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ABSTRACT 1 
The present study aims to add to the literature on driver workload prediction using machine 2 
learning methods. The main aim is to develop workload prediction on a multi-level basis, rather 3 
than a binary high/low distinction as often found in litearature. The presented approach relies on 4 
measures that can be obtained unobtrusively in the driving environment with off-the-shelf sensors, 5 
and on machine learning methods that can be implemented on low-power embedded systems. 6 

Two simulator studies were performed, one inducing workload using realistic driving 7 
conditions, and one inducing workload with a relatively demanding lane-keeping task. Individual 8 
and group-based machine learning models were trained on both datasets and evaluated. For the 9 
group-based models the generalising capability, that is the performance when predicting data from 10 
previously unseen individuals, was also assessed. 11 

Results show that multi-level workload prediction on the individual and group level 12 
works well, achieving high correct rates and accuracy scores. Generalising between individuals 13 
proved difficult using realistic driving conditions, but worked well in the high demanding 14 
lane-keeping task. Reasons for this discrepancy are discussed as well as future research directions. 15 
 16 
Keywords: Driver workload, machine learning, workload prediction, random forest, support vector 17 

machine, embedded workload prediction 18 
  19 
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INTRODUCTION 1 
Research into driver workload has been conducted for at least three decades (1, 2). Recently, 2 
research efforts have shifted to using powerful Machine Learning (ML) methods, giving 3 
promising results (5, 6).  ML methods have been used for other driver-related classification 4 
problems, such as driver distraction (7), driver interruptibility (8) or driver identification (9). The 5 
present study aims to fill the gaps in the existing research on predicting driver workload using ML 6 
methods in several ways, as will be explained in the next paragraphs. 7 

First, ML studies into predicting driver workload often focus on a binary classification 8 
problem (high workload vs. low workload). A more fine-grained prediction of workload may be 9 
desirable to enable adaptive interfaces for in-vehicle advice systems (IVIS), systems that may 10 
simplify their content (10), or driver assistance systems that may incrementally increase their level 11 
of support based on the level of driver workload. The experiments described in this paper attempt 12 
to predict workload on 7- and 10-point workload scales. 13 

Second, studies to date often use intrusive sensors or measure variables (i.e. 14 
electroencephalogram, EEG) that are not practical in the driving environment (see for example (5, 15 
6)). Additionally, it is unknown how well results obtained by the high-grade intrusive sensors used 16 
in experiments translate to low-cost sensors. This work uses low-cost sensors that can be 17 
integrated into the real-world driving environment, and uses measures that can be obtained 18 
non-intrusively. This is important, since especially low-cost sensors are likely to be integrated into 19 
the driving environment in real-world applications. 20 

Lastly, the models generated in most studies are not generally publicly available for use 21 
by the research community. The models developed in this study will be made available for 22 
scientific use after publication of results (https://github.com/paulvangentcom). 23 
 24 
Research Objectives  25 
The previous section outlined the main research gaps and ways to add to the present literature. This 26 
led to the formulation of three criteria for predicting driver workload in the present work: The main 27 
goal is to develop a workload algorithm that (A) has usable accuracy when predicting multiple 28 
workload levels, while generalising among individuals, (B) uses data that can be measured with 29 
available low-cost, sensors that can be integrated into the driving environment, and (C) is 30 
implementable on embedded hardware (for example in a smart steering wheel). 31 

The first criterion (A), predicting workload at a higher resolution than the binary low/high 32 
found in previous literature while generalising among individuals, is addressed in the experimental 33 
design and data analysis presented in subsequent sections. 34 

The second criterion (B) entails using sensor inputs from readily available, low-cost 35 
sensors that are easy to implement in the driving environment. By using low-cost sensors, which 36 
are likely to present more noise in the signal compared to high-end sensors, results will give a 37 
better reflection of real-world performance compared to studies using high-end sensors. Apart 38 
from having been used successfully in other workload prediction studies, selected variables should 39 
be measurable non-intrusively in the driving environment. This led to the selection of heart rate, 40 
skin response, blink rate and several performance measures (for an overview of the selection 41 
process, see (11)). This criterion ensures any results are directly applicable to in-car settings at a 42 
low cost, and that results obtained are likely to translate well to real-world applications.  43 

