous we note that the probability of error is just equal to:

pe = max
m∈M

(
1−∑

yn

pY n |X n (yn |E n(m))I{m}(Dn(yn))

)
, (2.6)

Where I{m} : M→ {0,1} is the indicator function that indicates whether a message is equal to m
(it maps m to 1 and any other message to 0). We say that a coding scheme (consisting of a set of
messages, and encoder and a decoder) is an (n,R,ε) code if it uses the channel n times, its rate is R
and its probability of error is smaller than or equal to ε.

2.1.2. Classical Entropy and Mutual Information
In order to understand the statement of the noisy channel coding theorem we have to understand
how to quantify ideas such as information content and uncertainty of a random variable. We start
with the following definition:

Definition 2.5. Suppose we have a random variable X , whose realisations belong to an alpahbet X ,
and whose probability density function we denote by pX (x). Then the information content i (x) of a
particular realisation x is:

i (x) =−log(pX (x)). (2.7)

Here the logarithm is base 2.
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The fact that we take the logarithm base 2 shows that we measure the information content in
units of bits, because a bit can take two values - 0 and 1. We can interpret the information content
as a measure of the surprise one has upon learning the outcome of an experiment [Wil19]. The in-
formation content is useful for characterising the information of a particular realisation of a random
variable, but it is not a useful characterisation of the information of the random variable in general.
That is why we define the entropy. It is the expected information content of a random variable:

Definition 2.6. The entropy of a discrete random variable X with probability distribution PX (x) is:

H(X ) =−∑
x

pX (x)log(pX (x)) (2.8)

It is important to remark that, in this definition, we take 0 · log(0) = 0. This can be interpreted as
not taking into account events which have no probability of occuring. We now list two important
properties of the entropy, as they are presented in section 10.1 of [Wil19].

Property 2.1. The entropy is non-negative for any discrete random variable X , i.e. H(X ) ≥ 0.

Property 2.2. The entropy is concave in the probability density pX , i.e. if we have two random
variables X1 and X2 on the same alphabet X , with distributions pX1 (x) and pX2 (x) respectively, then
for any λ ∈ [0,1] we have:

H(λX1 + (1−λ)X2) ≥ H(X1)+H(X2), (2.9)

where with λX1+ (1−λ)X2 we mean the random variable with distribution λpX1 (X )+ (1−λ)pX2 (x).

We now turn to another type of classical entropy, which will play a central role in our study of
typicality.

Definition 2.7. Let X and Y be discrete random variables with joint probability distribution given
by pX ,Y (x, y). The conditional entropy is the expected conditional information content with respect
to both X and Y [Wil19]:

H(X |Y ) = E(i (X |Y )) =−∑
x,y

pX ,Y (x, y)log(pX |Y (x|y)). (2.10)

Intuitively, it is immediately clear that the conditional entropy should be less than or equal to
the entropy. This is because having information about another random variable Y should only de-
crease our uncertainty about the random variable X . This intuition turns out to indeed be correct,
as proven in section 10.2 of [Wil19]:

Theorem 2.3. For any discrete random variables X and Y we have: H(X ) ≥ H(X |Y ).

We now turn to our last type of classical entropy: the joint entropy. The logic of its definition is
similar to that of the conditional entropy:

Definition 2.8. Let X and Y be discrete random variables with joint probability distribution given
by pX ,Y (x, y). Then the joint entropy is defined as:

H(X ,Y ) = E(i (X ,Y )) =−∑
x,y

pX ,Y (x, y)log(pX ,Y (x, y)). (2.11)

It can be verified by simply wirting out the definitions that the entropy, conditional entropy and
joint entropy satisfy the following relation:

Property 2.4. For discrete random variables X and Y we have:

H(X ,Y ) = H(X )+H(Y |X ) = H(Y )+H(X |Y ). (2.12)
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We now introduce a measure of the correlation between two random variables. This measure is
called the mutual information, and it is absolutely paramount in our study of the classical capac-
ity of a classical channel, because it will turn out that this capacity is actually equal to the mutual
information! Given two discrete random variables X and Y , the mutual information basically quan-
tifies how much knowing about one random variable reduces the uncertainty of the other random
variable [Wil19]:

Definition 2.9. Let X and Y be discrete random variables with joint probability distribution given by
pX ,Y (x, y). Then the mutual information of X and Y is the entropy minus the conditional entropy:

I (X ;Y ) = H(X )−H(X |Y ) = H(Y )−H(Y |X ). (2.13)

2.1.3. Statement of the Theorem
We now have sufficient background knowledge to state the main result of this chapter: the noisy
channel coding theorem. One can define the capacity of a channel as the supremum of all achiev-
able rates, and in that case the noisy channel coding theorem states that the capacity is equal to
the maximum mutual information. However, we take a slightly different approach and define the
capacity a priori as the maximum mutual information:

C (N ) = max
pX

I (X ;Y ) (2.14)

Here I (X ,Y ) is the mutual information between random variables X and Y . We have, however, not
specified the probability distribution of X . The idea is to randomly generate an encoder for Alice.
That is, we use a random variable X , which takes values in the input alphabet X of the channel and
which has a distribution pX , to generate some encoder. For every message m ∈ M we indepen-
dently generate n letters from X and we form a sequence xn from these. Thus, we have randomly
and independently generated a codeword xn(m) for every message m ∈ M. With these ideas in
mind we have the following definition for the capacity of a classical channel:

Definition 2.10. Let a classical channel N be represented by the conditional probability distribu-
tion pY |X (y |x) which gives the probability that the channel outputs the symbol y ∈Y given that the
input is x ∈ X . Moreover, let pX (x) be the probability distribution of a random variable X which
takes values in the input alphabet X . We then have a random variable Y whose distribution is
pY (y) =∑

x∈X pY |X (y |x)pX (x). We define the ordinary capacity of N as:

C (N ) = max
pX

I (X ;Y ). (2.15)

We note that we have taken the maximum over the probability distributions pX (x), and not the
supremum. This is because the mutual information is a concave function of the probability dis-
tribution, such that a maximum actually exists. More precisely, the probability distributions pX (x)
(represented as real functions on X which can be extended to function on 2X by additivity) form a
convex set in the real vector space of functions f :X →R. We then have that for a fixed channel the
mutual information I (X ;Y ) can be regarded as a function from this convex set to the real numbers,
because given a probability distribution pX (x) (and keeping the channel fixed) it simply gives the
real number:

I (X ;Y ) = ∑
x∈X

∑
y∈Y

pX ,Y (x, y)log

(
pX ,Y (x, y)

pX (x)pY (y)

)
, (2.16)

where we obtain the joint probability distribution pX ,Y (x, y) from pX (x) and pY |X (y |x) by pX ,Y (x, y) =
pX (x)pY |X (y |x). We can see that the mutual information is indeed a concave function on the con-
vex set of probability distributions onX by considering two such probability distributions p1(x) and
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p2(x) corresponding to random variables X1 and X2 respectively. Then for λ ∈ [0,1] we define the
convex combination p(x) = (λp1 + (1−λ)p2)(x) = λp1(x)+ (1−λ)p2(x). Let us denote the random
variable belonging to this new distribution by X . The mutual information is:

I (X ;Y ) = H(Y )−H(Y |X ). (2.17)

Remember from property 2.2 that the entropy is concave. Moreover, we can see that the condi-
tional entropy is linear in the probability distribution:

H(Y |X ) =−∑
x,y

pX ,Y (x, y)log(pY |X (y |x)) =−∑
x,y

pX (x)pY |X (y |x)log(pY |X (y |x))

=−∑
x,y

(λp1(x)+ (1−λ)p2(x))pY |X (y |x)log(pY |X (y |x)) = H(Y |X1)+H(Y |X2).
(2.18)

Thus, we see that the overall mutual information is concave in the probability distribution pX (x),
since the entropy H(Y ) is also concave in the probability distribution, as can be seen by writing out
pY (y) in terms of pY |X (y |X ) and pX (x). Now that we have defined the capacity of a classical channel
as the maximum mutual information we can state the noisy channel coding theorem.

Theorem 2.5. Let N be a noisy channel. Then for any rate R < C and for any ε ∈ (0,1), there exists
some n ∈ N such that there is an (n, R̃,ε) coding scheme for this channel, where R̃ ≥ R. Moreover,
for any R ≥ C there is some ε ∈ (0,1) such that there does not exist any n ∈ N such that there is an
(n, R̃,ε) coding scheme where R̃ > R.

The interpretation of the noisy channel coding theorem is as follows: any rate below the capacity
can be achieved (i.e. the probability of error can be made arbitrarily small by using the channel
many times), but there are no coding schemes with a rate greater than the capacity such that the
probability of error can be made arbitrarily small.

2.1.4. Proof of Direct Coding Part
The proof of the noisy channel coding theorem consists of two parts: the direct coding theorem and
the converse theorem. The direct coding theorem shows that rates up to the maximum mutual in-
formation are achievable with arbitrarily small error as long as the block length is big enough, which
we will now give a simple proof of, following [LF12].

Proof: we begin by again taking some finite set M to be the message set. We do not specify how
big it is yet: we will see at the end of the proof how big we should choose the message set in order to
achieve the desired rate. As explained above, we generate a random encoder. That is, for every mes-
sage m ∈M we generate a sequence of n symbols in the alphabet X , according to the distribution
pX (x). We denote such a sequence as xn(m), for every m ∈M. Again, Bob is aware of the particular
encoder that Alice has chosen to use.

Alice chooses some message m ∈M, and then she puts the codeword xn(m) into the noisy chan-
nel. The noisy channel will then output a sequence yn according to the distribution pY n |X n (yn |xn),
whereY is the ouput alphabet. Bob receives yn , and he compares the probabilities pY n |X n (yn |xn(m′))
for every codeword xn(m′). He chooses the codeword xn(m′) with maximum probability, breaking
ties arbitrarily. He will then say that Alice has sent him the message m′ which corresponds to xn(m′).

This encoding and decoding scheme could, however, go wrong. That is, Bob could think that Al-
ice has transmitted some message, whereas she actually sent a different message. So say Alice sent
message m by putting the codeword xn(m) into the channel, and Bob received sequence yn . Then
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for every m′ ∈M we denote the event that the probability of m′ is greater than or equal to that of m
by Em′ . That is, Em′ is the event that:

pY n |X n (yn |xn(m′) ≥ pY n |X n (yn |xn(m)). (2.19)

We will now invoke the Markov inequality to bound the probability of this event occuring. The
Markov inquality states that for a non-negative random variable A and for t > 0:

Pr(A ≥ t ) ≤ E(A)

t
. (2.20)

The Markov inequality thus gives for the probability of the event Em′ occuring (where we use that
pY n |X n (yn |xn(m′) is a non-negative random variable with distribution pX n (xn):

Pr(Em′) = Pr
(
pY n |X n (yn |xn(m′) ≥ pY n |X n (yn |xn(m)

)≤ E(pY n |X n (yn |xn(m′))

pY n |X n (yn |xn(m))
. (2.21)

We observe that the expectation just results in the marginal distribution pY n (yn), so that the
above becomes:

Pr(Em′) ≤ pY n (yn)

pY n |X n (yn |xn(m))
. (2.22)

It is clear that the total probability of error is bounded by the probability of the union of all such
events Em′ for all m′ ∈M. This is because the union can be interpreted as the event that there exists
some message m 6= m′in M such that the probability of that message is larger than or equal to the
probability of m. Now, if the probability of m′ is actually equal to m, than there is a chance that Bob
will actually make the right choice. Thus, the union of all events Em′ for m′ ∈M is not necessarily
equal to the total probability of error, but it is a bound. That is:

Pr(E) ≤ Pr

( ⋃
m′ 6=m

Em′

)
. (2.23)

By the union bound, we then get:

Pr(E) ≤ ∑
m′ 6=m

Pr(Em′) ≤ ∑
m′ 6=m

pY n (yn)

pY n |X n (yn |xn(m))
= (|M|−1)

pY n (yn)

pY n |X n (yn |xn(m))
. (2.24)

We will now analyse the behaviour of:

pY n (yn)

pY n |X n (yn |xn(m))
(2.25)

for large n. We have:

pY n (yn)

pY n |X n (yn |xn(m))
=

n∏
i=1

pY (yi )

pY |X (yi |xi )
. (2.26)

Using this, the law of large numbers tells us that for every ε > 0 and δ > 0 there exists a n ∈N such
that:

Pr

(∣∣∣∣ 1

n
log

(
pY n (yn)

pY n |X n (yn |xn(m))

)
−E

(
log

(
pY (Y )

pY |X (Y |X )

))∣∣∣∣> ε)< δ, (2.27)
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where X ,Y are random variables such that pX ,Y (x, y) = pY |X (y |x)pX (x). But if we look at the
definition of the mutual information, then we see that:

− I (X ;Y ) = E
(
log

(
pY (Y )

pY |X (Y |X )

))
. (2.28)

Thus, what we really have just found is that for all ε,δ> 0 there exists some n ∈N such that:

Pr

(∣∣∣∣ 1

n
log

(
pY n (yn)

pY n |X n (yn |xn(m))

)
+ I (X ;Y )

∣∣∣∣> ε)< δ. (2.29)

But then it follows that for all ε,δ> 0 there exists some n ∈N such with probability at least 1−δ:

1

n
log

(
pY n (yn)

pY n |X n (yn |xn(m))

)
≤−I (X ;Y )+ε. (2.30)

We can rewrite this as:
pY n (yn)

pY n |X n (yn |xn(m))
≤ 2n(−I (X ;Y )+ε). (2.31)

Thus it follows that for every ε,δ> 0 there exists some n ∈N such that for the probability of error we
have:

Pr(E) ≤ (|M|−1)(δ+2n(−I (X ;Y )+ε)) ≤ |M|(δ+2n(−I (X ;Y )+ε)) . (2.32)

By recalling the definition of the rate R we immediately see that this can be written as:

Pr(E) ≤ δ+2n(−I (X ;Y )+ε+R). (2.33)

But this proves the direct coding theorem, because we see that for a rate R < I (X ;Y ) the probabil-
ity of error can be made arbitrarily small since ε and δ can be made arbitrarily small as they were
arbitrary.

2.1.5. Converse Part
Proving the converse part of the noisy channel coding theorem - that is, showing that coding schemes
with rates above the capacity can never have a vanishing probability of error - is quite simple: it re-
quires only one lemma: Fano’s inequality. We state and prove this result following [Wil19].

Lemma 2.6 (Fano’s Inequality). Suppose Alice sends a random variable X through a noisy channel
to produce random variable Y . The decoder then gives an estimate X̂ of X . Let pe = Pr(X̂ 6= X )
denote the probability of error. Then we have:

H(X |Y ) ≤ H(X |X̂ )+h2(pe )+pe log(|X |−1), (2.34)

where h2(pe ) is the binary entropy function h2(pe ) =−pe log(pe )− (1−pe )log(1−pe ).

Proof: let E be the indicator random variable that indicates whether an error occurs, i.e. E = 0
if X̂ = X and E = 1 if X̂ 6= X . By property 2.4 we have:

H(E , X |X̂ ) = H(X |X̂ )+H(E |X , X̂ ), (2.35)

but H(E |X , X̂ ) = 0 since we know E if we know both X and X̂ . Thus, we get:

H(E , X |X̂ ) = H(X |X̂ ). (2.36)
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Now we use another result called the data-processing inequality, which can easily be proven by
manipulating the definition of the mutual information. It simply states that post-processing cannot
increase the mutual information [Wil19], i.e.

I (X ;Y ) ≥ I (X ; X̂ ). (2.37)

But since I (X ;Y ) = H(X )−H(X |Y ) and I (X ; X̂ ) = H(X )−H(X |X̂ ) this implies:

H(X |X̂ ) ≥ H(X |Y ). (2.38)

The last result we need is the following:

H(E , X |X̂ ) = H(E |X̂ )+H(X |E , X̂ ) ≤ H(E)+H(X |E , X̂ )

= h2(pe )+pe H(X |X̂ ,E = 1)+ (1−pe )H(X |X̂ ,E = 0) ≤ h2(pe )+pe log(|X |−1).
(2.39)

Here the first inequality follows from theorem 2.3, the second equality follows by simply expanding
the two possible values E can take. The last inequality follows form two things: firstly, the fact
that H(X |X̂ ,E = 0) = 0 since we know X if we know X̂ and we know that there is no error. Secondly,
H(X |X̂ ,E = 1) is never greater than the entropy of the uniform distribution on the other possibilities
than X̂ , because the uniform distribution has the most uncertainty of all distributions. The amount
of other possibilities is of course equal to |X | − 1, and the entropy of that uniform distribution is
log(|X |−1). Putting equations (2.36), (2.38) and (2.39) together yields:

H(X |Y ) ≤ H(X |X̂ ) = H(E , X |X̂ ) ≤ h2(pe )+pe log(|X |−1), (2.40)

which is Fano’s inequality.

With Fano’s inequality in hand, we are ready to prove the converse part of the noisy channel coding
theorem. It is almost as simple as filling in Fano’s inequality above with the uniform choice of mes-
sage random variable M instead of X and the output codeword random variable Y n instead of Y .

Proof of Converse Part: we denote by M the uniform random variable corresponding to Alice’s
uniform message selection from the message set M. We then have:

log(M)−H(M |Y n) = H(M)−H(M |Y n) = H(Y n)−H(Y n |M)

=
n∑

i=1
H(Yi )−H(Yi |M) ≤

n∑
i=1

H(Yi )−H(Yi |Xi ) =
n∑

i=1
I (Xi ;Yi ) ≤ nC .

(2.41)

If we now use M and Y n in Fano’s inequality we get:

H(M |Y n) ≤ h2(pe )+pe log(|M|−1) ≤ 1+pe log(|M|−1), (2.42)

which implies, using the inequality above:

pe ≥ H(M |Y n)−1

log(|M|) ≥ log(|M|)−nC −1

log(|M|) = 1− nC

nR
− 1

nR
= 1− C

R
− 1

nR
, (2.43)

where we have used the definition of the rate R = log(|M|)
n . Thus, we see that in the limit where n

goes to infinity, the probability of error always remains positive if R > C . Thus, no rate above the
capacity is achievable.
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2.1.6. Product Channels
We end this section by considering what happens when we put two channels together. Thus, we
need to understand what putting two channels means exactly. To the end, we define the following:

Definition 2.11. Let N1 and N2 be two noisy channels with input alphabets X1 and X2 and output
alphabets Y1 and Y2 respectively. Let pY1|X1 (y1|x1) and pY2|X2 (y2|x2) be the conditional distribu-
tions of channels 1 and 2 respectively. Then the product channel N1 ⊗N2 is the channel with input
alphabet X1 ×X2, output alphabet Y1 ×Y2 and the following conditional distribution:

pY1×Y2|X1×X2 (y1, y2|x1, x2) = pY1|X1 (y1|x1) ·pY2|X2 (y2|x2). (2.44)

By writing it out, it can be seen that the mutual information of the product of two classical chan-
nels is equal to the sum of the individual mutual informations of the channels. Thus, it follows that
the ordinary capacity of the product of two channels is equal to the sum of the individual ordinary
capacities of the channels. This result is called the additivity of the ordinary capacity. It is quite a
unique property, because as we will see in later chapters, all other capacities that we consider in this
thesis are not additive. They can be superadditive, which means that the capacity of a product chan-
nel can be greater than the sum of the individual capacities. In section 6.2 we will even investigate
an extreme form of superadditivity called superactivation.

2.2. Typicality
We now investigate the notion of typicality; both in the classical and quantum case. The basic idea
of typicality is to define so-called typical sequences, which are sequences that are highly likely to
be generated when one randomly generates sequences like we did in the previous section. When
one wished to decode some sequence from a noisy channel, one can check whether this sequence is
typical to decide what message it must have come from. We will only discuss strong typicality, since
this is the type of typicality that will play a predominant role in our proof of the Holevo-Schumacher-
Westmoreland theorem in chapter 5.

A strongly typical subset consists of all sequences which are strongly typical. Now, the idea of a
strongly typical sequence is quite intuitive. If we have some random sequence xn of n symbols in an
alphabet X generated according to the probability distribution pX (x), then we count the number of
times each symbol appears in the sequence. We then say that the sequence is strongly typical if the
number of times a symbol occurs in the sequence is close to the number of times we would expect
it to occur according to the probability distribution pX (x).

2.2.1. The Strongly Typical Set
Let us make the above intuition precise, following [Wil19]. Given a sequence xn ∈ X n , we denote
by N (x|xn) the number of times the symbol x occurs in the sequence xn . If we divide this quantity
by n we get an empirical probability distribution 1

n N (x|X n). We then call a sequence δ-typical if
this empirical distribution deviates at most by δ from the probability distribution pX (x) (which was
used to randomly generate the sequence in the first place).

Definition 2.12. The δ-strongly typical set T X n

δ
is the set of all sequences xn ∈X n with an empirical

distribution 1
n N (x|xn) that has a maximum deviation δ from the true distribution pX (x). Further-

more, the empirical distribution 1
n N (x|xn) must vanish for any x ∈X for which pX (x) = 0:

T X n

δ =
{

xn ∈X n : ∀x ∈X :

∣∣∣∣ 1

n
N (x|xn)−pX (x)

∣∣∣∣≤ δ if pX (x) > 0, else
1

n
N (x|xn) = 0

}
. (2.45)

The strongly typical set has three properties which are absolutely paramount in our upcoming
proof of the Holevo-Schumacher-Westmoreland theorem. They are called Unit Probability, Expo-
nentially Smaller Cardinality and Equipartition respectively. We will first state these three properties
according to [Wil19] and then prove them.
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Property 2.7 (Unit Probability). The strongly typical set has unit probability in the limit where n
becomes arbitrarily large. That is: for all δ> 0 and ε ∈ (0,1) there exists some n ∈N such that:

Pr(X n ∈ T X n

δ ) ≥ 1−ε, (2.46)

where Pr(X n ∈ T X n

δ
) simply denotes the probability that a sequence randomly generated according

to pX (x) lies in fact in the strongly typical set.

