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A B S T R A C T   

Controlling the operation of HVAC (Heating, Ventilation, and Air-Conditioning) systems is arguably the most 
effective way to reach desired indoor conditions in buildings. Nevertheless, such control may involve complex 
dynamics when dealing with passive energy technologies. In this paper, we focus on maximizing the passive 
operation of HVAC in a novel low-energy building design by means of Model Predictive Control (MPC). The low- 
energy building design, located in The Green Village, consists of a thermal chimney and solar shades over all- 
glass facades to provide the required indoor air conditioning as passively as possible. The MPC controller is 
based on a transient grey box model and a hierarchical control architecture to satisfy thermal comfort while 
minimizing the active energy requirements. Using sensor data collected from the actual building in April and 
May 2021, the grey box model shows a good agreement with the measurements, since the variance accounted for 
is 90% in most cases. Moreover, via a comparative study among different MPC architectures we show that 
managing the distinct transient response of each component (shades and chimney) is the best for successful 
overall performance – e.g. considering linear agents for shading and nonlinear agents for ventilation. The hi-
erarchical MPC architecture established outperforms the standard ones by 22.7% in terms of control perfor-
mance. We also compare the proposed MPC approach against the rule-based control method currently 
implemented in the actual building, which indicates that MPC demands about 78% less active energy, high-
lighting the proposed optimization-based control approach.   

1. Introduction 

Passive energy technologies have been encouraged for different ap-
plications, including HVAC (Heating, Ventilation, and Air-Conditioning) 
in low-energy buildings [1]. The positive impact of such technologies is 
particularly relevant for office buildings, where the stricter working 
period and high occupancy require significant energy consumption to 
meet the indoor thermal comfort [2]. Additionally, the recent COVID-19 
outbreak urges for higher ventilation in public buildings, and therefore, 
higher energy demand [3]. The use of passive energy technologies, 
however, calls for the integration of such technologies with an effective 
control scheme for reducing the requirements of active energy. Reaching 
this integration has stimulated investigations on optimal passive design 
parameters in different climates [4]. 

Among different options, shading systems have been widely sug-
gested as passive energy technologies since the solar heat load plays a 
role in indoor air temperature profile and HVAC demand [5]. The 

shading of facades has shown to be a promising technology for heating, 
cooling, and day-lighting control [6]: in fact, the operation of shadings 
can be calibrated dynamically according to the targeted purpose, e.g., 
using solar-tracked surfaces to enhance heat gains [7] or to prioritize 
daylighting [8]. Although some software considers shadings in its li-
brary of components [9], the literature suggests further efforts to opti-
mize the shadings operation [10]. Natural ventilation systems represent 
another popular class of passive energy technologies. They have been 
studied via a variety of components such as thermal chimneys and wind 
towers [11]. Thermal chimneys are the most notorious, while more 
studies combining other natural ventilation sources are still required for 
effective applicability in buildings [12], and further studies for the 
optimization and control of thermal chimneys are recommended in the 
literature [13]. 

Many control methods have been considered putting emphasis on the 
optimal operation of dynamic low-energy systems, which includes MPC 
(Model Predictive Control) as a state-of-the-art approach [14]. MPC 
relies on optimization algorithms and on the knowledge of the system 
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behavior to predict and select the best control inputs at each time step 
[15]. In this sense, MPC has been suggested for the real-time optimiza-
tion of radiant floors [16], natural ventilation [17], shading systems 
[18], thermal energy storage [19], energy use in smart buildings [20], 
and integration of multiple HVAC systems [21]. Furthermore, MPC has 
been studied in the integration of electricity and heat systems [22], and 
demand response in residential air-conditioning [23]. The MPC meth-
odology is flexible and allows considering constraints, deterministic 
models [24], stochastic scenarios, nonlinear models [25], and can 
incorporate deep learning [26]. Demonstrations in functional buildings 
have also been reported, e.g., a cloud-based, white-box MPC for a 
ground-sourced heat pump in offices [27], fuzzy nonlinear MPC [28], 
and zone-based MPC to supply heating and electricity in an academic 
building [29]. 

The literature on MPC is vast since the method encompasses the 
optimization of a wide range of systems. Generally, HVAC systems 
exhibit improved thermo-economic performance when controlled by 
MPC as compared to rule-based or state-of-the-art control methods [30]. 
However, there is no ultimate consensus in the literature about the most 
effective way to implement MPC in each specific system, especially 
when considering the optimization of complex fully passive heating and 
ventilation systems: a set of questions arises concerning the benefits in 
system performance, the most proper control architecture configuration, 
the most proper cost function to maintain comfort while saving energy, 
the effects of the models’ nonlinearities, etc. Finding answers to these 
questions may facilitate the practical application of MPC in novel 
low-energy building designs [31]. 

This article explores MPC to optimally integrate passive heating and 

ventilation while drawing on a unique all-glass facade building with 
steerable solar shadings and a thermal chimney. Such design relies on an 
actual building located in The Green Village as a research facility [32, 
33]. The system configuration involves a case study about maximizing 
the use of passive energy technologies in meeting centers, relying on 
architectural designs such as natural ventilation, structural glasses, and 
dynamic solar shadings. To promote the viability of such passive tech-
nologies on a larger scale, we suggest an optimized model-based control 
approach to maximize the use of passive energy and, consequently, the 
feasibility of the technologies studied, since the system performance is 
enhanced. The optimized control aspect arises because, differently from 
standard MPC architectures (either linear or nonlinear), in this paper we 
develop a novel grey-box hierarchical MPC architecture that manages 
the passive heating and ventilation processes accordingly to their 
distinct heat capacities and passivity – for instance, considering linear 
agents for shadings and nonlinear agents for ventilation. Furthermore, 
we compare the proposed MPC controller to the rule-based PID 
controller operating in the real building. The novelties of this work can 
be outlined as follows:  

• Providing an appropriate modelling approach for a real-life fully 
passive heating and ventilation system. The system is located in The 
Green Village and the models were validated with 35 temperature 
sensors.  

