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Abstract 

Railway maintenance is currently planned according to a fixed 
schedule, mostly of one year. This is usually not optimal when 
considering the cost of maintenance, of possessions and of 
failure. However, an approach that minimizes the sum of 
these costs was not yet available. This paper presents a 
statistical analysis method and an optimization problem that 
aims to solve this problem. It is applied to fictitious problems 
and a realistic test case. 
 

I. Introduction 
Railways provide affordable and sustainable 

transportation to many passengers and shippers. However, 
railways need to be maintained, and this requires train 
services to be reduced or suspended temporarily. If a 
reduction of these timetable adjustments can be achieved, 
rail users profit. When scheduling maintenance, a trade-off 
has to be made between direct cost, reliability, user 
preferences, safety and availability. There is a lack of 
knowledge, coordination and incentive in the parties involved 
to improve the working methods. Improving and optimizing 
the way scheduled maintenance is planned could potentially 
yield benefits to customers and maintenance contractors. 

In the Netherlands, the railway network is publicly 
owned, but maintained by private contractors. Daily 
maintenance is contracted out on a regional basis. Figure 1 
gives an overview of these regions. The maintenance 
contractors get assigned a certain amount of time to perform 
maintenance by the infrastructure manager (IM, ProRail in 
the Netherlands), which is defined in the contract between 
the two. This contract is based on the tender that is put out 
by the track manager. Included in this contract is a minimum 
availability of the infrastructure, expressed in a percentage of 
weighed time. Weights are allocated to track sections based 
on importance. 

The nature of contracts between the IM and the 
contractor is shifting from direct specification of work and 
hourly compensation, to performance targets and fixed sum 
payment with bonusses and reductions for performance. The 
task of planning maintenance is also transferred to the 
contractor, which explains why there is increased interest in 
efficient maintenance planning. 

The offer made by the contractor is a rough estimate 
of the time needed, and there is a strong incentive to offer a 
high track availability, as this increases the likelihood of being 

assigned the contract. The available amount of time is 
therefore not ideally matched to the maintenance 
requirement. If contractors have a better indication of the 
amount of resources that are needed to fulfill the 
requirement that is proposed in the tender prior to 
submitting that tender, risk is reduced for all parties involved. 
One way of doing this is by modelling the maintenance 
processes, for example in GIS or a mathematical model. The 
downside of this is that contractors need to invest more in a 
tender they are unsure to win. 

Furthermore, there is a preference by passengers for 
large maintenance projects, which cannot be performed 
within a weekend, to be performed during school holidays, 
when travel demand by commuters is lower. This does mean 
that maintenance may be performed at a moment in time 
that is not ideal from an engineering perspective. In addition, 
because this increases peak demand for maintenance 
resources, their utilization rates are worse and capital cost 
higher. 

Railways are made up of many components, each of 
which has to function in order to host the train service. The 
preferred approach when maintaining these components is 
to bundle the maintenance operations that affect a service, 
that is, to reduce the required possessions. 

Currently, planning of railway maintenance is done 
manually, and only for the next year. What's more, 
maintenance is performed within fixed bounds. There is no 
tradeoff between cost, reliability and availability. This is not 
optimal. A better solution may exist than is found by manually 
creating a solution. An improvement could reduce the 
number of track failures, the cost of doing maintenance and 
the number of times the track needs to be closed for 
performing maintenance. What is desired is a problem 
formulation that captures all these goals.  

Using the latest advancements in data collection, the 
failure behavior of individual components can be modeled 
more accurately. When the failure probabilities and costs of 
components are known, the performance of the system as 
whole can also be evaluated. 

The main research question therefore states: What is 
the optimal way of planning railway maintenance over a long 
term? The main research question is subdivided into sub 
questions. These relate to the characterization, the 
optimization, the evaluation and the valorization of the 
problem. 



In this paper, a way to analyze the failure 
characteristics over time and to determine a maintenance 
schedule that is optimized for the cost of failure, the cost of 
maintenance and the cost of possessions is introduced. This 
is more than what has been done in other literature. 
Ultimately, it could serve to improve the maintenance 
planning of railways. 