Property 2.8 (Exponentially Smaller Cardinality). The cardinality |T X n

δ
| of the strongly δ-typical set

is exponentially smaller than the total number of sequences |X n |:

|T X n

δ | ≤ 2n(H(X )+cδ), (2.47)

where c is some positive constant and X is the random variable with distribution pX (x). Moreover,
we can bound the cardinality of the strongly δ-typical set from below: for all δ> 0 and ε ∈ (0,1) there
exists some n ∈N such that:

|T X n

δ | ≥ (1−ε)2n(H(X )−cδ). (2.48)

Property 2.9 (Equipartition). The probability of some δ-typical sequence xn occuring is approxi-
mately uniform. That is:

2−n(H(X )+cδ) ≤ pX n (xn) ≤ 2−n(H(X )−cδ). (2.49)

Now that we have stated the unit probability, exponentially smaller cardinality and equipartition
properties of the strongly typical set, we turn to proving them. To this end, we again follow [Wil19].

Proof of Unit Probability: this proof is based on the weak law of large numbers, so we start by recall-
ing it. Let Z1, ..., Zn denote independent, identically distributed random variables with expectation
µ. Then the sample average is:

Z̄ = 1

n

n∑
i=1

Zi (2.50)

The weak law of large numbers then states that for all ε ∈ (0,1) and δ> 0 there exists some N ∈N
such that for all n > N (where n ∈N) we have:

Pr(|Z̄ −µ| > δ) < ε. (2.51)

For our proof of the unit probability property we now consider indicator random variables. We
denote these by I (Xi = a). These are the random variables which are one when Xi takes the value
a, and 0 otherwise. It then is clear that the sample mean of a sequence of these indicator random
variables is equal to the empirical distribution random variable:

1

n

n∑
i=1

I (Xi = a) = 1

n
N (a|X n). (2.52)

Moreover, we make the following trivial observation:

EX (I (X = a)) = pX (a). (2.53)

Thus, we invoke the weak law of large numbers to obtain the following result: for all a ∈ X ,
ε ∈ (0,1) and δ> 0 there exists some Na ∈N such that for all n > Na :

Pr

(∣∣∣∣ 1

n
N (a|X n)−pX (a)

∣∣∣∣> δ)
< ε

|X | . (2.54)
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Now we choose N = max
a∈X

Na and we invoke the union bound to conclude that for all ε ∈ (0,1)

and δ> 0 there exists some N ∈N such that for all n > N we have:

Pr

(
for some a ∈X :

∣∣∣∣ 1

n
N (a|X n)−pX (a)

∣∣∣∣> δ)
≤ ∑

a∈X
Pr

(∣∣∣∣ 1

n
N (a|X n)−pX (a)

∣∣∣∣> δ)
< ∑

a∈X

ε

|X | = ε.
(2.55)

We can negate this and get that for all ε ∈ (0,1) and δ> 0 there exists some N ∈N such that for all
n > N :

Pr

(
for all a ∈X :

∣∣∣∣ 1

n
N (a|X n)−pX (a)

∣∣∣∣≤ δ)
≥ 1−ε. (2.56)

Now this is exactly our desired result, if we can show that when pX (a) = 0 we have:

Pr

(
1

n
N (a|X n) = 0

)
. (2.57)

But this is of course the case, because if pX (a) = 0 then the probability that the random variable X n

takes on the value of a sequence which contains the symbol a is 0, since X n is generated according
to the distribution pX (x).

Before we prove the exponentially smaller cardinality, we will first prove the equipartion property
because we will need it in the proof of the exponentially smaller cardinality. Again, we follow [Wil19].

Proof of Equipartition: we make the following observation for a strongly typical sequence xn :

pX n (xn) =
n∏

i=1
pX (xi ) = ∏

x∈X+
pX (x)N (x|xn ), (2.58)

where we have written xn = (x1, ..., xn) and where X+ is the set of all x ∈X for which pX (x) > 0. Note
that the above expression holds because xn is strongly typical and therefore none of its symbols
has probability zero of occurring (according to the distribution pX (x)). Taking the logarithm and
multiplying by −1

n yields:

−1

n
log(pX n (xn)) =− ∑

x∈X+

1

n
N (x|xn)log(pX (x)). (2.59)

Now because xn ∈ T X n

δ
we have by definition of the strongly typical set that for all x ∈X+:

−δ+pX (x) ≤ 1

n
N (x|xn) ≤ δ+pX (x). (2.60)

We now multiply these inequalities by −log(pX (X )) (which is of course positive since x ∈ X+ and
then we sum over all x ∈X+ such that we can use equation (2.59) to write this as:

− ∑
x∈X+

(−δ+pX (x))log(pX n (xn)) ≤ −1

n
log(pX (x)) ≤− ∑

x∈X+
(δ+pX (x))log(pX (x)). (2.61)

Thus, if we now define the positive constant c =−∑
x∈X+ log(pX (x)) and note that the entropy is

H(X ) =∑
x∈X+ pX (x)log(pX (x)) (because we took 0 · log(0) = 0 in definition 2.6), we get:

− cδ+H(X ) ≤ −1

n
log(pX n (xn)) ≤ cδ+H(X ). (2.62)
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Or, by multiplying by −n and exponentiating:

2−n(cδ+H(X )) ≤ pX n (xn) ≤ 2−n(−cδ+H(X )), (2.63)

which is exactly the result we were looking for.

Now that we have proven the equipartition property, it is very straightforward to prove exponen-
tially smaller cardinality.

Proof of Exponentially Smaller Cardinality: from the equipartition property we know that for
any xn ∈ T X n

δ
:

2−n(cδ+H(X )) ≤ pX n (xn) ≤ 2−n(−cδ+H(X )). (2.64)

Summing over all typical sequences then gives:∑
xn∈T X n

δ

2−n(cδ+H(X )) ≤ Pr(X n ∈ T X n

δ ) ≤ ∑
xn∈T X n

δ

2−n(−cδ+H(X )). (2.65)

We recall that X n denotes the random variable with distribution pX n (xn). Noting that H(X ) and c
do not depend on any specific sequence xn we can conclude:∣∣∣T X n

δ

∣∣∣2−n(cδ+H(X )) ≤ Pr(X n ∈ T X n

δ ) ≤
∣∣∣T X n

δ

∣∣∣2−n(−cδ+H(X )). (2.66)

But from the unit probability property we know that for any δ> 0 and ε> 0 there is some n ∈N
such that:

1−ε≤ Pr
(

X n ∈ T X n

δ

)
≤ 1, (2.67)

and thus we combine the above two results to conclude that for all δ > 0,ε > 0 there exists some
n ∈N such that: ∣∣∣T X n

δ

∣∣∣2−n(cδ+H(X )) ≤ 1,

1−ε≤
∣∣∣T X n

δ

∣∣∣2−n(−cδ+H(X )).
(2.68)

This can be rewritten as:

(1−ε)2n(−cδ+H(X )) ≤
∣∣∣T X n

δ

∣∣∣≤ 2n(cδ+H(X )), (2.69)

which is exactly the statement of the exponentially smaller cardinality propery, with:

c =− ∑
x∈X+

log(pX (x)), (2.70)

concluding the proof.

2.2.2. Strong Conditional Typicality
Now that we understand the strongly typical set, we consider the so-called conditionally typical set.
This concept is basically the same as the typical set, but we now use conditional probability dis-
tributions instead of marginal distributions. The conditionally typical set will play a major role in
our upcoming exposition of the Holevo-Schumacher-Westmoreland theorem in chapter 5, as well
as our second proof of the noisy channel coding theorem in the next section. The general ideas of
this section are mostly the same as in the previous section, but some of the proofs are a little more
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involved, and we will therefore again spell them out in detail. We will still be roughly following the
exposition from [Wil19].

In the previous section we used N (x|xn) to denote the number of times the symbol x ∈ X occurs
in the sequence xn ∈ X n . We now introduce a similar notation. Suppose we have sequences xn

and yn which consists of symbols from the alphabets X and Y respectively. Then we denote by
N (x, y |xn , yn) the number of times the symbol x appears in xn , while at the same time the sym-
bol y appears at the same position in the sequence yn . That is, if we write xn and yn together as
(x1, y1), ..., (xn , yn) then N (x, y |xn , yn) denotes the number of times the pair (x, y) appears in this
combined sequence. We call 1

n N (x, y |x , yn) the joint empirical distribution.

We will now be considering such combined sequences generated by a joint probability distribu-
tion pX ,Y (x, y) on X ×Y . This joint distribution can be factored as pX ,Y (x, y) = pY |X (y |x)pX (x).
A conditionally typical sequence yn conditioned on a strongly typical sequence xn will then be a
sequence in Yn which is such that its joint empirical distribution with xn is close to the product
pY |X (y |x) 1

n N (x|xn), where 1
n N (x|xn) is of course the marginal empirical distribution that we en-

countered in the previous section. Let us make this intuition precise:

Definition 2.13. Let pX ,Y be a joint probability distribution on the product X ×Y of alphabets X
and Y which can be factored as pX ,Y (x, y) = pY |X (y |x)pX (x), and let xn ∈ T X n

δ′ . Then the δ-strong

conditionally typical set T Y n |xn

δ
corresponding to xn is defined as:

T Y n |xn

δ
=

{
yn ∈Yn | ∀(x, y) ∈X ×Y :

{
N (x, y |xn , yn) = 0 if p(y |x) = 0∣∣N (x, y |xn , yn)−p(y |x)N (x|xn)

∣∣≤ nδ else

}
, (2.71)

where we used p(y |x) to denote pY |X (y |x).

The conditionally typical set has the same three properties as the typical set, which we now state.

Property 2.10 (Unit Probability). Given a strongly typical sequence xn ∈ T X n

δ′ the strong condition-
ally δ-typical set corresponding to xn has unit probability in the limit where n becomes arbitrarily
large. That is: for all δ> 0 and ε> 0 there exists some n ∈N such that:

Pr(Y n ∈ T Y n |xn

δ
) ≥ 1−ε, (2.72)

where Pr(Y n ∈ T Y n |xn

δ
) simply denotes the probability that a sequence randomly generated accord-

ing to pY (y) =∑
x∈X p(x, y) lies in fact in the conditionally typical set.

Property 2.11 (Exponentially Smaller Cardinality). The cardinality |T Y n |xn

δ
| of the conditionally δ-

typical set corresponding to a typical sequence xn is exponentially smaller than the total number of
sequences |Yn |:

|T Y n |xn

δ
| ≤ 2n(H(Y |X )+c(δ+δ′)), (2.73)

where c is a positive constant. Moreover, we can bound the cardinality of the conditionally δ-typical
set from below: for all δ> 0 and ε> 0 there exists some n ∈N such that:

|T Y n |xn

δ
| ≥ (1−ε)2n(H(Y |X )−c(δ+δ′)). (2.74)

Property 2.12 (Equipartition). Given a typical sequence xn , the probability of some δ-conditionally
typical sequence yn occuring is approximately uniform. That is:

2−n(H(Y |X )+c(δ+δ′)) ≤ pY n |X n (yn |xn) ≤ 2−n(H(Y |X )−c(δ+δ′)). (2.75)
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We will now proof the unit probability and equipartition properties. The exponentially smaller
cardinality follows from the equipartition property in exactly the same way as in the previous sec-
tion.

Proof of Unit Probability: we start by labelling the elements of the alphabet X as x1, ..., x|X |. We
can then write the strongly typical sequence xn ∈X n as:

L(xn) = x1 · · · x1︸ ︷︷ ︸
N (x1|xn )

x2 · · · x2︸ ︷︷ ︸
N (x2|xn )

· · ·x|X | · · · x|X |︸ ︷︷ ︸
N (xX |xn )

, (2.76)

which is called a lexicographic ordering [Wil19], represented by the lexicographic ordering map L :
X n → X n . Now, this lexicographic ordering map also induces a map on the conditionally typical
sequences T Y n |xn

δ
, simply by splitting a sequence yn into subsequences belonging to x1, x2, ..., x|X |.

Let us make this precise. Given some yn ∈ T Y n |xn

δ
we write:

yn = y1 · · · yn , xn = x1 · · · xn . (2.77)

As we saw before, when defining conditional typicality we think of these sequences together as a se-
quence of pairs (x1, y1)···(xn , yn). Thus, we can order the letters of yn according to the lexicographic
order of xn . So we write yn as the concatenation of subsequences of length N (x1|xn), ..., N (x|X ||xn).
Given some x ∈X we can then consider the typical subsequences y N (x|xn ) of length N (x|xn) whose

emperical distribution N (y |y N (x|xn ))
N (x|xn ) is δ-close to the true distribution pY |X=x (y). To denote these typ-

ical subsequences we introduce the following notation:

T (Y |X=x)N (x|xn )

δ
=

{
y N (x|xn ) ∈YN (x|xn ) | ∀ y ∈Y :

∣∣∣∣∣ N (y |y N (x|xn ))

N (x|xn)
−pY |X=x (y)

∣∣∣∣∣≤ δ
}

. (2.78)

We will denote by Li (yn) the subsequence of yn belonging to the i th letter xi for i = 1, ..., |X |.
Then we can formulate the following equivalent definition of a conditionally typical sequence yn ∈
T Y n |xn

δ
:

yn ∈ T Y n |xn

δ
⇐⇒ ∀ 1 ≤ i ≤ |X | : Li (yn) ∈ T (Y |X=xi )N (xi |xn )

δ
. (2.79)

But now we are done, since we can simply use the unit probability property for each typical set

T (Y |X=x)N (x|xn )

δ
to conclude that for every ε> 0 and δ> 0 there exists some n ∈N such that:

Pr
(

yn ∈ T Y n |xn

δ

)
=

|X |∏
i=1

Pr
(
Li (yn) ∈ T (Y |X=xi )N (xi |xn )

δ

)
≥ (1−ε)|X | ≥ 1−|X |ε≥ 1−ε, (2.80)

concluding the proof.

Proof of Equipartition: using the same argument as in the previous section we can write for some
yn ∈ T Y n |xn

δ
, with xn ∈ T X n

δ′ strongly typical:

pY n |X n (yn |xn) = ∏
(x,y)∈(X ,Y)+

pY |X (y |x)N (x,y |xn ,yn ), (2.81)

where (X ,Y)+ is the set of all (x, y) ∈X ×Y with p(y |x) > 0. Again taking the logarithm and multi-
plying by −1

n then gives:

−1

n
log

(
pY n |X n (yn |xn)

)=− ∑
(x,y)∈(X ,Y)+

1

n
N (x, y |xn , yn)log

(
pY |X (y |x)

)
. (2.82)
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Because xn is strongly δ′typical and yn is strong conditionally δ-typical we have:

∀ x ∈X+ : −δ′+pX (x) ≤ 1

n
N (x|xn) ≤ δ′+pX (x), (2.83)

∀ (x, y) ∈ (X ,Y)+ : −δ+pY |X (y |x)N (x|xn) ≤ 1

n
N (x, y |xn , yn) ≤ δ+pY |X (y |x)N (x|xn). (2.84)

We now perform the same steps as in the previous section. That is: we multiply equation (2.84) by
−log(pY |X (y |x)) and then sum over all (x, y) ∈ (X ×Y)+. If we then define:

c =− ∑
(x,y)∈(X ,Y)+

log(pY |X (y |x), (2.85)

which is positive, and combine with equation 2.83 we get:

− c(δ+δ′)+H(Y |X ) ≤ −1

n
log

(
pY n |X n (yn |xn)

)≤ c(δ+δ′)+H(Y |X ). (2.86)

Thus, multiplying by −n and exponentiating gives:

2−n(H(Y |X )+c(δ+δ′)) ≤ pY n |X n (yn |xn) ≤ 2−n(H(Y |X )−c(δ+δ′)), (2.87)

which is the desired result.

2.3. Proof of Direct Coding Theorem by Typicality
Now that we understand the definitions and properties of strongly typical and conditional strongly
typical sets, we put our knowledge to practice by providing an alternative proof of the direct part
of the noisy channel coding theorem. This proof is not simpler than the previous one, but it does
generalise to the case of classical communication through quantum channels. We follow [Wil19].

We have the same setup as before, i.e. Alice and Bob randomly generate codewords xn(m) for
every message m ∈M according to the distribution pX (x), and Alice then randomly selects a mes-
sage to send to Bob with uniform probability. However, the decoder is different this time. Instead
of choosing the message with the highest likelihood, Bob tests whether the sequence he receives
is in the strongly δ-typical set, for some fixed δ. If not, he reports an error. After that, Bob checks
whether his received sequence is in the conditionally δ-typical set for some codeword that Alice
could send. If there is a unique such message, Bob chooses that message. Otherwise, he reports
an error. This reporting of an error can be modelled by always choosing a fixed message from the
message set. Technically, this means that when Bob reports an error he could still have chosen the
correct message, but we will be able to bound the error sufficiently without even taking this into
account.

Thus, given that Alice sends the message m using codeword xn(m), there are three kinds of
errors that could occur: E1(m) denotes the event that when Alice puts in xn(m), Bob gets a sequence
yn which is not in the typical set T Y n

δ
, E2(m) denotes the event that yn ∈ T Y n

δ
, but yn ∉ T Y n |xn (m)

δ
,

and E3(m) denotes the event that yn ∈ T Y n

δ
, but there is another message m′ ∈M such that m′ ∈

T Y n |xn (m′)
δ

.
What we do now is to randomly generate a code (which consists of |M| codewords) according

to the distribution pX (x). We will then consider the expected average probability of error of such
a code, using the decoder described above. After we prove that the average probability of error
asymptotically vanishes, we show that this implies that we can find a code such that the maximum
probability of error also asymptotically vanishes. Let us denote the random variable correspond-
ing to the random code by C = (X n(1), ..., X n(|M|)), where every X n(i ) is a random variable with
distribution pX n (xn). Thus, the expectation of the average probability of error is:
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EC

(
1

|M|
∑

m∈M
Pr(E1(m)∪E2(m)∪E3(m))

)
. (2.88)

Here, given a code C and a fixed message m (making the codeword xn(m) fixed), the distribution
of the random variable on the sigma algebra Pr :σ ({E1(m),E2(m),E3(m)}) → [0,1] is simply induced
by the channel distribution pY n |X n (yn |xn). That is:

Pr(E1(m)) = ∑
yn∈Yn

pY n |X n (yn |xn(m))
(
1− IT Y n

δ
(yn)

)
,

Pr(E2(m)) = ∑
yn∈Yn

pY n |X n (yn |xn(m))IT Y n
δ

(yn)
(
1− I Y n |xn (m)

δ
(yn)

)
,

Pr(E3(m)) = ∑
yn∈Yn

pY n |X n (yn |xn(m))
∑

m′ 6=m
IT Y n

δ
(yn)I Y n |xn (m′)

δ
(yn),

(2.89)

where the IT Y n
δ

: Yn → {0,1} and I Y n |xn (m)
δ

: Yn → {0,1} are the indicator functions that indicate

whether a sequence is strongly typical or conditional strongly typical respectively. By linearity, we
can exchange the sum and expecation in equation (2.88), which gives:

1

|M|
∑

m∈M
EC (Pr(E1(m)∪E2(m)∪E3(m))) . (2.90)

Now, since the codewords for each message m ∈M are selected in exactly the same way - randomly
according to the distribution pX n (xn), we can just choose one fixed message, let’s say message 1,
and write the expected average error as:

EC (Pr(E1(1)∪E2(1)∪E3(1))) . (2.91)

The union bound then gives:

EC (Pr(E1(1)∪E2(1)∪E3(1))) ≤ EC (Pr(E1(1)))+EC (Pr(E2(1)))+EC (Pr(E3(1))) . (2.92)

Our strategy now becomes very simple: we bound every one of these three expectations of errors.
For the first type of error we have:

EC (Pr(E1(1))) = EX n (1) (Pr(E1(1))) (2.93)

= EX n (1)

( ∑
yn∈Yn

pY n |X n (yn |X n(1))
(
1− IT Y n

δ
(yn)

))
(2.94)

= 1−EX n (1)

( ∑
yn∈Yn

pY n |X n (yn |X n(1))IT Y n
δ

(yn)

)
(2.95)

= 1− ∑
xn∈X n

pX n (xn)
∑

yn∈Yn

pY n |X n (yn |xn)IT Y n
δ

(yn) (2.96)

= 1− ∑
yn∈Yn

pY n (yn)IT Y n
δ

(yn) = Pr
(
Y n ∉ T Y n

δ

)
. (2.97)

But the unit probability of the strongly typical set tells us that this last probability of a sequence not
being strongly typical can become arbitrarily small as n becomes arbitrarily large. Thus, we know
that for any ε> 0 there exists some n ∈N such that:

EC (Pr(E1(1))) ≤ ε. (2.98)
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Now that we have bounded the expected probability of the first type of error, we move on to the
second type. We have:

EC(Pr(E2(1)) = EX n (1)

( ∑
yn∈Yn

pY n |X n (yn |X n(1))IT Y n
δ

(yn)
(
1− I Y n |X n (1)

δ
(yn)

))

≤ EX n (1)

( ∑
yn∈Yn

pY n |X n (yn |X n(1))
(
1− I Y n |X n (1)

δ
(yn)

))
= EX n (1)

(
Pr(Y n ∉ T Y n |X n (1)

δ
)
)

.