Criterion C, ensuring the model is implementable on an embedded system, means it must 44 
be efficient both in memory use as well as computational requirements. Two machine learning 45 
algorithms were selected that can satisfy this criterion: ‘Random Forest’ and ‘Support Vector 46 
Machine’ algorithms. Random Forests (12) are computationally efficient (13) but can have a large 47 
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memory footprint. Solutions have been proposed that allow embedded implementations while 1 
maintaining performance (14), making it a suitable algorithm to use. Support Vector Machines 2 
(15) implementations can suffer from computational complexity, as well as high memory footprint 3 
for more complex models. Methods have been proposed, however, that achieve remarkable 4 
efficiency increases without sacrificing performance (16, 17), making SVM’s also a suitable 5 
candidate algorithm.  6 

Two experiments were conducted to evaluate the feasibility of the previously defined 7 
criteria. First, a simulator experiment was performed, where workload was induced using realistic 8 
driving situations. Results of this experiment were explored futher using a dataset obtained from 9 
another driving simulator experiment that induced workload with a demanding lane-keeping task. 10 
Finally, results of both experiments are discussed and future steps are outlined. 11 

 12 
ESTIMATING WORKLOAD IN A REALISTIC DRIVING SCENARIO STUDY 13 
To assess the feasibility of predicting driver workload in realistic driving settings, a simulator 14 
study was performed. The main goal was to evaluate the prediction of multi-level driver workload 15 
in realistic driving conditions. 16 
 17 
Methods 18 
Equipment 19 
The study was performed in a fixed-base, medium-fidelity driving simulator. A dashboard mockup 20 
with three 4K-displays (resolution 4096*2160 px) provided roughly 180-degree vision. Actuators 21 
consisted of a Fanatec steering wheel and pedals, and a custom blinker control. The simulation ran 22 
in Unity3D. The simulated vehicle had an automatic gearbox and a top speed of 165 km/h. 23 
FIGURE 1(A) illustrates the set-up. 24 

Physiological data were recorded at 100Hz, using low-cost sensors powered by an Atmel 25 
ATMega328p embedded processor board. Heart rate was recorded using a photoplethysmographic 26 
(PPG) method (18) at the left index finger. Skin response was recorded at the middle and ring 27 
finger of the same hand (see FIGURE 1(B)). Additionally, blink data were recorded using a GoPro 28 
HERO+ camera on the dashboard, running at 1080p@30Hz. Simulator data were logged at 50Hz. 29 

 30 
Simulator Scenarios 31 
Two scenarios were created in Unity3D, one scenario with situations likely to induce high 32 
workload (‘high’ workload’ scenario) and one with situations that are not likely to induce high 33 
workload (‘low workload’ scenario). Road geometry was based on a part of the Cooperative-ITS 34 
(C-ITS) corridor in the Netherlands: the A67, a two-lane highway between Eindhoven and Venlo 35 
with speed limit of 130km/h. Three weather conditions were designed for each scenario: clear 36 
weather, and two degrees of fog with visibility of approx. 150 meters (‘light fog’) and below 25 37 
meters (‘heavy fog’). This gave a total of six scenarios. 38 

To accurately design the road geometry, CAD drawings of the road segements were 39 
secured from the open data program of the Dutch government (https://data.overheid.nl). Using 40 
Autodesk 3DS Max, the data in the CAD files were converted to 3D models and textured. The 41 
surrounding terrain was generated using height map data obtained from the Microsoft Bing Maps 42 
API (https://www.bingmapsportal.com/). Canals and wooded areas were extracted automatically 43 
from satellite imagery, and adjusted by hand where necessary. The location, shape, and content of 44 
traffic signs was inferred from Google Streetview, designed in 3DS Max and manually placed at 45 
the corresponding location in the scenario. 46 

 47 
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 1 
FIGURE 1 - Figure showing the simulator set-up (A), physiological sensors (B), the merging between a platoon 2 
of trucks in dense fog (C) and the accident site at the end of the ‘high workload’ scenario (D). Examples of the 3 
raw signal data are shown (E), the concepts of window size and overlap factor (F), an example of the facial 4 
landmark detection and the resulting process of analysing the blink rate signal (G). 5 

The ‘high workload’ scenario was 15.9 km in length, and ran between Eindhoven and 6 
Someren. Participants would encounter several workload-inducing ‘events’ spread out across the 7 
scenario. After accelerating across an on-ramp, the first event was encountered: particpants had to 8 

TRB 2018 Annual Meeting Paper revised from original submittal.



