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Joël, Pratik, Theo, Wouter, Jan, Koen, Constantin, Henry, Jacopo, Giuseppe, Paul, Lei and
many more of whom I do not remember their names. Thank you so much for your accompany
which I do value a lot. I also want to thank my family, as well as my friends including Pastor
Cai, Pastor Yuan, Philip, Xin Ting, Yuting, Kuou & Jingwen, Zhang Pan, Pandixiong, Wei
Wei, Ben, Xiaofei, Andy, Lian Chao & Shang Yu, Siqi, Li Yan & Tianmu, Uncle Li & Aunt
Li, Huiying, Lulu & Xiaoluo, Haiyan, Xiaomei, Xiaoxiong, Yi, Ye, Zihao, Xuanyu & Xiaox-
uan, Weiyuan & Chengcheng, Yurong, Chunchun, Feifei, Gaoan, Yingzhu, Yonghui, Shasha &
Ruoyang, Maokun, Mu-en, Chen Cheng, Tianyu, Jingqi and many more I do not name here.
The time spent with you has built a strong faith in me that will always encourage me, for which
I am really grateful.





v

CONTENTS

Acknowledgements iii

1 Introduction 1
1.1 Motivations and research questions . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.1.1 Motivations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.1.2 Research questions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.2 Thesis structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.3 A literature study of structure-preserving methods . . . . . . . . . . . . . . . . . 4

2 Mimetic spectral element method 7
2.1 The Poisson problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.2 The de Rham structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.2.1 Function spaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.2.2 The de Rham complex . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.2.3 Double de Rham complex . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.2.4 de Rham structure of the Poisson problem . . . . . . . . . . . . . . . . . . 12
2.2.5 A weak formulation of the Poisson problem . . . . . . . . . . . . . . . . . 13

2.3 Mimetic polynomials . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
2.3.1 Lagrange polynomials and edge polynomials . . . . . . . . . . . . . . . . . 15
2.3.2 Mimetic polynomials in the reference domain of R3 . . . . . . . . . . . . . 17
2.3.3 Mimetic basis functions in general domains of R3 . . . . . . . . . . . . . . 26

2.4 Application to the Poisson problem . . . . . . . . . . . . . . . . . . . . . . . . . . 35
2.4.1 Single element case . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
2.4.2 A particular example of multiple mesh elements . . . . . . . . . . . . . . . 36
2.4.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

3 A mimetic dual-field discretization for Navier-Stokes equations 43
3.1 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

3.1.1 Navier-Stokes equations and invariants . . . . . . . . . . . . . . . . . . . . 43
3.1.2 Objective of this chapter . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

3.2 A conservative formulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
3.2.1 The rotational form of the incompressible Navier-Stokes equations . . . . 46
3.2.2 A conservative dual-field mixed weak formulation . . . . . . . . . . . . . . 47
3.2.3 Properties of the formulation . . . . . . . . . . . . . . . . . . . . . . . . . 48



vi

3.3 Temporal discretization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
3.3.1 Temporal discretizations at staggered time steps . . . . . . . . . . . . . . 51
3.3.2 Properties after temporal discretization . . . . . . . . . . . . . . . . . . . 53

3.4 Mimetic spatial discretization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
3.4.1 Fully discrete systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
3.4.2 Properties of the fully discrete systems . . . . . . . . . . . . . . . . . . . . 59

3.5 Numerical experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
3.5.1 Manufactured solution tests . . . . . . . . . . . . . . . . . . . . . . . . . . 59
3.5.2 Taylor-Green vortex . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

3.6 Summary of this chapter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

4 Hybridization 69
4.1 Poisson problem under domain decomposition . . . . . . . . . . . . . . . . . . . . 70
4.2 Mimetic trace spaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

4.2.1 Mimetic polynomial spaces in the reference domain of R2 . . . . . . . . . 71
4.2.2 Mimetic spaces on surfaces of R3 . . . . . . . . . . . . . . . . . . . . . . . 73
4.2.3 Mimetic trace spaces for a general domain . . . . . . . . . . . . . . . . . . 76

4.3 Discrete dual de Rham complex . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
4.4 Discretization of the hybrid Poisson problem . . . . . . . . . . . . . . . . . . . . 81
4.5 Numerical results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

5 Dual basis functions with applications 91
5.1 Dual mimetic basis functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91
5.2 Discrete dual operators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

5.2.1 Discrete dual gradient operator . . . . . . . . . . . . . . . . . . . . . . . . 94
5.2.2 Discrete dual curl operator . . . . . . . . . . . . . . . . . . . . . . . . . . 95
5.2.3 Discrete dual divergence operator . . . . . . . . . . . . . . . . . . . . . . . 96
5.2.4 Discrete double de Rham complex . . . . . . . . . . . . . . . . . . . . . . 96

5.3 Application to Poisson problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97
5.3.1 Discretization of the hybrid weak formulation . . . . . . . . . . . . . . . . 97
5.3.2 Numerical results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

5.4 Application to linear elasticity . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107
5.4.1 Three-dimensional linear elasticity . . . . . . . . . . . . . . . . . . . . . . 107
5.4.2 Weak formulations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108
5.4.3 Discretization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110
5.4.4 Numerical results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113

6 Conclusions and future work 121
6.1 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121
6.2 Future work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122

6.2.1 For the conservative discretization of the Navier-Stokes equations . . . . . 122
6.2.2 For the hdMSEM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122

Bibliography 125

Summary 135

Curriculum vitae 137



1

CHAPTER 1

INTRODUCTION

Partial differential equations (PDEs) [1, 2] are important tools for the modeling of physics.
They arise in numerous fields, see, for instance, the Poisson equation [3, 4], elasticity equations
[5, 6] in continuum mechanics, the wave equation [7] in acoustics, Maxwell’s equations [8] in
electromagnetism, the Schrödinger equation [9] in quantum mechanics, magnetohydrodynamics
(MHD) [10, 11] equations in plasma physics, Stokes equations [12], Euler equations [13, 14] and
Navier-Stokes equations [15–17] in fluid dynamics and many more.

These equations can be broken down into two types of relations, constitutive relations and
topological relations. Constitutive relations are also called constitutive laws. A typical consti-
tutive relation describes the relation between two variables connected by a material parameter.
Such a relation essentially is a scientific hypothesis and can only be verified to a certain degree
through experiments. While a topological relation usually refers to a conservation law which
is considered to be a fundamental law of nature. We take the Poisson equation as an exam-
ple. The Poisson equation arises in many subjects, like fluid dynamics [18], heat transfer [19],
electromagnetism [20], gravity [21], etc. It is an elliptic partial differential equation of the form

−∇ · (k∇ϕ) = f,

where ϕ and f are both scalar fields and k refers to a material property. If we introduce
an intermediate variable u = k∇ϕ, the Poisson equation can be broken down into a mixed
formulation written as

u = k∇ϕ,
∇ · u = −f.

If the Poisson equation is used to model a heat diffusion, the first relation, namely the gradient
relation, then represents a constitutive law, Fourier’s law, which relates the heat flux u to the
temperature ϕ subject to a material property k, the thermal conductivity of the material. And
the second relation, the divergence relation, simply implies the fundamental conservation law of
energy, i.e., that the local net heat flux must be equal to the heat generated or absorbed by the
source term, f . As a second example, if the Poisson equation models a potential flow in porous
medium, the gradient relation then represents a constitutive relation — Darcy’s law which
relates the flow velocity field, u, to the flow potential, ϕ, subject to a material property k, the
permeability of the medium. And the divergence relation reflects the fundamental conservation
law of mass stating that the local net mass flux is equal to the mass generated or absorbed by the
source term, f . In practice, a constitutive relation may already contain a certain amount of error.
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For instance, the measurement of the thermal conductivity of a material or the permeability of
a porous medium comes with a certain measurement error. However, the topological relation
which stands for the topological essence of physics does not contain such an error. Apart from the
constitutive and topological relations, there are other structures, like symmetries and invariants,
embedded in PDEs.

For a particular problem, it is generally difficult to find the analytical solutions of the PDEs.
An alternative approach is doing a simulation with a numerical method to find an approximate
solution [22, 23]. Common numerical methods can be classified into finite difference methods
(FDM) [8,24], finite volume methods (FVM) [15,25] and finite element methods (FEM) [26–30].
For example, given a well-posed Poisson problem in a porous medium, using the conventional
first order finite element method, we can find a numerical solution of the velocity field u, denoted
by uh, i.e.,

uh ≈ u,
which is a linear combination of piece-wise linear functions. However, if we check the conservation
of mass for the numerical solution uh, we will find that it is only satisfied approximately, i.e.,

∇ · uh ≈ 0,

where we have assumed that there is no source term anywhere, namely f = 0. The exact
conservation of mass, ∇ · uh = 0, can only be approached when we refine the simulation to the
limit, which is not feasible because of the limited computational power. We can interpret this
by saying that artificial mass is generated during the numerical simulation. In other words, the
structure which prevents the unphysical artificial mass, the conservation of mass embedded by
the relation ∇ · u = 0, is not preserved by the numerical method.

Besides methods like the aforementioned conventional finite element method which fail to
maintain these structures of PDEs in the solutions, there are numerical methods designed to
take one or some structures as strong constraints such that they can be strictly satisfied by the
solutions. Such methods are called structure-preserving or mimetic methods. The feature of
being structure-preserving leads to extra physical compatibility, and also benefits the method
generally in the aspects of accuracy and, more importantly, stability [31]. Therefore, structure-
preserving methods have become a research topic of great interest. Among the various structure-
preserving methods, there is the mimetic spectral element method (MSEM) [32–34], an arbitrary-
order structure-preserving method.

1.1 Motivations and research questions

1.1.1 Motivations

When I started my Ph.D. project in 2016, the fundamental framework of the MSEM was already
established by Gerritsma, Palha, Kreeft et al. [32–36], and this newly developed method had been
been successfully applied to, for example, the Poisson problem [3], the Stokes flow [12], advection
problems [37] and the Grad-Shafranov equation [38]. These early applications gave promising
results and revealed the good properties of the MSEM, which suggested more explorations
to further explore the potential of the method in various mathematical and physical fields.
Therefore, also to better match my M.Sc. background in aerodynamics, the research direction
of my Ph.D. project was set to be “development and application of the mimetic spectral element
method with focus on computational fluid dynamics”.

In the first year of my Ph.D., another progress of the MSEM was achieved by Palha and
Gerritsma who proposed a mass, energy, enstrophy and vorticity conserving (MEEVC) mimetic
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spectral element discretization for 2D incompressible Navier–Stokes equations [16]. Following
this method, a good research question was whether we could construct a mass, energy and
helicity conserving discretization for 3D incompressible Navier-Stokes equations. Note that the
3D incompressible Navier-Stokes equations conserve helicity instead of conservation of enstrophy
in 2D. And this was not a totally new topic for me; some preliminary investigations with regard
to helicity-preserving numerical schemes were conducted during my M.Sc. project [39]. Also,
from the literature, a mass, energy and helicity conserving discretization for 3D incompressible
Navier-Stokes equations is of considerable novelty and of great research significance in the aspects
of, for example, turbulence, boundary layer flow. These factors motivated me to list constructing
a mass, kinetic energy and helicity conserving discretization for 3D incompressible Navier-Stokes
equations as one of my research goals.

As time went on, the MSEM was applied to more and more problems including, for ex-
ample, shallow water equations [40], Euler equations [14], the anisotropic diffusion [4], linear
elasticity problems [5]. Meanwhile, an issue of the MSEM, the high computational cost, became
increasingly urgent. Because the MSEM is an arbitrary-order spectral element method based on
mixed formulations, the method usually needs to solve large and not very sparse linear systems
especially for 3D problems of multiple variables, like the linear elasticity problem in a mixed
formulation [5]. This issue motivated me to investigate extensions of the MSEM with techniques,
i.e., hybridization and dual basis functions,1 that could reduce the computational cost.

There is enough theoretical material to study the MSEM. However, in terms of implementing
the method, there is yet no comprehensive instructions or well-documented libraries. As a result,
new researchers in this area may find that it is very difficult to implement their own ideas, and
moreover the basic concepts of the MSEM are programmed over and over mostly in approaches
of a very low performance. Obviously, this is extremely inefficient. Once being one of them, I
am strongly motivated to form the dissertation in a way that it could more directly help new
researchers to implement their own ideas. And this surely will promote the application and
development of the method in return.

1.1.2 Research questions

In response to these motivations, three specific research questions for this dissertation are raised.
They are listed below.

• (i) Can we develop a mass, kinetic energy and helicity conserving discretization for 3D
incompressible Navier-Stokes equations using the MSEM?

• (ii) Can we develop extensions of the MSEM that demand less computational power?

• (iii) Can we introduce the MSEM and its extensions (if research question (ii) is affir-
matively answered) in a way that new researchers can find it more helpful in terms of
implementation?

And based on these research questions, the general goal of this dissertation is set to be to promote
the application and development of the mimetic spectral element method.

1.2 Thesis structure

The outline of the dissertation is as follows. In Section 1.3, a literature study of structure-
preserving methods is given. In Chapter 2, we introduce the MSEM with an application to

1Further explanations regarding the usage of these two techniques will be given in Chapter 4 and Chapter 5,
respectively.



4 CHAPTER 1. INTRODUCTION

the Poisson problem. In Chapter 3, a new development of the MSEM to address the research
question (i) is presented. It is followed by the introduction of the hybridization of the MSEM,
see Chapter 4, and the usage of dual basis functions, see Chapter 5, which answers the research
question (ii). Finally, conclusions are drawn and the potential future work is introduced in
Chapter 6.

As for the research question (iii), a special component, the Complements, is inserted
throughout the dissertation. See Complement 1.1 for an introduction of this component.

Complement 1.1 Complements of the dissertation are provided at
[PhD thesis complements (ptc)] www.mathischeap.com/contents/LIBRARY/ptc.
These complements are mainly for addressing the research question (iii). They serve as a
library and contain additional material such as instructions and well-documented scripts
that could help readers (especially the new researchers) to better understand the MSEM
and its extensions and to more quickly build their own efficient programs.

1.3 A literature study of structure-preserving methods

Back in the 1960s, methods which employ staggered meshes were proposed. Among them there
are the method proposed by Harlow and Welch [41] and the Smagorinsky-Lilly method firstly
introduced by Smagorinsky [42] and then developed by Lilly [43]. These methods discuss the
conservation and mathematical properties of the problems and could be considered as the original
mimetic methods.

In the 1970s, Tonti [44–47] introduced a classification scheme for the basic physical quanti-
ties and theories and revealed the analogies between algebraic topology [48, 49] and differential
geometry [50–53]. In this scheme, physical variables are associated with not only points but also
other elementary geometric elements of higher dimensions, such as lines, surfaces and volumes.
In algebraic topology, more specifically the theory of cell-complexes, these geometric elements
are called k-cells with k being the dimension of the geometric elements. On a grid, the num-
bered and oriented k-cells form a k-chain. The association between a k-chain and a k-cochain
which can be regarded as the degrees of freedom of a discrete differential k-form then can be
established [54]. Tonti’s work, from a more geometric point of view, gives a novel and robust
tool to understand different physical theories, to analyze the mathematical structure embedded
in them and to design numerical methods, especially structure-preserving methods [55].

Before the work of Tonti, Whitney formulated an interpolation between flat cochains and
differential forms for a proof in his geometric integration theory [56]. These forms initially
were not used for numerical methods until Dodziuk [57] generalized these ideas onto manifolds,
named them Whitney forms, and used them in a finite difference approach to the Hodge theory
of harmonic forms in 1974 [58]. Around the same time, in the field of finite element methods, a
new branch called mixed finite element methods was proposed and developed by Brezzi, Raviart,
Thomas, Nédélec, Douglas et al., [59–63]. These newly developed mixed elements turn out to
be closely related to the Whitney forms [64, 65]. For this reason Whitney forms, in a finite
element setting, are also called Whitney elements which were then used in the field of compu-
tational electromagnetics by Bossavit in the late 1980s [66–68]. Instead of conventional scalar
and vector fields used in the mixed finite element methods, Bossavit used differential forms for
the description and numerical modeling of physics, which was a great success and promoted the
use of differential forms and Whitney forms in other fields. Bossavit’s work in computational
electromagnetics is also recognized as a pioneering work in the structure-preserving or mimetic
discretization community, and Whitney forms are also gradually known as finite elements for

https://www.mathischeap.com/contents/LIBRARY/ptc.html
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differential forms [58]. For more recent developments, we highlight the work on higher order
Whitney forms [69,70] and on Whitney forms for various cell shapes [71].

Although Tonti’s work shares some similar ideas with Whitney forms (and mixed elements)
and partly contributed to Bossavit’s work [72–76], by the early 1990s, Whitney forms (and mixed
elements) had become much more popular than Tonti’s work, unjustly as Bossavit said in [77].
Attempts were made to merge them in the same paper. Nevertheless, it is undeniable that both
of them are important and useful tools for structure-preserving or mimetic methods.

The terminology mimetic discretization became well-known since the development of the
mimetic finite difference (MFD) method. The method was called to be mimetic as it mimics
some fundamental properties of mathematical and physical systems [78]. Driven by the idea that
the discrete differential operators, such as gradient, curl and divergence, should be conservative
such that they preserve some properties, like standard vector identities, symmetry, positive
definiteness, of their continuous counterparts, Hyman and Scovel [79] proposed a mimetic finite
difference approach based on the analogies between algebraic topology and differential forms
in 1988. Later, a complete framework for the mimetic finite difference method was gradually
established from the middle 1990s by Hyman, Shashkov, Lipnikov, Steinberg et al., see for
example [80–85]. We emphasize [78] for a comprehensive review on the mimetic finite difference
method. The virtual element method [86], a close variation of the mimetic finite difference
method, can also be classified into this framework. For more application-oriented work on the
mimetic finite difference method, we refer to, for example, [87, 88].

The popularity of exploring the usage of algebraic topology and differential forms for mimetic
discretizations reached another level from the early 2000s. In the work of Bochev and Hy-
man [89], a more general framework that could be used to guide the development of mimetic
discretization in any of finite difference, finite volume and finite element settings was constructed
by extending the early work of Hyman and Scovel [79]. At the kernel of this framework, there
are two basic operations, the reduction and the reconstruction. On a domain of dimension n,
the reduction operation maps differential k-forms (k ≤ n) onto k-cochains. These k-cochains
are associated to k-chains which are part of a cell complex that tessellates the domain. The
reconstruction operation, as a right inverse of the reduction, reconstructs the discrete differential
k-forms from the k-cochains. Discrete operators like discrete inner product and discrete Hodge
operator depend on the reconstruction, and, thus, for various choices of the reconstruction,
different mimetic methods can arise.

In the same period, a mimetic discretization theory called the discrete exterior calculus
(DEC) was developed by Hirani, Desbrun, Marsden et al. [90–93]. Sharing close ideas with
the mimetic framework proposed by Bochev and Hyman, for example, in the sense of discrete
operators, such as exterior derivative, codifferential and Hodge operator, the DEC provides a
more geometric approach to address the topic. For a fully mimetic discrete vector calculus, we
refer to the work of Robidoux and Steinberg [94]. For more investigations of mimetic methods
in unstructured meshes, we refer to the work of Perot and his co-authors [95,96].

Another important contribution called the finite element exterior calculus (FEEC) was made
by Arnold, Falk and Winther [97–100] which forms an excellent foundation for the combination
of mimetic ideas and finite element methods. The mimetic ideas can also be implemented in the
mimetic isogeometric analysis, see for example the work of Evans, Hughes, Toshniwal and their
co-authors [101,102]. More investigations on mimetic discretization in the finite element setting
include for example the work of Hiptmair [103, 104], Bonelle, Ern, Di Pietro et al., [105–107]
and the MSEM.

As the foundation of this dissertation, the MSEM (which will be introduced comprehensively
in Chapter 2) proposed by Gerritsma, Palha, Kreeft et al. [32–34] was inspired by many of the
previously mentioned contributions among which the mimetic framework proposed by Bochev
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and Hyman, the discrete exterior calculus and the finite element exterior calculus are the most
direct ones.

For more structure-preserving discretizations in various mathematical fields, see, for example,
the work of Hairer, Lubich and Wanner on geometric numerical integration [108–110], [111–113]
on mimetic variational approaches, and [114–117] on Hamiltonian systems.
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CHAPTER 2

MIMETIC SPECTRAL ELEMENT METHOD

In this chapter, we introduce the MSEM which was firstly introduced using the mathematical
language of differential forms, see [33, 34, 36]. Here we explain the method with the more
conventional mathematical language, vector calculus, to provide another way of understanding
the method for a larger audience.

For various applications of the MSEM, we refer to, for example, [3,6,12,14,17,35,38,40,118–
121].

2.1 The Poisson problem

As explained in the introduction chapter, the Poisson problem arises in many branches of physics
and engineering, like fluid dynamics [18], heat transfer [19], electromagnetism [20], gravity [21],
etc. It is governed by the Poisson equation, an elliptic partial differential equation, of the strong
form1

−∇ · (k∇ϕ) = f,

where ϕ and f are both scalar fields and k refers to a material parameter. We consider a simply
connected, bounded domain Ω whose regular enough (Lipschitz continuous) boundary is denoted
by ∂Ω. The boundary ∂Ω is split into two parts, Γϕ and Γu,

∂Ω = Γϕ ∪ Γu, Γϕ ∩ Γu = ∅, Γϕ 6= ∅.

Let the material parameter k and the scalar field f be known and boundary conditions ϕ = ϕ̂
and u · n = û be given on Γϕ and Γu, respectively. Note that we use n to denote the outward
unit normal vector. If we introduce an auxiliary variable u = ∇ϕ, a well-posed Poisson problem
can be expressed in a mixed form,

u = k∇ϕ in Ω,(2.1a)

∇ · u = −f in Ω,(2.1b)

ϕ = ϕ̂ on Γϕ(2.1c)

u · n = û on Γu.(2.1d)

1This form is strong in the sense that we have not applied any restriction to the spaces that the variables
belong to.
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Note that when Γϕ = ∅, this problem is not well-posed. There is a singular mode in (2.1a). For
example, if ϕ′ solves the problem, ϕ = ϕ′ + C, where C is an arbitrary constant2, also solves
the problem.

2.2 The de Rham structure

2.2.1 Function spaces

We start with some basic concepts of Sobolev spaces [27,122,123] on which the de Rham complex
will be built. The fundamental Sobolev space we will use in this dissertation is the space of square
integrable functions,

L2(Ω) := {ϕ |〈ϕ,ϕ〉Ω < +∞} ,
where 〈·, ·〉Ω denotes the L2-inner product (or simply inner product), i.e.,

〈a, b〉Ω :=

∫

Ω
ab dΩ and 〈c,d〉Ω :=

∫

Ω
c · d dΩ,

if a, b are scalar fields and c, d are vector fields in Ω.

Complement 2.1 For an instruction of evaluating the integration numerically, see script
[quadrature.py] www.mathischeap.com/contents/LIBRARY/ptc/quadrature.

The space H1(Ω), a subspace of the L2(Ω), is defined as

H1(Ω) :=
{
ψ
∣∣ψ ∈ L2(Ω),∇ψ ∈

[
L2(Ω)

]n}
,

where we have used n to denote the dimensions of the space. If Ω is a sub-domain of R2 (n = 2),
we know that the curl of a scalar field gives a vector field, and we distinguish it from the
rotation operator which works on a vector and gives a scalar. Therefore, we define H(curl; Ω)
and H(rot; Ω) in R2 as

H(curl; Ω) :=

{
φ

∣∣∣∣∣φ ∈ L
2(Ω),∇× φ =

[
∂φ

∂y
−∂φ
∂x

]T
∈
[
L2(Ω)

]2
}
,

H(rot; Ω) :=

{
v

∣∣∣∣v =
[
v1 v2

]T ∈
[
L2(Ω)

]2
,∇× v =

∂v2

∂x
− ∂v1

∂y
∈ L2(Ω)

}
.

Note that we have used ∇× to denote both rotation and curl operators and we can identify
which operator it is by checking the type (scalar or vector) of the object it is working on. In
R3, curl and rotation operators are equivalent. Thus

H(curl; Ω) = H(rot; Ω) :=
{
v
∣∣∣v ∈

[
L2(Ω)

]3
,∇× v ∈

[
L2(Ω)

]3}
.

Analogously, we can define the space H(div; Ω):

H(div; Ω) :=
{
u
∣∣u ∈

[
L2(Ω)

]n
,∇ · u ∈ L2(Ω)

}
.

The trace operator, denoted by T , restricts a function defined in Ω to its boundary. In R3,
we consider the following trace spaces. The H1/2(∂Ω) space, a subspace of L2(∂Ω), is the range

2More generally, C can be an arbitrary scalar field such that ∇C = 0.

https://www.mathischeap.com/contents/LIBRARY/ptc/quadrature.html
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(or image) of the trace operator on H1(Ω), i.e.,

H1/2(∂Ω) :=
{
ψ̂
∣∣∣∃ψ ∈ H1(Ω), ψ̂ = Tψ on ∂Ω

}
.

Its dual space H−1/2(∂Ω) is defined as the range of the trace operator on H(div; Ω),

H−1/2(∂Ω) := { û| ∃u ∈ H(div; Ω), û = Tu = u · n on ∂Ω} .

For H(curl; Ω), we consider two trace operators, T‖ and T⊥ and the corresponding traces spaces
are defined as

TH‖(∂Ω) :=
{
ω̂| ∃ω ∈ H(curl; Ω), ω̂ = T‖ω = n× (ω × n) on ∂Ω

}
,

TH⊥(∂Ω) := { ω̂| ∃ω ∈ H(curl; Ω), ω̂ = T⊥ω = ω × n on ∂Ω} .

The vector n× (ω × n) is the component of ω parallel to the tangent plane of ∂Ω, and we have

(2.2) ω = n× (ω × n) + (ω · n)n

with (ω · n)n being the component of ω perpendicular to the tangent plane. The vector ω×n
is also parallel to the tangent plane and is perpendicular to ω and n×(ω × n) because the cross
product of two vectors is perpendicular to either vector, i.e.,

(2.3) (a× b) ⊥ a and (a× b) ⊥ b.

See Fig. 2.1 for an illustration of the decomposition of ω ∈ H(curl; Ω) on the domain boundary.
Trace spaces TH‖(∂Ω) and TH⊥(∂Ω) are also a pair of dual spaces. And for more information
on the trace spaces, we refer to, for example, [124,125].

Figure 2.1: An illustration of the decomposition of ω ∈ H(curl; Ω) on the domain boundary.

2.2.2 The de Rham complex

The de Rham complex formally is a concept in differential geometry [31,89,126–129]. It is a se-
quence of differential k-form spaces, Λk(Ω), unidirectionally connected by the exterior derivative,
d. A generalized form of the de Rham complex is given as

(2.4) 0 ↪→ Λ0(Ω)
d−→ Λ1(Ω)

d−→ · · · d−→ Λn(Ω) −→ 0.
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In terms of Sobolev spaces, the de Rham complex has different forms in different dimensions:

• In R1, we have

0 ↪→ H1(Ω)
∇−→ L2(Ω)→ 0,

0 ↪→ H(div; Ω)
∇·−→ L2(Ω)→ 0,

where in this case H1(Ω) = H(div; Ω) and both the gradient and the divergence operators
refer to the derivative operator, d. Note that, see (2.4), we have also used the notation d
to express the exterior derivative for differential forms.

• In R2, we have

0 ↪→ H1(Ω)
∇−→ H(rot; Ω)

∇×−→ L2(Ω)→ 0,

0 ↪→ H(curl; Ω)
∇×−→ H(div; Ω)

∇·−→ L2(Ω)→ 0.

• In R3, the de Rham complex is of the form,

(2.5) 0 ↪→ H1(Ω)
∇−→ H(curl; Ω)

∇×−→ H(div; Ω)
∇·−→ L2(Ω)→ 0.

Such a complex implies that the range of an operator is a subspace of the next space, to be
more exact, is a subspace of the null space of the next space with respect to the next operator.
Recall the fact that ∇×∇(·) ≡ 0 and ∇ ·∇× (·) ≡ 0. A visualization of the de Rham complex
in R3, (2.5), is shown in Fig. 2.2.

Figure 2.2: A visualization of the de Rham complex of Sobolev spaces in R3.

We call the first order differential operators, ∇, ∇× and ∇·, the primal differential operators
or simply primal operators and call the corresponding complexes, for example, (2.5), the primal
de Rham complexes. The primal operators are topological operators and the MSEM will preserve
the topological structure of them at the discrete level, which will be explained later in this
chapter.
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2.2.3 Double de Rham complex

To introduce the double de Rham complex, we restrict ourselves to R3 as an example.
In terms of the L2-inner product, integration by parts with respect to the primal divergence

operator induces an adjoint operator of it. The adjoint operator is defined as

(2.6) ∇̃ : L2(Ω)→ H(div; Ω),

such that

(2.7)
〈
v, ∇̃ϕ

〉
Ω

= −〈∇ · v, ϕ〉Ω +

∫

∂Ω
ϕ (v · n) dΓ ∀v ∈ H(div; Ω).

This adjoint operator, ∇̃, is called the dual gradient operator.
As for the primal curl operator, integration by parts in terms of the inner product induces

an adjoint operator defined as

(2.8) ∇̃× : H(div; Ω)→ H(curl; Ω),

such that

(2.9)
〈
ω, ∇̃ × u

〉
Ω

= 〈∇ × ω,u〉Ω −
∫

∂Ω
ω · (u× n)dΓ ∀ω ∈ H(curl; Ω).

Note that on the boundary ω · (u×n) =
(
T‖ω

)
· (u×n) as the perpendicular component of ω,

(ω · n)n, does not contribute to this dot product, i.e., (ω · n)n ⊥ u × n, see (2.2) and (2.3).

And we call this adjoint operator, ∇̃×, the dual curl operator.
Analogously, integration by parts with respect to the primal gradient operator induces an

adjoint operator defined as

(2.10) ∇̃· : H(curl; Ω)→ H1(Ω),

such that

(2.11)
〈
ψ, ∇̃·ω

〉
Ω

= −〈∇ψ,ω〉Ω +

∫

∂Ω
ψ(ω · n)dΓ ∀ψ ∈ H1(Ω).

We call this adjoint operator, ∇̃·, the dual divergence operator.

Remark 2.1 Performing the dual operators can be done by computing the corresponding primal
operators employing integration by parts. It will also need the assistance of the additional trace
variable for the boundary integral. For example, in (2.7), since ϕ ∈ L2(Ω), it does not admit a
trace operator. Thus

ϕ|∂Ω ∈ H1/2(∂Ω)

has to be an additional boundary variable provided for the calculation of the dual gradient op-
erator. Similarly, in (2.9) and (2.11), u ∈ H(div; Ω) and ω ∈ H(curl; Ω) do not admit trace
operators T⊥ and T respectively. That is to say, boundary variables

u× n ∈ TH⊥(∂Ω) and ω · n ∈ H−1/2(∂Ω)
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need to be provided for computing the dual curl and divergence operators, respectively. Therefore,
more precise expressions, instead of (2.6), (2.8) and (2.10), for the dual operators are

∇̃ : L2(Ω)×H1/2(∂Ω)→ H(div; Ω),

∇̃× : H(div; Ω)× TH⊥(∂Ω)→ H(curl; Ω),

∇̃· : H(curl; Ω)×H−1/2(∂Ω)→ H1(Ω).

As they do not impact the introduction of the MSEM, we temporally leave them as shown in (2.6),
(2.8) and (2.10) for neatness. This is also the case when the MSEM was initially proposed. More
discussion about them will be given in Chapter 5 where we introduce the dual basis functions.

With these dual operators, we can extend the primal de Rham complex, (2.5), to a double
de Rham complex as shown in Fig. 2.3. The L2-inner product is metric-dependent and we will
see later in this chapter that in the MSEM we perform the dual operator through integration
by parts in terms of the L2-inner product.

R �
�

// H1(Ω)
∇ //

OO

��

H(curl; Ω)
∇×

//
OO

��

H(div; Ω)
∇· //

OO

��

L2(Ω) //
OO

��

0

0 H1(Ω)oo H(curl; Ω)
∇̃·oo H(div; Ω)

∇̃×
oo L2(Ω)

∇̃oo R? _oo

Figure 2.3: The double de Rham complex in R3. The upper branch is the primal de Rham complex
and the lower branch is called the dual de Rham complex. Note that we have omitted the trace spaces in
the dual de Rham complex, see Remark 2.1.

2.2.4 de Rham structure of the Poisson problem

In this section, we use the double de Rham complex to analyze the Poisson equations (2.1). If we
select ϕ ∈ H1(Ω), we will have u = k∇ϕ ∈ H(curl; Ω) with the gradient operator being a primal
operator. This implies that the operator working on u in (2.1b) must be a dual divergence
operator, see Fig. 2.3. Thus, original equations (2.1a) and (2.1b) can be expressed as a weak
form3: For (u, ϕ) ∈ H(curl; Ω)×H1(Ω),

u = k∇ϕ in Ω,(2.12a)

∇̃·u = −f in Ω.(2.12b)

Alternatively, we can take the divergence operator as a primal operator and take the gradient
operator as a dual one. As a result, the original equations (2.1a) and (2.1b) can be expressed
as the following weak form: (u, ϕ) ∈ H(div; Ω)× L2(Ω)

u = k∇̃ϕ in Ω,(2.13a)

∇ · u = −f in Ω.(2.13b)

These interpretations reflect two particular structures, see Fig. 2.4, in the double de Rham
complex.

3It is a weak form in the sense that we have restrict u and ϕ to particular spaces that do not contain all scalars
or vectors.
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// H1(Ω)
∇ //

OO

��

H(curl; Ω) //

k
��

H1(Ω)oo H(curl; Ω)
∇̃·oo oo

// H(div; Ω)
∇· //

OO

k

L2(Ω) //
OO

��

H(div; Ω)oo L2(Ω)
∇̃oo oo

Figure 2.4: Two de Rham structures of the Poisson problem. The interpretation (2.12) reflects the left
structure while the interpretation (2.13) reflects the right structure.

For the MSEM, we prefer to use the right de Rham structure of Fig. 2.4 which takes the
gradient operator as a dual operator and takes the divergence operator as the primal one. This
is because that including the material parameter will need the help of metric terms (which will
be explained later in this chapter). Thus in this way the topological structure of the divergence
relation which stands for a fundamental conservation law can be preserved at the discrete level
by the MSEM. It does not mean that the left de Rham structure in Fig. 2.4 is not applicable for
the MSEM. We can still use it. However, the resulting discretization is less preferable because
we will setup a topological discretization for the constitutive relation but introduce metric terms
for the discretization of the topological relation.

