
Development of a Robust
Reference Path Generator
for Lateral Vehicle Control

T. Talsma

M
as

te
ro

fS
cie

nc
e

Th
es

is





Development of a Robust Reference
Path Generator
for Lateral Vehicle Control

Master of Science Thesis

For the degree of Master of Science in Mechanical Engineering at Delft
University of Technology

T. Talsma

June 4, 2018

Faculty of Mechanical, Maritime and Materials Engineering (3mE) · Delft University of
Technology



Copyright c© Cognitive Robotics (CoR)
All rights reserved.



Delft University of Technology
Department of

Cognitive Robotics (CoR)

The undersigned hereby certify that they have read and recommend to the Faculty of
Mechanical, Maritime and Materials Engineering (3mE) for acceptance a thesis

entitled
Development of a Robust Reference Path Generator

by
T. Talsma

in partial fulfillment of the requirements for the degree of
Master of Science Mechanical Engineering

Dated: June 4, 2018

Supervisor(s):
Prof. dr. ir. J. Hellendoorn

Dr. M. Alirezaei

Ir. A. Teerhuis

Reader(s):
Dr. ir. A. Hegyi

Dr. B. Shyrokau





Abstract

Automated vehicle control provides advantages in transport efficiency, redundancy, human-
safety, flexibility, and parallelism. Extensive research has been dedicated to direct-following
lateral control methods, using a single preview point as reference signal. However, these
methods give rise to significant tracking errors. As alternative to a single point, a continuous
path can be used as reference signal for vehicle control. Using a continuous reference path,
accurate and comfortable control actions can be computed, while avoiding reference tracking
errors. Therefore, robust reference path generation is an essential part of lateral vehicle
control.

The goal of this research is to develop a generic, robust reference path generator for lateral
vehicle control. Currently in path generation, the state-of-the-art method is based on repet-
itive polynomial fitting. This method inherently contains two main weaknesses. Firstly, it
is not robust to sensor noise and other real-world disturbances. Secondly, as a result of the
repetitive fitting, a discontinuous path is generated. This is undesirable, because it leads to
an unfeasible reference path, since vehicles can only produce and track continuous trajecto-
ries. Moreover, a discontinuous reference path results in the need for path smoothing when
used in comfortable lateral vehicle control. Fundamentally, this smoothing leads to inaccurate
control, caused by manipulation of the original, discontinuous reference path. To overcome
these weaknesses, a new Model-based Path Generation method is presented.

The development of a new, generic method for robust path generation is the main contribution
of this research. This new path generation method is capable of producing feasible vehicle
trajectories based on unfeasible waypoints. The performance of this method is evaluated in
simulations and experiments, benchmarking it against polynomial fitting path generation.
Furthermore, path generation robustness is assessed based on the outcome of a disturbance
sensitivity analysis. The results are in accordance with the hypothesis stating that the new
method outperforms the benchmark method in terms of path accuracy, robustness, continuity,
and general applicability.
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Chapter 1

General Introduction

This chapter gives an introduction to the rest of this thesis. Section 1-1 starts with background
information on the subject of path generation. Furthermore, Section 1-2 describes the main
problem that is addressed in this research. Finally, Section 1-3 outlines the structure of the
rest of this thesis.

1-1 Background

Nowadays, the pressure on existing road networks is increasing. Possible solutions are in-
creasing the road capacity or increasing the efficiency of road usage [24]. However, increasing
the road capacity may not be possible, due to spacial constraints, especially in urban areas.
Moreover, increasing road capacity could lead to intensifying road usage [16], which leads
to environmental concerns. This indicates the symptom fighting character of the capacity
increasing solution. Therefore, increasing the efficiency of the road usage is the most tenable
solution [5]. Increased road usage efficiency can be realized by reducing the inter-vehicular
distances, without reducing operating speeds. However, with a human driver, the effect is
limited and the human workload of driving is increased, due to the slow human reaction
time [12]. The solution to this is given by automated vehicle control, which is realized by
systems that autonomously control the steering, throttle and braking actions in a vehicle
[18]. The longitudinal control problem is solved already, and current research focuses mostly
on reliability issues of the longitudinal control [8], [19]. However, the lateral guidance prob-
lem is still the subject of ongoing research [17]. Extensive research has been dedicated to
direct-following lateral control methods, using a single preview point as reference signal [1].
These approaches are effective when the reference point is close to the current position of the
vehicle [20]. In other scenarios, these approaches will give rise to significant tracking errors,
e.g., cutting corners [14]. Thus, for the general case of automated vehicle control, direct
point-following approaches do not provide optimal performance. As alternative to a single
point, a continuous path can be used as reference signal for lateral vehicle control. Using a
continuous reference path, the tracking errors can be avoided. Based on this path, the lateral
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vehicle control systems can compute continuous steering, throttle and braking actions. These
actions will be such that the deviation from the reference path is minimized, while preserving
driving comfort.

The ambition of the research-oriented company TNO is to help create livable, sustainable
cities through clean, safe, reliable and affordable mobility and logistics. With this aim, TNO
has experimented with reference path generation for automated vehicle-following. Automated
vehicle-following is one of the many applications requiring lateral vehicle control. The devel-
opment of automated vehicle-following will improve the public transportation networks, and
allows the conception of automated highways, providing transportation efficiency, reduced
fuel consumption and decreased pollution [11]. Vehicle-following can also be used in freight
ports where transport vehicles can travel closely, yet safely, to carry containers from ships
to docks [25]. However, not only transportation, but also other operations, such as explo-
ration [15], search and rescue [27] and agriculture operations [26] will benefit from automated
vehicle-following, due to the advantages it gives in redundancy, human-safety, flexibility, and
parallelism.

This research deals with the development of a generic, robust reference path generator for
lateral vehicle control. TNO’s state-of-the-art polynomial fitting path generator is used as
benchmark method. The method is based on fitting a third order polynomial to a set of given
waypoints.

1-2 Problem statement

The main issue at hand is that the state-of-the-art polynomial fitting path generation solution
does not provide desirable results [10]. This is caused by its two main weaknesses. Firstly, the
current system is not robust to sensor noise and other real-world disturbances. Secondly, the
system is based on repetitive least-squares polynomial fitting, resulting in discontinuous path
generation. This is undesirable, because it leads to an unfeasible reference path, since vehicles
can only track and produce continuous trajectories. Moreover, a discontinuous reference path
results in the need for path smoothing when used in comfortable lateral vehicle control.
Fundamentally, this smoothing leads to inaccurate vehicle control, caused by manipulation
of the original reference path. These problems lead to the definition of the main research
question, addressed in this thesis:

How can a feasible, continuous vehicle reference path be generated, based on a set of given
waypoints?

The goal of this research is to develop a generic, robust reference path generator for lateral
vehicle control. This path generator must meet a number of minimal requirements. Firstly,
it must provide an accurate and feasible path. Secondly, it must be robust in the sense
that is has proper disturbance rejection characteristics. Finally, the resulting path must be
continuous to allow for accurate and comfortable lateral vehicle control. It is hypothesized
that this generic, robust reference path generator outperforms the benchmark method.
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1-3 Outline

Chapter 2 describes the generic field of application for which the main problem is solved. In
addition, the corresponding challenges are addressed.

Chapter 3 presents the benchmark path generation method. The benchmark method is
given by the state-of-the-art polynomial fitting path generation method. In addition, two
approaches to improve the benchmark method are proposed.

Just like any method, polynomial fitting path generation has its limitations. It is hypothesized
that a new path generation method can be conceived, which can outperform polynomial fitting
path generation. The new method will not rely on fitting a mathematical function. Instead,
the method will be based on vehicle modeling.

Chapter 4 presents a new model-based solution to the path generation problem. Two different
implementations for Model-based Path Generation are presented, using proportional feedback
and the Model Predictive Control (MPC) framework.

Next is the challenge of selecting the best path generation method. For this, a comparing
analysis is needed. To assess the performance of different path generating methods, perfor-
mance criteria must be defined. Furthermore, the sensitivity of the systems to real-world
disturbances must be evaluated, to assess the feasibility and robustness of real-world imple-
mentation. The evaluation of the performance criteria, as well as the sensitivity analysis, will
be based on numerical simulations and experiments.

Chapter 5 presents the design of the path generation performance criteria. Furthermore, the
results from path generation simulations are presented.

Chapter 6 presents the design of the path generation sensitivity analysis. Next, the sensitivity
analysis results are reported, identifying and comparing the robustness of the different path
generators.

Chapter 7 elaborates on the experiments that confirm the feasibility of the path generators
and verify the results obtained from simulations.

Finally, Chapter 8 concludes this thesis by discussing the main findings and presenting rec-
ommendations.
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Chapter 2

Field of Application

This chapter describes the generic path generation field of application. Section 2-1 describes
the assumptions regarding the generic field of application. Subsequently, corresponding path
generation challenges are addressed in Sections 2-2 and 2-3. Finally, Section 2-4 presents a
summary of this chapter.

2-1 Vehicle and Scenario Assumptions

A path generation system consists of three main subsystems. The hierarchy of the subsys-
tems is visualized in Fig. 2-1. To compute a reference path, the Path Generation subsystem
uses a set of discrete waypoints obtained from the Waypoint Storage subsystem. This set of
waypoints can originate from various Waypoint Sources. For instance, in automated vehicle-
following, the source is given by sensor systems that detect a leader-vehicle. Alternatively,
the waypoints may be defined by a human operator or originate from a strategic path plan-
ning layer [4]. Fundamentally, waypoints obtained from sensor systems are noise-corrupted.
Therefore, a generic path generation system must have noise-rejecting characteristics. In this
way, the path generation system is applicable irrespective of the specific Waypoint Source.

Waypoint Source Delay 
Compensation 

Ego-Motion 
Compensation 

Waypoint Storage

Path
Path Generation

u, v, rdelay estimate

Fig. 2-1: Hierarchy of Path Generation.

Master of Science Thesis T. Talsma



6 Field of Application

Fig. 2-2: A visualization of the generic vehicle-following field of application. On board of the
black follower-vehicle, the Standard Sensor Systems provide the longitudinal velocity u, vehicle
yaw rate r and lateral velocity v. In practice, v is not measured but can be estimated or neglected
[23]. The local reference frame, attached to the follower-vehicle at time step b, is denoted by Fb.
Finally, the Waypoint Source provides the waypoint wFb used for path generation.

In this research, the path generation problem is solved for the generic vehicle-following field of
application. This application entails a continuously changing set of waypoints and a continu-
ously changing, vehicle-attached, local frame of reference. Consequently, the path generation
solution is also applicable in use-cases where the set of waypoints and reference frame are
stationary.

In the generic vehicle-following field of application, the path generation system is assumed to
use discrete relative leader-vehicle position measurements as waypoints. This assumption is
made because it allows for evaluation of path generation performance. The generated path
can be interpreted as a reconstruction of the leader-vehicle’s factual path. Consequently, path
generation performance is related to the accuracy of reconstruction. This approach does not
impose any limitations on the system; that is, the applicability remains irrespective of the spe-
cific Waypoint Source. The waypoints may be obtained from radar and camera sensor systems
on board of the follower-vehicle, detecting the leader-vehicle. Next to a Waypoint Source,
onboard ego-motion sensor systems (e.g., wheel-speed, steering angle and gyro sensors) are
assumed. These systems are required to compensate the waypoints for the ego-motion of the
follower-vehicle, which is further explained in Section 2-2. Current commercially available
vehicles are assumed to be equipped with these sensor systems. Therefore, these sensors will
be referred to as Standard Sensor Systems. No specific assumptions are made regarding the
leader-vehicle, other than its longitudinal position with respect to the follower-vehicle, form-
ing the illustrating Waypoint Source. The availability of information from GPS, roadside or
inter-vehicular communication is not assumed. Note that in use-cases where this information
is available, it could be used to improve the accuracy of the generated path. The generic field
of application is visualized in Fig. 2-2.

2-2 Waypoint Ego-Motion Compensation

The Waypoint Source provides the waypoints used for onboard path generation, expressed in
the local, vehicle-attached, planar coordinate frame. For path generation, multiple waypoints
are required. Therefore, the waypoints need to be stored on board of the follower-vehicle.
This is visualized in Fig. 2-3. The waypoint storing functionality is covered by the Waypoint
Storage subsystem. The waypoints can be mathematically described by position coordinates
expressed in the local follower-vehicle reference frame Fb. Let w̃Fb denote a matrix of n + 1
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Fig. 2-3: A visualization of the storage of waypoints. Waypoint i is denoted by wi. The local
reference frame, attached to the follower-vehicle, is denoted by Fb. The uncertainty about the
exact position of the waypoints is indicated by the red ellipse around the measured point. This
uncertainty may be caused by Waypoint Noise.

Fig. 2-4: A visualization of the ego-motion of the black follower-vehicle between two consecu-
tive time instances. Moreover, the necessary coordinate transformation of the waypoints wFb

i is
visualized.
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8 Field of Application

waypoints expressed in Fb, given by:

w̃Fb =

wi,x wi−1,x ... wi−n,x
wi,y wi−1,y ... wi−n,y

1 1 ... 1

 , (2-1)

where wi,x and wi,y represent the x- and y-coordinate of waypoint i respectively. The distance
between two consecutive waypoints depends on the specific Waypoint Source. For instance,
in vehicle-following, it depends on the sampling frequency of the Standard Sensor Systems
and the speed of the leader-vehicle. For example, assuming a sampling frequency of 10 Hz
and a speed of 100 km h−1, this distance is approximately 2.78 m.

In driving situations, vehicles are in motion. This means that the position and the orientation
of local reference frame Fb changes over time. As a result, the waypoints must continuously
be remapped to the latest local frame Fb. Let ∆tb denote time difference between time steps
b − 1 and b. The Waypoint Storage subsystem manages this mapping, by compensating the
stored waypoints for the ego-motion of the follower-vehicle, using its ego-motion parameters
obtained from the Standard Sensor Systems. The mapping is given by:

w̃Fb = TFb
Fb−1

w̃Fb−1 , (2-2)

where TFb
Fb−1

represents the homogeneous transformation matrix, mapping vectors from follower-
vehicle frame Fb−1 to Fb. This matrix is given by:

TFb
Fb−1

=
[
RFb
Fb−1

−RFb
Fb−1
·∆OFb−1

Fb

01×2 1

]
. (2-3)

The rotation matrix RFb
Fb−1

and the relative relative displacement of the coordinate frame
∆OFb−1

Fb
are given by the following equations:

RFb
Fb−1

=
[

cos ∆ψb sin ∆ψb
− sin ∆ψb cos ∆ψb

]
, (2-4)

∆OFb−1
Fb

=
[
∆Xb

∆Yb

]
. (2-5)

The relative coordinate frame changes ∆ψb, ∆Xb and ∆Yb are defined in Fig. 2-4. These
changes can be computed by using the motion parameters from the Standard Sensor Systems:

∆ψb =
∫ t+∆tb

t
r · dt, (2-6)

∆Xb =
∫ t+∆tb

t
u · dt, (2-7)

∆Yb =
∫ t+∆tb

t
v · dt, (2-8)

where r represents the yaw rate and u the longitudinal speed of the vehicle. In practice, the
lateral velocity v is not measured; instead, it can either be estimated or neglected [23].
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Fig. 2-5: Waypoint Noise causes the measurements to deviate from the blue ground truth path
of the leader-vehicle. The waypoint position uncertainty caused by this noise is represented by
the red ellipses around the points. Waypoint Delay causes the latest waypoint (farthest away
from the follower-vehicle) to be different from the current position of the leader-vehicle. Finally,
Waypoint Offset is caused by the detection of the leader-vehicle rear. This offset is given by lr.

2-3 Disturbances

The input to a path generation system is given by a set of waypoints from the Waypoint
Source. In an ideal situation, these waypoints are precise and accurate. However, in reality,
they may be uncertain or corrupted with (sensor) Waypoint Noise. In addition, the path gen-
eration system may be subject to Waypoint Delay and Waypoint Offset. These disturbances
are visualized in Fig. 2-5. Moreover, in the real world, the ego-motion parameters from the
Standard Sensor Systems are generally noise-corrupted. These disturbances are further ex-
plained in the next paragraphs. The impact of other types of disturbances (e.g. road grade or
bank angle) is not investigated here, and is left for future research, because it can reasonably
be expected that it is small compared to the impact of Waypoint Noise, Offset, Delay, and
Motion Parameter Noise, due to the dominant planar motion of vehicles. The distinction
between ideal- and real-world is made to be able to analyze the performance and robustness
of path generation systems. The performance and robustness aspects are further discussed in
Chapters 5 and 6.

Waypoint Noise

Due to the possible existence of uncertainty or sensor noise on a single waypoint, there may
exist an error between the measured (or desired) position of the waypoint and its actual,
given position. This phenomenon is illustrated in Figure 2-5. As a result, Waypoint Noise is
considered the first real-world disturbance on a generic path generation system.

Waypoint Delay

TheWaypoint Source may provide the waypoints with a certain time delay tdelay. For instance,
in vehicle-following, this means that the time instant of measuring differs from the time
instant at which the waypoint is available to the path generation system. The time instant
at which the measuring takes place and waypoint w is obtained is visualized in Fig. 2-6A.
The time instance at which this w is actually received is visualized in Fig. 2-6B. Because of
the follower-vehicle ego-motion, during the time gap between A and B, the waypoint w has
become incorrect. As a result, Waypoint Delay is considered the second real-world disturbance
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Fig. 2-6: Illustration of the Waypoint Delay effect in vehicle-following. Figure A represents
the situation at the time of measuring waypoint w. Figure B shows the incorrect waypoint w
being received with a delay. Waypoint w has become incorrect because the follower-vehicle has
moved during the measurement delay. Figure B also shows the desired situation, where incorrect
waypoint w has been compensated for the movement of the follower-vehicle, obtaining correct
waypoint w∗.

on a generic path generation system. The correct position of the waypoint is visualized in
Fig. 2-6B by w∗. To compensate w, and obtain the correct waypoint w∗, remapping is needed;
in fact, this challenge was already addressed in Section 2-2. The only difference for Waypoint
Delay compensation is the time duration of integration of ego-motion parameters, given by
(2-6) to (2-8). To compensate for Waypoint Delay, this time duration ∆tb is set equal to the
delay estimate tdelay.

Waypoint Offset

Typically, the trajectory of the rear of a vehicle differs from the trajectory of its Center of
Gravity (CoG). From the vehicle-following scenario, it follows that the sensor systems on
board of the follower-vehicle detect the rear of the leader-vehicle. Therefore, the vehicle-
following path generation system can only be based on the relative position measurements
of the rear of the leader-vehicle. As a result, the reconstructed path will be that of the
leader-vehicle rear, rather than its CoG. As a result, Waypoint Offset is considered the third
real-world disturbance.