van Gent et al.   6 
 
merge into a dense platoon of trucks (4-5 meters headway, FIGURE 1(C)), a manoeuvre shown to 1 
increase workload on the driver (19). The second event was encountered two kilometres upstream, 2 
and consisted of a segment of slow moving traffic on the right lane, designed to nudge the 3 
participants to drive in the left lane. While passing the slow-moving traffic, an ambulance 4 
approached from behind exhibiting auditory and visual signals, travelling at the legally allowed 5 
max speed of 170km/h in the Netherlands (max. 40km/h difference with other traffic). This placed 6 
the participant in the demanding situation of quickly having to find a gap in the much slower 7 
moving lane to the right and perform a merging manoeuvre. The third event was a game of ’20 8 
questions’ (20), intended to simulate an engaging (phone) conversation. By asking at most 20 polar 9 
(yes/no) questions, participants had to guess which animal, object or person the experimenter had 10 
in mind. The final event came near the end of the scenario. The right lane was closed off due to an 11 
accident, with slow moving (< 15 km/h) traffic on the left lane (FIGURE 1 (D)). The 20 questions 12 
game was played until the accident site was reached. If participants finished early, the game was 13 
restarted with a different subject. After this, participants took the next exit and stopped the car. 14 

The ‘low workload’ scenario consisted of self-paced driving in light traffic for 20.5km. 15 
The simulated road was a replica of the A67 road between Someren and Venlo. There were no 16 
events. Participants drove until reaching a designated exit, where they stopped the car. 17 
 18 
Experimental Procedure 19 
Approval for the study was obtained from the ethics committee at Delft University of Technology. 20 
Participants drove the six scenarios spread out over three separate days, each day driving one 21 
randomly assigned ‘high workload’ and one ‘low workload’ scenario. This approach was taken 22 
because physiological measures can vary from day to day, as well as to avoid a fatigue effect from 23 
occurring when asking participants to drive six 10-15-minute scenarios consecutively.  24 

In the ‘high workload’ scenario, participants were asked to rate their experienced mental 25 
effort and task difficulty on a 7-point scale after each event, leading to six workload data points per 26 
run. In the ‘low workload’ scenario, the questions were asked at fixed positions in the scenario, 27 
leading to four workload data points per run. The exact questions were ‘How much mental effort 28 
did the driving task take in the last few moments, on a scale of 1-7?’ and ‘How difficult was the 29 
driving task in the last few moments, on a scale of 1-7?’. Scale labels ranged from very low/easy, to 30 
very high/difficult, and were explained to participants before the experiment started. Note that we 31 
did not use a standardised workload scale such as the NASA TLX or RSME, since we wanted to 32 
keep interaction time with and demands on the driver to a minimum. 33 

Participants that registered for the experiment received a copy of the informed consent. It 34 
was signed and brought to the first session. After being seated in the simulator, a relaxation period 35 
of three minutes was given to the participants. This was to allow the physiological measures of 36 
each participant to return to its baseline. Sensors were attached, after which the signal quality was 37 
checked. A physiological baseline was recorded first. After the baseline, it was briefly explained to 38 
the participant that there would follow a drive on a segment of the A67 highway. Participants were 39 
instructed to drive at their own pace, but not exceed the speed limit as indicated on road-side signs. 40 
If a participant was unfamiliar with ’20 questions’, a test round was played to familiarise them 41 
with the game. 42 
 43 
Data Analysis 44 
Participants were asked to rate their mental effort and driving task difficulty on a 7-point scale. 45 
Since querying the driver might influence workload, the ‘high workload’ scenario was constructed 46 
in such a way that at least one minute of driving was between each two events, to allow signals to 47 
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return to baseline. The data recorded between two events were not used in the analysis. In the case 1 
of the ‘low workload’ scenario, one minute of data following each question were excluded from 2 
the analysis. 3 
 4 
Preprocessing of Physiological Data 5 
An algorithm was developed to extract the most commonly used features from the measured heart 6 
rate signal (21, 22), using a sliding window approach (see FIGURE 1F). The output measures are 7 
divided into time-domain (23) and frequency-domain measures (24). In the time-domain, the 8 
measures included are BPM (beats per minute), IBI (inter-beat interval), MAD (median absolute 9 
deviation of intervals between heart beats), SDNN (standard deviation of intervals between heart 10 
beats), RMSSD (root mean square of successive differences between neighbouring heart beat 11 
intervals), SDSD (standard deviation of successive differences between neighbouring heart beat 12 
intervals), and the pNN50 and pNN20 (proportion of differences between successive heart beats 13 
greater than 50ms and 20ms, resp.) In the frequency domain, included measures are LF (the low 14 
frequency band: 0,04-0,15Hz), which is related to short-term blood pressure variation, and HF (the 15 
high frequency band: 0,16-0,5Hz), which reflects breathing rate, and the LF/HF ratio, a measure of 16 
sympathetic-parasympathetic balance (24, 25). 17 