Section II discusses the literature that is already 
available on the topic. This is followed by a brief explanation 
of the used methodology. Subsequently, in section III the 
model is presented in two parts; first the statistical analysis 
and then the optimization model. In section IV the model is 
evaluated, both on fictitious parameters and on a case study 
that is based on real data. Finally, a conclusion and 
recommendations are given. 

II. Literature review 
Many aspects of railway maintenance have been 

researched and described in literature. For example, process 
improvement has been suggested by Nyström (2008) and Vet 
(2009). These suggestions can provide incremental 
improvement to the efficiency of railway maintenance. 

Many researchers have worked on optimization for 
railway maintenance. They have usually approached the 
problem from a deterministic perspective. For example, Budai 
et al. (2006) consider maximum maintenance intervals, as is 
currently the practice in maintenance planning, and present 
an optimal maintenance schedule. Oh et al. (2006) created a 
solution for a Track Tamping Scheduling Problem (TTSP) in the 
context of the Korean high-speed railway system. 

Optimization of stochastic problems has also taken 
place. This has been done on individual railway components. 
The degradation and optimal maintenance strategy were 
analyzed for longitudinal leveling of the ballast bed (Quiroga 
and Schnieder, 2010) and (Quiroga and Schnieder, 2012). 
Consilvio et al. (2016) proposed a more general model, which 
includes stochastic elements into predictive maintenance 
scheduling problems. 

As can be derived from the literature review, much 
research has been performed in the fields of railway 
maintenance, of failure modelling, and of optimization. 
However, an integrated approach that includes all these 
elements and applies it to systems consisting of multiple 
components, is not yet available. The potential for such an 
approach is that the planning of maintenance can be 
improved and possibly optimized. 

III. Methodology 
Several steps are required to get to a well-supported 

optimization model. First, some definitions and assumptions 
need to be laid out. This is the foundation for all further 
modelling. Next, a statistical model that can be used to 
describe the failure characteristics of railway components is 
presented. These are then incorporated into a linear 
optimization model which is able to produce an optimal 
maintenance schedule. 

For a quantitative approach, a way to model 
degradation of the component is required. Failure of 
components is a stochastic process. The expected frequency 

of failure is expressed in the failure rate (Finkelstein, 2008). 
The failure rate may be constant over time (in which case it is 
a Poisson point process), or it may be any real and positive 
function. It can be modelled by defining a failure rate function 
and estimating its parameters using observed data. For this 
purpose, a statistical model, the additive Gompertz-
Makeham distribution, is presented. 

Railway maintenance can be characterized as either 
preventive maintenance or corrective maintenance. The two 
are interrelated, because effective preventive maintenance 
reduces the need for corrective maintenance. Both 
maintenance types will be included in this research, although 
corrective maintenance is not modelled.  

Preventive maintenance is intended to keep the asset 
operational. It is planned in advance, and ideally in such a way 
that normal operations are not affected. The degree to which 
it can be planned in advance varies. Preferably, it is 
performed at fixed intervals, but if deterioration of the 
component is faster than expected, it may have to planned on 
short notice. 

The state of the component is only dependent on the 
time since last maintenance. Other factors that may influence 
the failure probability are not considered. After each 
maintenance operation, the component functions as if it were 
new. 

A type of maintenance is only performed to an 
element once within one time period. In practice, there are 
no components that require multiple maintenance 
operations per week. Therefore, the time step is a week. This 
means that specific operational details, such as resource 
assignment and order of maintenance operations, are left 
out. The model does not have the accuracy needed to 
incorporate it. As such, the consequences of possessions with 
individual train services are not relevant. 