• The optimization problem must be designed to fit the need of the 
fully passive system. For this purpose, we provide a study of the 
objective functions for maximizing passive energy use while meeting 

Nomenclature 

A Matrix of linear coefficients [− ] 
A Heat transfer area [m2] 
B Matrix of linear coefficients [− ] 
c Specific heat at constant pressure [J/(kgK)] 
C Heat capacity [J/K] 
C Output matrix [− ] 
Cd Friction coefficient [− ] 
d Vector of disturbances [− ] 
E Matrix of linear coefficients [− ] 
F View factor [− ] 
g Gravitational constant [m/s2] 
h Convection coefficient [W/(m2K)] 
H Distance between tower inlet and outlet [m] 
I Solar irradiance [W/m2] 
K Kalman filter matrix [− ] 
L Thickness of insulation 
m Mass [kg] 
N Time horizon [s] 
P Penalization coefficients [− ] 
q Heat [J] 
Q Penalization coefficients [− ] 
R Penalization coefficients [− ] 
t Time [s] 
T Temperature [K] 
u Control inputs [− ] 
v Sensor disturbances [− ] 
w White noise [− ] 
x Linearized temperature states [K] 
X Length [m] 
Y Width [m] 
yp System output [K] 
Z Depth [m] 

Greek letters 
α Solar absorptance [− ] 
ε Emissivity [− ] 
κ Conduction coefficient [W/(mK)] 
λ Linear irradiation coefficient [W/(m2K4)] 
ξ Parameter for floor shading [− ] 
ρ Specific mass [kg/m3] 
τ Solar transmittance [− ] 
φ Chimney cross-sectional area [m2] 

Subscripts 
a Indoor air 
c1, c2 Ceiling layers 
e East 
e Electric backup 
est Estimated 
f1, f2 Floor layers 
g Outside ground 
hp Heat pump 
mod Model 
n North 
o Outside air 
p People 
ref Reference 
s Solid surfaces 
s South 
s Shades 
sky Sky 
v Ventilation 
w West 
w1, w2 w3 Glass layers 

Superscripts 
k Time step  

L.A. de Araujo Passos et al.                                                                                                                                                                                                                  



Energy 264 (2023) 126177

3

thermal comfort, studying the combination of optimized parameters, 
studying the Pareto curves, and studying the constraints.  

• Clearly, the control must be applied in the real system: for this 
purpose, we perform an extensive comparison of 3 MPC architectures 
in terms of computation time and accuracy for optimal control of 
passive energy systems for the real-life application under 
consideration.  

• Analogously, we provide a comparison of MPC and PID controllers in 
terms of energy savings and control profiles for optimal strategy. 

• We show reduced energy consumption of a novel system configura-
tion toward zero-energy buildings using hierarchical MPC. 

The rest of the paper presents the system description and modeling in 
Section 2, followed by the control design and proposed MPC structures 
in Section 3. The experiment results and discussions are in Section 4, 
followed by the conclusions in Section 5. 

2. Thermal system description and modeling 

The thermal system under consideration deploys passive energy 
through the combination of two subcomponents: a thermal chimney for 
buoyancy-driven ventilation, and transparent all-glass facades for solar 
heating. Such configuration is based on the actual building installed in 
The Green Village [32,33], at Delft University of Technology, in the 
Netherlands. As shown in Fig. 1, in this system external steerable shades 
cover the vertical facades for controlling the solar irradiance hitting the 
building. The thermal chimney is assisted by backup fans and a heat 
pump to supply the airflow rates and temperatures desired. The drilled 
deck floor plays a crucial role in this configuration, since it drags the air 
flowing into the building, and may absorb part of the solar irradiance. 

Fig. 1. System installed at The Green Village: (a) blinds open, (b) blinds closed, (c) the basement floor, and (d) the design of the tiles.  

Table 1 
System zones, corresponding dimensions (X, Y and Z) and properties.  

Zone X [m] Y [m] Z [m] ρ [kg/m3] c [J/(kgK)] α [− ] τ [− ] ε [− ] 

Chimney 2 2 5 - - - - - 
Indoor air 13.5 22.5 5.2 1.2 1000 - - - 
Roof 13.5 22.5 0.004 1050 1800 0.870  0.93 
Ceiling 13.5 22.5 0.003 7850 500 - - - 
N–S wall 13.5 5.2 0.010 2470 900 0.085 0.83 0.82 
E-W wall 22.5 5.2 0.010 2470 900 0.085 0.83 0.82 
Floor 13.5 22.5 0.038 1550 800 0.200 - - 
Basement 13.5 22.5 0.225 2000 840 - - -  

Table 2 
Vectors for the linearized model.  

Vector Meaning Components 

xk Temperatures Tk
a Tk

w1,n Tk
w2,n Tk

w3,n Tk
w1,s Tk

w2,s Tk
w3,s Tk

w1,e Tk
w2,e Tk

w3,e Tk
w1,w 

Tk
w2,w Tk

w3,w Tk
c1 Tk

c2 Tk
f1 Tk

f2 

uk Control 
inputs 

uk
e uk

v uk
s,n uk

s,s uk
s,e uk

s,w us,c2 

dk Disturbances Nk Tk
o Tk

sky Tk
g 

*The subscripts n, s, e, and w, refer to the geographic direction of each facade 
(North, South, East, and West). 
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Therefore, the materials and dimensions considered in the design 
directly affect the system’s performance. To model the system dynamics, 
we rely on the law of conservation of energy while considering a 
nonlinear and a linear formulation for control purposes, as shown in the 
two following subsections. 