Motion Parameter Measurement Noise

To be able to use the waypoints for path generation purposes, the waypoints must continuously
be compensated for ego-motion of the follower-vehicle. This was already discussed in Section
2-2. For this compensation, the ego-motion parameters of the follower-vehicle are used. These
parameters are follower-vehicle longitudinal speed u, its lateral velocity v and yaw rate r
(also known as rate of change of heading angle ψ̇). In practice, the lateral velocity v is not
measured; instead, it can either be estimated or neglected [23]. The Standard Sensor Systems
introduce noise on the longitudinal speed u and yaw rate r. Moreover, the vehicle state
estimation can only provide the lateral velocity v with limited certainty. These phenomena
introduce error when the ego-motion parameters are used to map the list of waypoints. The
older the waypoints are, the more often they have to be remapped. Therefore, the waypoints
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get less accurate over time, because of noise-induced error accumulation. As a result, noise
on the follower-vehicle ego-motion parameters is considered the fourth and final real-world
disturbance on a generic path generation system.

2-4 Summary

Path generation is deployed to obtain a smooth and continuous path, based on given way-
points. The waypoints can originate from various sources. For instance, in automated vehicle-
following, the source is a system that detects a leader-vehicle. Alternatively, the waypoints
may be defined by a human operator or originate from a strategic path planning layer. Fun-
damentally, waypoints obtained from sensor systems are noise-corrupted. Therefore, a generic
path generation system must have noise-rejecting characteristics. In this way, the path gen-
eration system is applicable irrespective of the specific Waypoint Source.

Within this research, the path generation problem is solved for the generic vehicle-following
field of application. This field of application results in a general situation with a continu-
ously changing set of waypoints and a continuously changing, vehicle-attached, local frame of
reference. Consequently, the path generation solution is also applicable in situations where
the set of waypoints and reference frame are stationary. Moreover, in this generic field of
application, the generated path can be interpreted as a reconstruction of the leader-vehicle’s
factual path. As a consequence, path generation performance can be evaluated, since it is
related to the accuracy of reconstruction. This approach does not impose any limitations on
the system; that is, the applicability remains irrespective of the specific Waypoint Source.

In an ideal situation, the input waypoints are precise and accurate. However, in reality, they
may be uncertain or corrupted with sensor noise. Next to Waypoint Noise, a path generation
system is subject to other real-world disturbances, e.g., Waypoint Delay, Waypoint Offset and
Motion Parameter Measurement Noise.
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Chapter 3

Polynomial Path Generation

A path generation system consists of three main subsystems. The hierarchy of the subsystems
is visualized in Fig. 3-1. Based on the output of the Waypoint Storage subsystem, a Path
Generation method can be deployed. This chapter analyzes Path Generation by polynomial
fitting.

3-1 Polynomial Fitting

The benchmark polynomial fitting path generation method is visualized in Fig. 3-2. From the
Waypoint Storage subsystem, a list of (possibly noise-corrupted) waypoints is obtained. From
this list, a fixed amount of N waypoints is selected, behind and in front of the follower-vehicle.
Subsequently, a polynomial can be fitted to this window of waypoints.

The polynomial coefficients are computed while minimizing the mean-square error between
the polynomial and the waypoints. In this way, a mathematical expression is obtained, which
represents the waypoints. This mathematical expression is Cn continuous, where n is the
degree of the polynomial. It can be interpreted as a reconstruction of the path driven by the
leader-vehicle, which is instantaneously continuous by design. In contrast to this, obtaining a

Waypoint Source Delay 
Compensation 

Ego-Motion 
Compensation 

Waypoint Storage

Path Polynomial Fitting
Path Generation

u, v, rdelay estimate

Fig. 3-1: Hierarchy of Polynomial Path Generation.
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14 Polynomial Path Generation

Fig. 3-2: A visualization of polynomial path generation. The leader-vehicle is blue, the follower-
vehicle is black. The waypoints from the Waypoint Source are stored in a list. This list of
waypoints is represented by the red dots. The uncertainty about the exact position of the way-
points is indicated by the red ellipses around the waypoints. This uncertainty may caused by
measurement noise. A polynomial yb is fitted through a fixed amount of waypoints from the
list. The fitted polynomial is represented by the smooth red line and is expressed in the reference
frame Fb.

path by linear interpolation of the waypoints would lead to an instantaneously discontinuous
path. In addition, due to the least-squares function fitting approach, the negative effect of
the Waypoint Noise disturbance is attenuated.

3-1-1 Objective

The mathematical expression of a polynomial in Cartesian coordinates xb (longitudinal) and
yb (lateral) of order n is given by:

yb(xb) = cn · xnb + cn−1 · xn−1
b + ... c1 · xb + c0. (3-1)

Polynomial fitting is defined by the task of finding coefficients c0 ... cn such that the following
expression is minimized:

S =
N∑
i=1

(yi − yb(xi))2. (3-2)

Here, yi is the lateral position (dependent variable) of the waypoint set, with i = 1 ... N , to
which the polynomial is fitted. Furthermore, yb(xi) is the function value of (3-1), evaluated
at xi, the corresponding longitudinal position value (independent variable). Minimizing the
expression given by (3-2) results in a polynomial function that fits the waypoints in the
least-squares sense.

3-1-2 Implementation

To provide appropriate feedforward in lateral vehicle control, path curvature is used [18].
Therefore, in the implementation of polynomial fitting path generation, a third order poly-
nomial is considered. This is the simplest polynomial that provides a continuous curvature.
The polynomial expression is given by:

yb = c3 · x3
b + c2 · x2

b + c1 · xb + c0, (3-3)

where yb and xb represent the Cartesian coordinates of the polynomial, expressed in an instan-
taneous follower-vehicle reference frame Fb. The coefficients c0 ... c3 are calculated based on
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N noise-corrupted waypoints wF
i with i = 1 ...N . This results in N equations with a number

of unknowns equal to the number of polynomial coefficients. The least-squares solution is
obtained by the linear programming:

X =
[
(w̃F

x )3 (w̃F
x )2 (w̃F

x ) 1
]
, (3-4)

p =
[
c3 c2 c1 c0

]T
, (3-5)

X p = w̃F
y , (3-6)

where w̃F
x is a column vector containing the (longitudinal) x-coordinates of all waypoints

wF
i with i = 1 ... N . Furthermore, w̃F

y is the column vector containing the (lateral) y-
coordinates of all waypoints. The power operations are computed element-wise. Consequently,
the polynomial coefficients, for a least-squares fit, are obtained by:

p = (XTX)−1XT w̃F
y . (3-7)

3-2 Modified Polynomial Fitting

An advantage of polynomial fitting path generation is the intrinsic noise filtering characteris-
tic. Fitting a third order polynomial to more than four waypoints, in the least-squares sense,
leads to attenuating the negative effects of Waypoint Noise. However, this filtering behavior
can also be interpreted as a disadvantage, since there is no direct, structured way of tuning the
algorithm or incorporating knowledge on noise characteristics. Moreover, the resulting path
is not necessarily feasible to track by a vehicle, because it was obtained without incorporating
the non-holonomic vehicle constraints. The order of the polynomial and the amount of used
waypoints are the only direct tools available to influence the algorithm’s behavior. To obtain
extra tuning parameters, weights can be assigned to future offsets from the waypoints. Con-
sequently, by weighted least-squares polynomial fitting, the noise-filtering characteristics of
the polynomial fitting method can be influenced. However, there is no structured or intuitive
way of tuning these parameters for the path generation use-case.
A single third order polynomial by itself is smooth and C3-continuous. However, a sequence
of computed polynomials is not, when evaluated at the longitudinal coordinate of the local
follower-vehicle reference frame Fb (xb = 0). Instead, it provides a path with a discontinuous
position, heading and curvature. This is visualized in Fig. 3-3. This phenomenon is confirmed
and quantified by the results from simulations, presented in Section 5-3. The discontinuous
character is caused by the required repetitive re-fitting of the polynomial. The reference
frame, in which the polynomial must be expressed, is moving because of the ego-motion of
the follower-vehicle. Moreover, the set of waypoints may be updated, for instance when a
new measurement is available. The oldest waypoint is discarded and the new waypoint is
added. This results in the need for repetitive re-fitting of the polynomial to the updated list
of waypoints.
Theoretically, this basic polynomial fitting method can be improved by imposing constraints
on the linear programming process. These constraints can be based on the characteristics
of a previously computed polynomial. For instance, they can be set on the first or second
derivative of a new polynomial yb, depending on the previous polynomial yb−1. This method
is investigated in the next paragraphs.
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16 Polynomial Path Generation

Fig. 3-3: Visualization of polynomial fitting path generation at two consecutive time instances.
The noise-corrupted waypoints are represented by the red points. The red polynomial yb−1(xb−1)
is computed at time step b− 1. Consequently, the follower-vehicle travels distance ∆Xb. Mean-
while, the list of waypoints is updated: a new noise-corrupted measurement is added, which is
represented by the green point. The oldest measurement is discarded. At the next time instance
b, a new polynomial yb(xb) is fitted, based on the updated list of waypoints. The visualization
clearly shows that this repetitive polynomial fitting approach results in a path that is discontinuous
in position, heading and curvature.

3-2-1 Heading Constraint

In real driving situations, a vehicle drives a path with a continuous heading. During polyno-
mial path generation, the heading of the leader-vehicle is being estimated by the heading of
the resulting polynomial path ψb. This heading is given by:

ψb = tan−1(dyb
dxb

). (3-8)

To force the resulting path to have a continuous heading angle, the transition in heading angle
from polynomial yb−1 to polynomial yb must be continuous. To achieve this, a constraint on
the heading of the newly computed polynomial yb(xb) can be set. A direct heading constraint
in the form of (3-8) would result in a nonlinear constrained fitting process. Therefore, it is
more sensible to set a constraint on dyb

dxb
only. For a third order polynomial, this derivative is

given by:
dyb
dxb

= 3c3x
2
b + 2c2xb + c1. (3-9)

A constraint on this derivative results in a linear constraint on the process of finding polyno-
mial coefficients c0 ... cn. As a result, the constrained least-squares fitting is still solvable by
linear programming.

It is proposed to set the heading at the origin of the new polynomial yb equal to the origin’s
heading of the previously computed polynomial yb−1. In this way, the heading is forced to
be continuous, on the condition that the traveled origin distance from Fb−1 to Fb is accurate.
Mathematically, this is translated into the following linear equality constraint:

dyb−1
dxb−1

|xb−1=∆Xb
= dyb
dxb
|xb=0, (3-10)

where ∆Xb is the traveled origin distance of the local follower-vehicle reference frame, during
the time between the two polynomial fitting time steps. This is visualized in Fig. 3-3. This
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constraint approximates the forcing of the derivative of the polynomial, and therefore the
heading of the path, to be continuous. Note that, in general, the vehicle may also move in
the lateral direction or change its orientation. Therefore ∆Xb is merely an estimate of the
movement of frame Fb.

In this way, the previously computed polynomial yb−1 is incorporated in the computation of
the new polynomial yb. However, this results in a new polynomial with a certain heading
at xb = 0, which is not necessarily the real leader-vehicle heading. Although it is not an
intuitive tuning parameter, ∆Xb can be tuned to mitigate this problem. Summarizing, it is
hypothesized that the heading-constrained fitting method provides paths with a more con-
tinuous heading, without necessarily resulting in a superior reconstruction of the true path
driven by the leader-vehicle. This hypothesis is confirmed by the results from simulations and
experiments, presented in Chapters 5 and 7.

3-2-2 Curvature Constraint

In real driving situations, a vehicle drives a path with a continuous curvature. During polyno-
mial path generation, the curvature of the path driven by the leader-vehicle is being estimated
by the curvature of the resulting polynomial path κb. This curvature is given by the nonlinear
combination of the first and second order derivative of the polynomial:

κb =
d2yb

(dxb)2

(1 + ( dyb
dxb

)2)
3
2
. (3-11)

In normal driving, ( dyb
dxb

)2 is very small compared to unity. This is confirmed by simulations
in Chapter 5. Therefore, the curvature can be estimated by:

κb = d2yb
(dxb)2 . (3-12)

For a third order polynomial, the second order derivative is given by:

d2yb
(dxb)2 = 6c3xb + 2c2. (3-13)

As a result, a constraint on d2yb
(dxb)2 brings about a linear constraint on the process of finding the

polynomial coefficients c0 ... cn. With a linear constraint added, the least-squares polynomial
fitting is still solvable by linear programming. It is proposed to set the second order derivative,
at the origin of the new polynomial yb, equal the origin’s second order derivative of the
previously computed polynomial yb−1. In this way, the estimated curvature is forced to be
continuous, resembling the real driving situation; that is, on the condition that the traveled
origin distance from Fb−1 to Fb is accurate. Mathematically, this is translated into the
following linear equality constraint:

d2yb−1
(dxb−1)2 |xb−1=∆Xb

= d2yb
(dxb)2 |xb=0, (3-14)

where ∆Xb is again the traveled origin distance of the local follower-vehicle reference frame,
during the time between two consecutive polynomial fitting steps. This is a second way in
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18 Polynomial Path Generation

which the previously computed polynomial yb−1 can be incorporated in the computation of
the new polynomial yb. Note that this framework can also be used to incorporate curvature
information from inter-vehicular or roadside communication when available. However, the
new polynomial, computed with this method, has a certain curvature at xb = 0, which
is not necessarily the real leader-vehicle curvature. Again, ∆Xb can be interpreted as the
tuning parameter. Therefore, it is hypothesized that the curvature-constrained fitting method
provides paths with a more continuous curvature, without necessarily resulting in a superior
reconstruction of the true path driven by the leader-vehicle. This hypothesis is confirmed by
simulations and experiments, presented in Chapters 5 and 7, as well.

Apart from constraining the heading and curvature of consecutive polynomials, bounds can
directly be imposed on the polynomial coefficients. In a third order polynomial, c1 is equal
to the function value of the first derivative at xb = 0. Therefore, a bound on c1 represents
a bound on the derivative of the polynomial at xb = 0. The bound margins determine how
fast the polynomial coefficients can change. This approach boils down to knowing how fast
a vehicle can turn or change heading, and incorporating this information in the polynomial
fitting. However, this is an indirect way of using vehicle-modeling for path generation.

3-3 Conclusions

From theoretical analysis, it is concluded that repetitive polynomial fitting methods pro-
duce discontinuous paths, which is inherent to the function fitting approach. Firstly, the
discontinuous character of the paths makes them fundamentally unfeasible, since vehicles can
only produce and track continuous trajectories. Moreover, a discontinuous reference path
results in the need for path smoothing, when used in comfortable lateral vehicle control. This
smoothing leads to inaccurate vehicle control, caused by manipulation of the original, discon-
tinuous reference path. To mitigate these drawbacks, modified polynomial path generation
methods are proposed, resulting in a total of three different methods. The first method is
an unmodified version of the unconstrained benchmark polynomial path fitting method. The
other two methods are based on constrained polynomial fitting. Heading constrained and
curvature constrained polynomial fitting methods are presented. However, when constrained
fitting methods are applied in vehicle-following, the resulting paths can obtain a heading
or curvature which is not necessarily the correct, real leader-vehicle heading or curvature.
Therefore, it is hypothesized that the constrained fitting methods provide more continuous
paths, without necessarily resulting in superior reconstructions of the true path driven by the
leader-vehicle. Additionally, polynomial fitting methods require tuning of parameters that
have indirect connections with the vehicle dynamics. In other words, the tuning process at-
tempts to model the vehicle and its trajectory characteristics with tuning parameters that are
not intuitive. All in all, it is concluded that a polynomial fitting path generation approach is
fundamentally sub-optimal.
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Chapter 4

Model-based Path Generation

This chapter presents a new Model-Based Path Generation method. The new Model-based
Path Generation method consists of four main subsystems. The hierarchy of the subsystems
is visualized in Fig. 4-1. Based on the output of the Waypoint Storage subsystem, the new
method can be deployed. The two subsystems representing the new method are given by the
Virtual Leader Model and the Virtual Driver. A visualization of the new method is given in
Fig. 4-2.

First, an introduction to Model-based Path generation is given in Section 4-1. Consequently,
Section 4-2 elaborates on the Virtual Leader Model. The Virtual Leader Model is driven by
the Virtual Driver subsystem. Sections 4-3 and 4-4 provide the mathematical framework for
two different implementations of the Virtual Driver subsystem. Finally, Section 4-6 presents
a summary of the new Model-based Path Generation method.

Waypoint Source Delay 
Compensation 

Ego-Motion 
Compensation 

Waypoint Storage

u, v, rdelay estimate

Path Virtual Leader
Model Virtual Driver 

Path Generation

Fig. 4-1: Hierarchy of Model-based Path Generation.
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20 Model-based Path Generation

Fig. 4-2: The light-blue vehicle represents a virtual, computer-simulated, leader-vehicle. The
aim of this virtual vehicle is to construct a reference path based on given waypoints. This
simulated virtual leader-vehicle drives at a time headway of tv (in seconds) with respect to the
Waypoint Source, the real leader-vehicle. The time headway tv is directly related to the amount of
waypoints between the virtual vehicle and the real leader-vehicle. The smooth, light-blue dotted
line represents the path driven by the virtual leader-vehicle. Note that the virtual leader-vehicle
must not exactly follow the red waypoints. The waypoints are noise-corrupted and do not exactly
represent the desired path of Waypoint Source. The waypoint uncertainty caused by this noise is
represented by the red ellipses around the waypoints.

4-1 Introduction to Model-based Path Generation

The model-based path generation method is visualized in Fig. 4-2. The method is based on
simulating a virtual leader-vehicle, on board of the host follower-vehicle. From simulating
this virtual leader-vehicle, a reference path based on the waypoints can be obtained. The
behavior of the virtual leader-vehicle depends on the (state transition) Virtual Leader Model
and on the applied Virtual Leader Model inputs. These inputs are given by the Virtual Driver
subsystem. The goal in the vehicle-following field of application is to reconstruct the behavior
of real leader-vehicle as accurate as possible. As a result, naturally, the Virtual Driver needs
to accurately imitate the actual real leader-vehicle’s control actions. This can be achieved
by controlling the Virtual Driver based on the list of waypoints, obtained from the Waypoint
Storage.

The Virtual Leader Model subsystem is discussed in Section 4-2. The goal of this subsystem is
to generate a robust, continuous reference path, based on given model inputs. This reference
path can be extracted from the state description of the Virtual Leader Model.

The inputs to the Virtual Leader Model are given by the Virtual Driver subsystem. Its
objective is to steer the virtual leader-vehicle in such a way, that it accurately tracks the
waypoints from the Waypoint Source. In the ideal case, without Waypoint Noise and Center
of Gravity (CoG) Offset, this corresponds to the objective of exactly driving through the
obtained list of waypoints. The control objective is different for a real-world scenario, where
real-world disturbances are present. In this case, the Virtual Driver should not exactly track
the reference waypoints. Instead, it should realize a feasible, smooth trajectory for the virtual
leader-vehicle, attenuating the effects of the disturbances. This is visualized in Fig. 4-3.