Skin response consists of a tonic and phasic component (26). Tonic represents the 18 
long-term, slow variation in the signal, indicative of general psycho-physiological arousal (27). 19 
Phasic reflects relatively quick responses to discrete external stimuli, occurring generally between 20 
1-3 seconds after stimulus onset (27). Power in the frequency spectrum of skin reponse between 21 
0.03Hz-0.5Hz has been linked to short term workload changes (28). The mean, max-min 22 
difference, MAD (median absolute difference), and 0.03-0.5Hz frequency spectrum were 23 
extracted from the GSR signal, using the same window approach as for heart rate. Frequency 24 
spectra were extracted using a trapezoidal integration of the area under corresponding frequency 25 
bands in the power spectrum. 26 

Blink data were detected offline from recorded video data. An algorithm was developed 27 
to extract blink number, blink duration and inter-blink-interval. It functioned by detecting 68 28 
‘facial landmarks’ (29), then calculating eyelid distance for each frame. Blinks were detected in the 29 
resulting signal by finding large slopes, then finding the lowest point of reversal. The process is 30 
displayed visually in FIGURE 1 (G). 31 
 32 
Driver Performance Data 33 
Performance measures reflect how the control the driver exerts over the vehicle varies across 34 
conditions. We included steering wheel angle, steering wheel reversals, speed, variation in lateral 35 
and longitudinal position, and headway and time to collision when available (for more 36 
information, see (11)). 37 
 38 
Generating Machine Learning Sets 39 
Machine learning sets were generated from the raw data and labelled based on self-report data, by 40 
varying window size and overlap factor. Window size refers to how much data is used for the 41 
calculation of features, overlap factor refers to how much data any window Wi shares with the 42 
previous window Wi-1. Both concepts are visualised in FIGURE 1 (F). Window sizes of 5, 10 and 43 
30 seconds, and overlap factors of 0% and 50% were used, leading to a total of 6 sets. 44 
 45 
 46 
 47 
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Model Development and Evaluation 1 
Two different machine learning algorithms were used: A Random Forest Regressor (RFR), and a 2 
Support Vector Machines Regressor (SVR). The RFR creates an ensemble (forest) of regression 3 
trees in which each tree is trained on a random subset of the features. They have been used in for 4 
example (30). Support Vector Machines function by mapping the data to a higher dimensional 5 
space, and solving an optimization problem to identify a set of hyperplanes that separate the 6 
training data into classes. They have been used in for example (7, 9). With the SVR, the 7 
Polynomial kernel (SVR(poly)), and the Radial Basis Function kernel (SVR(rbf)) were evaluated. 8 
Algorithms that were used are taken from the SciKit-Learn repository (31). 9 

The resulting models were evaluated using several metrics. Model error was evaluated 10 
using mean absolute error (AEµ) and median absolute error (AEµ1/2), both measures of the 11 
accuracy of the predictions. The coefficient of determination (R2) was also computed as a 12 
goodness-of-fit measure. Performance for class-based predictions was also evaluated, expressed as 13 
correct rate. 14 
 15 
Results 16 
Participants 17 
19 participants took part in the experiment. Data from one participant were excluded because of a 18 
failure to understand some tasks due to a language barrier. This left 18 participants, of which 12 19 
were males and 6 were females. The average age was 34.56 years (SD 10.09). Of the 18 20 
participants, 12 owned a car and reported using it three to four times a week on average, and 21 
travelling between 2500 and 15000km annually. All participants held a valid driver’s license. No 22 
simulator sickness severe enough to terminate a driving session was reported. Reported mental 23 
effort and perceived difficulty correlated with weather conditions and with scenario type 24 
independently and in line with expectations, although no interaction effect was present (11). 25 
 26 
Individual Models 27 
The training and testing sets for the individual models were generated by dividing the dataset of 28 
each driver into training and testing sets with an 80%/20% split ratio, respectively. This split ratio 29 
was chosen to ensure sufficient training data, since individual datasets were relatively small.  30 