2.1. Nonlinear modeling 

By the Bernoulli’s principle [34], the flow rate produced by the 
chimney depends on the difference between indoor (Tk

a ) and outdoor 
(Tk

o) air temperatures at that time, as shown: 

ṁk = ρφCd

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

2gH
|Tk

a − Tk
o

⃒
⃒

Tk
o

√

(1)  

where the superscript k refers to the time step, such that k = kΔt and Δt 

is the time interval. Furthermore, φ is the chimney cross-sectional flow 
area, Cd the pressure loss coefficient, H the distance between the air inlet 
and outlet, ρ the specific mass of air, and g the gravitational constant. 
Note that we assume incompressible flow and no infiltration in (1). Also, 
for the given setup, Cd = 0.57, according to preliminary CFD 
simulations. 

To determine the time-dependent indoor air temperature (Tk
a ), we 

consider a single fully mixed volume while balancing the heat rates 

Fig. 2. Hierarchical Model Predictive Control (HMPC) structure developed.  

Table 3 
Parameters calibrated for the grey-box model.  

Parameter Initial value Calibrated value 

Zc2 0.0030 0.0026 
Zf1 0.038 0.036 
αf1 0.200 0.156 
Zf2 0.225 0.228 
κf 0.313 0.344 
cw 900 792 
αw 0.085 0.078 
τw 0.83 0.78 
εw 0.82, 0.16 0.77, 0.13  

Fig. 3. Temperature profile obtained by experimental and numerical evalua-
tion: (a) training data and (b) training verification. 

Table 4 
Accordance between temperatures predicted by the model and experimental 
measurements.   

Training data Validating data 

Temperature VAF NRMSE VAF NRMSE 
Ta 95.8 0.05 93.8 0.10 
Tc1 94.7 0.05 87.2 0.10 
Tf1 81.1 0.15 76.9 0.16 
Tf2 95.9 0.07 89.4 0.09 
Tw1,n 95.7 0.07 95.8 0.16 
Tw1,s 96.3 0.05 95.6 0.12 
Tw1,w 89.5 0.07 89.3 0.10 
Tw1,e 91.6 0.06 83.5 0.11  
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through the zone. Therefore, 

Tk+1
a = Tk

a +

[

Nkq̇p + uk
eq̇hp + uk

vṁkca
(
Tk

o − Tk
a

)
+

∑7

j=1
hk

j Asj

(
Tk

sj − Tk
a

)
]

Δt
Ca

(2)  

where Nk is the number of people, q̇p is the heat generation per person 
(100 W), q̇hp the nominal heat pump power (10,000 W), uk

e the control 
fraction for auxiliary heating, uk

v the control fraction for ventilation, ca 

the specific heat of air, Ca the heat capacity of air, hk the convection 
coefficient, As the heat transfer area, and Tk

s the temperature of the in-
door surfaces. Note that uk

c and uk
e assume normalized values, between 

0 and 1. Moreover, Tk
s refers to the indoor layer of the four vertical wall 

(Tk
w1,n;Tk

w1,s;Tk
w1,e; and Tk

w1,w), ceiling (Tk
c1), and two floor layers (Tk

f1,Tk
f2). 

Each wall consists of three layers. To illustrate the calculation of the 
temperature of the three layers, let us refer to the North facade, indi-
cated with the subscript n: 

Tk+1
w1,n = Tk

w1,n +
[
uk

s,nIk
w,nτ2

wαw + σF
(

Tk
w2,n

4
− Tk

w1,n
4
)
+ hk

w2

(
Tk

w2,n − Tk
w1,n

)

+ hk
w1

(
Tk

a − Tk
w1,n

)]Aw,nΔt
Cw

(3.1)  

Tk+1
w2,n = Tk

w2,n +
[
uk

s,nIk
w,nτwαw + σF

(
Tk

w1,n
4
+Tk

w3,n
4
− 2Tk

w2,n
4
)

+ hk
w2

(
Tk

w1,n + Tk
w3,n − 2Tk

w2,n

)]Aw,nΔt
Cw

(3.2)  

Tk+1
w3,n = Tk

w3,n +
[
uk

s,nIk
w,nαw + σF

(
Tk

w2,n
4
− Tk

w3,n
4
)
+ hk

w2

(
Tk

w2,n − Tk
w3,n

)

+ σεw

(
Tk

sky
4
− Tk

w3,n
4
)
+ hk

w3

(
Tk

o − Tk
w3,n

)]Aw,nΔt
Cw

(3.3)  

where uk
s is the control signal for the shading, Ik

w the solar incidence, τw 

the glass transmittance, αw the absorptance, εw the emissivity, σ the 
Stefan-Boltzmann constant, and F the view factor. Similar to uk

c and uk
e , 

also uk
s is normalized between 0 and 1. One should note that equations 

(3.1) – (3.3) refer to a single orientation (i.e., North). A similar formu-
lation is considered for the remaining facades (South, West, and East) 
but is here omitted to avoid redundancy. 