Corrective maintenance is either a repair of a part that 
is already broken, or maintenance that has to be performed 
urgently because the probability of breaking before the next 
scheduled repair is too high. If a component is broken or 
exceeds a safety limit that prohibits operations, the asset 
cannot be used until corrective maintenance is performed, 
and it is considered to have failed. Even though technically it 
may still function, the asset is no longer available for use and 
the cost of repair is incurred. Ideally, corrective maintenance 
is not needed, but in practice it is not economically efficient 
to attempt to prevent all failures.  

Repairs are considered to be minimal, as defined in 
Finkelstein (2008). The component that undergoes repair is in 
the exact state it was in before the failure occurred. This 
means the failure behavior does not change as a consequence 
of repairs, and that maintenance schedule does not have to 
be adapted. In fact, modelling of specific failure occurrences 
is not needed at all. 

An element either functions or fails. There is no state 
of limited functionality. One instance where limited 
functionality would be possible in practice is a switch that is 
locked in a certain position. Trains can still run over the 



switch, but in one direction only. However, repair is still 
necessary. 

The costs for a possession are dependent on the 
moment of possession. This is done through using different 
costs for possessions depending on the week. Furthermore, 
possessions may have different sets of components and time 
lengths. This may be introduced by including multiple 
possessions within one week. 

Different individual components that have the same 
set of characteristics are aggregated into one category. It is 
not useful to model these separately, as the resulting 
schedule applicable to the components should be the same. 

A maintenance interval is the time between two 
maintenance operations. The expected number of failures in 
an interval is a function of only the length of the interval. 

III.i. Statistical Model 
The failure rate is assumed to follow a Gompertz-

Makeham distribution. The failure rate for this function is:  

𝜆(𝑡) = 𝑎𝑏𝑒𝑏𝑡 + 𝑐𝑑𝑒𝑑𝑡 + 𝑓 
(1) 

with: 
𝑎, 𝑏 < 0; 𝑐, 𝑑 > 0  
 
Integration of this function yields the cumulative 

failure rate. This is the expected number of failures up to 
point in time 𝑡. 

Λ(𝑡) = ∫ 𝜆(𝑡)𝑑𝑡
𝑡

0

= (𝑎𝑒𝑏𝑡 + 𝑐𝑒𝑑𝑡 + 𝑓𝑡 + 𝐶)

− (𝑎𝑒𝑏×0 + 𝑐𝑒𝑑×0 + 𝑓 × 0 + 𝐶)
= 𝑎𝑒𝑏𝑡 + 𝑐𝑒𝑑𝑡 + 𝑓𝑡 − 𝑎 − 𝑐 

(2) 
The cost of failure, like failure itself, is stochastic. If the 

cost of an occurrence of failure is assumed to be constant 
over time, the total cost of failure over time is directly 
proportional to the cumulative failure rate.  

The failure rate model can be used to optimize the 
maintenance schedule by expressing the cost due to failures 
as a function of the maintenance schedule. Ultimately, it is 
desired to minimize the sum of the cost of maintenance, the 
cost of failure and the cost of possessions. Linear 
programming is a widely used tool for solving numerical 
optimization problems. The underlying assumption is that the 
relation between each parameter that can be changed and 
the overall desirability is linear. Even though the problem is 
not linear in itself, a transformation of the decision variables 
enables successful problem formulation. In this way, the costs 
of maintenance, possession and failure can be included in the 
objective function. 

A model is presented that achieves the set goals. The 
objective function is an expression of the total expected cost 
as a function of the chosen maintenance strategy. The models 
are able to solve problems that cannot be solved using 
models in existing literature. The formulation is very general, 
and could possibly be applied in many fields other than 
railways. They have the potential to improve the way 
maintenance to all kinds of degrading systems is planned. 

The model optimizes a situation in which each 
component in the system has a independently determined 
maintenance intervals. The costs of maintenance, failure and 
possessions are taken together and minimized. The result is 
an efficient maintenance schedule. 

The cost of a single maintenance interval to one 
component can be expressed as a function of the cumulative 
failure rate. This is defined in equation 3. 