(2.99)

This time, the unit probability of the conditional strongly typical set tells us that for all ε > 0 there
exists some n ∈N such that:

EX n (1)

(
Pr(Y n ∉ T Y n |X n (1)

δ
)
)
≤ EX n (1)(ε) = ε. (2.100)

Now the only type of error that is left for us to bound is the third type:

EC(Pr(E3(1))) = EC
( ∑

yn∈Yn

pY n |X n (yn |X n(1))
∑

m′ 6=1
IT Y n

δ
(yn)I Y n |X n (m′)

δ
(yn)

)
= ∑

yn∈Yn

∑
m′ 6=1

EC
(
pY n |X n (yn |X n(1))IT Y n

δ
(yn)I Y n |X n (m′)

δ
(yn)

)
= ∑

yn∈Yn

∑
m′ 6=1

EX n (1),X n (m′)

(
pY n |X n (yn |X n(1))IT Y n

δ
(yn)I Y n |X n (m′)

δ
(yn)

)
= ∑

yn∈Yn

∑
m′ 6=1

∑
xn (1)∈X n

pX n (xn(1))EX n (m′)

(
pY n |X n (yn |X n(1))IT Y n

δ
(yn)I Y n |X n (m′)

δ
(yn)

)
= ∑

yn∈Yn

∑
m′ 6=1

EX n (m′)

(
pY n (yn)IT Y n

δ
(yn)I Y n |X n (m′)

δ
(yn)

)
.

(2.101)

We now invoke the equipartition property of the strongly typical set, which tells us that for all yn ∈
Yn :

pY n (yn)IT Y n
δ

(yn) ≤ 2−n(H(Y )−δ). (2.102)

Thus, continuing our expression for the third type of error:

∑
yn∈Yn

∑
m′ 6=1

EX n (m′)

(
pY n (yn)IT Y n

δ
(yn)I Y n |X n (m′)

δ
(yn)

)
(2.103)

≤ ∑
yn∈Yn

∑
m′ 6=1

EX n (m′)

(
2−n(H(Y )−δ)I Y n |X n (m′)

δ
(yn)

)
(2.104)

= 2−n(H(Y )−δ)
∑

m′ 6=1
EX n (m′)

( ∑
yn∈Yn

I Y n |X n (m′)
δ

(yn)

)
(2.105)

= 2−n(H(Y )−δ)
∑

m′ 6=1
EX n (m′)

(
|T Y n |X n (m′)
δ

|
)

(2.106)

≤ 2−n(H(Y )−δ)2n(H(Y |X+δ))
∑

m′ 6=1
EX n (m′)(1) (2.107)

≤ |M|2−n(H(Y )−δ)2n(H(Y |X+δ)) = |M|2−n(I (X ;Y )−2δ). (2.108)

Choosing the message set size |M| ≤ 2n(I (X ;Y )−3δ) gives:

EC(Pr(E3(1))) ≤ 2−nδ. (2.109)
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Thus, putting the three bounds we have found together, we find that for each ε> 0,δ> 0 there exists
an n ∈N such that if we choose |M| ≤ 2n(I (X ;Y )−3δ), we have:

EC (Pr(E1(1)∪E2(1)∪E3(1))) ≤ 2ε+2−nδ. (2.110)

Since this is the expectation over all codes of the average probability of error, there definitely exists
one code whose average probability of error is bounded by ε′ = 2ε+2−nδ. Now all that is left for us to
do is to show that this actually implies the existence of a code whose maximum probability of error
can be made arbitrarily small. This step is called the expurgation step [Wil19]. We know that there
exists a code such that:

1

|M|
∑
m

pe (m) ≤ ε′, (2.111)

where pe (m) is the probability of error for message m. Now we consider pe : σ(M) → [0,1] as a
random variable, and use the Markov inequality:

Pr(pe ≥ 2ε′) = 1

|M| |{m ∈M : pe (m) ≥ 2ε′}| ≤ E(pe )

2ε′
≤ ε′

2ε′
= 1

2
. (2.112)

Thus, we see that:

|{m ∈M : pe (m) ≥ 2ε′}| ≤ |M|
2

. (2.113)

This means that at least half of the messages has a probability of error less than 2ε′. Thus, if we
simply only use half of the messages, all with probability of error less than 2ε′, then we have achieved
the desired result, because for this code the maximum probability of error is of course bounded by
2ε′. At the same time, the new rate R ′ has become:

R ′ = log( |M|
2 )

n
= R − 1

n
, (2.114)

which in the limit of large n approaches R.



3
Classical Zero-Error Communication

In the previous chapter we considered communication through noisy channels, such that the max-
imum probability of error becomes arbitrarily small as we use the channel arbitrarily many times.
We showed that the capacity of a noisy channel for this type of communication is equal to the mu-
tual information of the input and output random variables of the channel. We call this capacity
the ordinary capacity. However, there might be situations in which we want to communicate over a
noisy channel without any error at all. That is, not even the slightest probability of error is permit-
ted. This leads to the notion of a zero-error capacity - the highest rate at which one can transmit
information through a noisy channel without any probability of error. In the present chapter we
define and investigate this zero-error capacity. We see that it has a natural formulation in graph
theory, which we later generalise to the case of quantum channels in chapter 6.

3.1. Zero-Error Codes and Capacity
Like in the previous chapter, we will be working with a noisy channel modelled by a conditional
probability distribution pY |X (y |x) on the alphabets X and Y , such that we can use this channel
independently as many times as we wish. We now define our main object of study: the error-free
code [GdAM16].

Definition 3.1. An (M ,n) error-free code for a noisy channel N modelled by pY |X (y |x) consists of a
finite message set M= {1, ..., M }, an encoder E n : M→X n and a decoder Dn : Yn →M, such that
for all m ∈M :

Pr
(
E n(N (Dn(m))) 6= m

)= 0. (3.1)

Like in definition 2.4 we note that:

Pr
(
E n(N (Dn(m))) 6= m

)= 1− ∑
yn∈Yn

pY n |X n (yn |E n(m))Im(Dn(yn)), (3.2)

where Im is the indicator function on the set {m}.
For any error-free code (M,E n ,Dn) for a channel pY |X (y |x) there cannot be two codewords

xn(m) = E n(m) and xn(m′) = E n(m′) such that there exists some yn ∈Yn for which both probability
distributions pY n |X n (yn |xn(m)) and pY n |X n (yn |xn(m′)) are nonzero. Indeed, if this would be the
case, then if the ouput would be that particular sequence yn , there would be no way of being sure
what message it came from. This gives rise to the following paramount notion [GdAM16]:

Definition 3.2. Given a channel modelled by pY |X (y |x), two input symbols x, x ′ ∈X are called ad-
jacent (or indistinguishable) if there exists some y ∈ Y such that pY |X (y |x) > 0 and pY |X (y |x ′) > 0.
Otherwise, the symbols x and x ′ are called non-adjacent (or distinguishable).

23
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We can extend this definition to sequences xn and x̃n . These sequences are called indistinguish-
able if for all 1 ≤ i ≤ n their i th symbols are adjacent. Otherwise - i.e. if for some i the i th symbols
are non-adjacent - the sequences are called distinguishable. We are now in a position to define the
zero-error capacity as Shannon originally did [Sha56].

Definition 3.3. Given a noisy channel modelled by pY |X (y |x), we define N (n) to be the largest num-
ber of words xn ∈ X n such that no two of these words are adjacent. The zero-error capacity C0 of
the channel then is:

C0 = sup
n∈N

log(N (n))

n
. (3.3)

Intuitively, we can think of the definition as follows: N (n) corresponds to the maximum number

of messages we can send without error by using the channel n times, so log(N (n))
n is the highest rate

at which we can send information when using the channel n times. The capacity is then simply the
supremum over these rates, very much like in the definition of the ordinary capacity.

Before we translate the above notions into graph theoretical language, we provide another defi-
nition and result that help us better understand the zero-error capacity:

Definition 3.4. A map f : X → X is called adjacency-reducing if for any x, x ′ ∈ X which are non-
adjacent we have that f (x) and f (x ′) are non-adjacent.

An adjacency-reducing mapping can never increase the number of adjacent letters, but it can
reduce them. This leads to the following theorem [GdAM16]:

Theorem 3.1. Let pY |X (y |x) be a noisy channel. If there exists an adjacency-reducing map f : X →
X ′ such that any two symbols in X ′ are non-adjacent, then C0 = log(|X ′|).

Proof: suppose that such a map f : X → X ′ exists. Since all symbols in X ′ are non-adjacent,

there exist at least |X ′|n distinguishable sequences. Thus, C0 is at least log(|X ′|n )
n = log(|X ′|). How-

ever, to any set of distinguishable codewords {xn(m)}m∈M for message set M we can apply the map
f to each letter in each codeword individually. Since f is adjacency-reducing, this again yields a set
of distinguishable codewords. But all these new codewords are in X ′n , so there can never be more

than |X ′|n . That is, the rate of the code cannot exceed log(|X ′|n )
n = log(|X ′|).

Let us now finish this section by considering a seemingly simple, but actually very profound ex-
ample.

Example 3.1. The pentagon channel G5 is a channel with an input and output alphabet consisting
of five symbols, which we will simply call 0,1,2,3 and 4. It is represented by the following diagram:

Figure 3.1: The Pentagon channel G5. An arrow from one symbol to another represents a nonzero probability of the
channel outputting the second symbol when the first is the input.
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We see that the maximum cardinality of a set of distinguishable symbols is 2 (for example {0,2}).
Thus, using codewords of length 1 would give a maximum rate of log(2) = 1. Using codewords of
length 2, however, we might for instance take the set {00,12,24,31,43}. This set contains only mu-
tually distinguishable codewords, so the maximum rate then becomes 1

2 log(5). The reason that the
pentagon channel is so interesting is that Shannon was originally able (in [Sha56]) to easily find all
capacities of channels with up to five input symbols using theorem 3.1, except for this one. It then
remained an open problem to find the zero-errro capacity of the pentagon channel for 20 years
[GdAM16], until Lóvasz showed that the lower bound of 1

2 log(5) was tight in [Lov79]. This shows
that the calculation of the zero-error capacity of even very simple channels can be highly nontrivial.
In the next section we will see why the pentagon channel is called the pentagon channel.

3.2. Zero-Error Capacity and Graph Theory
We now reformulate the notions of the previous section in terms of graph theory. This will allow us
to prove upper and lower bounds for the zero-error capacity of a noisy channel.

3.2.1. Characteristic Graphs
Associated to every noisy channel pY |X (y |x) there is a characteristic graph, which, as we will see,
contains all information necessary to define the zero-error capacity of that channel [GdAM16]. Let
us first provide a proper definition:

Definition 3.5. Given a noisy channel pY |X (y |X ) with input symbol set X , the characteristic graph
G is the undirected graph with as its vertices the input symbols X and edges between the pairs of
input symbols which are distinguishable.

Let us now again consider the pentagon channel.

Example 3.2. The characteristic graph of the pentagon channel G5 is a pentagon, hence the name:

Figure 3.2: The characteristic graph of the pentagon channel.

In order to characterise the zero-error capacity of a channel in terms of its characteristic graph,
we make use of the following notion:

Definition 3.6. Let G be an undirected graph. Then a clique in G is a subset of the vertices V (G)
such that the induced subgraph is complete. That is, the induced subgraph is such that between
every two vertices there is a unique edge.

A clique in a characteristic graph corresponds to a set of mutually distinguishable input symbols
- i.e. an error-free code using codewords of length one. We now define the clique number ω(G) to
be the maximal order of a clique in G . It then follows that for a channel with characteristic graph G
we have N (1) =ω(G). In order to define the zero-error capacity in terms of the characteristic graph,
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however, we need to incorporate input sequences of any length. Thus, we introduce the n-product
of a graph [GdAM16]:

Definition 3.7. Given a characteristic graph G with vertices X we define the n-product Gn of G to
be the graph with vertices X n and an edge between all vertices xn , x̃n for which there exists some
1 ≤ i ≤ n such that there is an edge in G between xi and x̃i .

Intuitively, Gn is the graph whose vertices are all input sequences xn and which contains an edge
between two such input sequences if they are distinguishable. Thus, we see that N (n) =ω(Gn) and
we get the following characterisation of the zero-error capacity of a channel whose characteristic
graph is G :

C0 = sup
n∈N

log(ω(Gn))

n
. (3.4)

In graph theory this value is called the Shannon capacity of the graph G [GdAM16]. We will now
show that we can also formulate theorem 3.1 in terms of the characteristic graph. To this end, we
introduce the notion of a coloring:

Definition 3.8. A colouring of a characteristic graph G is a map f : V (G) → K from the set of vertices
of the graph to some set of colours K such that for any adjacent x, x ′ ∈V (G) we have f (x) 6= f (x ′).

In other words: a colouring is a designation of a color to every vertex in the graph such that
adjacent vertices are not assigned the same colour. This leads to the following:

Definition 3.9. The chromatic number of a characteristic graph G , denoted χ(G), is the smallest
cardinality a colour set K can have such that there exists a colouring f : V (G) → K .

. We are now in a position to formulate theorem 3.1 in terms of the maximal clique number and
chromatic number [GdAM16]:

Theorem 3.2. Let N be a noisy channel with characteristic graph G . If ω(G) = χ(G), then C0 =
log(χ(G)).

Proof: suppose ω(G) = χ(G). Take X ′ to be the set of vertices of a maximal clique of G , and let
f : V (G) → K be the minimal colouring of G which has |K | = χ(G) = ω(G) = |X ′|. Since all vertices
in X ′ are distinguishable they must all bear a different colour. But χ(G) = ω(G), so the vertices of
G which are outside the maximal clique all have a colour in f (X ′) = K . Define f̃ : V (G) → X ′ to
be the map that takes a vertex to the unique element in X ′ that bears the same colour. Then f̃ is
adjacency-reducing since it is induced by the colouring f . But we also know that any two symbols
in X ′ are distinguishable, so f̃ satisfies the properties of theorem 3.1, and we conclude that C0 =
log(|X ′|) = log(χ(G)).

3.2.2. Adjacency Graphs
Now that we have worked with the characteristic graph of a noisy channel we will introduce the
complementary graph of the characteristic graph, called the adjacency graph [GdAM16]. First, how-
ever, we define the adjacency matrix, originally introduced by Shannon [Sha56].

Definition 3.10. For a noisy channel pY |X (y |x) with input alphabet X = {x1, ..., x|X |} we define the
adjacency matrix to be the |X |×|X | matrix A whose entries ai j are 1 if xi and x j are adjacent or i = j
and zero else.

This then gives rise to the adjacency graph:

Definition 3.11. Given a noisy channel pY |X (y |x) with input alphabet X we define the adjacency
graph to be the graph with vertex set X and an edges between adjacent vertices.
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Figure 3.3: The adjacency graph of the pentagon channel.

Example 3.3. The adjacency graph of the pentagon channel G5 is again a pentagon, but this time
with the symbols in increasing order in the clockwise direction.

We are now finally in a position to state and prove the following theorem by Shannon [Sha56]:

Theorem 3.3. Let N be a noisy channel with adjacency matrix A = [ai j ], with input alphabet X =
{x1, ..., x|X |} and output alphabet Y = {y1, ..., y|Y |}. Then the zero-error capacity C0 of this channel
satisfies:

− log

(
min
pX (x)

∑
1≤i , j≤|X |

ai j pX (xi )pX (x j )

)
≤C0 ≤ min

pY |X (y |x)
C , (3.5)

where pX (x) is any probability distribution on X , pY |X (y |x) is any conditional probability distribu-
tion on X and Y such that its adjacency matrix is A and C is the ordinary capacity of that channel
pY |X (y |x).

Proof: the upper bound follows immediately from the observation that the ordinary capacity
of a noisy channel is always greater than or equal to the zero-error capacity, since a code which
achieves the ordinary capacity need only have a probability of error which can be made arbitrarily
small by using the channel many times, whereas a code which achieves the zero-error capacity must
always have zero probability of error. Thus, every error-free code is also a code whose probability of
error vanishes in the asymptotic limit, which means that for a specific channel the zero-error capac-
ity cannot achieve the ordinary capacity. However, in the upper bound we minimise over all chan-
nels with the same adjacency matrix. It immediately follows that this minimal ordinary capacity is
still greater than the zero-error capacity by observing that two channels with the same adjacency
matrix have equal zero-error capacities. Moreover, analogously to our argument in equation 2.18, it
can be seen that the mutual information and thus the ordinary capacity is convex in the conditional
probability distribution pY |X (y |x), which means we can actually consider the minimum ordinary
capacity instead of the infimum [Sha56].

In order to prove the lower bound we follow Shannon’s original argument [Sha56]. We again
generate a random code of M independent codewords each of length n according to the probabil-
ity distribution pX (x) on X , as we have done in the previous chapter. For any two codewords, the
probability of their letters at a certain position being adjacent is given by

∑
i j

ai j pX (xi )pX (x j ), be-
cause the adjacency matrix is simply 1 when two symbols are adjacent and 0 otherwise. Thus, the
probability that two randomly generated codewords are indistinguishable (i.e. all their letters are
adjacent) is: (∑

i j

ai j pX (xi )pX (x j )

)n

. (3.6)
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Thus, given that we have generated a codeword, the probability that all other codewords in the code
are distinguishable from it is:(

1−
(∑

i j

ai j pX (xi )pX (x j )

)n)M−1

≥ 1− (M −1)

(∑
i j

ai j pX (xi )pX (x j )

)n

≥ 1−M

(∑
i j

ai j pX (xi )pX (x j )

)n

.

(3.7)

Now, for any ε ∈ (0,1) we can take M such that:

(1−ε)n

(∑
i j

ai j pX (xi )pX (x j )

)−n

≤ M ≤
(∑

i j

ai j pX (xi )pX (x j )

)−n

. (3.8)

Choosing this ε arbitrarily small then makes the rate R = log(M)
n , for which we have:

− (1−ε)log

(∑
i j

ai j pX (xi )pX (x j )

)
≤ R ≤−log

(∑
i j

ai j pX (xi )pX (x j )

)
, (3.9)

arbitraily close to −log
(∑

i j
ai j pX (xi )pX (x j )

)
. Furthermore, for any δ> 0 we can choose some n ∈N

such that:

(1−ε)n = M

(∑
i j

ai j pX (xi )pX (x j )

)n

< δ. (3.10)

But this implies that for any codeword the probability of some other codeword being adjacent to it
is less than δ. This again implies that for any δ > 0 there exists a code with rate arbitrarily close to

−log
(∑

i j
ai j pX (xi )pX (x j )

)
whose codewords are length n ∈N such that the fraction of ’undesired’

codewords (i.e. codewords which are adjacent to another codeword) to the total number of code-
words is less than δ. But if we then omit these undesired codewords the new rate of the error-free
code becomes:

R ′ = log((1−δ)M)

n
= log(1−δ)

n
+R. (3.11)

Thus, we conclude that for every ε,δ > 0 we can choose some n ∈ N such that there is a zero-error
code with whose rate R satisfies:

− (1−ε)log

(∑
i j

ai j pX (xi )pX (x j )

)
+ log(1−δ)

n
≤ R ≤ log(1−δ)

n
+−log

(∑
i j

ai j pX (xi )pX (x j )

)
. (3.12)

By making ε and δ arbitrarily small we find the lower bound of the theorem.

3.3. Product Channels
If we have two noisy channels, we might use them together to transmit information and wonder
what the capacity of this resulting channel is. In this section we will first consider Shannon’s results
and thoughts on this matter, and then we will prove that the zero-error capacity of such a combined
channel can actually be greater than the sum of the zero-error capacities of the individual channels
- contrary to what Shannon originally conjectured.

3.3.1. Shannon’s Results and Conjecture
In order to understand the above ideas we first recall the definition of the product of two classical
channels (definition 2.11):
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Definition 3.12. Let N1 and N2 be two noisy with input alphabets X1 and X2 and output alpha-
bets Y1 and Y2 respectively. Let pY1|X1 (y1|x1) and pY2|X2 (y2|x2) be the conditional distributions of
channels 1 and 2 respectively. Then the product channel N1⊗N2 is the channel with input alphabet
X1 ×X2, output alphabet Y1 ×Y2 and the following conditional distribution:

pY1×Y2|X1×X2 (y1, y2|x1, x2) = pY1|X1 (y1|x1) ·pY2|X2 (y2|x2). (3.13)

The following result is due to Shannon [Sha56]:

Theorem 3.4. Let (X1,Y1, pY1|X1 (y1|x1)) and (X2,Y1, pY2|X2 (y2|x2)) be two channels with zero-error
capacities C 1

0 and C 2
0 respectively. Let C0 denote the zero-error capacity of their product. Then:

C0 ≥C 1
0 +C 2

0 . (3.14)

Moreover, the above inequality becomes an equality if the input alphabet of at least one of the chan-
nels can be mapped by an adjacency-reducing mapping to a subset of the alphabet such that no two
symbols in this subset are adjacent.

Proof: suppose we have two error-free codes for each of the two channels, with message set
sizes M1 and M2 and codeword lengths n1 and n2 respectively. We construct a so-called product
code for the product channel. This product code looks as follows: we take codewords of length
lcm(n1,n2), where lcm means least common multiple. These codewords consist of lcm(n1,n2) or-
dered pairs in X1 ×X2 such that the first entries of these pairs are the concatenation of lcm(n1,n2)

n1

codewords from the first code, and the second entries are the concatenation of lcm(n1,n2)
n2

codewords
from the second code. This way, we obtain an error-free code for the product channel with the
following rate R:

R =
log

(
M

lcm(n1,n2)
n1

1 M
lcm(n1,n2)

n2
2

)
lcm(n1,n2)

=
lcm(n1,n2)

n1
log(M1)+ lcm(n1,n2)

n2
log(M2)

lcm(n1,n2)

= log(M1)

n1
+ log(M2)

M2
= R1 +R2.