The results indicated that the models functioned well, with the RFR outperforming the 31 
SVR. For all individual models with a window size of 5s and overlap of 0%, the AEµ was 0.343, 32 
the AEµ1/2 was 0.129, R2 was 0.679, Correct Rate (CR) was 76.30% when predicting discrete 33 
classes, and 93.80% when miss-by-one errors were allowed (CR+/-1). This indicated that on 34 
average, predictions were off by 0.343, and that half the predictions had an error less than 0.129, 35 
from a total scale of 7 classes. See TABLE 1 for an overview of all results. Model performance 36 
increased with a larger overlap factor. This was expected, since a larger overlap creates a larger 37 
training set to fit the model to, and because a larger overlap factor indicates more shared variance 38 
between adjacent samples. Interestingly, an inverse relationship between window size and model 39 
performance was observed, contrary to what has been reported previously (5). Miss-by-one errors 40 
indicate predictions that are ‘almost correct’, and still contain enough information about the true 41 
workload states. For example, if workload is predicted as ‘6’ while the true value is ‘7’, the 42 
information in the prediction is still useful: in either case workload is on the high end. 43 
 44 
Group Models 45 
The second step was to estimate the model performance within the entire group. The dataset 46 
containing data from all drivers was split into training- and testing sets with a 60%/40% split ratio. 47 
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Since the size of the group dataset is much larger compared to individual dataset, a more stringent 1 
split ratio could be chosen while maintaining a sufficiently large training set.  2 

Results indicated group models performed well. The AEµ for the model with window size 3 
5s and 0% overlap was 0.605, the AEµ1/2 0.406, R2 0.661, CR 57.40%, and CR+/-1 90.60%.  4 

Performance metrics for the best performing (RFR) classifier. The table displays the mean (µ) and median 5 
(µ1/2) absolute error metrics, the coefficient of determination (R2), the correct rate (CR) and the miss-by-one 6 
correct rate (CR +/- 1). 7 

Generalising Group Models 8 
The last step was to assess how models would perform in a realistic setting, e.g. a setting where 9 
workload from an unknown driver is predicted based on data from a pool of other drivers. To 10 
achieve this, data were sampled using a k-fold approach, with k = Nparticipants. For every ki, the 11 
training set consisted of all data except the held out participant ki. Workload for participant ki was 12 
then predicted and model performance evaluated. This method simulated how the trained models 13 
would perform when predicting data from previously unseen individuals. This obtained 14 
performance measure reflects real-world settings, where it is impractical for models to be trained 15 
on all possible drivers and generalising power is thus preferable. 16 

Results showed that models did not perform well when generalizing to unknown drivers. 17 
The AEµ for all individual models with window size 5s and 0% overlap was 1.522, AEµ1/2 was 18 
1.163, R2 was -0.538, CR 20.07%, and CR+/-1 55.18%. The strongly negative coefficient of 19 
determination suggests unsatisfactory performance (the mean of the data is a better predictor than 20 
the trained model). The relatively low (though above chance level, not satisfactory) absolute error 21 
rates given R2 are explained by a class imbalance in the dataset, where two classes (workload level 22 
1 and 2) dominate. To assess whether this was a possible cause for the poor performance of the 23 
models, data were resampled using SMOTE (Synthetic Minority Over-Sampling Technique) (32). 24 

TABLE 1 Performance Metrics RFR models 
 
Window Size 5 sec  10 sec   30 sec 
Overlap Factor 0% 50%   0% 50%   0% 50% 
Individual Model           
AEµ 0.343 0.219   0.431 0.280   0.613 0.492 
AEµ1/2 0.129 0.565   0.296 0.109   0.490 0.291 
R2 0.679 0.8716   0.590 0.794   0.071 0.306 
CR 76.30% 85.21%   67.88% 80.77%   49.68% 60.82% 
CR +/- 1 93.80% 97.61%   92.93% 96.13%   85.81% 89.55% 
Group Model           
AEµ 0.605 0.455   0744 0.553   0.898 0.801 
AEµ1/2 0.406 0.250   0.565 0.344   0.628 0.652 
R2 0.661 0.774   0.564 0.709   0.372 0.504 
CR 57.40% 69.57%   46.12% 62.48%   40.47% 43.82% 
CR +/- 1 90.60% 93.81%   87.02% 91.42%   80.60% 84.56% 
Generalising Model           
AEµ 1.522 1.536   1.457 1.519   1.375 1.424 
AEµ1/2 1.163 1.201   1.199 1.253   1.174 1.230 
R2 -0.538 -0.623   -0.460 -0.602   -0.299 -0.396 
CR 20.07% 20.05%   19.81% 20.21%   20.21% 20.47% 
CR +/- 1 55.18% 55.19%   55.46% 54.94%   57.21% 55.89% 
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This had little discernible effect on the model performance, and it was concluded that low 1 
performance was not due to the class imbalance in the dataset. It was also observed that R2 2 
increases slightly with increasing window size, in accordance with earlier studies (5) and contrary 3 
to the individual and group models in the present study. 4 
 5 
Conclusion 6 
The results of this study showed that predicting self-reported workload in a simulated realistic 7 
environment was possible at the individual and group level, but proved difficult when generalising 8 
to unknown drivers. Several causes can be identified. The simulated scenarios might not have 9 
induced sufficient workload to be measurable with performance or physiological measures. 10 
Indeed, most participants indicated that driving in the simulator felt very different from actual 11 
driving, and was not that difficult at all. Since a self-report measure was used, which is a subjective 12 
measure, it is possible that different participants had biased response tendencies. Lastly, it might 13 
also be the case that different physiological response patterns to workload exist, in which case the 14 
sample size of 18 could have been too small to account for all occurring patterns. 15 