𝐶𝑀𝐼(𝑡) = 𝐶𝑜𝐹 × Λ(𝑡) + 𝐶𝑜𝑀
= 𝐶𝑜𝐹 × (𝑎𝑒𝑏𝑡 + 𝑐𝑒𝑑𝑡 + 𝑓𝑡 − 𝑎 − 𝑐)
+ 𝐶𝑜𝑀 

(3) 
III.ii. Optimization Model 

The main goal of the optimization is to minimize the 
total cost over all maintenance intervals for all components, 
as well as the cost of the possessions. The objective function 
for the combined model is therefore: 

min ∑ ∑ 𝐶𝑀𝐼𝑖(𝑡𝑖𝑗)

𝐼𝑛𝑡𝑒𝑟𝑣𝑎𝑙𝑠𝑖

𝑗=1

𝐶𝑜𝑚𝑝𝑜𝑛𝑒𝑛𝑡𝑠

𝑖=1

+ ∑ 𝐶𝑜𝑃𝑖

𝑃𝑜𝑠𝑠𝑒𝑠𝑠𝑖𝑜𝑛𝑠

𝑖=1

 

(4) 
with: 
This cannot be solved directly in linear programming. 

A reformulation is applied that enables a solution. The final 
model is as follows. 

min ∑ ( ∑ 𝐶𝑜𝐹𝑖 × (𝑎𝑖𝑒
𝑏𝑖𝑘 + 𝑐𝑖𝑒

𝑑𝑖𝑘 + 𝑓𝑖𝑘)

𝑉𝑎𝑙𝑢𝑒𝑠𝑖

𝑘=0

𝐶𝑜𝑚𝑝𝑜𝑛𝑒𝑛𝑡𝑠

𝑖=1

× 𝑥𝑖1𝑘

+ ∑ ∑ (𝐶𝑜𝐹𝑖

𝑉𝑎𝑙𝑢𝑒𝑠𝑖

𝑘=1

𝐼𝑛𝑡𝑒𝑟𝑣𝑎𝑙𝑠𝑖

𝑗=2

× (𝑎𝑖𝑒
𝑏𝑖𝑘 + 𝑐𝑖𝑒

𝑑𝑖𝑘 + 𝑓𝑖𝑘) + 𝐶𝑜𝑀𝑖)

× 𝑥𝑖𝑗𝑘) + ∑ 𝐶𝑜𝑃𝑖𝑦𝑖

𝑊𝑒𝑒𝑘𝑠

𝑖

 

(5) 
𝑠. 𝑡. 

∑ 𝑘𝑥𝑖𝑗𝑘

𝑉𝑎𝑙𝑢𝑒𝑠𝑖

𝑘=0

− ∑ (𝑊𝑒𝑒𝑘𝑠 − 𝑘) 𝑧𝑖(𝑗−2)𝑘

𝑊𝑒𝑒𝑘𝑠−1

𝑘=0

+ ∑ (𝑊𝑒𝑒𝑘𝑠 − 𝑘) 𝑧𝑖(𝑗−1)𝑘

𝑊𝑒𝑒𝑘𝑠−1

𝑘=0

= 0 ∀ 𝑖

∈ 𝐶𝑜𝑚𝑝𝑜𝑛𝑒𝑛𝑡𝑠, 𝑗 ∈ {3 … 𝐼𝑛𝑡𝑒𝑟𝑣𝑎𝑙𝑠𝑖 − 2} 
(6) 

∑ 𝑘𝑥𝑖1𝑘

𝑉𝑎𝑙𝑢𝑒𝑠𝑖

𝑘=0

+ ∑ 𝑘𝑥𝑖2𝑘

𝑉𝑎𝑙𝑢𝑒𝑠𝑖

𝑘=1

+ ∑ (𝑊𝑒𝑒𝑘𝑠 − 𝑘) 𝑧𝑖1𝑘

𝑊𝑒𝑒𝑘𝑠−1

𝑘=0

= 𝑊𝑒𝑒𝑘𝑠 ∀ 𝑖 ∈ 𝐶𝑜𝑚𝑝𝑜𝑛𝑒𝑛𝑡𝑠 
(7) 