The ceiling disposes of an external layer (roof), which is separated 
from the internal ceiling by thermal insulation. The temperature of the 
ceiling and roof are expressed as: 

Tk+1
c1 = Tk

c1 +

[
κc

Lc

(
Tk

c2 − Tk
c1

)
+ hk

c1

(
Tk

a − Tk
c1

)
]

AcΔt
Cc1

(4.1)  

Tk+1
c2 =Tk

c2 +

[

us,c2Ik
c2αc2 + hk

c2

(
Tk

o − Tk
c2

)
+ εc2σ

(
Tk

sky
4
− Tk

c2
4
)

+
κc

Lc

(
Tk

c1 − Tk
c2

)
]

AcΔt
Cc2

(4.2)  

where κ is the conduction coefficient and Lc the thickness of insulation 
between the surfaces. In addition, us,c2 refers to the fraction of solar 
radiation over the roof. However, note that us,c2 = 1, since there is no 
shading over the roof. Regarding the bottom of the building, the floor 
consists of indoor drilled tiles and the basement floor. Therefore, 

Tk+1
f1 = Tk

f1 +
[
ξkIk

f1αf1τ3
w + hk

f1

(
Tk

a − Tk
f1

)]Af1Δt
Cf1

(5.1)  

Tk+1
f2 = Tk

f2 +

[
κf

Lf

(
Tk

g − Tk
f2

)
+ hk

f2

(
Tk

a − Tk
f2

)] Af2Δt
Cf2

(5.2)  

where ξk indicates the fraction of solar radiation that reaches the floor 
due to the aperture of the shadings (ξk = f(uk

s )). Moreover, Tk
g indicates 

the ground temperature, and Lf refers to the thickness of insulation 
between the basement floor and ground. For the thermal insulation, we 
consider the conductivities κc = 0.167 and κf = 0.0313 W/(mK). 

This modeling requires expressions for the heat transfer coefficients, 
which depend on the temperatures, air velocities, and characteristic 
length [35]. We draw on the correlations presented in Appendix 1 [36]. 
Additionally, we calculate the solar incidence at the tilted surfaces ac-
cording to the Perez model [37]. Table 1 summarizes the system di-
mensions and thermal-physical properties corresponding to the 
components regarded. 

2.2. Linear modeling 

The system model considered in Section 2.1 includes nonlinearities 
such as the radiative heat rates and temperature-based properties. 
Nevertheless, for the purpose of controlling the system, one can obtain 
good performance and fast calculation time if considering a proper 
linearization approach. In this sense, we consider curve fitting for the 
heat transfer coefficients, a linearized radiation coefficient (λ), and 
airflow rates decoupled from the temperatures, such that: 

xk+1 =A
kxk + B

kuk + E
kdk (6)  

where xk, uk, and dk are vectors referring to the temperature states, 
control inputs, and disturbances, while A k, B k, and E k are matrices for 
the linear dynamics. Table 2 describes the vectors in (6), while the 
matrices are provided in Appendix 2. 

3. Control design 

The controller is designed to maximize the passive energy utilization 
while satisfying the thermal comfort condition. Such condition is pur-
sued by minimizing the difference between the indoor temperature and 
a reference temperature for comfort (Tk

ref). The desired system perfor-
mance, therefore, consists of minimizing the demand for energy (i.e., 
active energy). Therefore, a multi-objective optimization approach is 
needed to establish trade-off limits. Depending on the nature of the 
system dynamics (linear or nonlinear) we have implemented two stan-
dard centralized structures, named nonlinear model predictive control 
(NLMPC) and linear model predictive control (LMPC). In addition, in an 
effort to improve the performance of the aforementioned standard ar-
chitecture, a hierarchical model predictive control (HMPC) structure 
that combines nonlinear and linear agents is also considered. Each ar-
chitecture has its own model, objective function, and optimization 

Fig. 4. Daily people occupancy schedule.  
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strategy, as further presented in the three following sections. 

3.1. Linear model predictive control (LMPC) 

LMPC considers a quadratic programming optimization problem in 
which the linearized system (6) is combined with a quadratic objective 
function with penalizing matrices, as follows: 

min
u

∑Np − 1

i=0
Q

k+i( Tk+i
a − Tref

)2
+
(
uk+1 − uref

)T
R

(
uk+1 − uref

)
+P

(
Tk+Np

a − Tref
)2

(7)  

where uref is the reference state (uref = 1 for shadings, and uref = 0 for 
ventilation), and Q k, R , and P are penalizing matrices for the time- 
dependent temperature, control inputs, and terminal temperature 
state. In this case, Q k is time-varying since it depends on the people 
occupancy (Q k = 4000 for occupied periods and Q k = 0 for the non- 
occupied periods), R = diag(3, 0.1,0.1, 0.1, 0.1), and P is determined 
by the Riccati equation: P = idare(A k, B k, Q k, R ). The convexity of 
LMPC is tested via the Hexian method [38], i.e. by checking at each time 
step if the eigenvalues of the Hessian matrix are nonnegative. 

Fig. 5. Effects of control inputs on the objective function minimization.  

Table 5 
MPC architectures assessed and the corresponding performance metrics, where 
% expresses increase/decrease with relation to the centralized NLMPC.  

Architecture Np 
∑

e2 [K2] 
∑

e [K] top [s] 

NLMPC 8 1736 882 30.6 
LMPC 24 1373 (− 20.9%) 915 (+3.7%) 0.18 (− 99.4%) 
HMPC 4 1341 (− 22.7%) 773 (− 12.4%) 2.3 (− 92.5%)  

L.A. de Araujo Passos et al.                                                                                                                                                                                                                  



Energy 264 (2023) 126177

7

3.2. Nonlinear model predictive control (NLMPC) 

NLMPC is the benchmark for the current analysis since it is based on 
the most detailed model (the nonlinear model of Section 2.1), which 
includes most of the system nonlinearities encountered in the physical 
system. The optimization uses the active-set algorithm for nonlinear 
constrained optimization in the fmincon function from the MATLAB 
optimization toolbox [39]. The active-set algorithm was selected 
because of its satisfactory performance, and faster processing time 
compared to the other algorithms. The optimization problem considers 
the following objective function for time step k: 

min
u

∑Np

i=1

(
Tk+i

a − Tref
)2 (8)  

where the index i refers to the prediction step and Np to the control 
horizon. For the nonlinear system, the stability is verified in the sense of 

the Lyapunov equilibrium state, where the cost function of the optimi-
zation problem is taken as the Lyapunov function [38]. 