The Virtual Driver subsystem can be realized in different ways. A concept based on propor-
tional control, using a look-ahead distance, is implemented and discussed in Section 4-3. An
illustrating example of the behavior of this controller implementation is visualized in Fig. 4-4.
In this example, the model of the virtual leader-vehicle is an accurate vehicle model, rep-
resenting the real leader-vehicle’s system dynamics. Additionally, in this example, the real
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4-1 Introduction to Model-based Path Generation 21

Fig. 4-3: Visualization of the different control objectives. Figure A represents the ideal vehicle-
following scenario, where the waypoints are noise-free. In this scenario, the given waypoints
reference should be tracked accurately. Note that Figure A also represents the control objective
when the proposed Model-based Path Generation method is deployed outside the generic vehicle-
following use-case, when a different Waypoint Source provides precise and accurate waypoints.
Figure B represents the real-world case, where the given waypoints are noise-corrupted and should
not be tracked exactly. Instead, the light-blue virtual leader-vehicle should drive a smooth tra-
jectory, accurately imitating the dark-blue, real leader-vehicle. For both objectives, the virtual
vehicle must produce a feasible path, meaning that the trajectory is in accordance with vehicle
dynamics.

leader-vehicle performs a sine steering maneuver. The computed control input is shifted in
time, compared to the real leader-vehicle steering input. This time shift is not because of
control limitations, but because the real leader-vehicle drives at a certain time headway tv (in
seconds) with respect to the virtual leader-vehicle. This time headway tv is required to real-
ize a positive prediction horizon, which is further explained in Sections 4-3 and 4-4. On top
of this time-shift, the control-signal is lags behind. This is because a proportional feedback
framework needs to allow error, before it computes control actions. Another downside of pro-
portional control is given by the possibility of control overshoot. Because of these weaknesses
an additional proposal is done for the Virtual Driver subsystem. This additional proposal is
based the framework of Model Predictive Control (MPC). The MPC methodology is further
explained in the Section 4-4. The behavior of this MPC implementation is also visualized
in Fig. 4-4, using the aforementioned illustrating example. It is known that the MPC strat-
egy generally has a higher computational burden compared to a simple proportional feedback
framework. This is caused by the fact that MPC is based on prediction and function optimiza-
tion. Therefore, it is hypothesized that the computed control input of MPC is more discrete,
compared to the control input obtained by proportional control. This is visualized by the
staircase-shape of the virtual leader control input computed by MPC in Fig. 4-4. Note that
the Virtual Driver framework allows incorporation of additional information, when available.
For instance, from inter-vehicular communication, steering information can be used in the
Virtual Driver subsystem. Alternatively, camera systems or roadside communication could
provide road curvature information to provide appropriate feedforward [18].

The proposed methodology allows for explicit incorporation of knowledge about the vehicle
dynamics in path generation, resulting in feasible vehicle paths. For instance, in vehicle-
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Fig. 4-4: The steering control inputs are compared. A real leader-vehicle is assumed to perform
a sine steering maneuver starting after 5 seconds. Consequently, the computed control inputs for
both the Virtual Driver implementations are shown. The control inputs are time-shifted versions
of the real leader-vehicle steering input, since the virtual vehicle drives at a certain time headway
tv (in seconds) with respect to the real leader-vehicle.

following, the preceding object is a vehicle: the leader-vehicle. Object classification techniques
can extend this knowledge by providing the type, brand or model of the vehicle. This knowl-
edge can be translated into a description of the leader-vehicle’s dynamic capabilities, which
can be described mathematically in the framework of a state transition model. This approach
allows for intuitive path generator tuning by parameters that have a direct connection with
the vehicle dynamics. This is in contrast to the polynomial path generation method, which
was discussed in Chapter 3.

Model-based Path Generation in literature

With the methodology proposed in this chapter, a new approach to path generation is con-
ceived. The approach is different from state-of-the-art path generation or path filtering meth-
ods found in literature. In literature, a Kalman Filter (KF) or Particle Filter (PF) (or one of
their variants) are often deployed for path filtering. However, for the generic field of applica-
tion, these filters do not provide a solution, since the system input is not available. Instead,
a virtual vehicle modeling approach is presented, where the model input is estimated by
proportional feedback (Section 4-3) or MPC (Section 4-4).

Alternatively, in literature, model-based path generation is done by using motion primitives.
For aerial vehicle motion planning, Bottasso et al. propose a novel method of smoothing given
waypoints [2]. The smooth path is obtained by using a transcribed version of the vehicle
dynamics expressed in terms of motion primitives. With this approach, the path planning
issue is solved by examining a limited set of motion templates that can be adopted in sequence,
such that the waypoints are reached [3]. To select a specific sequence of motion templates,
reaching the desired waypoints, a node search algorithm, e.g., Rapidly-exploring Random Tree
(RRT) [13], can be used. The method of computing the motion templates resembles MPC, in
the sense that it uses a system transition model, and computes a series of control inputs for a
certain time horizon, such that an objective function is minimized and certain constraints are
met. However, in the motion primitive method the predictions are computed offline and the
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Fig. 4-5: Virtual leader-vehicle model frame and state definitions

control inputs are not executed. Instead, the optimized feasible system state series is stored
in a library as motion templates. The resulting trajectories are compatible by design with the
vehicle model embedded in the motion primitives. The motion primitives consist of trims and
maneuvers. Trims are trajectories that operate at steady state model equilibria. Maneuvers
are the transitions between two trim trajectories [6]. The number of trims is a design choice.
Its selection affects the size of the motion primitive library. A large motion primitive library
can generate more exquisite trajectories, but the search process for an optimal trajectory is
then likely to take more time [3]. For the vehicle-following field of application, the motion
primitive method would lead to the necessity of having different libraries of motion primitives
for different types of vehicles. Consequently, matching a library to the specific leader-vehicle
at hand could be done by object classification techniques. However, this approach is sub-
optimal, since it would require a large amount of different pre-computed libraries containing
motion primitives for different types of vehicles. Clearly, this limits the usage of a path
generation system based on motion primitives. Moreover, a motion primitive-based method
would limit the generality of path generation, because the motion primitive framework lacks
tuning capabilities: the method does not deal with the existence of uncertainty on the exact
position of the waypoints, in contrast to the new methodology proposed in this chapter.

4-2 Virtual Leader Model

This section elaborates on the mathematical framework for the Virtual Leader Model subsys-
tem. The subsystem hierarchy was visualized in Fig. 4-1.

4-2-1 Design

The process model of the virtual leader-vehicle is used to evolve and predict the state behavior
of the virtual leader vehicle. The process model will be simulated on board of the follower-
vehicle. From the simulated virtual leader-vehicle, the state trajectory can be extracted. With
this state trajectory, a feasible reference path is obtained, which meets the non-holonomic
vehicle constraints. For the vehicle-following use-case, it is desirable that this state trajectory
is an accurate imitation of the real leader-vehicle’s trajectory.
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Let Fb denote the local reference frame attached to the follower-vehicle, at time instance
b. This is visualized in Fig. 4-5. Furthermore, let Mk denote the reference frame attached
to the virtual leader-vehicle, at time step k. The position of Mk is given by xFb

Mk
and yFb

Mk
,

which represent the x- and y-coordinate respectively of the origin of the virtual leader-vehicle-
attached reference frame Mk. Moreover, let ψFb

Mk
and δMk denote the heading and steering

angle respectively of the virtual leader-vehicle. The states xFb
Mk

, yFb
Mk

, ψFb
Mk

and δMk together
define the state of the virtual leader-vehicle at time step k. They form the model state vector
sFb
Mk

, given by:

sFb
Mk

=
[
xFb
Mk

yFb
Mk

ψFb
Mk

δMk

]T
. (4-1)

Assuming zero lateral velocity of the virtual vehicle is justified by the fact that the path
generation method will be used for the regular driving regime. Consequently, with a forward
velocity denoted by u and using a kinematic model, the time derivative of the virtual leader-
vehicle position is given by: [

ẋFb
Mk

ẏFb
Mk

]
=

[
u · cos(ψFb

Mk
)

u · sin(ψFb
Mk

)

]
. (4-2)

To incorporate vehicle dynamics, the kinematic model is extended with yaw and steering
dynamics. The yaw dynamics are modeled by the steady-state equation of the well-known
single-track bicycle model [18], with the assumptions of constant forward velocity, no lon-
gitudinal or lateral load transfer, linear range tires, no roll, pitch or vertical motion, no
suspension and no compliance effects [21]. These assumptions are justified, since the path
generation method will be used for the regular driving regime. The time derivative of heading
angle ψFb

Mk
is then given by the yaw velocity response:

ψ̇Fb
Mk

= u · δMk

L+ kus · u2 , (4-3)

where u is the forward velocity, L the wheelbase and kus the understeer gradient. Furthermore,
δMk is the steering angle state, also visualized in Fig. 4-5. The steering dynamics are modeled
by the following first order system:

δ̇Mk = δd − δMk

τ
, (4-4)

where δd is the driver input steering angle and τ the time constant characterizing the steering
state response.
Summarizing, the Virtual Leader Model dynamics are given by:

ṡFb
Mk

= f(sFb
Mk
, u, δd) =


u · cos(ψFb

Mk
)

u · sin(ψFb
Mk

)
u·δMk

L+kus·u2

(δd − δMk)/τ

 . (4-5)

4-2-2 Initialization

To initialize the simulation of the virtual leader-vehicle, initial states are required. These
states are based on using the final states from the previous optimization time step. Let the
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Fig. 4-6: Visualization of follower-vehicle ego-motion compensation for virtual leader-vehicle
modeling.

position of frame Mk, which is incorporated in the state vector sFb
Mk

, also be denoted by the
following vector:

pFb
Mk

=
[
xFb
Mk

yFb
Mk

]T
. (4-6)

Due to follower-vehicle ego-motion, this state vector must continuously be transformed from
reference frame Fb−1 to Fb. Therefore, for every initialization in a new frame Fb, the initial
state sFb

Mk=0
of the virtual leader-vehicle process model is given by its final state sFb−1

Mk=kfinal
.

This mapping is visualized in Fig. 4-6 and performed by:

sFb
Mk=0

= g(sFb−1
Mk=kfinal

) =

RFb
Fb−1
· (pFb−1

Mk
−∆OFb−1

Fb
)

ψ
Fb−1
Mk

−∆ψb
δMk

 , (4-7)

where ∆OFb−1
Fb

is the origin of the local follower-vehicle reference frame Fb, with respect to
Fb−1. This is given by the horizontal and vertical displacement of the follower-vehicle: ∆Xb

and ∆Yb respectively. Moreover, ∆ψb is the change in heading angle of follower-vehicle frame
Fb−1 to Fb. These variables, representing the ego-motion of the follower-vehicle, are visualized
in Fig. 4-6. Note that the steering state δMk does not require follower-vehicle ego-motion
compensation, since it is expressed in the local virtual vehicle frame Mk. Furthermore, RFb

Fb−1
is the rotation matrix, mapping vectors from Fb−1 to Fb, given by:

RFb
Fb−1

=
[

cos ∆ψb sin ∆ψb
− sin ∆ψb cos ∆ψb

]
. (4-8)

For the first initialization of the virtual leader-vehicle simulation in frame Fb, no previous
virtual leader-vehicle state is available. Therefore the first waypoint from the Waypoint
Storage w̃Fb is assumed as true initial position of Mk. Moreover, if the other state variables
can be assumed to be zero, then:

sFb
Mk=0

=
[
wFb

1 0 0
]T
. (4-9)
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This finalizes the definition of the mathematical framework for the Virtual Leader Model
subsystem. For the proposed process model, control inputs must be calculated, such that the
model states approach or track desired reference values. For path generation, these reference
values are given by the waypoint matrix w̃Fb from the Waypoint Storage subsystem. Note
that the proposed Model-based Path Generation method can also be deployed outside the
vehicle-following use-case, e.g., when the list of waypoints is user-defined or coming from a
strategic path planning layer. For any case, the virtual vehicle produces a feasible reference
path, meaning that it is in accordance with vehicle dynamics.

4-3 Proportional Feedback Controller

This section elaborates on an implementation of the Virtual Driver subsystem. The subsystem
hierarchy was visualized in Fig. 4-1. The implementation proposed in this section is based
on proportional feedback. The control objective was introduced in Section 4-1 and visualized
for different use-cases in Fig. 4-3. The Virtual Driver subsystem computes steering inputs for
the Virtual Leader Model, based on given waypoints. First, the set of waypoints needs to be
transformed. This is explained in section 4-3-1. Next, the transformed set of waypoints can be
used to compute the steering input for the Virtual Leader Model. For this, the proportional
control law is given in Section 4-3-2.

4-3-1 Waypoint Transformation

Given is the matrix of n+ 1 waypoints in the coordinate frame of the virtual leader-vehicle,
denoted by w̃Mk :

w̃Mk =

wi,x wi−1,x ... wi−n,x
wi,y wi−1,y ... wi−n,y

1 1 ... 1

 , (4-10)

where wi,x and wi,y represent the x- and y-coordinate of waypoint i respectively. The indi-
vidual waypoints in (4-10) are visualized in Fig. 4-7. The control action will be based on
the mismatch between the waypoints at a look-ahead distance, and the current state sFb

Mk
of

the virtual leader-vehicle [18]. For this purpose, the control variable ym is introduced. ym is
defined as the lateral distance error between the current position of the virtual vehicle and
the lateral position of wMk

i at a look-ahead distance xla. This is also visualized in Fig. 4-7. If
no waypoint is available at xla, the nearest waypoints are interpolated to obtain an expression
for ym.

The matrix of waypoints w̃Mk is obtained by continuously remapping of w̃Fb to the virtual ve-
hicle frameMk. This mapping is necessary because the Waypoint Storage subsystem provides
the waypoints in the follower-vehicle reference frame Fb, rather than in Mk. Note that this
mapping is time variant, because of the virtual vehicle’s ego-motion during the computation
of its states. The mapping is given by:

w̃Mk = TMk
Fb

w̃Fb , (4-11)
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Fig. 4-7: Visualization of Virtual Driver Proportional Control variable ym.

where TMk
Fb

represents the homogeneous transformation matrix, mapping vectors from follower-
vehicle frame Fb to virtual leader-vehicle frame Mk. This matrix is given by:

TMk
Fb

=
[
RMk
Fb

−RMk
Fb
· pFb

Mk

01×2 1

]
, (4-12)

where the relative virtual leader-vehicle position pFb
Mk

is given by (4-6). Furthermore, the
rotation matrix RMk

Fb
is given by:

RMk
Fb

=
[

cosψFb
Mk

sinψFb
Mk

− sinψFb
Mk

cosψFb
Mk

]
. (4-13)

The required virtual leader-vehicle model states xFb
Mk

, yFb
Mk

and ψFb
Mk

were previously defined
and visualized in Fig. 4-5.

4-3-2 Proportional Control Law

The control law is given by the following equation:

δd = Kp · ym, (4-14)

where δd represents the control steering input of the Virtual Driver. Moreover, Kp is the
proportional gain, which is determined by realizing a certain driving radius that reduces the
lateral distance error to zero at the virtual look-ahead distance xla. This control law allows
computation of steering actions based on the given set of transformed waypoints. Further-
more, in analogy with human driving, the look-ahead distance should increase with velocity
[18]. For this reason, a look-ahead time tla is introduced. Consequently, the proportional gain
Kp is given by:

Kp = 2 · L+ kus · u2

d2
la

, (4-15)

where dla is visualized in Fig. 4-7 and is computed by (4-16). Furthermore, u is the assumed
forward velocity, L the wheelbase and kus the understeer gradient of the Virtual Leader
Model.

dla = lr + u · tla (4-16)
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28 Model-based Path Generation

This finalizes the first proposal for the implementation of the Virtual Driver subsystem. The
behavior of this controller implementation was already discussed in Section 4-1. Because of
the weaknesses inherent to proportional control, an additional proposal is done for the Virtual
Driver subsystem implementation. This additional proposal is based on the MPC framework.
This approach is further explained in the Section 4-4.

4-4 Model Predictive Controller

This section elaborates on a second implementation of the Virtual Driver subsystem. The im-
plementation proposed in this section is based on the MPC framework. Section 4-3 described
a control system that generates necessary inputs for the Virtual Leader Model: steering the
vehicle in such a way that the resulting position states approach the given waypoints. This
approach is not optimal because the steering input is only computed once an error already
occurred. This is a fundamental characteristic of the proportional feedback control strategy.
In practice, a human driver does not let error occur first, only to compensate proportionally
to this error afterwards. Instead, the driver anticipates on future errors and undertakes action
to avoid these future errors. This approach is very well represented by the MPC methodol-
ogy. The goal is to find the optimal sequence of control actions for the Virtual Leader Model,
such that it minimizes current and future errors yMk

e . These errors are defined as the offset
between the predicted, future virtual vehicle states and given waypoints. This is visualized in
Fig. 4-8. The errors yMk

e are used in the optimization of an mathematical objective function
J , leading to a sequence of optimal control actions. This will be explained in Section 4-4-1.
MPC is a methodology of controller design [22]. For path generation, the resulting Virtual
Driver computes model inputs for the virtual leader-vehicle. The MPC framework is selected,
because it can handle constraints on control actions and system states in a systematic way
during design and implementation [22]. Moreover, MPC allows to compute optimal steering
control actions based on prediction, analogue to how a human drives a vehicle. At a certain
time step, a forward predicting optimization is run, minimizing an objective function J .
The function J is minimized by computing a sequence of future control actions δ̃d. MPC is
based on a receding horizon principle. This principle results in only the first control action
being applied, instead of the complete sequence of optimized control actions δ̃∗

k at time step
k. Consequently, at the next time step, the optimization is run again. A new sequence of
optimized control inputs δ̃∗

k+1 is calculated, minimizing the objective function J . Again, only
the first input of the sequence is applied. This process is visualized in Fig. 4-8. The amount
of control inputs δd(k), in the computed sequence δ̃∗

k, depends on the control horizon Nc. This
is a tuning parameter that is further discussed in Section 4-5. After the control horizon, for
k > Nc, the control signal δd(k), in the sequence δ̃∗

k, is taken to be constant [7].

4-4-1 Objective Function

The goal is to make the virtual leader-vehicle, with associated frameMk, track the waypoints.
The waypoints are used as the reference signal. The steering input to the model is used as a
control signal to evolve the states sFb

Mk
in such a way that Mk tracks the reference signal.

Define the sampling time of the integration of the Virtual Leader Model equations of motion
to be Ti. Let Tm denote the sampling time of Waypoint Source and the optimization of MPC.
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4-4 Model Predictive Controller 29

Fig. 4-8: A visualization of MPC for virtual leader-vehicle modeling. The future Virtual Leader
Model state predictions are shown in transparent light-blue. MPC is based on minimizing future
position state offsets from the waypoints. These offsets are denoted by yMk+1

e ... yMk+N
e , where

N is the prediction horizon. This minimization is realized by computing a sequence of optimal
control inputs δ̃∗

k. Only the first control input of this sequence is applied, visualized by the solid
line in the control input optimization graph. Consequently, at the next time step, the optimization
is run again and a new sequence of optimized control inputs δ̃∗

k+1 is calculated.