∑ 𝑥𝑖1 0

𝐶𝑜𝑚𝑝𝑜𝑛𝑒𝑛𝑡𝑠

𝑖=1

− 𝑀1𝑦0 < 0.5  

(8) 



∑ (𝑥𝑖1𝑘 + 𝑥𝑖(𝐼𝑛𝑡𝑒𝑟𝑣𝑎𝑙𝑠𝑖)(𝑊𝑒𝑒𝑘𝑠−𝑘) + ∑ 𝑧𝑖𝑗𝑘

𝐼𝑛𝑡𝑒𝑟𝑣𝑎𝑙𝑠𝑖−3

𝑗=1

)

𝐶𝑜𝑚𝑝𝑜𝑛𝑒𝑛𝑡𝑠

𝑖=1

− 𝑀2𝑦𝑘 < 0.5 ∀ 𝑘 ∈ {1 … |𝑊𝑒𝑒𝑘𝑠| − 1} 
(9) 

∑ 𝑥𝑖1𝑘

𝑉𝑎𝑙𝑢𝑒𝑠𝑖

𝑘=0

= 1 ∀ 𝑖 ∈ 𝐶𝑜𝑚𝑝𝑜𝑛𝑒𝑛𝑡𝑠 

(10) 

∑ 𝑥𝑖𝑗𝑘

𝑉𝑎𝑙𝑢𝑒𝑠𝑖

𝑘=1

< 1.5 ∀ 𝑖 ∈ 𝐶𝑜𝑚𝑝𝑜𝑛𝑒𝑛𝑡𝑠, 𝑗 ∈ {2 … 𝐼𝑛𝑡𝑒𝑟𝑣𝑎𝑙𝑠𝑖} 

(11) 

∑ 𝑧𝑖𝑘𝑙

𝑊𝑒𝑒𝑘𝑠−1

𝑘=0

< 1.5 ∀ 𝑖 ∈ 𝐶𝑜𝑚𝑝𝑜𝑛𝑒𝑛𝑡𝑠, 𝑙

∈ {1 … 𝐼𝑛𝑡𝑒𝑟𝑣𝑎𝑙𝑠𝑖 − 3} 
(12) 

∑ 𝑥𝑖(𝑗−1)𝑘

𝑉𝑎𝑙𝑢𝑒𝑠𝑖

𝑘=1

− ∑ 𝑥𝑖𝑗𝑘

𝑉𝑎𝑙𝑢𝑒𝑠𝑖

𝑘=1

> −0.5 ∀ 𝑖 ∈ 𝐶𝑜𝑚𝑝𝑜𝑛𝑒𝑛𝑡𝑠, 𝑗

∈ {3 … 𝐼𝑛𝑡𝑒𝑟𝑣𝑎𝑙𝑠𝑖} 
(13) 

with: 
The objective function is in (5). Unary encoding has 

been applied to allow the problem to be expressed in a linear 
programming formulation. Constraints (6) and (7) are 
auxiliary constraints that are needed to define the 
possessions. Constraint (8) defines that there needs to be a 
possession at 𝑡 = 0 if there is any maintenance then. It uses 
a big M formulation, where 𝑀1is the number of components 
in the system. Constraints (9) defines that if there is any 
maintenance at 𝑡 = 𝑘 there needs to be a possession. It also 
uses a big M notation, where 𝑀2 is equal to the sum of 
number of possible intervals minus one for each component. 
Constraint (10) requires the first interval for each component 
to have exactly one value. Constraint (11) requires each 
subsequent interval for each component to have at most one 
value. If it has no value, this means the interval does not exist. 
The model is able to produce a solution with fewer 
maintenance intervals for a component 𝑖 than the maximum 
number for that component (𝐼𝑛𝑡𝑒𝑟𝑣𝑎𝑙𝑠𝑖 ). Constraint (12) 
does the same thing as (11), but for the auxiliary decision 
variables. Constraint (14) is not necessary to arrive at the 
correct solution and is used to limit the solution space in order 
to speed up the solution of the model. It does not allow an 
interval 𝑗  if there is no interval 𝑗 − 1. Without this constraint, 
multiple solutions may exist that are the same in practice. 