(3.15)

From the construction of this product code whose rate is the sum of the rates of the individual
codes it follows that the zero-error capacity of the product channel must at least be the sum of
the individual zero-error capacities. We will now prove the second part of the theorem. Suppose,
without loss of generality, that there exists an adjacency-reducing mapping f : X1 → X ′

1 from the
alphabet of the first channel to a distinguishable subset of that alphabet. Suppose we have some
error-free code for the product channel which has M codewords of length n. Since each of these
codewords consists of n ordered pairs in X1 ×X2 we can map the first entries of these pairs to X ′

1
using f . Since f is adjacency-reducing this again gives an error-free code with M codewords of
length n. However, this new code can have at most |X ′

1|n · 2nC 2
0 codewords, since there are only

a maximum of |X ′
1| and 2nC 2

0 different symbols for the first and second entries respectively. From
theorem 3.1 we know C 1

0 = log(|X ′
1|), so we see that the rate of the code for the product channel is no

greater than:
log(|X ′

1|n ·2nC 2
0 )

n
= log(|X ′

1|)+C 2
0 =C 1

0 +C 2
0 . (3.16)

Combining this with the above result that the zero-error capacity of the product channel can never
be less than the sum of the individual zero-error capacities we obtain the statement from the theo-
rem.
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3.3.2. Superadditivity of Zero-Error Capacity
We have now seen that the zero-error capacities of the product of two classical channels is at least
the sum of the individual zero-error capacities. We have, however, not shown that there exists chan-
nels for which the product zero-error capacity is strictly greater than the sum of the individual ca-
pacities. The following theorem was proven in [Alo98]:

Theorem 3.5. There exists a graph G with 27 vertices so that C 0(G) ≤ 7,C 0(Ḡ) = 3, whereas C 0(G +
Ḡ) ≥ 2

p
27.

Here Ḡ denotes the complement of G , and G + Ḡ is the union of G and Ḡ . This union is the
adjacency graph of the product of channels whose adjacency graphs are G and Ḡ [GdAM16]. Thus,
this theorem shows that the zero-error capacity of a classical channel can be superadditive, contrary
to the ordinary capacity of a classical channel.
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4
Notions of Quantum Information Theory

In this chapter we introduce the basic concepts of quantum information theory. We present the
fundamental definitions and theorems which we will make heavy use of later on in this thesis. Since
all results in this chapter are basic results of quantum information theory we often refer the reader
to the literature for the proofs.

4.1. Density Operators on Hilbert Spaces
We first introduce the density operator formalism, which is ubiquitous in quantum information
theory. Note that, although the postulates we now introduce are quite general, we will always be
working with finite-dimensional Hilbert spaces.

4.1.1. Postulates of Quantum Mechanics
We start with the fundamental postulates of quantum mechanics in terms of density operators.
These are centered around the notion of a Hilbert space. Roughly speaking, this is the space quan-
tum states "live in". We define it according to [Maa]:

Definition 4.1. A Hilbert space is a complex vector space H, endowed with an inner product:

H×H→C : (ψ,φ) 7→ 〈ψ,φ〉 (4.1)

satifysing the following properties:

(i) 〈ψ,φ1 +φ2〉 = 〈ψ,φ1〉+〈ψ,φ2〉 for all ψ,φ1,φ2 ∈H;
(ii) 〈ψ,λφ〉 =λ〈ψ,φ〉 for all ψ,φ ∈H and all λ ∈C;
(iii) 〈ψ,φ〉 = 〈φ,ψ〉 for all ψ,φ ∈H;
(iv) 〈ψ,ψ〉 ≥ 0 for all ψ ∈H;
(v) 〈ψ,ψ〉 = 0 implies ψ= 0;
(vi) H is complete in the norm ||ψ|| = 〈ψ,ψ〉 1

2 .

The most prominent example of a Hilbert space in our study of quantum information theory is
simply that of Cn . A qubit, for example, is described on the Hilbert space C2. Now that we under-
stand the notion of a Hilbert space, we can introduce the postulates of quantum mechanics in terms
of density operators. To this end, we will follow [Hol19] and [Sch].

Postulate 4.1. For every quantum system there is an associated Hilbert space H. The states of the
system are all nonnegative trace-class linear maps ρ :H→H for which Tr(ρ) = 1.

32
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These operators are called density operators, and we denote the set of density operators on H
by D(H). A trace-class linear map A :H→H is a map for which the trace Tr(A) =∑

k〈Aek ,ek〉 can be
defined, where {ek } is a basis of H. In this thesis we will only work with finite-dimensional Hilbert
spaces, where every operator is trace-class. An important property of the trace is that it is indepen-
dent of the basis chosen. This follows immediately from two the fact that Tr(AB) = Tr(B A) for any
trace-class operators A,B (this can be checked simply by writing out). To see that basis-indepence
follows, recall that a change of basis is represented by a unitary operator U which changes an oper-
ator A in one basis to U−1 AU . We thus have: Tr(U−1 AU ) = Tr(AUU−1) = Tr(A). Another property of
the trace that we will often use is its cyclicity. This can also be checked simply by writing out. It states
that for any trace-class operators A,B ,C we can cyclically permute: Tr(ABC ) = Tr(BC A) = Tr(C AB).

Now that we understand what states are, we need to understand how to define observables.

Postulate 4.2. The observables of a quantum system are the self-adjoint linear maps A : H → H.
The expectation value of an observable A for a system in state ρ is given by:

〈A〉 = Tr(ρA). (4.2)

Another word for self-adjoint is Hermitian. Recall that an operator A is self-adjoint if A∗ = A,
where A∗ is the adjoint of A. Recall also that the adjoint A∗ is such that 〈ψ, A∗φ〉 = 〈Aψ,φ〉. Now
that we understand states and observables, it is time to consider the two ways in which a quantum
system can evolve: unitary dynamics and projective dynamics.

Postulate 4.3. If a system is in a state ρ(t1) at time t1, then if no measurement is done on the system,
the system will be in the state ρ(t2) at a later time t2, given by:

ρ(t2) =U (t2 − t1)ρ(t1)U−1(t2 − t1), (4.3)

where U (t2 − t1) is a unitary operator given by:

U (t2 − t1) = e−
i
ħ H(t2−t1). (4.4)

Here H is the observable corresponding to the energy of the system (the Hamiltonian).

Now that we understand unitary dynamics, we turn to projective dynamics, which concerns
measuring a system:

Postulate 4.4. A measurement on a system in a state ρ is represented by a projection valued mea-
sure (PVM), which in the finite-dimensional case is a set of operators {Mi } on H such that:∑

i
M †

i Mi =1. (4.5)

The probability that we obtain outcome i is given by:

Pr(i ) = Tr(MiρM †
i ). (4.6)

Moreover, if the measurement yields outcome i , then the state after the measurement becomes:

MiρM †
i

Tr(MiρM †
i )

. (4.7)

Given a PVM {Mi } we can construct a positive-operator valued measure (POVM) {Fi } where Fi =
M †

i Mi , such that
∑

i Fi = 1 and Pr(i ) = Tr(ρFi ). Multiple PVM’s can correspond to the same POVM,
and therefore a POVM does not specify the post-measurement state. In this thesis, however, we
often use POVM’s to represent measurements, because we often do not need to specify the post-
measurement state.
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4.1.2. Bras, Kets, Spectral Decompostition, Purity and Projectors
Now that we have presented the postulates of quantum mechanics, we introduce some ubiquitous
notation, following [Hol19]: the notation of bras and kets, introduced by Paul Dirac.

Notation 4.5. A ket, denoted by |φ〉, represents a unit vector in the Hilbert space H modulo the
action of the circle group.

This modulo the action of the circle group simply means that two unit vectors represent the
same physical state if they differ only by a phase factor, i.e. unit vectors ψ ∈H and φ ∈H are the
same state if ψ= e iθφ for some angle θ ∈ [0,2π). Now we define a bra, such that together they form
the word braket, which is Dirac’s wordplay on the word bracket.

Definition 4.2. A bra is a linear functional 〈ψ| :H→C, defined by:

〈ψ|(|φ〉) =: 〈ψ|φ〉 = 〈ψ,φ〉. (4.8)

Given a ket |φ〉 we thus have a corresponding bra 〈φ|, which is called the adjoint to |φ〉. This
notation of bras and kets turns out to be very useful, because it allows for a convenient description
of operators [Hol19]. Indeed, given a bra 〈ψ| and a ket |φ〉, we can use A = |φ〉〈ψ| to denote the
operator which acts by A|χ〉 = |φ〉〈ψ|χ〉. Moreover, given an orthonormal basis {|ei 〉}, we have:∑

i
|ei 〉〈ei | =1, (4.9)

and thus we can decompose an arbitrary ket |φ〉 as:

|φ〉 =∑
i
|ei 〉〈ei |φ〉. (4.10)

Now, the real usefulness comes from using this notation for operators to describe density opera-
tors. It follows from the positive semidefiniteness of density operators that they are also self-adjoint.
Thus, the spectral theorem tells us that for every density operator ρ on H we can find an orthonor-
mal basis {|φi 〉} of H such that:

ρ =∑
i
λi |φi 〉〈φi |, (4.11)

where the eigenvalues λi are real [Hol19]. Knowing this, we define the following:

Definition 4.3. A pure state is a density operator ρ which can be written as ρ = |φ〉〈φ|, where |φ〉 is
some ket.

Continuing this line of thought, we can define the purity of an arbitrary density operator ρ as
Tr(ρ2). It is not hard to show that the purity is always between 0 and 1, and it is 1 if and only if ρ is a
pure state [Wil19].

A class of operators that we will often come across are the projectors. They will be especially impor-
tant for us in our treatment of typical subspaces, where we will define so-called typical projectors.

Definition 4.4. A projector is a self-adjoint operator P such that P 2 = P . For an orthonormal system
{|ei 〉}, P =∑

i |ei 〉〈ei | is the projector onto the subspace generated by {|ei 〉}.
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4.1.3. Composite Systems and Entanglement
We have now treated the most important concepts regarding quantum mechanics in terms of den-
sity operators, but there is one more aspect of quantum mechanics that we have not considered,
which is actually the source of many of the most useful and interesting quantum mechanical phe-
nomena. It is the composition of quantum mechanical systems, and its consequence: entangle-
ment. Indeed, this aspect is very different from our classical intuition. When we have two quantum
mechanical systems and we combine them, the resulting system is not simply described by the
direct sum of the underlying Hilbert spaces. Instead, the Hilbert space of the combined system be-
comes the tensor product of the Hilbert spaces of the subsystems. We define it according to [Hol19].

Definition 4.5. Let H1 and H2 be Hilbert spaces. Then the tensor product of these spaces H1 ⊗H2

is the vector space which consists of all finite linear combinations:∑
i

ci φ1 ⊗φ2, (4.12)

where φ1 ∈H1 and φ2 ∈H2. We write |φ1 ⊗φ2〉 = |φ1〉⊗ |φ2〉, and we define an inner product on this
vector space by:

〈ψ1 ⊗ψ2|φ1 ⊗φ2〉 = 〈ψ1|φ1〉〈ψ2|φ2〉. (4.13)

It can easily be checked, that if {|ei 〉} and {|e j 〉} are orthonormal bases of H1 and H2 respectively,
then {|ei ⊗e j 〉} is an orthonormal basis of H1 ⊗H2. Furthermore, dim(H1 ⊗H2) = dim(H1)dim(H2)
[Hol19]. The tensor product of two operators is defined exactly the way we would expect it to. If A
and B are operators on H1 and H2 respectively, then A⊗B acts on H1 ⊗H2 by:

A⊗B |φ1 ⊗φ2〉 = A|φ1〉⊗B |φ2〉. (4.14)

In this thesis we often talk about the close personal friends Alice and Bob. They both have some
quantum system, and we consider how they can communicate with each other using the laws of
quantum mechanics. So, say Alice has a system HA and Bob has a system HB . Their combined sys-
tem is then described by HA ⊗HB . But if Alice acts on her system with some operator, then she only
affects her part of the system. That is, Alice only acts locally. To capture this notion mathematically,
we define the following according to [Wil19]:

Definition 4.6. Let X AB be an operator acting on HA ⊗HB , and let {|φ〉i
B } be an orthonormal basis

of HB . Then the partial trace over HB is defined as:

TrB (X AB ) =∑
i

(1A ⊗〈φ|iB )X AB (1A ⊗|φ〉i
B ). (4.15)

The partial trace allows us to get back Alice’s system from the total composite system. Indeed, if
the composite system is in the state ρAB , then we can get Alice’s density operator simply by taking

ρA = TrB (ρAB ). Moreover, if Alice locally performs a measurement described by the POVMΛ
j
A , then

the probability that she receives outcome j satisfies the following:

Pr( j ) = Tr(ρAΛ
j
A) = Tr(ρAB (Λ j

A ⊗1B )). (4.16)

That is: it does not matter whether we consider Alice’s system only and perform a local measure-
ment and forget about the outside world, or if we consider the composite system as a whole and
perform a measurement which leaves Bob’s part of the system invariant (represented by the identity
operator 1B ).
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Now that we have defined composite systems we can indeed turn to the concept that is the source
of much of the interesting quantum phenomena we will encounter in this thesis: entanglement. To
understand this concept, we define the following:

Definition 4.7. A state ρAB on the tensor product space HA ⊗HB is called separable if it can be
written as a convex combination of product states:

ρAB =∑
x

pxρ
x
A ⊗ρx

B . (4.17)

That is:
∑

x px = 1 and px ≥ 0. A state in HA ⊗HB which is not separable is called entangled.

The canonical example of entanglement is given by the Bell states:

Example 4.1. Let HA and HB be qubit systems - that is C2. Then the states |Φ+〉〈Φ+|, |Φ−〉〈Φ−|,
|Ψ+〉〈Ψ+| and |Ψ−〉〈Ψ−| defined by:

(i) |Φ+〉 = 1p
2

(|0〉A ⊗|0〉B +|1〉A ⊗|1〉B ),

(ii) |Φ−〉 = 1p
2

(|0〉A ⊗|0〉B −|1〉A ⊗|1〉B ),

(iii) |Ψ+〉 = 1p
2

(|0〉A ⊗|1〉B +|1〉A ⊗|0〉B ),

(iv) |Ψ−〉 = 1p
2

(|0〉A ⊗|1〉B −|1〉A ⊗|0〉B ),

are called the Bell states.

4.2. Quantum Entropy
So far we have introduced the postulates of quantum mechanics, and we have looked at some prop-
erties of density operators. We now start our investigation of quantum information theory by gen-
eralising the classical entropy and mutual information to the quantum case - resulting in the defi-
nition of the quantum entropy. The quantum entropy will be vastly important in the next chapters
- especially for proving the HSW theorem in chapter 5.

We define the quantum entropy analogously to the classical entropy, following the notation of
[Wil19].

Definition 4.8. Suppose we have a density operator ρA acting on the Hilbert space HA . Then the
entropy of the state is defined as:

H(A)ρ =−Tr(ρAlog(ρA)). (4.18)

We might denote the quantum entropy either by H(A)ρ , by H(ρA) or simply by H(ρ). As a re-
minder: if we write a state ρ in its spectral decomposition ρ = ∑

x λx |x〉〈x|, and we have a function
f : C→ C, then we define f (ρ) by f (ρ) = ∑

x f (λx )|x〉〈x|. The quantum entropy satisfies the same
two properties which we previously mentioned for the classical entropy [Wil19]:

Property 4.6. For any density operator ρ ∈D(HA) we have H(ρA) ≥ 0.

Property 4.7. The quantum entropy is concave. That is, if we have density operators ρx ∈H and a
probability distribution pX (x), then:

H(ρ) = H

(∑
x

pX (x)ρx

)
≥∑

x
pX (x)H(ρx ). (4.19)

Before we define the conditional quantum entropy, we will first introduce the joint quantum
entropy, since it is very logical:
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Definition 4.9. The joint entropy of a state ρAB ∈HA ⊗HB is:

H(AB)ρ =−Tr(ρAB log(ρAB )). (4.20)

We now consider an additivity property not of a capacity, but of the quantum entropy.

Property 4.8. Let ρA ∈D(HA) andσB ∈D(HB ). The quantum entropy is additive for tensor-product
states:

H(ρA ⊗σB ) = H(ρA)+H(σB ). (4.21)

Considering the way in which we defined the conditional classical entropy, we are now able to
similarly define the conditional quantum entropy:

Definition 4.10. Let ρAB ∈D(HA ⊗HB ). The conditional entropy H(A|B)ρ of the state ρAB is equal
to the difference between the joint entropy and the marginal entropy:

H(A|B)ρ = H(AB)ρ−H(B)ρ . (4.22)

It is important to clarify this notation, because one might wonder how H(B)ρ is defined, since
ρAB really is a state of the composite system HA ⊗HB , and not a state of the subsystem HB . What
we really mean with this, as one might expect, is the entropy of the state ρB which is obtained by
(partially) tracing out the system A. Thus, we could rewrite the above definition as:

H(A|B)ρ = H(ρAB )−H(ρB ). (4.23)

In the same fashion as with the classical entropy, conditioning does not increase the quantum en-
tropy [Wil19]:

Theorem 4.9. For any bipartite state ρAB ∈D(HA ⊗HB ) we have H(A)ρ ≥ H(A|B)ρ .

To finish off this subsection on quantum entropy, we generalise the notion of mutual informa-
tion to the quantum stage:

Definition 4.11. The quantum mutual information of a state ρAB ∈D(HA ⊗HB ) is defined as:

I (A;B)ρ = H(A)ρ+H(B)ρ−H(AB)ρ . (4.24)

Exactly analogously to the classical case, it satisfies the relations I (A;B)ρ = H(A)ρ −H(A|B)ρ =
H(B)ρ−H(B |A)ρ .

4.3. Quantum Channels
At last, we turn to the fundamental concept in our study of quantum information theory: the quan-
tum channel. It is simply a map which takes quantum states as its input and gives quantum states
as its output, satisfying several conditions. The rest of this thesis will be dedicated to investigating
how one can send classical information (i.e. bits) over a quantum channel.

4.3.1. Definition of a Quantum Channel
In order to understand the mathematical definition of a quantum channel, we first have to under-
stand the notion of a positive map. To this end, we introduce the following notation:

Notation 4.10. We denote by L(H) the set of linear operators acting on the Hilbert space H. More-
over, we denote by L(HA ,HB ) the set of linear operators from HA to HB . As we have already seen,
we denote the subset of L(H) which contains the density operators on H by D(H).
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Now we turn to the notion of positivity:

Definition 4.12. A linear map M : L(HA) →L(HB ) is called positive if for all positive semi-definite
operators X A ∈L(HA) :M(X A) is also a positive semi-definite operator.

Positivity is, however, not strong enough to provide the definition of a quantum channel, be-
cause we want to be able to apply a quantum channel to only a part of a larger system and still have it
map positive operators to positive operators. This notion is called complete positivity. The intuition
is that if Alice has a state ρA ∈D(HA) which really is her share of a two-party state ρAR ∈D(HA⊗HR ),
then a quantum channel acting on Alice’s system while doing nothing to the reference system should
still yield a positive operator [Wil19]. This leads to the following:

Definition 4.13. A linear mapM :L(HA) →L(HB ) is called completely positive if the mapM⊗idR :
L(HA ⊗HR ) →L(HB ⊗HR ) is positive for any reference system R.

One might wonder whether positivity does not just imply complete positivity. Indeed it does not.
An elementary example of a positive map which is not completely positive is the transpose map on
a qubit, which simply gives the transpose of an operator on C2 [Wer]. We are now in a position to
define quantum channels.

Definition 4.14. A quantum channel N : L(HA) → L(HB ) is a linear, completely positive, trace
preserving map.

The trace-preserving condition simply means that for all X A ∈L(HA) we have Tr(X A) = Tr(N (X A)).
We remark that we are working in the Schrödinger picture. That is, we consider a quantum chan-
nel to be a map that takes a quantum state to another quantum state. The equivalent description
in the Heisenberg picture is that a quantum channel is a map from L(HB ) → L(HA) which takes
observables to observables. Now, this might be confusing, because one may wonder whether we
define a quantum channel to be a map from operators on HA to HB or vice versa. There is, however,
no problem here, because we think of a quantum channel as a map from L(HA) to L(HB ) to map
states to states. The reason that we are not restricting the quantum channel to a map from D(HA) to
D(HB ) is because the density operators do not form a vector space (if ρ ∈D(H) then −ρ ∉D(H)) so
we would not be able to talk about linearity if we would do so.

In an analogous fashion to vectors in a Hilbert space, quantum channels also have an adjoint. It
is defined as follows:

Definition 4.15. Let N : L(HA) → L(HB ) be a quantum channel. Then the adjoint N ∗ : L(HB ) →
L(HA) of N is the unique quantum channel satisfying [Wil19]:

〈B ,N (A)〉 = 〈N ∗(B), A〉, (4.25)

for any A ∈L(HA),B ∈L(HB ).

We can also straightforwardly define the tensor product of two channels.

Definition 4.16. Let N1,N2 :L(HA) →L(HB ) be quantum channels. Then the tensor product N1 ⊗
N2 :L(HA ⊗LHA) →L(HB ⊗LHB ) is the quantum channel defined by:

(N1 ⊗N2)(X A A′) =N1(X A)⊗N2(X A′), (4.26)

where X A = TrA′(X A A′) and X A′ = TrA(X A A′).

We finish this subsection by introducing some useful notation.

Notation 4.11. Let H be a hilbert space and ρ ∈D(H). Then we write H⊗n =H⊗· · ·⊗H and ρ⊗n =
ρ⊗···⊗ρ, where these tensor products are performed n times. We do the same for n tensor products
N⊗n =N ⊗· · ·⊗N of a quantum channel.
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4.3.2. Choi-Kraus Decomposition
Now that we know what quantum channels are, we present one of the fundamental theorems of
quantum information theory. It tells us that we can always write quantum channels in a certain way
which is called the Choi-Kraus decomposition.