The sampling time ratio is defined by:

q = Tm
Ti
. (4-17)

Furthermore, let wFb
z with z = 1 ... N denote a sequence of the first N waypoints from the

Waypoint Storage matrix w̃Fb . The MPC optimization problem is given by the minimization
of objective function J . This objective function consists of the squared sum of the current
and predicted lateral errors yMk

e , given by:

J(pFb
Mk
,wFb

z ) =
N∑

z=Nm

(pFb
Mq·z+1

−wFb
z )T · (pFb

Mq·z+1
−wFb

z ), (4-18)

where the subscript operation with sampling time ratio q is necessary to synchronize the
Virtual Leader Model states and the waypoints. Note that Fig. 4-8 only shows the simplest
scenario, where the Virtual Leader Model states and waypoints are already synchronized.
Furthermore, Nm is the minimum cost horizon tuning parameter, which is further explained
in Section 4-5. Now let the sequence of model inputs at time step k be given by:

δ̃k =
[
δd(k) δd(k + 1) ... δd(k +Nc)

]T
. (4-19)

The optimal control sequence δ̃∗
k, is then given by:

δ̃∗
k = arg min

δ̃k

J(pFb
Mk
,wFb

z ) (4-20)

subject to the Virtual Leader Model equations (4-5) and (4-7). For Nc < k < N the control
input is kept constant with a value equal to δ∗

k=Nc
. This is related to smoothing the control
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30 Model-based Path Generation

signal and improving the robustness of the algorithm, for which Nc is the tuning parameter.
The resulting optimized control sequence δ̃∗

k forces the virtual leader-vehicle to track the
reference signal, which was given by the waypoints.

To set operating limits on the range of available control inputs, inequality constraints are
used. The optimization problem of (4-20) will be solved subject to these constraints. The
constraints model the physical phenomenon of actuator saturation, e.g., minimum and max-
imum allowable steering angle. The following constraints can be considered:[

δd(k)
−δd(k)

]
≤

[
δmax
−δmin

]
∀k, (4-21)

where δmax and δmin represent the minimum and maximum achievable steering angles re-
spectively. This mathematical framework of optimization subject to inequality constraints
can also be used to limit the rate of change of the steering angle input, when its limit is
known: [

δd(k + 1)− δd(k)
−(δd(k + 1)− δd(k))

]
≤

[
δ̇maxTm
−δ̇minTm

]
∀k, (4-22)

where δ̇max and δ̇min represent the minimum and maximum achievable rate of change of
steering angle respectively and Tm the sampling time of the optimization.

Note that for the non-ideal case, with Waypoint Noise, the control signal should be conser-
vative, realizing imperfect reference tracking. For this non-ideal case, the imperfect reference
tracking is required because it results in filtering the noise-corrupted waypoints with the Vir-
tual Leader Model, resulting in a feasible vehicle path. This different control objective was
explained in Section 4-1 and visualized in Fig. 4-3. The different control objectives can be han-
dled by tuning the MPC algorithm, which is further explained in Section 4-5. Alternatively,
a variation to the proposed objective function can be designed, for instance, by incorporating
knowledge on the uncertainty of the waypoints. In this way, the control objective of not ex-
actly tracking the noise-corrupted waypoints can be incorporated in the design phase, rather
than obtaining the desired noise-rejecting characteristics by tuning. This alternative objective
function design left for future research.

4-4-2 Stability

The drawback of MPC is that although, in practice, stability and robustness are easily ob-
tained by accurate tuning, theoretical analysis of stability and robustness properties are dif-
ficult to derive [22]. Currently, the development of a general stability and robustness theory
for predictive control is an important research topic. For the path generation functionality,
the stability of the model-based controller can be forced by explicitly defining an end-point
constraint, in the form of:

sFb
Mk=N

= sFb
ss . (4-23)

When (4-20) is solved subject to this constraint, the state at the prediction horizon N is forced
to a steady-state value sss. Defining and imposing such an end-point constraint would be in
favor of stability. However, it may also lead to infeasibility of the optimization problem [22].
For path generation, infeasibility of the optimization is more likely to occur when the Virtual
Leader Model headway time tv decreases. The reason for this is that the maximum possible
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prediction horizon N decreases with decreasing virtual vehicle time headway tv, since less
waypoints will be available in front of the virtual vehicle (see Fig. 4-2). Another downside of
the end-point constraint is that the tuning capability associated with the prediction horizon
N is lost. This is because the system will be forced to steady state at the end of the control
horizon Nc. Alternatively, a soft end-point constraint can be considered. A soft end-point
constraint can be realized by adding it to the objective function as terminal constraint set
[22]. This alternative objective function design left for future research, since it is expected
that stability (with bounded generated paths) is easily obtained by tuning. This expectation
is confirmed by numerical simulations (Chapter 5).

4-5 Tuning Parameters

The values for the Virtual Leader Model parameters u, L, kus and τ determine the dynamic
capability of the virtual vehicle. As a result, the Model-based Path Generation method allows
for intuitive path generation tuning by parameters that have a direct connection with vehicle
dynamics. Clearly, for the vehicle-follow use-case, the parameter values should represent the
real leader-vehicle as accurate as possible. For instance, forward velocity u can be set based
on leader-vehicle speed measurements from radar systems.
The Proportional Control implementation of the Virtual Driver results in the availability
of look-ahead time tla as extra tuning parameter. This parameter defines the look-ahead
distance of the controller, influencing the proportional feedback gain.
The proposed MPC-based implementation results in the availability of the following three
extra tuning parameters: Nm, N , and Nc, representing the minimum-cost, prediction and
control horizon respectively. Tuning these parameters is necessary to obtain accurate and
robust tracking of the given waypoints.
The setting of minimum cost horizonNm determines when the errors yMk

e start to influence the
control input optimization. The optimization is only being influenced by occurring position
errors yMk

e for k > Nm. Clearly, for vehicle-following, it is desirable to set Nm equal to one,
resulting in all position errors yMk

e being incorporated in the optimization. For other use-
cases, where only the end-position of the Virtual Leader Model matters, a different choice of
Nm is necessary.
Prediction horizon N determines the number of prediction samples being used in the op-
timization of control input sequence δ̃∗

k. In other words: N sets how far the algorithm is
looking ahead. As a result, N determines based on how much information the sequence δ̃∗

k is
computed. In the optimization, a compromise is found between all predicted errors yMk

e , such
that their squared sum is minimized. This means that the larger N is, the more errors yMk

e

will be involved in the found compromise. As a result, N also has an effect on the Waypoint
Noise rejection characteristics.
Control horizon Nc determines how many different control inputs are calculated in the se-
quence of optimized control inputs δ̃∗

k. For Nc > k > N the control input is kept constant
with a value equal to δ∗

k=Nc
. This has a direct influence on the control nervousness and ro-

bustness. Moreover, setting Nc smaller than N reduces the dimension of the optimization
search-region. As a result, Nc also has a large influence on the computational demand of the
optimization.
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32 Model-based Path Generation

Moreover, with the MPC Virtual Driver, the path generation behavior can be influenced by the
operating limits on the range of available control inputs. The values set for δmax, δmin, δ̇max
and δ̇min determine the allowed steering aggressiveness of the Virtual Driver. Consequently,
they also determine the turbulence of the generated reference path, i.e. the trajectory of the
virtual vehicle.

This finalizes the analysis of the new Model-based Path Generator. The reference path is
obtained by extracting it from the Virtual Leader Model state history. Note that for this
extraction, the state history must also continuously be compensated for ego-motion of the
follower-vehicle. This compensation was given by (4-7). By design, the Model-based Path
Generation methodology results in continuous paths that are compatible with the vehicle
dynamics. Moreover, the resulting path can be tuned by intuitive tuning parameters. The
complete mathematical framework is implemented in the custom-built simulator. This simu-
lator will be used to emulate the path generation functionality of different path generators.
With simulations, the performance, robustness, and continuity of the path generators can be
evaluated. The design and the results of this evaluation are given in Chapters 5 and 6.

4-6 Summary

As alternative to polynomial fitting, a new Model-based Path Generation method is presented.
The new method consists of modeling a virtual leader-vehicle: the Virtual Leader Model.
The steering inputs for this Virtual Leader Model are given by a control system: the Virtual
Driver. Two different control implementations of the Virtual Driver are presented. The
first implementation is given by Proportional Control, using a virtual look-ahead distance.
Based on given waypoints at this look-ahead distance, the control actions are calculated. The
second Virtual Driver implementation is given by MPC. Using model predictions, an optimal
control input sequence is computed, based on real-time optimization of an objective function.
Consequently, the reference path is obtained by extracting it from the Virtual Leader Model
state history. By design, the Model-based Path Generation methodology results in continuous
paths that are compatible with the vehicle dynamics. Moreover, the resulting path can be
tuned by intuitive tuning parameters.
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Chapter 5

Simulations

In preceding chapters, three different polynomial fitting and two model-based path generation
methods are presented. To validate and assess the performance of the five different methods,
performance criteria must be defined. Section 5-1 presents the definitions of these performance
criteria.

The evaluation of the performance criteria is based on numerical simulations and experiments.
The numerical simulations are carried out using a custom-built simulator. The mathematical
models defined in preceding chapters form the basis of this custom-built simulator in Matlab
& Simulink. The simulator is further explained in Section 5-2.

The results from emulating different scenarios are given in Section 5-3. Finally, in Section
5-4, conclusions are drawn based on the obtained results.

5-1 Performance Criteria

To validate and assess the performance of the five different path generating methods, the
resulting paths must be evaluated. The generic vehicle-following field of application allows
for this evaluation, since the generated path can be interpreted as a reconstruction of the
leader-vehicle’s factual path. Consequently, path generation performance is related to the
accuracy of reconstruction. An error between the path driven by the real leader-vehicle and
the path resulting from the path generator, will be referred to as a reconstruction error.

In lateral vehicle control, path distance, heading, and curvature are used. The path curvature
is required to provide appropriate feedforward [18]. Therefore, as performance criteria, three
different types of reconstruction errors are defined. The reconstruction errors will be denoted
by ye, ψe and κe. These errors represent the lateral distance, heading and curvature error
respectively, evaluated at the origin of the follower-vehicle reference frame Fb. For clarity, the
lateral distance error at time step b (ybe) is visualized in Fig. 5-1. Let ygt denote the relative
lateral distance of the ground truth, real leader-vehicle path. Furthermore, let ψgt be the
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Fig. 5-1: A visualization of the reconstruction error ybe, which is given by the lateral distance
between the real leader-vehicle path ygt and the generated path yb, evaluated at xb = 0. The
generated path yb is the result of either Polynomial Fitting or Model-based Path Generation.

ground truth heading angle of this path. Moreover, the ground truth curvature is obtained
by:

κgt = rgt
ugt

, (5-1)

where rgt is the yaw rate of the real simulated leader-vehicle and ugt its longitudinal velocity.
This is an estimation of the curvature that neglects lateral acceleration, which is justified by
the fact that a normal driving scenario is considered. The ground truth variables ygt, ψgt,
and κgt are all obtained by extracting the real leader-vehicle states from the Waypoint Source
simulation, which is further explained in Section 5-2.

5-1-1 Error Calculation for Polynomial Fitting

Polynomial path generation results in obtaining the polynomial coefficients c0 ... cn, expressed
in the follower-vehicle coordinate frame Fb. The third order polynomial path is given by:

yb(xb) = c3 · x3
b + c2 · x2

b + c1 · xb + c0, (5-2)

where the polynomial coefficients c0 ... cn vary as reference frame Fb is in motion and the
polynomial is repetitively re-fitted.

Calculation of ye

Let ye at time instance b be denoted by ybe. For a third order polynomial path, ybe is calculated
by evaluating the polynomial coefficients. The error is given by the difference between the
polynomial function value at xb = 0 and the lateral distance of the ground truth leader-vehicle
path. This difference is given by:

ybe = ygt|xb=0 − yb|xb=0. (5-3)

Calculation of ψe

Similarly, let ψbe denote the heading error at time instance b. The error is given by the
difference between the heading of the polynomial path and the heading of the ground-truth
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path, both evaluated at xb = 0. The polynomial path heading is given by:

ψb|xb=0 = tan−1(dyb
dxb
|xb=0), (5-4)

where
dyb
dxb

= 3c3x
2
b + 2c2xb + c1. (5-5)

Consequently, the heading reconstruction error is given by:

ψbe = ψgt|xb=0 − ψb|xb=0. (5-6)

Calculation of κe

Finally, let κbe denote the curvature error at time instance b. The polynomial path curvature
at xb = 0 is computed by:

κb|xb=0 =
d2yb

(dxb)2 |xb=0

(1 + ( dyb
dxb
|xb=0)2)

3
2
, (5-7)

where dyb
dxb

is given by (5-5) and the second derivative of the polynomial is given by:

d2yb
(dxb)2 = 6c3xb + 2c2. (5-8)

Consequently, the curvature reconstruction error κbe is given by:

κbe = κgt|xb=0 − κb|xb=0. (5-9)

5-1-2 Error Calculation for Model-based Path Generation

For Model-based Path Generation, let the lateral distance of the generated path at time step
b also be denoted by yb. Similarly, let ψb and κb denote the virtual leader’s path heading and
curvature respectively. yb is obtained by storing and extracting the state vector sFb

Mk
from the

Virtual Leader Model. More specifically, yb is obtained from state yFb
Mk

, which was defined in
Section 4-2.

The lateral distance error ybe is given by the difference between the ground truth leader-vehicle
path ygt and the virtual leader-position history yb, both evaluated at xb = 0. Consequently,
the lateral distance error ybe is found by (5-3).

Similarly, ψbe is obtained from the virtual leader-vehicle’s heading state and computing the
difference given by (5-6).

The curvature of the virtual leader-vehicle’s path κb can be obtained by:

κb =
ψ̇Fb
Mk

ub
, (5-10)
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where ψ̇Fb
Mk

is the yaw rate, also extracted from the virtual leader-vehicle’s state history.
Moreover, ub represents the longitudinal virtual vehicle’s velocity. Consequently the curvature
reconstruction error κbe is given by (5-9).

Note that computing the reconstruction errors is based on evaluating different function values
at the longitudinal location of the follower-vehicle, i.e. at xb = 0. When there is no function
value defined for exactly xb = 0, it is found by linear interpolation.

5-1-3 Discontinuity Quantification

Another performance criterion is obtained when quantifying the discontinuity of a generated
path. This quantification is done by computing the differences in generated path variables
yb, ψb, and κb between two consecutive samples as follows:

diff(yb) = yb(k + 1)− yb(k),
diff(ψb) = ψb(k + 1)− ψb(k), (5-11)
diff(κb) = κb(k + 1)− κb(k),

where k is a simulation time step. As a result, the values of diff(yb), diff(ψb) and diff(κb) are
related to the discontinuity of the path. This approach is motivated by the intuitive physical
meaning of the computed differences. For instance, diff(yb) represents the jump in lateral
position of the path in units of meter. This jump is directly related to the discontinuity of
the generated path and can be put into perspective by comparing it to the width of the road
or the discontinuity of the ground truth path (when available). Paths with large jumps in
the path variables will be referred to as discontinuous paths. In contrast to this, paths with
smaller jumps in the path variables will be referred to as more continuous paths. Note that
this continuity interpretation deviates from the formal continuity definition, which is related
to differentiability.

5-2 Simulator description

The mathematical models defined in preceding chapters form the basis of this custom-built
simulator in Matlab & Simulink. The simulator is based on simulating two vehicles, where
the first vehicle is the leader-vehicle and the second is the follower-vehicle. The follower-
vehicle has onboard radar and camera systems, providing the relative leader-vehicle position
measurements. This illustrating Waypoint Source is given by the Standard Sensor Systems.
The mathematical models required for this Waypoint Source are reported in Appendix A.
Based on analysis of TNO’s Carlab, the waypoint sampling frequency is set to 10 Hz.

Using the output of the Waypoint Source, the implementation of the Waypoint Storage sub-
system is run (see Fig. 2-1). The output of this subsystem is a list of (possibly noise-corrupted)
waypoints. The waypoints are expressed in the local coordinate frame attached to the follower-
vehicle Fb. Based on these waypoints, a path generation system is deployed.

In the custom-built simulator, all five different path generation systems from Chapters 3 and
4 are implemented. The output of the polynomial fitting methods, are lists of polynomial
coefficients c0 ... cn. The output of the Model-based Path Generation implementations, are
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Fig. 5-2: A visualization of the simulated scenario. The vehicles drive at separate lanes at
100 km h−1. The follower-vehicle follows the leader-vehicle at a headway time of 1.3 s. In meters,
this headway is: 1.3 s · 27.78 m s−1 = 36.11 m.

lists of states sFb
Mk

of the Virtual Leader Model. The values of the required path generation
tuning parameters are reported in Section B-3 of Appendix B.

Simulated Scenarios

A general path generation scenario is simulated, analogue to the generic field of application
described in Chapter 2. The vehicles are modeled by single-track bicycle models with param-
eters given in Table B-1 of Appendix B. The vehicles drive on a simulated straight highway
with two 3.5 m wide lanes. The leader-vehicle is assumed to drive on the left lane. The
follower-vehicle is assumed to drive on the right lane, behind the leader-vehicle, at a head-
way time of 1.3 s. Both vehicles drive at a speed of 100 km h−1. This simulation scenario is
visualized in Fig. 5-2.
The steer inputs to the vehicles are designed such that the vehicles perform lane-changes,
staying on the two-lane road, and keeping their lateral accelerations limited. The designed
steer input to the vehicles is shown in Fig. B-1 of Appendix B. This steering input results in
a maximum occurring heading angle of 0.0377 rad with respect to the road. Moreover, the
maximum occurring steering rate and lateral acceleration are 5.2× 10−3 rad s−1 and 0.7 m s−2

respectively. This represents a normal driving scenario. This main scenario is split into
two sub-scenarios. The first sub-scenario is given by the leader-vehicle performing the lane-
changes, while the follower-vehicle drives straight. The second sub-scenario is given by the
follower-vehicle performing the lane-changes, while the leader-vehicle drives straight.

5-3 Simulation Results

First, the two sub-scenarios are simulated with and without real-world disturbances, defined
in Section 2-3. The simulated real-world scenarios include the expected magnitudes of the
real-world disturbances. The results for two simulated ideal-world sub-scenarios, without
real-world disturbances, are presented in Section 5-3-1. Subsequently, the results for two
simulated real-world sub-scenarios, with real-world disturbances, are presented in Section 5-
3-2. The maximum occurring reconstruction errors for all scenarios are given in Table B-3
of Appendix B. Finally, an extra scenario with user-defined waypoints is emulated. This
extra scenario is presented in Section 5-3-3. For notation purposes, let the different path
generation methods be denoted by numbers: Unconstrained Polynomial Fitting (Method 1),
Heading Constrained Polynomial Fitting (Method 2), Curvature Constrained Polynomial Fit-
ting (Method 3), Model-based Path Generation with Proportional Control (Method 4), and
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Model-based Path Generation with MPC (Method 5). An overview of this notation is also
given in Table 5-1.

Path Generation Method Notation
Unconstrained Polynomial Fitting Method 1

Heading constrained Polynomial Fitting Method 2

Curvature constrained Polynomial Fitting Method 3

Model-based Path Generation with Proportional Control Method 4

Model-based Path Generation with Model Predictive Control (MPC) Method 5

Table 5-1: Shorthand notation for different path generation methods.