3.3. Hierarchical model predictive control (HMPC) 

NLMPC and LMPC are both centralized architectures, which means 
that a unique control agent is in charge of all the outputs and the inputs. 
However, this centralized approach may not properly exploit the 
different time constants of the thermal chimney and of the solar shad-
ings. Therefore, a hierarchical configuration is proposed to improve the 
control scalability and computation time while combining both NLMPC 
and LMPC in a master-slave relation. The HMPC structure is illustrated 
in Fig. 2. HMPC operates with two controllers (two agents), in which the 
first agent applies LMPC with the role of providing the optimal tem-
perature trajectory (Tk

traj) over long time horizons, and the second agent 
uses NLMPC with the role of tracking this optimal temperature over 

Fig. 6. (a) Indoor temperature profile for the centralized NLMPC and for (b) LMPC, considering the occupancy profile shown in Fig. 4 and typical meteorological year 
data. The vertical dashed lines stand for the occupied period. 
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short-term horizons. The objective function in the nonlinear controller 
takes the following form: 

min
u

∑Np

i=1
Q

(
Tk+i

a − Tk+i
traj

)2
+R

(
uk+i− 1

e q̇hp
)2 (9) 

The matrices Q and R in (9) have a different meaning as compared 
to (8), as hereby they are defined to satisfy a maximum deviation, such 
that Q = 0.8 and R = 7.5× 10− 9. Tracking the optimal references, 
though, it is only relevant for nonoccupied hours, as for occupied hours 
the reference temperature (i.e., 21 oC) is assumed. In the linear 
controller, the optimization uses the following objective function: 

min
u

∑Np − 1

i=0

(
uk+1 − uref

)T
R

(
uk+1 − uref

)
(10)  

where R = diag(3,0.1, 0.1, 0.1,0.1, 100). Note that only the inputs are 
penalized in (10), while the system outputs are constrained to meet the 
reference temperature condition. 

While defining the temperature trajectory, the HMPC requires a re- 
optimization strategy in which the control inputs optimized in the 
LMPC layer are provided as initial guesses to the NLMPC optimization. 
However, this re-optimization only considers the inputs for ventilation, 
while the previous inputs for heating are kept. Also, a Kalman filter [40] 
is considered for updating unmeasurable temperature states (x̂est) in the 
system, as follows: 

Algorithm 1. Kalman filter MATLAB  
Input: x̂mod(kk − 1), yp(k), w(k − 1), v(k), A k− 1, B k− 1, C 

Output: x̂est(kk)
Procedure: 

r←obsv(A k− 1,C )

Rank←rank(r)
States←lenght(x̂mod(k|k − 1))
If Rank < States then 

“System not fully observable”  
end if 

Q k− 1←w(k − 1)2 

R k←v(k)2 

P k|k− 1←B k− 1Q k− 1B T
k− 1 

K k←P k|k− 1C
T
(C P k|k− 1C

T
+ R k)

− 1 

x̂est(kk)←x̂mod(kk − 1)+ K k(yp(k) − C x̂mod(kk − 1))
return x̂est(kk)

where x̂mod is the temperature state calculated in the model, w and v are 
white-noise and sensor disturbances, respectively, and yp is the system 
output, such that yk

p = C xk and C = [1,0,…,0]. The vector C describes 
the sensor position for system observability and K k is the Kalman filter 
matrix [40]. 

4. Performance evaluation 

To evaluate the performance of the controlled system, we first assess 
the model’s accordance with the measurements collected on site. Next, 
simulations for the MPC architectures provide key performance in-
dicators such as control accuracy and time response for real-time ap-
plications. Finally, we consider a case study to assess the energy savings 
achieved while comparing HMPC to the rule-based PID controller 
operating in the actual building. 

4.1. Verification of the models 

The data collected to verify the accuracy of the models include the 
temperature states for indoor air and building surfaces, according to the 
output variables given in Section 3. The airflow induced by the chimney, 
however, is not verified experimentally, as the actual building is not 
currently providing such measurements. The airflow rates have, there-
fore, been verified theoretically by CFD simulations, as previously 
mentioned. Two testing periods range from April 2 until April 11, 2021; 
and from May 22 until May 24, 2021. During this period, we established 
the following operational conditions:  

• Solar blinds were fully open.  
• No ventilation, windows and doors were closed.  
• No occupants and lights were turned off.  
• The heat pump was turned off. 

The data measured at The Green Village were obtained with a 5-min 
sampling time by means of 35 sensors applied to 8 components: 3 for the 
indoor air, 4 on the ceiling, 2 on each of the north, east, and west-facing 
interior glazed walls, 4 on the south-facing interior glazed wall, 9 on the 
deck floor, and 9 on the basement floor. These sensors are strategically 
distributed over the space, so averaged values are taken to represent the 
lumped temperature of each component. Moreover, 6 sensors assess the 
local weather conditions, which include the outside temperature, wind 
speed, air pressure, relative humidity, and global irradiance. The global 

Fig. 7. Indoor temperature profile produced by the HMPC considering the occupancy profile shown in Fig. 4 and typical meteorological year data. The vertical 
dashed lines stand for the occupied period and the reference is the optimized trajectory to be followed. 
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irradiance is split in direct beam and diffused horizontal irradiances 
using the Reindl correlation in TRNSYS 17 [41]. 