IV.i. Experimental results 
A series of performance tests was devised to 

systematically evaluate several aspects of the model. A 
limiting factor in the practical application of the model could 
be the problem size that can be solved with reasonable 
computing resources. The model should also be able to 
handle variation in parameter values. Furthermore, changing 
settings on the computational side could impact the required 
run time. In total, eight different parameters were varied: 

optimality gap, presolve setting, number of processor 
threads, wear out shape parameter, the cost of possession, 
the planning horizon and the number of components. 

The optimality gap is the allowed difference between 
the best feasible solution that was found and the lower bound 
for the solution, expressed as a percentage. The larger the 
optimality gap, the shorter the runtime. The model is 
responsive to increasing the optimality gap. Should he 
standard specification of 0 result in an overly long runtime, it 
will help to decrease the optimality gap. 

Using more processor threads does not always yield 
better performance. In some cases, solving the problem or 
sub-problems linearly on one thread instead of parallel on 
multiple threads performs better. An interesting find is that 
going from an even to an odd number of threads increases 
runtime. In general, however, the model performs better 
when increasing the number of processor threads.  This 
means parallel computing can be used to solve bigger 
problems with this model. 

The cost that results from applying a possession is also 
varied. For a given problem, there is a point of this parameter 
where the solution time is longest. Increasing or decreasing 
the cost of possession reduces the difficulty of solving the 
problem. 

Varying cost of possession over time emulates 
situations in which one week is more expensive than the 
other. As expected, expensive weeks are avoided. This shows 
the model can be used to plan maintenance at more 
beneficial times. The problem becomes faster to solve 
compared to a constant cost of possession for every week. An 
overview of the runtimes depending on the cost of possession 
is in figure 1. 

 
Figure 1, effect of cost of possession on runtime 

For the example case, problems of up to 250 time 
steps could be solved to optimality within one hour. 
Accepting an optimality gap of 10% increased this figure to 
1100. This means maintenance can be planned with enough 
accuracy for the intended application. 



 
Figure 2,runtime as a function of planning horizon with an 
optimality gap of 0 

 
Figure 3, runtime as a function of planning horizon with an 
optimality gap of 10% 

As more components get added to the optimization, 
the problem size increases. For the example case, the runtime 
increases from 1.1 seconds for two components and 110.6 
seconds for three components to over one hour for five 
components. 

All in all, the model handled changes in these 
parameters without highly unexpected results. 

IV.ii. Test Case 
A case study was made of two different components, 

these being electrical separation joints and switches. Cost 
values as used in practice were obtained. The statistical 
model is based on maintenance and failure records for the 
two components. The vast majority of these components are 
currently maintained once a year. 

The estimation of parameters results in an estimated 
number of failures. When comparing the estimated and the 
observed number of failures for switches using a diagram 
(figure 4), the ability of capturing the falling and rising 
tendencies in failure probability become visible. 

 
Figure 4, observed and predicted failure counts of switches 

The optimization model is able to produce an optimal 
maintenance schedule for 5 years (261 weeks) in 9.45 
seconds. The results show that the maintenance intervals for 
the components individually, without taking the cost of 
possession into account, is 126 and 61 weeks for switches and 
insulated joints respectively. The resulting schedule has one 
maintenance operation for the switches and three for the 
insulated joints. The solution is visually expressed in figure 1. 
The grey horizontal bars are the schedules for component 1 
and 2 and for the possessions. On the x axis is the time in 
weeks. Each broad horizontal bar is a maintenance operation. 

 
Figure 5, optimized solution to the test case 

Table 1, comparison of schedules of the test case. 