5-3-1 Simulation in the Ideal World

In the first ideal-world sub-scenario, the leader-vehicle is performing the sine steering maneu-
ver. The computed Virtual Driver steer inputs are shown in the left plot of Fig. 5-3. Both
computed Virtual Driver steering inputs show similarity with the real leader-vehicle steering
input, but shifted in time. This time-shift was explained in Section 4-1: it resulted from the
virtual vehicle driving at a certain headway time tv with respect to the real leader-vehicle.
For this sub-scenario, the maximum occurring path generation reconstruction errors for all
path generation methods are given in Table B-3a of Appendix B. To illustrate the overall per-
formance of all five path generation methods, the reconstruction errors are plotted in Fig. 5-4.
The main observation is that largest error is given by Method 4, which is 0.0379 m. This error
can be regarded as negligible, considering the road lane width of 3.5 m.

In the second ideal-world sub-scenario, the follower-vehicle is performing the sine steering
maneuver. The computed Virtual Driver steer inputs are shown in the right plot of Fig. 5-3.
In this scenario version, the real leader-vehicle drove straight, without steering. All com-
puted steering inputs are smaller than 6× 10−4 rad, approaching zero and resembling the real
leader-vehicle’s steering input. For this sub-scenario, the resulting maximum occurring path
generation reconstruction errors are given in Table B-3b of Appendix B. The main observation
is that largest error is given by Method 2, which is 0.0324 m.

5-3-2 Simulation with real-world disturbances

Now real-world disturbances, as described in Section 2-3, are introduced. In the first real-
world sub-scenario, the leader-vehicle is performing the sine steering maneuver. The computed
steering inputs of the two Virtual Driver implementations for Model-based Path Generation,
Methods 4 and 5, are shown in the left plot of Fig. 5-5. The figure clearly shows that
the steering inputs of Method 4 are more turbulent and less bounded than the inputs of
Method 5. In the second real-world sub-scenario, the follower-vehicle is performing the sine
steering maneuver. For this case, the computed steer inputs of Methods 4 and 5 are shown
in the right plot of Fig. 5-5. Clearly, both Virtual Drivers do not exactly imitate the real
leader-vehicle’s steering input in these real-world scenarios. This is caused by the fact that the
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Fig. 5-3: The computed Virtual Driver Steering inputs in the ideal-world are shown and compared
to the real leader-vehicle steering input. In the scenario of the left plot, the leader-vehicle performs
the given sine steering input (and the follower-vehicle drives straight). Clearly, both Virtual Drivers
approach the real leader-vehicle’s steering input, shifted in time. In the scenario of the right plot,
the leader-vehicle drives straight (and the follower-vehicle performs the given sine steering input).
Note the different scale on the vertical axis.

Virtual Drivers now have to deal with the real-world disturbances. The resulting maximum
reconstruction errors for all methods are given in Table B-3c and B-3d of Appendix B. Despite
the fact that the real leader-vehicle steer input is not precisely imitated, the resulting Virtual
Leader Models lead to accurate path reconstruction. To illustrate the overall performance
of all five path generation methods, the reconstruction errors are plotted in Fig. 5-6. From
the figures, it is clear that all three polynomial fitting methods (Methods 1, 2, and 3) result
in paths with discontinuities in the error variables. Here, the informal interpretation of
(dis)continuity is meant, which was explained in Section 5-1-3. Besides that, note that the
paths merely look C1-continuous (differentiable), due to the line plot, connecting the data.
In practice, the paths are not continuous in terms of differentiability.

The unconstrained polynomial fit shows discontinuity in both ψe and κe. The heading con-
strained polynomial fit shows continuity in ψe, but discontinuity in κe. The curvature con-
strained polynomial fit shows continuity in κe, but discontinuity in ψe. In contrast to this,
the plots show that the new Model-based Path Generation Methods 4 and 5 provides con-
tinuous results for all three error variables. This was to be expected since vehicle dynamics
were explicitly incorporated in the Virtual Leader Model that has produced the trajectories.
Moreover, Methods 4 and 5 show small reconstruction errors, compared to Methods 1, 2,
and 3. The maximum occurring reconstruction errors are shown in Tables B-3c and B-3d
of Appendix B. With Methods 4 and 5, the maximum occurring reconstruction error ye is
0.108 m, compared to 0.245 m for Method 1 (in the second sub-scenario). Moreover, consid-
ering the path heading, the maximum occurring ψe is 0.008 rad, compared to 0.049 rad for
Method 1. Finally, also the path curvature reconstruction error κe of Method 5 is smaller:
0.0009 m−1, compared to 0.0080 m−1 for Method 1. Summarizing, the paths resulting from
the new Model-based Path Generation methods are not only more continuous, but also have
minimum reconstruction error, compared to the polynomial fitting benchmark method. The
continuity in path generation is further investigated and quantified in the next paragraph.

Fig. 5-7 shows the generated path in the simulation time interval from 15 s to 20 s. This
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Fig. 5-4: The performance of the different path generators in the ideal-world is shown. The real-
world disturbances are absent and the leader-vehicle is performing the sine steering maneuver,
while the follower-vehicle drives straight. The reconstruction errors are plotted as functions of
simulation time. All graphs start at the time instance at which the Waypoint Storage subsystem
contains sufficient waypoints.
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Fig. 5-5: The computed Virtual Driver Steering inputs in the real-world simulation are shown,
compared to the real leader-vehicle steering input. In the scenario of the left plot, the leader-
vehicle performs the given sine steering input (and the follower-vehicle drives straight). In the
scenario of the right plot, the leader-vehicle drives straight (and the follower-vehicle performs the
given sine steering input). Due to the real-world disturbances, the Virtual Driver inputs differ
from the real leader-vehicle’s steering input.

time interval is chosen because it makes the figure more clear to read. Moreover, the goal
of the figure is to show the (dis)continuity of the resulting paths. For this, the chosen time
interval suffices. The generated path is expressed in yb, the lateral distance with respect to
the local follower-vehicle reference frame Fb. Also, the path heading ψb and curvature κb
are shown in Fig. 5-7. The discontinuous character of polynomial fitting path generation is
clearly visible in this figure. To quantify this discontinuity, Fig. B-2 of Appendix B shows
the differences in generated path variables yb, ψb and κb, between two consecutive samples.
These differences are calculated by (5-11). In Fig. B-2, the discontinuities are given by the
jumps in the graphs. The maximum occurring jump, i.e., the maximum occurring difference
in path variables yb, ψb and κb, are summarized in Table B-4 of Appendix B. Observed
is that polynomial fitting with heading constraint (Method 2) and with curvature constraint
(Method 3), provide smaller jumps in their corresponding constrained path variable. This was
theoretically substantiated in Section 3-2. The main observation is that the new Model-based
Path Generation Methods 4 and 5 provide paths with the smallest jumps in path variables.
For instance, comparing Method 5 to Method 1, the maximum occurring jumps in yb are
smaller by one order of magnitude. For the heading ψb and curvature κb, Method 5 realizes
a decrease in discontinuity by two orders of magnitude.

5-3-3 Simulation with user-defined waypoints

Finally, an extra scenario is simulated, in which the Waypoint Source is not given by the
Standard Sensor Systems detecting a leader-vehicle. Instead, the waypoints are user-defined,
based on an extreme maneuver. Evaluating the performance of all path generators for this
maneuver scenario identifies robustness of the path generation methods for extreme maneuver
vehicle-following. Moreover, it demonstrates the generality of the new model-based path
generation method. The new method is capable of producing feasible trajectories based on
unfeasible waypoints. Unfeasible waypoints are waypoints that are not (re)producible by a
vehicle, e.g., because they do not satisfy the non-holonomic motion constraints.
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Fig. 5-6: The performance of the different path generators in the real-world simulation is shown.
The real-world disturbances are Waypoint Noise, Delay, Offset and Motion Parameter Noise. The
leader-vehicle is performing the sine steering maneuver, while the follower-vehicle drives straight.
The reconstruction errors are plotted as functions of simulation time. Clearly, the new Model-
based Path Generation Methods 4 and 5 provide continuous paths with and small reconstruction
errors, in contrast to the Polynomial Fitting Methods 1, 2 and 3. All graphs start at the time
instance at which the Waypoint Storage subsystem contains sufficient waypoints.
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Fig. 5-7: The generated path variables yb, ψb, and κb, from simulating the real-world scenario,
are shown. Method 2 clearly shows a continuous heading variable ψb, which was expected from the
heading constrained polynomial fitting method. Similarly, curvature constrained fitting Method 3
clearly shows a continuous curvature variable κb. Overall, the plots show the that new Model-based
Path Generation Methods 4 and 5 provide more continuous paths, compared to the Polynomial
Fitting Methods 1, 2 and 3.
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Fig. 5-8: This figure shows the incapability of the polynomial path generation methods to provide
a smooth, continuous path, based on user-defined (extreme maneuver) unfeasible waypoints. The
path resulting from the repetitive polynomial fitting is discontinuous because of the jumps in
computed polynomial coefficients. This phenomenon was visualized in Fig. 3-3

.

The user-defined waypoints represent a sudden, discontinuous change of lanes, starting after
ten seconds of straight driving. These waypoints are fed to the different path generation
methods. For this specific scenario, the Model-based Path Generation implementations were
re-tuned: the look-ahead-time tla for Proportional Control was set to 2.0 s and the prediction
horizon for both implementations was set to N = 35, which corresponds (with waypoints
sampled at approximately 2.78 m distance) to approximately 100 m. The intuition behind
this is given by how a human would perform the lane-change: by anticipating on the future,
making forward predictions in the same order of magnitude as the chosen values for tla and
N . The values of the rest of the tuning parameters remained unchanged (see Section B-3 of
Appendix B).

The resulting Polynomial Fitting paths of Methods 1, 2, and 3 are given in Fig. 5-8. The
figure clearly shows the incapability of these methods to provide a continuous path, based on
the user-defined, unfeasible waypoints (extreme maneuver). In Model-based Path Generation,
the Virtual Driver implementations compute steering actions for the virtual vehicle. In this
case, the steering actions are based on the user-defined waypoints. The computed steering
actions are shown in Fig. 5-9. The resulting paths are given in Fig. 5-10. The figure clearly
shows the capability of Methods 4 and 5 to provide a continuous path, based on a user-defined
extreme maneuver. The Proportional Control implementation of the Virtual Driver shows the
overshoot that was to be expected from a proportional feedback system. The Proportional
Control lets errors (at a virtual look-ahead-distance) occur first, prior to taking action. In
contrast to this, the MPC implementation of the Virtual Driver shows the desired behavior.
The resulting path is not only continuous, but also imitates the behavior of a human-driver
performing the lane-change. Similar to the human-driver, the MPC Virtual Driver performs
forward predictions, minimizing potential look-ahead errors. The continuity of the resulting
paths is quantified by calculating the differences in generated path variables yb, ψb and κb,
between two consecutive samples, given by (5-11). The maximum occurring difference in
path variables yb, ψb and κb, are summarized in Table B-5 of Appendix B. Here, the main
observation is that Methods 4 and 5 provide more continuous reference paths than Methods
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Fig. 5-9: The computed Virtual Driver steering actions are shown. Clearly, the MPC Virtual
Driver starts steering earlier, anticipating on future offsets from the user-defined waypoint ref-
erence path. The Proportional Control lets errors (at a virtual look-ahead-distance) occur first,
prior to taking action.
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Fig. 5-10: This figure shows the capability of the Model-based Path Generation methods to pro-
vide a smooth, continuous path, based on user-defined (extreme maneuver) unfeasible waypoints.
The Proportional Control Virtual Driver implementation results in a feasible path with a small
overshoot, whereas the MPC implementation provides the desired reference tracking behavior.

1, 2, and 3.

For completeness, a snapshot of the simulation is shown in Fig. 5-11. The sequence of user-
defined waypoints is visualized by the black dotted line in the figure. An instantaneous
unconstrained polynomial fit is given by the smooth red curve. Note that this red curve is
instantaneously continuous, because it is a snapshot of one single polynomial, rather than
the path resulting from a sequence of polynomials. This was explained in Section 3-2 and
visualized in Fig. 3-3. The desired reference path result is given by the new Model-based
Path Generation method with the MPC Virtual Driver implementation. The resulting Vir-
tual Leader Model trajectory is given by the light-blue line, representing the state-history of
the virtual-vehicle. This example scenario demonstrates the general applicability of the new
Model-based Path Generation method with the MPC Virtual Driver implementation. Clearly,
the method can be used to generate feasible trajectories based on unfeasible waypoints, irre-
spective of the specific Waypoint Source. Moreover, this example shows the path generating
robustness for the vehicle-following application, considering an extreme maneuvering leader-
vehicle.

Master of Science Thesis T. Talsma



46 Simulations

-25 -20 -15 -10 -5 0 5 10 15 20 25

Local x-Coordinate [m]

-2

0

2

4

6

L
o

c
a

l 
y
-C

o
o

rd
in

a
te

 [
m

]

Path Generation

Fig. 5-11: A snapshot of the simulated scenario. The user-defined (unfeasible) waypoints are
given by the black dotted line. An instantaneous unconstrained polynomial fit is shown by the
red curve. The new Model-based Path Generation with the MPC Virtual Driver provides the
desired path generation functionality. The resulting Virtual Leader Model trajectory is given by
the light-blue line, representing the state-history of the light-blue virtual-vehicle.

Path Generation Method Computation Time
Simulator without Path Generation 3.4880 s
Unconstrained Polynomial Fitting 4.4615 s

Heading constrained Polynomial Fitting 6.8084 s

Curvature constrained Polynomial Fitting 6.8560 s

Model-based Path Generation by Proportional Control Virtual Driver 4.4042 s

Model-based Path Generation by MPC Virtual Driver 10.8057 s

Simulator with all path generation methods active at the same time 17.2655 s

Table 5-2: The computation time is shown, required for 20 seconds of simulated driving.

5-3-4 Computational Demand

All aforementioned scenarios are emulated with the custom-built simulator in Matlab &
Simulink, representing a driving scenario with a duration of 20 seconds. Using the build-
in Matlab functions tic and toc the computation time of the different simulations is logged.
This is done to be able to compare the computational demand of the different path gen-
eration implementations. Running the custom-built simulator without any path generation
method active takes approximately 3.488 seconds for a driving scenario of 20 seconds. This
was measured by disabling all path generation systems, running the Waypoint Source and
Waypoint Storage subsystems for 10 times and taking the average computation time returned
by tic and toc. This approach was repeated, running the custom-built simulator with different
path generators active. The results are summarized in Table 5-2. This table clearly shows
that Model-based Path Generation with the MPC Virtual Driver is the most computation
demanding implementation. This was to be expected, since it makes use of control-input
optimization based on forward predictions. Nevertheless, this method is still suitable for real-
time implementation, since the simulations require less computation time than the real-time
duration that is being simulated (20 seconds).
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5-4 Conclusions

Results have shown that paths resulting from any polynomial fitting method are discontin-
uous. The discontinuous character was quantified by computing the maximum occurring
difference in the position, heading, and curvature path variables (yb, ψb, and κb). As an ex-
ception, the constrained polynomial fitting methods provided a more continuous path only in
terms of their corresponding constrained path variable: heading constrained fitting provided
jumps of smaller by one order of magnitude in ψb, compared to unconstrained fitting. Simi-
larly, curvature constrained fitting provided jumps smaller by one order of magnitude in κb,
compared to unconstrained fitting. However, the heading and curvature constrained fitting
methods resulted in larger reconstruction errors, compared to unconstrained polynomial fit-
ting, confirming the hypotheses regarding constrained polynomial fitting. In contrast to this,
the new Model-based Path Generation, with MPC Virtual Driver, showed improved path
reconstruction performance. Results showed that the maximum occurring position, heading
and curvature reconstruction errors (ye, ψe and κe) were significantly reduced, compared to
polynomial fitting path generation. From this, it can be concluded that Model-based Path
Generation with MPC outperforms the benchmark method in terms of accurateness.

Also for Model-based Path generation, the discontinuous character was quantified by com-
puting the maximum occurring difference in the path variables (yb, ψb, and κb). Model-based
Path Generation with MPC, benchmarked against polynomial fitting path generation, pro-
vided a decrease by at least one order of magnitude in maximum occurring jumps in the path
variables. From this, it can be concluded that the new Model-based Path Generation method
also outperforms the benchmark method in terms of path continuity.

Next to that, user-defined waypoints, representing an extreme lane-change maneuver, were
successfully processed by the new Model-based Path Generation method: a smooth reference
path was realized, compatible with the vehicle dynamics. In contrast to this, the polyno-
mial fitting methods resulted in discontinuous, unfeasible paths. This demonstrated the new
method’s robustness against unfeasible waypoints in vehicle-following. Moreover, it shows the
method’s applicability for path generation in general: the new method, with the MPC Virtual
Driver, is capable of producing feasible trajectories based on unfeasible waypoints from any
Waypoint Source.

Finally, results indicate that all proposed methods are suitable for real-time implementation.
This conclusion is based on the fact that the required computation time is less than the
simulated driving time.

Summarizing, it is concluded that the new Model-based Path Generation method outperforms
polynomial fitting path generation in terms of accurateness, continuity, and general applica-
bility. Hereby, the goal of this research is partly achieved: a generic reference path generator
for lateral vehicle control is developed. Further verifying the path generator’s robustness
against real-world disturbances remains. This challenge is addressed in Chapter 6.
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Chapter 6

Sensitivity Analysis

In preceding chapters, three different polynomial fitting and two model-based path generation
methods are presented. In this chapter, the sensitivity of the methods towards real-world
disturbances is evaluated. This is important to assess the feasibility and robustness of real-
world implementation. Section 6-1 elaborates on the design of the sensitivity analysis.

The evaluation of the sensitivity analysis is based on numerical simulations. These simulations
are carried out using the custom-built simulator, which was explained in Section 5-2.

The results from the sensitivity analysis are reported in Section 6-2. Finally, in Section 6-3,
conclusions are drawn based on the obtained results.

6-1 Design

Four real-world disturbances were defined in Section 2-3. The corresponding mathematical
models are given in Section A-2 of Appendix A. To test the sensitivity of all methods towards
these real-world disturbances, multiple simulations are carried out. In the simulations, the
magnitude of one disturbance is varied, while keeping the other disturbances absent.

The sensitivity towards Waypoint Noise is tested by the following steps:

1. The magnitude of the Waypoint Noise disturbance is set to a non-zero value. The
magnitudes of all other disturbances are set to zero.

2. The vehicle-following scenario is simulated and the maxima of the occurring reconstruc-
tion errors (ybe, ψbe, κbe) are stored.

3. The magnitude of the Waypoint Noise disturbance is changed, according to (6-1), and
the simulation is run again.

Disturbance Magnitude = Expected Magnitude×Disturbance Level (6-1)
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In (6-1), the Disturbance Level is given by a sequence of multiplication factors from 0 to 2
in steps of 0.1. For each iteration of step 3 described above, a different Disturbance Level
multiplication factor is set. The Expected Magnitude for the different disturbances are given
by Table A-1. Consequently, the Disturbance Magnitude is the specific magnitude of the
disturbance used in the simulation. By varying this magnitude, the maxima of the occurring
reconstruction errors (ybe, ψbe, κbe) change. Based on this change of maximum errors, the
sensitivity of a path generation method is identified. The maximum reconstruction errors
are plotted in a figure with the disturbance level on the horizontal axis and the maximum
occurring reconstruction errors on the vertical axis. As a result, the slope of the graph
represents the disturbance sensitivity.