Theorem 4.12. A map N : L(HA) →L(HB ) is linear, completely positive and trace-preserving (i.e.
a quantum channel) if and only if it has a Choi-Kraus decomposition as follows:

N (X A) =
d−1∑
l=0

Vl X AV †
l , (4.27)

for all X A ∈L(HA), and where the Vl ∈L(HA ,HB ) are fixed and such that:

d−1∑
l=0

V †
l Vl =1A , (4.28)

and d need not be any larger than dim(HA)dim(HB ).

The operators Vl are called Kraus operators. The proof of this theorem can be found in subsec-
tion 4.4.1 of [Wil19]. Moreover, if {Vl } is a set of Kraus operators of the quantum channel N , then
{V †

l } is a set of Kraus operators of the adjoint channel N ∗ [CCH11].

4.3.3. Examples of Quantum Channels
We now present three examples of quantum channels, the latter two of which we will meet later
on in this thesis. The first of these is the classical-classical channel. It simply corresponds to a
classical channel, which can be represented by a conditional probability distribution pY |X (y |x) on
the alphabets X and Y . The corresponding classical-classical channel then has Kraus operators
{
√

pY |X (y |x)|y〉〈x|}x,y where |x〉 and |y〉 are bases of the input and output Hilbert spaces corre-
sponding to the classical input and output letters respectively [Wil19].

The second quantum channel that we present is the classical-quantum channel. This channel
first measures the input in some orthonormal basis, and then outputs a density operator [Wil19]. So
given an orthonormal basis |k〉A of HA and a set of density operators {σk

B } in D(HB ), the classical-
quantum channel N has the following acting on a density operator ρA ∈L(HA):

N (ρA) =∑
k
〈k|AρA|k〉Aσ

k
B . (4.29)

If we spectrally decompose each density operator as:

σk
B =∑

i
λk

i |i 〉k
B 〈i |kB , (4.30)

then the Kraus operators are:

{
√
λk

i |i 〉k
B 〈k|A}i ,k . (4.31)

The last quantum channel which we present is the depolarising channel. Its action on a density
operator ρ ∈D(HA) is as follows:

N (ρ) = (1−p)ρ+pπ, (4.32)

where π = 1
d1 is the maximally mixed state with d the dimension of H. If {|i 〉}i is an orthonormal

basis for H, then {
√

1−p1, 1p
d
|i 〉〈 j |}i , j is a set of Kraus operators for the depolarising channel, as

can be seen as follows: √
1−p1ρ(

√
1−p1)† +∑

i , j

p
pp
d
|i 〉〈 j |ρ

(p
pp
d
|i 〉〈 j |

)†

(4.33)

= (1−p)ρ+ 1

d

∑
i , j

|i 〉〈 j |ρ|i 〉〈 j | = (1−p)ρ+ p

d

∑
i
|i 〉Tr(ρ)〈i | = (1−p)ρ+ p

d
1, (4.34)
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where we have used that the trace of a density operator is 1.

4.4. Distance Measures
Now that we understand quantum channels we investigate how to quantify whether two quantum
states are close to one another. The most important concept needed in order to do so is the follow-
ing:

Definition 4.17. Let HA and HB be Hilbert spaces and let X ∈L(HA ,HB ). Then we define the trace
norm of X as:

||X ||1 = Tr(|X |), (4.35)

where |X | =
p

X †X .

This norm then induces a distance measure on operators.

Definition 4.18. Let HA and HB be Hilbert spaces and let X ,Y ∈ L(HA ,HB ). Then we define the
trace distance between X and Y to be:

||X −Y ||1. (4.36)

We now present two lemmas which we will use directly in our proof of the packing lemma in the
next chapter. For the proofs we refer the reader to sections 9.1 and 9.4 of [Wil19] respectively.

Lemma 4.13. Let H be a Hilbert space and let ρ,σ be two hermitian operators on H. Let Π ∈L(H)
be such that 0 ≤Π≤1. Then:

Tr(Πρ) ≥ Tr(Πσ)−||ρ−σ||1. (4.37)

The next lemma is called the gentle operator lemma, because it concerns the case of a measure-
ment operator which, in a precise sense, gently performs a measurement without changing the state
of the system much.

Lemma 4.14. Let H be a Hilbert space and let ρ ∈D(H). Let Λ ∈L(H) be a measurement operator
such that 1 ≤Λ≤1. Now suppose thatΛ has a high probability of detecting ρ in the following sense:

Tr(Λρ) ≥ 1−ε, (4.38)

for some ε ∈ [0,1]. We then have: ∣∣∣∣∣∣ρ−p
Λρ

p
Λ

∣∣∣∣∣∣
1
≤ 2

p
ε. (4.39)



5
Quantum Shannon Theory

This chapter is focused on proving a pivotal result in quantum communication theory: the Holevo-
Schumacher-Westmoreland theorem, or HSW theorem for short, proven in [SW97]. This theorem
provides an expression for the ordinary capacity of a quantum channel to transmit classical infor-
mation. Thus, it is a direct quantum analog of the noisy channel coding theorem. Indeed, its proof
will be based on typicality, like the second proof which we presented of the noisy channel coding
theorem in chapter 2. This time, however, it will be the quantum version of typical sets - called
typical subspaces - that we will use.

There is, however, a complication that arises when transitioning from communication over clas-
sical channels to communication over quantum channels. This complication is the fact that mea-
surement works so differently in the quantum world. Indeed, where in the classical case we simply
received an output sequence of our classical channel which we could then decode to decide what
message was sent, in the quantum case we receive an output sequence of quantum states, i.e. den-
sity operators. These density operators must first be measured according to a POVM before they can
be translated into classical information. This complication of measurement is dealt with by using
the packing lemma. The packing lemma tells us how we can encode classical information into an
ensemble of quantum states [Wil19].

Besides this complication of measurement, there is another effect which makes quantum com-
munication radically different from classical communication: the existence of entanglement. In-
deed, we will see that it is entanglement which really sets apart quantum communication from clas-
sical communication, and because of entanglement we will be unable to characterise the classical
capacity of a quantum channel as cleanly as the capacity of a classical channel. This is manifested
by the fact that the HSW theorem provides an expression of the classical capacity in terms of the
regularised Holevo information, whereas in the classical case such a notion of regularisation playes
no role. This shows that we do not know how to approximate the classical capacity of a quantum
channel.

5.1. Preliminary Notions
In this section we treat the two techniques used in our proof of the HSW theorem: the notion of the
typical subspace and the packing lemma.

5.1.1. Quantum Typicality
The definition of the typical subspace is very similar to that of the typical subset. Indeed, the typi-
cal subspace shares the same three properties of the typical subset: unit probability, exponentially
smaller cardinality and equipartition. However, the typical subspace is defined with respect to a

41
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certain quantum state, i.e. a density operator. The spectral decomposition of this density opera-
tor gives a probability distribution (namely the eigenvalues of the density operator), and the typical
subspace is defined analogously to the typical subset with respect to this induced probability distri-
bution [Wil19]. Let us now properly define this.

Definition 5.1. LetHA be a Hilbert space with a density operator ρA on it. We write ρA in its spectral
decomposition:

ρA = ∑
x∈X

pX (x)|x〉〈x|A , (5.1)

where {|x〉A}x∈X forms a complete orthonormal basis of HA . Then {|xn〉}xn∈X n is a complete or-
thonormal basis of HAn =HA1 ⊗ ...⊗HAn . We define the typical subspace T δ

An with respect to the
state ρAn = (ρA)⊗n as:

T δ
An = span{|xn〉An | xn ∈ T X n

δ }, (5.2)

where the typical set T X n

δ
is with respect to the distribution pX (x) consisting of the eigenvalues of

ρA .

The typical subspace will play the same role in the proof of the HSW theorem as the typical set
in the proof of the noisy channel coding theorem. However, in the HSW theorem we will be working
with quantum states and of course, these need to be measured using a POVM. To this end, we define
the so-called typical projector. It is the projector that projects onto the typical subspace, and it will
play a pivotal role in the construction of a POVM in the HSW theorem.

Definition 5.2. Given a density operator ρA on HA with corresponding typical subspace T δ
An and

eigenvalues {pX (x)}x∈X , we define the typical projector as:

ΠδAn =
∑

xn∈T X n
δ

|xn〉〈xn |An . (5.3)

With these definitions in hand we can now state the three most important properties of typical
subspaces, completely analogously to the properties of the typical set.

Property 5.1 (Unit Probability). The typical subspace T δ
An corresponding to ρA ∈ D(H) has unit

probability in the limit where n becomes arbitrarily large. That is: for all δ > 0 and ε ∈ (0,1) there
exists some n ∈N such that:

Tr
(
ΠδAnρAn

)
≥ 1−ε. (5.4)

Property 5.2 (Exponentially Smaller Dimension). The dimension dim(T δ
An ) of the typical subspace

is exponentially smaller than dimension of the total space dim(HA)n :

Tr
(
ΠδAn

)
≤ 2n(H(A)+cδ), (5.5)

where c is some positive constant. Moreover, we can bound the dimension of the typical subspace
from below: for all δ> 0 and ε>∈ (0,1) there exists some n ∈N such that:

Tr
(
ΠδAn

)
≥ (1−ε)2n(H(A)−cδ). (5.6)

Property 5.3 (Equipartition). We have the following operator inequality:

2−n(H(A)+cδ)ΠδAn ≤ΠδAnρAnΠδAn ≤ 2−n(H(A)−cδ)ΠδAn . (5.7)

This is a statement about the eigenvalues of the operators ΠδAnρAnΠδAn and ΠδAn , which have the
same eigenvectors because they commute [Wil19]. We can think of the operator ΠδAnρAnΠδAn as the
typical part of ρAn . If we think this way, we can also write the above operator inequality as follows:

∀xn ∈ T X n

δ : 2−n(H(A)+cδ) ≤ pX n (xn) ≤ 2−n(H(A)−cδ), (5.8)

where the {pX n (xn)}xn∈X n are of course the eigenvalues of ρAn .
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We now prove the above three properties. This is actually quite simple: it just amounts to reduc-
ing to the case of the typical set.

Proof of Unit Probability: we have the following:

Tr
(
ΠδAnρAn

)
= Tr

 ∑
xn∈T X n

δ

|xn〉〈xn |An

∑
xn∈X n

pX n (xn)|xn〉〈xn |An


= Tr

 ∑
xn∈T X n

δ

pX n (xn)|xn〉〈xn |An

= ∑
xn∈T X n

δ

pX n (xn) = Pr
(

X n ∈ T X n

δ

)
.

(5.9)

Now the result follows immediately from property 2.7.

Proof of Exponentially Smaller Dimension: note that, by definition of the typical subspace, we
have:

Tr
(
ΠδAn

)
= dim

(
T δ

An

)
= |T X n

δ |. (5.10)

Moreover, note that:

H(A) =−Tr
(
ρAlog(ρA)

)=−Tr

( ∑
x∈X

pX (x)|x〉〈x|Alog

( ∑
x ′∈X

pX (x ′)|x ′〉〈x ′|A
))

=−Tr

( ∑
x∈X

pX (x)|x〉〈x|A
∑

x ′∈X
log(pX (x ′))|x ′〉〈x ′|A

)

=−Tr

( ∑
x∈X

pX (x)log(pX (x))|x〉〈x|A
)
= ∑

x∈X
pX (x)log(pX (x)) = H(X ),

(5.11)

where H(A) is the quantum entropy of the density operator ρA and H(X ) is the classical entropy of
the random variable X with distribution pX (x). With these results, the statement of the property
follows immediately from its classical counterpart: property 2.8.

Proof of Equipartition: we have the following:

ΠδAnρAnΠδAn =
∑

xn∈T X n
δ

|xn〉〈xn |An

∑
x ′n∈T X n

δ

pX n (x ′n)|x ′n〉〈x ′n |An

∑
x̃n∈T X n

δ

|x̃n〉〈x̃n |An

= ∑
xn∈T X n

δ

pX n (xn)|xn〉〈xn |An .
(5.12)

Thus, we see that we can indeed write the equipartition property in its operator inequality form
equivalently as:

∀xn ∈ T X n

δ : 2−n(H(A)+cδ) ≤ pX n (xn) ≤ 2−n(H(A)−cδ). (5.13)

But in the previous proof we showed that H(A) = H(X ), so we can again equivalently write this as:

∀xn ∈ T X n

δ : 2−n(H(X )+cδ) ≤ pX n (xn) ≤ 2−n(H(X )−cδ), (5.14)

and we know that this is true from property 2.9.

5.1.2. Conditional Quantum Typicality
When we investigated classical typicality in chapter 2, we defined two types of typical set: the
strongly typical set and the conditional strongly typical set. Both of these incarnations of typicality
were necessary to prove the noisy channel coding theorem. This is no different in the proof of the
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HSW theorem: we also need a conditionally typical subspace. In order to explain these concepts we
follow [Wil19].

The conditionally typical subspace is defined for a certain ensemble {px (x),ρx
B } consisting of a

probability distribution on the finite set X and for each x ∈X a corresponding density operator ρx
B

on the Hilbert space HB . We can then write the spectral decomposition of each ρx
B as follows:

ρx
B = ∑

y∈Y
pY |X (y |x)|yx〉〈yx |B . (5.15)

Here every {|yx〉}y∈Y is an orthonormal basis of B . Although it might not seem so at first sight, we
have done nothing new. We have simply written the eigenvalues of each density operator as a con-
ditional probability distribution pY |X (y |x), conditioned on x ∈X . Moreover, we define the classical-
quantum state:

ρX B = ∑
x∈X

pX (x)|x〉〈x|X ⊗ρx
B , (5.16)

such that the conditional entropy of this state becomes:

H(B |X )ρ =
∑

x∈X
pX (x)H(ρx

B ). (5.17)

With these notations in place we define the conditionally typical subspace.

Definition 5.3. The conditionally typical subspace corresponding to a stronlgy typical sequence
xn ∈ X n and to an ensemble {pX (x),ρx

B } whose density operators have eigenvalues pY |X (y |x) and
corresponding eigenvectors |yx〉B is:

T δ
B n |xn = span

(⊗
x∈X

|y Ix
x 〉B Ix : ∀x ∈X : y Ix ∈ T Y |Ix ||x |Ix |

δ

)
. (5.18)

Here Ix = {i | xi = x} is an indicator set which selects the indices i for which xi = x. Similarly, B Ix

selects the subsystems of B n = B1 ⊗ ...⊗Bn for which the entry of xn is equal to x. Moreover, |y Ix
x 〉 is

some string of states from {|yx〉} and y Ix is the corresponding classical sequence. Lastly, T Y |Ix ||x |Ix |
δ

is
just a conditional strongly typical set as defined in definition 2.13.

We also define the conditionally typical subspace projector.

Definition 5.4. The conditionally typical subspace projector corresponding to a strongly typical
sequence xn and an ensemble {pX (x),ρx

B } is:

ΠδB n |xn =
⊗
x∈X

Π
ρx ,δ
B Ix

, (5.19)

where Πρx ,δ
B Ix

is simply the subspace projector corresponding to the state ρx
B , and where B Ix again

selects the subsystems of B n onto which the typical subspace projector for ρx
B projects.

The conditionally typical subspace again satisfies the same three properties that we have come
across several times before. However, the proofs are more involved this time. We will now state and
then proof each of them.

Property 5.4 (Unit Probability). For all δ > 0 and ε ∈ (0,1) there exists some n ∈ N such that the
probability that we measure a state ρxn

B n to be in the conditionally typical subspace T δ
B n |xn satisfies:

Tr
(
ΠδB n |xnρ

xn

B n

)
≥ 1−ε. (5.20)
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Property 5.5 (Exponentially Smaller Dimension). The dimension dim(T δ
B n |xn ) of the conditionally

typical subspace is exponentially smaller than dimension of the total space dim(HB )n :

Tr
(
ΠδB n |xn

)
≤ 2n(H(B |X )+δ′′), (5.21)

where δ′′ is a positive constant. Moreover, we can bound the dimension of the conditionally typical
subspace from below: for all δ> 0 and ε>∈ (0,1) there exists some n ∈N such that:

Tr
(
ΠδB n |xn

)
≥ (1−ε)2n(H(B |X )−δ′′). (5.22)

Property 5.6 (Equipartition). We have the following operator inequality:

2−n(H(B |X )+δ′′)ΠδB n |xn ≤ΠδB n |xnρ
xn

B nΠ
δ
B n |xn ≤ 2−n(H(B |X )−δ′′)ΠδB n |xn . (5.23)

We now prove the unit probability and equipartition properties. The exponentially smaller di-
mension property follows from the equipartition property the same way it did in the classical case.

Proof of Unit Probability: like in the case of the conditionally typical set we denote X = {a1, ..., a|X |}
so that we can lexicographically order a quantum state ρxn :

ρxn = ρa1 ⊗· · ·⊗ρa1︸ ︷︷ ︸
N (a1|xn )

⊗· · ·⊗ρa|X | ⊗· · ·⊗ρa|X |︸ ︷︷ ︸
N (a|X ||xn )

. (5.24)

The conditionally strong typical projector can then be written as:

ΠδB n |xn =
⊗
x∈X

Π
ρx ,δ

B N (x|xn ) . (5.25)

Now we use property 5.1 to conclude that for every δ> 0 and ε ∈ (0,1) there exists an n ∈N such that:

Tr
(
ΠδB n |xnρ

xn

B n

)
= Tr

(⊗
x∈X

(
Π
ρx ,δ

B N (x|xn )ρ
⊗N (x|xn )
x

))
= ∏

x∈X
Tr

(
Π
ρx ,δ

B N (x|xn )ρ
⊗N (x|xn )
x

)
≥ (1−ε)|X | ≥ 1−|X |ε≥ 1−ε,

(5.26)

which is the desired result.

Proof of Equipartition: we again write ρxn

B n in lexicographical order, such that we can write:

ΠδB n |xnρ
xn

B nΠ
δ
B n |xn =

⊗
x∈X

Π
ρx ,δ

B N (x|xn )ρ
⊗N (x|xn )
x Π

ρx ,δ

B N (x|xn ) . (5.27)

The equipartition property for each typical subspace projector individually (property 5.3) then gives:⊗
x∈X

Π
ρx ,δ

B N (x|xn ) 2
−N (x|xn )(H(ρx )+cδ) ≤ ⊗

x∈X
Π
ρx ,δ

B N (x|xn )ρ
⊗N (x|xn )
x Π

ρx ,δ

B N (x|xn ) (5.28)

≤ ⊗
x∈X

Π
ρx ,δ

B N (x|xn ) 2
−N (x|xn )(H(ρx )−cδ). (5.29)

Now xn is strongly typical, so |N (x|xn )
n −pX (x)| < δ′ for some δ′ > 0. The above equation thus implies:⊗

x∈X
Π
ρx ,δ

B N (x|xn ) 2
−n(pX (x)+δ′)(H(ρx )+cδ) ≤ ⊗

x∈X
Π
ρx ,δ

B N (x|xn )ρ
⊗N (x|xn )
x Π

ρx ,δ

B N (x|xn ) (5.30)

≤ ⊗
x∈X

Π
ρx ,δ

B−n(pX (x)−δ′) 2
−n(pX (x)+δ′)(H(ρx )−cδ). (5.31)
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If we now take the exponentials out of the tensor products and put them in front, we get:∏
x∈X

2−n(pX (x)+δ′)(H(ρx )+cδ)
⊗
x∈X

Π
ρx ,δ

B N (x|xn ) ≤
⊗
x∈X

Π
ρx ,δ

B N (x|xn )ρ
⊗N (x|xn )
x Π

ρx ,δ

B N (x|xn ) (5.32)

≤ ∏
x∈X

2−n(pX (x)+δ′)(H(ρx )−cδ)
⊗
x∈X

Π
ρx ,δ

B N (x|xn ) . (5.33)

Now usingΠδB n |xn =⊗
x∈X Π

ρx ,δ

B N (x|xn ) we can write this as:∏
x∈X

2−n(pX (x)+δ′)(H(ρx )+cδ)ΠδB n |xn ≤ΠδB n |xnρxnΠδB n |xn (5.34)

≤ ∏
x∈X

2−n(pX (x)+δ′)(H(ρx )−cδ)ΠδB n |xn . (5.35)

Distributing over the brackets in the exponential and writing out the products gives:

2−n(H(B |X )+∑
x (H(ρxδ

′+cpX (x)δ+cδδ′)))ΠδB n |xn ≤ΠδB n |xnρxnΠδB n |xn

≤ 2−n(H(B |X )+∑
x (−H(ρxδ

′−cpX (x)δ+cδδ′)))ΠδB n |xn .
(5.36)

Since
∑

x pX (x) = 1 and
∑

x H(ρx ) ≤ |X |log(d) where d is the dimension of ρx , we can write this as:

2−n(H(B |X )+δ′|X |log(d)+cδ+|X |cδδ′)ΠδB n |xn ≤ΠδB n |xnρxnΠδB n |xn

≤ 2−n(H(B |X )−δ′|X |log(d)+cδ+|X |cδδ′)ΠδB n |xn .
(5.37)

Or, by defining δ′′ = δ′|X |log(d)+ cδ+|X |cδδ′:

2−n(H(B |X )+δ′′)ΠδB n |xn ≤ΠδB n |xnρxnΠδB n |xn ≤ 2−n(H(B |X )−δ′′)ΠδB n |xn . (5.38)

This is exactly the statement of the equipartition property.

5.1.3. Packing Lemma
The second ingredient - besides typical subspaces - of our proof of the HSW theorem is the so-called
packing lemma. It is called so because it tells us how many classical messages we can pack into a
Hilbert space. We will again follow [Wil19] for the exposition of the packing lemma and its proof.