Grey-box identification has been performed to improve the model 
accuracy, in which 10 model parameters were selected to be calibrated 
(see Table 3). The outputs from the grey-box model (calibrated values) 
shown in Table 3 better reflect the system behavior as the model pa-
rameters are identified for the current building, while the initial values 
were obtained for general material descriptions and technical drawings. 

The data from the 10-day measurement period in April were selected 
as training data, while the 3-day measurement period in May 2021 is 
used to validate the corresponding prediction. Fig. 3 presents the com-
parison between the temperature measurements and the nonlinear 
model outputs, using the optimized parameters. The verification relies 
on the VAF (Variance Accounted For) and the NRMSE (Normalized 
Root-Mean-Square Error), which are presented in Table 4 for all the 
temperatures assessed. As one can see from Table 4, the model provides 
a satisfactory prediction. 

4.2. Architecture analysis 

To assess the best structure in terms of control performance and 
computation time, a single objective function is considered by assuming 
that only passive energy sources are available (uk

e = 0). Therefore, the 
squared and absolute errors (e) between the reference temperature (Tk

ref) 
and the model’s output (Tk

a ) indicate the control performance, while the 
computation time of one optimization step (top) is evaluated for each 
architecture (LMPC, NLMPC, and HMPC). If these steps take too long, 
online control becomes impractical. All simulations were performed on 
an HP ZBook Studio x360 G5, Intel Core i7-8750H processor, with 16 GB 
of RAM. 

The building occupancy is predetermined in Fig. 4, where eight 
occupied hours are selected and applied in each of the MPC structures 
presented in Section 3. As the occupancy indicates when thermal com-
fort should be achieved, the periods with occupancy are indicated in the 
figures as between two black dashed lines. Knowledge of the weather 
climate data is considered by using the Typical Meteorological Year 
(TMY) data from EnergyPlus [42]. This data set contains the annual 
period of historic weather data per hour in Amsterdam, the Netherlands. 
Weather data from forty consecutive days in Spring (from day 90 to day 
130) are selected for the assessment. Such period is chosen because of 
the varying environmental conditions during spring. In contrast, the 
summer or winter seasons are predominantly warm or cold. These sea-
sons are likely to result in consistently similar control actions. The 
disturbance data has an hourly sampling time. We set the MPC time step 
Δt to 1 h as well, analyzing the effects of lowering Δt to 30 min since this 
results in less time available to optimize the inputs. 

The analysis starts by plotting the objective function in Fig. 5. The 
circle markers refer to 400 start points, and the color spots refer to the 
resulting errors, considering a prediction horizon of 2, 4, and 8 days. 
Moreover, the cross markers indicate the corresponding 400 optimal 
points. As shown in Fig. 5, the indoor temperature variance suggests a 
minimum and it is, therefore, feasible to optimize. Additionally, the 
analysis shows that the optima found settles in a single region, which 
indicates the absence of multiple local optima. Approximately, there is a 
unique global optimum, and a multi-start procedure is not required 
which significantly reduces the computation time. 

When comparing the NLMPC and LMPC centralized structures, it 
seems that applying a linearized model with large prediction horizons is 
beneficial. Such result is shown in Table 5, where % expresses increase/ 
decrease with relation to the centralized structure. In contrast to LMPC, 
no preparatory decision is considered in NLMPC since the control ho-
rizon is limited to 8 h for feasible computation times. Therefore, the 
squared error is significantly reduced with LMPC, indicating that mak-
ing preparatory decisions is effective for future occupied hours. Also, the 
absolute error remains similar as the LMPC produces a high accuracy 
when compared to the NLMPC. Additionally, Fig. 6 illustrates the indoor 
temperature profiles obtained by the controllers above. 

The hierarchical structure (HMPC) clearly solves this problem as 
both the squared and absolute errors are reduced significantly. This 
happens because the NLMPC controller prefers ventilation over shading 
to affect the air temperature since the indoor temperature response via 
ventilation is faster. However, the shades have significant effects over 
the long period due to their influence on the thermal mass, which can be 
beneficial in future situations. The indoor temperature profile by HMPC 
is illustrated in Fig. 7. 

For example, HMPC may prioritize opening the blinds and fully 
ventilating to cool the inner zone during a semi-warm day, even though 
a better solution might be to close the blinds and decrease the ventila-
tion when a period with a warm climate follows. This is a typical sce-
nario that may occur when the blind control inputs are re-optimized on a 
short horizon, using little knowledge of future disturbances. HMPC 
solves this problem by assuming that the building’s thermal response 
due to solar irradiance is relatively slow and, therefore, less sensitive to 

Fig. 8. Pareto front for the multi-objective optimization problem including as 
tradeoff thermal comfort and auxiliary backup use. 
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linearizations. Hence, the blind control signals can be optimized on a 
large horizon by the LMPC agent, using sufficient knowledge of future 
disturbances. In addition, the re-optimized ventilation control signal can 
compensate for uncertainties in the short-term predictions. The preser-
vation of high control performance in the short-term is then ensured, 
while the re-optimization is done faster when only one input type is 
optimized. 

At last, we consider the heat pump demand aiming to make the 
thermal comfort always achieved. In this case, a multi-objective opti-
mization problem arises, as a conflict occurs between thermal comfort 
and energy consumption. This is illustrated by constructing the Pareto 
front of the optimization problem in Fig. 8, in which the points contain 
information of a simulation period of 20 days. In this Pareto front, the 
standard deviation in relation to the reference temperature and the 
required auxiliary energy of each simulation period are analyzed. A 
maximum standard deviation of 0.25 ◦C is selected, such that 95% of all 
errors are within 0.5 ◦C, assuming the error to be a normal distribution. 
The optimal point chosen is determined by considering both the Pareto 
front and corresponding computation times. Hence, the corresponding 
Q and R weighting values presented in Section 3.3 are the selected 
values. 