 Conventional 
intervals 

Optimized 
intervals 

Optimized 
schedule 

Objective value 716.4 703.4 699.9 

# possessions 8 6 3 

# maintenance 
operations to 

switches 

5 2 1 

# maintenance 
operations to 

insulated joints 

5 4 3 

Compared to 
conventional 

intervals 

100 % 98.2 % 97.7 % 

Compared to 
optimized 
intervals 

101.8 % 100 % 99.5 % 

Compared to 
optimized 
schedule 

102.4 % 100.5 % 100 % 

 
Comparing the three schedules in table 1, the 

difference in objective function is small. Even so, small 
improvements such as these would amount to sizeable profits 
over the longer term. As the difference in number of 
maintenance operations and number of possessions is 
substantial, it seems that the cost of failure is a large factor in 
this case. Either that is true, or the parameters are based on 
an overestimation of failures. 

Considering that better analysis methods and the use 
of better data could improve the performance of the model, 
there is potential for delivering further improvements. 
Furthermore, differentiated maintenance, as is already 
applied to switches, can also improve the usefulness of the 
model. This could be included by splitting components to 



which it is applied into multiple separate groups, for example 
based on frequency of use. 

VIII. Conclusion and Recommendations 
The long-term planning and cost estimation of 

maintenance can be improved by using the model presented 
in this paper. As opposed to current methods, a quantification 
of the expected cost of failure depending on the maintenance 
strategy is defined. 

The model is shown to be an improvement over 
current working methods. It considers the specific 
characteristics of the components and, if it is beneficial, 
combines work to take place in the same week so fewer 
possessions are needed. Maintenance engineers can make a 
schedule in which the combined cost of maintenance, failure 
and possessions is optimized. 

Further development that builds on the model as 
presented could address certain uncertainties that are still 
present. The main uncertainty is, and probably remains, the 
predictive quality of the available data. Before major 
decisions can be based on the model, a more elaborate trial 
would be advisable. 

While the model is only applied to railway 
components, its possible applications extend beyond this 
field. As the statistical model can be applied to any system 
that has maintenance and subsequent degradation, there are 
many physical systems that could benefit from a maintenance 
schedule that is optimized by this model. 
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Appendix 1: notation 

𝜆(𝑡) hazard rate at 𝑡 

𝑎𝑖  location parameter for break in for 
component 𝑖 

𝑏𝑖  scale parameter for break in for 
component 𝑖 

𝑐𝑖  location parameter for wear out for 
component 𝑖 

𝑑𝑖  scale parameter for wear out for 
component 𝑖 

𝑓𝑖  vertical location parameter for 
component 𝑖 

𝑡𝑖𝑗  The length of maintenance interval 𝑗 to 
component 𝑖 

𝐶𝑀𝐼𝑖(𝑡𝑖𝑗) Cost of Maintenance Interval 𝑗 of 
component 𝑖. 

𝐶𝑜𝐹𝑖  The cost of failure of component 𝑖. 

Λ(𝑡) The cumulative failure rate function of 
the component. 

𝐶𝑜𝑀𝑖  The cost of performing maintenance 
once on component 𝑖. 

𝐶𝑜𝑚𝑝𝑜𝑛𝑒𝑛𝑡𝑠 The set of components in the system 
under consideration. 

𝐼𝑛𝑡𝑒𝑟𝑣𝑎𝑙𝑠𝑖  The maximum number of maintenance 
intervals of component 𝑖. 

𝑃𝑜𝑠𝑠𝑒𝑠𝑠𝑖𝑜𝑛𝑠 The set of all possessions. 

𝐶𝑜𝑃𝑖  The cost of possession 𝑖. Not every 
possession has the same cost, as some 
weeks may be preferred over others. 

𝑉𝑎𝑙𝑢𝑒𝑠𝑖  The possible values of the interval length 
for component 𝑖. 

𝑥𝑖𝑗𝑘  The binary decision variable representing 
interval 𝑗 of component 𝑖 being 𝑘 long. 

𝑊𝑒𝑒𝑘𝑠 The weeks within the planning horizon. 

𝑦𝑖  The decision variable representing a 
possession at time 𝑗. 
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