Theorem 5.7 (Packing Lemma). Let {pX (x),σx }x∈X be an ensemble, where each σx ∈ D(H). We
denote the expected density operator of the ensemble by σ=∑

x pX (x)σx . Suppose we have a pro-
jectorΠ and a set of projectors {Πx }x∈X which project onto subspaces of H. We call these projectors
the code subspace projector and codeword subspace projectors respectively. Now suppose the fol-
lowing conditions are satisfied for all x ∈X :

Tr(Πσx ) ≥ 1−ε, (5.39)

Tr(Πxσx ) ≥ 1−ε, (5.40)

Tr(Πx ) ≤ d , (5.41)

ΠσΠ≤ 1

D
Π, (5.42)

where ε ∈ (0,1),D > 0 and d ∈ (0,D). Now let M= {1, ..., |M|} be a finite set. We now generate a code
C = {Cm}m∈M, consisting of a set of random variables which each take values in X according to the
distribution pX (x). Then there exsists a POVM {Λm}m∈M such that:

EC

(
1

|M|
∑

m∈M
Tr

(
ΛmσCm

))≥ 1−2(ε−2
p
ε)−4|M| d

D
. (5.43)
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Proof: as explained in the definition, we randomly generate a code as a set of random variables
taking values in X . So C = {cm}m∈M is a realisation of such a code. The probability that a particular
code is generated is given by:

p(C) = ∏
m∈M

pX (cm). (5.44)

We now define the following operators:
Υx =ΠΠxΠ. (5.45)

Using these operators and given a code C = {cm}m∈M, we construct a so-called square-root mea-
surement:

Λm =
( ∑

m′∈M
Υm′

)− 1
2

Υcm

( ∑
m′∈M

Υm′

)− 1
2

. (5.46)

We might have
∑

m∈MΛm < 1, so we add the operator Λ0 = 1−∑
m∈MΛm so that {Λ0}∪ {Λm}m∈M

becomes a POVM. The intuition behind all this is that the elements Λm are used to distinguish a
particular message m, whereasΛ0 corresponds to an error.

Now that we have our code generation and POVM we are able to start the error analysis. To this
end, we use a result by Hayashi and Nagaoka, the proof of which can be found in appendix A.

Lemma 5.8 (Hayashi-Nagaoka). Let S,T ∈L(H) be positive semi-definite operators such that 1−S
is also postive semi-definite. Then for any c > 0 we have:

1− (S +T )−
1
2 S(S +T )−

1
2 ≤ (1+ c)(1−S)+ (2+ c + 1

c
)T. (5.47)

Suppose we have generated a particular code C. If we take S = Υcm and T = ∑
m′ 6=mΥcm′ , then

with c = 1 the lemma gives:

1−
(∑

m′
Υcm′

)− 1
2

Υcm

(∑
m′
Υcm′

)− 1
2

≤ (1+1)(1−Υcm )+ (2+1+ 1

1
)

∑
m′ 6=m

Υcm′ . (5.48)

Or by using our definition ofΛm :

1−Λm ≤ 2(1−Υcm )+4
∑

m′ 6=m
Υcm′ . (5.49)

If a particular message m is sent, then the probability that it is decoded incorrectly is given by:

pe (m,C) = Tr
(
(1−Λm)σcm

)
. (5.50)

Combining the above two results gives:

pe (m,C) ≤ Tr

((
(2(1−Υcm )+4

∑
m′ 6=m

Υcm′

)
σcm

)
= 2Tr

(
(1−Υcm )σcm

)+4
∑

m′ 6=m
Tr

(
Υcm′σcm

)
.

(5.51)

Using the gentle operator lemma 4.14 and lemma 4.13 we can derive the following:

Tr
(
Υcmσcm

)= Tr
(
ΠΠcmΠσcm

)= Tr
(
ΠcmΠσcmΠ

)
≥ Tr

(
Πcmσcm

)− ∣∣∣∣ΠσcmΠ−σcm

∣∣∣∣
1 ≥ 1−ε−2

p
ε,

(5.52)

and thus we get:
Tr

(
(1−Υcm )σcm

)= 1−Tr
(
Υcmσcm

)≤ ε+2
p
ε. (5.53)
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For the probability of error we now have:

pe (m,C) ≤ 2(ε+2
p
ε)+4

∑
m′ 6=m

Tr
(
Υcm′σcm

)
. (5.54)

Assuming that the message to be sent is selected randomly and uniformly, we get the following
average probability of error for a certain code C:

p̄e (C) = 1

|M|
∑

m∈M
pe (m,C) ≤ 2(ε+2

p
ε)+ 4

|M|
∑

m∈M

∑
m′ 6=m

Tr
(
Υcm′σcm

)
. (5.55)

In Shannon like fashion, we will now consider the expectation over all randomly generated codes:

EC(p̄e (C)) ≤ EC
(

2(ε+2
p
ε)+ 4

|M|
∑

m∈M

∑
m′ 6=m

Tr
(
Υcm′σcm

))

= 2(ε+2
p
ε)+ 4

|M|
∑

m∈M

∑
m′ 6=m

EC
(
Tr

(
Υcm′σcm

))
.

(5.56)

Our task now amounts to bounding EC
(
Tr

(
Υcm′σcm

))
. To do so, we first note that this quantity de-

pends only on the specific codewords Cm and Cm′ . Thus, we find:

EC
(
Tr

(
Υcm′σcm

))= EC (
Tr

(
ΠΠCm′ΠσCm

))
EC

(
Tr

(
ΠCm′ΠσCmΠ

))
(5.57)

= ECm′ECm

(
Tr

(
ΠCm′ΠσCmΠ

))= Tr
(
ECm′

(
ΠCm′

)
ΠECm

(
σCm

)
Π

)
(5.58)

≤ Tr

(
ECm′

(
ΠCm′

) 1

D
Π

)
= 1

D
Tr

(
ECm′

(
ΠCm′

)
Π

)≤ 1

D
Tr

(
ECm′

(
ΠCm′

))
(5.59)

= 1

D
ECm′

(
Tr

(
ΠCm′

))≤ 1

D
ECm′ (Tr(d)) = d

D
. (5.60)

Thus, for the expectation of the average error we get:

p̄e (C) ≤ 2(ε+2
p
ε)+ 4

|M|
∑

m∈M

∑
m′ 6=m

d

D
≤ 2(ε+2

p
ε)+4|M| d

D
, (5.61)

which is the statement of the packing lemma.
To apply the packing lemma in the proof of the HSW theorem, however, we do not wish to have

a statement about the expectation of the average error over all codes. Instead, we wish to have a
similar statement but then about the existence of one code. Thus, we perform the same expurgation
argument as we did in the proof of the noisy channel coding theorem in section 2.3: we first note
that there must exist at least one code satisfying the same error bound as in the packing lemma and
we then again omit the worse half of the codewords. This doubles the error bound and leaves half
the number of messages and leads to the following corollary, which will play a pivotal role in our
upcoming proof of the HSW theorem:

Corollary 5.9. Let {pX (x),σx }x∈X be an ensemble, where each σx ∈D(H). We denote the expected
density operator of the ensemble by σ = ∑

x pX (x)σx . Suppose we have a projector Π and a set of
projectors {Πx }x∈X which project onto subspaces of H. We call these projectors the code subspace
projector and codeword subspace projectors respectively. Now suppose the following conditions
are satisfied:

Tr(Πσx ) ≥ 1−ε,

Tr(Πxσx ) ≥ 1−ε,

Tr(Πx ) ≤ d ,

ΠσΠ≤ 1

D
Π,

(5.62)
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where ε ∈ (0,1),D > 0 and d ∈ (0,D). Then there exist a code C = {cm}m∈M with codewords taking
values in X and a POVM {Λm}m∈M such that for all m ∈M:

Tr(Λmσcm ) ≥ 1−4(ε+2
p
ε)−16|M| d

D
. (5.63)

5.2. Holevo-Schumacher-Westmoreland Theorem
We are now finally in a position to state and prove one of the highlights of this thesis: the Holevo-
Schumacher-Westmoreland theorem. It is the quantum analog of the noisy channel coding theo-
rem, but there is one main difference in its statement: the appearance of the so-called regularisation
of the Holevo information. This regularisation does not appear in the noisy channel coding theo-
rem, and it is due to the fact that when dealing with quantum channels, we are also dealing with
entanglement. In this section we will again roughly follow [Wil19].

5.2.1. Statement of the Theorem
Let us now define the Holevo information:

Definition 5.5. The Holevo information χ(N ) of a quantum channel N :L(HA) →L(HB ) is:

χ(N ) = max
ρX B

I (X ;B)ρ , (5.64)

where ρX B is a classical-quantum state of the form:

ρX B = ∑
x∈X

pX (x)|x〉〈x|X ⊗N (ρx
A), (5.65)

where ρx
A ∈D(HA).

The regularisation of the Holevo information is then:

χreg(N ) = lim
k→∞

1

k
χ(N⊗k ). (5.66)

We will see shortly that this regularised Holevo information is the highest achievable rate for a quan-
tum channel. Analogously to the case of a classical noisy channel, a code for a quantum channel
N : L(HA) → L(HB ) consists of a finite message set M, a set of |M| quantum states ρm

An which
can be put into n uses of the channel (similar to an encoder) and a POVM {Λm}m∈M (similar to a de-
coder). We again think of two friends Alice and Bob who want to communicate through the channel.
If Alice sends message m, then the probability that Bob correctly decodes it is:

Tr(ΛmN⊗n(ρm
An )). (5.67)

Thus, the probability of error when a particular message m is sent is given by:

pe (m) = Tr((1−Λm)N⊗n(ρm
An )). (5.68)

If the maximum probability of error maxm∈M pe (m) is no greater than ε, and if the rate of the code
is R = |M|

n then we again say that we have a (n,R,ε) code. We now state the HSW theorem:

Theorem 5.10 (Holevo-Schumacher-Westmoreland). We define the capacity of a quantum channel
N as:

C (N ) =χreg(N ). (5.69)

Then any rate R <C is achievable, that is: for any ε ∈ (0,1) there exists some n ∈N such that there is
an (n, R̃,ε) code, where R̃ ≥ R. Moreover, for any R >C there exists some ε ∈ (0,1) such that there is
no n ∈N for which an (n, R̃,ε) code exists with R̃ ≥ R.
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5.2.2. Direct Coding Part
We will now prove the direct coding part (which states that rates below the capacity are achievable)
using typical subspaces and the packing lemma. Let {pX (x),ρx

A}x∈X be any ensemble. We will show
that I (X ;B)ρ with ρX B =∑

x pX (x)|x〉〈x|X ⊗N (ρx
A) is an achievable rate. Since we picked a random

ensemble, it will then follow that the Holevo information of the channel can be achieved.
First of all, Alice selects |M| codewords {xn(m)}m∈M randomly and independently according to

the following distribution:

pX ′n (xn) =
pX n (xn)

(∑
xn∈T X n

δ
pX n (xn)

)−1
if xn ∈ T δ

X n

0 else
. (5.70)

These classical codewords xn(m) = x1(m) · · · xn(m) give rise to quantum codewords:

ρxn (m)
An = ρx1(m)

A ⊗· · ·⊗ρxn (m)
A . (5.71)

When Alice puts such a quantum codeword into the channel the output is:

σxn (m)
B n =σx1(m)

B ⊗· · ·⊗σxn (m)
B =N (ρx1(m)

A )⊗· · ·⊗N (ρxn (m)
A ). (5.72)

We will now use the derandomised version of the packing lemma (corollary 5.9) and in order to do so
we need several objects satisfying the correct properties. The first of these objects will be the ensem-
ble {p ′

X ′n (xn),σxn

B n }xn∈X n deduced as explained above from our original ensemble {pX (x),ρx
A}x∈X .

The second object is the expected density operator of this ensemble:

EX ′n (σX ′n
) = ∑

xn∈X n

p ′
X ′n (xn)σxn

B n . (5.73)

The last two objects we need are a code subspace projector and a set of codeword subspace projects
for each message. We take the code subspace projector to be the typical subspace projectorΠδB n for
the state σ⊗n , where:

σB n = ∑
x∈X

pX (x)σx
B = ∑

x∈X
pX (x)N (ρx

A). (5.74)

Lastly, we take the codeword subspace projectors to be the conditionally typical subspace projectors
ΠδB n |xn for the ensemble {pX (xi ),σxi }1≤i≤|M| belonging to the codeword σxn

B n . Now, the first three
properties needed to use the packing lemma are immediately satisfied by the properties of typical
subspaces: for every δ> 0 and ε ∈ (0,1) there exists an n ∈N such that:

Tr
(
ΠδB nσ

xn

B n

)
≥ 1−ε, (5.75)

Tr
(
ΠδB n |xnσ

xn

B n

)
≥ 1−ε, (5.76)

Tr
(
ΠB n |xn

)≤ 2n(H(B |X )+cδ). (5.77)

In this last property we have used the constant c to absorb the δ′′ in property 5.5. Now all we need
to do is show that the last property needed for the packing lemma holds. Indeed, by using that

EX ′n
(
σX ′n

B n

)
≤ 1

1−εσB n and the equipartition property of the typical subspace projector ΠδB n we find

that:

ΠδB nEX ′n
(
σX ′n

B n

)
ΠδB n ≤ 1

1−ε2−n(H(B)−c ′δ)ΠδB n , (5.78)

where c ′ is also a positive constant. Thus, all conditions necessary to use the derandomised packing
lemma (corollary 5.9) are satisfied, and we find that the maximal probability of error p∗

e satisfies:

p∗
e = max

m
Tr

(
(1−Λm)N⊗n(ρxn (m))

)
(5.79)

≤ 4(ε+2
p
ε)+ 16

1−ε2−n(H(B)−H(B |X )−(c+c ′)δ)|M| (5.80)

≤ 4(ε+2
p
ε)+ 16

1−ε2−n(I (X ;B)−(c+c ′)δ)|M|. (5.81)
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We see that if we choose |M| = 2n(I (X ;B)−(c+c ′+1)δ) we get a rate of:

1

n
log(|M|) = I (X ;B)− (c + c ′+1)δ, (5.82)

and a maximal probability of error of:

p∗
e ≤ 4(ε+2

p
ε)+ 16

1−ε2−nδ, (5.83)

which can be made arbitrarily small when n can become arbitrarily large. Thus, we have seen that
the Holevo information I (X ;B)ρ with respect to the following classical-quantum state:

ρX B = ∑
x∈X

pX (x)|x〉〈x|X ⊗N (ρx ), (5.84)

is an achievable rate [Wil19]. If we now instead use a code for the tensor product channel N⊗k

then the rate 1
kχ(N⊗k ) can be achieved. Thus, by taking k arbitrarily large, the regularised Holevo

information χreg(N ) can be achieved [Wil19]. This concludes the proof of the direct coding part.
We now sketch the proof of converse part of the HSW theorem, which states that rates above the

regularised Holevo information are not achievable. The details can be found in subsection 20.3.2 of
[Wil19]. The idea is to consider a different kind of task than classical communication over a quan-
tum channel N :L(HA) →L(HB ). This different task is called randomness distribution.

The protocol for randomness distribution is as follows: Alice has a message setM and uniformly
randomly generates a classical state of the following form:

Φ= ∑
m∈M

1

|M| |m〉〈m|M ⊗|m〉〈m|M ′ . (5.85)

She then encodes half of the state into quantum codewords, giving her the state:∑
m∈M

1

|M| |m〉〈m|M ⊗ρm
A′n , (5.86)

and transmits these quantum codewords over n uses of the channel, giving:∑
m∈M

1

|M| |m〉〈m|M ⊗N⊗n(ρm
A′n ). (5.87)

Bob then performs a POVM {Λm} on the system that he received through the channel. If the state

ωM M ′ = ∑
m,m′∈M

1

|M| Tr
{
Λm′N⊗n (

ρm
A′n

)} |m〉〈m|M ⊗ | m′〉〈
m′∣∣

M ′ (5.88)

is then close to the orginial state in the following sense:

1

2
||ΦM M ′ −ωM M ′ ||1 ≤ ε, (5.89)

then we call this protocol an (N ,R,ε) protocol, where R = 1
n log(|M|). In an analogous fashion to

the classical capacity, the capacity for randomness distribution is then the supremum of achievable
rates. As shown in [Wil19], the capacity for randomness distribution is at least as great as the classi-
cal capacity of a quantum channel. One can show that the regularised Holevo information bounds
the capacity for randomness distribution from above, and must therefore also bound the classical
capacity from above. Since we showed in the direct coding part that the regularised Holevo infor-
mation bounds the classical capacity from below, we can thus conclude that the classical capacity
is equal to the regularised Holevo information.

Example 5.1. The capacity of the depolarising channel with parameter p on a Hilbert space H is
the following [Wil19]:

log(d)+ (1−p + p

d
)log

(
1−p + p

d

)
+ (d −1)

p

d
log

( p

d

)
, (5.90)

where d is the dimension of H.
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5.2.3. Superadditivty of Holevo Information
We finish this chapter with a consideration of the (non-)additivity of the Holevo information. Addi-
tivity of the Holevo information would mean that:

χ(N ⊗M) =χ(N )+χ(M), (5.91)

for any two quantum channels N and M. If the Holevo information would be additive, then it
would be a good characterisation of the classical capacity of a quantum channel, because it would
imply that the regularisation of the Holevo information is unnecessary. Indeed, if the Holevo infor-
mation were additive, then for any quantum channel N we would have χreg(N ) =χ(N ).

It was first conjectured that the Holevo information is indeed additive, because several quan-
tum channels were discovered for which it was the case. In 2009, however, Hastings showed that
this conjecture is false in [Has09]. He showed that a different quantity called the minimum out-
put entropy is non-additive, and it was already known that non-additivity of the minimum output
entropy implies non-additivity of the Holevo information.

This means that using entangled states as codewords can increase the capacity of a quantum
channel. It also means that the most basic question of the classical capacity of a quantum channel
remains open and that further research is needed to determine in what situations entanglement can
increase the classical capacity of a quantum channel [Has09].



6
Quantum Zero-Error Communication

In chapter three we considered zero-error communication through classical channels. We showed
that a classical channel can be represented by a graph which contains all information needed to
express the zero-error capacity of that channel. Moreover, we provided a lower and upper bound
for the zero-error capacity and we showed that the zero-error capacity is non-additive. That is,
the zero-error capacity of two channels combined can be greater than the sum of the zero-error
capacities of the individual channels.

In the present chapter we will extend these concepts to the case of zero-error communication
through quantum channels. Moreover, we will see that in the quantum case there exists an even
more surprising phenomenon than superadditivity, called superactivation. Indeed, we will show
that there exist two quantum channels which individually have no zero-error classical capacity, but
whose combined channel does have zero-error classical capacity. This result is the most advanced
so far and can be regarded as the climax of this thesis.

6.1. Zero-Error Classical Capacity of a Quantum Channel
In order to investigate the zero-error classical capacity of a quantum channel we first need to define
it. We will then translate this definition into graph-theoretical language, analogously to what we
did in chapter 3. This graph-theoretical language will allow us to further study the properties of the
zero-error classical capacity. We then finish the section by relating the zero-error classical capacity
to the Holevo-Schumacher-Westmoreland capacity from the previous chapter.

6.1.1. Zero-Error Quantum Codes and Capacity
We begin our study of the zero-error classical capacity of quantum channels by generalising the
error-free code that we defined in chapter 3 to the case of quantum channels. We present this gen-
eralisation according to [GdAM16].

Definition 6.1. Let N :L(HA) →L(HB ) be a quantum channel. An (M ,n) error-free quantum code
over N consists of a finite set M = {1, ..., M } of messages, an encoder E n : M → D(HA)⊗n and a
decoding POVM {Λm}m∈M such that the probability of error is zero for all m ∈M:

Tr((1−Λm)N (E(m))) = 0. (6.1)

We can now define the zero-error classical capacity over a quantum channel, which is really
simply a straightforward generalisation of the zero-error capacity of a classical channel.

Definition 6.2. Let N be a quantum channel. Then the zero-error classical capacity C 0(N ) of this
channel is defined as:

C 0(N ) = sup
n∈N

1

n
log(N (n)), (6.2)
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where N (n) is the maximum number M of messages that can be sent over N using an (M ,n) error-
free quantum code.

This definition is exactly the same as in the classical case. It will, however, be useful for us to
formulate it slightly differently because it will then be easier to understand the graph-theoretical
formulation in the next subsection. We thus get [GdAM16]:

Definition 6.3. Let N : L(HA) → L(HB ) be a quantum channel. Then the zero-error classical ca-
pacity C 0(N ) of this channel is defined as:

C 0(N ) = sup
S

sup
n∈N

1

n
log(αn(N )), (6.3)

where S ⊂D(HA) is a finite set of input states and αn(N ) is the maximum number M of messages
which can be transmitted over N with an (M ,n) error-free quantum code using only input states in
S.

The fact that these definitions are in fact equivalent follows from supS αn(N ) = N (n) for any n ∈
N, because we can write supS supn∈N

1
n log(αn(N )) = supn∈N

1
n log(supS αn(N )) since the logarithm

is a continuous and increasing function.
In order to study the zero-error classical capacity of quantum channels we will - analogously

to the classical case - introduce the notion of adjacency between states. This notion will allow us
generalise the concept of the characteristic graph from chapter 3 to the quantum case.

Definition 6.4. Let N : L(HA) →L(HB ) be a quantum channel. Then two states ρ1,ρ2 ∈D(HA) are
said to be adjacent (or indistinguishable) if the supports of their output states are not orthogonal.
That is:

Tr
(
N (ρ1)N (ρ2)

)> 0. (6.4)

Otherwise, we call ρ1 and ρ2 non-adjacent (or distinguishable).

The above definition can immediately be generalised to tensor product states. Indeed, if ρ1 =
ρ1

1 ⊗ ...⊗ρn
1 and ρ2 = ρ1

2 ⊗ ...⊗ρn
2 are density operators in H⊗n

A , then we call them distinguishable if
there is some 1 ≤ i ≤ n such that ρi

1 and ρi
2 are non-adjacent. If all entries are adjacent, then we call

the tensor product states indistinguishable. Let us now end this subsection by considering a simple
example: the depolarising channel.