4.3. HMPC versus rule-based PID controller 

As the HVAC system installed at The Green Village is currently 
operated by a rule-based PID controller, we draw on such measurements 
to evaluate the potential of the developed HMPC architecture for 
reducing the building’s energy consumption while maintaining thermal 
comfort. The control performance is evaluated keeping the same MPC 
framework shown in Fig. 2. The indoor temperature variance indicates 
how well thermal comfort is achieved. The system performance is also 

expressed in terms of the required auxiliary energy, where the energy 
demanded by the HMPC structure is evaluated considering a maximum 
deviation of 0.25 ◦C. The optimized properties in Table 4 are considered. 

We evaluate the system performance during the 13-day field exper-
iment, from May 3 to May 15, 2021, in which the measured data have a 
5-min sampling time. During the experimental period, the occupancy in 
the building is mimicked by 6 electric heaters of 500 W each as, for the 
simulation, 30 occupants were considered between 9 a.m. and 5 p.m. on 
weekdays only. Moreover, the direct beam irradiation is omitted after 5 
p.m. because of incontrollable shadowing from trees. The reference 
temperature is set to 21 ◦C, as this value is also considered by the rule- 
based controller. 

Along with computational complexity considerations, the selection 
of the control time step and prediction horizon of HMPC should be done 
based on the control performance, evaluated in terms of absolute and 
squared errors between the indoor and reference temperature, and 
based on the total energy demand required to operate the system. The 
effect of the control time step and the prediction horizon is therefore 
shown in Fig. 12. The results show that lower time steps reduce the 
errors and energy consumption but increase the computational effort, 
which presents a more accentuated response. Increasing the prediction 
horizon also reduces the errors while increasing the computation time 
but it does not seem to significantly affect the auxiliary energy demand. 
Therefore, a control time step of 20 min and a prediction horizon of 9 h 
seem to provide the best control and energy performance. Notably, the 
performance in terms of errors and energy consumption is quite 
consistent and it is the computation time that is most sensitive to such 
parameters. Note that the prediction horizon depends on the time step, 
such that Np #1 = 4 h for Δt = 1800s, 6 h for Δt = 1200s, and 8 h for Δt 
= 900s. Similarly, Np #2 = 6, 9, 12 h and Np #3 = 8, 12, 16 h, for time 
steps of 1800, 1200, and 900 s, respectively. 

Fig. 9. System operation determined by the HMPC: (a) indoor temperatures and (b) passive ventilation flow rates, where the vertical dashed lines stand for the 
occupied period. 
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Fig. 9a illustrates the indoor temperature profile achieved by the 
HMPC structure, which indicates that thermal comfort is well satisfied 
along the time. In addition, Fig. 9b shows the optimal flow rates required 
to meet the target temperature profile. Note that the same airflow 
requirement could be supplied with active energy (e.g., mechanical 
fans), even though such demand is here considered supplied by passive 
ventilation. 

The shades operation is illustrated in Fig. 10. As one can see, the 
shades are closed during warmer days, as expected. The auxiliary energy 
is mainly supplied during the night shift (see Fig. 11). This occurs 
because the HMPC structure prepares the building for meeting the 
constraints applied on occupied hours. In the morning, an auxiliary 
energy peak is required to achieve this constraint. In later hours, the 

energy gain due to occupancy and the solar incidence is often sufficient. 
Furthermore, natural ventilation is often applied to cool the building 
down during the day. Note, however, that the air supply only aims for 
thermal comfort and not indoor air quality. 

For simplicity, a full elaboration on the rule-based PID controller is 
not provided in this work, but the control objectives considered in this 
comparison are the same. Fig. 13 shows the temperature profile 
(Fig. 13a) and the flow rates (Fig. 13b). As shown in Fig. 13, the tem-
perature profile in the case of PID control floats around the reference 
temperature (21 ◦C) sharper than in the case of HMPC. To reach these 
temperatures, the heat pump consumed 90 kWh over the 13-day period, 
while HMPC spent 112 kWh. 

As the minimum flow rates for keeping the air quality have not been 

Fig. 10. (a) Opening of blinds in facades south, east, and west, according to the HMPC; and (b) detail of closure of shades at the required times.  

Fig. 11. Power profile required by the backup system to reach thermal comfort.  
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considered in both control methods, we assume as a reference that a 
minimum airflow of 0.19 kg/s must be supplied during occupied hours 
[43]. Next, the energy demand to meet the thermal comfort reference 
condition (qTC) and the air quality minimum flow rate (qAQ) is deter-
mined as follows: 

qTC =
∑N

k=1
ṁkc

⃒
⃒21 − Tk

a

⃒
⃒Δt (11.1)  

qAQ =
∑N

k=1
(0.19 − ṁk)c

⃒
⃒21 − Tk

o

⃒
⃒Δt, if ṁk < 0.19 (11.2) 

Equation (11.1) determines the required energy to reach the tem-
perature of 21 ◦C under the ventilation profiles of Figs. 9b and 13b. 
Additionally, (11.2) calculates the thermal energy when the required 
ventilation of 0.19 kg/s is not satisfied. Table 6 provides the results for 
the energy demands evaluated. The difference between the values 
shown in Table 6 loosely indicates the control performance, where the 
HMPC structure appears to achieve better performance than the rule- 
based controller. For instance, 112 kWh is initially required to achieve 
the current Ta profile of Fig. 9a, as opposed to the 90-kWh consumption 
of the rule-based controller (Fig. 13a). However, in the MPC we do not 
consider the air heat recovery unit lately installed at the building. When 
considering energy savings, the energy demand decreases to 28 kWh, as 

shown in the brackets of Table 6. More energy is also required by the PID 
controller to correct the latter’s temperature profile, regardless of the 
HMPC structure’s energy demand for correcting air quality. Therefore, 
the HMPC structure clearly outperforms the rule-based controller in 
terms of energy consumption. 