Using the right de Rham structure of Fig. 2.4, we now can rewrite the Poisson problem
(2.1) in a weak form with Sobolev spaces as follows: Given f ∈ L2(Ω), boundary conditions
ϕ̂ ∈ H1/2(Γϕ) and û ∈ H−1/2(Γϕ), find (u, ϕ) ∈ H(div; Ω)× L2(Ω) such that

u = k∇̃ϕ in Ω,(2.14a)

∇ · u = −f in Ω,(2.14b)

ϕ = ϕ̂ on Γϕ,(2.14c)

u · n = û on Γu.(2.14d)

2.2.5 A weak formulation of the Poisson problem

If we test (2.14a) with test function v ∈ H0(div; Ω),

H0(div; Ω) := {v |v ∈ H(div; Ω), v · n = 0 on Γu } ,

and test (2.14b) with test function φ ∈ L2(Ω), applying integration by parts (2.7) to the dual
gradient term, we can obtain the following weak formulation of the problem (2.14): Given f ∈
L2(Ω), boundary conditions ϕ̂ ∈ H1/2(Γϕ) and û ∈ H−1/2(Γu), seek (u, ϕ) ∈ Hû(div; Ω)×L2(Ω)
such that

〈
v, k−1u

〉
Ω

+ 〈∇ · v, ϕ〉Ω =

∫

Γϕ

ϕ̂ (v · n) ∀v ∈ H0(div; Ω),(2.15a)

〈φ,∇ · u〉Ω = −〈φ, f〉Ω ∀φ ∈ L2(Ω),(2.15b)

where the space Hû(div; Ω) is defined as

Hû(div; Ω) := {u |u ∈ H(div; Ω), u · n = û on Γu } .

For an alternative approach to obtain this weak formulation based on a constrained mini-
mization problem, we refer to, for example, [31, 119].
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2.3 Mimetic polynomials

So far, all analysis is conducted at the continuous level. In this section, we introduce the discrete
or finite dimensional function spaces to be used for the discretization with the MSEM.

The MSEM, as mentioned before, aims to preserve the de Rham structure at the discrete
level. In order to achieve so, it must use discrete function spaces which are able to form a
discrete de Rham complex. If there is a set of discrete functions spaces,

{G(Ω), C(Ω), D(Ω), S(Ω)} ,

such that

(2.16) ,

we say that they constitute a discrete de Rham complex, see Fig. 2.2, and call these spaces a
set of mimetic or structure-preserving spaces.

There are multiple particular sets of mimetic spaces. One well-known choice is to employ
G(Ω) = CGN , C(Ω) = NED1

N , D(Ω) = RTN , and S(Ω) = DGN−1, i.e.,

,

where CGN are the continuous Galerkin spaces of degree N , NED1
N are the Nédélec H(curl)-

conforming spaces of the first kind of degree N , see [61], RTN are the Raviart-Thomas spaces
of degree N , see [60, 61], and DGN−1 are the discontinuous Galerkin spaces of degree (N − 1).
Another possible set of mimetic spaces employing B-splines is used in the works by Hiemstra et
al. [118], Buffa et al. [130], Ratnani and Sonnendrücker [131] and Zhang et al. [132].

A third choice is the mimetic spaces which will be used in this dissertation. In this section, we
will introduce the construction of these mimetic spaces. We will first introduce the construction
of them in the reference domain. Afterwards, transforming them from the reference domain to
general, orthogonal or curvilinear, domains will be explained. In the reference domain, they are
spaces of polynomials and thus are called the mimetic polynomial spaces. While in a general
domain, depending on the mapping, it is not guaranteed that they are spaces of polynomials.
And from now on, the general term, mimetic spaces, refer to these particular mimetic spaces in
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this dissertation.

2.3.1 Lagrange polynomials and edge polynomials

In R1, the mimetic polynomials consist of the well-known Lagrange polynomials and the edge
polynomials [32]. For completeness, we start with a brief introduction of the Lagrange polyno-
mials. Let a set of nodes, {ξ0, ξ1, · · · , ξN}, partition the 1D reference domain, Iref = [−1, 1],

−1 = ξ0 < ξ1 < · · · < ξN = 1.

And throughout the thesis, we will use the Legendre-Gauss-Lobatto (LGL) nodes. The Lagrange
polynomials,

li(ξ) :=
N∏

j=0,j 6=i

ξ − ξj
ξi − ξj

, i ∈ {0, 1, · · · , N} ,

are polynomials of degree N which satisfy a nodal Kronecker delta property expressed as

(2.17) li(ξj) = δij =

{
1 if i = j

0 else
.

The edge polynomials of degree (N − 1), ei(ξ), are linear combinations of the derivatives of the
Lagrange polynomials, i.e.,

(2.18) ei(ξ) :=

N∑

j=i

dlj(ξ)

dξ
= −

i−1∑

j=0

dlj(ξ)

dξ
, i ∈ {1, 2, · · · , N} ,

which satisfy an integral Kronecker delta property expressed as

(2.19)

∫ ξj

ξj−1

ei(ξ)dξ = δij .

Examples of Lagrange polynomials and edge polynomials are shown in Fig. 2.5.

−1.0 −0.5 0.0 0.5 1.0
ξ

0.0

0.5

1.0

li
(ξ

)

−1.0 −0.5 0.0 0.5 1.0
ξ

−2

0

2

4

ei
(ξ

)

Figure 2.5: Lagrange polynomials (left) and edge polynomials (right) derived from a partition of degree
4, −1 = ξ0 < ξ1 < · · · < ξ4 = 1. The vertical gray dashed lines indicate the internal nodes, ξ1, ξ2, ξ3.
The nodal Kronecker delta property (2.17) is obvious. The integral Kronecker delta property (2.19) can
be seen, for example, from the edge polynomial e2(ξ) (orange solid line). Direct calculations will reveal

that
∫ ξ2
ξ1
e2(ξ)dξ = 1 and

∫ ξj
ξj−1

e2(ξ)dξ = 0, j ∈ {1, 3, 4}.
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Complement 2.2 For a Python implementation of Lagrange polynomials and edge poly-
nomials in the 1D reference domain, see the script
[Lagrange and edge polynomials.py]

www.mathischeap.com/contents/LIBRARY/ptc/Lagrange and edge polynomials.

In Iref , the Lagrange polynomials span a discrete polynomial space denoted by LPN (Iref),
i.e.,

LPN (Iref) := span
({
l0(ξ), l1(ξ), · · · , lN (ξ)

})
,

and the edge polynomials span a discrete polynomial space denoted by EPN−1(Iref), i.e.,

EPN−1(Iref) := span
({
e1(ξ), e2(ξ), · · · , eN (ξ)

})
.

※ Polynomials in spaces LPN (Iref) and EPN−1(Iref) are of the following forms.

• A polynomial ph ∈ LPN (Iref) is of the form

ph(ξ) =

N∑

i=0

pil
i(ξ),

where pi ∈ R are the expansion coefficients (degrees of freedom) of the polynomial.
And, from the nodal Kronecker delta property (2.17), it is easy to find

(2.20) ph(ξi)
(2.17)

= pi.

• A polynomial qh ∈ EPN−1(Iref) is of the form

qh(ξ) =
N∑

i=1

qie
i(ξ),

where qi ∈ R are the expansion coefficients of the polynomial. From the integral
Kronecker delta property (2.19), we know

(2.21)

∫ ξi

ξi−1

qh(ξ)dξ
(2.19)

= qi.

If, for ph ∈ LPN (Iref) and qh ∈ EPN−1(Iref), the following relation holds,

(2.22) qh(ξ) =
dph(ξ)

dξ
,

we integrate qh over line segments [ξi−1, ξi], and, using the first fundamental theorem of calculus
and relations (2.20) and (2.21), we can find that

(2.23) qi = pi − pi−1, i ∈ {1, 2, · · · , N} .

https://www.mathischeap.com/contents/LIBRARY/ptc/Lagrange_and_edge_polynomials.html
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This suggests a discrete counterpart for the derivative operator. Let us collect the expansion
coefficients of ph and qh, and put them in column vectors denoted by p and q, i.e.,

p :=
[
p0 p1 · · · pN

]T
and q :=

[
q1 q2 · · · pN

]T
.

Note that this convention, using underlined symbols to denote column vectors of expansion
coefficients, will be used throughout the dissertation. From (2.23), we can find that there is a
linear operator, the so-called incidence matrix, E, such that

(2.24) q = Ep,

where the incidence matrix E is an N by (N+1) sparse (only if N > 1) matrix with two nonzero
entries, E|i,i−1 = −1 and E|i,i = 1, per row. For example, if N = 4, we have

E =




−1 1 0 0 0
0 −1 1 0 0
0 0 −1 1 0
0 0 0 −1 1


 .

The incidence matrix E is a topological matrix; it contains −1, +1 and 0 and only depends on
the topology of the grid. For example, if we use a different set of nodes, −1 = ξ0 < ξ′1 < ξ′2 <
· · · < ξ′N−1 < ξN = 1, although the resulting Lagrange polynomials and edge polynomials will
be different, the relation (2.23) remains the same. This means the incidence matrix E will be
the same. Also note that (2.23) is exact, which implies that E is an exact discrete counterpart of
the derivative operator, see (2.22) and (2.24). In other words, it is a derivative operator applied
to the degrees of freedom.

Application of the derivative operator to a polynomial in LPN (Iref) thus can be done eas-
ily through applying the linear operator, E, to the column vector of expansion coefficients.
The resulting column vector contains the expansion coefficients of the resulting polynomial in
EPN−1(Iref). Since such a process is valid for all polynomials in LPN (Iref), i.e.,

(2.25) dph ∈ EPN−1(Iref) ∀ph ∈ LPN (Iref),

we can conclude that the mimetic polynomial spaces LPN (Iref) and EPN−1(Iref) form a 1D
discrete de Rham complex,

R ↪→ LPN (Iref)
d−→ EPN−1(Iref)→ 0,

where the derivative operator, d, has an exact discrete counterpart, the incidence matrix E.
Note that the subscripts, N and N − 1, indicate the degrees of the polynomials in the spaces.

2.3.2 Mimetic polynomials in the reference domain of R3

In R3 equipped with an orthogonal coordinate system (ξ, η, ς), consider the reference domain
Ωref = [−1, 1]3. Let three sets of nodes,

{
ξ0, ξ1, · · · , ξNξ

}
,
{
η0, η1, · · · , ηNη

}
and {ς0, ς1, · · · , ςNς} ,

partition the interval [−1, 1], i.e., −1 = ξ0 < ξ1 < · · · < ξNξ = 1, −1 = η0 < η1 < · · · < ηNη = 1
and −1 = ς0 < ς1 < · · · < ςNς = 1. Without the loss of generality, we use Nξ = Nη = Nς = N .
Based on these sets of nodes, we can construct the following 1D Lagrange polynomials and edge
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polynomials along three axes,

{
l0(ξ), l1(ξ), · · · , lN (ξ)

}
,(2.26a)

{
l0(η), l1(η), · · · , lN (η)

}
,(2.26b)

{
l0(ς), l1(ς), · · · , lN (ς)

}
,(2.26c)

{
e1(ξ), e2(ξ), · · · , eN (ξ)

}
,(2.26d)

{
e1(η), e2(η), · · · , eN (η)

}
,(2.26e)

{
e1(ς), e2(ς), · · · , eN (ς)

}
.(2.26f)

Node polynomials If we perform the tensor product to Lagrange polynomials (2.26a), (2.26b)
and (2.26c), we can obtain a set of polynomials,

(2.27)
{

llli,j,k(ξ, η, ς)
∣∣∣ i, j, k ∈ {0, 1, · · · , N}

}
,

where llli,j,k(ξ, η, ς) := li(ξ)lj(η)lk(ς). If we use the following notation to denote points

(2.28) Pl,m,n = (ξl, ηm, ςn), l,m, n ∈ {0, 1, · · · , N} ,

from (2.17), it is easy to see that these polynomials satisfy the nodal Kronecker delta property,

(2.29) llli,j,k(Pl,m,n) = li(ξl)l
j(ηm)lk(ςn) = δi,j,kl,m,n =

{
1 if i = l, j = m, k = n

0 else
.

We call these polynomials the basis node polynomials. The discrete space of node polynomials,
NPN (Ωref), is the space spanned by these basis node polynomials, i.e.,

(2.30) NPN (Ωref) := span
({

llli,j,k(ξ, η, ς)
∣∣∣ i, j, k ∈ {0, 1, · · · , N}

})
.

Edge polynomials Similarly, using the 1D Lagrange polynomials and edge polynomials, we
can construct following polynomials,

{
elli,j,k(ξ, η, ς)

∣∣∣ i ∈ {1, 2 · · · , N} , j, k ∈ {0, 1, · · · , N}
}
,(2.31a)

{
leli,j,k(ξ, η, ς)

∣∣∣ j ∈ {1, 2 · · · , N} , i, k ∈ {0, 1, · · · , N}
}
,(2.31b)

{
llei,j,k(ξ, η, ς)

∣∣∣ k ∈ {1, 2 · · · , N} , i, j ∈ {0, 1, · · · , N}
}
,(2.31c)

where we have used notations

elli,j,k(ξ, η, ς) := ei(ξ)lj(η)lk(ς),

leli,j,k(ξ, η, ς) := li(ξ)ej(η)lk(ς),

llei,j,k(ξ, η, ς) := li(ξ)lj(η)ek(ς).
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We introduce following notations for the edges,

Eξl,m,n := ([ξl−1, ξl] , ηm, ςn) ,(2.33a)

Eηl,m,n := (ξl, [ηm−1, ηm] , ςn) ,(2.33b)

Eςl,m,n := (ξl, ηm, [ςn−1, ςn]) .(2.33c)

For example, Eξl,m,n is the edge connecting the points Pl−1,m,n and Pl,m,n and Eηl,m,n is the
edge connecting the points Pl,m−1,n and Pl,m,n. With the Kronecker delta properties (2.17) and
(2.19), we can find that polynomials in (2.31) satisfy line integral Kronecker delta properties
expressed as

∫

Eξl,m,n

elli,j,k(ξ, η, ς)dr =

∫ ξl

ξl−1

ei(ξ)dξ lj(ηm)lk(ςn) = δi,j,kl,m,n,(2.34a)

∫

Eηl,m,n

leli,j,k(ξ, η, ς)dr = li(ξl)

∫ ηm

ηm−1

ej(η)dη lk(ςn) = δi,j,kl,m,n,(2.34b)

∫

Eςl,m,n

llei,j,k(ξ, η, ς)dr = li(ξl)l
j(ηm)

∫ ςn

ςn−1

ek(ς)dς = δi,j,kl,m,n.(2.34c)

We call these polynomials the basis edge polynomials. The discrete space of edge polynomials4

(note the difference from the 1D edge polynomials, see (2.18)), denoted by EPN−1(Ωref), is the
space spanned by these basis edge polynomials, i.e.,

(2.35)

EPN−1(Ωref) : = span
({

elli,j,k(ξ, η, ς)
∣∣∣ i ∈ {1, 2 · · · , N} , j, k ∈ {0, 1, · · · , N}

})

× span
({

leli,j,k(ξ, η, ς)
∣∣∣ j ∈ {1, 2 · · · , N} , i, k ∈ {0, 1, · · · , N}

})

× span
({

llei,j,k(ξ, η, ς)
∣∣∣ k ∈ {1, 2 · · · , N} , i, j ∈ {0, 1, · · · , N}

})
.

Face polynomials It is also possible to construct polynomials,

{
leei,j,k(ξ, η, ς)

∣∣∣ i ∈ {0, 1 · · · , N} , j, k ∈ {1, 2, · · · , N}
}
,(2.36a)

{
elei,j,k(ξ, η, ς)

∣∣∣ j ∈ {0, 1 · · · , N} , i, k ∈ {1, 2, · · · , N}
}
,(2.36b)

{
eeli,j,k(ξ, η, ς)

∣∣∣ k ∈ {0, 1 · · · , N} , i, j ∈ {1, 2, · · · , N}
}
,(2.36c)

using the 1D Lagrange polynomials and edge polynomials. And we have used notations

leei,j,k(ξ, η, ς) := li(ξ)ej(η)ek(ς),

elei,j,k(ξ, η, ς) := ei(ξ)lj(η)ek(ς),

eeli,j,k(ξ, η, ς) := ei(ξ)ej(η)lk(ς).

4We call them polynomials despite they are actually vectors of polynomials.
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We denote the following faces by

F ξl,m,n := (ξl, [ηm−1, ηm] , [ςn−1, ςn]) ,(2.38a)

F ηl,m,n := ([ξl−1, ξl] , ηm, [ςn−1, ςn]) ,(2.38b)

F ςl,m,n := ([ξl−1, ξl] , [ηm−1, ηm] , ςn) ,(2.38c)

For example, F ξl,m,n is the face whose four corners are points Pl,m−1,n−1, Pl,m,n−1, Pl,m,n−1

and Pl,m,n. Analogously, with the Kronecker delta properties for the 1D polynomials, (2.17)
and (2.19), we can easily verify that these polynomials satisfy the following surface integral
Kronecker delta properties,

∫

F ξl,m,n

leei,j,k(ξ, η, ς)dΓ = li(ξl)

∫ ηm

ηm−1

ej(η)dη

∫ ςn

ςn−1

ek(ς)dς = δi,j,kl,m,n,(2.39a)

∫

F ηl,m,n

elei,j,k(ξ, η, ς)dΓ =

∫ ξl

ξl−1

ei(ξ)dξ lj(ηm)

∫ ςn

ςn−1

ek(ς)dς = δi,j,kl,m,n,(2.39b)

∫

F ςl,m,n

eeli,j,k(ξ, η, ς)dΓ =

∫ ξl

ξl−1

ei(ξ)dξ

∫ ηm

ηm−1

ej(η)dη lk(ςn) = δi,j,kl,m,n.(2.39c)

We call these polynomials the basis face polynomials. The discrete space of face polynomials5,
denoted by FPN−1(Ωref), is the space spanned by these basis face polynomials, i.e.,

(2.40)

FPN−1(Ωref) : = span
({

leei,j,k(ξ, η, ς)
∣∣∣ i ∈ {0, 1 · · · , N} , j, k ∈ {1, 2, · · · , N}

})

× span
({

elei,j,k(ξ, η, ς)
∣∣∣ j ∈ {0, 1 · · · , N} , i, k ∈ {1, 2, · · · , N}

})

× span
({

eeli,j,k(ξ, η, ς)
∣∣∣ k ∈ {0, 1 · · · , N} , i, j ∈ {1, 2, · · · , N}

})
.

Volume polynomials If we perform the tensor product to the 1D edge polynomials in (2.26d),
(2.26e) and (2.26f), we can get the following polynomials,

(2.41)
{

eeei,j,k(ξ, η, ς)
∣∣∣ i, j, k ∈ {1, 2, · · · , N}

}
,

where eeei,j,k(ξ, η, ς) := ei(ξ)ej(η)ek(ς). The following notation is used to denote the volumes

(2.42) Vl,m,n := ([ξl−1, ξl] , [ηm−1, ηm] , [ςn−1, ςn]) ,

See Complement 2.3 for an illustration of these volumes. Derived from the integral Kronecker
property of the 1D edge polynomials, (2.19), these polynomials satisfy a volume integral Kro-
necker delta property expressed as

(2.43)

∫

Vl,m,n

eeei,j,k(ξ, η, ς)dV =

∫ ξl

ξl−1

ei(ξ)dξ

∫ ηm

ηm−1

ej(η)dη

∫ ςn

ςn−1

ek(ς)dς = δi,j,kl,m,n.

5We call them polynomials despite they are actually vectors of polynomials.
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We call them the basis volume polynomials. They span a discrete space of volume polynomials,
denoted by VPN−1(Ωref),

(2.44) VPN−1(Ωref) := span
({

eeei,j,k(ξ, η, ς)
∣∣∣ i, j, k ∈ {1, 2, · · · , N}

})
.

Complement 2.3 For an illustration of the distribution of the geometric objects to which
the polynomials are related through Kronecker properties (2.29), (2.34), (2.39) and (2.43),
see document [geometries and distribution.pdf]

www.mathischeap.com/contents/LIBRARY/ptc/geometries and distribution.

※ Discrete polynomials in spaces NPN (Ωref), EPN−1(Ωref), FPN−1(Ωref) and VPN−1(Ωref)
are of the following forms.

• A node polynomial ψh ∈ NPN (Ωref) is of the form

ψh(ξ, η, ς) =

N∑

i=0

N∑

j=0

N∑

k=0

Ψi,j,klll
i,j,k(ξ, η, ς),

where Ψi,j,k ∈ R are the expansion coefficients of the node polynomial. And we know,
from the Kronecker delta property (2.29), that

(2.45) ψh(Pl,m,n) =
N∑

i=0

N∑

j=0

N∑

k=0

Ψi,j,klll
i,j,k(ξl, ηm, ςn)

(2.29)
= Ψl,m,n.

• An edge polynomial ωh ∈ EPN−1(Ωref) is of the form

ωh(ξ, η, ς) =




N∑

i=1

N∑

j=0

N∑

k=0

wξ
i,j,kelli,j,k(ξ, η, ς)

N∑

i=0

N∑

j=1

N∑

k=0

wη
i,j,kleli,j,k(ξ, η, ς)

N∑

i=0

N∑

j=0

N∑

k=1

wς
i,j,klle

i,j,k(ξ, η, ς)




,

where wξ
i,j,k,w

η
i,j,k,w

ς
i,j,k ∈ R are the expansion coefficients of the edge polynomial.

From Kronecker delta properties (2.34), we know that

∫

Eξl,m,n

ωh · dr =

∫

Eξl,m,n

N∑

i=1

N∑

j=0

N∑

k=0

wξ
i,j,kelli,j,k(ξ, η, ς)dr

(2.34a)
= wξ

l,m,n,(2.46a)

∫

Eηl,m,n

ωh · dr =

∫

Eηl,m,n

N∑

i=0

N∑

j=1

N∑

k=0

wη
i,j,kleli,j,k(ξ, η, ς)dr

(2.34b)
= wη

l,m,n,(2.46b)

∫

Eςl,m,n

ωh · dr =

∫

Eςl,m,n

N∑

i=0

N∑

j=0

N∑

k=1

wς
i,j,klle

i,j,k(ξ, η, ς)dr
(2.34c)

= wς
l,m,n.(2.46c)

https://www.mathischeap.com/contents/LIBRARY/ptc/geometries_and_distribution.html
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• A face polynomial uh ∈ FPN−1(Ωref) is of the form

uh(ξ, η, ς) =




N∑

i=0

N∑

j=1

N∑

k=1

uξi,j,kleei,j,k(ξ, η, ς)

N∑

i=1

N∑

j=0

N∑

k=1

uηi,j,kelei,j,k(ξ, η, ς)

N∑

i=1

N∑

j=1

N∑

k=0

uςi,j,keeli,j,k(ξ, η, ς)




,

where uξi,j,k, u
η
i,j,k, u

ς
i,j,k ∈ R are the expansion coefficients of the face polynomial. And

we know, from Kronecker delta properties (2.39), that

∫

F ξl,m,n

uh · n dΓ =

∫

F ξl,m,n

N∑

i=0

N∑

j=1

N∑

k=1

uξi,j,kleei,j,k(ξ, η, ς)dΓ
(2.39a)

= uξl,m,n,(2.47a)

∫

F ηl,m,n

uh · n dΓ =

∫

F ηl,m,n

N∑

i=1

N∑

j=0

N∑

k=1

uηi,j,kelei,j,k(ξ, η, ς)dΓ
(2.39b)

= uηl,m,n,(2.47b)

∫

F ςl,m,n

uh · n dΓ =

∫

F ςl,m,n

N∑

i=1

N∑

j=1

N∑

k=0

uςi,j,keeli,j,k(ξ, η, ς)dΓ
(2.39c)

= uςl,m,n.(2.47c)

• A volume polynomial fh ∈ VPN−1(Ωref) is of the form

fh(ξ, η, ς) =

N∑

i=1

N∑

j=1

N∑

k=1

fi,j,keeei,j,k(ξ, η, ς),

where fi,j,k ∈ R are the expansion coefficients of the volume polynomial. And we know,
from the Kronecker delta property (2.43), that

(2.48)

∫

Vl,m,n

fh dV =

∫

Vl,m,n

N∑

i=1

N∑

j=1

N∑

k=1

fi,j,keeei,j,k(ξ, η, ς)dV
(2.43)

= fl,m,n.

Incidence matrix E(∇) Given ψh ∈ NPN (Ω) and ωh ∈ EPN−1(Ωref), if

(2.49) ωh = ∇ψh,

we integrate ωh along edges Eξi,k,j , E
η
i,k,j and Eςi,k,j , and with the gradient theorem for line

integrals and properties (2.45) and (2.46), we can easily find that

wξ
i,j,k = Ψi,j,k −Ψi−1,j,k, i ∈ {1, 2, · · · , N} , j, k ∈ {0, 1, · · · , N} ,(2.50a)

wη
i,j,k = Ψi,j,k −Ψi,j−1,k, j ∈ {1, 2, · · · , N} , i, k ∈ {0, 1, · · · , N} ,(2.50b)

wς
i,j,k = Ψi,j,k −Ψi,j,k−1, k ∈ {1, 2, · · · , N} , i, j ∈ {0, 1, · · · , N} .(2.50c)
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We now number the expansion coefficients of ψh as

(2.51) Ψi+1+j(N+1)+k(N+1)2 = Ψi,j,k,

and number the expansion coefficients of ωh as

wi+jN+kN(N+1) = wξ
i,j,k,(2.52a)

wi+1+(j−1)(N+1)+kN(N+1)+N(N+1)2 = wη
i,j,k,(2.52b)

wi+1+j(N+1)+(k−1)(N+1)2+2N(N+1)2 = wς
i,j,k.(2.52c)

We call a numbering a local numbering if it relates an indexing to a sequence of increasing
positive integers, {1, 2, · · · , }. With the local numberings (2.51) and (2.52), we can summarize
(2.50) into an algebraic relation expressed as

(2.53) ω = E(∇)ψ,

where ψ :=
[
Ψ1 Ψ2 · · · Ψ(N+1)3

]T
, ω :=

[
w1 w2 · · · w3N(N+1)2

]T
and the linear operator

E(∇) is the incidence matrix of the gradient operator at the discrete level, see (2.49). For example,
if N = 1, the incidence matrix E(∇) is given as

(2.54) E(∇) =




−1 1 0 0 0 0 0 0
0 0 −1 1 0 0 0 0
0 0 0 0 −1 1 0 0
0 0 0 0 0 0 −1 1
−1 0 1 0 0 0 0 0
0 −1 0 1 0 0 0 0
0 0 0 0 −1 0 1 0
0 0 0 0 0 −1 0 1
−1 0 0 0 1 0 0 0
0 −1 0 0 0 1 0 0
0 0 −1 0 0 0 1 0
0 0 0 −1 0 0 0 1




.

Incidence matrix E(∇×) Similarly, given ωh ∈ EPN−1(Ωref), u
h ∈ FPN−1(Ωref) and

(2.55) uh = ∇× ωh,

if we integrate uh over faces F ξi,k,j , F
η
i,k,j and F ςi,k,j , with the Stokes’ integral theorem and

properties (2.46) and (2.47), we will obtain

uξi,j,k = +wη
i,j,k−1 − wη

i,j,k − wς
i,j−1,k + wς

i,j,k, i ∈ {0, 1, · · · , N} , j, k ∈ {1, 2, · · · , N} ,(2.56a)

uηi,j,k = −wξ
i,j,k−1 + wξ

i,j,k + wς
i−1,j,k − wς

i,j,k, j ∈ {0, 1, · · · , N} , i, k ∈ {1, 2, · · · , N} ,(2.56b)

uςi,j,k = +wξ
i,j−1,k − wξ

i,j,k − wη
i−1,j,k + wη

i,j,k, k ∈ {0, 1, · · · , N} , i, j ∈ {1, 2, · · · , N} .(2.56c)



24 CHAPTER 2. MIMETIC SPECTRAL ELEMENT METHOD

If we apply a local numbering to the expansion coefficients of uh, for example,

ui+1+(j−1)(N+1)+(k−1)N(N+1) = uξi,j,k,(2.57a)

ui+jN+(k−1)N(N+1)+N2(N+1) = uηi,j,k,(2.57b)

ui+(j−1)N+kN2+2N2(N+1) = uσi,j,k,(2.57c)

the relations in (2.56) can be summarized as a linear algebra equality,

(2.58) u = E(∇×)ω,

where u :=
[
u1 u2 · · · u3N2(N+1)

]T
is the column vector of the expansion coefficients of uh

and E(∇×) is the incidence matrix for the curl operator at the discrete level, see (2.55). For
example, if N = 1, the incidence matrix E(∇×) is given as

(2.59) E(∇×) =




0 0 0 0 1 0 −1 0 −1 0 1 0
0 0 0 0 0 1 0 −1 0 −1 0 1
−1 0 1 0 0 0 0 0 1 −1 0 0
0 −1 0 1 0 0 0 0 0 0 1 −1
1 −1 0 0 −1 1 0 0 0 0 0 0
0 0 1 −1 0 0 −1 1 0 0 0 0



.

Incidence matrix E(∇·) For uh ∈ FPN−1(Ωref) and fh ∈ VPN−1(Ωref), if

(2.60) fh = ∇ · uh,

we integrate fh over volumes Vi,j,k and, with Gauss’ integral theorem and properties (2.47) and
(2.48), we will find that

(2.61) fi,j,k = uξi,j,k − uξi−1,j,k + uηi,j,k − uηi,j−1,k + uςi,j,k − uςi,j,k−1, i, j, k ∈ {1, 2, · · · , N} .

If we use the local numbering

(2.62) fi+(j−1)N+(k−1)N2 = fi,j,k,

and introduce the column vector f :=
[
f1 f2 · · · fN3

]T
, we can summarize (2.61) into an

algebra relation,

(2.63) f = E(∇·)u,

where the incidence matrix E(∇·) is the incidence matrix for the divergence operator at the
discrete level, see (2.60). For example, if N = 1, the incidence matrix E(∇·) is a 1 by 6 matrix
given as

(2.64) E(∇·) =
[
−1 1 −1 1 −1 1

]
.
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Complement 2.4 For an illustration of local numberings (2.51), (2.52), (2.57) and (2.62),
see document [local numberings.pdf]

www.mathischeap.com/contents/LIBRARY/ptc/local numberings.

Complement 2.5 For a Python implementation of the basis node, edge, face and volume
polynomials under aforementioned local numberings, see script
[mimetic basis polynomials.py]

www.mathischeap.com/contents/LIBRARY/ptc/mimetic basis polynomials.

Complement 2.6 For a Python implementation and more examples of incidence matrices,
E(∇), E(∇×) and E(∇·), see script [incidence matrices.py]

www.mathischeap.com/contents/LIBRARY/ptc/incidence matrices.

Note that the local numberings are not unique; different local numberings will lead to different
incidence matrices (with row and column permutations) while the relations (2.53), (2.58) and
(2.63) still hold.

Like the incidence matrix E in R1, see (2.24), the incidence matrices E(∇), E(∇×) and E(∇·)
are also sparse (except for E(∇·) at N = 1, see (2.64)) and topological in the sense that they
only contain nonzero entries of −1 and 1 and only depend on N and the local numberings
regardless of the distribution of the nodes on which the mimetic polynomials are based. And since
(2.50), (2.56) and (2.61) are exact, incidence matrices E(∇), E(∇×) and E(∇·) are exact discrete
counterparts of gradient, curl and divergence operators applied to the expansion coefficients.
Following the same analysis as for (2.25), we can easily conclude that

∇ψh ∈ EPN−1(Ωref) ∀ψh ∈ NPN (Ωref),

∇× ωh ∈ FPN−1(Ωref) ∀ωh ∈ EPN−1(Ωref),

∇ · uh ∈ VPN−1(Ωref) ∀uh ∈ FPN−1(Ωref).

Thus we know the mimetic polynomial spaces

NPN (Ωref), EPN−1(Ωref), FPN−1(Ωref) and VPN−1(Ωref)

form a discrete de Rham complex,

,

where the primal operators, ∇, ∇× and ∇·, have exact discrete counterparts, the incidence
matrices, E(∇), E(∇×) and E(∇·). And because of the fact that ∇×∇(·) ≡ 0 and ∇ ·∇× (·) ≡ 0,
we must have

E(∇×)E(∇) ≡ 0 and E(∇·)E(∇×) ≡ 0.

One can easily check this using examples of incidence matrices in (2.54), (2.59) and (2.64), see

https://www.mathischeap.com/contents/LIBRARY/ptc/local_numberings.html
https://www.mathischeap.com/contents/LIBRARY/ptc/mimetic_basis_polynomials.html
https://www.mathischeap.com/contents/LIBRARY/ptc/incidence_matrices.html
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Complement 2.6. The subscripts, N and N − 1, refer to the overall degrees of the polynomials
in the spaces, and we call NPN (Ωref), EPN−1(Ωref), FPN−1(Ωref) and VPN−1(Ωref) a set of
mimetic polynomial spaces of degree N .

2.3.3 Mimetic basis functions in general domains of R3

So far we have introduced the construction of mimetic polynomials only in the reference element.
In this section, we will introduce how to construct mimetic basis functions in a general domain.

We consider a general domain Ω which can be obtained by transforming the reference domain
Ωref using a C1 diffeomorphism mapping Φ (both Φ and its inverse mapping, Φ−1 : Ω → Ωref

are C1 continuous),

(2.65) Φ : Ωref → Ω.

The mimetic basis functions in Ω can be constructed by transforming the mimetic polynomials
in the reference domain.

Remark 2.2 The indexing and the local numbering of the mimetic polynomials in the reference
domain will be inherited by the mimetic basis functions in Ω.

Coordinate transformation Let the general domain be equipped with a coordinate system
(x, y, z). A general form of the mapping (2.65) is expressed as

x = (x, y, z) = Φ(ξ, η, ς) = (Φx(ξ, η, ς),Φy(ξ, η, ς),Φz(ξ, η, ς)) .

Its Jacobian matrix J is given as

J :=




∂x

∂ξ

∂x

∂η

∂x

∂ς
∂y

∂ξ

∂y

∂η

∂y

∂ς
∂z

∂ξ

∂z

∂η

∂z

∂ς




=
[
xξ xη xς

]
,

where we have introduced column vectors xξ, xη and xς . The Jacobian of the mapping is the
determinant of the Jacobian matrix, det (J ), and the metric matrix is

G =



g1,1 g1,2 g1,3

g2,1 g2,2 g2,3

g3,1 g3,2 g3,3


 = J TJ ,

where, to be more explicit,

gi,j =
3∑

l=1

J |l,i J |l,j , i, j ∈ {1, 2, 3} .