This raises the question whether workload prediction is at all possible on non-binary 16 
scales, while generalising across drivers. To further explore this possibility, a dataset from a study 17 
with a lane-keeping task was obtained. This study and the results are discussed in the next section. 18 
 19 
ESTIMATING WORKLOAD IN A FORCED-PACE SIMULATOR STUDY 20 
A dataset was re-used from a previously executed study by Melman et al. (in press, (33)) to further 21 
assess multi-level workload prediction in drivers. The study featured a challenging lane-keeping 22 
task, which had the potential to induce higher workload than the previous study. The same 23 
physiological and performance measurements were used in as in the previously described 24 
simulator study. 25 
 26 
Method 27 
Equipment 28 
The study was performed in a fixed-base driving simulator at the faculty of Aerospace 29 
Engineering, Delft University of Technology. The simulator consisted of a mockup dashboard with 30 
three LCD projectors (BenQ W1080ST 1080p) that provided roughly 180-degree vision. The 31 
simulated vehicle had an automatic gearbox and a top speed of 210 km/h. 32 

Physiological data were logged using a biosignalsPlux wireless hub at 1000Hz. Heart rate 33 
was recorded using three pre-gelled Ag/AgCl electrodes at the heart’s v3-node. Skin response was 34 
measured using the same pre-gelled electrodes, placed inside the palm and on the wrist of both 35 
hands. Simulator data were logged at 100Hz. 36 
 37 
Scenarios 38 

The scenarios used to induce workload in drivers each consisted of a 25km long, 39 
single-lane road. The road was divided into four 6km sections of different lane width (3.6m, 2.8m, 40 
2.4m, 2.0m). Each section had seven curves, five with an inner radius of 750m and two with a 41 
500m radius. Transitions between sections of different width always took place in a 750m radius 42 
curve, and were preceded by a road sign indicating a narrowing road. The four sections were 43 
identical, with the exception that the curves of segments 2 and 4 four were mirrored with respect to 44 
section 1 and 3. 45 

Cones were placed 8m apart on the road markings on both sides of the road. The main 46 
task was to hit as few cones as possible. A cone hit was indicated to the participant visually by a red 47 
dot on the side of the car where the cone was hit, and by a loud auditory beep. Extra difficulty in 48 
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lane-keeping was induced by a perturbation added to the vehicle’s lateral motion. This 1 
perturbation was an unpredictable multi-sine signal with five frequencies between 0.067Hz and 2 
0.25Hz, with a maximum summed amplitude of 1,000N. Without the perturbation, lane keeping 3 
(especially on straight segments) was not considered challenging enough. The width of the 4 
simulated vehicle was 1.8m. 5 

Three runs were driven with the aim of inducing different levels of workload: a self-paced 6 
run and two forced-pace runs of 90km/h and 130km/h. In the self-paced run, participants had full 7 
longitudinal control over the car and could drive at their own pace. In the forced-pace conditions, 8 
however, the car’s speed was automated and kept constant at 90km/h and 130km/h. This would 9 
push participants into curves at high speeds, with the goal of raising their workload significantly. 10 
The three runs were presented to the participants in randomised order. 11 
 12 
Procedure 13 
Participants read and signed an informed consent form, informing them of the purpose and 14 
procedure of the study. Participants were instructed that the main task was to minimise the total 15 
number of cone hits. Furthermore, participants were informed that during the experiment, a beep 16 
would sound every 20 seconds. At the sounding of this beep, participants were asked to verbally 17 
answer the question “From 0 to 10, how much effort does the current driving task take you?”, with 18 
0 being ‘no effort’, 5 being ‘moderate effort’ and 10 being ‘a lot of effort’. 19 