Additionally, we assess the energy demand reduction by comparing 
the yearly energy demand per square meter to the benchmark values of 
the Almost Energy Neutral Buildings (BENG)-requirements [44]. The 
HMPC structure and the occupancy scheme of Fig. 4 are simulated over 
the yearly period of TMY data. The building’s energy consumption 
resulted to be 9000 kWh with a standard deviation of 0.27 ◦C from the 
reference temperature. Hence, the whole system has a theoretical energy 
demand of approximately 30 kWh/m2 per year for thermal control. This 
energy demand is below the 100–150 kWh/m2 benchmark and within 
the 90 kWh/m2 maximum requirements. 

5. Summary and conclusions 

This work has explored predictive control schemes to maximize 
passive heating and ventilation in indoor spaces, regarding all-glass fa-
cades assisted by a thermal chimney and solar shadings. The uniqueness 
of this configuration calls for optimization-based control methods to 
realize its best performance, as the proposed controller is shown to 
address this issue. The analyses have elaborated on the design of 

Fig. 12. Effect of control time steps and prediction horizons on the MPC performance: (a) absolute error, (b) squared error, (c) computation time of an optimization 
step, and (d) the auxiliary energy required for system operation. The prediction horizons depend on the time step, such that Np #1 = 4, 6, 8 h; Np #2 = 6, 9, 12 h; and 
Np #3 = 8, 12, 16 h. 
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predictive models and hierarchical architecture. It has been shown that 
the resulting controller is suitable for real-time operations, as it shows 
feasible action times and superior performance when compared to the 
rule-based PID control operating on site. 

We have elaborated on how a set of monitoring sensors could be used 
to experimentally adjust the simulation models. In fact, it was shown 
that the adjusted simulation models and the sensor data have a high 
agreement, i.e., the modeling is appropriate for indoor temperature and 
HVAC control. The experimental measurements allowed to calibrate the 
model by optimizing some key parameters, such as the ground proper-
ties, which assures the precision of the models (variance accounted for is 
superior to 90% in most cases). 

As fast processing times are desired, the hierarchical model predic-
tive control (HMPC) structure was considered to handle the transient 
behavior of each actuator to take the best decision while satisfying the 
objective of supply thermal comfort. HMPC includes a linear, short-term 
agent for ventilation control and nonlinear, long-term agents for heating 
control, resulting in an effective strategy for real-time applications 
(optimal inputs decision can be easily provided every 30 min). When 
compared to conventional control methods to save energy, the simula-
tions show that the HMPC structure surpasses the PID controller 
currently operating in the building. Universal applicability is certainly 
possible in terms of the technologies, system configuration, and methods 
considered, as the materials were provided by companies in the sector of 

high-tech sustainable indoor climate. Its universal feasibility, however, 
depends on tradeoffs between costs and energy performance, which vary 
on each local condition and require specific studies. Therefore, further 
studies have been planned to assess the economic features and the 
consumer market of the sustainable technologies considered. Moreover, 
future work includes developing control algorithms using real-time 
computational tools, such as IPOP and C++, for practical implementa-
tion. Furthermore, the dynamic prediction of occupancy and the 
development of data-driven models will be investigated. 
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Fig. 13. System operation determined by the rule-based PID control: (a) indoor temperatures and (b) active ventilation flow rates.  

Table 6 
Energy demand of the HPMC and rule-based PID for 13 days.  

Controller qHP [kWh] qTC [kWh] qAQ [kWh] qHP + qTC + qAQ [kWh] 

HMPC 112 (28a) 4.4 45.6 (11.4a) 162 (43.8a) 
PID 90 102.6 4.6 197  

a Considering the energy recovery process used by the PID controller. 
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Appendix 1  

Table 7 
- Nusselt correlations for the convective heat transfer coefficients  

Nusselt number (Nu) Author Condition Region 

0.037 (Re)0.8(Pr)0.33 Zhukauskas - Outside Air 
Horizontal surface 
Vertical surface 

0.54 (Ra)0.25 Mc Adams Ts < Ta ∧ Ra ≤ 107 Indoor Air 
Horizontal surface 

0.15 (Ra)0.33 Mc Adams Ts < Ta ∧ Ra > 107 Indoor Air 
Horizontal surface 

0.27 (Ra)0.25 Mc Adams Ts > Ta Indoor Air 
Horizontal surface 

0.42 (Ra)0.25
(Pr)0.012

(y
d

)− 0.3 MacGregor - Wall’s cavity 
Vertical surface  

0.68+

⎡

⎢
⎣

0.670 Ra0.25

1 +

(
0.492

Pr

)0.56

⎤

⎥
⎦

0.44 Churchill & Chu Ra < 109 Indoor Air 
Vertical surface  

⎡

⎢
⎢
⎢
⎣

0.825 +

⎡

⎢
⎣

0.387 Ra0.17

1 +

(
0.492

Pr

)0.56

⎤

⎥
⎦

0.3
⎤

⎥
⎥
⎥
⎦

2 Churchill & Chu Ra ≥ 109 Indoor Air 
Vertical surface   

Appendix B. Supplementary material 

Supplementary material to this article can be found online at https://doi.org/10.1016/j.energy.2022.126177. 
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