The metric matrix is symmetric and positive definite. The metric of the mapping is defined as
the determinant of the metric matrix and is equal to the square of the Jacobian,

g = det (G) = [det (J )]2 .
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And from the fact Φ−1 ◦ Φ : Ω → Ω, we know that J −1J = I, where I is the identity matrix.
The inverse Jacobian matrix, the Jacobian matrix of the inverse mapping, Φ−1 : Ω→ Ωref , is

J −1 :=




∂ξ

∂x

∂ξ

∂y

∂ξ

∂z
∂η

∂x

∂η

∂y

∂η

∂z
∂ς

∂x

∂ς

∂y

∂ς

∂z




=



∇xξ
∇xη
∇xς


 ,

where row vectors ∇xξ, ∇xη and ∇xς are

∇xξ :=
xT
η × xT

ς√
g

, ∇xη :=
xT
ς × xT

ξ√
g

, ∇xς :=
xT
ξ × xT

η√
g

.

The inverse Jacobian (determinant of the inverse Jacobian matrix) is the reciprocal of the
Jacobian,

det
(
J −1

)
=

1

det (J )
,

and the inverse metric matrix is expressed as

G−1 =



g1,1 g1,2 g1,3

g2,1 g2,2 g2,3

g3,1 g3,2 g3,3


 = J −1

(
J −1

)T
,

where, to be more explicit,

gi,j =
3∑

l=1

J −1
∣∣
i,l
J −1

∣∣
j,l
, i, j ∈ {1, 2, 3} .

The inverse metric matrix is also symmetric and positive definite. For a comprehensive intro-
duction on coordinate transformation, see for example [133].

Complement 2.7 For a Python implementation of computing these metric related values
and matrices of a given mapping, see script [coordinate transformation.py]

www.mathischeap.com/contents/LIBRARY/ptc/coordinate transformation.

Node basis functions Transforming a discrete node polynomial, ψh0 ∈ NPN (Ωref), to Ω can
be conducted by

ψh(x, y, z) = ψh(Φ(ξ, η, ς)) = ψh0 (ξ, η, ς).

If we apply this transformation to the basis node polynomials in the reference domain, we obtain
the following node basis functions,

llli,j,kΦ (x, y, z) = llli,j,kΦ (Φ(ξ, η, ς)) = llli,j,k(ξ, η, ς), i, j, k ∈ {0, 1, · · · , N} ,

in Ω. If we define points

(2.66) PΦ
l,m,n = Φ(Pl,m,n), l,m, n ∈ {0, 1, · · · , N} ,

https://www.mathischeap.com/contents/LIBRARY/ptc/coordinate_transformation.html


28 CHAPTER 2. MIMETIC SPECTRAL ELEMENT METHOD

where Pl,m,n are the points on which the node polynomials in the reference domain are con-

structed, see (2.28), we can easily find that the node basis functions llli,j,kΦ (x, y, z) satisfy the
Kronecker delta property expressed as

(2.67) llli,j,kΦ (PΦ
l,m,n) = δi,j,kl,m,n .

Spanned by these node basis functions, NPN (Ω) is the space of node functions in Ω, i.e.,

NPN (Ω) := span
({

llli,j,kΦ (ξ, η, ς)
∣∣∣ i, j, k ∈ {0, 1, · · · , N}

})
.

Edge basis functions Transforming a discrete edge polynomial, ωh0 ∈ EPN−1(Ωref), to Ω can
be done as

ωh(x, y, z) = ωh(Φ(ξ, η, ς)) =
(
J −1

)T
ωh0(ξ, η, ς).

If we apply this transformation to the basis edge polynomials in the reference domain, we obtain
a set of edge basis functions in Ω,

elli,j,kΦ (x, y, z) =
(
J −1

)T



elli,j,k
(
Φ−1(x, y, z)

)

0
0


 , i ∈ {1, 2, · · · , N} , j, k ∈ {0, 1, · · · , N} ,

leli,j,kΦ (x, y, z) =
(
J −1

)T



0

leli,j,k
(
Φ−1(x, y, z)

)

0


 , j ∈ {1, 2, · · · , N} , i, k ∈ {0, 1, · · · , N} ,

llei,j,kΦ (x, y, z) =
(
J −1

)T



0
0

llei,j,k
(
Φ−1(x, y, z)

)


 , k ∈ {1, 2, · · · , N} , i, j ∈ {0, 1, · · · , N} .

And if we define edges EΦ,ξ
l,m,n, EΦ,η

l,m,n and EΦ,ς
l,m,n as the mapped edges of Eξl,m,n, Eηl,m,n and Eςl,m,n,

see (2.33), i.e.,

EΦ,ξ
l,m,n := Φ(Eξl,m,n), l ∈ {1, 2 · · · , N} , m, n ∈ {0, 1, · · · , N} ,(2.68a)

EΦ,η
l,m,n := Φ(Eηl,m,n), m ∈ {1, 2 · · · , N} , l, n ∈ {0, 1, · · · , N} ,(2.68b)

EΦ,ς
l,m,n := Φ(Eςl,m,n), n ∈ {1, 2 · · · , N} , l,m ∈ {0, 1, · · · , N} ,(2.68c)

we will find that the edge basis functions satisfy Kronecker delta properties expressed as

∫

EΦ,ξ
l,m,n

elli,j,kΦ · dr = δi,j,kl,m,n,

∫

EΦ,η
l,m,n

elli,j,kΦ · dr = 0,

∫

EΦ,ς
l,m,n

elli,j,kΦ · dr = 0,(2.69a)

∫

EΦ,ξ
l,m,n

leli,j,kΦ · dr = 0,

∫

EΦ,η
l,m,n

leli,j,kΦ · dr = δi,j,kl,m,n,

∫

EΦ,ς
l,m,n

leli,j,kΦ · dr = 0,(2.69b)

∫

EΦ,ξ
l,m,n

llei,j,kΦ · dr = 0,

∫

EΦ,η
l,m,n

llei,j,kΦ · dr = 0,

∫

EΦ,ς
l,m,n

llei,j,kΦ · dr = δi,j,kl,m,n.(2.69c)

We use EPN−1(Ω) to denote the space of edge functions in Ω, i.e.,

EPN−1(Ω) :=

span
({
· · · , elli,j,kΦ (ξ, η, ς), · · ·

}
∪
{
· · · , leli,j,kΦ (ξ, η, ς), · · ·

}
∪
{
· · · , llei,j,kΦ (ξ, η, ς), · · ·

})
.
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Face basis functions Transforming a discrete face polynomial, uh0 ∈ FPN−1(Ωref), to Ω can
be done through

uh(x, y, z) = uh (Φ(ξ, η, ς)) =
J√
g
uh0(ξ, η, ς),

If we apply this transformation to the basis face polynomials in the reference domain, we obtain
a set of face basis functions in Ω,

leei,j,kΦ (x, y, z) =
J√
g




leei,j,k
(
Φ−1(x, y, z)

)

0
0


 , i ∈ {0, 1, · · · , N} , j, k ∈ {1, 2, · · · , N} ,

elei,j,kΦ (x, y, z) =
J√
g




0

elei,j,k
(
Φ−1(x, y, z)

)

0


 , j ∈ {0, 1, · · · , N} , i, k ∈ {1, 2, · · · , N} ,

eeli,j,kΦ (x, y, z) =
J√
g




0
0

eeli,j,k
(
Φ−1(x, y, z)

)


 , k ∈ {0, 1, · · · , N} , i, j ∈ {1, 2, · · · , N} .

And if we define faces FΦ,ξ
l,m,n, FΦ,η

l,m,n and FΦ,ς
l,m,n as the mapped faces of F ξl,m,n, F ηl,m,n and F ςl,m,n,

see (2.38), i.e.,

FΦ,ξ
l,m,n := Φ(F ξl,m,n), l ∈ {0, 1, · · · , N} , m, n ∈ {1, 2, · · · , N} ,(2.70a)

FΦ,η
l,m,n := Φ(F ηl,m,n), m ∈ {0, 1, · · · , N} , l, n ∈ {1, 2, · · · , N} ,(2.70b)

FΦ,ς
l,m,n := Φ(F ςl,m,n), n ∈ {0, 1, · · · , N} , l,m ∈ {1, 2, · · · , N} ,(2.70c)

we can find that the face basis functions satisfy Kronecker delta properties expressed as

∫

FΦ,ξ
l,m,n

leei,j,kΦ · dA = δi,j,kl,m,n,

∫

FΦ,η
l,m,n

leei,j,kΦ · dA = 0,

∫

FΦ,ς
l,m,n

leei,j,kΦ · dA = 0,(2.71a)

∫

FΦ,ξ
l,m,n

elei,j,kΦ · dA = 0,

∫

FΦ,η
l,m,n

elei,j,kΦ · dA = δi,j,kl,m,n,

∫

FΦ,ς
l,m,n

elei,j,kΦ · dA = 0,(2.71b)

∫

FΦ,ξ
l,m,n

eeli,j,kΦ · dA = 0,

∫

FΦ,η
l,m,n

eeli,j,kΦ · dA = 0,

∫

FΦ,ς
l,m,n

eeli,j,kΦ · dA = δi,j,kl,m,n.(2.71c)

and we use FPN−1(Ω) to denote the space of face functions in Ω, i.e.,

FPN−1(Ω) :=

span
({
· · · , leei,j,kΦ (ξ, η, ς), · · ·

}
∪
{
· · · , elei,j,kΦ (ξ, η, ς), · · ·

}
∪
{
· · · , eeli,j,kΦ (ξ, η, ς), · · ·

})
.

Volume basis functions Transforming a discrete volume polynomial, fh0 ∈ VPN−1(Ωref), to
Ω can be conducted by

fh(x, y, z) = fh(Φ(ξ, η, ς)) =
1√
g
fh0 (ξ, η, ς),
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If we apply this transformation to the basis volume polynomials in the reference domain, we
obtain a set of volume basis functions in Ω,

eeei,j,kΦ (x, y, z) = eeei,j,kΦ (Φ(ξ, η, ς)) =
1√
g

eeei,j,k(ξ, η, ς), i, j, k ∈ {1, 2, · · · , N} .

If we define volumes V Φ
l,m,n as the mapped volumes of Vl,m,n, see (2.42), namely,

(2.72) V Φ
l,m,n := Φ(Vl,m,n), l,m, n ∈ {1, 2, · · · , N} ,

we will find the following Kronecker delta property for the volume basis functions,

(2.73)

∫

V φl,m,n

eeei,j,kΦ (x, y, z)dV = δi,j,kl,m,n.

We now define VPN (Ω),

VPN−1(Ω) := span
({

eeei,j,kΦ (ξ, η, ς)
∣∣∣ i, j, k ∈ {1, 2, · · · , N}

})
,

as the space of volume functions in Ω.

Complement 2.8 For a proof of Kronecker delta properties (2.67), (2.69), (2.71) and
(2.73), see document [Kronecker delta.pdf]

www.mathischeap.com/contents/LIBRARY/ptc/Kronecker delta.

※ Discrete functions in spaces NPN (Ω), EPN−1(Ω), FPN−1(Ω) and VPN−1(Ω) are of the
following forms.

• A node function ψh ∈ NPN (Ω) is of the form

(2.74) ψh(x, y, z) =
N∑

i=0

N∑

j=0

N∑

k=0

Ψi,j,klll
i,j,k
Φ (x, y, z).

where Ψi,j,k ∈ R are the expansion coefficients of the node function. And from the
Kronecker delta property (2.67), we have

(2.75) ψh(PΦ
l,m,n) = Ψl,m,n.

• A edge function ωh ∈ EPN−1(Ω) is of the form

(2.76)

ωh(x, y, z) =
N∑

i=1

N∑

j=0

N∑

k=0

wξ
i,j,kelli,j,kΦ (x, y, z)

+

N∑

i=0

N∑

j=1

N∑

k=0

wη
i,j,kleli,j,kΦ (x, y, z)

+
N∑

i=0

N∑

j=0

N∑

k=1

wς
i,j,klle

i,j,k
Φ (x, y, z).

https://www.mathischeap.com/contents/LIBRARY/ptc/Kronecker_delta.html
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where wξ
i,j,k, wη

i,j,k,w
ς
i,j,k ∈ R are the expansion coefficients of the edge function. And

from Kronecker delta properties (2.69), we find that

∫

EΦ,ξ
l,m,n

ωh · dr = wξ
l,m,n,(2.77a)

∫

EΦ,η
l,m,n

ωh · dr = wη
l,m,n,(2.77b)

∫

EΦ,ς
l,m,n

ωh · dr = wς
l,m,n.(2.77c)

• A face function uh ∈ FPN−1(Ω) is of the form

(2.78)

uh(x, y, z) =

N∑

i=0

N∑

j=1

N∑

k=1

uξi,j,kleei,j,kΦ (x, y, z)

+
N∑

i=1

N∑

j=0

N∑

k=1

uηi,j,kelei,j,kΦ (x, y, z)

+
N∑

i=1

N∑

j=1

N∑

k=0

uςi,j,keeli,j,kΦ (x, y, z)

where uξi,j,k, uηi,j,k, uςi,j,k ∈ R are the expansion coefficients of the face function. And
from Kronecker delta properties (2.71), we obtain that

∫

FΦ,ξ
l,m,n

uh · dA = uξl,m,n,(2.79a)

∫

FΦ,η
l,m,n

uh · dA = uηl,m,n,(2.79b)

∫

FΦ,ς
l,m,n

uh · dA = uςl,m,n.(2.79c)

• A volume function fh ∈ VPN−1(Ω) is of the form

(2.80) fh(x, y, z) =
N∑

i=1

N∑

j=1

N∑

k=1

fi,j,keeei,j,kΦ (x, y, z),

where fi,j,k ∈ R are the expansion coefficients of the volume function. And from the
Kronecker delta property (2.73), we will find

(2.81)

∫

V Φ
l,m,n

fh dV = fl,m,n.

Recall that the indexings and local numberings for the reference domain have been inherited
in the general domain Ω. We now repeat the analysis that has been done for the reference domain
in Section 2.3.2 except that this time we integrate over the mapped geometric objects, see (2.66),
(2.68), (2.70) and (2.72) (instead of the original geometric objects) and use the properties (2.75),
(2.77), (2.79) and (2.81) for the general domain (instead of the ones, see (2.45), (2.46), (2.47)
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and (2.48), for the reference domain). And we again use the gradient theorem for line integrals,
the Stokes’ integral theorem and the Gauss’ integral theorem. As a result, we can find that the
gradient, curl and divergence operators for spaces NPN (Ω), EPN−1(Ω) and FPN−1(Ω) will still
have the same exact, topological discrete counterparts, the incidence matrices E(∇), E(∇×) and
E(∇·) as those derived in Section 2.3.2 for the reference domain regardless of the mapping Φ.

Having found the incidence matrices for the general domain, once again, we can follow the
same analysis for (2.25) and obtain

∇ψh ∈ EPN−1(Ω) ∀ψh ∈ NPN (Ω),

∇× ωh ∈ FPN−1(Ω) ∀ωh ∈ EPN−1(Ω),

∇ · uh ∈ VPN−1(Ω) ∀uh ∈ FPN−1(Ω).

Thus, we can conclude that the mimetic spaces NPN (Ω), EPN−1(Ω), FPN−1(Ω) and VPN−1(Ω)
form the following discrete de Rham complex,

(2.82) ,

where the gradient, curl and divergence operators still have the exact discrete counterparts, the
incidence matrices E(∇), E(∇×) and E(∇·) which are topological and thus do not depend on the
mapping Φ. This is consistent with the statement that the MSEM preserves the topological
structure of primal operators at the discrete level. The subscripts, N and N − 1, of these spaces
refer to the overall degrees of the corresponding polynomials in the reference domain, and we
call NPN (Ω), EPN−1(Ω), FPN−1(Ω) and VPN−1(Ω) a set of mimetic spaces of degree N .

※ Given a variable, i.e., ψ ∈ H1(Ω), ω ∈ H(curl; Ω), u ∈ H(div; Ω) or f ∈ L2(Ω), we can
find its projection in NPN (Ω), EPN−1(Ω), FPN−1(Ω) or VPN−1(Ω) through the projection
operator [33,89],

π := I ◦ R,
where R is the reduction operator which takes the variable and produces the expansion
coefficients and I is the reconstruction operator which reconstructs the discrete variable
with the expansion coefficients as a linear combinations of corresponding basis functions,
i.e., the mimetic basis functions in this case. Particular projections are explained as follows:

• For ψ ∈ H1(Ω), the expansion coefficients of its projection ψh := π (ψ) ∈ NPN (Ω),
are

(2.83) Ψi,j,k = ψ(PΦ
i,j,k),

where points PΦ
i,j,k are the mapped points, see (2.66). For the form of the discrete

variable φh, see (2.74).
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• For ω ∈ H(curl; Ω), the expansion coefficients of its projection ωh := π (ω) ∈ EPN−1(Ω)
are

wξ
i,j,k =

∫

EΦ,ξ
i,j,k

ω · dr(2.84a)

wη
i,j,k =

∫

EΦ,η
i,j,k

ω · dr(2.84b)

wς
i,j,k =

∫

EΦ,ς
i,j,k

ω · dr,(2.84c)

where edges EΦ,ξ
i,j,k, E

Φ,η
i,j,k and EΦ,ς

i,j,k are the mapped edges, see (2.68). For the form of

the discrete variable ωh, see (2.76).

• For u ∈ H(div; Ω), the expansion coefficients of its projection uh := π (u) ∈ FPN−1(Ω)
are

uξi,j,k =

∫

SΦ,ξ
i,j,k

u · dA,(2.85a)

uηi,j,k =

∫

SΦ,η
i,j,k

u · dA,(2.85b)

uςi,j,k =

∫

SΦ,ς
i,j,k

u · dA,(2.85c)

where edges SΦ,ξ
i,j,k, S

Φ,η
i,j,k and SΦ,ς

i,j,k are the mapped faces, see (2.70). For the form of

the discrete variable uh, see (2.78).

• For f ∈ L2(Ω), the expansion coefficients of its projection fh := π (f) ∈ VPN−1(Ω)
are

(2.86) fi,j,k =

∫

V Φ
i,j,k

f dV,

where volumes V Φ
i,j,k are the mapped volumes, see (2.72). For the form of the discrete

variable fh, see (2.80).

Note that we have assumed that integrals (2.83), (2.84), (2.85) and (2.86), i.e., the reduc-
tions, exist. For more discussions about the well-posedness of the reduction operator, we
refer to, for example, [34, 36,89].

Complement 2.9 For a Python implementation of these projections, see script
[projection.py] www.mathischeap.com/contents/LIBRARY/ptc/projection.

We can assess the accuracy of the projection by measuring the L2-error, for example,

∥∥∥ψh
∥∥∥
L2-error

:=
∥∥∥ψh − ψ

∥∥∥
L2
,

∥∥∥uh
∥∥∥
L2-error

:=
∥∥∥uh − u

∥∥∥
L2
,

https://www.mathischeap.com/contents/LIBRARY/ptc/projection.html
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where ‖·‖L2 is the L2-norm, namely, ‖·‖L2 =
√
〈·, ·〉Ω .

Complement 2.10 For a Python implementation of computing the L2-error, see script
[L2 error.py] www.mathischeap.com/contents/LIBRARY/ptc/L2 error.

※ The L2-inner product of two elements from these spaces can be calculated in the following
ways.

• For two discrete functions ph, ψh ∈ NPN (Ω), the L2-inner product of them is

(2.87)
〈
ph, ψh

〉
Ω

= pTMNψ = ψTMNp,

where MN is the mass matrix of space NPN (Ω)and is symmetric and positive definite.

• For two discrete functions qh,ωh ∈ EPN−1(Ω), the L2-inner product of them is

(2.88)
〈
qh, ωh

〉
Ω

= qTMEω = ωTMEq,

where ME is the mass matrix of space EPN−1(Ω) and is symmetric and positive defi-
nite.

• For two discrete functions vh,uh ∈ FPN−1(Ω), the L2-inner product of them is

(2.89)
〈
vh, uh

〉
Ω

= vTMFu = uTMFv,

where MF is the mass matrix of space EPN−1(Ω)and is symmetric and positive definite.

• For two discrete functions φh, fh ∈ VPN−1(Ω), we have

(2.90)
〈
φh, fh

〉
Ω

= φTMVf = fTMVφ,

where MV is the mass matrix of the space VPN−1(Ω)and is symmetric and positive
definite.

Recall that we use underlined symbols to indicate vectors of expansion coefficients of discrete
elements, for example, p, ψ, ω, u, f and so on.

Complement 2.11 For an instruction of how to compute the entries of mass matrices MN,
ME, MF and MV, see document [mass matrices.pdf]

www.mathischeap.com/contents/LIBRARY/ptc/mass matrices pdf.

Complement 2.12 For a Python implementation of calculating mass matrices MN, ME,
MF and MV under a given mapping, see script [mass matrices.py]

www.mathischeap.com/contents/LIBRARY/ptc/mass matrices py.

When a material parameter is involved in the L2-inner product, the material property can be
embedded by the mass matrix. For example,

〈
vh, k−1uh

〉
Ω

= vTMk
Fu.

https://www.mathischeap.com/contents/LIBRARY/ptc/L2_error.html
https://www.mathischeap.com/contents/LIBRARY/ptc/mass_matrices_pdf.html
https://www.mathischeap.com/contents/LIBRARY/ptc/mass_matrices_py.html
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2.4 Application to the Poisson problem

In this section, we demonstrate the MSEM by applying it to the Poisson problem.

2.4.1 Single element case

For convenience, here we briefly repeat the weak formulation (2.15): Given f ∈ L2(Ω), ϕ̂ ∈
H1/2(Γϕ) and û ∈ H−1/2(Γu), seek (u, ϕ) ∈ Hû(div; Ω)× L2(Ω) such that

〈
v, k−1u

〉
Ω

+ 〈∇ · v, ϕ〉Ω =

∫

Γϕ

ϕ̂ (v · n) dΓ ∀v ∈ H0(div; Ω),(2.91a)

〈φ,∇ · u〉Ω = −〈φ, f〉Ω ∀φ ∈ L2(Ω).(2.91b)

Assume we are in R3 and there is a smooth enough mapping Φ, see (2.65), which maps Ωref

into Ω. In other words, we consider the whole computational domain as a single element.
Mimetic spaces NPN (Ω), EPN−1(Ω), FPN−1(Ω) and VPN−1(Ω) then can be constructed in the
computational domain. We use FPN−1(Ω) to approximate space H(div; Ω) and use VPN−1(Ω)
to approximate space L2(Ω), i.e., in the discrete de Rham complex (2.82), we take

,

If we set boundaries Γϕ and Γu to Γϕ = ∂Ω and Γu = ∅, a discrete version of (2.91) can be
written as: Given f ∈ L2(Ω), seek (uh, ϕh) ∈ FPN−1(Ω)×VPN−1(Ω) such that

〈
vh, k−1uh

〉
Ω

+
〈
∇ · vh, ϕh

〉
Ω

=

∫

∂Ω
ϕ̂
(
vh · n

)
dΓ ∀vh ∈ FPN−1(Ω),(2.92a)

〈
φh,∇ · uh

〉
Ω

= −
〈
φh, fh

〉
Ω

∀φh ∈ VPN−1(Ω).(2.92b)

Remark 2.3 Note that, in the boundary integral term of (2.92a), ϕ̂ is at the continuous level
(without superscript h). This is because when it is time to evaluate this boundary integral to
include the boundary condition ϕ̂ (to obtain the entries of vector b in (2.93) and (2.94), see
Complement 2.13), we could directly use the continuous boundary variable ϕ̂. While for f ∈
L2(Ω) we have projected it into fh ∈ VPN−1(Ω) in (2.92b), see (2.86) for how to do this
projection.

The system (2.92) can be written in algebraic format as

vTMk
Fu+ vTET

(∇·)MVϕ = vTb ∀v ∈ R3N2(N+1),(2.93a)

φTMVE(∇·)u = −φTMVf ∀φ ∈ RN
3
.(2.93b)

which is equivalent to a linear system,

(2.94)

[
Mk

F ET
(∇·)MV

MVE(∇·) 0

] [
u
ϕ

]
=

[
b

−MVf

]
.

Since we have set boundaries Γϕ and Γu to Γϕ = ∂Ω and Γu = ∅ which is not the true
case, we are not able to evaluate all entries of the vector b. These unknown entries will later
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be eliminated when we include the boundary condition û by making changes in the first block
row of (2.94). See Complement 2.13 for an illustration of a practical approach of including the
boundary conditions.

Complement 2.13 For an illustration of a practical approach of including the boundary
conditions, see document [boundary conditions.pdf]

www.mathischeap.com/contents/LIBRARY/ptc/boundary conditions.

Note that the approach of imposing the boundary conditions introduced here is not the only
approach, but is practical and easy for implementation one.

By now, we finally get the discrete linear system ready to solve. Once the system is solved,
we can reconstruct the numerical solutions

(
uh, ϕh

)
∈ FPN−1(Ω) × VPN−1(Ω) for the Poisson

problem with the expansion coefficients in solutions u and ϕ of the discrete linear system and
the corresponding mimetic basis functions.

So far, everything happened in one single element. In practice, cases with multiple elements
are more common. We will further demonstrate the usage of the MSEM in a domain divided
into multiple elements in the next subsection.

2.4.2 A particular example of multiple mesh elements

Now, as a particular example, we apply the MSEM to a Poisson problem with a manufactured
solution in a 3D domain divided into multiple elements. The domain is selected to be a unit
cube,

Ω = [0, 1]3,

and the manufactured solution is

ϕexact = sin(2πx) sin(2πy) sin(2πz).

If ϕexact solves the Poisson problem with material parameter k = 1, the exact solution of u and
the corresponding source term, f , then can be computed,

uexact = ∇ϕexact =




2π cos(2πx) sin(2πy) sin(2πz)
2π sin(2πx) cos(2πy) sin(2πz)
2π sin(2πx) sin(2πy) cos(2πz)


 ,

(2.95) f = −∇ · uexact = 12π2 sin(2πx) sin(2πy) sin(2πz).

We select the boundary Γϕ to be the face x = 0. The complete weak formulation of this
particular problem is: In Ω = [0, 1]3 with boundary ∂Ω = Γϕ ∪Γu, where Γϕ = (0, (0, 1), (0, 1)),
given f ∈ L2(Ω), boundary conditions ϕ̂ = ϕexact on Γϕ and û = uexact · n on Γu, find (u, ϕ) ∈
Hû(div; Ω)× L2(Ω) such that (2.91) is satisfied.

In Ω, a conforming structured mesh of K3 elements,

(2.96) Ωm = Ωi+(j−1)K+(k−1)K2 = Ωi,j,k, i, j, k ∈ {1, 2, · · · ,K} ,

is generated. The mapping Φi,j,k : Ωref → Ωi,j,k is given as

Φi,j,k = Φ̊ ◦ Ξi,j,k,

https://www.mathischeap.com/contents/LIBRARY/ptc/boundary_conditions.html
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where Ξi,j,k is a linear mapping,

Ξi,j,k : Ωref →
([

i− 1

K
,
i

K

]
,

[
j − 1

K
,
j

K

]
,

[
k − 1

K
,
k

K

])
,

i.e., 

r
s
t


 = Ξi,j,k(ξ, η, ς) =

1

K



i− 1 + (ξ + 1)/2
j − 1 + (η + 1)/2
k − 1 + (ς + 1)/2


 ,

and Φ̊ is a mapping expressed as

(2.97)



x
y
z


 = Φ̊(r, s, t) =



r + 1

2c sin(2πr) sin(2πs) sin(2πt)
s+ 1

2c sin(2πr) sin(2πs) sin(2πt)
t+ 1

2c sin(2πr) sin(2πs) sin(2πt)


 ,

where 0 ≤ c ≤ 0.25 is a deformation factor. When c = 0, Φ̊ is also linear and, thus, we get a
uniform orthogonal mesh. While, when c > 0, the mesh is curvilinear. We call this mesh the
crazy mesh. Two examples of the crazy mesh are shown in Fig. 2.6.

(a) c = 0 (b) c = 0.25

Figure 2.6: Two examples of the crazy mesh of 33 elements.

Complement 2.14 For a Python implementation of the crazy mesh, see script
[crazy mesh.py] www.mathischeap.com/contents/LIBRARY/ptc/crazy mesh.

We now can apply the discretization introduced in Section 2.4.1 to all elements of the mesh
and obtain K3 local linear systems. Assembling these local systems leads to a global discrete
linear algebra system ready to be solved. And we denote the left-hand side matrix of the global
matrix by F. For an introduction of the assembly of local systems, see for example [134].

Complement 2.15 For an implementation of the assembly in Python, see script
[assembly.py] www.mathischeap.com/contents/LIBRARY/ptc/assembly.

Solving the global discrete linear system will give the coefficients of the weak solutions uh

and ϕh, (
uh, ϕh

)
∈ FPN−1(Ω)×VPN−1(Ω),

where in this case VPN−1(Ω) :=
⋃K3

m=1 VPN−1(Ωm) and FPN−1(Ω) :=
⋃K3

m=1 FPN−1(Ωm).

https://www.mathischeap.com/contents/LIBRARY/ptc/crazy_mesh.html
https://www.mathischeap.com/contents/LIBRARY/ptc/assembly.html
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Complement 2.16 For a Python implementation of this particular example, see script
[Poisson problem.py]

www.mathischeap.com/contents/LIBRARY/ptc/Poisson problem.

2.4.3 Results

In Fig. 2.7, Some results of the eigen-spectrum of F, the left-hand side matrix of the global
system, are presented. It is shown that all eigenvalues are away from zero, which shows that
the system is not singular. This is further supported by the results shown in Fig. 2.8 where
condition numbers of F under hp-refinement are presented.

(a) c = 0

(b) c = 0.125 (c) c = 0.25

Figure 2.7: Results of the eigen-spectrum of F for N = 1, K = 2. The radii of the blue and red circles
are the moduli of the eigenvalues of the maximum and minimum modulus respectively.

https://www.mathischeap.com/contents/LIBRARY/ptc/Poisson_problem.html
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Figure 2.8: Condition numbers, κ, of F under hp-refinement where h =
1

K
denotes the size of mesh

cells.

We now investigate the accuracy of the MSEM. In Fig. 2.9, some results of the L2- and
H(div)-error of the solution uh are presented. The

∥∥uh
∥∥
H(div)-error

is defined as

∥∥∥uh
∥∥∥
H(div)-error

:=

√
‖uh‖2L2-error + ‖∇ · uh‖2L2-error .

From these results, we can see that both
∥∥uh

∥∥
L2-error

and
∥∥uh

∥∥
H(div)-error

converge exponentially

under p-refinement on either orthogonal (c = 0) or curvilinear meshes (c > 0). Similar expo-
nential convergence is found for ϕh with respect to the L2-error, see Fig. 2.10. These results
correctly reflect the fact the MSEM is a spectral element method. The staircase-shaped con-
vergence for c = 0 and K = 1, 2 is because in these cases some mimetic functions of particular
degrees may miss some modes of the exact solution of f such that the projection error of fh,
see Fig. 2.11, converges in a staircase-shape. But, overall, this does not change the fact that the
MSEM reduces the error of uh and ϕh exponentially under p-refinement.

Figure 2.9: The convergence of uh with respect to L2- and H(div)-error under p-refinement.

In Fig. 2.12 where results of the L2- and H(div)-error of the solution uh under h-refinement
are shown, we can see that both

∥∥uh
∥∥
L2-error

and
∥∥uh

∥∥
H(div)-error

always converge algebraically

at the optimal rate on either orthogonal or curvilinear meshes. Similar results are found for the
solution ϕh with respect to the L2-error as shown in Fig. 2.13.
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Figure 2.10: The convergence of ϕh with respect to L2-error under p-refinement.

Figure 2.11: The convergence of fh with respect to the projection error,
∥∥fh − f

∥∥
L2 , under p-

refinement.

Figure 2.12: Convergence of uh with respect to L2- and H(div)-error under h-refinement where h =
1

K
denotes the size of mesh cells.

We now investigate whether the conservation relation, ∇ · uh = −fh is preserved by the
MSEM. In Fig. 2.14, the results of

∥∥∇ · uh + fh
∥∥
L2 under hp-refinement are presented. From

these results, we can conclude that the conservation relation, ∇·uh = −fh, is always satisfied to
machine precision (O−13). The slight increasing of

∥∥∇ · uh + fh
∥∥
L2 under p- or h- refinement is

because of the increasing of the condition number when the size of the global system increases.
In Fig. 2.15, we plot the local magnitude of ∇ · uh + fh on surfaces Φ̊([0, 1], [0, 1], 0.25) and
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Figure 2.13: Convergence of ϕh with respect to L2-error under h-refinement where h =
1

K
denotes the

size of mesh cells.

Φ̊([0, 1], [0, 1], 0.75) in the computational domain for N = 4 and K = 2. These results further
support the claim that the MSEM preserves the conservation (divergence) relation of the Poisson
problem. Note that this is only satisfied for fh instead of f , which is understandable as in this
manufactured case the term f is made of trigonometric functions, see (2.95), which can not be
exactly represented by the mimetic functions of finite degree. For f that could be represented
by finite degree mimetic functions (which usually is the case in practical problems like we set
f = 0 for conservation of mass in flow problems), we will have ∇ · uh = −fh = −f .

Figure 2.14: The L2-norm of ∇ · uh + fh under hp-refinement where h =
1

K
denotes the size of mesh

cells.
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(b) c = 0.125
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(c) c = 0.25

Figure 2.15: Results of log10

(∣∣∇ · uh + fh
∣∣) on mapped faces Φ̊ (Φ̊([0, 1], [0, 1], 0.25) and

Φ̊([0, 1], [0, 1], 0.75)), see (2.97), for N = 4, K = 2.
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CHAPTER 3

A MIMETIC DUAL-FIELD DISCRETIZATION FOR
NAVIER-STOKES EQUATIONS

In this chapter, we present a new development of the MSEM toward the 3D incompressible
Navier-Stokes equations. This chapter is based on [17].