Before the experiment started, participants were familiarised with the simulator and the 20 
procedure by driving two 3.7km trial runs. The first trial run was self-paced, the second was 21 
forced-pace with speed at 110km/h. After the trial run, any question the participant had was 22 
answered. The electrodes were attached, and a one-minute baseline was recorded. 23 
 24 
Analysis 25 
Participants rated their mental effort on a scale of 0-10, every 20 seconds. This rating was 26 
annotated by the experimenter and added to the dataset. What data were logged, data 27 
preprocessing, ML set generation, model development and evaluation are identical to what has 28 
been described in the previous study. 29 
 30 
Results 31 
Participants 32 
In total twenty-four participants took part in the experiment (17 male, 7 female). The average age 33 
was 24.6 years (SD 2.4). Participants reported driving multiple times a week (11 participants), at 34 
least once a month (7 participants) or less than one month (6 participants). All participants held a 35 
valid driving license. Reported mental effort was sensitive to the lane width variations, although 36 
regarding speed only to 130 km/h forced-pace condition (33). 37 
 38 
Individual Models 39 
As in the previous study, training and testing sets for the individual models were generated by 40 
dividing the dataset into two stratified sets. More data per participant were collected than in the 41 
previous experiment, so data were split with the more stringent 60%/40% split ratio.  42 

Results were similar to the previous study, and indicated that the models performed well, 43 
with RFR outperforming SVR. An inverse relationship between model performance and overlap 44 
factor was observed, as well as increasing performance with increasing overlap factors, both as in 45 
the previous experiment. For all individual models with a window size of 5s and overlap of 0%, the 46 
AEµ was 1.046, the AEµ1/2 0.662, R2 0.635, CR 40.74%, and CR+/-1 77.31%. The relatively larger 47 
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absolute errors, compared to individual models in the previous study, might have resulted from the 1 
wider workload scale, the different nature of the driving task, or the more frequent reporting of 2 
mental workload. More information is displayed in table 2. 3 
 4 
Group Models 5 
To evaluate performance at the group level, data were split with a 60%/40% split ratio. Results 6 
indicated group models attained high performance. For the model with window size 5s and 0% 7 
overlap, the AEµ was 0.904, the AEµ1/2 0.638, R2 0.774, CR 41.61%, and CR+/-1 82.30%. TABLE 8 
2 displays the full results. Performance increased with larger overlap factors, and again an (weak) 9 
inverse relationship between performance and window size was observed. 10 

Performance metrics for the best performing (RFR) classifier. The table displays the mean (µ) and median 11 
(µ1/2) absolute error metrics, the coefficient of determination (R2), the correct rate (CR) and the miss-by-one 12 
correct rate (CR +/- 1). 13 

Generalising Group Models 14 
Model performance when generalising to unknown individuals was then assessed, which did not 15 
perform well in the first simulator experiment. Data sampling methods were identical to the 16 
previous study. 17 

Results indicated models performed moderately well. For the best performing model with 18 
window size 30s and 50% overlap, the AEµ was 1.717, the AEµ1/2 1.568, R2 0.433, CR 15.21%, 19 
CR+/-1 46.32%. Although model absolute error is relatively large, the coefficient of determination 20 
indicated a moderate relationship between model and data. FIGURE 2 below displays the 21 
predicted and true values for the first four participants. Individual model performance varied, with 22 
workload being predicted well for some participants, while for others showed a correct trend but 23 
with a constant offset error. These offset errors inflated the absolute error rates and deflated the 24 