Example 6.1. Let N : L(H) → L(H) be a depolarising channel, where d = dim(H). Recall that the
action of the depolarising channel on a density operator ρ ∈D(H) is as follows:

N (ρ) = (1−p)ρ+ p

d
1, (6.5)

for some p ∈ (0,1). Now let ρ1,ρ2 ∈D(H). Then we have:

Tr
(
N (ρ1)N (ρ2)

)= Tr
((

(1−p)ρ1 + p

d
1
)(

(1−p)ρ2 + p

d
1
))

(6.6)

= Tr

(
(1−p)2ρ1ρ2 + (1−p)p

d
(ρ1 +ρ2)+ p2

d 21

)
> p2

d 2 > 0. (6.7)

Here we have used that the trace of the product of two density operators ρ1 and ρ2 is non-negative.
To see that this is true, consider the following:

Tr(ρ1ρ2) = Tr(
p
ρ1

p
ρ1ρ2) = Tr(

p
ρ1ρ2

p
ρ1

†) ≥ 0. (6.8)

We see that any two input states ρ1,ρ2 are indistinguishable. Therefore, no POVM could com-
pletely reliably distinguish between them, meaning that the depolarising channel has a zero-error
classical capacity equal to zero.
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6.1.2. Graph-Theoretical Formulation
In this subsection we define the characteristic graph of a quantum channel in exactly the same way
as for a classical channel. We then translate the expression for the zero-error classical capacity into
an expression about the characteristic graph. This formulation will be useful in proving a result on
the zero-error classical capacity in the next subsection.

Definition 6.5. Let N : L(HA) →L(HB ) be a quantum channel and let S be a finite set of states in
D(HA). The characteristic graph G corresponding to N and the set S is the undirected graph whose
vertices are the elements of S and which has edges between the states in S which are distinguishable.
We can generalise this to the tensor product channel N⊗n , where the vertices are the elements of
S⊗n and the edges are still between distinguishable tensor product states.

With this definition we can reformulate the expression for the zero-error classical capacity of a
quantum channel. Indeed, given a quantum channel N : L(HA) → L(HB ) and some finite subset
S ⊂D(HA) of input states, the maximum number of messages M which can be transmitted by an
(M ,n) error-free quantum code over the channel using states from S is equal to the clique num-
ber ω(G) (defintion 3.6) of the corresponding characteristic graph G . Thus, we find an alternative
expression for the zero-error classical capacity:

C 0(N ) = sup
S

sup
n∈N

1

n
log(ω(G)), (6.9)

where the suprema are taken over all input sets S and code lengths n.

6.1.3. Properties of Zero-Error Classical Capacity
Now that we understand how the zero-error classical capacity can be expressed in terms of charac-
teristic graphs we will prove two properties of the zero-error classical capacity. The first one states
that the zero-error classical capacity can always be achieved by using a set of pure input states:

Theorem 6.1. Let N : L(HA) →L(HB ) be a quantum channel. Then the zero-error capacity of this
channel is equal to:

C 0(N ) = sup
S′

sup
n∈N

1

n
log(ω(G ′)), (6.10)

where S′ is a set of pure input states and G ′ is the corresponding characteristic graph.

Proof: we prove that for any set S of input states we can construct a set S′ of pure input states
such that:

sup
n∈N

1

n
log(ω(G)) = sup

n∈N
1

n
log(ω(G ′)), (6.11)

where G and G ′ are the characteristic graphs corresponding to the input sets S and S′ respectively.
If this statement is indeed true, then the theorem immediately follows from the characterisation of
the zero-error capacity in equation 6.9. Thus, let S be any set of input states. We then define S′ to
be a set of pure states {|φi 〉〈φi |A} such that |φi 〉A is an eigenvector of ρi ∈ S, whose corresponding
eigenvalue is nonzero. That is, for every density operator in S we pick one of its eigenvectors and
add its corresponding pure density operator to S′.

We will now show that a pair of pure states in S′ is distinguishable when the corresponding den-
sity operators in S are distinguishable. Let {Nk } be the Kraus operators of N , and let ρ1,ρ2 ∈ S. We
write these two states in their spectral decompositions: ρ1 =∑

i λ
i
1|ψi

1〉〈ψi
1|A andρ2 =∑

i λ
i
2|ψi

2〉〈ψi
2|A .
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Suppose ρ1 and ρ2 are distinguishable. This implies:

0 = Tr
(
N (ρ2)N (ρ2)

)= Tr

(∑
k

Nkρ1N †
k

∑
l

Nlρ2N †
l

)
(6.12)

= Tr

(∑
k

Nk

∑
i
λi

1|ψi
1〉〈ψi

1|A N †
k

∑
l

Nl

∑
j
λ

j
2|ψ

j
2〉〈ψ

j
2|A N †

l

)
(6.13)

= Tr

( ∑
i , j ,k,l

λi
1λ

j
2Nk |ψi

1〉〈ψi
1|A N †

k Nl |ψ j
2〉〈ψ

j
2|A N †

l

)
= ∑

i , j ,k,l
λi

1λ
j
2

∣∣∣〈ψi
1|N †

k Nl |ψ j
2〉

∣∣∣2
. (6.14)

Thus, we conclude that for all i , j ,k, l we have 〈ψi
1|N †

k Nl |ψ j
2〉 = 0. We will now use this fact to show

that any eigenvector of ρ1 is distinguishable from any eigenvector of ρ2:

Tr
(
N (|ψi

1〉〈ψi
1|A)N (|ψ j

2〉〈ψ
j
2|A)

)
= Tr

(∑
k

Nk |ψi
1〉〈ψi

1|A N †
k

∑
l

Nl |ψ j
2〉〈ψ

j
2|A N †

l

)
(6.15)

= Tr

(∑
k,l

Nk |ψi
1〉〈ψi

1|A N †
k Nl |ψ j

2〉〈ψ
j
2|A N †

l

)
=∑

k,l

∣∣∣〈ψi
1|N †

k Nl |ψ j
2〉

∣∣∣2 = 0. (6.16)

But this means that the graph G ′ contains all edges that G contains. G ′ can only differ from G in the
sense that it can have more edges, i.e. more distinguishable input states. But the clique number of a
graph can only increase when one adds edges to it, so we conclude that the clique numberω(G ′) is at
least as great as ω(G). This means that supS supn

1
n log(ω(G)) ≤ supS′ supn

1
n log(ω(G ′)). But because

using only sets of pure input states instead of using any set of input states is a restriction we trivially
have supS supn

1
n log(ω(G)) ≥ supS′ supn

1
n log(ω(G ′)). Thus, the statement of the theorem follows.

We will now state and prove the last result of this section, which relates the zero-error classical ca-
pacity to the HSW capacity:

Theorem 6.2. Let N be a quantum channel and let C (N ) denote its HSW capacity. Then:

C 0(N ) ≤C (N ). (6.17)

Proof: in chapter 5 we saw that the HSW capacity is the supremum of all achievable rates over
N . In this case, achievable rate means that for every ε> 0 there exists a code with at least that rate
and with probability of error no greater than ε. Now let n ∈ N. Then the greatest zero-error rate R
which can be achieved using the channel n times is 1

n log(N (n)), where N (n) denotes the maximum
number M of messages for which there exists an (M ,n) error-free quantum code. But R is then
clearly achievable in the sense of the HSW capacity. Thus we find that R <C (N ). But since this hold
for all n ∈N we conclude that:

sup
n∈N

1

n
log(N (n)) ≤C (N ), (6.18)

which is just the statement that the zero-error classical capacity is no greater than the HSW capacity.

6.2. Superactivation of Zero-Error Classical Capacity
Now that we understand the main definitions and results concerning the zero-error classical ca-
pacity of a quantum channel, we investigate an interesting and surprising phenomenon: the su-
peractivation of the zero-error classical capacity, which was proven to exist by Cubitt, Chen and
Harrow. This phenomenon entails the following: there exist two quantum channels which each
have no zero-error classical capacity at all, whereas their combined (tensor product) channel does
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have positive zero-error classical capacity. It is called superactivation because we think of the two
channels as activating each other, thus yielding a positive zero-error capacity whereas individually
they do not have any.

In this section we present the main idea of the proof which shows that the zero-error classical
capacity can be superactivated. For the complete proof and more details we refer the reader to the
original paper [CCH11]. Before we present the main idea, however, we develop some preliminary
notions and results on so-called conjugate-divisible maps.

6.2.1. Conjugate-Divisble Maps
Let us start by stating the definition of a conjugate-divisible map.

Definition 6.6. Let HA be a Hilbert space. Then a map N :HA →HA is called conjugate-divisible if
it can be written:

N = E∗ ◦E , (6.19)

where E :HA →HB is a quantum channel and E∗ is its adjoint.

Conjugate-divisible maps will play a major role in our proof that superactivated channels ex-
ist, because studying the map E∗ ◦E for a quantum channel E will turn out to carry information
about the zero-error classical capacity of E . It will be useful for us to study these maps via their
Choi-Jamiolkowski operators, provided by the Choi-Jamiolkowski isomorphism. More on the Choi-
Jamiolkowski operator and isomorphism can be found in section 4.4.1 of [Wil19]. We will first use
the standard Choi-Jamiolkowski operator, which is defined as follows [Wil19]:

Definition 6.7. LetHR andHA be isomorphic Hilbert spaces and let {|i 〉R } and {|i 〉A} be orthonormal
basis for them respectively. Let HB be another Hilbert space and let N : L(HA) → L(HB ) be any
linear map. Then a Choi-Jamiolkowski operator corresponding to this map is given by:

σRB = (1R ⊗N )(|ω〉〈ω|R A), (6.20)

where |ω〉R A is an unnormalised vector given by:

|ω〉R A =
dA∑

i=0
λi |ψi 〉R ⊗|φi 〉A , (6.21)

with {|ψ〉R } and {|φ〉A} orthonormal bases and no λi equal to zero.

Since HA and HR are isomorphic, we will from now on write A instead of R, since this makes
our equations more orderly. Introducing the basis change U |ψi 〉 = |φi 〉 (with U unitary) we can also
get back the action of the map N in the above definition by [CCH11]:

N (ρA) = TrA(Uσ
− 1

2
A ⊗1B ·σAB ·σ− 1

2
A U † ⊗1B ·ρT

A ⊗1B ), (6.22)

where σA = TrB (σAB ). The standard Choi-Jamiolkowski operator σ̃AB is obtained by setting |ω〉 =∑
i |i 〉|i 〉 where |i 〉 is a basis of HA , and the above equation simplifies to:

N (ρA) = TrA(σ̃AB ·ρT
A ⊗1B ). (6.23)

Moreover, we see that we can write:

σ̃AB =Uσ
− 1

2
A ⊗1B ·σAB ·σ− 1

2
A U †, (6.24)

where U is unitary [CCH11].
In order to prove our first result about conjugate divisible maps we need a lemma, and this

lemma makes use of the following operation:
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Definition 6.8. Let |ψ〉AB be a bipartite state in HA⊗HB , where |i 〉A and | j 〉B are orthonormal bases
of the isomorphic Hilbert spaces HA and HB respectively. Writing |ψ〉AB =∑

i , j ci j |i 〉A ⊗| j 〉B the flip
operation is defined as follows:

F(|ψ〉AB ) = F
(∑

i , j
ci j |i 〉A ⊗| j 〉B

)
=∑

i , j
c̄i j | j 〉A ⊗|i 〉B , (6.25)

where c̄i j denotes the complex conjugate of ci j . This definition can be extended to a density oper-
ator ρAB =∑

i , j λi j |i 〉A| j 〉B 〈i |A〈 j |B by:

F(ρAB ) =∑
i , j
λ̄i j | j 〉A|i 〉B 〈 j |A〈i |B . (6.26)

We call a bipartite state or operator conjugate-symmetric if it is invariant under the flip operation.
Similarly, we call a subspace of HA ⊗HB conjugate-symmetric if it is invariant under the flip opera-
tion.

Using this flip operator we get the following lemma:

Lemma 6.3. Let E :L(HA) →L(HB ) be a quantum channel with standard Choi-Jamiolkowski oper-
ator ρAB . Then the standard Choi-Jamiolkowski operator of E∗ is given by:

F(ρAB ) = ρ̄B A . (6.27)

Proof: by definition, the adjoint E∗ : L(HB ) →L(HA) of E : L(HA) →L(HB ) is defined to be the
unique map which satisfies:

Tr(ψ ·E(φ)) = Tr(E∗(ψ) ·φ), (6.28)

for any φ ∈L(HA) and ψ ∈L(HB ). Thus, we get the following:

Tr(E∗(ψ)† ·φ) = Tr(E∗(ψ†) ·φ) = Tr(ψ† ·E(φ)) = Tr
(
ψ† ·TrA(ρAB · (φT ⊗1ψ))

)
(6.29)

= Tr
(
1A ⊗ψ† ·ρAB ·φT ⊗1B

)
= Tr

(
TrB (1A ⊗ψ†)ρAB )φT

)
(6.30)

= Tr
(
TrB (1A ⊗ψ† ·ρAB )Tφ

)
= Tr

(
TrB (1A ⊗ ψ̄ ·ρTB

AB )φ
)

(6.31)

= Tr
(
TrB (ρTB

AB ·1A ⊗ ψ̄)φ
)
= Tr

(
TrB (ρTB

B A · ψ̄⊗1A)φ
)

(6.32)

= Tr
(
TrB (ρ̄B A ·ψ⊗1A)†φ

)
= Tr

(
TrB (F(ρAB ) ·ψT ⊗1A)†φ

)
, (6.33)

where TB denotes the transpose with respect to the subsystem B only.
From this we recognise that:

E∗(ψ) = TrB (F(ρAB ) ·ψT ⊗1A), (6.34)

and thus we conclude that the standard Choi-Jamiolkowski operator of E is indeed F(ρAB ).

We can now state and prove our first result on conjugate-divisble maps.

Lemma 6.4. If E :L(HA) →L(HB ) is a quantum channel with standard Choi-Jamiolkowski operator
ρAB , then the standard Choi-Jamiolkowski matrix of the map N = E∗ ◦E is given by:

σA A′ = TrB
(
ρAB ⊗1A′ ·1A ⊗F(ρA′B )TB

)
. (6.35)



6.2. Superactivation of Zero-Error Classical Capacity 59

Proof: for any φ ∈L(HA) we have:

N (φ) = TrB

(
F(ρA′B ) · (E(φ)

)T ⊗1′
A

)
= TrB

(
F(ρA′B ) · (TrA(ρAB ·φT ⊗1B )

)T ⊗1′
A

)
(6.36)

= TrB

((
TrA(ρAB ·φT ⊗1B )

)T ⊗1′
A ·F(ρA′B )

)
(6.37)

= TrB
(
TrA(ρAB ·φT ⊗1B )⊗1′

A ·F(ρA′B )TB
)

(6.38)

= TrA
(
TrB (ρAB ⊗1A′ ·1A ⊗F(ρA′B )TB ) ·φT ⊗1B ⊗1′

A

)
. (6.39)

We indeed recognise that σA A′ = TrB
(
ρAB ⊗1A′ ·1A ⊗F(ρA′B )TB

)
.

As explained in [CCH11], we can generalise this result to non-standard Choi-Jamiolkowski opera-
tors by recognising that the standard operator is related to any non-standard one by equation (6.24).
This yields the following result:

Corollary 6.5. Let E be a channel with Choi-Jamiolkowski operator (standard or non-standard) ρAB .
Then

σA A′ = TrB
(
ρAB ⊗1A′ ·1A ⊗F(ρA′B )TB

)
(6.40)

is a Choi-Jamiolkowski operator of N = E∗ ◦E .

Before we further investigate the properties of Choi-Jamiolkowski operators of conjugate-divisible
maps we introduce some new notation.

Notation 6.6. Let |ψ〉AB be a bipartite state in HA⊗HB =CdA ⊗CdB . Let us write it out in the product
basis:

|ψ〉AB =∑
i , j

Mi j |i 〉| j 〉. (6.41)

Then we define the isomorphism M to take a bipartite state to the dA ×dB matrix with coefficients
Mi j . Similarly, given a subspace S ⊂ HA ⊗HB we write M(S) for the corresponding matrix sub-
space. A state |ψ〉 is then called conjugate-symmetric (invariant under the flip operation) if its ma-
trix M(|ψ〉) is hermitian, and a subspace S is called conjugate-symmetric if M(S) is spanned by a
basis of hermitian matrices.

We now use this notation to define the following [CCH11]:

Definition 6.9. Let |ψ〉AB be a bipartite state inHA⊗HB =CdA ⊗CdB . We call |ψ〉AB positive semidef-
inite if M(|ψ〉) is a positive semidefinite matrix (and therefore also hermitian). Similarly, we call a
subspace S positive semidefinite if M(S) is spanned by a basis of positive semidefinite matrices.

We remark that a positive semi-definite subspace need not contain only positive semidefinite
elements. It only needs to have a positive semidefinite basis. Moreover, we remark that a subspace
is already positive semi-definite if it contains one positive definite element, because then we can
just add this element many times to any basis and turn it into a positive semidefinite basis [CCH11].
Lastly, we remark that since a positive semidefinite matrix is in particular hermitian, any positive
semidefinite subspace is also a conjugate-symmetric subspace.

In order to prove the main theorem of this subsection we need two lemmas, of which we now
present and prove the first.

Lemma 6.7. The support of the Choi-Jamiolkowski operator (the span of its column vectors) of a
conjugate-divisible map is a positive semidefinite subspace.
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Proof: let N = E∗ ◦ E be a conjugate divisible map, where E : L(HA) → L(HB ) is a quantum
channel with Choi-Jamiolkowski operator ρAB . From corollary 6.5 we know the Choi-Jamiolkowski
operator of N is given by:

σA A′ = TrB
(
ρAB ⊗1A′ ·1A ⊗F(ρA′B )TB

)
. (6.42)

If we now write ρAB =∑
k |φk〉〈φk |AB with |φk〉AB =∑

i |ψk
i 〉A|i 〉B , where eigenvalues and coefficients

have been absorbed into the unnormalised basis vectors |φk〉AB and |ψk
i 〉A , we get the following:

σA A′ = TrB
(
ρAB ⊗1A′ ·1A ⊗F(ρA′B )TB

)
(6.43)

= TrB

( ∑
i , j ,k

|ψk
i 〉A|i 〉B 〈ψk

j |A〈 j |B ⊗1A′ ·1A ⊗F
( ∑

l ,m,n
|ψn

l 〉A′ |l〉B 〈ψn
m |A′〈m|B

)TB
)

(6.44)

= TrB

( ∑
i , j ,k

|ψk
i 〉A|i 〉B 〈ψk

j |A〈 j |B ⊗1A′ ·1A ⊗
( ∑

l ,m,n
|l〉B |ψ̄n

l 〉A′〈m|B 〈ψ̄n
m |A′

)TB
)

(6.45)

= TrB

( ∑
i , j ,k

|ψk
i 〉A|i 〉B 〈ψk

j |A〈 j |B ⊗1A′ ·1A ⊗ ∑
l ,m,n

|m〉B |ψ̄n
l 〉A′〈l |B 〈ψ̄n

m |A′

)
(6.46)

= ∑
i , j ,k,l

|ψk
i 〉A|ψ̄l

i 〉A′〈ψk
j |A〉ψ̄l

j |A′ . (6.47)

Thus, if we use S A A′ to denote the support of σA A′ we find:

S A A′ = span

(∑
i
|ψk

i 〉A|ψ̄l
i 〉A′

)
k,l

. (6.48)

But now we see that M(S A A′) contains the following matrix:

M

(∑
i ,k

|ψk
i 〉A|ψ̄k

i 〉A′

)
=∑

i ,k
|ψk

i 〉〈ψk
i |, (6.49)

which is a positive definite matrix. We conclude that S A A′ is a positive semidefinite subspace.

The second lemma that we need is the following [CCH11]:

Lemma 6.8. For any conjugate symmetric subspace S A A′ ⊂HA ⊗HA′ such that supp(TrA′(S A A′)) =⋃
|ψ〉∈S A A′ supp(TrA′(|ψ〉〈ψ|)) =HA we can construct a Choi-Jamiolkowski operatorσA A′ of a conjugate-

divisible map N = E∗◦E such that supp(σA A′) = S A A′ . The quantum channel E :L(HA) →L(HB ) has
input dimension dA =HA , rank dE = dim(S A A′) and output dimension dB = dAdE .

Proof: since S A A′ is positive semidefinite,M(S A A′) has a basis {Mk } of matrices Mk ≥ 0 (which are
therefore also Hermitian). Thus, we can spectrally decompose and absorb the positive eigenvalues
into the eigenstates for every such matrix:

Mk =∑
i
|ψk

i 〉〈ψk
i |. (6.50)

We thus have:

S A A′ = span

(∑
i
|ψk

i 〉|ψ̄k
i 〉

)
k

. (6.51)

We now consider the following operator:

ρAB = ∑
i , j ,k

|ψk
i 〉A|k, i 〉B 〈ψk

j |A〈k, j |B , (6.52)
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which is positive semidefinite. Moreover, we have that the rank of Tr(ρAB ) is dA . Thus, by the Choi-
Jamiolkowski isomorphism it is the Choi-Jamiolkowski operator of a quantum channel E :L(HA) →
L(H)B which has rank dE = dim(S A A′) and where dB = dAdE [CCH11]. We can now use corollary 6.5
to find the Choi-Jamiolkowski operator σA A′ of the conjugate-divisble map N = E∗ ◦E :

σA A′ = TrB
(
ρAB ⊗1A′ ·1A ⊗F(ρA′B )TB

)= TrB

( ∑
i , j ,k

|ψk
i 〉A|k, i 〉B 〈ψk

j |A〈k, j |B ⊗1A′ (6.53)

·1A ⊗F
( ∑

l ,m,n
|ψn

l 〉A′ |n, l〉B 〈ψn
m |A′〈n,m|B

)TB )
(6.54)

= TrB

( ∑
i , j ,k

|ψk
i 〉A|k, i 〉B 〈ψk

j |A〈k, j |B ⊗1A′ ·1A ⊗
( ∑

l ,m,n
|n, l〉B |ψ̄n

l 〉A′〈n,m|B 〈ψ̄n
m |A′

)TB
)

(6.55)

= TrB

( ∑
i , j ,k

|ψk
i 〉A|k, i 〉B 〈ψk

j |A〈k, j |B ⊗1A′ ·1A ⊗ ∑
l ,m,n

|n,m〉B |ψ̄n
l 〈A′〈n, l |B 〈ψ̄n

m |A′

)
(6.56)

= ∑
i , j ,k

|ψk
i 〉A|ψ̄k

i 〉A′〈ψk
j |A〈ψ̄k

j |A′ . (6.57)

The support of this operator is span
(∑

i |ψk
i 〉A|ψ̄k

i 〉A′
)

k
, which we saw is equal to S A A′ at the begin-

ning of this proof.