This new development is about a dual-field discretization which conserves mass, kinetic
energy and helicity for the 3D incompressible Navier-Stokes equations. The discretization makes
use of a conservative dual-field mixed weak formulation where two evolution equations of velocity
are employed and two representations of the solution are sought for each variable. A temporal
discretization, which staggers the evolution equations and handles the nonlinearity such that the
resulting discrete algebraic systems are linearized and decoupled, is constructed. Conservation
of mass, kinetic energy and helicity in the absence of dissipative terms is proven at the discrete
level. Proper dissipation rates of kinetic energy and helicity in the viscous case will also be
proven.

3.1 Preliminaries

3.1.1 Navier-Stokes equations and invariants

In this work we address the discretization of the 3D incompressible Navier-Stokes equations1,
defined on a periodic domain Ω ⊂ R3 and time interval (0, tF ]. These well known equations
govern the dynamics of an incompressible fluid’s velocity, u : Ω × (0, tF ] 7→ R3, and pressure,
p : Ω × (0, tF ] 7→ R, subject to a body force, f : Ω × (0, tF ] 7→ R3, and an initial condition,
u0 : Ω 7→ R3. A general dimensionless form of these equations is

∂u

∂t
+ C(u)− 1

Re
D(u) +∇p = f , in Ω× (0, tF ],(3.1a)

∇ · u = 0, in Ω× (0, tF ],(3.1b)

u|t=0 = u0, in Ω,(3.1c)

where C(u) and D(u) represent the nonlinear convective term and the linear dissipative term,
respectively, and Re is the Reynolds number. The operators C and D can take different forms,
all analytically equivalent at the continuous level, see for example [135–141]. The four most

1More strictly speaking, we consider 3D constant density and constant viscosity Navier-Stokes equations.
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common forms of the nonlinear convective term C(u) present in the literature, e.g., [16,137,139],
are

Advective form: C(u) := u · ∇u,(3.2a)

Conservative (or divergence) form: C(u) := ∇ · (u⊗ u) ,(3.2b)

Skew-symmetric form: C(u) :=
1

2
∇ · (u⊗ u) +

1

2
u · ∇u,(3.2c)

Rotational (or Lamb) form: C(u) := ω × u +
1

2
∇ (u · u) ,(3.2d)

where ω := ∇ × u is the vorticity field. Besides these most common forms, it is also possible
to construct a wide range of nonlinear convective terms as linear combinations of the above
mentioned ones and/or employing vector calculus identities. For example, one such choice with
interesting properties is the EMAC scheme [142]. Following similar ideas, it is possible to
construct analytically equivalent representations for the dissipative term D(u), for example,

(3.3) D(u) := ∆u, and D(u) := −∇×∇× u = −∇× ω,

where the latter representation can be derived from the former by using the identity ∆u =
∇ (∇ · u)−∇× (∇× u) and the divergence free condition (3.1b).

As mentioned before, these different forms are equivalent at the continuous level and, there-
fore, may be used interchangeably. At the discrete level, see for example [16,137,139], a partic-
ular choice of convective term used as the starting point of the discretization process leads to
numerical schemes with substantially different properties.

One interesting aspect of the incompressible Navier-Stokes equations (3.1) is the fact that,
in the inviscid limit (Re → ∞) and when the external body force is conservative (there exists
a scalar field ϕ such that f = ∇ϕ), its dynamics conserves several invariants. Some of these
invariants are the total kinetic energy K (in 2D and 3D), total enstrophy E (in 2D), and the
total helicity H (in 3D),

(3.4) K :=
1

2

∫

Ω
u · u, E :=

1

2

∫

Ω
ω · ω, and H :=

∫

Ω
u · ω,

provided there is no net in- or out-flow of kinetic energy, enstrophy or helicity over the domain
boundary. Note that, in 2D, vorticity can be regarded as a vector field constrained to the
direction orthogonal to the planar 2D domain and velocity can be regarded as a vector field whose
component along the direction orthogonal to the planar 2D domain is zero, i.e., ω = [0, 0, ω]T

and u = [u, v, 0]T. Thus helicity is trivially zero in 2D flows.
The proofs for these conservation laws are straightforward. For illustration purposes and as

an introduction to some of the ideas discussed later in this work, we present these proofs here
for the case of no external force, i.e., f = 0, and periodic boundary conditions. For simplicity,
and without loss of generality, we use the rotational (or Lamb) form for the nonlinear convective
term, (3.2d). The total (or Bernoulli) pressure is defined as

P := p+
1

2
u · u.
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Kinetic energy conservation (in 2D and 3D) corresponds to
dK
dt

= 0. Differentiating K as

defined in (3.4) with respect to time and taking (3.1) in the inviscid limit, Re→∞, leads to

dK
dt

=

∫

Ω

∂u

∂t
· u (3.1)

= −
∫

Ω
C(u) · u−

∫

Ω
∇p · u = −

∫

Ω
(ω × u) · u+

∫

Ω
P∇ · u = 0,

where we have used (i) the vector calculus relation that the cross product of two vectors is
perpendicular to either vector, see (2.3), (ii) integration by parts on the total pressure term and
(iii) the divergence free condition (3.1b).

Enstrophy conservation (in 2D) equates to
dE
dt

= 0. As done above for kinetic energy, time

differentiation of E as defined in (3.4) gives

(3.5)
dE
dt

=

∫

Ω

∂ω

∂t
· ω.

Computing the curl of the momentum equation in (3.1) with Re→∞ and substituting ω = ∇×u
into (3.5) results in

dE
dt

= −
∫

Ω
∇× (ω × u) · ω = −1

2

∫

Ω
(u · ∇ω)ω − 1

2

∫

Ω
∇ · (uω)ω

=
1

2

∫

Ω
ω∇ · (uω)− 1

2

∫

Ω
∇ · (uω)ω = 0,

where we first used the vector calculus identity

∇× (ω × u) =
1

2
(u · ∇ω) +

1

2
∇ · (uω),

followed by integration by parts on the first term of the second equality.

Helicity conservation (in 3D) stands for
dH
dt

= 0. Expanding the time derivative of H as

defined in (3.4) leads to

(3.6)
dH
dt

=

∫

Ω

∂u

∂t
· ω +

∫

Ω
u · ∂ω

∂t
.

If we now use the momentum equation in (3.1) and its curl, (3.6) may be rewritten as

dH
dt

= −
∫

Ω
(ω × u) · ω −

∫

Ω
u · ∇ × (ω × u) +

∫

Ω
∇×∇P · u+

∫

Ω
∇P · ω

= −
∫

Ω
(ω × u) · ω −

∫

Ω
ω · (ω × u) +

∫

Ω
∇×∇P · u−

∫

Ω
P · ∇ · ∇ × u = 0,

where we have used (i) the definition of vorticity ω := ∇ × u, (ii) integration by parts on the
second and fourth terms on the right side of the first identity, (iii) the vector calculus relation
(2.3), and (iv) the identities ∇×∇ (·) ≡ 0 and ∇ · ∇ × (·) ≡ 0.

Helicity plays an important role in the generation and evolution of turbulence, [143–145]. The
joint cascade of energy and helicity, [146], is an active field of research, [147–151]. Particularly
important is the interaction between the two and how helicity impacts the energy cascade and,
therefore, turbulence, [143, 145, 149, 152–155]. This complex interaction between the energy
cascade and the helicity cascade and especially the suppressive role of helicity motivates the
focus on the development of discretization schemes that, besides conserving energy, conserve
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helicity. In the same way as energy conserving schemes have shown to substantially contribute
to a higher fidelity in simulations, see for example [13, 137, 156–160], due to the connection
between the cascades of energy and helicity, helicity conserving schemes should also present a
positive impact towards improving the simulation accuracy.

3.1.2 Objective of this chapter

In this chapter, extending the initial ideas introduced for the 2D case, see [16], we combine
(i) a particular choice for the formulation of the Navier-Stokes equations with (ii) a structure
preserving discretization. Specifically, we will present two velocity evolution equations (dual-
field) in the rotational form, discretized by the MSEM.

This formulation attempts to address the dual character of the velocity field in the incom-
pressible Navier-Stokes equations. This dual character implies that it is natural to look for a
solution for the velocity field in H(div; Ω) ∩ H(curl; Ω). At the continuous level this is easily
achievable, but that is not true at the discrete level since the space H(div; Ω) ∩ H(curl; Ω) is
hard to discretize. The use of two velocity field evolution equations enables the representation
of this dual character. It is shown that in this way the resulting discretization conserves mass,
kinetic energy, and helicity in 3D.

The vorticity fields in the rotational form of the nonlinear convective term, see (3.2d), serve
as a means of exchanging information between the two evolution equations. Additionally, this
leads to a leap-frog like scheme that handles the nonlinear rotational term by staggering in time
the velocity and vorticity such that the resulting discrete algebraic systems are linearized and
decoupled.

Overall, the objective of this new development is the construction of a discretization which
conserves mass, kinetic energy and helicity for the incompressible Navier-Stokes equations in the
absence of dissipative terms and predicts the proper decay rate of kinetic energy and helicity
based on the global enstrophy and an integral quantity of vorticity, respectively.

3.2 A conservative formulation

In this section, we will introduce a new mass-, kinetic energy- and helicity-conservative formu-
lation for the Navier-Stokes equations in periodic domains. As for this chapter we will only
consider periodic domains; Ω represents a 3D periodic domain in this chapter.

3.2.1 The rotational form of the incompressible Navier-Stokes equations

If in (3.1) we use the rotational (or Lamb) form for the nonlinear convective term, (3.2d), and
use the representation D(u) = −∇ × ω for the linear dissipative term, (3.3), we obtain the
rotational form of the incompressible Navier-Stokes equations,

∂u

∂t
+ ω × u+

1

Re
∇× ω +∇P = f ,(3.7a)

ω = ∇× u,(3.7b)

∇ · u = 0.(3.7c)

We have proven that, in 3D and in the inviscid limit (Re→∞), these equations preserve total
kinetic energy and total helicity over time for the case of no external body force, f = 0, in
Section 3.1.1. For non-zero conservative external body force, f = ∇ϕ 6= 0, we can include it by
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replacing the total pressure by an extended total pressure

(3.8) P ′ := P − ϕ.

All analysis and proofs remain valid. Without loss of generality, in this chapter we will only use
zero external body force for the analysis and proofs.

When the flow is viscous, Re <∞, the viscosity dissipates kinetic energy of the incompress-
ible Navier-Stokes equations at rate

(3.9)
dK
dt

= − 2

Re
E ,

while it dissipates or generates helicity at rate

(3.10)
dH
dt

= − 2

Re
〈ω,∇× ω〉Ω .

The viscosity always dissipates kinetic energy because the total enstrophy cannot be negative,
E ≥ 0, see the definition of the total enstrophy in (3.4). It either dissipates or generates helicity
because the term 〈ω,∇× ω〉Ω generally can be either positive or negative (or zero). This means
the dissipation rate of helicity can be negative.

3.2.2 A conservative dual-field mixed weak formulation

We propose the following dual-field mixed weak formulation for the rotational form of the in-
compressible Navier-Stokes equations: Given f ∈

[
L2(Ω)

]3
, seek (u1,ω2, P0) ∈ H(curl; Ω) ×

H(div; Ω)×H1(Ω) and (u2,ω1, P3) ∈ H(div; Ω)×H(curl; Ω)× L2(Ω) such that,

〈
∂u1

∂t
, ε1

〉

Ω

+ 〈ω1 × u1, ε1〉Ω(3.11a)

+
1

Re
〈ω2,∇× ε1〉Ω + 〈∇P0, ε1〉Ω = 〈f , ε1〉Ω , ∀ε1 ∈ H(curl; Ω),

〈∇ × u1, ε2〉Ω − 〈ω2, ε2〉Ω = 0, ∀ε2 ∈ H(div; Ω),(3.11b)

〈u1,∇ε0〉Ω = 0, ∀ε0 ∈ H1(Ω),(3.11c)
〈
∂u2

∂t
, ε2

〉

Ω

+ 〈ω2 × u2, ε2〉Ω(3.11d)

+
1

Re
〈∇ × ω1, ε2〉Ω − 〈P3,∇ · ε2〉Ω = 〈f , ε2〉Ω , ∀ε2 ∈ H(div; Ω),

〈u2,∇× ε1〉Ω − 〈ω1, ε1〉Ω = 0, ∀ε1 ∈ H(curl; Ω),(3.11e)

〈∇ · u2, ε3〉Ω = 0, ∀ε3 ∈ L2(Ω).(3.11f)

Remark 3.1 In this formulation, the terms (ωi × ui) · εi are not known to be L2-integrable for
the vector fields that belong to the infinite dimensional function spaces H(curl; Ω) (i = 1) and
H(div; Ω) (i = 2). Showing this integrability requires proving additional regularity of the velocity
and vorticity variables, which we currently are unable to do. However, in the finite dimensional
case, the known regularity is sufficient. Thus, despite the potential mathematical issue, we still
write this formulation above for its clear interpretation and to motivate the discrete scheme.

The formulation (3.11) is called dual-field because it contains two evolution equations, (3.11a)
and (3.11d), and, for each variable, two representations of its solution are sought: For velocity, we
seek (u1,u2) ∈ H(curl; Ω)×H(div; Ω), for vorticity, we seek (ω2,ω1) ∈ H(div; Ω)×H(curl; Ω),
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and, for total pressure, we seek (P0, P3) ∈ H1(Ω)×L2(Ω). If all variables are sufficiently smooth,
integration by parts will show that either (u1,ω2, P0) or (u2,ω1, P3) solves the Navier-Stokes
equations in rotational form, (3.7). Note that the de Rham complex (2.5) and the constraint
(3.11b) strongly ensure

(3.12) ω2 = ∇× u1.

Therefore, in practice, ω2 may be dropped from (3.11) if we replace it by ∇× u1. We leave in
ω2 above to maintain the clearness of the formulation.

3.2.3 Properties of the formulation

We now show that the proposed dual-field formulation (3.11) conserves (i) the mass in terms of
u2 and, in the case of conservative external body force and zero viscosity, (ii) the kinetic energy
in the formats

K1 =
1

2
〈u1,u1〉Ω and K2 =

1

2
〈u2,u2〉Ω ,

and (iii) the helicity in the formats

H1 =

∫

Ω
u1 · ω1 = 〈u1,ω1〉Ω and H2 =

∫

Ω
u2 · ω2 = 〈u2,ω2〉Ω .

We will also analyze the dissipation rate of kinetic energy and helicity in the viscous case for
the proposed formulation.

Note that, in this subsection, everything is still at the continuous level. The purpose is
to show that the proposed weak formulation, as the strong formulation, possesses the same
properties.

3.2.3.1 Mass conservation

For the mass conservation, since we have restricted u2 to space H(div; Ω), the de Rham complex
(2.5) and the constraint (3.11f) ensure that the relation

H(div; Ω) 3 u2
∇·−→ 0 ∈ L2(Ω)

is strongly satisfied; no integration by parts is required. Therefore, the mass conservation
is satisfied for velocity u2. Such an approach is widely used to construct mass conserving
discretizations. While for u1 ∈ H(curl; Ω), the mass conservation is only weakly satisfied, see
(3.11c).

3.2.3.2 Time rate of change of kinetic energy

In the inviscid limit (Re → ∞) and when f = 0, the kinetic energy conservation is equivalent
to

dK1

dt
=

〈
∂u1

∂t
,u1

〉

Ω

= 0 and
dK2

dt
=

〈
∂u2

∂t
,u2

〉

Ω

= 0.

Because (3.11a) is valid for all ε1 ∈ H(curl; Ω), we can select ε1 to be u1 ∈ H(curl; Ω). As a
result, we get

〈
∂u1

∂t
,u1

〉

Ω

+ 〈ω1 × u1,u1〉Ω + 〈u1,∇P0〉Ω =

〈
∂u1

∂t
,u1

〉

Ω

= 0.
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The second term vanishes because of (2.3). Meanwhile, from (3.11c), we know that 〈u1,∇P0〉Ω =
0 because P0 ∈ H1(Ω). Therefore, the third term also vanishes, which accomplishes the proof
of kinetic energy conservation for K1. Similarly, by selecting ε2 of (3.11d) to be u2, we can get

〈
∂u2

∂t
,u2

〉

Ω

+ 〈ω2 × u2,u2〉Ω − 〈P3,∇ · u2〉Ω =

〈
∂u2

∂t
,u2

〉

Ω

= 0,

where the second and third terms vanish because (2.3) and (3.11f), respectively. Thus we can
conclude that K2 is also preserved over time.

In the viscous case, Re <∞, if we repeat the above analysis, the viscous terms will remain.
We will eventually obtain the following kinetic energy dissipation rates,

(3.13)
dK1

dt
=

〈
∂u1

∂t
,u1

〉

Ω

= − 1

Re
〈ω2,∇× u1〉Ω = − 1

Re
〈ω2,ω2〉Ω = − 2

Re
E2 ≤ 0,

(3.14)
dK2

dt
=

〈
∂u2

∂t
,u2

〉

Ω

= − 1

Re
〈∇ × ω1,u2〉Ω

(3.11e)
= − 1

Re
〈ω1,ω1〉Ω = − 2

Re
E1 ≤ 0,

where the total enstrophy E1 and E2 are defined as

E1 =
1

2
〈ω1,ω1〉Ω and E2 =

1

2
〈ω2,ω2〉Ω .

This is in agreement with the kinetic energy dissipation rate of the strong formulation, see (3.9).

3.2.3.3 Time rate of change of helicity

If Re→∞ and f = 0, the helicity conservation is equivalent to

dH1

dt
=

d

dt
〈u1,ω1〉Ω =

〈
∂u1

∂t
,ω1

〉

Ω

+

〈
u1,

∂ω1

∂t

〉

Ω

= 0,

dH2

dt
=

d

dt
〈u2,ω2〉Ω =

〈
∂u2

∂t
,ω2

〉

Ω

+

〈
u2,

∂ω2

∂t

〉

Ω

= 0.

Replacing ε1 in (3.11a) by ω1 ∈ H(curl; Ω) leads to

(3.15)

〈
∂u1

∂t
,ω1

〉

Ω

+ 〈ω1 × u1,ω1〉Ω + 〈ω1,∇P0〉Ω =

〈
∂u1

∂t
,ω1

〉

Ω

= 0.

The second term vanishes because of (2.3). Meanwhile, we have (3.11e) saying

(3.16) − 〈u2,∇× ε1〉Ω + 〈ω1, ε1〉Ω = 0 ∀ε1 ∈ H(curl; Ω).

And because P0 ∈ H1(Ω), we have ∇P0 ∈ H(curl; Ω) (in particular, ∇P0 is in the null space of
H(curl; Ω) with respect to ∇× ). Thus we can replace ε1 in (3.16) by ∇P0 and get

(3.17) − 〈u2,∇×∇P0〉Ω + 〈ω1,∇P0〉Ω = 0.

This implies 〈ω1,∇P0〉Ω = 0 because ∇ × ∇(·) ≡ 0 showing that the third term of (3.15)
vanishes.
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If we take the time derivative of (3.16), we have

(3.18)

〈
∂u2

∂t
,∇× ε1

〉

Ω

=

〈
∂ω1

∂t
, ε1

〉

Ω

∀ε1 ∈ H(curl; Ω).

In addition, we know that, (3.11d),

(3.19)

〈
∂u2

∂t
, ε2

〉

Ω

+ 〈ω2 × u2, ε2〉Ω − 〈P3,∇ · ε2〉Ω = 0 ∀ε2 ∈ H(div; Ω).

Therefore, given any ε1 ∈ H(curl; Ω), (3.19) must hold for ∇× ε1 ∈ H(div; Ω), i.e.,

(3.20)

〈
∂u2

∂t
,∇× ε1

〉

Ω

+ 〈ω2 × u2,∇× ε1〉Ω − 〈P3,∇ · ∇ × ε1〉Ω = 0 ∀ε1 ∈ H(curl; Ω).

If we insert (3.18) into (3.20), we obtain

〈
∂ω1

∂t
, ε1

〉

Ω

+ 〈ω2 × u2,∇× ε1〉Ω − 〈P3,∇ · ∇ × ε1〉Ω = 0 ∀ε1 ∈ H(curl; Ω).

Because u1 ∈ H(curl; Ω), we now replace ε1 in above equation with u1 and obtain

(3.21)

〈
∂ω1

∂t
,u1

〉

Ω

+ 〈ω2 × u2,∇× u1〉Ω − 〈P3,∇ · ∇ × u1〉Ω =

〈
∂ω1

∂t
,u1

〉

Ω

= 0.

Since ω2 = ∇ × u1, see (3.12), is exactly satisfied, the second term of (3.21) vanishes due to
(2.3), and the third term is zero because ∇ · ∇ × (·) ≡ 0. Overall, (3.15) and (3.21) together
prove that helicity H1 is preserved over time.

We now reuse (3.11e) and select ε1 to be u1 ∈ H(curl; Ω). As a result, we get

−〈u2,∇× u1〉Ω + 〈ω1,u1〉Ω = 0,

which implies
H2 = 〈u2,ω2〉Ω = 〈u2,∇× u1〉Ω = 〈ω1,u1〉Ω = H1.

Thus both H1 and H2 are preserved over time.
In the viscous case, Re < ∞, if we repeat above analysis, the viscous contribution will not

cancel and we will obtain the following helicity dissipation rate,

∂H1

∂t
=
∂H2

∂t
= − 2

Re
〈ω2,∇× ω1〉Ω ,

which is consistent with that of the strong formulation, see (3.10).

3.3 Temporal discretization

Inspired by a mass, energy, enstrophy and vorticity conserving (MEEVC) [16] scheme for the
2D incompressible Navier-Stokes equations, we construct a staggered temporal discretization for
the two evolution equations in the dual-field formulation (3.11). The MEEVC scheme, as well as
the presented method, starts with a formulation of two evolution equations. The two evolution
equations are discretized temporally at two sequences of time steps respectively using a Gauss
integrator. The two sequences of time steps are staggered such that the endpoints of time steps
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in one sequence are exactly the midpoints of time steps in the other sequence. Thus at each
time step either discrete evolution equation can use the solution from the other one as known
variable at the midpoint, see Fig. 3.1.

We use a lowest order Gauss integrator as the time integrator [109, 161, 162]. For example,
if we apply the integrator to an ordinary differential equation (ODE) of the form

df(t)

dt
= h (f(t), t)

at a time step from time instant tk−1 to time instant tk, we obtain

(3.22)
fk − fk−1

∆t
= h

(
fk−

1
2 , tk−1 +

∆t

2

)
,

where ∆t = tk − tk−1, fk = f(tk). Additionally, we will use the following rule,

(3.23) fk−
1
2 = f(tk−1 +

∆t

2
) :=

fk + fk−1

2
,

and we call it the midpoint rule in this chapter. We further introduce two time sequences, the
integer time steps and the half-integer time steps. The integer time steps use time instants
indicated with integer superscripts. For example, kth (k = 1, 2, · · · ) integer time step (denoted
by Sk) is from tk−1 to tk. The half-integer time steps use time instants indicated with half-
integer superscripts. For example, kth (k = 1, 2, · · · ) half-integer time step (denoted by Ŝk) is

from tk−
1
2 to tk+ 1

2 . These time steps satisfy

∆t = ti − ti−1 = tj+
1
2 − tj− 1

2 and tk−
1
2 =

tk + tk−1

2
∀i, j, k = 1, 2, · · · .

In other words, we restrict ourselves to constant time intervals equal for both time sequences.

3.3.1 Temporal discretizations at staggered time steps

We now apply the time integrator (3.22) to evolution equations (3.11d) and (3.11a) at integer
and half-integer time steps, respectively.

3.3.1.1 Temporal discretization at integer time steps

If we apply the time integrator (3.22) to the evolution equation for u2 (3.11d) at integer time
steps, with the midpoint rule, see (3.23), and constraints (3.11e) and (3.11f), we can obtain a
semi-discrete weak formulation at, for example, kth integer time step Sk: Given

(
ωk−1

1 ,uk−1
2 ,fk−

1
2 ,ω

k− 1
2

2

)
∈ H(curl; Ω)×H(div; Ω)×

[
L2(Ω)

]3 ×H(div; Ω),

seek (
ωk1,u

k
2, P

k− 1
2

3

)
∈ H(curl; Ω)×H(div; Ω)× L2(Ω),
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such that
〈
uk2 − uk−1

2

∆t
, ε2

〉

Ω

+

〈
ω
k− 1

2
2 × u

k
2 + uk−1

2

2
, ε2

〉

Ω

(3.24a)

+
1

Re

〈
∇× ω

k
1 + ωk−1

1

2
, ε2

〉

Ω

−
〈
P
k− 1

2
3 ,∇ · ε2

〉

Ω

=
〈
fk−

1
2 , ε2

〉
Ω
, ∀ε2 ∈ H(div; Ω),

〈
uk2,∇× ε1

〉
Ω
−
〈
ωk1, ε1

〉
Ω

= 0, ∀ε1 ∈ H(curl; Ω),(3.24b)
〈
∇ · uk2, ε3

〉
Ω

= 0, ∀ε3 ∈ L2(Ω),(3.24c)

where ω
k− 1

2
2 is borrowed from the other time sequence, in particular, is the solution of ω2 at

(k − 1)st half-integer time step and, therefore, is known.

3.3.1.2 Temporal discretization at half-integer time steps

We apply the time integrator (3.22) to the evolution equation for u1 (3.11a) at half-integer time
steps. With the midpoint rule, see (3.23), and constraints (3.11b) and (3.11c), we can get a
second semi-discrete weak formulation at, for example, kth half-integer time step Ŝk: Given

(
u
k− 1

2
1 ,ω

k− 1
2

2 ,fk,ωk1

)
∈ H(curl; Ω)×H(div; Ω)×

[
L2(Ω)

]3 ×H(curl; Ω),

seek (
P k0 ,u

k+ 1
2

1 ,ω
k+ 1

2
2

)
∈ H1(Ω)×H(curl; Ω)×H(div; Ω),

such that

〈
u
k+ 1

2
1 − uk−

1
2

1

∆t
, ε1

〉

Ω

+

〈
ωk1 ×

u
k+ 1

2
1 + u

k− 1
2

1

2
, ε1

〉

Ω

(3.25a)

+
1

Re

〈
ω
k+ 1

2
2 + ω

k− 1
2

2

2
,∇× ε1

〉

Ω

+
〈
∇P k0 , ε1

〉
Ω

=
〈
fk, ε1

〉
Ω
, ∀ε1 ∈ H(curl; Ω),

〈
∇× uk+ 1

2
1 , ε2

〉

Ω

−
〈
ω
k+ 1

2
2 , ε2

〉

Ω

= 0, ∀ε2 ∈ H(div; Ω),(3.25b)

〈
u
k+ 1

2
1 ,∇ε0

〉

Ω

= 0, ∀ε0 ∈ H1(Ω),(3.25c)

where ωk1 is borrowed from the other time sequence and, more specifically, is the solution of ω1

at kth integer time step, see (3.24). Thus it is known. The solution ω
k+ 1

2
2 can be sequentially

used for the next, the (k + 1)st, integer time step. Thus iterations can proceed.

3.3.1.3 Overall temporal discretization

One may notice that to start the iterations we need to know u
1
2
1 ,ω

1
2
2 . Therefore we need a

0th time step, ŝ0, computing from t0 to t
1
2 for u

1
2
1 ,ω

1
2
2 . The simplest approach for the 0th
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time step is applying the explicit Euler method to evolution equation (3.11a) which, together

with constraints (3.11b) and (3.11c) at t
1
2 , leads to a semi-discrete system similar to (3.25).

More accurate approaches, like directly applying the Gauss integrator (3.22) or other (higher
order) integrators to formulation (3.11), could also be used. These methods will eventually
lead to nonlinear discrete algebraic systems for which more expensive iterative methods like the
Newton–Raphson method are needed. After the 0th time step, ŝ0, standard iterations, S and
Ŝ, can proceed.2 The overall temporal scheme is illustrated in Fig. 3.1.

Figure 3.1: An illustration of the proposed staggered temporal discretization scheme. Integer time
steps are denoted by Sk, half-integer time steps are denoted by Ŝk, and the 0th time step is denoted by
ŝ0. The iterations proceed in a sequence: ŝ0 → S1 → Ŝ1 → S2 → Ŝ2 → · · · . The kth integer time step

also computes P
k− 1

2
3 and the kth half-integer time step also computes P k0 .

It is easy to see that, instead of applying a standard temporal discretization directly to the
dual-field mixed weak formulation (3.11), using the presented staggered temporal discretiza-
tion can greatly reduce the computational cost. Although the dual-field formulation doubles
the variables, we will only solve for half of them at each time step as the staggered temporal
discretization decouples the dual-field formulation. Meanwhile, since each semi-discrete formula-
tion borrows the solution from the other for the nonlinear term, see the second terms of (3.24a)
and (3.25a), the semi-discrete formulations will lead to linearized discrete algebraic systems.

3.3.2 Properties after temporal discretization

In this part, we check whether the conservation (in the inviscid case) and dissipation (in the
viscous case) properties proven at the continuous level, see Section 3.2.3, are preserved after
the proposed staggered temporal discretization. Note that we have not yet applied a spatial
discretization; the function spaces are still the infinite dimensional Sobolev spaces in the de
Rham complex, (2.5).

3.3.2.1 Mass conservation after temporal discretization

The mass conservation is not influenced by the temporal discretization. Due to the same proof
as given in Section 3.2.3.1, for uk2 ∈ H(div; Ω), ∇ · uk2 = 0 is exactly satisfied at all integer

time instants, and for u
k+ 1

2
1 ∈ H(curl; Ω) the mass conservation is only weakly imposed through

integration by parts, see (3.25c).

2It is also fine to switch time sequences for the evolution equations.
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3.3.2.2 Time rate of change of kinetic energy after temporal discretization

Let Re→∞ and f = 0. We replace ε2 by
uk−1

2 + uk2
2

in (3.24a) and replace ε1 by
u
k+ 1

2
1 + u

k− 1
2

1

2
in (3.25a). Following the same process used for the proof at the continuous level, see Sec-
tion 3.2.3.2, one can get

〈
u
k+ 1

2
1 − uk−

1
2

1

∆t
,
u
k+ 1

2
1 + u

k− 1
2

1

2

〉

Ω

= 0 and

〈
uk2 − uk−1

2

∆t
,
uk2 + uk−1

2

2

〉

Ω

= 0,

which then leads to

Kk+ 1
2

1 =
1

2

〈
u
k+ 1

2
1 ,u

k+ 1
2

1

〉

Ω

=
1

2

〈
u
k− 1

2
1 ,u

k− 1
2

1

〉

Ω

= Kk−
1
2

1 ,

Kk2 =
1

2

〈
uk2,u

k
2

〉
Ω

=
1

2

〈
uk−1

2 ,uk−1
2

〉
Ω

= Kk−1
2 .

Thus the kinetic energy is preserved at both integer and half-integer time steps.
If Re <∞, with the same analysis, we will obtain

〈
u
k+ 1

2
1 − uk−

1
2

1

∆t
,
u
k+ 1

2
1 + u

k− 1
2

1

2

〉

Ω

= − 1

Re

〈
ω
k− 1

2
2 + ω

k+ 1
2

2

2
,∇× u

k+ 1
2

1 + u
k− 1

2
1

2

〉

Ω

,

〈
uk2 − uk−1

2

∆t
,
uk−1

2 + uk2
2

〉

Ω

= − 1

Re

〈
∇× ω

k
1 + ωk−1

1

2
,
uk2 + uk−1

2

2

〉

Ω

.

With (3.24b), (3.25b), we can conclude that

(3.26)
Kk+ 1

2
1 −Kk−

1
2

1

∆t
= − 1

Re

〈
ω
k+ 1

2
2 + ω

k− 1
2

2

2
,
ω
k+ 1

2
2 + ω

k− 1
2

2

2

〉

Ω

(3.23)
= − 2

Re
Ek2 ≤ 0,

(3.27)
Kk2 −Kk−1

2

∆t
= − 1

Re

〈
ωk1 + ωk−1

1

2
,
ωk1 + ωk−1

1

2

〉

Ω

(3.23)
= − 2

Re
Ek+ 1

2
1 ≤ 0.

This shows that the boundedness of the kinetic energy (3.13) and (3.14) is preserved by this
staggered temporal discretization, which contributes to the stability of the scheme.

3.3.2.3 Time rate of change of helicity after temporal discretization

Let Re → ∞ and f = 0. We select ε1 in (3.25a) to be ωk1 and perform the same process for
proving (3.15). We will get

(3.28)

〈
u
k+ 1

2
1 − uk−

1
2

1

∆t
,ωk1

〉

Ω

= 0.
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Analogously, by repeating the proof for (3.21), we can obtain

(3.29)

〈
ωk1 − ωk−1

1

∆t
,u

k− 1
2

1

〉

Ω

= 0.

Equations (3.28) and (3.29) together imply

(3.30)

〈
u
k+ 1

2
1 ,ωk1

〉

Ω

=

〈
u
k− 1

2
1 ,ωk1

〉

Ω

=

〈
u
k− 1

2
1 ,ωk−1

1

〉

Ω

.

At the half-integer time step Ŝk−1 (assume k ≥ 2), (3.28) reads

〈
u
k− 1

2
1 − uk−

3
2

1

∆t
,ωk−1

1

〉

Ω

= 0.

With this relation, we can extend (3.30) to

〈
u
k+ 1

2
1 ,ωk1

〉

Ω

=

〈
u
k− 1

2
1 ,ωk1

〉

Ω

=

〈
u
k− 1

2
1 ,ωk−1

1

〉

Ω

=

〈
u
k− 3

2
1 ,ωk−1

1

〉

Ω

.

If we further apply the midpoint rule, (3.23), to the first two terms and the last two terms of
above eqaution, we obtain

(3.31)

〈
u
k+ 1

2
1 + u

k− 1
2

1

2
,ωk1

〉

Ω

(3.23)
=

〈
uk1,ω

k
1

〉
Ω

= Hk1

= Hk−1
1 =

〈
uk−1

1 ,ωk−1
1

〉
Ω

(3.23)
=

〈
u
k− 1

2
1 + u

k− 3
2

1

2
,ωk−1

1

〉

Ω

.

In addition, since (3.24b) holds for all ε1 ∈ H(curl; Ω), we can fill uk1
(3.23)

=
u
k+ 1

2
1 + u

k− 1
2

1

2
∈

H(curl; Ω) in it and obtain

(3.32)
〈
ωk1,u

k
1

〉
Ω

=
〈
uk2,∇× uk1

〉
Ω

=

〈
uk2,∇×

u
k+ 1

2
1 + u

k− 1
2

1

2

〉

Ω

=

〈
uk2,

ω
k+ 1

2
2 + ω

k− 1
2

2

2

〉

Ω

.