6-2 Results

Four real-world disturbances were defined in Section 2-3. For all path generation methods,
the sensitivity towards these real-world disturbances is tested by the procedure explained in
Section 6-1. This section presents the corresponding results. To refer to the five different path
generation methods, the same shorthand notation of Table 5-1 is used: Unconstrained Poly-
nomial Fitting (Method 1), Heading Constrained Polynomial Fitting (Method 2), Curvature
Constrained Polynomial Fitting (Method 3), Model-based Path Generation with Proportional
Control (Method 4), and Model-based Path Generation with MPC (Method 5).

6-2-1 Waypoint Noise

First, the sub-scenario where the leader-vehicle performs the given sine steering maneuver is
emulated. The follower-vehicle drives straight. The sensitivity of the path generation methods
towards Waypoint Noise is shown in the left column of Fig. 6-1. From the plots it can be
concluded that Methods 4 and 5 have the best sensitivity characteristics for ye, i.e., the slopes
are the least steep. Furthermore, also for reconstruction errors ψe and κe, the best slopes are
given by Methods 4 and 5.

Secondly, the sub-scenario where the follower-vehicle performs the given sine steering ma-
neuver is emulated. The leader-vehicle drives straight. The Waypoint Noise sensitivity for
this scenario is shown in the right column of Fig. 6-1. The results are similar to the results
from the left column. Also for this scenario, Methods 4 and 5 show to be the least sensitive
towards the Waypoint Noise disturbance; that is, they provide the least steep slopes for all
reconstruction errors. For ψe, Method 2 shows improved robustness compared to other poly-
nomial fitting Methods 1 and 3. This can be explained by the fact that Method 2 is based
on constraining the heading of the fitted polynomial.

6-2-2 Motion Parameter Noise

For the first sub-scenario, the sensitivity of the path generation methods towards Motion
Parameter Noise is shown in the right column of Fig. 6-2. For ye with noise levels below 1,
the figure shows that the magnitude of reconstruction error contribution is largest for the
Model-based Path Generation implementations: Methods 4 and 5. This can be explained by
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Fig. 6-1: Waypoint Noise Sensitivity. The plots in the left column are generated by simulating the
first sub-scenario, where the leader-vehicle performs the sine steering maneuver. The right column
corresponds to second sub-scenario, in which the follower-vehicle performs the sine steering. The
sensitivity is given by the slope of the graph: the rate of change of the maximum occurring
reconstruction error, as the disturbance level is varied.
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the fact that these methods use the motion parameters twice for vector mapping: first for
waypoint mapping and secondly for Virtual Leader Model state mapping. For polynomial path
generation, the motion parameters are only used for waypoint mapping. Despite this fact,
the difference in the magnitude of error contribution is negligible compared to the Waypoint
Noise induces error. Overall, the best robustness is again given by Methods 4 and 5: the
slopes of the lines in the figures of ψe and κe are the least steep.

For the second sub-scenario, the motion parameter noise sensitivity is shown in right column
of Fig. 6-2. For this scenario, the sensitivities of Methods 1, 4, and 5 are similar for all
three types of reconstruction errors. For ψe, Method 2 shows insensitivity: the slope of the
line is approximately zero. This is not surprising, since Method 2 was using a constraint on
the first order derivative of the polynomial, representing a constraint on the heading of the
polynomial. For κe, Method 2 shows the same behavior. This indicates that the heading
constraint effectively makes the polynomial fitting process robust against Motion Parameter
Noise, but only for this scenario and only for ψe, κe and ye with noise levels below 0.5.
Method 3 shows deviating sensitivity for κe only, which can be explained by the fact that it
is based on constraining the curvature of the fitted polynomial.

Overall, Model-based Path Generation (Methods 4 and 5) again show to be the most robust,
especially for κe.

6-2-3 Waypoint Delay

The sensitivity analysis results for Waypoint Delay are reported in Fig. 6-3. This figure
shows that all methods are robust against Waypoint Delay. This was expected since the
Waypoint Delay is compensated for, using the motion parameters. The necessity of the delay
compensation was explained in Section 2-3.

6-2-4 Waypoint Offset

For both sub-scenarios, the results are shown in Fig. 6-4. In the right column, all slopes
are approximately zero, as expected for the sub-scenario with the follower-vehicle performing
the sine maneuver and the leader-vehicle driving straight. In the left column, the three
polynomial fitting Methods 1, 2, and 3 have similar Waypoint Offset sensitivity for ye. This
can be explained by the fact that they are all based on polynomial fitting. Methods 4 and 5
show approximately zero slope for Waypoint Offset levels up to 1. With Waypoint Offset levels
larger than 1, the methods show negative slope for ψe and κe, indicating negative sensitivity.
It is expected that this is caused by the settings for prediction horizon N and control horizon
Nc. In the absence of the other disturbances, the reconstruction error is increased due to
forward prediction with Nc < N . This causes reconstruction error because less different
steer inputs are calculated than the number of incorporated future offsets. Having a larger
Waypoint Offset compensates this prediction-induced error, because the algorithm anticipates
on the rear of the preceding vehicle, rather than its Center of Gravity (CoG). This results
in a smaller effective prediction horizon. Methods 1, 2, and 3 show similar behavior in the
plots of maximum occurring ψe and κe. For these polynomial fitting methods, this behavior
can be explained by the intrinsic filtering, given by the least-squares fitting. Depending on
the Waypoint Offset level, this filtering leads to polynomial fitting behavior that results in
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Fig. 6-2: Motion Parameter Noise Sensitivity. The plots in the left column are generated by
simulating the first sub-scenario, where the leader-vehicle performs the sine steering maneuver.
The right column corresponds to second sub-scenario, in which the follower-vehicle performs the
sine steering. The sensitivity is given by the slope of the graph: the rate of change of the maximum
occurring reconstruction error, as the disturbance level is varied.
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Fig. 6-3: Waypoint Delay Sensitivity. The plots in the left column are generated by simulating the
first sub-scenario, where the leader-vehicle performs the sine steering maneuver. The right column
corresponds to second sub-scenario, in which the follower-vehicle performs the sine steering. The
sensitivity is given by the slope of the graph: the rate of change of the maximum occurring
reconstruction error, as the disturbance level is varied.
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an accurate path reconstruction of the vehicle rear, rather than its CoG. As a result, the
reconstruction errors may get smaller, as the Waypoint Offset level is varied.

In general, all slopes are approximately zero. Moreover, the absolute error contribution
of Waypoint Offset shows to be insignificant, compared to Waypoint Noise (see Fig. 6-1).
Consequently, the main observation is that the sensitivity of all methods towards Waypoint
Offset is negligible.

6-3 Conclusions

The performed sensitivity analysis showed the relative robustness of the five different path
generation implementations. For the Waypoint Noise disturbance, Model-based Path Gen-
eration (Methods 4 and 5) not only showed the lowest maximum occurring reconstruction
errors, but also the best robustness. The robustness was visualized by the slope of the graphs
in Fig. 6-1. The steeper the slope, the more sensitive the method is towards increasing the
magnitude of the specific disturbance. The more sensitive the method is, the less robust it is.
Also for the Motion Parameter Noise, Methods 4 and 5 outperformed the rest of the meth-
ods in terms of robustness. Furthermore, results showed that all methods are robust against
Waypoint Delay, because this delay was successfully compensated for, using the methodology
proposed in 2-2. Finally, the sensitivities towards Waypoint Offset were analyzed. The ob-
served variations in occurring reconstruction errors are negligible, compared to the variations
in error induced by Waypoint Noise. Therefore, it can be concluded that all methods are
robust against the Waypoint Offset disturbance.

Summarizing, it is concluded that the new Model-based Path Generation method outperforms
the benchmark polynomial fitting method in terms of robustness. Hereby, the goal of this
research is achieved: a generic, robust reference path generator for lateral vehicle control is
developed.
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Fig. 6-4: Waypoint Offset Sensitivity. The plots in the left column are generated by simulating the
first sub-scenario, where the leader-vehicle performs the sine steering maneuver. The right column
corresponds to second sub-scenario, in which the follower-vehicle performs the sine steering. The
sensitivity is given by the slope of the graph: the rate of change of the maximum occurring
reconstruction error, as the disturbance level is varied.
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Chapter 7

Experimental Analysis

A total of five different path generation systems were obtained: three different polynomial
fitting methods and two model-based path generation methods. To validate these five differ-
ent path generating methods, they are implemented using two sets of experimental data. The
first set of experimental data was obtained by driving scaled vehicles in the lab of the Delft
Center for Systems and Control (DCSC), discussed in Section 7-1. The second set of experi-
mental data was obtained by TNO’s Carlab, discussed in Section 7-2. Finally, in Section 7-3
conclusions are drawn based on the obtained results.

7-1 Scaled Vehicles

To obtain the first set of experimental data, two 1:10 scaled vehicles were driven in the
lab of DCSC. Using the lab’s Motion Capture system, the position and heading data of
the vehicles was logged. During this experiment, the leader-vehicle performed a sine steering
maneuver. The Delft Scaled Vehicle (DSV) was used as a follower-vehicle, which drove behind
the leader-vehicle. Both scaled vehicles were operated manually by a remote control. In
Fig. 7-1 the DSV is shown, along with a schematic overview of its components. The encoders
were used to measure the longitudinal velocity. Additionally, the Inertial Measurement Unit
(IMU) measured the yaw rate of the follower-vehicle. The lidar was not used, because it
is unsuitable for leader-vehicle detection. The sensors and actuators were connected to an
onboard computer, which runs the Robotic Operating System (ROS). This operating system
enabled synchronized data logging with the Motion Capture system.

The resulting experimental data is presented in Section 7-1-1. In the simulations of Chapter
5, the vehicle and sensor models of Appendix A were used to emulate a Waypoint Source and
the Standard Sensor Systems. Here, within the experimental analysis, the experimental data
is used instead. Subsequently, the different path generation methods are implemented and
validated. The results are presented in Section 7-1-2.
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(a) The DSV (b) Schematic of the DSV

Fig. 7-1: The DSV, with 1: Arduino, 2: Lidar, 3: Onboard computer, 4: IMU, 5: Router, 6:
Battery, 7: Servo, 8: Motor controller, 9: Motor, 10: Encoders. Visualization courtesy of Mart
Baars.
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Fig. 7-2: A visualization of the paths driven by the scaled vehicles, obtained by the Motion
Capture system with an average sampling time of 0.0127 s. During the experiment, the leader-
vehicle drove in front of the follower-vehicle. The graph is to be interpreted from left to right,
with increasing global X-coordinate.

7-1-1 Used experimental data

The paths driven by the scaled vehicles are visualized in Fig. 7-2 and Fig. 7-3. This data was
obtained using the Motion Capture system of the lab of DCSC, serving as ground truth data
of the scaled vehicles.

Within this experimental analysis, the Waypoint Source is provided by calculations of the
relative position of the leader-vehicle with respect to the follower-vehicle, using the Motion
Capture system’s position data at a rate of 10 Hz. The resulting Waypoint Source data is
presented in Fig. 7-4. Note that this Waypoint Source implementation results in relatively
accurate leader-vehicle position measurements, compared to a radar Waypoint Source for
instance.

During the experiment, the ego-motion parameters of the follower-vehicle (DSV) were mea-
sured by onboard sensor systems. The longitudinal velocity was obtained from wheel-speed
sensors. Furthermore, the follower-vehicle’s yaw rate was measured using an IMU. The
logged ego-motion parameter data is shown in Fig. 7-5. This finalizes the discussion of the
experimental data that serves as Waypoint Source and Standard Sensor System in the path
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Fig. 7-3: A visualization of the heading of the scaled vehicle paths, obtained by the Motion
Capture system with an average sampling time of 0.0127 s.
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Fig. 7-4: A visualization of the Waypoint Source data, obtained using relative position information
from the Motion Capture system. The sampling time is set to 0.1 s.
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Fig. 7-5: A visualization of the logged data of the longitudinal velocity and yaw rate of the
follower-vehicle. The average sampling times of the longitudinal velocity and yaw rate data are
0.0261 s and 0.0099 s respectively.
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Fig. 7-6: The computed Virtual Driver steering inputs for the Virtual Leader Model are shown.
The Proportional Control inputs are limited to a maximum absolute value of 1 rad for stability
purposes.

generation simulator. Based on the relative position measurements depicted in Fig. 7-4, the
Waypoint Storage subsystem provides a list of waypoints. Using these waypoints, the different
path generation methods are deployed, reconstructing the path driven by the leader-vehicle.

7-1-2 Results

In the new Model-Based Path Generation implementations, the single-track model parameters
given in Table C-1 of Appendix C are used. Additionally, the tuning parameters reported in
Section B-3 of Appendix B are used. The resulting Virtual Driver steering inputs are shown
in Fig. 7-6. This figure clearly shows that Proportional Control (Method 4) provides more
turbulent and less bounded steering inputs than Model Predictive Control (MPC) (Method
5) does.

The reconstruction errors are calculated using the path variables yb, ψb, and κb. The defini-
tions of these reconstruction errors were given in Section 5-1. The reconstruction errors of
the generated paths are shown in Fig. 7-8. When the follower-vehicle overtakes the virtual
vehicle, the path variables are undefined at the local x-coordinate of the follower-vehicle.
This phenomenon is visualized in Fig. 7-7. As a result, the reconstruction errors cannot be
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Fig. 7-7: A visualization of the scaled vehicle experiment, where the follower-vehicle overtakes
the virtual vehicle. The follower-vehicle is black, the virtual vehicle is light-blue and the leader-
vehicle is dark blue. Furthermore, the ground truth leader-vehicle path is given by the green line,
obtained from the Motion Capture system. The waypoints from the Waypoint Storage subsystem
are visualized by the red dots. A single unconstrained polynomial fit of Method 1 is visualized by
the solid red curve. Furthermore, the path resulting from Model-based Path Generation Method
5 is given by the black line, representing the position state history of the virtual vehicle. The
visualization also shows encoder latency, as the waypoints do not exactly lie on the green ground
truth path. Moreover, packet loss causes a varying distance between the waypoints.

calculated for this short period. To mitigate this, Model-based Path Generation Methods 4
and 5 may either use extrapolation of the path variables or future state predictions, in order
to compute the reconstruction errors. This mitigation is left for future implementation. Fur-
thermore, note that there is no ground truth measurement of the path curvature, since the
Motion Capture system only measures vehicle position and heading (pose). As a result, the
curvature reconstruction error κe is undefined. The maximum occurring reconstruction errors
are summarized in Table 7-1. The main observation from this experimental scenario is that
all methods have similar reconstruction performance in terms of ye. The resulting relative
performances are different from the results obtained by simulations, which can be explained
by model mismatch, sensor latency, and packet loss (see Fig. 7-7). However, when consid-
ering heading error ψe, Model-based Path Generation Methods 4 and 5 clearly outperform
polynomial fitting Methods 1, 2, and 3.

Table 7-1: Maximum occurring reconstruction errors with ye in m, ψe in rad.

Error Method 1 Method 2 Method 3 Method 4 Method 5
max ye 0.12721 0.13253 0.12739 0.17335 0.12772
max ψe 0.44152 0.53019 0.52299 0.25431 0.25053

To quantify the discontinuity of the resulting paths, the differences in generated path variables
yb, ψb, and κb are calculated by (5-11). By doing so, the continuity of all path generation
methods is quantified. Severe discontinuities result in large values of the calculated differences
in path variables, which are reported in Fig. C-1 of Appendix C. The maximum occurring
differences in path variables yb, ψb and κb, are summarized in Table 7-2. From this table it
becomes clear that all three polynomial fitting methods (Methods 1, 2, and 3) result in paths
with larger discontinuities in the error variables, compared to Model-based Path Generation
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Fig. 7-8: The performance of the different path generators in the scaled vehicle experiment. The
reconstruction errors are plotted as functions of simulation time. All graphs at the time instance
at which the Waypoint Storage subsystem contains sufficient waypoints.
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Table 7-2: Table of maximum occurring differences in path generation variables with yb in m,
ψb in rad and κb in m−1, using the scaled vehicle experimental data. The ground truth curvature
difference is undefined, since the path curvature is not measured by the Motion Capture system.

Path Variable Method 1 Method 2 Method 3 Method 4 Method 5 Ground Truth
max diff(yb) 0.0077861 0.025788 0.0096984 0.0038729 0.0039941 0.082885
max diff(ψb) 0.12205 0.026238 0.21945 0.009781 0.011003 0.17255
max diff(κb) 1.612 2.6766 0.17186 0.038254 0.070535 undefined

methods. This is in accordance with the observation made based on the simulations presented
in Chapter 5.
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7-2 TNO Carlab

The second set of experimental data was obtained by TNO. The purpose of the executed
experiment was to test different lateral control systems in real vehicles, realizing path- and
vehicle-following. In the experiment, two modified Toyota Prius vehicles (depicted in Fig. 7-
9), drove on the Ford Lommel test track in Belgium. One Prius leader-vehicle drove in front of
the second Prius follower-vehicle. Both vehicles were equipped with various systems logging
GPS, radar, camera, inertial, and wheel-speed data. The logged data is presented in Section
7-2-1 and is used to replace the Waypoint Source and Standard Sensor Systems in the custom-
built simulator. Subsequently, the Waypoint Storage and Path Generation implementations
are run based on this real-world experimental data. The results are presented in Section 7-2-2.

Ideally, the resulting paths (computed on board of the follower-vehicle) are compared to
the ground truth GPS-data from the leader-vehicle. Unfortunately, the data logging was
erroneous. As a result, the GPS-data from the leader-vehicle is not available. This makes
the Ford Lommel data set sub-optimal for testing the different path generators. Currently,
generating a new real vehicle data set is not a viable option, because of the large financial
costs of the required Real Time Kinematic (RTK) GPS systems. Therefore, the existing data
set is used in a creative way; that is, instead of comparing the resulting paths to ground
truth leader-vehicle GPS data, they are compared to the center of the lane. This is further
explained in Section 7-2-2.

Fig. 7-9: TNO Carlab Prius vehicles.

T. Talsma Master of Science Thesis



7-2 TNO Carlab 65

E 05º18'36" E 05º18'57" E 05º19'19"

N 51º11'49"

N 51º12'01"

N 51º12'14"

Path driven by follower-vehicle

TNO Automotive

Fig. 7-10: A visualization of the path driven by the follower-vehicle, i.e., the second Toyota Prius
vehicle. The figure is generated using MATLAB code by TNO.

7-2-1 Used experimental data

The path driven by the follower-vehicle is logged by an RTK GPS-system at a rate of 100 Hz.
The resulting driven path is depicted in Fig. 7-10.

While driving, the onboard radar- and camera system computed a fused estimate of the
relative leader-vehicle position at 10 Hz. This position data is converted into a relative (lon-
gitudinal and lateral) x- and y-position, expressed in the local follower-vehicle coordinate
frame. This data is visualized in Fig. 7-11. Simultaneously, wheel-speed and inertial sensors
systems logged the longitudinal velocity and yaw rate of the follower-vehicle at 100 Hz. This
ego-motion parameter data is visualized in Fig. 7-12.