TABLE 2 Performance Metrics RFR Models 
 
Window Size 5 sec  10 sec   30 sec 
Overlap Factor 0% 50%   0% 50%   0% 50% 
 Individual Model           
AEµ 1.046 0.823   1.213 0.853   1.127 0.870 
AEµ1/2 0.662 0.511   0.833 0.518   0.959 0.694 
R2 0.635 0.763   0.600 0.675   0.561 0.735 
CR 40.74% 50.31%   33.93% 45.83%   20.83% 40.28% 
CR +/- 1  77.31% 84.34%   70.83% 81.94%   65.83% 81.48% 
 Group Model           
AEµ 0.904 0.730   0.984 0.808   1.084 0.876 
AEµ1/2 0.638 0.482   0.722 0.546   0.792 0.663 
R2 0.774 0.830   0.740 0.802   0.718 0.811 
CR 41.61% 51.30%   35.12% 46.44%   34.22% 37.87% 
CR +/- 1 82.30% 88.18%   80.32% 85.88%   73.21% 82.41% 
 Generalising Model           
AEµ 1.878 1.988   1.988 1.989   1.809 1.717 
AEµ1/2 1.831 1.844   1.718 1.741   1.680 1.568 
R2 0.118 0.079   0.196 0.177   0.411 0.433 
CR 14.09% 13.45%   12.62% 13.44%   15.72% 15.21% 
CR +/- 1 41.92% 40.70%   44.15% 42.29%   47.16% 46.32% 
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predictive accuracy despite good model performance. Generally, a decreased performance with 1 
increased overlap factor was observed (except for the largest window size of 30s), as well as 2 
increased performance with increased window size. The effect is similar to results for the model 3 
generalisation step in the previous study, but more pronounced. The effect also corresponds with 4 
what has been reported before (5). 5 

 6 
FIGURE 2 – The top four windows (A-D) show plots from the first four participants indicate that the models 7 
performed well, with the relatively large absolute errors likely resulting from individual scaling problems in 8 
the predictions. These offset errors are indicated in (D): the general trend is predicted well but there is a 9 
constant offset error. The last two windows (E-F) show box plots, further exploring the generalising models 10 
from both studies. 11 

 12 
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Conclusion 1 
The results of this study show similarities with the previous study for individual and group-based 2 
models. Additionally, this second experiment shows that, when predicting multi-level workload 3 
(11 classes), generalising performance was satisfactory, although still with room for improvement. 4 

This study seems to indicate that indeed non-binary workload prediction that generalises 5 
to unknown individuals is possible using ML methods. Although models generalising between 6 
individuals showed variations in performance based on which individual’s workload was being 7 
predicted, including constant offset errors in several participants, overall performance was 8 
promising. 9 
 10 
OVERALL CONCLUSIONS AND DISCUSSION 11 
The present study tried to model driver workload using machine learning techniques that can run 12 
on embedded systems, with data collected from low-cost-sensors. Results have shown that 13 
individual models and within-group models functioned well in both a realistic driving setting as 14 
well as an artificial lane-keeping task setting. When generalising to unknown drivers, only the 15 
lane-keeping study produced usable results. As displayed in FIGURE 2 (E-F), in the first study the 16 
generalised model learns to predict values around the mean to optimize accuracy, in the second 17 
study the model learns to predict based on the reported workload. 18 

Since the data we gathered in the study are time-series human physiological and 19 
performance data, it likely exhibits strong autocorrelation from one sample to the next. This might 20 
be a potential explanator for the higher performance in the individual and group models in both 21 
studies. Since with random sampling, shared variance between samples from the training set and 22 
the prediction set might bias the classifier towards a higher accuracy. To better assess performance, 23 
training cases were included where the models had to generalize to unknown individuals. These 24 
give a more accurate indication of performance, since with this approach there is no shared 25 
variance between training set (all participants minus participant k) and the testing set (participant 26 
k). As such, only the generalizing training case offers a reliable index of performance. This is an 27 
important distinction, since it shows that although using machine learning to predict driver 28 
workload can lead to promising results, care must be taken when interpreting the results. Without 29 
care in selecting the sampling techniques used, model performance might be inflated. 30 

Possible reasons for the discrepancy in generalizing performance between both studies 31 
could include that the workload induced in the realistic settings was too low to be reflected in the 32 
physiological or performance signals, that workload induced by artificial tasks is more easily 33 
measurable than that induced by more realistic tasks, or that different physiological response 34 
patterns to workload might exist and that the sample in the first study was either too small or 35 
contained too much individual variation.  36 

Possible limitations of the present study are that we employed a self-report measure as 37 
ground truth of the experienced mental workload of the drivers. We did not employ standardised 38 
workload scales such as NASA TLX, to keep interaction time and demand with the driver to a 39 
minimum. However, this may have contributed to lower model performance through participant 40 
response tendencies, and leaves some doubt as to what degree the data captures workload. In 41 
addition to this, we did not look at compensatory behaviour drivers might employ to manage their 42 
workload, such as reducing speed in complex or demanding situations.  43 

Future directions are planned. These include feature space normalisation of the dataset to 44 
attempt to reduce the offset errors observed in some individuals, as well as exploring additional 45 
feature extraction methods. After this, on-road testing is planned to explore model performance in 46 
real-world driving settings. Lastly, development of an embedded variant of the model is planned. 47 
 48 
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