Again, as ω2 is only solved at half-integer time instants, see (3.25), we use the midpoint rule,

(3.23), to bring it to the integer time instants, namely, ωk2 =
ω
k+ 1

2
2 + ω

k− 1
2

2

2
. As a result, (3.32)

implies

(3.33) Hk1 =
〈
uk1,ω

k
1

〉
Ω

=
〈
uk2,ω

k
2

〉
Ω

= Hk2 .

And with (3.31), we can finally conclude that

Hk1 = Hk2 = Hk−1
1 = Hk−1

2 = constant.
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In the viscous case, Re < ∞, repeating above analysis at the half-integer time step Ŝk and
at the integer time step Sk (see (3.28) and (3.29)) leads to

(3.34)

〈
u
k+ 1

2
1 − uk−

1
2

1

∆t
,ωk1

〉

Ω

= − 1

Re

〈
ω
k+ 1

2
2 + ω

k− 1
2

2

2
,∇× ωk1

〉

Ω

,

(3.35)

〈
ωk1 − ωk−1

1

∆t
,u

k− 1
2

1

〉

Ω

= − 1

Re

〈
∇× ω

k
1 + ωk−1

1

2
,ω

k− 1
2

2

〉

Ω

.

If we combine the above two equations, i.e., (3.34) + (3.35), and use the midpoint rule, (3.23),
we obtain

(3.36)

1

∆t

〈
u
k+ 1

2
1 ,ωk1

〉

Ω

− 1

∆t

〈
u
k− 1

2
1 ,ωk−1

1

〉

Ω

= − 1

Re

〈
ωk2,∇× ωk1

〉
Ω
− 1

Re

〈
∇× ωk−

1
2

1 ,ω
k− 1

2
2

〉

Ω

.

Again, (3.34) is still valid at (k−1)st half-integer time step, Ŝk−1, (assume k ≥ 2) where it reads

(3.37)

〈
u
k− 1

2
1 − uk−

3
2

1

∆t
,ωk−1

1

〉

Ω

= − 1

Re

〈
ω
k− 1

2
2 + ω

k− 3
2

2

2
,∇× ωk−1

1

〉

Ω

.

If we now combine (3.35) and (3.37), and use the midpoint rule, (3.23), we get

(3.38)

1

∆t

〈
u
k− 1

2
1 ,ωk1

〉

Ω

− 1

∆t

〈
u
k− 3

2
1 ,ωk−1

1

〉

Ω

= − 1

Re

〈
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2 ,∇× ωk−1
1

〉
Ω
− 1

Re

〈
∇× ωk−

1
2

1 ,ω
k− 1

2
2

〉

Ω

.

We now can combine (3.36) and (3.38) and obtain

〈
u
k+ 1

2
1 + u

k− 1
2

1 ,ωk1

〉

Ω

∆t
−

〈
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2
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2
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1

〉
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= 2

〈
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k
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〉
Ω
−
〈
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1

〉
Ω

∆t

= 2
Hk1 −Hk−1

1
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= − 2

Re

〈
∇× ωk−

1
2

1 ,ω
k− 1

2
2

〉

Ω

−
〈
ωk2,∇× ωk1

〉
Ω

+
〈
ωk−1

2 ,∇× ωk−1
1

〉
Ω

Re
.
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Finally, because (3.33) still holds, the viscosity dissipates Hk1 and Hk2 at the same rate, denoted
by

(3.39)
D(ω1,ω2) :=

Hk1 −Hk−1
1

∆t
=
Hk2 −Hk−1

2

∆t
=−

〈
∇× ωk−

1
2

1 ,ω
k− 1

2
2

〉

Ω

Re

−
〈
ωk2,∇× ωk1

〉
Ω

+
〈
ωk−1

2 ,∇× ωk−1
1

〉
Ω

2Re
.

3.4 Mimetic spatial discretization

It has been shown that the de Rham complex plays an essential role in the proofs and analysis
of the conservation properties and the dissipation rates for the proposed dual-field formulation
at both continuous and semi-discrete levels. For example, (3.17) is valid because we have chosen
P0 ∈ H1(Ω) such that ∇P0 ∈ H(curl; Ω) is guaranteed. Choosing u1 ∈ H(curl; Ω) and ω2 ∈
H(div; Ω) ensures that the relation ω2 = ∇ × u1 is satisfied exactly. In addition, as shown in
Section 3.2.3.1, the de Rham complex is essential for the mass conservation ∇ · u2 = 0 where
u2 ∈ H(div; Ω). In order to enable the validity of the proofs and analysis at the fully discrete
level, we need to employ a set of discrete mimetic spaces, see (2.16), for the spatial discretization.

Of course, in this work, we choose the mimetic spaces as the discrete mimetic spaces,

.

And note that variables in the finite dimensional spaces EPN−1(Ω) and FPN−1(Ω) possess the
regularity that ensures the L2-integrability of the convective terms in the weak formulation
(3.11), see Remark 3.1.

3.4.1 Fully discrete systems

Applying the mimetic spaces, (2.82), to the semi-discrete problems (3.24) and (3.25) leads to
two local fully discrete linear algebraic systems, one for the kth integer time step Sk, i.e.,

MF
~uk2 − ~uk−1

2

∆t
+ Rk−

1
2
~uk2 + ~uk−1

2

2
(3.40a)

+
1

Re
MFE(∇×)

~ωk1 + ~ωk−1
1

2
− ET

(∇·)MV
~P
k− 1

2
3 = MF

~fk−
1
2 ,

ET
(∇×)MF~u

k
2 −ME~ω

k
1 = 0,(3.40b)

MVE(∇·)~u
k
2 = 0,(3.40c)
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and one for the kth half-integer time step Ŝk, namely,

ME
~u
k+ 1

2
1 − ~uk−

1
2

1

∆t
+ Rk

~u
k+ 1

2
1 + ~u

k− 1
2

1

2
(3.41a)

+
1

Re
ET

(∇×)MF
~ω
k+ 1

2
2 + ~ω

k− 1
2

2

2
+ MEE(∇)

~P k0 = ME
~fk,

MFE(∇×)~u
k+ 1

2
1 −MF~ω

k+ 1
2

2 = 0,(3.41b)

ET
(∇)ME~u

k+ 1
2

1 = 0,(3.41c)

where ME, MF and MV are the mass matrices, E(∇), E(∇×) and E(∇·) are the incidence matrices,
see Section 2.3. And, if τ ,σ denote the basis functions of mimetic spaces

EPN−1(Ω) and FPN−1(Ω),

respectively, the entries of matrices Rk−
1
2 ,Rk are

R
k− 1

2
ij =

〈
ω
k− 1

2
2 × σj , σi

〉

Ω

,

Rkij =
〈
ωk1 × τ j , τ i

〉
Ω
.

If we rearrange the systems (3.40) and (3.41) and write them in linear algebra format, we can
obtain following linear systems,




1

∆t
MF +

1

2
Rk−

1
2

1

2Re
MFE(∇×) −ET

(∇·)MV

ET
(∇×)MF −ME 0

MVE(∇·) 0 0
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2Re
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0


 ,




1

∆t
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1

2
Rk

1

2Re
ET

(∇×)MF MEE(∇)

MFE(∇×) −MF 0

ET
(∇)ME 0 0






~u
k+ 1

2
1

~ω
k+ 1

2
2
~P k0




=




(
1

∆t
ME −

1

2
Rk
)
~u
k− 1

2
1 − 1

2Re
ET

(∇×)MF~ω
k− 1

2
2 + ME

~fk

0
0


 .

A similar spatial discretization can be applied to the semi-discrete system for the 0th time step
ŝ0, see Fig. 3.1.

Suppose a mesh has been generated in the computational domain Ω. We can perform such
discretizations in all elements. After applying the initial condition and assembling the local
systems, we will eventually obtain global linear systems ready to be solved in the sequence
shown in Fig. 3.1.
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3.4.2 Properties of the fully discrete systems

Since we have used a set of mimetic spaces, the proofs for the conservation properties and the
analysis for the dissipation rates of kinetic energy and helicity at the semi-discrete level, see
Section 3.3.2, remain valid at the fully discrete level; the (infinite or finite) dimensions of the
spaces do not influence the proofs and analysis at all.

3.5 Numerical experiments

We now test the proposed mimetic dual-field method with two manufactured solutions and a
more general flow, the well-known Taylor-Green vortex.

For all tests, meshes are uniform orthogonal structured hexahedral meshes of K3 elements.
The mesh size, namely, the edge length of the cubic element cell, is also denoted by h. The
degree of the mimetic spaces is denoted by N . And we use the explicit Euler method for the
temporal discretization of the 0th time step, i.e., ŝ0 in Fig. 3.1.

3.5.1 Manufactured solution tests

Two manufactured solutions are taken from [163]; one for testing the conservation properties
and one for investigating the convergence rate of the method. The domain is selected to be the
periodic unit cube Ω := [0, 1]3.

3.5.1.1 Conservation properties and dissipation rates

For these first tests, we select the initial condition

u|t=0 = [cos(2πz), sin(2πz), sin(2πx)]T .

Such an initial condition possesses kinetic energy K|t=0 = 0.75 and helicity H|t=0 = −6.283.
The problem is solved until t = 10 on an extremely coarse mesh of h = 1/3 and N = 2.

We first try to verify that the proposed method does preserve mass, kinetic energy and
helicity if in the inviscid limit Re→∞ and f = 0. In Fig. 3.2 some results are presented. The
results of

∥∥∇ · uk2
∥∥
L2 in the bottom-right diagram imply that the pointwise mass conservation

is always satisfied. In the bottom-left diagram, the results show that both Hk1 and Hk2 are
preserved. The fact that the two lines coincide with each other up to O(10−10) verifies (3.33).
As for kinetic energy, the results are present in the top diagrams where the discrete conservation

for both Kk−
1
2

1 and Kk2 at their corresponding time steps are shown.
We then keep f = 0 and use a Re < ∞; we let the viscosity dissipate kinetic energy and

helicity. Some results for Re = 100 are presented in Fig. 3.3 where the results shown in top
diagrams verify the dissipation rate of kinetic energy derived in (3.26) and (3.27) and the results
in the bottom-left diagram are in agreement with the dissipation rate of helicity, see (3.39). The
pointwise conservation of mass is still satisfied at all time steps as shown in the bottom-right
diagram of Fig. 3.3.

In Fig. 3.4, some results of the magnitude of

∥∥∥∥∇ · u
k+ 1

2
1

∥∥∥∥
L2

are presented. It is seen that for

both the convergence and dissipation tests the conservation of mass is not satisfied for u
k+ 1

2
1 . It is

not surprising that the error is large especially for the inviscid case as we have used an extremely
coarse mesh. This is consistent with the analysis that the constraint of mass conservation is only
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weakly imposed for u
k+ 1

2
1 ∈ EPN−1(Ω) ⊂ H(curl; Ω), see Section 3.3.2.1. Also see the analysis

at the continuous level in Section 3.2.3.1.
Note that these tests are also valid for the non-zero conservative external body force. If ϕ is

known and f = ∇ϕ 6= 0, we can still first conduct the test with f = 0 and get the same results.
The only difference is that we now obtain the solution for the extended total pressure P ′, see
(3.8). We can post-process P ′ with the known ϕ to retrieve the solution for total pressure P .
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Figure 3.2: Some results of the conservation test for h = 1/3, N = 2 and ∆t = 1/20.

3.5.1.2 Convergence tests

We now investigate whether the proposed method produces converging solutions and, if yes,
what is the convergence rate of the proposed method with a manufactured solution. Assume

u = [(2− t) cos(2πz), (1 + t) sin(2πz), (1− t) sin(2πx)]T

and
p = sin(2π(x+ y + t))

solve the Navier-Stokes equations with the Reynolds number Re = 1 and body force f (which
can be calculated from u, p and Re using the Navier-Stokes equations). The exact solutions of
vorticity ω and total pressure P can also be calculated. We use u|t=0 as initial condition and let
the flow evolve for different mesh element sizes and function degrees. Errors are then measured
at t = 2.

Results are presented in Fig. 3.5 where the optimal convergence rates are observed for all
variables of the dual-field formulation when the mesh is h-refined under different function de-
grees.
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Figure 3.3: Some results of the dissipation test for Re = 100, h = 1/3, N = 2 and ∆t = 1/20.
D(ωh1 ,ω

h
2 ) is the dissipation rate of helicity, see (3.39).
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Figure 3.4: Some results of the magnitude of
∥∥∥∇ · uk+

1
2

1

∥∥∥
L2

for both the conservation and dissipation

tests at h = 1/3, N = 2 and ∆t = 1/20. The divergence is computed per element.

We can also measure the difference between the two solutions of one physical variable. The
results of

∥∥uh2 − uh1
∥∥
L2 and

∥∥ωh2 − ωh1
∥∥
L2 at t = 2 are shown in Fig. 3.6. Note that, since uh1 and

uh2 (ωh1 and ωh2) are staggered in time, we have used the midpoint rule, (3.23), to uh1 (ωh1) such
that it can be compared to uh2 at t = 2, an integer time instant. It is not surprising that they
converge under p- or h-refinement. This suggests that we can use them for accuracy indicators,
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Figure 3.5: Results of the ph-convergence for the convergence tests at Re = 1 and ∆t = 1/50.

for example, ∥∥uh2 − uh1
∥∥
L2∥∥uh1

∥∥
L2

,

∥∥uh2 − uh1
∥∥
L2∥∥uh2

∥∥
L2

or
2
∥∥uh2 − uh1

∥∥
L2∥∥uh1 + uh2

∥∥
L2

,

which can be very helpful for general (non-manufactured) simulations. More interestingly, one
can measure the local difference of the two solutions and use it as an indicator for mesh adap-
tivity, which is outside the scope of this dissertation. From these aspects, the existence of two
representations of the solution for one variable can be regarded as an advantage for the proposed
method. Despite the existence of the difference between the dual representations, both of them
should be considered as equally important solutions of the variable. Recall the dual character
of the velocity field which is hard to capture in one discrete space, see Section 3.1.2. The dual
representations together can be regarded as a discretization of its dual character.
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Figure 3.6: ph-convergence results of the L2-differences between the two representations of the solution
of velocity (Left) and vorticity (Right) for the convergence tests at Re = 1 and ∆t = 1/50.

3.5.2 Taylor-Green vortex

We now test the method with a more general flow, the Taylor-Green vortex (TGV) flow. The
domain is given as Ω := [−π, π]3 and is periodic. V = 8π3 denotes the volume of the domain.
The body force is set to f = 0 and the initial condition is selected to be

u|t=0 = [sin(x) cos(y) cos(z),− cos(x) sin(y) cos(z), 0]T .

Such an initial condition possesses kinetic energy K|t=0 = 0.125 and zero helicity. We solve the
flow using the proposed mimetic dual-field method at Re = 500.

Iso-surfaces of ωx1 = −3
(
ωh1 = (ωx1 , ω

y
1 , ω

z
1)
)

at some time instances are shown in Fig. 3.7.
It is seen that the flow initially induces vortices of clear structures which then break down and
finally are dissipated by the viscosity.

In Fig. 3.8 and Fig. 3.9, results of total kinetic energy and total enstrophy are presented.
These results are compared to benchmarks taken from [164]. In Fig. 3.8 we can see that the
proposed mimetic dual-field method, compared to a discontinuous Galerkin (DG) method of the
same order (N = 2) and in the same mesh (32 × 32 × 32 elements), produces better results in
terms of the error to the results produced by a reference, a very high (128th) order spectral
method. This is mostly clear in the enstrophy results near t = 9 when the total enstrophy
reaches its peak; the DG method is not able to capture the peak of the total enstrophy while the
mimetic dual-field method captures it well for both of the two solutions. Similar comparisons are
made for more resolved simulations in Fig. 3.9, where improved results are seen especially near
the peak of total enstrophy; the DG method now is able to capture the peak and the mimetic
dual-field method captures the shape of the peak better.

In Fig. 3.10, some results of the total helicity versus time for the TGV flow are shown.
It is seen that, as the flow evolves, the total helicity remains zero (to the machine precision).
Such a phenomenon is consistent with the fact that the dissipation rate of helicity, see (3.39), is
constantly zero (to the machine precision) as shown in the same diagram.

In Fig. 3.11, the results of kinetic energy spectra at t = 9.1 are presented. In the left diagram,
it is seen that, in terms of kinetic energy, the mimetic dual-field method has similar accuracy as
the DG method for large scales (k ≤ 10). For medium scales (10 < k ≤ 35), both methods start
to deviate from the high order spectral reference results with the proposed dual-field method
showing less over-dissipation. For small scales (k > 35), both methods show large deviations
from the reference results. The interesting aspect is that, for small scales, the DG method and
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(a) t = 0 (b) t = 3

(c) t = 6 (d) t = 9

(e) t = 12 (f) t = 15

Figure 3.7: Iso-surface of ωx1 = −3
(
ωh1 = (ωx1 , ω

y
1 , ω

z
1)
)

for the TGV test using MDF-24p3. MDF-24p3
stands for the mimetic dual-field method at h = 1/24 using mimetic spaces of degree 3. The time step
interval is selected to be ∆t = 1/50.

the proposed dual-field method present different behaviors: the DG method over dissipates the
energy and the dual-field method accumulates energy. The accumulation of energy at small
scales is expected due to the energy conservation properties of the dual-field method and the
insufficient refinement to dissipate energy at the small scales. The energy cascade occurs up
to the resolved scales and then it is stored (and accumulates at the smaller scales). It is the
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Figure 3.8: A comparison of kinetic energy and enstrophy results of the TGV test. The reference
and the DG-32p2 results are taken from [164]. The reference method is a 128th order spectral method.
DG stands for a discontinuous Galerkin method. MDF stands for the mimetic dual-field method. 32p2
represents h = 1/32 and the degree of the mimetic spaces is 2. The time step interval is selected to be
∆t = 1/50 for MDF-32p2.

authors opinion that this can be an advantage of this method since sub-scale grid methods can
specifically target these small scales and introduce the required dissipation that is not resolved.
In contrast, the DG method already over dissipates the energy, therefore it is challenging for a
dissipation based sub-grid scale model to improve the results for these smaller scales. This is a
topic of interest and will be further researched in the future. A partial support for this claim is
the results presented in the right diagram of Fig. 3.11 where we show that the value of k where
energy accumulation starts decreases when a coarser discretization is employed.
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Figure 3.9: A comparison of kinetic energy and enstrophy results of the TGV test. The reference
and the DG-24p3 results are taken from [164]. The reference method is a 128th order spectral method.
DG stands for a discontinuous Galerkin method. MDF stands for the mimetic dual-field method. 24p3
represents h = 1/24 and the degree of the mimetic spaces is 3. The time step interval is selected to be
∆t = 1/50 for MDF-24p3.
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Figure 3.10: Total helicity and its dissipation rate D(ωh1 ,ω
h
2 ), see (3.39), versus time of the TGV test

for MDF-8p2. The time step interval is selected to be ∆t = 1/20.
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Figure 3.11: Kinetic energy spectra of the TGV test. The reference and the DG-32p2 results are taken
from [164]. The reference method is a 128th order spectral method. DG stands for a discontinuous
Galerkin method. MDF stands for the mimetic dual-field method. 32p2, 24p2 and 16p2 represents that
the mesh size h = 1/32, 1/24 and 1/16, respectively, and the degree of the mimetic spaces is 2. The
time step interval is selected to be ∆t = 1/50, 1/40 and 1/30 for MDF-32p2, MDF-24p2 and MDF-16p2,
respectively.

3.6 Summary of this chapter

In this chapter, using the MSEM, we construct a new discretization which satisfies pointwise
mass conservation and, if in the absence of dissipative terms, conserves total kinetic energy and
total helicity and, otherwise, properly captures the dissipation rates of total kinetic energy and
total helicity for the 3D incompressible Navier-Stokes equations. The discretization is based
on a novel dual-field mixed weak formulation where two evolution equations are employed. A
staggered temporal discretization linearizes the convective terms and reduces the size of the
discrete system, which can be regarded as a big advantage of the proposed method in terms of
the computational efficiency. The mimetic spatial discretization with the MSEM enables the
validity of the conservation properties and the dissipation rates at the fully discrete level.
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CHAPTER 4

HYBRIDIZATION

Although the MSEM has become successful in many fields, this mixed formulation based high
order method generally leads to large and not very sparse matrices, and it usually demands high
computational power. An effective way to overcome this drawback is to use the hybrid finite
element method [165, 166], a domain decomposition method which breaks up the problem into
smaller sub-problems.

The hybrid finite element method initially originates from solid mechanics. In solid mechan-
ics, finite element methods are developed based on variational principles. In classic finite element
methods, stiffness matrices representing the variational principle in elements are established and
assembled. Elements are then coupled in the global stiffness matrix through the strong inter-
element continuity. Unlike classic finite element methods, hybrid finite element methods first
allow for an inter-element discontinuity and then impose the required continuity with the help of
a Lagrange multiplier [165]. This process is usually called hybridization. The first hybrid finite
element method, the assumed stress hybrid method [167], was proposed by Pian in the 1960s.
Other hybrid finite element methods in solid mechanics are, for example, the assumed displace-
ment hybrid method [168] and the assumed stress-displacement hybrid mixed method [169].
The advantage of the addition of the extra continuity equation with the associated Lagrange
multiplier is that it may be possible to solve for the interface Lagrange multiplier first, after
which the global system decouples into independent problems at element level. This is particu-
larly efficient for spectral element methods where the number of interface unknowns is relatively
small compared to the global number of unknowns. The mortar element method [170–172],
a domain decomposition method which couples different non-overlapping sub-domains uses a
similar idea. The idea of hybridization also plays an important role in the finite element tearing
and interconnecting (FETI) method [173, 174]. In [175], the well-posedness of problems arising
from the hybrid variational principles and the error behavior of the hybrid method are studied.
Hybridizing certain existing mixed finite element methods is studied in [176].

In this chapter, we will introduce the extension of the MSEM with the idea of hybridization,
and we call the extended method the hybrid mimetic spectral element method (hMSEM). Similar
to what we have done for the introduction of the MSEM in Chapter 2, we will use the Poisson
problem as an example to demonstrate the hMSEM.
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4.1 Poisson problem under domain decomposition

We consider the Poisson problem (2.14). Let the domain Ω be divided into M discontinuous sub-
domains, Ωi, i = {1, 2, · · · ,M} and let Γi,j denote the (Lipschitz continuous) interface between
sub-domains Ωi and Ωj ,

Γi,j = Γj,i = ∂Ωi ∩ ∂Ωj .

The Poisson problem (2.14) under this domain decomposition can be rewritten into a hybrid
version: Given f ∈ L2(Ωi), boundary conditions ϕ̂ ∈ H1/2(Γϕ ∩ ∂Ωi) and û ∈ H−1/2(Γϕ ∩ ∂Ωi),
find (ϕ,u) ∈ L2(Ωi)×H(div; Ωi) such that1

u = k∇̃ϕ in Ωi,(4.1a)

∇ · u = −f in Ωi,(4.1b)

ϕ = ϕ̂ on Γϕ ∩ ∂Ωi,(4.1c)

u · n = û on Γu ∩ ∂Ωi,(4.1d)

ϕ = λ on Γi,j ,(4.1e)

u · ni + u · nj = 0 on Γi,j ,(4.1f)

where λ ∈ H1/2(Γi,j), ni and nj are the outward normal vector of Ωi and Ωj , respectively, and
we have

ni = −nj on Γi,j .

Because the sub-domains are discontinuous, additional constraints for re-enforcing the continuity
are added: Across the interface Γi,j , (4.1e) enforces the continuity of ϕ ∈ L2(Ωi) weakly and
(4.1f) enforces the continuity of the normal component of u strongly. An illustration of the
domain decomposition is presented in Fig. 4.1.

Figure 4.1: An illustration of the domain decomposition for the hybrid Poisson problem (4.1).

A weak formulation of the hybrid Poisson problem (4.1) is expressed as: Given f ∈ L2(Ωi),
ϕ̂ ∈ H1/2(Γϕ∩∂Ωi) and û ∈ H−1/2(Γu∩∂Ωi), find (u, ϕ, λ) ∈ Hû(div; Ωi)×L2(Ωi)×H1/2(Γi,j)

1Note that we have omitted the subscripts that indicate the sub-domain of variables for cleanness. For example,
(4.1a) was

ui = ∇̃ϕi in Ωi.

It should not cause any confusion since the information is still given through the notations Ωi, Γi,j and the
outward normal vector ni. This convention will be used throughout the dissertation.
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such that

〈
v, k−1u

〉
Ωi

+ 〈∇ · v, ϕ〉Ωi −
∫

∪jΓi,j
λ (v · ni) dΓ(4.2a)

=

∫

Γϕ∩∂Ωi

ϕ̂ (v · n) dΓ ∀v ∈ H0(div; Ωi),

〈φ,∇ · u〉Ωi = −〈φ, f〉Ωi ∀φ ∈ L2(Ωi),(4.2b)
∫

Γi,j

ψ (u · ni + u · nj) = 0 ∀ψ ∈ H1/2 (Γi,j) ,(4.2c)

where, like in the weak formulation (2.15) for the non-hybrid Poisson problem, we have applied
integration by parts, see (2.7), to the dual gradient term, i.e.,

〈
v, ∇̃ϕ

〉
Ωi

= −〈∇ · v, ϕ〉Ωi +

∫

∂Ωi

ϕ (v · n) dΓ,

and the boundary of sub-domain Ωi, ∂Ωi, has be divided into three parts, the interface ∪jΓi,j
and, on the domain boundary, Γϕ ∩ ∂Ωi and Γu ∩ ∂Ωi. Similar to those in Chapter 2, spaces
H0(div; Ωi) and Hû(div; Ωi) are,

H0(div; Ωi) := {u |u ∈ H(div; Ωi), u · ni = 0 on Γu ∩ ∂Ωi } .

Hû(div; Ωi) := {u |u ∈ H(div; Ωi), u · ni = û on Γu ∩ ∂Ωi } .
It is seen that, in this new weak formulation, the additional constraint for the strong continuity
of the normal component of u is reflected by (4.2c). We call the formulation (4.2) the hybrid
weak formulation of the Poisson problem.

4.2 Mimetic trace spaces

To discretize the hybrid weak formulation, (4.2), in addition to the mimetic spaces we have
constructed in Chapter 2, we need discrete trace spaces to accommodate the trace variables, λ
and u · n, at the interface, see Fig. 4.1. In this section, we will introduce the construction of
these discrete trace spaces, namely, the mimetic trace spaces.

4.2.1 Mimetic polynomial spaces in the reference domain of R2

Let Πref = [−1, 1]2 be the reference domain in R2 equipped with orthogonal coordinate system
(%, τ). We consider two sets of nodes,

{%0, %1, · · · , %N} ,
{τ0, τ1, · · · , τN} ,

where −1 = %0 < %1 < · · · < %N = 1 and −1 = τ0 < τ1 < · · · < τN = 1. Using these sets
of nodes, we can construct following 1D Lagrange polynomials and edge polynomials, also see
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Section 2.3.1,

{
l0(%), l1(%), · · · , lN (%)

}
,(4.3a)

{
l0(τ), l1(τ), · · · , lN (τ)

}
,(4.3b)

{
e1(%), e2(%), · · · , eN (%)

}
,(4.3c)

{
e1(τ), e2(τ), · · · , eN (τ)

}
,(4.3d)

Like the construction of the 3D basis mimetic polynomials, see (2.27), (2.31), (2.36) and
(2.41), using the 1D polynomials in (4.3), we can construct following 2D basis mimetic polyno-
mials in Πref ,

{
lli,j(%, τ)

∣∣ i, j ∈ {0, 1, · · · , N}
}
,(4.4a)

{
eli,j(%, τ)

∣∣ i ∈ {1, 2, · · · , N} , j ∈ {0, 1, · · · , N}
}

(4.4b)
{

lei,j(%, τ)
∣∣ i ∈ {0, 1, · · · , N} , j ∈ {1, 2, · · · , N}

}
,(4.4c)

{
eei,j(%, τ)

∣∣ i, j ∈ {1, 2, · · · , N}
}
,(4.4d)

where lli,j(%, τ) := li(%)lj(τ), eli,j(%, τ) := ei(%)lj(τ), lei,j(%, τ) := li(%)ej(τ) and eei,j(%, τ) :=
ei(%)ej(τ). Apparently, these polynomials satisfy Kronecker delta properties similar to those for
the 3D mimetic polynomials;

lli,j(Pk,l) = δi,jk,l,∫

E%k,l

eli,j(%, τ)d% = δi,jk,l,

∫

Eτk,l

lei,j(%, τ)dτ = δi,jk,l,

∫

Fk,l

eei,j(%, τ)dΓ = δi,jk,l,

where δi,jk,l =

{
1 if i = k, j = l

0 else
, and Pk,l, E

%
k,l, E

τ
k,l and Fk,l are geometric objects defined as

Pk,l := (%k, τl), k, l ∈ {0, 1, · · · , N} ,(4.6a)

E%k,l := ([%k−1, %k], τl), k ∈ {1, 2, · · · , N} , l ∈ {0, 1, · · · , N} ,(4.6b)

Eτk,l := (%k, [τl−1, τl]), k ∈ {0, 1, · · · , N} , l ∈ {1, 2, · · · , N} ,(4.6c)

Fk,l := ([%k−1, %k], [τl−1, τl]), k, l ∈ {1, 2, · · · , N} .(4.6d)

The discrete spaces spanned by 2D mimetic polynomials are

TNN (Πref) := span
({
· · · , lli,j(%, τ), · · ·

})
,

TEN−1 (Πref) := span
({
· · · , eli,j(%, τ), · · ·

})
× span

({
· · · , lei,j(%, τ), · · ·

})
,

TFN−1 (Πref) := span
({
· · · , eei,j(%, τ), · · ·

})
.

Overall, the construction of these 2D mimetic polynomial spaces are similar to that of the
3D mimetic polynomial spaces, see (2.30), (2.35), (2.40) and (2.44).
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Complement 4.1 For a Python implementation of the mimetic polynomials in the 2D
reference domain, see the script [mimetic basis polynomials 2d.py]

www.mathischeap.com/contents/LIBRARY/ptc/mimetic basis polynomials 2d.

4.2.2 Mimetic spaces on surfaces of R3

We consider a smooth enough mapping, Ψ, see (2.65), which maps Πref into a surface, Γ, in R3,
i.e.,

(x, y, z) = Ψ(%, τ) = (Ψx(%, τ),Ψy(%, τ),Ψz(%, τ)).

Its Jacobian matrix then is written as

J =




∂x

∂%

∂x

∂τ
∂y

∂%

∂y

∂τ
∂z

∂%

∂z

∂τ



.

The metric matrix is

G =

[
g1,1 g1,2

g2,1 g2,2

]
= J TJ ,

where, to be more explicit,

gi,j =

3∑

l=1

J |l,i J |l,j , i, j ∈ {1, 2} .

The metric of the mapping is the determinant of the metric matrix,

g = det (G) .

The inverse mapping of Ψ is expressed as Ψ−1. Its Jacobian matrix is

J −1 =



∂%

∂x

∂%

∂y

∂%

∂z
∂τ

∂x

∂τ

∂y

∂τ

∂z


 ,

and we have J −1J = I as Ψ−1 ◦Ψ : Πref → Πref .

Complement 4.2 For a Python implementation of this surface coordinate transformation,
see script [coordinate transformation surface.py]

www.mathischeap.com/contents/LIBRARY/ptc/coordinate transformation surface.

A polynomial αh0 ∈ TNN (Πref) can be transformed from Πref to Γ as

αh(x, y, z) = αh(Ψ(%, τ)) = αh0(%, τ),

A polynomial βh0 ∈ TEN−1 (Πref) can be transformed from Πref to Γ as

βh(x, y, z) = βh(Ψ(%, τ)) =
(
J −1

)T
βh0(%, τ).

https://www.mathischeap.com/contents/LIBRARY/ptc/mimetic_basis_polynomials_2d.html
https://www.mathischeap.com/contents/LIBRARY/ptc/coordinate_transformation_surface.html
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And a polynomial γh0 ∈ TFN−1 (Πref) can be transformed from Πref to Γ as

γh(x, y, z) = γh(Ψ(%, τ)) =
1√
g
γh0 (%, τ).

If we apply above transformations to the basis mimetic polynomials, (4.4), in Πref , we obtain
the following basis functions in Γ,

{
lli,jΨ (x, y, z)

∣∣∣ i, j ∈ {0, 1, · · · , N}
}
,(4.8a)

{
eli,jΨ (x, y, z)

∣∣∣ i ∈ {1, 2, · · · , N} , j ∈ {0, 1, · · · , N}
}
,(4.8b)

{
lei,jΨ (x, y, z)

∣∣∣ i ∈ {0, 1, · · · , N} , j ∈ {1, 2, · · · , N}
}
,(4.8c)

{
eei,jΨ (x, y, z)

∣∣∣ i, j ∈ {1, 2, · · · , N}
}
,(4.8d)

where

lli,jΨ (x, y, z) = lli,jΨ (Ψ(%, τ)) = lli,j(x, y, z),

eli,jΨ (x, y, z) = eli,jΨ (Ψ(%, τ)) =
(
J −1

)T
[
eli,j(%, τ)

0

]
,

lei,jΨ (x, y, z) = lei,jΨ (Ψ(%, τ)) =
(
J −1

)T
[

0

lei,j(%, τ)

]
,

eei,jΨ (x, y, z) = eei,jΨ (Ψ(%, τ)) =
1√
g

eei,j(x, y, z).

And if we denote the mapped geometric objects by

PΨ
k,l = Ψ(Pk,l), k, l ∈ {0, 1, · · · , N}
EΨ,%
k,l = Ψ(E%k,l), k ∈ {1, 2, · · · , N} , l ∈ {0, 1, · · · , N} ,

EΨ,τ
k,l = Ψ(Eτk,l), k ∈ {0, 1, · · · , N} , l ∈ {1, 2, · · · , N} ,

FΨ
k,l = Ψ(Fk,l), k, l ∈ {1, 2, · · · , N} ,

where Pk,l, E
%
k,l, E

τ
k,l and Fk,l are points, edges and faces as defined in (4.6), we can find that

the mimetic basis functions in Γ, see (4.8), satisfy Kronecker delta properties expressed as

lli,jΨ (PΨ
k,l) = δi,jk,l,(4.11a)

∫

EΨ,%
k,l

eli,jΨ (x, y, z) · dr = δi,jk,l,(4.11b)

∫

EΨ,τ
k,l

lei,jΨ (x, y, z) · dr = δi,jk,l,(4.11c)

∫

FΨ
k,l

eei,jΨ (x, y, z)dΓ = δi,jk,l.(4.11d)

The proofs of these Kronecker delta properties are straightforward if we use the integral rules for
line and surface integral. Discrete spaces spanned by these mimetic basis functions are denoted
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by

TPN (Γ) := span
({
· · · , lli,jΨ (x, y, z), · · ·

})
,

TEN−1 (Γ) := span
({
· · · , eli,jΨ (x, y, z), · · ·

}
∪
{
· · · , lei,jΨ (x, y, z), · · ·

})
,

TFN−1 (Γ) := span
({
· · · , eei,jΨ (x, y, z), · · ·

})
.