Additionally, the onboard Mobileye camera system was detecting the lane markings of the
Ford Lommel test-track at 100 Hz. The data from this lane-marking detection is used to com-
pare the generated paths with, which is further explained in Section 7-2-2. The camera system
detects lateral offsets of the left and right lane-marking with respect to the follower-vehicle.
The center of the lane can be reconstructed by computing the mean of these offsets. Similarly,
estimations of the heading and curvature of the lane are obtained. This lane-marking detec-
tion data is visualized in Fig. 7-13. This finalizes the discussion of the experimental data that
serves as Waypoint Source and Standard Sensor System in the path generation simulator.
Based on the relative position measurements of Fig. 7-11, the Waypoint Storage subsystem
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Fig. 7-11: A visualization of the logged data of the relative position measurement of the leader-
vehicle with respect to the follower-vehicle.
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Fig. 7-12: A visualization of the logged data of longitudinal velocity and yaw rate of the follower-
vehicle.
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Fig. 7-13: A visualization of the logged data from the lane-marking detection system, on board
of the follower-vehicle.

provides a list of waypoints. Using these waypoints, the different path generation methods
are deployed, reconstructing the path driven by the leader-vehicle.

7-2-2 Results

In the new Model-Based Path Generation implementations, the single-track model parameters
given in Table B-1 of Appendix B are used. Additionally, the tuning parameters reported in
Section B-3 of Appendix B are used. The resulting Virtual Driver steering inputs are shown
in Fig. 7-14. This figure clearly shows that Proportional Control (Method 4) provides more
turbulent and less bounded steering inputs than MPC (Method 5) does. The generated paths
are shown in Fig. 7-15. These paths are expressed in yb, the lateral position of the path,
expressed in the local follower-vehicle reference frame Fb. Also, the path heading ψb and
curvature κb are shown. In the same figures, the path variables yb, ψb, and κb, obtained from
the lane-marking detection system, are shown: the Lane Center, Lane Heading, and Lane
Curvature. These lane-marking detection variables represent the relative offset, heading, and
curvature of the center of the driven lane. Based upon the comparison of the Lane Center
path with the reconstructed leader-vehicle paths, it is concluded that the leader-vehicle was
not driving on the center of the lane. Fig. 7-15 shows that the generated paths all lie below the
Lane Center in terms of local lateral position. This indicates that the detected leader-vehicle
was driving to the right of the Lane Center.

In Section 3-2, the statement was made that by Heading Constrained Polynomial Fitting
(Method 2), the previously computed polynomial yb−1 is incorporated in the computation of
the new polynomial yb. However, this results in a new polynomial with a certain heading
at xb = 0, which is not necessarily the real leader-vehicle heading. It was hypothesized that
Method 2 does not necessarily outperform Unconstrained Polynomial Fitting (Method 1) in
terms of estimating the true path driven by a leader-vehicle. By implementation with real-
world experimental data, this hypothesis is confirmed: Fig. 7-15 clearly shows a deviating
polynomial heading ψb. Curvature Constrained Polynomial Fitting (Method 3) suffers from
the same phenomenon in path variable κb.

Unfortunately, the results do not allow for computation of the reconstruction errors ye, ψe
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Fig. 7-14: The computed Virtual Driver steering inputs for the Virtual Leader Model are shown,
which are based on the waypoints obtained using TNO’s experimental data.

Table 7-3: Table of maximum occurring differences in path generation variables with yb in m, ψb
in rad and κb in m−1. The results are obtained by the approach of running the path generators
based on TNO’s experimental data.

Path Variable Method 1 Method 2 Method 3 Method 4 Method 5
max diff(yb) 0.020497 0.40414 0.043185 0.012709 0.011739
max diff(ψb) 0.0076849 0.009731 0.046576 0.0024589 0.0010102
max diff(κb) 0.001788 0.036164 0.0010563 0.0026842 0.0002678

or κe (see Section 5-1), because the ground truth GPS-data of the leader-vehicle is not avail-
able. However, the simulation with the experimental data does verify the discontinuous,
sub-optimal nature of the polynomial path generation methods. Additionally, the analysis
confirms that the new Model-based Path Generation implementations are capable of produc-
ing more continuous paths, compared to polynomial path generation. In order to quantify
this, the differences in generated path variables yb, ψb and κb are calculated by (5-11). The
calculated differences in path variables are reported in Fig. C-2 of Appendix C. The maximum
occurring differences in path variables yb, ψb, and κb are summarized in Table 7-3. All in all,
it is clear that Model-based Path Generation with MPC (Method 5) provides the smallest
differences in the path variables. This is in accordance with the simulation and experimental
results presented in Chapter 5 and Section 7-1-2.

7-3 Conclusions

Results from the scaled vehicle experiments have shown that paths resulting from any poly-
nomial fitting method are discontinuous. The discontinuous character was quantified by
computing the maximum occurring differences in position, heading, and curvature path vari-
ables (yb, ψb, and κb). As an exception, the constrained polynomial fitting methods provided a
more continuous path only in terms of their corresponding constrained path variable: heading
constrained fitting provided deviations smaller by one order of magnitude in ψb, compared to
unconstrained fitting. Similarly, curvature constrained fitting provided deviations smaller by
one order of magnitude in κb, compared to unconstrained fitting. However, the heading and
curvature constrained fitting methods resulted in larger reconstruction errors, compared to
unconstrained polynomial fitting. In contrast to this, Model-based Path Generation showed
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Fig. 7-15: The generated path variables yb, ψb, and κb are shown. The results were obtained by
running the path generators based on TNO’s experimental data.
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improved path heading reconstruction performance. Additionally, the discontinuous charac-
ter of Model-based Path Generation was quantified by computing the maximum occurring
difference in the path variables (yb, ψb and κb). Model-based Path Generation with MPC,
benchmarked against polynomial fitting path generation, provided a decrease by at least one
order of magnitude in maximum occurring deviations in the heading and curvature path vari-
ables. From this, it can be concluded that the new Model-based Path Generation method
outperforms the benchmark method in terms of path continuity. These conclusions are in
accordance with the conclusions drawn in Chapter 5.

Unfortunately, the results from the experimental analysis using the TNO Carlab data do
not allow for conclusions to be drawn regarding the path reconstruction performance. This
is because the ground truth GPS-data of the leader-vehicle is not available. However, the
experimental analysis does verify the discontinuous, sub-optimal nature of the polynomial
fitting path generation methods. Additionally, the results have shown that the Model-based
Path Generation methods outperform the benchmark method in terms of path continuity.
This is in accordance with the conclusions drawn from the scaled vehicle experimental analysis.

Altogether, it is concluded that the experimental analysis substantiates the outperforming
abilities of Model-based Path Generation, in terms of path continuity and path heading
accurateness, compared to polynomial fitting path generation.
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Chapter 8

Conclusions and Recommendations

In Chapter 1, the main path generation problem was defined. Through Chapters 2 to 7,
this main problem was solved. This final chapter presents the corresponding conclusions
in Section 8-1. Subsequently, this thesis is concluded in Section 8-2 by providing various
recommendations for future research.

8-1 Conclusions

This research addressed the development of a generic, robust reference path generator for
lateral vehicle control. TNO’s state-of-the-art polynomial fitting path generator was used as
a benchmark method.

The main issue at hand was that the state-of-the-art polynomial fitting path generation so-
lution does not provide desirable results. As described, this is inherently caused by its two
main weaknesses. Firstly, the current system is not robust to sensor noise and other real-world
disturbances. Secondly, the current system is based on repetitive least-squares polynomial
fitting, resulting in discontinuous path generation. This is undesirable, because it leads to
an unfeasible vehicle path, since vehicles can only produce and track continuous trajectories.
Moreover, a discontinuous reference path results in the need for path smoothing when used in
comfortable lateral vehicle control. Fundamentally, this smoothing leads to inaccurate vehicle
control, caused by manipulation of the original, discontinuous reference path. These problems
led to the definition of the main research question, addressed in this thesis:

How can a feasible, continuous vehicle reference path be generated, based on a set of given
waypoints?

The goal of this research was to develop a generic, robust reference path generator for lateral
vehicle control. This path generator must meet a number of minimal requirements. Firstly,
it must provide an accurate and feasible path. Secondly, it must be robust in the sense
that is has proper disturbance rejection characteristics. Finally, the resulting path must
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be continuous to allow for accurate and comfortable lateral vehicle control. The preceding
chapters addressed the main research question, contributing to achieving the research goal.
The resulting conclusions are summarized in the next sections.

8-1-1 Field of Application

Path generation is deployed to obtain a smooth and continuous path, based on given way-
points. The waypoints can originate from various sources. For instance, in automated vehicle-
following the Waypoint Source is a system that detects a leader-vehicle. Alternatively, the
waypoints may be defined by a human operator or originate from a strategic path planning
layer. Fundamentally, waypoints obtained from sensor systems are noise-corrupted. There-
fore, a generic path generation system must have noise-rejecting characteristics. In this way,
the path generation system is applicable irrespective of the specific Waypoint Source.

Within this research, the path generation problem was solved for the generic vehicle-following
field of application. This field of application resulted in a general situation with a continuously
changing set of waypoints and a continuously changing, local reference frame. Consequently,
the path generation solution is also applicable in situations where the set of waypoints and
reference frame are stationary. Moreover, in this generic field of application the generated
path was interpreted as a reconstruction of the leader-vehicle’s factual path. As a conse-
quence, path generation performance can be evaluated, since it was related to the accuracy
of reconstruction. This approach did not impose any limitations on the system; that is, the
applicability remained irrespective of the specific Waypoint Source.

In an ideal situation, the input waypoints are precise and accurate. However, in reality they
may be uncertain or corrupted with sensor noise. Next to Waypoint Noise, a path generation
system is subject to other real-world disturbances; namely, Waypoint Delay, Waypoint Offset,
and Motion Parameter Measurement Noise.

8-1-2 Polynomial Path Generation

From theoretical analysis, it was concluded that the repetitive polynomial fitting methods
produce discontinuous paths, which is inherent to the function fitting approach. Firstly, the
discontinuous character of the paths makes them fundamentally unfeasible, since vehicles can
only produce and track continuous trajectories. Moreover, a discontinuous reference path
results in the need for path smoothing when used in comfortable lateral vehicle control. This
smoothing leads to inaccurate vehicle control, caused by manipulation of the original, discon-
tinuous reference path. To mitigate these drawbacks, modified polynomial path generation
methods were proposed, which resulted in a total of three different polynomial fitting meth-
ods. The first method was an unmodified version of the unconstrained benchmark polynomial
path fitting method. The other two methods were based on constrained polynomial fitting.
Heading constrained and curvature constrained polynomial fitting methods were presented.
However, when the constrained fitting methods are applied in vehicle-following, the resulting
paths can obtain a heading or curvature, which is not necessarily the correct, leader-vehicle’s
factual heading or curvature. Therefore, it was hypothesized that the constrained fitting
methods are superior in terms of providing continuous paths, but not necessarily superior
in reconstructing the factual path driven by a leader-vehicle. Moreover, polynomial fitting
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methods require tuning of parameters that have indirect connections with vehicle dynamics.
In other words, the tuning process attempts to model the vehicle and its trajectory charac-
teristics with tuning parameters that are not intuitive. All in all, it was concluded that a
polynomial fitting path generation approach is fundamentally sub-optimal.

8-1-3 Model-based Path Generation

As an alternative to polynomial fitting, a new Model-based Path Generation method was
presented. This new method is based on modeling a virtual leader-vehicle: the Virtual
Leader Model. The steering inputs for this Virtual Leader Model are given by a control
system: the Virtual Driver. Two different control implementations of the Virtual Driver were
presented. The first implementation was given by Proportional Control, using a virtual look-
ahead distance. Based on given waypoints at this look-ahead-distance, the control actions are
calculated. The second Virtual Driver implementation was based on the Model Predictive
Control (MPC) framework. Using model predictions, an optimal control input sequence is
computed based on real-time optimization of an objective function. Consequently, the ref-
erence path is obtained by extracting it from the Virtual Leader Model state history. By
design, the Model-based Path Generation methodology results in continuous paths that are
compatible with vehicle dynamics. Moreover, the resulting path can be tuned by intuitive
tuning parameters.

8-1-4 Simulations and Experiments

Simulation and experimental results have shown that paths resulting from polynomial fitting
methods are discontinuous. The discontinuous character was quantified by computing the
maximum occurring differences in position, heading, and curvature path variables (yb, ψb, and
κb). As an exception, the constrained polynomial fitting methods provided a more continuous
path only in terms of their corresponding constrained path variable: heading constrained fit-
ting provided deviations smaller by one order of magnitude in ψb, compared to unconstrained
fitting. Similarly, curvature constrained fitting provided deviations smaller by one order of
magnitude smaller in κb, compared to unconstrained fitting. However, the heading and cur-
vature constrained fitting methods resulted in larger reconstruction errors when compared to
unconstrained polynomial fitting, confirming the hypotheses regarding constrained polyno-
mial fitting. In contrast to this, the new Model-based Path Generation method, with MPC
Virtual Driver, showed improved path reconstruction performance. Results have shown that
the maximum occurring position, heading, and curvature reconstruction errors (ye, ψe, and
κe) were significantly reduced, compared to polynomial path generation. From this, it was
concluded that Model-based Path Generation with MPC outperforms the benchmark method
in terms of accurateness.
Also for Model-based Path generation, the discontinuous character was quantified by comput-
ing the maximum occurring differences in the path variables (yb, ψb, and κb). Model-based
Path Generation with MPC, benchmarked against polynomial fitting path generation, pro-
vided a decrease by at least one order of magnitude in maximum occurring deviations in the
path variables. Experimental analyses resulted in the same observation. From this, it was con-
cluded that the new Model-based Path Generation method also outperforms the benchmark
method in terms of path continuity.
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In addition, the new Model-based Path Generation method successfully processed user-defined
waypoints representing an extreme lane-change maneuver. A smooth reference path was real-
ized, compatible with the vehicle dynamics. In contrast to this, the polynomial fitting methods
resulted in discontinuous, unfeasible paths. This demonstrated the new method’s applicability
for path generation in general: it is capable of producing feasible trajectories based on unfea-
sible waypoints, irrespective of the specific Waypoint Source. Moreover, it showed the new
method’s robustness against unfeasible waypoints in vehicle-following. Additionally, results
from the sensitivity analysis have shown that Model-based Path Generation also outperforms
the benchmark method in terms of robustness against real-world disturbances.

Furthermore, results have indicated that all proposed methods are suitable for real-time
implementation. This conclusion was based on the fact that the required computation time
is less than the simulated driving time.

In summary, it was concluded that the new Model-based Path Generation method outper-
forms polynomial fitting path generation in terms of accurateness, robustness, continuity,
and general applicability. With this, the goal of this research was achieved: a generic, robust
reference path generator for lateral vehicle control is developed.

8-2 Recommendations

The first recommendation for future research is to design variations to the proposed MPC
framework, incorporating different types of objective functions. Currently, optimization of
the proposed objective function results in minimizing future offsets from given waypoints.
Variations or extensions to this objective function can be designed. For instance, by incorpo-
rating knowledge on the uncertainty of the waypoints. In this way, the control objective of
not exactly tracking the noise-corrupted waypoints can be incorporated in the design phase,
rather than obtaining the desired noise-rejecting characteristics by tuning the prediction and
control horizons. Alternatively, passenger comfort can be incorporated by including comfort
criteria in the objective function.

Regarding the continuity of the resulting path, Model-based Path Generation using MPC
showed significant improvement compared to polynomial fitting path generation. Clearly,
further continuity improvement is limited by the fact that the path generator is implemented
on a discrete-time computer. As a result, further continuity improvement can be achieved by
increasing the relevant sampling frequencies. Results regarding the computational demand
have shown that there is sufficient margin for this, considering the speed of the current
implementation. Therefore, the second recommendation for future research is to explore the
feasibility of improving path continuity by increasing relevant MPC frequencies. For instance,
the model prediction and optimization frequencies can be increased.

Currently, only the position states from the Virtual Leader Model are used for path gener-
ation. Therefore, a third recommendation for future research is to explore the feasibility of
improving the path generation functionality by using the rest of the Virtual Leader Model
states. For instance, the heading angle state can be used. In vehicle-following, this angle is
a reconstruction of the leader-vehicle’s factual heading angle. Potentially, this enables the
use of the heading estimate to compensate for the disturbance induced by the leader-vehicle
Center of Gravity (CoG)-detection mismatch (Waypoint Offset).
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Finally, the fourth recommendation for future research is to implement and test the new
method in various fields of application. In vehicle-following, the method can be tested by
using ground-truth path information when available. Additionally, it can be used for world-
modeling in general. Road users can be modeled using the proposed Model-based Path
Generation framework. In this way, computer-simulated virtual versions of the road users
will be obtained. Using these virtual versions, past road-user trajectories can be modeled
and future trajectories can be predicted. Subsequently, the obtained information can be used
by decision-making units or collision avoidance systems. In addition, the new method can
be used to model road lane-markings. To this end, lane-marking position information from
camera systems can be used as input waypoints. With these waypoints, a virtual vehicle
driving on the lane-markings can be simulated. Consequently, the lane-marking path is given
by the trajectory of the virtual vehicle. This lane-marking path can be used as reference path
to realize automated lane-keeping.

Master of Science Thesis T. Talsma



76 Conclusions and Recommendations

T. Talsma Master of Science Thesis



Appendix A

Waypoint Source Modeling

A path generation system consists of three main subsystems. The hierarchy of the subsystems
was visualized in Fig. 2-1. This appendix presents the mathematical simulation models for
the Waypoint Source in the generic vehicle-following field of application.

The mathematical models form the basis of the custom-built simulator. This simulator is used
to emulate the path generation functionality of different path generators. With simulations,
the performance, robustness and continuity of the path generators can be evaluated. The
design and the results of this evaluation are given in Chapters 5 and 6.

In the generic vehicle-following field of application, the Waypoint Source makes use of the
assumed Standard Sensor Systems. These systems provide the relative position of a leader-
vehicle and the ego-motion parameters of the follower-vehicle, as explained in Section 2-1
and illustrated in Fig. 2-2. First the sensor models are explained in Section A-1. To be able
to simulate a real-world scenario, the mathematical models for the real-world disturbances
must be defined. These disturbances were introduced in Section 2-3. The corresponding
mathematical models for simulation are defined in Section A-2.