We are now in a position to state the main result of this section. This theorem will allow us to study
the zero-error classical capacity of a quantum channel by studying its corresponding conjugate di-
visible map. It is directly implied by lemmas 6.7 and 6.8.

Theorem 6.9. Let S A A′ ⊂HA ⊗HA′ be a subspace which is such that supp(TrA′(S A A′)) =HA . Then
there exists a conjugate divisble map with Choi-Jamiolkowski matrix σA A′ satisfying supp(σA A′) =
S A A′ if and only if S A A′ is a positive semidefinite subspace.

6.2.2. Existence of Superactivated Channels
In this section we will explain the proof that there exist two quantum channels whose zero-error
classical capacity is superactivated. In order to do so, we first translate this statement about the ex-
istence of two quantum channels into a statement about the existence of a subspace S ⊂HA ⊗HA

and two unitary operators U ,V on HA satisfying certain conditions. We then explain how one can
show that such a subspace and unitary operators exist, thereby proving the existence of superacti-
vation of the zero-error classical capacity.

Now, a quantum channel E : L(HA) → L(HB ) has nonzero zero-error classical capacity if and
only if there exist two distinguishable states, i.e. for all n ∈N there exist |ψ〉, |φ〉 ∈H⊗n

A such that:

Tr
(
E⊗n(|ψ〉〈ψ|)E⊗n(|φ〉〈φ|))= 0. (6.58)

Since a quantum channel maps density operators to density operators, and density operators are
self-adjoint, we can write this equivalently as:

Tr
(
E⊗n(|ψ〉〈ψ|)†E⊗n(|φ〉〈φ|)

)
= 0. (6.59)
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Let {Nk } be the Kraus operators of E . Then we see, using the cyclicity of the trace:

Tr
(
E⊗n(|ψ〉〈ψ|)E⊗n(|φ〉〈φ|))= Tr

(∑
k

N⊗n
k |ψ〉〈ψ|N †⊗n

k

∑
l

N⊗n
l |φ〉〈φ|N †⊗n

l

)
(6.60)

=∑
k,l

Tr
(
N⊗n

k |ψ〉〈ψ|N †⊗n

k N⊗n
l |φ〉〈φ|N †⊗n

l

)
=∑

k,l
Tr

(
|ψ〉〈ψ|N †⊗n

k N⊗n
l |φ〉〈φ|N †⊗n

l N⊗n
k

)
(6.61)

= Tr

(∑
k,l

|ψ〉〈ψ|N †⊗n

k N⊗n
l |φ〉〈φ|N †⊗n

l N⊗n
k

)
= Tr

(
|ψ〉〈ψ| ·E∗⊗n (

E⊗n(|φ〉〈φ|))
))

. (6.62)

The above equations immediately imply the following result, which is the first step in our trans-
lation of the existence of superactivated channels into a statement about a subspace and unitary
operators:

Lemma 6.10. Let E1,E2 :L(HA) →L(HB ) be two quantum channels. Then the statement that E1,E2

have no zero-error classical capacity whereas E1⊗E2 does have zero-error classical capacity is equiv-
alent to:

∀i = 1,2 : ∀n ∈N : ∀|ψ〉, |φ〉 ∈H⊗n
A : Tr

(
ψ ·E∗⊗n

i ◦E⊗n
i (φ)

)
6= 0, (6.63)

∃|ψ〉, |φ〉 ∈H⊗2n
A : Tr

(
ψ · (E∗

1 ⊗E∗
2 )⊗n ◦ (E1 ⊗E2)⊗n(φ)

)= 0, (6.64)

where we have used the notation ψ= |ψ〉〈ψ|,φ= |φ〉〈φ|.
We will now find equivalent conditions for the above two equations. To do so for the first, let

σ1,2 denote Choi-Jamiolkowski operators of the conjugate divisible maps N1,2 = E∗
1,2 ◦E1,2. Then the

first condition simply states:

∀n ∈N : ∀|ψ〉, |φ〉 ∈H⊗n
A : Tr

(
ψA′⊗n ·TrA⊗n (σ⊗n

1,2 ·φT
A ⊗1A′)

)
(6.65)

= Tr
(
σ⊗n

1,2 ·φT
A ⊗ψA′

) 6= 0. (6.66)

From corrolary 6.5 we know that this holds for any Choi-Jamiolkowski operator and not only the
standard one, because the rescaling unitaries can be absorbed into ψ and φ [CCH11]. Alternatively,
we can interpret the above equation as stating that the orthogonal complements of the supports of
the operators σ1,2 contain no product states:

∀n ∈N : Ø|ψ〉, |φ〉 ∈H⊗n
A : |ψ〉⊗ |φ〉 ∈ S⊗n⊥

1,2 . (6.67)

We now turn our attention to the second condition of lemma 6.10. Since this conditions requires the
existence of two vectors |ψ〉, |φ〉 ∈H⊗2n

A satisfying a certain property, we can restrain these vectors
to be of the following form:

|ψ〉 =U⊗n
A1

⊗V ⊗n
A2

|ω〉⊗n , (6.68)

|φ〉 =W ⊗n
A′

1
⊗X ⊗n

A′
2
|ω〉⊗n , (6.69)

where |ω〉A1 A2 =
∑

i |i i 〉A1 A2 is the maximally entangled, unnormalised vector and U ,V ,W, X are uni-
tary. Thus, if we again use σ1,2 to denote the Choi-Jamiolkowski operators of N1,2 = E∗

1,2 ◦E1,2, the
second condition of 6.10 for |ψ〉 and |φ〉 as just defined translates to [CCH11][GdAM16]:

Tr
(
ψ · (N1 ⊗N2)⊗n)= Tr

(
ψ ·TrA

(
(σ1 ⊗σ2)⊗n ·φT ⊗1))= Tr

(
(σ1 ⊗σ2)⊗n ·φT ⊗ψ)

(6.70)

= Tr
(
(σ1 ⊗σ2)⊗n · (Ū⊗n ⊗ V̄ ⊗nωT ⊗n

U T ⊗n ⊗V T ⊗n
)⊗ (W ⊗n ⊗X ⊗nω⊗nW †⊗n ⊗X †⊗n

)
)

(6.71)

= Tr
((

(Ū⊗n ⊗W ⊗n) ·σ⊗n
1 · (U T ⊗n ⊗W †⊗n

)
)T

(6.72)

·
(
(V̄ ⊗n ⊗X ⊗n) ·σ⊗n

2 · (V T ⊗n ⊗X †⊗n
)
))

(6.73)

= Tr
(
σT ⊗n

1 · (U ′⊗n ⊗V ′⊗n)σ⊗n
2 (U ′†⊗n ⊗V ′⊗⊗n

)
)
= 0. (6.74)
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From this it follows that a sufficient condition for E1,2 to satisfy the second condition of 6.10 is that
there exist two unitary operators U ,V such that:

ST
2 =U ⊗V ·S⊥

1 , (6.75)

where S1,2 denote the supports of σ1,2 [CCH11]. Redefining, for easy of notation, S2 = supp(σT
2 ), we

now present the following lemma:

Lemma 6.11. If there exists subspaces S1,2 ⊂HA ⊗HA and unitary operators U ,V on HA satisfying:

∀n ∈N : Ø|ψ〉, |φ〉 ∈H⊗n
A : |ψ〉⊗ |φ〉 ∈ S⊗n⊥

1,2 , (6.76)

S2 =U ⊗V ·S⊥
1 , (6.77)

F(S1,2) = S1,2, (6.78)

∃{M 1,2
i ≥ 0} :M(S1,2) = span{M 1,2

i }, (6.79)

then there exist quantum channels E1,2 which individually have no zero-error classical capacity but
whose tensor product channel has positive zero-error classical capacity.

Proof: the first two conditions are simply the conditions which we established above, which
guarantee two quantum channels E1,2 to individually have no zero-error classical capacity but to
together have positive zero-error classical capacity. The existence of these channels, however, is
guaranteed by lemma 6.8 because the fourth property of this lemma is simply positive semidefinite-
ness. The property supp(TrA′(S A A′)) in lemma 6.8 can be neglected because we can always shrink
HA such that this property is indeed satisfied, without changing the requirements of the lemma
[CCH11]. The third property (conjugate-symmetry) is redundant because it is implied by the fourth
(positive semidefiniteness).

The redundant requirement of conjugate-symmetry is useful in proving that the appropriate sub-
spaces and unitary operators exist.

Now, the orthogonal complement of a conjugate-symmetric subspace is again conjugate- sym-
metric [CCH11]. So the second condition S2 =U ⊗V ·S⊥

1 of the above lemma implies the following
if S1 and S2 are conjugate-symmetric:

U ⊗V ·S1 = S⊥
2 = F(S⊥

2 ) = F(U ⊗V ·S1). (6.80)

Conversly, if S1 is conjugate-symmetric and the above equation holds, then we have F(S1,2) = S1,2

[CCH11]. Thus, we see that for any conjugate-symmetric subspace S, setting S1 = S and S2 =U ⊗V ·
S⊥ gives an alternative characterisation of the above lemma in terms of only one subspace:

Theorem 6.12. Let HA be a Hilbert space. If there exist a subspace S ⊂HA ⊗HA and unitary opera-
tors U ,V on HA satisfying the following conditions:

∀n ∈N : Ø|ψ〉, |φ〉 ∈H⊗n
A : |ψ〉⊗ |φ〉 ∈ S⊗n⊥

, (6.81)

∀n ∈N : Ø|ψ〉, |φ〉 ∈H⊗n
A : |ψ〉⊗ |φ〉 ∈ S⊥⊗n⊥

, (6.82)

F(S) = S (6.83)

F(U ⊗V ·S) =U ⊗V ·S, (6.84)

∃{Mi ≥ 0} :M(S) = span{Mi }, (6.85)

∃{M j ≥ 0} :M(U ⊗V ·S⊥) = span{M j }, (6.86)

then there exist two quantum channels which individually have no zero-error classical capacity but
whose tensor product channel has positive zero-error classical capacity.
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All that is left to do now is to prove that a subspace and unitary operators satisfying the above
conditions actually exist. This proof is carried out in [CCH11], using some concepts from algebraic
geometry. We finish this chapter by briefly sketching the proof.

One considers the set of subspaces which satisfy the third and fourth conditions. Let us denote
it by F . A measure can be defined on this set. This measure is the restriction of the measure on
the Grassmannian (the set of subspaces of a certain dimension), which is in turn induced from the
Haar measure on the unitary group. More details on the construction of this measure can be found
in [CS12] and in chapter three of [KP08].

First, the two unitary operators are chosen in a fixed way. It can then be shown that, for these
unitaries, the subset of F consisting of all subspaces which also satisfy the first and second condi-
tions is full measure in F . Moreover, it can be shown that the subset of F consisting of all subspaces
which also satisfy the fifth and sixth conditions is nonzero measure in F . Lastly, it can be shown that
F is not empty. We can interpret these results as follows: the probability that a random subspace
in F (i.e. satisfying the third and fourth conditions) also satisfies the first and second conditions
is 1, and the probability that it also satisfies the fifth and sixth conditions is nonzero. Since F is
non-empty there must therefore exist a subspace satisfying all conditions, and therefore there exist
superactivated channels.

The proof makes sure of algebraic geometric notions such as projective varieties, the Zariski
topology, the Plücker embedding and complete varieties. This is once again a testament to the wide
use of mathematical concepts in quantum information theory.



7
Conclusion

In this thesis two different classical capacities of both classical and quantum channels were studied,
thus resulting in a total of four different settings. A classical capacity is a maximum rate at which
information can be transmitted over a communication channel per use of the channel, subject to
certain conditions concerning the reliability of this transmission. Relations between and properties
of these capacities were highlighted and proven.

The first kind of classical capacity that was investigated was the capacity of a channel to transmit
information with a probability of error that becomes arbitrarily small when the channel can be used,
called the ordinary capacity. This capacity was studied both in the setting of classical and quantum
channels. The second kind of classical capacity that was studied is the capacity of a channel to
transmit information with zero probability of error. This capacity was also studied for both classical
and quantum channels.

The first setting that was studied was the ordinary capacity of classical channels. The pivotal
theorem concerning this type of capacity is the noisy channel coding theorem, orginally proven
by Claude Shannon in [Sha48]. Two different proofs of this theorem were presented. The first was
based on the Markov inequality and the Law of Large Numbers. The second was based on the notion
of a typical set. The first of these proofs was simpler and required less prerequisites. However,
the second proof could be easily generalised to the case of quantum channels, which was done in
chapter 5. Lastly, it was shown that the ordinary capacity of a classical channel is additive. That is,
the ordinary capacity of the product of two channels is equal to the sum of the individual ordinary
capacities of those channels.

The second setting that was investigated is the zero-error capacity of classical channels. Both a
lower and an upper bound of this capacity were proven. The upper bound was given in terms of the
ordinary capacity. In order to prove the lower bound, the zero-error capacity of a classical channel
was studied by considering the adjacency graph of that channel. This is a graph which contains
the information about the distinguishability of symbols which are sent through the channel. It was
shown that the zero-error capacity of a classical channel can be characterised completely in terms
of its adjacency graph. Lastly, it was explained that the zero-error capacity of a classical channel
is superadditive. That is, there exist classical channels for which the zero-error capacity of their
product channel is greater than the sum of their individual zero-error capacities.

The third setting that was investigated was the ordinary classical capacity of quantum channels.
The main theorem on this capacity was the Holevo-Schumacher-Westmoreland theorem, which
can be considered to be a generalisation of the noisy channel coding theorem that was studied in
chapter two. This theorem was proven using the notion of a typical subspace, following a similar
approach as in the proof of the noisy channel coding theorem. However, it was found that there
are several fundamental complications that arise when considering quantum channels rather than
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classical channels. First and foremost, quantum channels exhibit entanglement. This requires the
introduction of the regularisation of the Holevo information in the expression of the ordinary clas-
sical capacity of a quantum channel. This regularisation reflects the fact that we are unable to ap-
proximate the ordinary classical capacity of a quantum channel well. Instead, we must resort to
an expression containing the limit of infinitely many channel uses. This is different than the case
of classical channels, where the ordinary capacity could simply be expressed in terms of the mu-
tual information of the random variables representing the input and output of the channel. The
need for regularisation shows that further work is needed to determine in what situations the use of
entanglement can increase the ordinary classical capacity of a quantum channel.

Another complication which arose in the study of the ordinary capacity of quantum channels
was the phenomenon of collective measurement. When several quantum states are transmitted
over several copies of a quantum channel, one measures these states collectively, using a collective
POVM. This is radically different for classical channels, where there is no difference between indi-
vidual and collective measurement. In order to account for collective measurement when coding for
quantum channels, the packing lemma was proven and used. This lemma describes how classical
information can be stored into quantum states, allowing for retrieval of this classical information
using a POVM with a relatively small probability of error. The packing lemma was subsequently
used to prove the Holevo-Schumacher-Westmoreland theorem.

The fourth and last setting that was studied was the zero-error classical capacity of quantum
channels. This zero-error classical capacity was, in a similar fashion to the case of classical chan-
nels in chapter three, characterised equivalently in terms of the characteristic graph of a quantum
channel. This graph-theoretical formulation was then used to prove that the zero-error classical
capacity of a quantum channel can be achieved using only pure quantum states. Furthermore, it
was shown that the zero-error classical capacity is bounded from above by the ordinary classical
capacity.

The investigation of the zero-error classical capacity of quantum channels was then concluded
with a study of a phenomenon unique to this specific classical capacity: superactivation. Two quan-
tum channels are said to be superactivated if they individually have no zero-error classical capacity,
but together have positive zero-error classical capacity. It was proven that two superactivated quan-
tum channels exist if there exists a subspace of a product Hilbert space and two unitary operators
satisfying several conditions. This proof made heavy use of the theory of conjugate-divisible maps,
which were introduced in the same chapter. Finally, the proof showing that the appropriate sub-
space and unitary operators do indeed exist was sketched.

Besides the theorem on the different classical capacities that were presented in this thesis, a
less explicit result was found: the diversity of the mathematics of quantum information theory. In-
deed, many different areas of mathematics were found to have important applications in studying
classical capacities, most notably probability theory, graph theory, abstract algebra and algebraic
geometry. The application of this wide range of mathematical disciplines was a welcome surprise,
because it only added to the intrigue of quantum information theory.

A straightforward topic for further research could be the generalisation of the results in this the-
sis to quantum capacities. Indeed, quantum channels can be used to transmit quantum informa-
tion instead of classical information, thus allowing one to define quantum capacities. It would be in-
teresting to see what definitions and results from this thesis have a quantum capacity-counterpart.
Furthermore, a possible topic for further research is an explicit construction of two quantum chan-
nels whose zero-error classical capacity is superactivated. For as far as we know, there is no such an
explicit description - the proof of the existence of superactivated channels presented in chapter 6
was implicit. Lastly, further research can be conducted on determining in what situations entangle-
ment increases the ordinary classical capacity of a quantum channel. This remains one of the major
open problems in quantum information theory.
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A
Proof of the Hayashi-Nagaoka Lemma

The Hayashi-Nagaoka lemma states:

Lemma A.1 (Hayashi-Nagaoka). Let S,T ∈L(H) be positive semi-definite operators such that 1−S
is also postive semi-definite. Then for any c > 0 we have:

1− (S +T )−
1
2 S(S +T )−

1
2 ≤ (1+ c)(1−S)+ (2+ c + 1

c
)T. (A.1)

Proof: we follow [Wil19]. For any operators A,B ∈L(H) and constant c > 0 we have:

(A− cB)†(A− cB) ≥ 0. (A.2)

This follows directly from the fact that X †X ≥ 0 for any X ∈L(H), since 〈X †Xψ,ψ〉 = 〈Xψ, Xψ〉 ≥ 0.
We can equivalently write the above equation as:

1

c
A† A+ cB †B ≥ A†B +B † A. (A.3)

Let R ∈L(H) and pick A =p
T R,B =p

T (1−R). The above equation then yields:

1

c
R†T R + c(1−R†)T (1−R) ≥ R†T (1−R)+ (1−R†)T R. (A.4)

Here we have used that T is a positive semidefinite operator (and therefore Hermitian). Now con-
sider the following:

T = 2R†T R −2R†T R +R†T −R†T +T R −T R +T (A.5)

= R†T R +R†T (1−R)+ (1−R†)T R + (1−R†)T (1−R) (A.6)

≤ R†T R + 1

c
R†T R + c(1−R†)T (1−R)+ (1−R†)T (1−R) (A.7)

= (1+ 1

c
)R†T R + (1+ c)(1−R†)T (1−R). (A.8)

Since we let R be arbitrary, we can take R = (S +T )
1
2 . The above equation then becomes:

T ≤ (1+ 1

c
)(S +T )

1
2 T (S +T )

1
2 + (1+ c)(1− (S +T )

1
2 )T (1− (S +T )

1
2 ), (A.9)
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where we have again used that S and T are positive semidefinite and therefore Hermitian. Using
that T ≤ S +T since S ≥ 0 and that S ≤ S

1
2 ≤ (S +T )

1
2 since S ≤1, we get:

T ≤(
1+ c−1) (S +T )1/2T (S +T )1/2 + (1+ c)

(
1− (S +T )1/2) (S +T )

(
1− (S +T )1/2) (A.10)

=(S +T )1/2 [(
1+ c−1)T + (1+ c)

(
1+S +T −2(S +T )1/2)] (S +T )1/2 (A.11)

=(S +T )1/2 [(
2+ c + c−1)T + (1+ c)

(
1+S −2(S +T )1/2)] (S +T )1/2 (A.12)

≤(S +T )1/2 [(
2+ c + c−1)T + (1+ c)(1+S −2S)

]
(S +T )1/2 (A.13)

=(S +T )1/2 [(
2+ c + c−1)T + (1+ c)(1−S)

]
(S +T )1/2. (A.14)

Multiplying this inequality both from the left and the right by (S +T )−
1
2 gives:

(S +T )−
1
2 T (S +T )−

1
2 ≤ (2+ c + c−1)T + (1+ c)(ΠS+T −S), (A.15)

where ΠS+T is the projector onto the supports of S and T [Wil19]. For this projector we have that
ΠS+T SΠS+T = S andΠS+T TΠS+T = T . Thus, the following holds:

1− (S +T )−1/2S(S +T )−1/2 (A.16)

=1− (S +T )−1/2(S +T )(S +T )−1/2 + (S +T )−1/2T (S +T )−1/2 (A.17)

=1−ΠS+T + (S +T )−1/2T (S +T )−1/2 (A.18)

≤ (1+ c) (1−ΠS+T )+ (
2+ c + c−1)T + (1+ c) (ΠS+T −S) (A.19)

= (
2+ c + c−1)T + (1+ c)(1−S). (A.20)

This is exactly the statment of the lemma.
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