The subscripts, N and N−1, indicate the overall degrees of the polynomials in these spaces.

※ The functions in spaces TPN (Γ), TEN−1 (Γ) and TFN−1 (Γ) are of the following forms.

• A function αh ∈ TNN (Γ) is of the form,

(4.13) αh =
N∑

i=0

N∑

j=0

ai,j ll
i,j
Ψ (x, y, z),

where ai,j ∈ R are the expansion coefficients. And from the Kronecker delta property
(4.11a), we know that

αh(PΨ
j,k) = ak,l.

• A function βh ∈ TEN−1 (Γ) is of the form,

(4.14) βh =
N∑

i=1

N∑

j=0

b%i,jeli,jΨ (x, y, z) +
N∑

i=0

N∑

j=1

bτi,jle
i,j
Ψ (x, y, z),

where b%i,j , b
τ
i,j ∈ R are the expansion coefficients. And from Kronecker delta properties

(4.11b) and (4.11c), we know that

∫

EΨ,%
k,l

βh · dr = b%k,l,

∫

EΨ,τ
k,l

βh · dr = bτk,l,

• A function γh ∈ TFN−1 (Γ) is of the form,

(4.15) γh =

N∑

i=1

N∑

j=1

Γi,jeei,jΨ (x, y, z),

where Γi,j ∈ R are the expansion coefficients. And from the Kronecker delta property
(4.11d), we know that ∫

FΨ
k,l

γhdΓ = Γk,l.
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We can locally number the expansion coefficients of (4.13), (4.14) and (4.15) as

ai+1+j(N+1) = ai,j , i, j ∈ {0, 1, · · · , N} ,(4.16a)

bi+jN = b%i,j , i ∈ {1, 2, · · · , N} , j ∈ {0, 1, · · · , N}(4.16b)

bi+1+(j−1)(N+1)+N(N+1) = bτi,j , i ∈ {0, 1, · · · , N} , j ∈ {1, 2, · · · , N}(4.16c)

Γi+(j−1)N = Γi,j , i, j ∈ {1, 2, · · · , N} .(4.16d)

The expansion coefficients then can be collected and stored in column vectors,

α =
[
a1 a2 · · · a(N+1)2

]T
,

β =
[
b1 b2 · · · b2N(N+1)

]T
,

γ =
[
Γ1 Γ2 · · · ΓN2

]T
.

Similar to the projections for the mimetic spaces, see (2.83), (2.84), (2.85) and (2.86), one
can project continuous variables on Γ to these trace spaces. For example, for scalar γ ∈ L2(Γ),
one can find its projection γh = π (γ) ∈ TFN−1(Γ).

Complement 4.3 For a Python implementation of projections for TNN (Γ), TEN−1 (Γ)
and TFN−1 (Γ), see script [projection trace.py]

www.mathischeap.com/contents/LIBRARY/ptc/projection trace.

※ The L2-inner product of two elements from these trace spaces can be calculated through
the following ways.

• For functions αh, ah ∈ TNN (Γ), the L2-inner product of them is

(4.18)
〈
αh, ah

〉
Γ

=

∫

Γ
αhahdΓ = αTMNa.

• For two functions βh, bh ∈ TEN−1(Γ), the L2-inner product of them is

(4.19)
〈
βh, bh

〉
Γ

=

∫

Γ
βh · bhdΓ = βTMEb.

• For two functions γh, ch ∈ TFN−1(Γ), the L2-inner product of them is

(4.20)
〈
γh, ch

〉
Γ

=

∫

Γ
γhchdΓ = γTMFc.

Matrices MN, ME and MF are the mass matrices of spaces TNN (Γ), TEN−1(Γ) and TFN−1(Γ),
respectively.

4.2.3 Mimetic trace spaces for a general domain

Recall the general domain Ω and its mapping Φ in R3, see (2.65),

Φ : Ωref → Ω.

https://www.mathischeap.com/contents/LIBRARY/ptc/projection_trace.html
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We denote the six sides of Ωref by

(4.21) Γξ− , Γξ+ , Γη− , Γη+ , Γς− , Γς+ .

Each of them locally can be regarded as the 2D reference domain Πref . From the mapping Φ,
we can extract six sub-mappings,

(4.22) Φξ− ,Φξ+ ,Φη− ,Φη+ ,Φς− ,Φς+ ,

which map the six sides of Ωref , (4.21), into six subsets of ∂Ω denoted by

ΓΦ
ξ− , ΓΦ

ξ+ , ΓΦ
η− , ΓΦ

η+ , ΓΦ
ς− , ΓΦ

ς+ .

For example, ΓΦ
ξ− = Φξ− (Πref) = Φ

(
Γξ−

)
and so on. See Fig. 4.2 for an illustration of mapping

Φ and its boundary sub-mappings.

Figure 4.2: An illustration of the mapping Φ and its boundary sub-mappings.

Complement 4.4 For a Python implementation of extracting six boundary sub-mappings
from Φ, see script [coordinate transformation surface.py]

www.mathischeap.com/contents/LIBRARY/ptc/coordinate transformation surface.

Using these sub-mappings, (4.22), we can construct the following spaces on each part of the
boundary of Ω,

TNN (ΓΦ
ξ−), TNN (ΓΦ

ξ+), TNN (ΓΦ
η−), TNN (ΓΦ

η+), TNN (ΓΦ
ς−), TNN (ΓΦ

ς+),

TEN−1(ΓΦ
ξ−), TEN−1(ΓΦ

ξ+), TEN−1(ΓΦ
η−), TEN−1(ΓΦ

η+), TEN−1(ΓΦ
ς−), TEN−1(ΓΦ

ς+),

TFN−1(ΓΦ
ξ−), TFN−1(ΓΦ

ξ+), TFN−1(ΓΦ
η−), TFN−1(ΓΦ

η+), TFN−1(ΓΦ
ς−), TFN−1(ΓΦ

ς+).

Combining these spaces can lead to the trace spaces defined on the boundary of Ω,

TNN (∂Ω) := TNN (ΓΦ
ξ−) ∪ TNN (ΓΦ

ξ+) ∪ TNN (ΓΦ
η−)

∪ TNN (ΓΦ
η+) ∪ TNN (ΓΦ

ς−) ∪ TNN (ΓΦ
ς+),

TEN−1(∂Ω) := TEN−1(ΓΦ
ξ−) ∪ TEN−1(ΓΦ

ξ+) ∪ TEN−1(ΓΦ
η−)

∪ TEN−1(ΓΦ
η+) ∪ TEN−1(ΓΦ

ς−) ∪ TEN−1(ΓΦ
ς+),

TFN−1(∂Ω) := TFN−1(ΓΦ
ξ−) ∪ TFN−1(ΓΦ

ξ+) ∪ TFN−1(ΓΦ
η−)

∪ TFN−1(ΓΦ
η+) ∪ TFN−1(ΓΦ

ς−) ∪ TFN−1(ΓΦ
ς+).

https://www.mathischeap.com/contents/LIBRARY/ptc/coordinate_transformation_surface.html
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The subscripts of these spaces, N and N − 1, indicate the degrees of the corresponding mimetic
polynomials in the 2D reference domain, and we call these spaces the mimetic trace spaces.

※ The functions in the mimetic trace spaces TNN (∂Ω), TEN−1 (∂Ω) and TFN−1 (∂Ω) are
of the following forms.

• A functions αh ∈ TNN (∂Ω) is of the form, see (4.13),

αh =

N∑

i=0

N∑

j=0

aξ
−

i,j lli,jΦξ−
(x, y, z)×

N∑

i=0

N∑

j=0

aξ
+

i,j lli,jΦξ+
(x, y, z)

×
N∑

i=0

N∑

j=0

aη
−

i,j lli,jΦη−
(x, y, z)×

N∑

i=0

N∑

j=0

aη
+

i,j lli,jΦη+
(x, y, z)

×
N∑

i=0

N∑

j=0

aς
−

i,j lli,jΦς−
(x, y, z)×

N∑

i=0

N∑

j=0

aς
+

i,j ll
i,j
Φς+

(x, y, z),

where aξ
−

i,j , a
ξ+

i,j , a
η−

i,j , a
η+

i,j , a
ς−

i,j , a
ς+

i,j ∈ R are the expansion coefficients.

• A functions βh ∈ TEN−1 (∂Ω) is of the form, see (4.14),

βh =




N∑

i=1

N∑

j=0

b%,ξ
−

i,j eli,jΦξ−
(x, y, z) +

N∑

i=0

N∑

j=1

bτ,ξ
−

i,j lei,jΦξ−
(x, y, z)




×




N∑

i=1

N∑

j=0

b%,ξ
+

i,j eli,jΦξ+
(x, y, z) +

N∑

i=0

N∑

j=1

bτ,ξ
+

i,j lei,jΦξ+
(x, y, z)




×




N∑

i=1

N∑

j=0

b%,η
−

i,j eli,jΦη−
(x, y, z) +

N∑

i=0

N∑

j=1

bτ,η
−

i,j lei,jΦη−
(x, y, z)




×




N∑

i=1

N∑

j=0

b%,η
+

i,j eli,jΦη+
(x, y, z) +

N∑

i=0

N∑

j=1

bτ,η
+

i,j lei,jΦη+
(x, y, z)




×




N∑

i=1

N∑

j=0

b%,ς
−

i,j eli,jΦς−
(x, y, z) +

N∑

i=0

N∑

j=1

bτ,ς
−

i,j lei,jΦς−
(x, y, z)




×




N∑

i=1

N∑

j=0

b%,ς
+

i,j eli,jΦς+
(x, y, z) +

N∑

i=0

N∑

j=1

bτ,ς
+

i,j lei,jΦς+
(x, y, z)


 ,

where b%,ξ
−

i,j , b%,ξ
+

i,j , b%,η
−

i,j , b%,η
+

i,j , b%,ς
−

i,j , b%,ς
+

i,j , bτ,ξ
−

i,j , bτ,ξ
+

i,j , bτ,η
−

i,j , bτ,η
+

i,j , bτ,ς
−

i,j , bτ,ς
+

i,j ∈ R are
the expansion coefficients.
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• A functions γh ∈ TFN−1 (∂Ω) is of the form, see (4.15),

γh =

N∑

j=1

N∑

k=1

Γξ
−

j,keej,kΦξ−
(x, y, z)×

N∑

j=1

N∑

k=1

Γξ
+

j,keej,kΦξ+
(x, y, z)

×
N∑

i=1

N∑

k=1

Γη
−

i,k eei,kΦη−
(x, y, z)×

N∑

i=1

N∑

k=1

Γη
+

i,k eei,kΦη+
(x, y, z)

×
N∑

i=1

N∑

j=1

Γς
−

i,j eei,jΦς−
(x, y, z)×

N∑

i=1

N∑

j=1

Γς
+

i,j eei,jΦς+
(x, y, z),

where Γξ
−

i,j , Γ
ξ+

i,j , Γ
η−

i,j , Γ
η+

i,j , Γ
ς−

i,j , Γ
ς+

i,j ∈ R are the expansion coefficients.

Now recall the construction of the mimetic space FPN−1(Ω) in Section 2.3.3. If

uh =

N∑

i=0

N∑

j=1

N∑

k=1

uξi,j,kleei,j,kΦ (x, y, z)

+
N∑

i=1

N∑

j=0

N∑

k=1

uηi,j,kelei,j,kΦ (x, y, z)

+

N∑

i=1

N∑

j=1

N∑

k=0

uςi,j,keeli,j,kΦ (x, y, z)

is an element of FPN−1(Ω), from the construction of TFN−1 (∂Ω), one can find that Tuh =
uh · n ∈ TFN−1 (∂Ω). Furthermore, if γh = uh · n, we will find that the coefficients of γh are

Γξ
−

j,k = −uξ0,j,k, j, k ∈ {1, 2, · · · , N} ,
Γξ

+

j,k = +uξN,j,k, j, k ∈ {1, 2, · · · , N} ,
Γη

−

i,k = −uηi,0,k, i, k ∈ {1, 2, · · · , N} ,
Γη

+

i,k = +uηi,N,k, i, k ∈ {1, 2, · · · , N} ,
Γς

−

i,j = −uςi,j,0, i, j ∈ {1, 2, · · · , N} ,
Γς

+

i,j = +uςi,j,N , i, j ∈ {1, 2, · · · , N} .

If we apply a local numbering, for example, (4.16), to coefficients Γ
(·)
i,j , and apply the local

numbering (2.57) to coefficients of u, we can collect the coefficients and put them in column
vectors accordingly. Above equations then can be summarized into algebraic relations expressed
as

γ
ξ−

= Tξ−u, γ
ξ+ = Tξ+u,(4.24a)

γ
η−

= Tη−u, γ
η+ = Tη+u,(4.24b)

γ
ς−

= Tς−u, γ
ς+

= Tς+u,(4.24c)

respectively, where matrices T(·) are called the trace matrices which, same as the incidence
matrices, are topological matrices. If we apply a numbering to all coefficients of γ, these relations
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can be integrated into one written as
γ = TFu,

where the trace matrix TF can be obtained by assembling the trace matrices T(·) in (4.24). For
example, when N = 1, we have

TF =




−1 0 0 0 0 0
0 1 0 0 0 0
0 0 −1 0 0 0
0 0 0 0 −1 0
0 0 0 0 0 1



.

It is seen that the topological trace matrix TF works as a discrete version of the trace operator
on FPN−1(Ω). And for each uh ∈ FPN−1(Ω), we can find a γh ∈ TFN−1 (∂Ω) such that
γh = Tu = u ·n. In other words, TFN−1 (∂Ω) is the range of the trace operator on the mimetic
space FPN−1(Ω), i.e.,

(4.25) TFN−1 (∂Ω) = T (FPN−1(Ω)) .

Similarly, one can find that

(4.26) TNN (∂Ω) = T (NPN (Ω)) ,

and

(4.27) TEN−1 (∂Ω) = T ‖ (EPN−1(Ω)) .

And one can obtain the discrete counterparts denoted by TN and TE for the trace operators, T
and T‖, on NPN (Ω) and EPN−1(Ω), respectively.

Complement 4.5 For an illustration of trace matrix TF, see document
[trace matrix TF.pdf]

www.mathischeap.com/contents/LIBRARY/ptc/trace matrix TF.

Complement 4.6 For a Python implementation of the trace matrices, see script
[trace matrices.py] www.mathischeap.com/contents/LIBRARY/ptc/trace matrices.

Analogously, by assembling the mass matrices MN, ME and MF, see (4.18), (4.19) and (4.20),
One can get the mass matrices of trace spaces TNN (∂Ω), TEN−1 (∂Ω) and TFN−1 (∂Ω) denoted
by

MN, ME and MF,

respectively.

Complement 4.7 For a Python implementation of mass matrices MN, ME and MF, see
script
[mass matrices trace.py]

www.mathischeap.com/contents/LIBRARY/ptc/mass matrices trace.

https://www.mathischeap.com/contents/LIBRARY/ptc/trace_matrix_TF.html
https://www.mathischeap.com/contents/LIBRARY/ptc/trace_matrices.html
https://www.mathischeap.com/contents/LIBRARY/ptc/mass_matrices_trace.html
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4.3 Discrete dual de Rham complex

Recall the precise expressions for the dual operators, see Remark 2.1,

∇̃ : L2(Ω)×H1/2(∂Ω)→ H(div; Ω),

∇̃× : H(div; Ω)× TH⊥(∂Ω)→ H(curl; Ω),

∇̃· : H(curl; Ω)×H−1/2(∂Ω)→ H1(Ω).

Using the mimetic trace spaces, TNN (∂Ω), TEN−1(∂Ω) and TFN−1(∂Ω), and the mimetic
spaces, NPN (Ω), EPN−1(Ω), FPN−1(Ω) and VPN−1(Ω), we now can construct the following
discrete dual de Rham complex

(4.28) .

Note that, at the continuous level, trace spaces

H1/2(∂Ω) and H−1/2(∂Ω)

are a pair of dual spaces. However, at the discrete level, trace spaces

TNN (∂Ω) = T (NPN (Ω)) ⊂ H1/2(∂Ω) and TFN−1(∂Ω) = T (FPN−1(Ω)) ⊂ H−1/2(∂Ω)

are not a pair of dual spaces; obviously, they have different degrees of freedom (in fact TFN−1(∂Ω) ⊂
TNN (∂Ω)). Thus, they can not be used interchangeably. For example, in the upper layer of
(4.28), TFN−1(∂Ω) is also used to approximate H1/2(∂Ω) such that, for v ∈ H(div; Ω), the one
to one duality pairing between λ ∈ H1/2(∂Ω) and v · n ∈ H−1/2(∂Ω),

〈v · n, λ〉∂Ω =

∫

∂Ω
λ (v · n) dΓ

can be preserved by their discrete variables, for vh ∈ FPN−1(∂), λh ∈ TFN−1(∂Ω) and vh ·n ∈
TFN−1(∂Ω), 〈

vh · n, λh
〉
∂Ω

=

∫

∂Ω
λh
(
vh · n

)
dΓ = vTTT

FMFλ.

This discrete duality pairing will be further studied in the next chapter where we introduce the
dual basis functions.

4.4 Discretization of the hybrid Poisson problem

With the mimetic spaces we constructed in Chapter 2 and the mimetic trace spaces constructed
in this chapter, we now can discretize the hybrid weak formulation (4.2).
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For convenience, here we repeat the hybrid weak formulation: Given f ∈ L2(Ωi), ϕ̂ ∈
H1/2(Γϕ ∩ ∂Ωi) and û ∈ H−1/2(Γu ∩ ∂Ωi), find (u, ϕ, λ) ∈ Hû(div; Ωi) × L2(Ωi) × H1/2(Γi,j)
such that

〈
v, k−1u

〉
Ωi

+ 〈∇ · v, ϕ〉Ωi −
∫

∪jΓi,j
λ (v · ni) dΓ(4.29a)

=

∫

Γϕ∩∂Ωi

ϕ̂ (v · n) dΓ ∀v ∈ H0(div; Ωi),

〈φ,∇ · u〉Ωi = −〈φ, f〉Ωi ∀φ ∈ L2(Ωi),(4.29b)
∫

Γi,j

ψ (u · ni + u · nj) = 0 ∀ψ ∈ H1/2 (Γi,j) .(4.29c)

In an internal sub-domain Ωi (∪jΓi,j = ∂Ωi, ∂Ω∩∂Ωi = ∅), we use mimetic space FPN−1(Ωi) to
approximate space H(div; Ωi) and use mimetic space VPN−1(Ωi) to approximate L2(Ωi). On the
interface, mimetic trace space TFN−1(∂Ωi) is used to approximate the trace space H1/2(∂Ωi),
i.e.,

.

Remark 4.1 We have assumed that the domain decomposition is conducted based on a conform-
ing structured, orthogonal or curvilinear, mesh such that the used discrete spaces are compatible
under the domain decomposition.

As a result, a discrete version of problem (4.29) for the internal sub-domain Ωi is given as: Given
fh ∈ VPN−1(Ω), find (ϕh,uh, λh) ∈ VPN−1(Ωi)× FPN−1(Ωi)× TFN−1(∂Ωi) such that

〈
vh, k−1uh

〉
Ωi

+
〈
∇ · vh, ϕh

〉
Ωi
−
∫

∂Ωi

λh
(
vh · ni

)
dΓ = 0 ∀vh ∈ FPN−1(Ωi),

〈
φh,∇ · uh

〉
Ωi

= −
〈
φh, fh

〉
Ωi

∀φh ∈ VPN−1(Ωi),
∫

∂Ωi

ψh
(
uh · ni

)
dΓ = 0 ∀ψh ∈ TFN−1(∂Ωi).

This system can be written in algebraic format as

vTi Mk
Fui + vTi ET

(∇·)MVϕi − v
T
i TT

FMFλi = 0 ∀vi ∈ R3N2(N+1),

φT
i

MVE(∇·)ui = −φT
i

MVf ∀φ
i
∈ RN

3
,

ψT
i
MFTFui = 0 ∀ψ

i
∈ R6N2

.
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which is equivalent to an algebraic system,

(4.30)




Mk
F ET

(∇·)MV −TT
FMF

MVE(∇·) 0 0

MFTF 0 0





ui
ϕ
i
λi


 =




0
−MVf

0


 ,

For a sub-domain that is adjacent to the boundary, ∂Ω∩∂Ωi 6= ∅, we can also firstly do above
discretization as if it is an internal sub-domain. Therefore, we can obtain a discrete system of
the same format as (4.30). Afterwards we can use the degrees of the interface variable λi (and its
test function ψi) which are located on the domain boundary to impose the boundary conditions
through

(4.31) λh = ϕ̂ on Γϕ ∩ ∂Ωi,

and

(4.32)

∫

Γu∩∂Ωi

ψh
(
uh · ni + û

)
= 0.

Also, note that, as the system (4.30) is only for a single sub-domain, the coupling of the dis-
continuous sub-domains is not reflected in this system yet. Once we have assembled the local
systems, through the interface variable, λh, which are shared by two sub-domains, the continuity
of the sub-domains are finally re-enforced. For an illustration of the function of λh for applying
the boundary conditions and re-enforcing the continuity of sub-domains, see Fig. 4.3.

Figure 4.3: An illustration of the function of λ for applying the boundary conditions and re-enforcing
the continuity of sub-domains. Note that here we use lines to represent faces that are perpendicular to
the paper plane. The blue faces are the degrees of freedom of λh, λ|1 and λ|2, used to apply the boundary
condition ϕ̂. They are equal to integral values of ϕ̂, see (4.31). The green faces are degrees of freedom of
λh, λ|3 and λ|4, on the boundary, Γu, which couples the degrees of freedom of uh with integral values of
û, see (4.32). And the red faces represents the internal degrees of freedom of λh, λ|5, λ|6, λ|7 and λ|8,
which couple the sub-domains through coupling the degrees of freedom of uh ∈ FPN−1(Ωi).
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After applying the boundary conditions, for neatness, we can write the discrete system (4.30)
as2

(4.33)

[
A B
C D

] [
xi
λi

]
=

[
g
h

]
,

where we have grouped u and ϕ, i.e.,

xi =

[
ui
ϕ
i

]
.

By applying the Schur complement technique, we can derive a reduced system for λi:

(4.34)
(
D − CA−1B

)
λi = h− CA−1g.

Such a reduced system can be constructed for all elements in parallel. Assembling (4.34) accom-
plishes the coupling and gives rise to a global linear algebra system for the interface variable λ.
Once λ is solved, solving the remaining local systems for ui and ϕ

i
becomes trivial,

(4.35) xi = A−1 (g −Bλi) ,

because A−1 has already be computed for all elements to get (4.34). This process can be also
done locally in parallel.

Remark 4.2 The above approach is the simplest way to derive the reduced system (the Schur
complement) for λi, one can also un-group xi and derive the reduced system from a system of
format 


A B C
BT 0 0
D 0 F





ui
ϕ
i
λi


 =




0
g
h


 .

Remark 4.3 Recall that we use F to denote the left-hand side matrix of the global linear algebra
system for the MSEM. And here, for the hMSEM, we use S to denote the left-hand side matrix
of the global linear algebra system for the interface variable λ, namely the global reduced system.
With the hybridization, although the total number of degrees of freedom increases, the number
of the interface degrees of freedom is relatively small. As a result, S is smaller than F. We use
] to denote the size of a matrix. For example, S is a ]S by ]S matrix. If M is the number of
elements, I is the number of internal element interfaces, and b is the number of element faces
on the domain boundary,

6M = 2I + b,

we will find that the sizes of S and F (of a typical implementation3) are

]S = (I + b)N2,

and
]F = M

[
3N2 (N + 1) +N3

]
− IN2.

2Note that matrix D in (4.33) is not an empty matrix because of the particular method for the implementation
of the boundary conditions, see Complement 2.13.

3Different implementations (for example, of handling the rows that represent the boundary conditions in the
discrete systems, see Complement 2.13) may lead to systems of slightly different sizes.



4.5. NUMERICAL RESULTS 85

Recall that N (N ≥ 1) is the degree of the mimetic spaces. Let χ = I/b ∈ [0,∞). We can find
the following system size ratio,

(4.36)
]S
]F

=
6χ+ 6

8Nχ+ 4N + 3
,

which decreases when N or χ increases.

4.5 Numerical results

We now test the hMSEM with the same manufactured problem as the one used for testing the
MSEM in Section 2.4.2, and the crazy mesh, see Section 2.4.2 and Complement 2.14, is used for
the domain decomposition. In other words, each element,

Ωm = Ωi+(j−1)K+(k−1)K2 = Ωi,j,k, i, j, k ∈ {1, 2, · · · ,K} ,

see (2.96), is considered as a discontinuous sub-domain.

Complement 4.8 For a Python implementation of the hMSEM for this manufactured
Poisson problem, see script [Poisson problem h.py]

www.mathischeap.com/contents/LIBRARY/ptc/Poisson problem h.

For this particular problem, we know the ratio of the internal interfaces and boundary faces is

χ =
I

b
=

(K − 1)

2
.

Therefore, from Remark 4.3 and, in particular, (4.36), we can obtain the following system size
ratio,

(4.37)
]S
]F

=
3K + 3

4NK + 3
.

It is clear from this ratio that, in terms of the system size, the hMSEM has a increasingly better
performance in terms of reducing the system size compared to the non-hybridized method as

the degree N increases. And for a given N , the ratio decreases and approaches the limit
3

4N
as

K increases. To give readers a more explicit impression, we have provided some samples of this
ratio in Table 4.1.

Table 4.1: Some samples of the system size ratio ]S/]F, see (4.37).

N
K

2 4 6 8 10 12

1 0.818182 0.789474 0.777778 0.771429 0.767442 0.764706
3 0.333333 0.294118 0.28 0.272727 0.268293 0.265306
5 0.209302 0.180723 0.170732 0.165644 0.162562 0.160494

In Fig. 4.4, some results of the eigen-spectrum of the global matrix S are presented. And in
Fig. 4.5, some results for the condition number of S are presented. These results support the
statement that the resulting global system of the hMSEM for this problem is not singular. In
Fig. 4.6, we compare the condition numbers of S and F under ph-refinement. It is seen that

https://www.mathischeap.com/contents/LIBRARY/ptc/Poisson_problem_h.html
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the two global matrices possess similar condition numbers. Although the hMSEM increases the
computational efficiency by reducing the size of the global system, see (4.37) and Table 4.1, it
does not contribute to the performance in terms of the condition number of the global system.
More discussions about this point will be given in Chapter 5.

(a) c = 0

(b) c = 0.125 (c) c = 0.25

Figure 4.4: Results of the eigen-spectrum of S for N = 1, K = 2. The radii of the blue and red circles
are the moduli of the eigenvalues of the maximum and minimum modulus respectively.

As for the accuracy, we expect that the hMSEM has no improvement compared to the MSEM.
This is supported by the results presented in Table 4.2 where we can see that both methods
provide solutions, uh and ϕh, of exactly same (to the machine precision) accuracy with respect
to the L2-error. This also implies the solution for λh is correct, see (4.33) to (4.35). In Fig. 4.7,
we plot the magnitude of the local error of the solution λh on surfaces Φ̊([0, 1], [0, 1], 0.25) and
Φ̊([0, 1], [0, 1], 0.75) in the computational domain when N = 4 and K = 4 (for which the surfaces
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Figure 4.5: Condition numbers, κ, of S under hp-refinement where h =
1

K
denotes the size of mesh

cells (sub-domains).

(a) N = 1 (b) N = 3

(c) K = 1 (d) K = 3

Figure 4.6: Comparisons between the condition numbers of F and S under hp-refinement where h =
1

K
denotes the size of mesh cells (sub-domains).

Φ̊([0, 1], [0, 1], 0.25) and Φ̊([0, 1], [0, 1], 0.75) are a part of the interface of sub-domains). See (2.97)
for the mapping Φ̊. We can see that the local error increases when the deformation factor c
grows.
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Table 4.2: Results of ‖x‖L2-error and ‖x− x′‖L2-norm (in brackets), where x and x′ are solutions of the
hMSEM and MSEM respectively, for N ∈ {1, 3}, K ∈ {2, 4, 6}, and c ∈ {0, 0.25}.

x K
N = 1 N = 3

c = 0 c = 0.25 c = 0 c = 0.25

uh
2 2.3496(2.08E−15) 3.4833E−0(3.85E−15) 1.5354E−1(2.84E−14) 1.4494(4.30E−14)
4 2.3496(4.17E−16) 2.8074E−0(7.14E−15) 6.4952E−2(3.53E−13) 3.2134E−1(3.51E−13)
6 1.6160(1.06E−14) 2.1468E−0(1.81E−14) 1.9486E−2(4.88E−13) 1.0126E−1(6.49E−13)

ϕh
2 2.4603E−1(3.20E−16) 6.1714E−1(8.88E−16) 1.5746E−2(2.15E−15) 1.9098E−1(2.18E−15)
4 2.4602E−1(3.20E−16) 4.5589E−1(9.75E−16) 7.2606E−3(1.09E−14) 4.4331E−2(1.03E−14)
6 1.7584E−1(1.02E−15) 3.2079E−1(1.58E−15) 2.1864E−3(1.01E−14) 1.4019E−2(1.31E−14)
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(b) c = 0.125
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(c) c = 0.25

Figure 4.7: Results of log10

(∣∣λh − ϕexact

∣∣) on the interfaces of elements Ωi,j,1 and Ωi,j,2 and of elements

Ωi,j,3 and Ωi,j,4 (i.e. the mapped faces Φ̊([0, 1], [0, 1], 0.25) and Φ̊([0, 1], [0, 1], 0.75), see (2.97)) for N = 4,
K = 4.
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In Fig. 4.8, some results of the L2-norm of∇·uh+fh are presented. It shows that the hMSEM
always satisfies the relation ∇ · uh = −fh to the machine precision as the MSEM does. This
can be clearly seen from (4.30) that the hybridization does not influence the local satisfaction
of the divergence relation in each element, which is further supported by the results shown in
Fig. 4.9 where we plot the local magnitude of ∇ · uh + fh on surfaces Φ̊([0, 1], [0, 1], 0.125) and
Φ̊([0, 1], [0, 1], 0.875) in the computational domain for N = 4 and K = 4.

Figure 4.8: The L2-norm of ∇ · uh + fh under hp-refinement where h =
1

K
denotes the size of mesh

cells (sub-domains).
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(b) c = 0.125
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Figure 4.9: Results of log10

(∣∣∇ · uh + fh
∣∣), on mapped faces Φ̊([0, 1], [0, 1], 0.125) and

Φ̊([0, 1], [0, 1], 0.875), see (2.97), for N = 4, K = 4.
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CHAPTER 5

DUAL BASIS FUNCTIONS WITH APPLICATIONS

In addition to the hybridization, a second attempt to reduce the computational cost of the
MSEM is the usage of dual basis functions [119,177–179]. The dual basis functions will increase
the sparsity and improve the conditioning of the discrete system. More interestingly, together
with the hybridization, the usage of dual basis functions could lead to discrete counterparts,
which are topological like the incidence matrices for the primal differential operators, for the
dual differential operators.

In this chapter, we will first introduce the construction of dual basis function which are then
used to implement the hMSEM. The new extension of the hMSEM is called the hybrid mimetic
spectral element method with dual basis functions or briefly the hybrid dual mimetic spectral
element method (hdMSEM).

5.1 Dual mimetic basis functions

To better present the dual mimetic basis functions, here we will use a new general notation
alternative to the notations used in Chapter 2 for the mimetic functions. Let εi denote a basis
function of a mimetic space, i.e.,

NPN (Ω), EPN−1(Ω), FPN−1(Ω) or VPN−1(Ω).

A general form of the mimetic functions, see (2.74), (2.76), (2.78) or (2.80), can be expressed as

(5.1) ph =
∑

i

piεi = pTε,

where p and ε are column vectors of the expansion coefficients and the basis functions under a

particular local numbering, for example, see (2.51), (2.52), (2.57) or (2.62). Let qh be a function
from the same mimetic space as ph, i.e.,

qh =
∑

i

qiεi = qTε.

We know that the L2-inner product between ph and qh is

(5.2)
〈
ph, qh

〉
Ω

= pTMq,
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where M is the mass matrix, see (2.87), (2.88), (2.89) or (2.90), and the entries of M are

M|(i,j) = M|(j,i) = 〈εi, εj〉Ω .

From now on, we call basis functions εi the primal basis functions and call the mimetic spaces,

NPN (Ω), EPN−1(Ω), FPN−1(Ω) and VPN−1(Ω),

the primal mimetic spaces.
As a result of the fact that the primal basis functions are linearly independent, the mass

matrix M is always positive-definite and therefore invertible. Thus, we can define a new set
of basis functions, called the dual basis functions, as linear combinations of the primal basis
functions,

(5.3) ε̃T := M−1ε.

These dual basis functions form a new basis for the mimetic space. In order to distinguish these
two sets of basis functions, ε̃ and ε, we denote the space spanned by the dual basis functions,
the dual mimetic space, by

ÑPN (Ω), ẼPN−1(Ω), F̃PN−1(Ω) or ṼPN−1(Ω).

Note that the dual mimetic spaces are the same as the primal ones, namely,

ÑPN (Ω) = NPN (Ω), ẼPN−1(Ω) = EPN−1(Ω),

F̃PN−1(Ω) = FPN−1(Ω), ṼPN−1(Ω) = VPN−1(Ω).

Introducing these new notations is for indicating that a function is expanded with the dual basis
functions; if qh is in a dual mimetic space, it means qh is expanded with the dual basis functions
as

(5.4) qh =
∑

i

q̃iε̃i = q̃Tε̃.

And we can always find a representation of qh expanding with the primal basis functions in the
corresponding primal mimetic space, i.e.,

qh =
∑

i

qiεi = qTε.

From the construction of the dual basis functions, see (5.3), we can easily know that the expan-
sion coefficients of these two representations satisfy

(5.5) q̃ = Mq.