A-1 Sensor Models

In the custom-built simulator, the Standard Sensor Systems provide the relative position of
the leader-vehicle and the ego-motion parameters of the follower-vehicle. These outputs are
obtained by simulating two separate vehicles and extracting their internal vehicle states. To
model the leader- and follower-vehicle, single-track bicycle models are used [18]. The model
equations are given by:[

v̇
ṙ

]
=

 − (Cf +Cr)
(m·u)

(lrCr−lfCf )
(m·u) − u

(lrCr−lfCf )
(Izu) − (l2fCf +l2rCr)

(Izu)

 [
v
r

]
+

[
Cf

m
lfCf

Iz

]
· δ, (A-1)

where Cf and Cr are front and rear cornering stiffness respectively, m is the total vehicle
mass, lf and lr the distances from the Center of Gravity (CoG) of the vehicle to the front
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Fig. A-1: This figure visualizes the black follower-vehicle and the blue leader-vehicle, with their
local reference frames F and L respectively. The position of the frames, with respect to the
global frame G, is given by PF and PL. The orientation of the vehicles, with respect to the global
frame G, is given by ψF and ψL. The relative position of the leader-vehicle, with respect to the
follower-vehicle, expressed in frame F is denoted by pF,FL .

and rear wheel-position of the vehicle respectively. Generally, distances lf and lr are not
equal for passenger cars or trucks, because of an uneven mass distribution. Furthermore,
Iz is the mass moment of inertia around the vertical axis through the CoG. Moreover, u
is the longitudinal forward velocity, v the lateral velocity and r the yaw rate of the vehicle.
Finally, δ is the input to the model, representing the steering angle of the front wheel. This
single-track model assumes constant forward velocity, no longitudinal or lateral load transfer,
linear range tires, no roll, pitch or vertical motion, no suspension and no compliance effects
[21]. These assumptions are justified, since the custom-built simulator will be used for the
normal driving regime.
The position of the leader-vehicle in a global reference frame can be obtained by mapping
and integrating the local leader-vehicle longitudinal and lateral velocities ul and vl. For the
follower-vehicle, the global position is obtained in the same way: by mapping and integrating
the local follower-vehicle longitudinal and lateral velocities uf and vf . From now on, the
subscripts l and f are dropped for variables in equations that hold for both the leader- and
the follower-vehicle.
To obtain the global vehicle positions, first the model state r is integrated to obtain the
relative vehicle heading ψ(t), expressed in a global reference frame G:

ψ(t) =
∫ t

0
r(t) · dt+ ψ0, (A-2)

where ψ0 is the initial heading of the vehicle model. The global reference frame G, follower-
vehicle reference frame F , and leader-vehicle reference frame L are visualized in Fig. A-1.
Subscripts l or f denote leader-vehicle or follower-vehicle variables respectively.
Consequently, the local velocities u and v are transformed to obtain the vehicle velocity vector
V in the global reference frame G:

V(t) =
[
cos(ψ(t)) − sin(ψ(t))
sin(ψ(t)) cos(ψ(t))

] [
u(t)
v(t)

]
. (A-3)

The global position P of a simulated vehicle is then obtained by integrating this global velocity
vector:

P(t) =
∫

V(t) + P0, (A-4)
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where P0 is the initial position of the vehicle. Consequently, let P∗
L(t) and PF (t) denote the

global position of the leader- and follower-vehicle respectively. The reason behind the asterisk
superscript for the global position of the leader-vehicle will become clear in Section A-2-3.
Let pG,FL (t) denote the position of frame L, with respect to frame F , expressed in frame G.
This is the relative position of the leader-vehicle. This relative position is obtained by:

pG,FL (t) = P∗
L(t)−PF (t). (A-5)

Finally, the relative position of the leader-vehicle expressed in the local follower-vehicle ref-
erence frame is denoted by pF,FL . This relative position is visualized in Fig. A-1. It is given
by:

pF,FL (t) =
[

cos(ψF (t)) sin(ψF (t))
− sin(ψF (t)) cos(ψF (t))

]
pG,FL (t), (A-6)

where ψF (t) denotes the heading angle of the follower-vehicle with respect to the global
reference frame. Note that this transformation matrix is the transpose of the matrix used to
map the velocity vector from the local vehicle-attached reference frame to the global reference
frame. This finalizes the mathematical framework of the Standard Sensor Systems for the
ideal world. The resulting outputs are the ego-motion parameters (u, v and r) of the follower
vehicle and the position measurements of the leader-vehicle with respect to the follower-
vehicle, given by pF,FL . Additionally, to simulate a real-world scenario, disturbances must
be incorporated. These disturbances were introduced in Section 2-3. The corresponding
mathematical models are defined in Section A-2.

A-2 Disturbance models

As defined in Section 2-3, there are four relevant real-world disturbances to consider. The
first three disturbances are related to the relative position measurements pF,FL (t). These
measurements will be referred to as waypoints. The disturbances are caused by Waypoint
Noise, Delay and Offset. These disturbances are visualized in Fig. 2-5. The fourth disturbance
is caused by noise on the motion parameters u, v and r. The expected magnitude of the
different disturbances are obtained from analyzing data from TNO’s Carlab. The variances
are given in Table A-1. How these disturbance variances are used in the simulator, will be
explained in the next sections.

A-2-1 Waypoint Noise

The Waypoint Source gives position measurements of a preceding leader-vehicle. For simula-
tion purposes, the uncertainty or noise on these measurements can be modeled by a zero-mean
Gaussian distribution with a variance in Cartesian coordinates x and y of the local follower-
vehicle reference frame, given by σ2

x and σ2
y respectively.

A-2-2 Waypoint Delay

The Waypoint Source provides the waypoints with a certain time delay. In simulation, this
time delay is easily implemented by holding the measurement signal value for a time equal to
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Disturbance Value Unit
σ2
x 0.0044 m

σ2
y 0.0278 m

tdelay 0.210 s

lr 4.0 m

σ2
u 4.0000e-04 m s−1

σ2
β 3.3846e-05 rad

σ2
r 4.4444e-05 rad s−1

Table A-1: Expected real-world disturbance values.

the estimated time delay of the Waypoint Source:

pdelayed(t) = pF,FL (t− tdelay), (A-7)

where pF,FL is the undelayed waypoint, obtained from the sensor models of Section A-1. Fur-
thermore, tdelay is the estimated time delay of the sensor systems and pdelayed(t) the delayed
waypoint that is available as input for the path generation system. Based on TNO’s Carlab,
tdelay is estimated to be approximately 210 milliseconds [9]. Theoretically, when the Waypoint
Delay is properly compensated for, the induced disturbance can be fully eliminated. This is
verified by numerical simulations in Chapter 6. In practice, the degree of this disturbance
elimination depends on the accuracy of the estimate of tdelay.

A-2-3 Waypoint Offset

As discussed in Section 2-3, the path generation system can only be based on the relative
position measurements of the rear of the leader-vehicle, considering the vehicle-following field
of application. As a result, the reconstructed path will be that of the rear, rather than the
CoG of the leader-vehicle. To model this Waypoint Offset in the simulator, the global leader-
vehicle position PL(t) is modified, prior to being used in the equations of Section A-1. The
modification is given by:

P∗
L(t) = PL(t)−

[
lr · cos(ψL(t))
lr · sin(ψL(t))

]
, (A-8)

where ψL(t) represents the heading of the leader-vehicle with respect to the global reference
frame. Moreover, PL(t) is the position of the CoG of the leader-vehicle, and P∗

L(t) is the
position of the rear of the leader-vehicle, both expressed in the global reference frame. The
CoG-offset is denoted by lr. This is the distance from the rear to the CoG of the leader-vehicle.

A-2-4 Motion Parameter Noise

In practice, the ego-motion parameters of the follower-vehicle are obtained from different
sensors. Wheel-speed sensors provide the longitudinal velocity u of the vehicle. An Inertial
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Measurement Unit (IMU) provides the yaw rate r of the vehicle. The lateral velocity v can
be estimated [23]. The noise introduced by the wheel-speed sensors and IMU are given by
the variances σ2

u and σ2
r respectively. The lateral velocity v uncertainty is given in terms of

the estimation variance of the body-slip angle σ2
β, where the body-slip angle is given by:

β = tan−1(v
u

). (A-9)

Similar to the waypoint noise, the noise on the motion parameter measurements can be
modeled by considering additive zero-mean Gaussian noise with variances of σ2

u, σ2
β and σ2

r .

This finalizes the mathematical framework of the Waypoint Source for path generation, in-
cluding models of the four real-world disturbances.
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Appendix B

Simulation Parameters & Results

B-1 Bicycle Model Parameters

Parameter Symbol Unit Value
Wheelbase L m 2.89

Distance front axle to CoG lf m 1.48

Distance rear axle to CoG lr m 1.41

Total mass m kg 1900

Body inertia around vertical axis Iz kg m2 3500

Front cornering stiffness Cf N rad−1 120000

Rear cornering stiffness Cr N rad−1 190000

Longitudinal vehicle velocity V m s−1 27.78

Table B-1: Bicycle model parameters used for the vehicles in the custom-built simulator.
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Parameter Symbol Unit Value
Wheelbase L m 2.89

Distance front axle to CoG lf m 1.48

Distance rear axle to CoG lr m 1.41

Total mass m kg 1900

Body inertia around vertical axis Iz kg m2 3500

Front cornering stiffness Cf N rad−1 120000

Rear cornering stiffness Cr N rad−1 190000

Longitudinal vehicle velocity V m s−1 27.78

Table B-2: Virtual Leader Model single-track parameters used in the scaled vehicle experiments.
These values are obtained by system identification performed by Mart Baars for the DSV.

B-2 Steering Input
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Fig. B-1: This figure visualizes the steering input given in the simulation scenarios. For the
leader-vehicle, this input is mirrored in the horizontal axis, to let it initiate a lane-change to the
right, rather than to the left.
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B-3 Path Generation Implementation Parameters

Polynomial Path Generation

For unconstrained polynomial fitting, one tuning parameter is available: the number of used
waypoints. For all polynomial fitting methods, the number of used waypoints is set to 9.
This number is chosen because using this amount of waypoints lead to the best possible path
reconstruction by the resulting polynomials, in terms of maximum occurring reconstruction
errors. With constrained polynomial fitting, another tuning parameter is available: ∆Xb. In
theory, explained in Section 3-2, this parameter should represent the traveled origin distance of
the local follower-vehicle reference frame, during the time between two consecutive polynomial
fitting steps. In practice, it can be used to tune the constrained polynomial fitting behavior.
For the simulations, ∆Xb =

∫
u · dt is chosen, in correspondence with theory. The reason

for this is given by the conclusion drawn at the end of Chapter 3: the polynomial fitting
methods require tuning of parameters that have indirect connections to the vehicle dynamics.
The tuning process comes down to trying to model the leader-vehicle and its trajectory
characteristics, but with tuning parameters that are not intuitive.

Model-based Path Generation

For Model-based Path Generation, more tuning parameters are available. The effects of these
intuitive parameters were theoretically substantiated in Sections 4-3-2 and 4-5. For the model-
predictions, the Virtual Leader Model of Section 4-2 is used. This model is integrated using the
classical Runge-Kutta method (RK4) with a sampling time of Ti = 0.01 s. With Tm = 0.1 s,
this defines the sampling time ratio q to be 10, given by (4-17). For the Virtual Leader Model
parameters, the bicycle model parameters of Table B-1 are used. For the Model Predictive
Control (MPC) optimization, δmax and δmin are set to 0.1 rad and −0.1 rad respectively.
Moreover, δ̇max and δ̇min are set to 0.175 rad s−1 and −0.175 rad s−1 respectively. Note that
these values define the allowed steering behavior of the Virtual Driver. This steering behavior
can be modified by defining different bounds, influencing the resulting Virtual Leader Model’s
trajectory. The aforementioned values for the bounds are chosen because, in combination with
the other tuning parameters, they result in superior leader-vehicle path reconstruction. This
was shown by the simulation results.

In Section 4-3-2, the look-ahead-time tla was introduced as tuning parameter for the Pro-
portional Control implementation for the Virtual Driver. For all scenarios, a fixed look-
ahead-time tla of 0.9 s is chosen. The intuition behind this is given by how a human would
perform the lane-change: by anticipating on the future, making forward predictions in the
same order of magnitude as the chosen value for tla. The Virtual Leader Model drives at a
certain time headway tv with respect to the real leader-vehicle. This time headway is defined
by setting a prediction horizon N for the Virtual Leader Model. This prediction horizon N
corresponds to the amount of waypoints from the Waypoint Source that are available to the
virtual leader-vehicle. These waypoints are located between the virtual leader-vehicle and the
real leader-vehicle and lead to a certain time headway tv.

In Section 4-5, the MPC tuning parameters N , Nm and Nc were defined. For all scenarios,
the minimum cost horizon Nm is set to 1, making all offsets ybe contribute to the objective
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function. Moreover, the prediction horizon N is set to 10. This means that the virtual leader-
vehicle uses 10 waypoints in front of it to determine its control actions. A Waypoint Source,
sampling waypoints at 10 Hz, in combination with a vehicle speed of 100 km h−1, results in a
distance between each waypoint of approximately 2.78 m. Consequently, N = 10 corresponds
to a distance 27.8 m.

The aforementioned values of tla and N are chosen based on how a human would perform the
vehicle-following: by anticipating on the future, making forward predictions in the same order
of magnitude. In the simulated scenarios, the set value for N realizes that the Virtual Leader
Model drives between the follower- and leader-vehicle. This way, the generated reference path
is obtained in front of the follower-vehicle. As a result, the reference path can potentially be
used by a control system on board of the follower-vehicle.

For ideal-world scenarios, the control objective is given by the goal of tracking the given
waypoints accurately. Therefore, the control horizon for these scenarios is set to the maximum
(Nc = N), realizing a Virtual Driver that effectively tracks the waypoints. For real-world
scenarios, where real-world waypoint disturbances are introduced, the control objective is
given by the goal of tracking the given waypoints in a more conservative way, realizing an
accurate reconstruction of the path driven by the real leader-vehicle. This change of objective
is implemented by reducing the control horizon Nc. This leads to the Virtual Driver realizing
a smooth, feasible vehicle trajectory, based on the noise-corrupted or unfeasible waypoints.
Besides the filtering effect, a reduced control horizon Nc gives the advantage of reducing the
dimension of the optimization search-region, leading to a smaller computational demand. For
these reasons, in simulating real-world scenarios, a control horizon Nc = 1 is chosen. The
same control horizon is used for simulating the scenario with user-defined waypoints, which
was explained in Section 5-3-3.
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B-4 Results

B-4-1 Reconstruction errors

Table B-3: Maximum occurring reconstruction errors with ye in m, ψe in rad and κe in m−1.

(a) Ideal World - Leader Sine Driving

Error Method 1 Method 2 Method 3 Method 4 Method 5
max ye 0.00018793 0.00030355 0.00010095 0.037904 0.00030395
max ψe 4.0285e-05 0.00026335 5.0621e-05 0.0014985 6.2451e-05
max κe 2.8941e-05 3.4498e-05 2.5556e-05 9.919e-05 3.1993e-05

(b) Ideal World - Follower Sine Driving

Error Method 1 Method 2 Method 3 Method 4 Method 5
max ye 0.0019225 0.032398 0.0019586 0.0054849 0.0022609
max ψe 0.00012225 0.040807 0.00012326 0.00027088 0.00019536
max κe 1.597e-05 0.0021153 1.7262e-05 1.6809e-05 3.7281e-05

(c) Real World - Leader Sine Driving

Error Method 1 Method 2 Method 3 Method 4 Method 5
max ye 0.24057 0.23982 0.29136 0.1001 0.097159
max ψe 0.048872 0.027011 0.057649 0.0075581 0.0084076
max κe 0.0082191 0.006687 0.0097673 0.0015352 0.00088326

(d) Real World - Follower Sine Driving

Error Method 1 Method 2 Method 3 Method 4 Method 5
max ye 0.2449 0.25863 0.25968 0.10821 0.10532
max ψe 0.048872 0.051299 0.05733 0.0066565 0.0079502
max κe 0.0082191 0.0073581 0.0097673 0.0016034 0.00083815
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B-4-2 Path Discontinuity

Table B-4: Table of maximum occurring differences in path generation variables with yb in m, ψb
in rad and κb in m−1. The simulation is given by the real-world, leader sine maneuvering scenario
(simulation time 15 to 20 seconds). Comparing Method 5 to Method 1, for lateral position (yb),
the maximum occurring jump is smaller by one order of magnitude. For the heading (ψb) and
curvature (κb), the decrease in discontinuity is by two orders of magnitude.

Path Variable Method 1 Method 2 Method 3 Method 4 Method 5 Ground Truth
max diff(yb) 0.13105 0.12832 0.0612 0.013341 0.013471 0.010306
max diff(ψb) 0.034362 0.0013938 0.050691 0.0005101 0.00053334 0.00023319
max diff(κb) 0.0081176 0.0079337 0.00083033 0.00034089 4.9128e-05 5.2789e-06

Table B-5: Table of maximum occurring differences in path generation variables with yb in m,
ψb in rad and κb in m−1. The simulation is given by the extreme maneuver scenario with user-
defined waypoints. Comparing Method 5 to Method 1, for lateral position (yb), the maximum
occurring jump is smaller by one order of magnitude. For the heading (ψb) and curvature (κb),
the decrease in discontinuity is by three orders of magnitude.

Path Variable Method 1 Method 2 Method 3 Method 4 Method 5
max diff(yb) 0.25778 0.28298 0.20868 0.012774 0.010676
max diff(ψb) 0.11778 0.010437 0.16484 0.00044154 0.00051211
max diff(κb) 0.015257 0.019715 0.0046075 7.004e-05 6.6206e-05
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Fig. B-2: This figure shows the difference in generated path variables yb, ψb, and κb, from
simulating the real-world scenario. The real-world disturbances are Waypoint Noise, Delay, Offset
and Motion Parameter Noise. The leader-vehicle is performing the sine steering maneuver, while
the follower-vehicle drives straight. Clearly, the new Model-based Path Generation Methods 4
and 5 provide more continuous paths, compared to the Polynomial Fitting Methods 1, 2 and 3.
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Appendix C

Experimental Parameters & Results

C-1 Bicycle Model Parameters

Parameter Symbol Unit Value
Wheelbase L m 0.26

Distance front axle to CoG lf m 0.15

Distance rear axle to CoG lr m 0.11

Total mass m kg 2.286

Body inertia around vertical axis Iz kg m2 0.042

Front cornering stiffness Cf N rad−1 18.13

Rear cornering stiffness Cr N rad−1 30.08

Longitudinal vehicle velocity V m s−1 0.50

Table C-1: Virtual Leader Model single-track parameters used in the scaled vehicle experiments.
These values are obtained by system identification performed by Mart Baars for the DSV.
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C-2 Results

C-2-1 Path Discontinuity
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Fig. C-1: The differences in generated path variables yb, ψb, and κb are shown. The results were
obtained by running the path generators based on the scaled vehicle experimental data.
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Fig. C-2: The differences in generated path variables yb, ψb, and κb are shown. The results were
obtained by running the path generators based on TNO’s experimental data.
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Glossary

List of Acronyms

CoG Center of Gravity

DCSC Delft Center for Systems and Control

DSV Delft Scaled Vehicle

IMU Inertial Measurement Unit

KF Kalman Filter

Method 1 Unconstrained Polynomial Fitting

Method 2 Heading Constrained Polynomial Fitting

Method 3 Curvature Constrained Polynomial Fitting

Method 4 Model-based Path Generation with Proportional Control

Method 5 Model-based Path Generation with MPC

MPC Model Predictive Control

PF Particle Filter

RRT Rapidly-exploring Random Tree

RTK Real Time Kinematic
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