It can be seen that the switch between primal and dual mimetic spaces is like a change of the
frame and we usually use the Hodge operator, ? , to denote it, for example,

FPN−1(Ω)
?−→ F̃PN−1(Ω).
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And from above constructions, we know, in this case, the Hodge operator and its inverse operator,
for example,

F̃PN−1(Ω)
?−1

−→ FPN−1(Ω),

have their discrete counterparts for the expansion coefficients, the mass matrix M and its inverse.

Remark 5.1 From now on, if and only if a discrete variable is expanded with dual basis func-
tions, its coefficient vector, already indicated with an underline, will be indicated additionally
with an overhead tilde, see for example q̃ in (5.5).

Now recall the inner product (5.2). If ph is still expanded with the primal basis functions,
see (5.1), and let qh be expanded with dual basis functions, see (5.4), i.e.,

(
ph, qh

)
∈ NPN (Ω)×ÑPN (Ω), EPN−1(Ω)× ẼPN−1(Ω),

FPN−1(Ω)× F̃PN−1(Ω) or VPN−1(Ω)× ṼPN−1(Ω),

the inner product between ph and qh becomes,

(5.6)
〈
ph, qh

〉
Ω

= pTq̃ ,

It is seen that the inner product between an element from a primal space and an element from the
dual space is equal to the dot product of their coefficient vectors. This is an obvious consequence
if we insert (5.5) into (5.2). However, with this simple trick, a significant gain can be obtained
at the discrete level. We will come back to this later.

With the same approach, one can construct the dual spaces of the mimetic trace spaces,
TNN (Γ), TEN−1(Γ) and TFN−1(Γ), denoted by

T̃NN (Γ), T̃EN−1(Γ), and T̃FN−1(Γ).

And for ψh ∈ NPN (Ω) and αh ∈ T̃NN (∂Ω), the inner product between them reads

(5.7)
〈
ψh, αh

〉
∂Ω

=

∫

∂Ω
ψhαhdΓ =

∫

∂Ω

(
Tψh

)
αhdΓ = ψTTT

Nα̃ = α̃TTNψ.

For ωh ∈ EPN−1(Ω) and βh ∈ T̃EN−1(∂Ω), the inner product between them is

(5.8)
〈
ωh,βh

〉
∂Ω

=

∫

∂Ω
ωh · βhdΓ =

∫

∂Ω

(
T‖ω

h
)
· βhdΓ = ωTTT

Eβ̃ = β̃
T
TEω.

For uh ∈ FPN−1(Ω) and λh ∈ T̃FN−1(∂Ω), the inner product between them reads

(5.9)
〈
uh · n, λh

〉
∂Ω

=

∫

∂Ω
λh
(
uh · n

)
dΓ =

∫

∂Ω

(
Tuh

)
λhdΓ = uTTT

Fλ̃ = λ̃
T
TFu.

Complement 5.1 For a Python implementation of the projections (reduction and recon-
struction) for dual mimetic spaces, see script [projection dual.py]

www.mathischeap.com/contents/LIBRARY/ptc/projection dual.

https://www.mathischeap.com/contents/LIBRARY/ptc/projection_dual.html
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5.2 Discrete dual operators

5.2.1 Discrete dual gradient operator

From the introduction of the dual gradient operator in Section 2.2.3, we know that the dual
gradient is defined weakly through the integration by parts in terms of the inner product, i.e.,

(5.10) ∇̃ : L2(Ω)×H1/2(∂Ω)→ H(div; Ω),

such that

(5.11)
〈
v, ∇̃ϕ

〉
Ω

= −〈∇ · v, ϕ〉Ω +

∫

∂Ω
ϕ (v · n) dΓ ∀v ∈ H(div; Ω).

At the discrete level, if we have ψh := ∇̃ϕh, ϕh and ϕ̂h expanded with dual basis functions,
i.e.,

ψh ∈ F̃PN−1(Ω),

ϕh ∈ ṼPN−1(Ω),

ϕ̂h ∈ T̃FN−1(∂Ω),

and vh expanded with the primal basis functions, i.e.,

vh ∈ FPN−1(Ω),

such that
Tvh = vh · n ∈ TFN−1(∂Ω),

see (4.25), the discrete version of (5.11), expressed as

〈
vh,ψh

〉
Ω

= −
〈
∇ · vh, ϕh

〉
Ω

+

∫

∂Ω
ϕ̂h
(
vh · n

)
dΓ ∀v ∈ FPN−1(Ω),

will lead to an algebraic relation written as

vTψ̃ = −vTET
(∇·)ϕ̃+ vTTT

Fϕ̂, ∀v ∈ R3N2(N+1),

see (5.6) and (5.9). Note that the discrete boundary variable ϕ̂ is also expanded with dual basis
functions although we do not use an overhead tilde for its vector of expansion coefficients, ϕ̂.
This relation is equivalent to

(5.12) ψ̃ = −ET
(∇·)ϕ̃+ TT

Fϕ̂ ,

where both matrices E(∇·) and TF are the topological incidence matrix and trace matrix, respec-
tively. Therefore, at the discrete level, we have constructed a composite, topological counterpart,

(5.13)
(
−ET

(∇·),T
T
F

)
,

for the dual gradient operator, see (5.10),

(5.14) ∇̃ : ṼPN−1(Ω)× T̃FN−1(∂Ω)→ F̃PN−1(Ω).
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5.2.2 Discrete dual curl operator

Analogously, from Section 2.2.3, we know that the dual curl operator can be defined weakly
through the integration by parts in terms of the inner product, i.e.,

(5.15) ∇̃× : H(div; Ω)× TH⊥(∂Ω)→ H(curl; Ω),

such that

(5.16)
〈
ω, ∇̃×u

〉
Ω

= 〈∇ × ω,u, 〉Ω −
∫

∂Ω
ω · (u× n)dΓ ∀ω ∈ H(curl; Ω).

Recall that
∫

∂Ω
ω · (u× n)dΓ =

∫

∂Ω

(
T‖ω

)
· (u× n)dΓ ∀ω ∈ H(curl; Ω),

see (2.9).

At the discrete level, if we have wh := ∇̃×uh, uh and ûh expanded with the dual basis
functions, i.e.,

wh ∈ ẼPN−1(Ω),

uh ∈ F̃PN−1(Ω),

ûh ∈ T̃EN−1(∂Ω),

and ωh expanded with the primal basis functions, i.e.,

ωh ∈ EPN−1(Ω),

such that on the boundary
T‖ω

h ∈ TEN−1(∂Ω),

see (4.27), the discrete version of (5.16), expressed as

〈
ωh,wh

〉
Ω

=
〈
∇× ωh,uh

〉
Ω
−
∫

∂Ω

(
T‖ω

h
)
· ûhdΓ ∀ωh ∈ EPN−1(Ω),

will lead to an algebraic relation written as

ωTw̃ = ωTET
(∇×)ũ− ωTTT

Eû, ∀ω ∈ R3N(N+1)2
,

see (5.6) and (5.8), which is equivalent to

w̃ = ET
(∇×)ũ− TT

Eû,

where both matrices E(∇×) and TE are the topological incidence matrix and trace matrix, re-
spectively . Thus, we have constructed a composite, topological discrete counterpart,

(5.17)
(

ET
(∇×),−TT

E

)
,

for the dual curl operator, see (5.15),

(5.18) ∇̃× : F̃PN−1(Ω)× T̃EN−1(∂Ω)→ ẼPN−1(Ω).
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5.2.3 Discrete dual divergence operator

As seen in Section 2.2.3, the dual divergence operator can be defined weakly through the inte-
gration by parts in terms of the inner product, i.e.,

(5.19) ∇̃· : H(curl; Ω)×H−1/2(∂Ω)→ H1(Ω),

such that

(5.20)
〈
ψ, ∇̃·ω

〉
Ω

= −〈∇ψ,ω〉Ω +

∫

∂Ω
ψ(ω · n)dΓ ∀ψ ∈ H1(Ω).

At the discrete level, if we have ϑh := ∇̃·ωh, ωh and ω̂h expanded with the following dual
basis functions, i.e,

ϑh ∈ ÑPN (Ω),

ωh ∈ ẼPN−1(Ω),

ω̂h ∈ T̃NN (∂Ω),

and ψh expanded with the primal basis functions, i.e.,

ψh ∈ NPN (Ω),

such that
Tψh ∈ TNN (∂Ω),

see (4.26), a discrete version of (5.20), expressed as

〈
ψh, ϑh

〉
Ω

= −
〈
∇ψh,ωh

〉
Ω

+

∫

∂Ω
ψhω̂hdΓ ∀ψh ∈ NPN (Ω),

from (5.6) and (5.7), will give rise to an algebraic relation,

ψTϑ̃ = −ψTET
(∇)ω̃ + ψTTT

Nω̂, ∀ψ ∈ R(N+1)3
.

This relation is equivalent to
ϑ̃ = −ET

(∇)ω̃ + TT
Nω̂.

where matrices E(∇) and TN are the topological incidence matrix and trace matrix, respectively.
In other words, we have constructed a composite, topological discrete counterpart,

(5.21)
(
−ET

(∇),T
T
N

)
,

for the dual divergence operator, see (5.19),

(5.22) ∇̃· : ẼPN−1(Ω)× T̃NN (∂Ω)→ ÑPN (Ω).

5.2.4 Discrete double de Rham complex

Recall that we have constructed the discrete primal de Rham complex, see Section 2.3.3,

(5.23) R ↪→ NPN (Ω)
∇−→ EPN−1(Ω)

∇×−→ FPN−1(Ω)
∇·−→ VPN−1(Ω)→ 0,
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where the primal differential operators, i.e. ∇, ∇× and ∇·, have topological discrete counter-
parts, the incidence matrices

E(∇), E(∇×) and E(∇·),

see (2.53), (2.58) and (2.63).
Now, with the constructions described in last sections, we now can form a discrete dual de

Rham complex expressed as

(5.24) ,

see (5.14), (5.18) and (5.22), where dual operators ∇̃, ∇̃× and ∇̃· also have topological composite
discrete counterparts, i.e.,

(
−ET

(∇·),T
T
F

)
,
(

ET
(∇×),−TT

E

)
, and

(
−ET

(∇),T
T
N

)
,

see (5.13), (5.17) and (5.21). In other words, these composite discrete operators are the dual
operators applied to the degrees of freedom. It is seen that, to derive them, no approximation
is introduced. Therefore, like the incidence matrices which are exact discrete counterparts of
the primal operators, these composite linear operators are also exact discrete counterparts of
the dual operators. Thus we now have constructed a discrete representation of the double de
Rham complex, i.e., (5.23) and (5.24), with both primal and dual operators having topological
discrete counterparts. Recall that in Chapter 2, for the MSEM, performing the discrete dual
operators is metric-dependent. Here, for the hdMSEM, we have constructed metric-free or
topological composite discrete representations for the dual operators just as the topological
incidence matrices for the primal operators. This does not mean that we have changed the
fact we define the dual operators through integration by parts in terms of the metric-dependent
L2-inner product. It is just because that, with the usage of the dual basis functions, the metric
term is embedded by the expansion coefficients (through the mass matrices).

5.3 Application to Poisson problem

5.3.1 Discretization of the hybrid weak formulation

Now we demonstrate the usage of the hdMSEM by applying it the the hybrid Poisson problem.
We re-consider the hybrid weak formulation of the Poisson problem (4.2): Given f ∈ L2(Ωi),
ϕ̂ ∈ H1/2(Γϕ∩∂Ωi) and û ∈ H−1/2(Γu∩∂Ωi), find (u, ϕ, λ) ∈ Hû(div; Ωi)×L2(Ωi)×H1/2(Γi,j)
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such that

〈
v, k−1u

〉
Ωi

+ 〈∇ · v, ϕ〉Ωi −
∫

∪jΓi,j
λ (v · ni) dΓ(5.25a)

=

∫

Γϕ∩∂Ωi

ϕ̂ (v · ni) dΓ ∀v ∈ H0(div; Ωi),

〈φi,∇ · u〉Ωi = −〈φ, f〉Ωi ∀φ ∈ L2(Ωi),(5.25b)
∫

Γi,j

ψ (u · ni + u · nj) = 0 ∀ψ ∈ H1/2 (Γi,j) .(5.25c)

Assume that we use the same domain decomposition based an orthogonal or curvilinear con-
forming structured mesh as discussed in Section 4.4 and, particularly, in Remark 4.1. For an
internal sub-domain Ωi (∪jΓi,j = ∂Ωi, ∂Ω ∩ ∂Ωi = ∅), to approximate L2(Ωi) and H1/2(∂Ωi),
instead of using spaces VPN−1(Ωi) and TFN−1(∂Ωi) as in the hMSEM, we now use dual spaces

ṼPN−1(Ωi) and T̃FN−1(∂Ωi), and for the space H(div; Ωi), the primal space FPN−1(Ωi) is used,
i.e.,

(5.26) ,

As a result, the discrete version of problem (5.25) for the internal sub-domain Ωi is written as:

Given f ∈ L2(Ωi) , find (ϕh,uh, λh) ∈ ṼPN−1(Ωi)× FPN−1(Ωi)× T̃FN−1(∂Ωi) such that

〈
vh, k−1uh

〉
Ωi

+
〈
∇ · vh, ϕh

〉
Ωi
−
∫

∂Ωi

λh
(
vh · ni

)
dΓ = 0 ∀vh ∈ FPN−1(Ωi),(5.27a)

〈
φh,∇ · uh

〉
Ωi

= −
〈
φh, fh

〉
Ωi

∀φ ∈ ṼPN−1(Ωi),(5.27b)
∫

∂Ωi

ψh
(
uh · ni

)
dΓ = 0 ∀ψh ∈ T̃FN−1(∂Ωi),(5.27c)

which then can be written into algebraic relations expressed as

vTi Mk
Fui + vTi ET

(∇·)ϕ̃i − v
T
i TT

Fλ̃i,j = 0 ∀vi ∈ R3N2(N+1),(5.28a)

φ̃
T

i
E(∇·)ui = −φ̃T

i
f
i

∀φ
i
∈ RN

3
,(5.28b)

ψT
i,j
TFui = 0 ∀ψ

i,j
∈ R6N2

.(5.28c)
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Note that f is still approximated with primal basis functions, i.e., fh ∈ VPN−1(Ωi), such that〈
fh, φh

〉
Ωi

= φ̃
T

i
f
i
. Among these relations, (5.28a) is equivalent to

Mk
Fui = −ET

(∇·)ϕ̃i + TT
Fλ̃i,j .

We can seen that the right-hand side of this relation is an execution of the dual gradient operator,
i.e.,

∇̃
(
ϕhi , λ

h
i,j

)
,

see (5.12), which takes the expansion coefficients of ϕhi ∈ ṼPN−1(Ωi) ⊂ L2(Ωi) and its boundary

variable λhi,j ∈ T̃FN−1(∂Ω) ⊂ H1/2(∂Ω), and gives the coefficients of ui expanded with the dual
mimetic space,

ũi = Mk
Fui,

see (5.5). It is seen that the mass matrix Mk
F which contains the material property serves as

the discrete version of the Hodge operator, ?k, whose inverse operator is ?−1
k as shown in (5.26).

Overall, (5.27) is equivalent to an algebraic system,

(5.29)




Mk
F ET

(∇·) −TT
F

E(∇·) 0 0

TF 0 0





ui
ϕ̃
i

λ̃i,j


 =




0
−f
0


 .

If you compare (5.29) to the discrete system of the hMSEM, see (4.30), i.e.,

(5.30)




Mk
F ET

(∇·)MV −TT
FMF

MVE(∇·) 0 0

MFTF 0 0





ui
ϕ
i

λi,j


 =




0
−MVf

0


 ,

you can find the extra simplicity provided by using the dual basis functions: In (5.29), the metric-
dependent mass matrices MV and MF are removed; the only metric-dependent term (that has
to be computed in all elements of different metric) left in the discrete system is the mass matrix
Mk

F which contains the material property. Also, since the incidence matrix and the trace matrix
are sparse topological matrices while the mass matrices are usually denser matrices, the local
system, (5.29), for the hdMSEM is much sparser than that, (5.30), of the hMSEM. See Fig. 5.1
for some sparsity plots of the left-hand-side matrices of these two local systems.

Remark 5.2 From the aspect of linear algebra, as mass matrices MV and MF are invertible,
they can be eliminated from (5.30) if we left-multiply the second and third block rows of (5.30)
by M−1

V and M−1
F respectively. Secondly, we move MV and MF in the first block row to the vector

of unknowns, and we will get a system written as




MF ET
(∇·) −TT

F

E(∇·) 0 0

TF 0 0






ui
MVϕi
MFλi,j


 =




0
−f
0


 .

Furthermore, if we introduce representations ϕ̃
i

:= MVϕi and λ̃i,j := MFλi,j, see (5.5), we get
exactly the system (5.29).

For sub-domains that are adjacent to the boundary, ∂Ω ∩ ∂Ωi 6= ∅, like what we have done
in the hMSEM, we can first consider them as internal sub-domains. Therefore, we will initially
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(a) hdMSEM, c = 0
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(d) hMSEM, c = 0.25

Figure 5.1: Sparsity plots of the left-hand-side matrices of (5.29) and (5.30) in the element Ω0 of the
crazy mesh, see Complement 2.14, for K = 1, N = 2 and c = 0, 0.25.

obtain local discrete systems of format (5.29) for them. Afterwards, boundary conditions can
be imposed to the discrete systems through the interface variables which locate at the domain
boundary, see (4.31), (4.32) and Fig 4.3.

Once the local discretization is done for all sub-domains, we can use the same strategy as
that in the hMSEM to solve the domain decomposition problem, see (4.33), (4.34), (4.35) and
Remark 4.2. We use S̃ to denote the left-hand side matrix of the global reduced system for the
interface variable λ using the hdMSEM And recall that we use S to denote the the left-hand side
matrix of the global reduced system using the hMSEM and use F to denote the the left-hand
side matrix of the global system using the MSEM.
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Obviously, if we use mimetic spaces of the same degree, the size of the global reduced system
using the hdMSEM is same to that using the hMSEM, i.e.,

(5.31) ]S̃ = ]S ≤ ]F.

And also, as the mass matrix Mk
F remains in the local system for the hdMSEM, see (5.30), S̃ is

not sparser than S. Although we do not obtain a smaller neither sparser system, since we have
eliminated the mass matrices MV and MF in (5.30), deriving the global reduced system for the
hdMSEM is computationally cheaper. And we expect that the condition of S̃ in terms of the
condition number improves, which will be another advantage of the hdMSEM considering that
the hMSEM does not perform well on improving the condition of the system, see Fig. 4.6. We
will check this in the next subsection.

Remark 5.3 To gain the extra sparsity and simplification in (5.29), we only need to use the fact
that the inner product between an element expanded with primal basis functions and an element
expanded with dual basis functions is equal to the vector inner product between their expansion
coefficient vectors. Therefore, we do not need to explicitly construct the dual basis functions for
the discretization. After solving the system, if we want to reconstruct those solutions expanded
with the dual basis functions, the dual basis functions can be constructed, which is relatively
inexpensive because they can be constructed locally and, therefore, in parallel. Alternatively, we
can convert the dual degrees of freedom to primal ones, see (5.5), and reconstruct them with the
primal basis functions, see Complement 5.1. This can also be done element-by-element.

5.3.2 Numerical results

To test the hdMSEM, we once again use the manufactured problem as the one used for test-
ing the MSEM and hMSEM, see Section 2.4.2 and Section 4.5, and use the crazy mesh, see
Complement 2.14, for the domain decomposition.

l For a Python implementation of the hdMSEM on this manufactured Poisson problem,
see script [Poisson problem hd.py]

www.mathischeap.com/contents/LIBRARY/ptc/Poisson problem hd.

And we use the same strategy as the one used in the hMSEM, the linear algebra system sent to
the solver is the global reduced system for the interface variable λh.

In Fig. 5.2 and Fig. 5.3, some results of the eigen-spectrum and the condition number of
S̃ are presented, respectively, which shows the resulting global system of the hdMSEM for this
problem is not singular. In Fig. 5.4, comparisons between the condition numbers of F, S and
S̃ are made. These results show that, in the same mesh and using mimetic spaces of the same
degree, in term of the condition number, the hdMSEM leads to the global system that is much
easier to solve than those produced by the MSEM and the hMSEM. Especially we see that,
with the increase of N , the condition number of S̃ grows at a much lower rate than those of F
and S. And we have observed from (4.37) and (5.31) that the hdMSEM (and the hMSEM) has
increasingly better performance in terms of the system size compared to the MSEM when N
rises. All these observations reveal the advantage of the hdMSEM for reducing the computational
cost especially when the degree N is large.

In terms of the accuracy, particularly speaking, in terms of the L2-error of uh and ϕh,
we expect no improvement with the hdMSEM. This expectation is supported by the results
presented in Table 5.1 where the same (to the machine precision) L2-error by both the MSEM

https://www.mathischeap.com/contents/LIBRARY/ptc/Poisson_problem_hd.html
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(a) c = 0

(b) c = 0.125 (c) c = 0.25

.

Figure 5.2: Results of the eigen-spectrum of S̃ for N = 1, K = 2. The radii of the blue and red circles
are the moduli of the eigenvalues of the maximum and minimum modulus respectively.

and the hdMSEM is shown in all cases. Recall that this is also the case for the hMSEM, see
Table 4.2.

However, because with the dual basis functions we have constructed a discrete version of the
dual gradient operator, ∇̃, see (5.13), we now can define an H̃1-error for ϕh ∈ ṼPN−1(Ω) as

(5.32)
∥∥∥ϕh

∥∥∥
H̃1-error

=

√
‖ϕh − ϕexact‖L2 +

∥∥∥∇̃ (ϕh, λh)− uexact

∥∥∥
L2
,

where, in the square root, the first term is equal to the square of the L2-error of ϕh and the second
term is the square of the L2-error of ∇̃

(
ϕh, λh

)
.1 Some results for the L2- and H̃1-error of ϕh

1Similarly, one can define H̃(curl)- and H̃(div)-error.
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Figure 5.3: Condition numbers, κ, of S̃ under hp-refinement where h =
1

K
denotes the size of mesh

cells (sub-domains).

(a) N = 1 (b) N = 3

(c) K = 1 (d) K = 3

Figure 5.4: Comparisons between the condition numbers of F, S and S̃ under hp-refinement where

h =
1

K
denotes the size of mesh cells (sub-domains).

are presented in Fig. 5.5. It is seen that both the L2- and H̃1-error of ϕh converge exponentially
under p-refinement and converge linearly under h-refinement. And the convergence rate of the
L2-error under h-refinement is equal to K, the theoretically optimal convergence rate. However,
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Table 5.1: Results of ‖x‖L2-error and ‖x− x′‖L2-norm (in brackets), where x and x′ are solutions of the
hdMSEM and MSEM respectively, for N ∈ {1, 3}, K ∈ {2, 4, 6}, and c ∈ {0, 0.25}.

x K
N = 1 N = 3

c = 0 c = 0.25 c = 0 c = 0.25

uh
2 2.3496(1.99E−15) 3.4833E−0(3.38E−15) 1.5354E−1(2.79E−14) 1.4494(4.41E−14)
4 2.3496(2.33E−15) 2.8074E−0(6.27E−15) 6.4952E−2(1.32E−13) 3.2134E−1(2.67E−13)
6 1.6160(6.12E−15) 2.1468E−0(1.64E−14) 1.9486E−2(3.84E−13) 1.0126E−1(3.84E−13)

ϕh
2 2.4603E−1(2.87E−16) 6.1714E−1(9.33E−16) 1.5746E−2(2.02E−15) 1.9098E−1(2.90E−15)
4 2.4602E−1(3.00E−16) 4.5589E−1(1.45E−15) 7.2606E−3(5.38E−15) 4.4331E−2(1.25E−14)
6 1.7584E−1(9.37E−16) 3.2079E−1(1.20E−15) 2.1864E−3(8.99E−15) 1.4019E−2(1.68E−14)

the convergence rate of the H̃1-error is also equal to K which is one order higher than the
commonly thought optimal convergence rate, K − 1, for the H1-error. We are observing a
superconvergence. And of course, a superconvergence cannot arise from nowhere. If we look
the definition of the H̃1-error, (5.32), we see that to compute it, we not only use the solution
ϕh, but also have used the extra information, λh (including the boundary condition λh = ϕ̂ on
Γϕ) which in fact is the solution of ϕ on the interface (as well as on the domain boundary),

see (4.1e). This results in the superconvergence for the H̃1-error of ϕh. And because of this, it
could also be regarded as a measurement for the error of λh. And in Fig. 5.6, the local L2-error
of λh on surfaces Φ̊([0, 1], [0, 1], 0.25) and Φ̊([0, 1], [0, 1], 0.75) is presented.

Figure 5.5: The convergence of ϕ with respect to L2-error and H̃1-error where h =
1

K
denotes the size

of mesh cells (sub-domains).
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(b) c = 0.125
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Figure 5.6: Results of log10

(∣∣λh − ϕexact

∣∣) on the interfaces of elements Ωi,j,1 and Ωi,j,2 and of elements

Ωi,j,3 and Ωi,j,4 (i.e., the mapped faces Φ̊([0, 1], [0, 1], 0.25) and Φ̊([0, 1], [0, 1], 0.75), see (2.97)) for N = 4,
K = 4.
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In Fig. 5.7, we present the results of the L2-norm of ∇ · uh + fh and in Fig. 5.8 we plot the
magnitude of the local error of ∇ · uh + fh. Results in both figures imply that the divergence
relation is exactly satisfied by the hdMSEM.

Figure 5.7: The L2-norm of ∇ · uh + fh under hp-refinement where h =
1

K
denotes the size of mesh

cells (sub-domains).
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(b) c = 0.125
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Figure 5.8: Results of log10

(∣∣∇ · uh + fh
∣∣) on mapped faces Φ̊([0, 1], [0, 1], 0.125) and

Φ̊([0, 1], [0, 1], 0.875), see (2.97), for N = 4, K = 4.
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5.4 Application to linear elasticity

In this section, we present an application of the hdMSEM to the 3D linear elasticity problem.
As mentioned before, the MSEM has been successfully applied to a lot of problems including

the 3D linear elasticity problem [5]. This mixed formulation based, high order method usually
leads to large and not very sparse matrices. This is particularly the case when one considers
the 3D mixed linear elasticity formulation which solves for three physical quantities, namely,
displacement, rotation and stress, simultaneously in a global discrete system. Knowing that the
displacement field and the rotation field consist of three components while the stress tensor field
has nine components, one could declare that the MSEM is a very expensive method for the 3D
linear elasticity problem. Therefore, it becomes a good example to demonstrate the reduction
of computational cost caused by using the hdMSEM.

This section is based on [6].

5.4.1 Three-dimensional linear elasticity

In R3, let u =
[
ux uy uz

]T
be the displacement vector. The rotation vector ω is given by

(5.33) ω =



ωx
ωy
ωz


 =

1

2




0 −∂/∂z ∂/∂y
∂/∂z 0 −∂/∂x
−∂/∂y ∂/∂x 0





ux
uy
uz


 .

We use D to denote the divergence matrix,

(5.34) D =



∂/∂x ∂/∂y ∂/∂z 0 0 0 0 0 0

0 0 0 ∂/∂x ∂/∂y ∂/∂z 0 0 0
0 0 0 0 0 0 ∂/∂x ∂/∂y ∂/∂z


 .

Its transpose, DT, then is the gradient matrix. The strain vector,

ε =
[
εxx εyx εzx εxy εyy εzy εxz εyz εzz

]T
,

can be written as ε = DTu+RTω, where R is a matrix given by

R =




0 0 0 0 0 1 0 −1 0
0 0 −1 0 0 0 1 0 0
0 1 0 −1 0 0 0 0 0


 .

The stress vector ,

σ =
[
σxx σyx σzx σxy σyy σzy σxz σyz σzz

]T
,

can be computed using the constitutive relation, σ = C−1ε, where C, given by

C =
1

E




1 0 0 0 −ν 0 0 0 −ν
0 1 + ν 0 0 0 0 0 0 0
0 0 1 + ν 0 0 0 0 0 0
0 0 0 1 + ν 0 0 0 0 0
−ν 0 0 0 1 0 0 0 −ν
0 0 0 0 0 1 + ν 0 0 0
0 0 0 0 0 0 1 + ν 0 0
0 0 0 0 0 0 0 1 + ν 0
−ν 0 0 0 −ν 0 0 0 1




,



108 CHAPTER 5. DUAL BASIS FUNCTIONS WITH APPLICATIONS

is the compliance tensor. E and ν represent Young’s modulus and Poisson’s ratio of the material,
respectively. Equilibrium of forces states that

Dσ + f =



∂σxx/∂x+ ∂σyx/∂y + ∂σzx/∂z
∂σxy/∂x+ ∂σyy/∂y + ∂σzy/∂z
∂σxz/∂x+ ∂σyz/∂y + ∂σzz/∂z


+



fx
fy
fz


 = 0,

where f =
[
fx fy fz

]T
is the body force vector, and equilibrium of moments implies

Rσ =



σzy − σyz
σxz − σzx
σyx − σxy


 = 0.

If we put the stress components in a 3 by 3 tensor, equilibrium of moments then implies the
stress tensor is symmetric.

We now consider a bounded, connected domain Ω with Lipschitz continuous boundary ∂Ω =
Γu ∪ Γt, where Γu ∩ Γt = ∅, Γu 6= ∅. On Γu, the displacement u is prescribed; u|Γu

= û =
[
ûx ûy ûz

]T
. On Γt, the surface traction t is prescribed; t|Γt

= t̂ =
[
t̂x t̂y t̂z

]T
. The 3D

linear elasticity problem then can be formulated as

Cσ −DTu−RTω = 0 in Ω,(5.35a)

Dσ + f = 0 in Ω,(5.35b)

−Rσ = 0 in Ω,(5.35c)

u = û on Γu,(5.35d)

t = Nσ = t̂ on Γt,(5.35e)

where the body force f is known, and N is a matrix given by

N =



nx ny nz 0 0 0 0 0 0
0 0 0 nx ny nz 0 0 0
0 0 0 0 0 0 nx ny nz


 ,

where nx, ny, nz are components of the unit outward normal vector, n =
[
nx ny nz

]T
. It is

straightforward to prove that the solutions u and ω of problem (5.35) satisfy relation (5.33).
For more information on linear elasticity, see for example, [180–186].

5.4.2 Weak formulations

A weak formulation of (5.35) is expressed as: Given f ∈
[
L2(Ω)

]3
, boundary conditions û ∈[

H1/2(Γu)
]3

and t̂ ∈
[
H−1/2(Γt)

]3
, find (σ,u,ω) ∈ [H(div; Ω)]3

t̂
×
[
L2(Ω)

]3 ×
[
L2(Ω)

]3
such

that

〈ρ, Cσ〉Ω + 〈Dρ,u〉Ω − 〈Rρ,ω〉Ω =

∫

Γu

û · (Nρ) dΓ ∀ ρ ∈ [H(div; Ω)]30 ,(5.36a)

〈φ, Dσ〉Ω = −〈φ,f〉Ω , ∀ φ ∈
[
L2(Ω)

]3
,(5.36b)

−〈v, Rσ〉Ω = 0, ∀ v ∈
[
L2(Ω)

]3
,(5.36c)
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where
[H(div; Ω)]30 :=

{
σ
∣∣∣σ ∈ [H(div; Ω)]3 ,Nσ = 0 on Γt

}
,

[H(div; Ω)]3
t̂

:=
{
σ
∣∣∣σ ∈ [H(div; Ω)]3 ,Nσ = t̂ on Γt

}
,

and we have used, for the second term of (5.36a), the integration by parts,

−
〈
ρ, DTu

〉
Ω

= 〈Dρ,u〉Ω −
∫

∂Ω
u · (Nρ) dΓ.

This means, if we analyze the de Rham structure of the linear elasticity equations (5.35), we
consider DT as the dual operator (matrix) and consider the divergence D as the primal operator.
For the third term of (5.36a), we have used the fact that

〈
ρ, RTω

〉
Ω

= 〈Rρ,ω〉Ω .

Assume that a domain decomposition is performed in the computational domain Ω, see (4.1).
A hybrid version of the linear elasticity problem (5.35) is given as

Cσ −DTu−RTω = 0 in Ωi,(5.37a)

Dσ + f = 0 in Ωi,(5.37b)

−Rσ = 0 in Ωi,(5.37c)

t = t̂ on ∂Ωi ∩ Γt,(5.37d)

u = û on ∂Ωi ∩ Γu,(5.37e)

u = λ on Γi,j ,(5.37f)

ti + tj = Niσ +Njσ = 0 on Γi,j .(5.37g)

It is seen that, comparing to the non-hybrid problem, (5.35), two extra constraints, (5.37f)
and (5.37g), have been added to this system to re-enforce the continuity of displacement field
and the normal components of the stress tensor across the discontinuous sub-domains. A weak
formulation of this hybrid problem is written as: Given f ∈

[
L2(Ωi)

]3
, boundary conditions û ∈[

H1/2(∂Ωi ∩ Γu)
]3

and t̂ ∈
[
H−1/2(∂Ωi ∩ Γt)

]3
, find (σ,u,ω,λ) ∈ [H(div; Ωi)]

3
t̂
×
[
L2(Ωi)

]3 ×[
L2(Ωi)

]3 ×
[
H1/2(Γij)

]3
such that

〈ρ, Cσ〉Ωi + 〈Dρ,u〉Ωi − 〈Rρ,ω〉Ωi(5.38a)

−
∫

∪jΓi,j
λ · (Niρ) dΓ =

∫

∂Ωi∩Γu

û · (Niρ) dΓ ∀ ρ ∈ [H(div; Ωi)]
3
0 ,

〈φ, Dσ〉Ωi = −〈φ,f〉Ωi , ∀ φ ∈
[
L2(Ωi)

]3
,(5.38b)

−〈v, Rσ〉Ωi = 0, ∀ v ∈
[
L2(Ωi)

]3
,(5.38c)

−
∫

Γi,j

ψ · (ti + tj) dΓ = 0, ∀ ψ ∈
[
H1/2(Γij)

]3
.(5.38d)
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5.4.3 Discretization

5.4.3.1 Discretization with the MSEM

The MSEM, see [5], takes (5.36) and uses primal spaces [FPN−1(Ω)]3, [VPN−1(Ω)]3 and [VPN−2(Ω)]3

to approximate spaces [H(div; Ω)]3,
[
L2(Ω)

]3
, i.e.,

.

This implies that we will preserve the equilibrium of forces, Dσ + f = 0, at the discrete level.
While for ω ∈

[
L2(Ω)

]3
, [VPN−2(Ω)]3 ⊂

[
L2(Ω)

]3
is used at the discrete level. This is explained

in the following remark.

Remark 5.4 For linear elasticity, one of the main problems in finite element methods is the
appearance of the so-called spurious kinematic modes or zero energy modes, see, for instance,
[187–189]. These spurious modes consist of non-solid body deformations which do not affect the
stress field indicating that such formulations are not well-posed. In order to avoid the spurious
kinematic modes, the rotation field ωh (and vh) is expanded in a one degree lower space. As a
result, at the discrete level, the constraint (5.38c) is only weakly satisfied, which will eventually
lead to a weak satisfaction of the equilibrium of angular momentum, see [5]. In fact, this is
the main difficulty that a mimetic method aiming at preserving equilibrium of both forces and
moments faces.

With these approximations, a discrete version of the weak formulation (5.36), if we temporar-

ily assume that Γû = ∂Ω and Γt̂ = ∅, is written as: Given f ∈
[
L2(Ω)

]3
, find (σ,u,ω) ∈

[FPN−1(Ω)]3 × [VPN−1(Ω)]3 × [VPN−2(Ω)]3 such that

〈
ρh, Cσh

〉
Ω

+
〈
uh, Dρh

〉
Ω
−
〈
ωh, Rρh

〉
Ω

=

∫

∂Ω
û ·
(
Nρh

)
dΓ ∀ ρh ∈ [FPN−1(Ω)]3 ,

〈
φh, Dσh

〉
Ω

= −
〈
φh,fh

〉
Ω

∀ φh ∈ [VPN−1(Ω)]3 ,

−
〈
vh, Rσh

〉
Ω

= 0 ∀ vh ∈ [VPN−2(Ω)]3 .

The explanation in Remark 2.3 also work for û of the boundary integral term and fh in this
discrete formulation. From this discrete formulation, we can derive the following algebraic
relations,

ρTCσ + ρTET
(∇·)MVu− ρTRTω = ρTb ∀ρ ∈ R9N2(N+1),

φTMVE(∇·)σ = −φTMVf ∀φ ∈ R3N3
,

−vTRσ = 0 ∀v ∈ R3(N−1)3
,

which is equivalent to a linear algebra system written as




C ET
(∇·)MV −RT

MVE(∇·) 0 0

−R 0 0





σ
u
ω


 =




b
−MVf

0


 ,
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where E(∇·) is the discrete counterpart, an incidence matrix, of the divergence matrix (5.34),

and MV is the mass matrix of space [VPN (Ω)]3. Particularly,

(5.39) E(∇·) =




E(∇·) 0 0

0 E(∇·) 0

0 0 E(∇·)


 and MV =




MV 0 0
0 MV 0
0 0 MV


 ,

where E(∇·) is the incidence matrix for the primal divergence operator, see (2.63), and MV is the
mass matrix of space VPN−1(Ω), see (2.90).2 If we use ε and ε to represent the basis functions
of spaces [FPN−1(Ω)]3 and [VPN−2(Ω)]3, respectively, the entries of matrices C and R are

C|i,j = 〈εi, Cεj〉Ω and R|i,j = 〈εi, Rεj〉Ω .

Like the mass matrix Mk
F which involves the material property for the Poisson problem, the

matrix C contains the material property, the compliance tensor C, for the linear elasticity
problem.

The real boundary conditions can be included with the approach as demonstrated in Com-
plement 2.13. If a conforming structured mesh has been generated over the domain, we can
apply above discretization to all elements, assemble the local systems, and obtain the global
system ready to be solved.

5.4.3.2 Discretization with the hdMSEM

For the hdMSEM, in an internal sub-domain Ωi, dual spaces
[
T̃FN−1(∂Ωi)

]3
and

[
ṼPN−1(Ωi)

]3

are used to approximate
[
H(1/2)(∂Ωi)

]3
and

[
L2(Ωi)

]3
for u (and φ), To approximate spaces

[H(div; Ωi)]
3 , the primal spaces [FPN−1(Ω)]3 is employed, i.e.,

.

Similarly, for ω ∈
[
L2(Ω)

]3
, we employ the discrete space [VPN−2(Ω)]3 ⊂

[
L2(Ω)

]3
(which

means the equilibrium of moments will only be satisfied weakly, see Remark 5.4.). Again, we
have assumed that the domain decomposition is based on a structured conforming mesh such
that above discrete spaces are compatible across the interfaces.

As a result, a discrete version of (5.38) in the internal sub-domain Ωi is expressed as:

Given f ∈
[
L2(Ωi)

]3
, find

(
σh,uh,ωh,λh

)
∈ [FPN−1(Ωi)]

3 ×
[
ṼPN−1(Ωi)

]3
× [VPN−2(Ω)]3 ×

2Imagine what type of local numberings [FPN−1(Ω)]3 and [VPN−1(Ω)]3 have to use in order to obtain (5.39).
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[
T̃FN−1(∂Ωi)

]3
such that

〈
ρh, Cσh

〉
Ωi

+
〈
uh, Dρh

〉
Ωi
−
〈
ωh, Rρh

〉
Ωi
−
∫

∂Ωi

λh ·
(
Niρh

)
dΓ = 0 ∀ ρh ∈ [FPN−1(Ωi)]

3 ,

〈
φh, Dσh

〉
Ωi

= −
〈
φh,fh

〉
Ωi
, ∀ φh ∈

[
ṼPN−1(Ωi)

]3
,

−
〈
vh, Rσh

〉
Ωi

= 0, ∀ vh ∈ [VPN−2(Ω)]3 ,

−
∫

∂Ωi

ψh ·
(
Niσh

)
dΓ = 0, ∀ ψh ∈

[
T̃FN−1(∂Ωi)

]3
,

which then can be expressed as

ρTCσ + ρTET
(∇·)ũ− ρTRTω − ρTNT

Fλ̃ = 0 ∀ρ ∈ R9N2(N+1),

φ̃
T
E(∇·)σ = −φ̃T

f ∀φ ∈ R3N3
,

−vTRσ = 0 ∀v ∈ R3(N−1)3
.

−ψ̃T
NFσ̃ = 0 ∀ψ̃ ∈ R18N2

.

This algebraic system is equivalent to

(5.40)




C ET
(∇·) −RT −NT

F

E(∇·) 0 0 0

−R 0 0 0
−NF 0 0 0







σ
ũ
ω

λ̃


 =




b
−f
0
0


 .

Note that f is approximated with primal basis functions, i.e., fh ∈ [VPN−1(Ωi)]
3, such that

〈
φh,fh

〉
Ωi

= φ̃
T
f.

For sub-domains that are adjacent to the domain boundary, ∂Ω ∩ ∂Ωi 6= ∅, like what we
have done for the hybrid Poisson problem, we first consider them as internal sub-domains such
that we can firstly get local discrete systems similar to (5.40) for them. Afterwards, boundary
conditions can be imposed to the discrete systems through the interface variables,

λ = û on Γu ∩ ∂Ωi,

and ∫

Γt∩∂Ωi

ψ (Niσ + û) = 0,

see Fig. 4.3. Once the local discretization is done for all sub-domains, we again can use the
same strategy as that used in the hdMSEM (and hdMSEM) for the hybrid Poisson problem to
solve this hybrid linear elasticity problem, see (4.33), (4.34) and (4.35) and the discussions in
Remark 4.2.

Remark 5.5 With the hybridization, this time, for the linear elasticity problem, once again, the
total number of degrees of freedom increases, but the number of the interface degrees of freedom
is relatively small. As a result, S̃ (the global system of hdMSEM) is much smaller than F (the
global system of MSEM). If I is the total number of internal element interfaces, Bt is the number
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of element faces on the boundary Γt, and M is the total number of elements, we will find that
the sizes of S̃ and F are

]S̃ = 3(I +Bt)N
2,

and
]F = 3M

[
3N2 (N + 1) + 2N3

]
− 3 (I +Bt)N

2.

Note that these sizes are the optimal sizes, which means we have eliminated the rows and columns
in the the global systems for imposing the boundary conditions, see Complement 2.13. And we
have

6M = 2I +B = 2I +Bt +Bu

if Bu is the number of element faces on the boundary Γu and B is the total number of element
faces on the boundary. Let χ = I/B ∈ [0,∞) and % = Bt/B ∈ [0, 1), we can get the following
system size ratio,

]S̃
]F

=
6χ+ 6%

10χN − 6%+ 5N + 3
,

which decreases when χ or N increases or % decreases. This ratio reveals how efficient the
hdMSEM is in terms of decreasing the size of the system to be solved for this problem.

5.4.4 Numerical results

5.4.4.1 Patch test

We do a patch test in the domain (x, y, z) ∈ Ω = [−1, 1]3 with the analytical solution for the
displacement field given by

ux = x2yz2 + 3xy2z − 2z, uy = (x+ 2y − z)2, uz = (3x− y)2 + xyz2.

Analytical solutions for the rotation, stress, and body force follow. An orthogonal mesh of
2× 2× 2 uniformly distributed elements (unit cubes) is set up, boundaries are set to Γu = ∂Ω,
Γt = ∅, and material properties are set to E = 1, ν = 0.3. We solve the linear elasticity problem
with the hdMSEM and expect that the solutions converge down to the machine precision when
the degree the space N ≥ 3. Results shown in Table 5.2 verify our expectation. The constant
equilibrium of forces, demonstrated by the results of the L2-error of

(
Dσh + fh

)
, shows that

the discretization of the divergence operator with the incidence matrix is exact. It is also seen
that when N ≥ 3, the mimetic spaces are able to fully resolve the body force f . Thus we obtain
fh = f and Dσh = −fh = −f .

Table 5.2: Results of the patch test.

N
∥∥uh

∥∥
H̃1-error

∥∥ωh
∥∥
L2-error

∥∥σh
∥∥
H(div)-error

∥∥Rσh
∥∥
L2

∥∥Dσh + fh
∥∥
L2

∥∥f − fh
∥∥
L2

1 1.654E+01 8.394E+00 1.308E+01 6.732E+00 1.295E−14 5.750E+00
2 2.219E+00 2.374E−01 9.645E−01 8.776E−02 6.683E−14 7.354E−01
3 7.206E−13 7.709E−13 1.198E−12 7.886E−13 9.737E−13 3.167E−14
4 1.465E−12 1.713E−12 3.876E−12 1.895E−12 3.548E−12 3.997E−14

5.4.4.2 Manufactured solution

In this test, we investigate the performance (both accuracy and efficiency) of the proposed
hdMSEM and compare it with that of the MSEM in both orthogonal and curvilinear meshes
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using a manufactured solution. The manufactured solution is taken from [185]. Its analytical
solution for the displacement field is given as

ux = −3Fν

4E
xyz, uy =

F

8E

[
3νz

(
x2 − y2

)
− z3

]
,

uz =
F

8E

[
3yz2 + νy

(
y2 − 3x2

)]
+

2 (1 + ν)

E
U(x, y),

where F is a load coefficient, and

U(x, y) =
F
(
3y − y3

)

8
+
Fν
(
3x2 − 1

)
y

8 (1 + ν)
− 3Fν

2π2 (1 + ν)

∑∞
n=1

(−1)n

n3π cosh(nπ)
cos(nπx) sinh(nπy).

The analytical solutions for the rotation, stress, and body force are

ωx =
3F

8E

(
1 +

2

3
ν − y2 + z2

)
− 3Fν

2π2E

∞∑

n=1

(−1)n

n2 cosh(nπ)
cos(nπx) cosh(nπy),

ωy = −3Fv

4E

[
xy − 2

π2

∞∑

n=1

(−1)n

n2 cosh(nπ)
sin(nπx) sinh(nπy)

]
, ωz =

3Fνxz

4E
,

σxx = σyy = σxy = σyx = 0, σzz =
3F

4
yz,

σxz = σzx =
3Fν

2π2 (1 + ν)

∞∑

n=1

(−1)n

n2 cosh(nπ)
sin(nπx) sinh(nπy),

σyz = σzy =
3F
(
1− y2

)

8
+
Fν
(
3x2 − 1

)

8 (1 + ν)
− 3Fν

2π2 (1 + ν)

∞∑

n=1

(−1)n

n2 cosh(nπ)
cos(nπx) cosh(nπy),

fx = fy = fz = 0.

Material properties E, ν, and the load coefficient F are set to E = 20, ν = 0.3, and F = 10.
The computational domain is selected to be the unit cube Ω = [0, 1]3 and the same crazy

mesh as explained in (2.96) is used. This mesh has I = 3K2 (K − 1) internal element interfaces,
B = 6K2 element faces on the boundary among which Bt = K2 are on Γt. Therefore, we have
χ = I/B = (K − 1) /2, % = Bt/B = 1/6. As a result, we can obtain the following system size
ratio,

(5.41)
]S
]F

=
3K − 2

5KN + 2
,

see Remark 5.5. It is clear from this ratio that the hybridized method has a increasingly better
performance compared to the non-hybridized method as N increases. And for a given N , the

ratio increases and approaches the limit
3

5N
as K increases. To give readers a more explicit

impression, we provide some samples of this ratio in Table 5.3. In Fig. 5.9, we compare the
condition numbers of the global systems. It is seen that the condition number of S is much
smaller than that of F for certain N and K, which is not surprising because S̃ is much smaller.
A more interesting observation is that the former increases in a significantly lower speed under
refinement. These results implies that the hdMSEM, comparing to the MSEM, needs far less
computational power in the same mesh. In Fig. 5.10 where an eigen-spectrum of S is present, we
can see that all eigenvalues are away from zero. This supports the statement that the proposed
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hdMSEM for the linear elasticity is free of spurious kinematic modes; S̃ is not singular,.

Table 5.3: Some samples of the system size ratio (5.41).

N
K

2 4 6 8 10 12

1 0.333333 0.454545 0.5 0.523810 0.538462 0.548387
3 0.125 0.161290 0.173913 0.180328 0.184211 0.186813
5 0.076923 0.098039 0.105263 0.108911 0.111111 0.112583

(a) c = 0 (b) c = 0.25

Figure 5.9: Condition number comparison of S and F.
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(b) c = 0.25

Figure 5.10: The eigen-spectrum of S for N = 1, K = 2. The radii of the blue and red circles are the
moduli of the eigenvalues of the maximum or minimum modulus, respectively.

We then compare the accuracy of the hMSEM to that of the MSEM. Results are shown in
Table 5.4. It can be seen that the hdMSEM and the MSEM have the same accuracy with respect
to the L2-error of the solutions uh, ωh and σh for different basis function degrees (N ∈ {1, 3})
and element densities (K ∈ {2, 4, 6}) regardless of whether we are considering orthogonal meshes
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(c = 0) or heavily distorted meshes (c = 0.25). Note that, in this case,

∥∥∥σh
∥∥∥
L2-error

=
∥∥∥σh

∥∥∥
H(div)-error

,

because Dσh = −f = 0 is exactly satisfied, see Fig. 5.13.

Table 5.4: Results of ‖x‖L2-error and ‖x− x′‖L2-norm (in brackets), where x and x′ are solutions of the
hdMSEM and MSEM respectively, for N ∈ {1, 3}, K ∈ {2, 4, 6}, and c ∈ {0, 0.25}.

x K
N = 1 N = 3

c = 0 c = 0.25 c = 0 c = 0.25

uh
2 6.4029E−2(2.05E−16) 1.9534E−1(2.79E−16) 3.8024E−4(5.57E−16) 2.9940E−2(1.70E−15)
4 3.2265E−2(5.40E−16) 1.1353E−1(4.61E−16) 4.8312E−5(5.67E−15) 3.6850E−3(1.48E−14)
6 2.1542E−2(7.03E−16) 7.7069E−2(8.71E−16) 1.4377E−5(4.08E−14) 1.1604E−3(1.06E−13)

ωh
2 4.7436E−2(6.76E−16) 5.1309E−2(9.59E−16) 2.8846E−4(1.22E−14) 1.2456E−2(3.17E−14)
4 2.3986E−2(2.98E−15) 3.8150E−2(3.31E−15) 8.2990E−5(2.63E−13) 1.0417E−3(1.00E−12)
6 1.6008E−2(2.10E−14) 2.2952E−2(2.25E−14) 3.0156E−5(4.08E−12) 2.3494E−4(1.02E−11)

σh
2 9.3659E−1(1.84E−14) 2.6588(3.13E−14) 5.6919E−3(2.21E−13) 4.5920E−1(4.12E−13)
4 4.5869E−1(8.16E−14) 1.6633(6.25E−14) 1.6879E−3(4.03E−12) 6.1945E−2(1.48E−11)
6 3.0391E−1(2.58E−13) 1.1638(2.82E−13) 6.2626E−4(5.39E−11) 1.9624E−2(1.43E−10)

In Fig. 5.11, we present the results of the hdMSEM for the L2-error of the solution ωh and
the H(div)-error of the solution σh, and in Fig. 5.12, we present the L2-error and the H1-error
of the solution uh. It is seen that optimal convergence rates are obtained for solutions ωh and
uh with respect to the L2-error and for the solution σh with respect to the H(div)-error. These
results are consistent with those of the MSEM, see [5]. As for the H̃1-error of the solution
uh, we can see that it converges at the same rate as the L2-error of the solution uh does,
which means it converges at a rate that is one order higher than the commonly thought optimal
order; superconvergence is obtained for uh. Just like what we have for the Poisson problem
in Section 5.3.2, this is because when we compute the H̃1-error of uh the solution of its trace
variable λh (as well as the given boundary condition û) is used. These results also imply that
the solution λh is correct.
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Figure 5.11: The L2-error of ωh (Left) and the H(div)-error of σh (Right) for N ∈ {1, 3}, K ∈
{1, 2, 4, 6, · · · , 14}, and c ∈ {0, 0.25}.

The results for equilibrium of forces, Dσh+f = 0 (in this case, f = fh = 0), and equilibrium
of moments, Rσh = 0, using the hdMSEM are presented in Fig. 5.13. It is clear that equilibrium
of forces is satisfied to the machine precision. The increase of the L2-norm of

(
Dσh + f

)
when
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Figure 5.12: The L2-error (Left) and the H̃1-error (Right) of uh for N ∈ {1, 3}, K ∈ {1, 2, 4, 6, · · · , 14},
and c ∈ {0, 0.25}.

we refine the mesh is because of the increasing accumulation of the machine error (a result of
the rising of the total number of degrees of freedom and the increase of condition number). As
for equilibrium of moments, it is only satisfied weakly and, with the refinement of the mesh, the
L2-norm of Rσh converges to zero at optimal rates in both orthogonal and curvilinear meshes.
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Figure 5.13: The L2-norm of
(
Dσh + f

)
(Left) and the L2-norm of Rσh (Right) for N ∈ {1, 3},

K ∈ {1, 2, 4, 6, · · · , 14}, and c ∈ {0, 0.25}.

5.4.4.3 Cracked arch bridge

We test the hdMSEM using a problem with a singularity. The geometry of the computational
domain is shown in Fig. 5.14. It simulates an arch bridge which has a crack of depth d = 0.25
developing from the bridge bottom at the middle surface y = 2 where the minimal bridge
thickness D = 0.5 is present. The bridge has a uniform body force field f = (1, 0, 0). The
material properties E and ν are set to E = 400 and ν = 0.3. The two walls y = 0 and y = 4 are

considered as fixed walls. A load t̂ =
[
σ̂xx σ̂xy σ̂xz

]T
=
[
σ̂xx 0 0

]T
, where

(5.42) σ̂xx = − sin(
πy

4
)e−(y−2)2

,

is applied on the bridge floor (x, y, z) ∈ 0× (0, 2)× (0, 1). All remaining walls are considered as
zero-surface-traction walls. These boundary conditions will tend to open the crack and therefore
introduce a singularity in the solution σhyy at the crack root: For x = 0.25−, σhyy will increase
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to an extremely large value, but it has to return to the designed value, σhyy = 0, for x = 0.25+.
This singularity makes this problem a challenging one. However, since the hdMSEM (as well as
the MSEM) places no degree of freedom at edges and corners of the elements, it needs no special
treatment to handle this singularity. A mesh of 780 elements is generated using transfinite
interpolation [133,190], and a local refinement is made near the singularity. The solution of σhyy
for N = 1 in Fig. 5.16 can reveal the local refinement along x-axis.

Figure 5.14: The geometry of the cracked arch bridge. The gray surface indicates the rectangular
crack. Note that the nonlinear load σ̂xx is given in (5.42) and in this figure it is expressed as a uniform
distribution for cleanness.

In Fig. 5.15, representative results of the Von Mises stress for N = 4 are shown. It is
seen that near the singularity some unphysical oscillations are present. This is because of the
complexity of the singularity and, as we use a direct linear solver, the mesh used in this work is
not extremely refined. More local refinement near the singularity will weaken such oscillations.
In Fig. 5.16, the results of σhyy along (x, y, z) ∈ (0, 0.5)× 2× 0.5 for N = 1, 2, 3, 4 are presented.

It is seen that σhyy is discontinuous across elements along x-axis, which is consistent with the fact
that only the surface tractions across elements along the outward normal direction are enforced
to be continuous by the Lagrange multiplier. It is also seen that the singularity in σhyy is well
captured with this method.

The results of the complementary energy (CE),

CE =
1

2

〈
σh, Cσh

〉
Ω
−
〈
û, th

〉
Γu

,

and the resultant crack width wc are shown in Table 5.5. The crack width is measured at
(x, y, z) = (0.5, 2, 0.5).
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Figure 5.15: The deformation plot of the the Von Mises stress on surface z = 0.5 for N = 4.
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Figure 5.16: Results of solution σhyy along (x, y, z) ∈ (0, 0.25+)× 2× 0.5 for N ∈ {1, 2, 3, 4}. Note that
in the left diagram results for N = 4 is ignored since it almost coincides with those for N = 2 and N = 3.

Table 5.5: Results of the complementary energy CE and the resultant crack width wc.

N = 1 N = 2 N = 3 N = 4

CE 6.9592E−02 6.8854E−02 6.8771E−02 6.8747E−02
wc 1.1392E−02 1.2987E−02 1.2968E−02 1.2968E−02
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CHAPTER 6

CONCLUSIONS AND FUTURE WORK

6.1 Conclusions

As stated in Section 1.1.2, there are three research questions to be answered by this dissertation.
These research questions and the conclusions I am confident to draw for each one of them are
listed below.

• Research question (i): Can we develop a mass, kinetic energy and helicity conserving
discretization for 3D incompressible Navier-Stokes equations using the MSEM?

This research question was clearly answered in Chapter 3 where we have proposed a
mimetic dual-field discretization for the 3D incompressible Navier-Stokes equations. It
is proven that the proposed discretization preserves mass, and, if there is no dissipative
term, preserves kinetic energy and helicity, else, predicts the proper decay rates of kinetic
energy and helicity. Supportive numerical results are also provided.

• Research question (ii): Can we develop extensions of the MSEM that demand less compu-
tational power?

In order to address this research question, the extension of the MSEM to a hybrid version,
i.e., the hMSEM, was developed in Chapter 4. A further extension of the hMSEM to
hdMSEM with the technique of dual basis functions was developed in Chapter 5. It
has been clearly shown in these chapters that these extensions, especially the hdMSEM,
demand considerably less computational power, from which I conclude that extensions
with the combined use of hybridization and dual basis functions affirmatively answer this
research question.

• Research question (iii): Can we introduce the MSEM and its extensions (if research ques-
tion (ii) is affirmatively answered) in a way that new researchers can find it more helpful
in terms of implementation?

Throughout the thesis, instructions and well-documented scripts are provided in a sub-
structure, i.e., the complements. They could help the readers, especially those who are
new to this topic, not only to build a more definite impression of the method but also to
learn it in an interactive way. And more importantly, with these instructions and scripts,
the readers can more quickly implement their own ideas, which will in return benefit the
development of this method. For these reasons, I claim that the research question (iii) is
also answered affirmatively.
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Due to above listed conclusions for each research question, I can now draw an overall con-
clusion that this dissertation does achieve its general goal to promote the application and devel-
opment of the mimetic spectral element method.

6.2 Future work

6.2.1 For the conservative discretization of the Navier-Stokes equations

The conservative method presented in Chapter 3, to our knowledge, is the first method that
preserves mass, kinetic energy and helicity simultaneously for 3D incompressible Navier-Stokes
equations. However, as a method at its early developing stage, there are still many limitations
left to be overcome.

First of all, in the present method, the dual fields, u1 and u2 (ω1 and ω2), are approximated
in different function spaces, and, therefore, equality between them will not hold unless the
flow is fully resolved. In other words, we are not able to construct a square, time-independent
and explicit discrete Hodge operator. Instead, this method implicitly defines a time-dependent
discrete Hodge operator, and by allowing the time evolution of the discrete Hodge operator
we construct a helicity conserving scheme. A further development is to apply the hdMSEM
introduced in Chapter 4 and Chapter 5 such that solutions uh1 and uh2 (ωh1 and ωh2) are two
representations in a pair of primal and dual spaces. As a result, we expect the difference between
uh1 and uh2 (ωh1 and ωh2) to be smaller and using

the vorticity from the other subset of equations, see (3.24) and (3.25), to be more consistent.
The present method only works for periodic boundary conditions. The extension to general

boundary conditions obviously is another task of great importance.
In the kinetic energy spectra of the dual-field formulation, Fig. 3.11, we see that for high

wave numbers the energy decay is insufficient. This is attributed to the fact that the scheme is
non-dissipative and the grids are too coarse for energy at the small scales to dissipate. In future
work we want to add a sub-grid scale model on the momentum equations for u1 and u2 of the
form ε∆(u1 − u2) to the u1 equation, (3.11a) and ε∆(u2 − u1) to the u2 equation, (3.11d). If
we define

ū =
1

2
(u1 + u2) ,

this sub-grid scale diffusion cancels from the average, while it only acts on the difference between
the two fields

u′ =
1

2
(u1 − u2) .

So the numerical dissipation only acts on the difference of the two fields. This implies that the
added diffusion is only active for the large wave numbers, where the difference between u1 and
u2 is significant, while for the small wave numbers where u1 and u2 are almost the same, no
dissipation takes place of u′. In this sense the dual-field formulation could be used in turbulence
modeling. Future work needs to establish how the parameter ε should be chosen.

More steps we want to report in the future includes, for example, error analysis, mesh
adaptivity based on the local difference between uh1 and uh2 (ωh1 and ωh2).

6.2.2 For the hdMSEM

In terms of the hdMSEM, we have successfully demonstrated its application to the dual gradient
operator,

∇̃ : ṼPN−1(Ω)× T̃FN−1(∂Ω)→ F̃PN−1(Ω),
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in Chapter 5, where we can see that the discrete trace variable, λh ∈ T̃FN−1(Γi,j), was regarded
as a Lagrange multiplier which enforces the continuity of the normal component of the discrete
variable uh ∈ FPN−1(Ωi) across the interface of two elements (sub-domains). From a geometric
point of view, we know that the degrees of freedom (expansion coefficients) of uh can be associ-
ated with surfaces as explained in Chapter 2, and at the interface Γi,j , λ

h has the same amount
of degrees of freedom as uh · ni or uh · nj ∈ TFN−1(Γi,j) and thus is able to enforce a strong
continuity across the interface for uh, see Fig. 4.3.

If we apply this approach to, for example, the dual curl operator,

∇̃ : F̃PN−1(Ω)× T̃EN−1(∂Ω)→ ẼPN−1(Ω),

we can obtain a similar structure that a discrete trace variable γh ∈ T̃EN−1(Γi,j) at the interface
working as a Lagrange multiplier enforces the continuity of the tangential component of a discrete
variable ωh ∈ EPN−1(Ωi) whose degrees of freedom are associated with edges. Across the
interface, it is fine since γh has the same amount of degrees of freedom as ni ×

(
ωh × ni

)
or

nj ×
(
ωh × nj

)
∈ TEN−1(Γi,j). However, at the corner-edges where more than two elements

come together, singularities arise. For example, at a place where corner-edges of four elements
come together, to enforce the continuity of the tangential component of ωh, a group of four
degrees of freedom of ωh that associated with edges locating at the same physical position must
be equalized. And this constraint is imposed through four degrees of freedom of γh while only
three of them are needed. Thus a singularity arises. See Fig. 6.1 for an illustration. And the
same problem takes place when we try to apply the hdMSEM to the dual divergence operator,

∇̃· : ẼPN−1(Ω)× T̃NN (∂Ω)→ ÑPN (Ω).

Overcoming this issue obviously is critical to the hdMSEM if we want to apply it to a larger
range of PDEs including the Navier-Stokes equations, and thus it is considered as one of the
most important research topics by me for the future work. A potential approach which has
already been preliminarily studied is to introduce an extra degree of freedom at each singularity.
And we consider that the degrees of freedom of the discrete trace variable are the Lagrange
multipliers to enforce the continuity of both the corner degrees of freedom and the extra degrees
of freedom, see [191]. This is also illustrated in Fig. 6.1.
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Figure 6.1: An illustration of the corner-edge singularity for the coupling of ω ∈ EPN−1(Ωi) through

γh ∈ T̃EN−1(Γi,j) at the corner where four elements meet. The red dots represent the degrees of freedom
of ω that are associated with edges (perpendicular to the paper plane), and the blue lines represent the
degrees of freedom of the trace variable γh. It is seen that to couple the four edge degrees of freedom of
ω, ω|1, ω|2, ω|3 and ω|4, only three of γ
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are needed. Therefore, a singularity arises
here. A potential approach to overcome this is to introduce an extra degree of freedom indicated by the
green dot, ω|c, in the figure, and Lagrange multipliers γ
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enforces the continuity of
ω|1, ω|2, ω|3 and ω|4 through this extra degree of freedom. See [191] for a preliminary research on this
approach.
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SUMMARY

Structure-conserving numerical methods that aim at preserving certain structures of the PDEs
at the discrete level have been an interesting research topic for many decades. The mimetic
spectral element method, a recently developed arbitrary order structure-preserving method on
orthogonal or curvilinear meshes, has also been drawing increasingly amount of attention. This
dissertation is devoted to promoting the application and development of the mimetic spectral
element method.

In this dissertation, we first give a comprehensive introduction on the mimetic spectral ele-
ment method with applications to the Poisson problem, which is followed by a new development
of the mimetic spectral element method for the Navier-Stokes equations. This new development
is on a conservative dual-field discretization that conserves mass, kinetic energy and helicity for
the 3D incompressible Navier-Stokes equations in the absence of dissipative terms. And when
there are dissipative terms, the method correctly predicts the decay rates of the kinetic energy
and helicity. It is a dual-field method in the sense that two evolution equations are employed and
weak solutions are sought for each physical variable in two different finite dimensional function
spaces. This novel method and the promising results reveal its potential in multiple research
fields like turbulence modeling, sub-grid methods and large eddy simulation.

Despite the mimetic spectral element method possesses preferable properties due to its fea-
ture of structure-preserving, its demand of high computational power is a major limitation. To
address this drawback, two techniques, hybridization and dual basis functions, are employed for
the mimetic spectral element method, which leads to an extension that decreases the computa-
tional cost not only by reducing the size and lowering the condition number of the global linear
system, but also by improving the feasibility for parallel computing.

A special component, the Complement, is embedded in this thesis. It aims to provide a
more friendly introduction for the readers, especially those who are new to this specific area of
numerical methods. In these web-based additions, there are instructors and well-documented
scripts which allow readers to learn in an interactive way, thus to get some hands-on experience
and eventually to obtain a deeper understanding of the method. This component can help the
readers to more quickly and efficiently implement their own new ideas, which will in return
contribute to the development of this method.

Overall, we conclude that this dissertation fulfilled the goal to promote the application and
development of the mimetic spectral element method.
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Samenvatting

Structuur-behoudende numerieke methoden, die beogen bepaalde structuren van partiele dif-
ferentiaalvergelijkingen te behouden op het discrete niveau, zijn een interessant onderzoekson-
derwerp afgelopen tientallen jaren. De mimetische spectrale elementen methode, een recent on-
twikkelde hoge orde, structuur-behoudende methode op rechthoekige en gekromde rekenroosters,
staat in toenemende mate in de belangstelling. Dit proefschrift is geweid aan het bevorderen
van toepassingen en ontwikkeling van de mimetische spectrale elementen methode.

In dit proefschrift geven we eerst een uitgebreide inleiding in de mimetsiche spectrale el-
ementen methode met toepassingen voor de Poisson vergelijking, die wordt gevolgd door een
nieuwe ontwikkeling van een mimetische spectrale elementen methode voor de Navier-Stokes
vergelijkingen. Deze nieuwe ontwikkeling is een behoudende twee-velden discretisatie die massa,
kinetische energie and heliciteit voor de drie-dimensionale niet-samendrukbare Navier-Stokes
vergelijkingen in de afwezigheid van dissipatieve termen, behoudt. In het geval er dissipatieve
termen zijn, voorspelt de methode de correcte mate van verval van kinetische energie en heliciteit.
Het betreft een twee-velden methode, in die zin, dat er twee evolutievergelijkingen gebruikt wor-
den en de zwakke oplossingen van elke fysische variabele in twee verschillende functieruimtes
worden gezocht. Deze nieuwe methode en de veelbelovende resultaten brengen mogelijkheden
in velerlei onderzoeksgebieden aan het licht, zoals turbulentiemodelering, sub-grid methoden en
large eddy simulaties.

Ondanks het feit dat de mimetische spectrale elementen methode over wenselijke eigenschap-
pen beschikt ten gevolge van structuurbehoud, vormt de vereiste rekencapaciteit een belangrijke
beperking. Om dit nadeel aan te pakken worden twee technieken, hybridisatie en duale basis
functies, toegepast in de mimetische spectrale elementen methode, wat leidt tot een uitbreiding
die de rekenkosten terugbrengt door niet alleen de omvang en het conditiegetal van het globale
lineare system te reduceren, maar ook de mogelijkheid verhoogt om het probleem parallel op te
lossen.

Een speciale component, the Complement, is bevat in dit proefschrift. Het doel hiervan is
een vriendelijker introductie te verschaffen voor de lezers, met name die lezers die niet bekend
zijn met deze nieuwe numerieke methode. In deze web-based toevoegingen zijn er instructies en
goed gedocumenteerde stukjes code die de lezer in staat stellen om op een interactieve manier
te leren en op deze wijze praktische ervaring opdoen om uiteindelijk een beter begrip te krijgen
van de methode. Dit materiaal kan de lezers helpen om snel en efficiënt eigen, nieuwe ideeën te
implementeren, die op hun beurt weer bijdragen aan de ontwikkeling van deze methode.

Het geheel overziend, concluderen we dat dit proefschrift heeft bijgedragen aan het promoten
van de toepassing en ontwikkeling van de mimetische spectrale elementen methode.
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